WO2019008755A1 - Information processing system, and information processing system infrastructure and information processing method used in same - Google Patents

Information processing system, and information processing system infrastructure and information processing method used in same Download PDF

Info

Publication number
WO2019008755A1
WO2019008755A1 PCT/JP2017/024996 JP2017024996W WO2019008755A1 WO 2019008755 A1 WO2019008755 A1 WO 2019008755A1 JP 2017024996 W JP2017024996 W JP 2017024996W WO 2019008755 A1 WO2019008755 A1 WO 2019008755A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
processing system
data
information processing
vehicle
Prior art date
Application number
PCT/JP2017/024996
Other languages
French (fr)
Japanese (ja)
Inventor
山田 健一郎
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to PCT/JP2017/024996 priority Critical patent/WO2019008755A1/en
Publication of WO2019008755A1 publication Critical patent/WO2019008755A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the present invention relates to an information processing system, and more particularly to an inter-vehicle communication system, an inter-road communication system, and a traffic management system.
  • Patent Document 1 In an autonomous driving system, research and development of advanced technology (dynamic map) of map information is performed.
  • Dynamic map is dynamic information (peripheral vehicles, pedestrian information, signal information, etc.) Semi-dynamic information (accident information, traffic jam information, narrow-area weather information, etc.), quasi-static information (traffic regulation information, road construction information, wide-area weather information, etc.), static information (road surface information, lane information, three-dimensional It is described that information of each hierarchy made up of structure information etc.) is linked. Further, as a communication system between vehicles using such map information, there is, for example, JP-A-2009-9486 (Patent Document 2).
  • the inter-vehicle communication system includes a wireless communication device mounted in each vehicle and a relay device fixedly arranged, and each wireless communication device passes the relay device more than the data received directly. It is described that the data received in is judged to have a high priority as being data of a car having a high collision risk.
  • Patent Document 2 for the purpose of providing a technology capable of avoiding a collision between vehicles, the information transmitted by the wireless communication device only describes information related to vehicles such as vehicle position information and vehicle speed information. It is done.
  • the data that can be acquired by the in-vehicle sensor is not limited to the specific data for avoiding the collision in Patent Document 2.
  • the information shared by future map information systems is from the important data related to driving safety such as road surface freezing condition and snow condition, driving safety such as parking lot availability condition. From the point of view, it is possible to detect various types of data, such as data of low importance but useful data. In view of the future in which autonomous driving is put to practical use, each automobile will be equipped with different types of on-vehicle sensors for different purposes.
  • the source of the information to be shared may be the "autonomous sensor mounted on a vehicle" described in Patent Document 1, a conventional monitoring camera for inter-vehicle communication, fixed-point monitoring used in inter-vehicle communication, traffic system, etc. It is not limited.
  • an object of the present invention is to provide an information processing system capable of appropriately sharing various types of detection information from various transmission sources between vehicles and users, and an information processing system infrastructure and information processing method used therefor. It is to be.
  • the present invention is an information processing system, for example, a plurality of ambient information acquiring units that detect information around itself as ambient information, and a plurality of ambient information acquiring units.
  • Data storage unit for collecting detection position information in which surrounding information of the target of the object is detected, shared data generating means for generating shared data by analyzing the peripheral information on the plurality of targets and the detection position information, Share with multiple targets.
  • an information processing system capable of appropriately sharing various types of detection information from various transmission sources between vehicles and users, and an information processing system infrastructure and an information processing method used therefor.
  • FIG. 1 is a schematic view of an information processing system in a first embodiment.
  • FIG. 2 is a block diagram showing a configuration of an in-vehicle communication device in Embodiment 1.
  • FIG. 1 is a block diagram showing a configuration of an information processing system infrastructure in Embodiment 1.
  • FIG. 1 is a schematic view showing a concept of an information processing system in a first embodiment.
  • 5 is a flowchart of data sharing processing according to the first embodiment.
  • FIG. 5 is a schematic view showing a configuration of a data sharing packet transmitted by the host vehicle and the oncoming vehicle in the first embodiment.
  • FIG. 6 is a schematic view showing a configuration of a data sharing packet transmitted by the information processing system infrastructure in the first embodiment.
  • FIG. 3 is a schematic view showing a data configuration in Example 1; It is an example of the processing attribute decision table according to item of information in execution example 1.
  • FIG. 18 is a schematic view showing a concept of changing a processing hierarchy for performing server uploading according to regionality of information in the second embodiment.
  • FIG. 8 is a block diagram showing a functional configuration of an information processing system infrastructure in a second embodiment. 17 is an example of a process attribute determination table according to items of information in the second embodiment. It is a schematic diagram showing the concept which performs a detailed data request with respect to the own vehicle of each area according to the analysis result of the cloud server in Example 2.
  • FIG. It is an example of the detailed data which the information processing system server in Example 2 requests.
  • FIG. 14 is a schematic view showing the concept of the information processing system in the third embodiment.
  • FIG. 18 is a flowchart of identical object detection data processing performed by the information processing system server in the third embodiment.
  • information is processed according to locality and real-time nature of information for the purpose of efficiently using network traffic and communication time in the communication network. It is characterized by separating the layers to be
  • various information such as pedestrian information jumping out from the driver's blind spot ahead of the traveling direction of the vehicle, wide area weather information represented by poor visibility by PM 2.5, etc. Send and receive type information.
  • sharing of information is a vehicle near the position where the information is detected It is shared only by inter-vehicle communication and inter-vehicle communication, which is communication limited to the above. This is because pedestrian information having high real-time and locality need not occupy and upload limited network traffic of the communication network and share it with a wide-area vehicle until uploading.
  • the latter wide area weather information spreads to a wide area including the position where the information is detected, since the observation event is wide area. Also, considering that real-time performance is not so high as quasi-static information, not only in a narrow area where communication is possible only with inter-vehicle communication or inter-vehicle communication, but with vehicles that travel on wide area by uploading on servers. Need to share.
  • processing in inter-vehicle communication and inter-vehicle communication upload to a server and share across the entire network It is necessary to change the final information processing according to the information to be shared, such as processing.
  • processing hierarchy in addition to the first process for performing only inter-vehicle communication and inter-vehicle communication, and the second process for uploading to a server in addition to the inter-vehicle communication and inter-vehicle communication and sharing the entire network are collectively called processing hierarchy.
  • FIG. 1 is a schematic view showing an information processing system 100 in the present embodiment.
  • the information processing system 100 is a system for sharing between the vehicles information that may affect the driving route and control of the vehicle.
  • FIG. 1 shows that the vehicle using the system travels by the on-vehicle sensor while traveling on the road. It is a schematic diagram shown about the case where the detected information is shared with other vehicles.
  • the information processing system 100 includes another vehicle 200 traveling in the same lane as the host vehicle 101, an oncoming vehicle 300 traveling in the opposite lane, an information processing system infrastructure 400, an information processing system network 500, and an information processing system.
  • the server 600 is included.
  • the information processing system infrastructure 400 is installed, for example, to project on a road or a crossing through a pole erected on the roadside. Alternatively, it may be attached to a traffic light.
  • the information processing system infrastructure 400 performs inter-vehicle communication with a vehicle.
  • Each vehicle is equipped with an ambient information acquisition unit 102 and an in-vehicle communication device 103, which are sensors such as a camera and a radar.
  • an information processing system (server) 700 of a car company an information processing system (server) 900 of an information service company, a map information company Information processing system (server) 1000, bus company information processing system (server) 1100, traffic information center information processing system (server) 1200, basic map company information processing system (server) 1300, mobile phone communication company information
  • server server
  • FIG. 2 is a block diagram showing a functional configuration of the in-vehicle communication device 103 in the present embodiment.
  • the on-vehicle communication device 103 includes a data storage unit 103-1, a vehicle arrival position calculation unit 103-2, a held data list creation unit 103-3, a communication unit 103-4 and a priority determination unit 103-5.
  • the communication unit 103-4 is configured of a wireless data transmission unit 103-4-1 and a wireless data reception unit 103-4-2.
  • the data storage unit 103-1 collects and stores information on past travel routes, surrounding information detected by the surrounding information acquisition unit 102, and detected position information detected from the surrounding information.
  • FIG. 3 is a block diagram showing a functional configuration of the information processing system infrastructure 400 in the present embodiment.
  • the information processing system infrastructure 400 includes a wireless data transmission / reception unit 400-1, a data storage unit 400-2, a processing attribute determination unit 400-3, a transmission data list creation unit 400-4, and a server data transmission / reception unit 400-5.
  • the wireless data transmission / reception unit 400-1 is configured of a wireless data reception unit 400-1-1 and a wireless data transmission unit 400-1-2.
  • the server data transmission / reception unit 400-5 includes a server data transmission unit 400-5-1 and a server data reception unit 400-5-2.
  • the data storage unit 400-2 collects and stores surrounding information detected by the surrounding information acquisition unit 102 and detected position information detected from the surrounding information via the wireless data receiving unit 400-1-1.
  • the host vehicle 101 distributes data by connecting to the oncoming traffic lane with an oncoming vehicle 300 or an intersection at an intersection when traveling in parallel with another vehicle 200 traveling on the same lane by traveling on a road.
  • the connection between vehicles is not limited to direct connection, but may be multi-hop communication via a plurality of vehicles.
  • multi-hop communication via relay of the information processing system infrastructure 400 may be used.
  • FIG. 4 is a schematic view showing a concept in which the information processing system 100 performs processing in different layers according to the real time property and the locality of information.
  • FIG. 4 (a) shows the case where the processing hierarchy is only inter-vehicle communication and inter-vehicle communication
  • FIG. 4 (b) shows that the processing hierarchy is uploaded to the server in addition to inter-vehicle communication and inter-vehicle communication.
  • the detected information is linked to the static information including the lowest real-time lane information by the detected position information.
  • FIG. 4 (a) and FIG. 4 (b) The difference between FIG. 4 (a) and FIG. 4 (b) is only the difference in the processing hierarchy of communication used to share information. That is, in FIG. 4A, dynamic information such as emergency vehicle information, obstacle (falling object) information, pedestrian information, etc. shared by each vehicle by inter-vehicle communication and inter-vehicle communication is linked. .
  • FIG. 4B In the processing hierarchy of FIG. 4B, in addition to the inter-vehicle communication and the inter-vehicle communication, they are uploaded to the server via the information processing system infrastructure 400 and shared across the entire network, for example, obstacles (falling objects)
  • Dynamic information such as information, for example, semi-dynamic information such as weather information and traffic jam information, for example, quasi-static information such as PM 2.5 information and fog information are linked.
  • dynamic information is not necessarily shared only in the processing hierarchy of inter-vehicle communication and inter-vehicle communication in FIG. Depending on the nature, it may be shared in the processing hierarchy in the entire network through the information processing system infrastructure 400 of FIG. 4 (b).
  • FIG. 5 shows a flowchart of data sharing processing in the present embodiment.
  • the on-vehicle communication device 103 of the own vehicle 101 is connected by direct connection with the oncoming vehicle 300, by multihop communication via a plurality of oncoming vehicles 300, or by multihop communication relaying the information processing system infrastructure 400.
  • the data sharing process is started (step S501).
  • step S 502 the vehicle arrival position calculation unit 103-2 calculates the position predicted to be reached by the vehicle at Tf seconds from the information on the past travel route stored in the data storage unit 103-1 of the own vehicle 101. . Further, based on the input from the vehicle arrival position calculation unit 103-2 and the detection data stored in the data storage unit 103-1 of the own, the held data list creation unit 103-3 is operated by the vehicle arrival position calculation unit 103-2. A list of data created in a two-dimensional rectangular area having the obtained arrival position and the current position of itself as vertices is created as a held data list. If creation of a data list is completed, it will transfer to step S503.
  • step S 503 the data transmission request packet created in step S 503 is transmitted from the data transmission unit 103-4 constituting the communication unit 103-4 to the connected object.
  • step S502 and step S503 are performed similarly for the connection target (the oncoming vehicle 300 or the information processing system infrastructure 400).
  • the target of connection destination is the oncoming vehicle 300
  • the oncoming vehicle is obtained based on a data list created in a two-dimensional rectangular area with the arrival position predicted to be reached by the oncoming vehicle 300 and the current position of itself as a vertex.
  • a data sharing request packet is also transmitted to the host vehicle 101 from 300.
  • the own vehicle 101 is likely to access the oncoming vehicle 300 in the future based on the received data sharing request packet from the oncoming vehicle 300, that is, within the rectangular area with the on position and the oncoming position of the oncoming vehicle 300 at the top. Share data preferentially.
  • the data sharing request packet includes, for example, a packet number, a transmission vehicle ID, a transmission vehicle current position, a transmission vehicle predicted position, a transmission vehicle speed vector, a hop number, and a held data list.
  • the information processing system infrastructure 400 transmits a data sharing request packet to the host vehicle 101.
  • FIG. 7 shows an example of items included in the data sharing request packet created by the information processing infrastructure 400.
  • the data sharing request packet includes, for example, a packet number, a transmission infrastructure ID, a transmission infrastructure installation position, a hop number, and a held data list.
  • step S504 in FIG. 5 in the own vehicle 101, the reception timeout determination of the share request packet transmitted from the target of the connection destination is performed.
  • the wireless data reception unit 103-4-2 configuring the communication unit 103-4 does not receive the sharing request packet transmitted from the connection target within the preset timeout time (Yes in step S 504)
  • the process proceeds to step S511, and the data sharing process ends.
  • the data receiving unit 103-4-2 receives the sharing request packet during the set timeout time (No in step S504), the process proceeds to step S505.
  • step S505 it is determined whether the target of the connection destination is the information processing system infrastructure 400 based on the ID (transmission vehicle ID, transmission infrastructure ID) included in the sharing request packet from the connection destination target. If it is determined in step S505 that the connection destination is not the information processing system infrastructure 400 (No in step S505), the process proceeds to step S506.
  • ID transmission vehicle ID, transmission infrastructure ID
  • step S506 as the processing of the in-vehicle communication device 103, the priority determination unit 103-5 determines the priority of the data, and a transmission data list at the time of data sharing is created.
  • priority determination unit 103-5 selects the priority of the data to be shared among the holding data of host vehicle 101 stored in data storage unit 103-1 and is determined by oncoming vehicle 300.
  • the list creation is performed by raising the priority at the time of sharing with respect to data created within a range having a rectangular area having the current position and the arrival position as a vertex. Further, by comparing the held data list transmitted from the oncoming vehicle 300 of the connection destination with the held data list of the own vehicle 101, the duplicate data is deleted from the transmission data list.
  • step S506 when step S506 is performed via step S512 (details will be described later) in step S506, the priority processing in the rectangular area is omitted, and only deletion of duplicate data is performed.
  • step S507 When creation of the transmission data list to be shared is completed, the process proceeds to step S507.
  • FIG. 8 shows an example of the configuration of the data format in this embodiment.
  • the data format is divided into two, for example, index data 800 in which characteristics and the like related to each data are described, and a data main body 801 including detailed detection information detected by the ambient information acquisition unit 102 and the like.
  • the index data 800 includes a processing attribute 802 of detection data, a time 803 of detection, and a detection position 804 at which data is detected.
  • the index data 800 has a very small data size, and communication of only the index data 800 can be completed in a short time as compared with the data body. Therefore, the data information constituting the held data list of the data sharing request packet shown in FIG. 6 and FIG. 7 does not include the data main body, and is constituted only by the index data 800.
  • step S507 in FIG. 5 the oncoming vehicle 300 connected from the data transmission unit 103-4-1 configuring the communication unit 103-4 in descending order of priority based on the transmission data list created in step S506. Send data to
  • step S508 the connection is disconnected due to an unexpected reason, such as transmission of the data started to be transmitted in step S507 is finished, or communication becomes difficult due to shadowing by a shield during transmission of the sharing planned data. Determine if it was.
  • step S508 the process proceeds to step S508 again, and step S508 is repeated until the determination becomes Yes. If the transmission of the distribution schedule data is completed or the communication is disconnected (Yes in step S508), the process proceeds to step S509.
  • step S509 the user of the host vehicle 101 is notified of the end of the data distribution process using a visible interface such as a display or an arbitrary means such as voice, and the process proceeds to step S510.
  • the end notification in step S 509 is not necessarily required, and the user may not be notified of the end of the data distribution process.
  • step S510 in the oncoming vehicle 300, the information of the detection position 804 of each data shared from the own vehicle 101 is linked to static information including lane information stored in the data storage unit 103-1 of its own. That is, the oncoming vehicle 300 functions as shared data creation means for creating shared data by analyzing surrounding information of the host vehicle 101 and detected position information, and when the linking of all shared data is completed, the data sharing process is terminated. (Step S511).
  • step S505 when it is determined in step S505 that the connection destination is the information processing system infrastructure 400 (Yes in step S505), the process proceeds to step S512.
  • step S512 the processing attribute determination unit 400-3 determines the processing attribute according to the processing attribute 802 of the detection data included in the held data list.
  • the process proceeds to step S506.
  • the description of the process from step S506 to step S511 is omitted because it is redundant.
  • step S512 When it is determined in step S512 that the process attribute includes the server upload hierarchy as a result of the process attribute determination (Yes in step S512), the process proceeds to step S513.
  • step S513 as processing of the information processing infrastructure 400, the transmission data list creation unit 400-4 compares the held data list of the information processing system server 600 with the held data list received from the host vehicle 101 to hold the data. The duplicate data already stored in the information processing system server 600 is deleted from the data list to create a transmission data list. When creation of the transmission data list to be shared is completed, the process proceeds to step S514.
  • FIG. 9 shows an example of the processing attribute determination table for each item of information.
  • the large classification classifies whether each item belongs to any of dynamic information, quasi-dynamic information, and quasi-static information, and the presence or absence of a circle in the determination result indicates the hierarchy of the processing attribute.
  • the determination results those with a circle only in the inter-vehicle communication / inter-vehicle communication column, those with a circle in the server upload column that are determined as No in step S512, and step S512. Items which are determined as Yes in.
  • the process attribute determination table is not limited to the items listed in FIG. 9, and the determination result is not limited to the initial state.
  • updates such as addition of items and change of the determination result may be added.
  • step S514 based on the transmission data list created in step S513, the server data transmission unit 400-5-1 transmits data to the information processing system server 600 via the information processing system network 500.
  • step S515 the connection is disconnected due to an unexpected reason, such as transmission of the data whose transmission has been started in step S514 has ended, or communication becomes difficult due to shadowing by a shield during transmission of the sharing scheduled data. Determine if it was.
  • step S515 the process returns to step S515 again, and step S515 is repeated until the determination becomes Yes. If the transmission of the distribution schedule data is completed or the communication is disconnected (Yes in step S515), the process proceeds to step S517.
  • step S517 in the information processing system server 600, the information of the detection position 804 of each data shared from the host vehicle 101 is linked to static information including stored lane information. That is, the information processing system server 600 functions as a shared data creation unit that analyzes the surrounding information of the own vehicle 101 and the detected position information to create shared data, and when linking of all shared data is completed, the data sharing process The process ends (step S511).
  • the configuration and processing of the present embodiment it is possible to efficiently use limited network traffic by changing the layer for processing information according to the real time property and the locality of the information to be shared. .
  • the layer for processing information is classified into a layer for performing only inter-vehicle communication / inter-vehicle communication and a layer for performing server upload according to the real-time property and the locality of information to be shared.
  • a processing hierarchy for performing server upload a hierarchy which has been grouped together in the information processing system server 600 is physically close to the information processing system infrastructure 400 according to the regionality of information.
  • processing on a server (edge server) and processing on a server (cloud server) physically distant from the information processing system infrastructure 400 will be specifically described.
  • FIG. 10 is a schematic view showing the concept of changing the processing hierarchy for performing server uploading according to the regionality of information in the present embodiment.
  • the situation in which the surrounding information acquisition unit 102 detects data with high wide-area characteristics is represented by the vehicle 101-1 traveling in the area A and the vehicle 101-2 traveling in the area B.
  • quasi-static information such as wide-area weather information detected across an area may be mentioned as an example of data having high wide-area characteristics.
  • data with high regionality is not limited to quasi-static information, but may be quasi-dynamic information. That is, data with high wide-area characteristics may include accident information and traffic congestion information on a major arterial road that can also affect the route of a vehicle traveling in an area other than the area in which the data is detected.
  • FIG. 10 shows a state in which wide-area meteorological information observed across the area A and the area B is observed as an example of data with high wide-area characteristics as an example.
  • the data observed by the vehicles 101-1 and 101-2 are detected by the respective vehicles by connecting to the information processing system infrastructure 400-A in area A and the information processing system infrastructure 400-B in area B.
  • Upload data The information processing system infrastructure 400-A of the area A determines the processing hierarchy of the data according to the wide area of the data, and the edge server 600- of the area A via the edge server network 500-1-1 of the area A. 1-1, or upload to the cloud server 600-2 via the cloud server network 500-2-1 in area A.
  • the information processing system infrastructure 400-B in the area B determines the processing hierarchy of data according to the wide area of the data, and the edge server 600- in the area B via the edge server network 500-1-2 in the area B. Further, the image data is uploaded to the cloud server 600-2 via the cloud server network 500-2-2 of the area B or 1-2.
  • the terminal load on the data center can be reduced by distributing the processing hierarchy in two layers of the edge server and the cloud server. Furthermore, the classification of the hierarchy in the present embodiment is performed according to the wide area of the data. As a result, processing can be performed by an edge server having a close physical distance with respect to data for which area narrowness is high and real-timeness is required, and efficiency of arithmetic processing can be achieved. In addition, by collectively processing only wide area data across multiple areas with the cloud server, long distance network bandwidth can be used only with data that really needs wide area analysis, thus improving network traffic efficiency. It is possible to realize utilization for city planning that can not be understood only by data of one area and derivation of a long distance route in which the operation time of the vehicle is the shortest while planning.
  • FIG. 11 is a block diagram showing the functional configuration of the information processing system infrastructure 400 in the present embodiment. The description of the overlapping portions will be omitted as compared with FIG. 3 showing the functional configuration of the information processing system infrastructure 400 in the first embodiment.
  • the information processing system infrastructure 400 in the present embodiment includes a server processing attribute determination unit 400-6 at a stage subsequent to the server data transmission unit constituting the server data transmission unit 400-5-1.
  • the information processing system infrastructure 400 in the present embodiment determines the processing attribute according to the processing attribute 802 of the detection data included in the index data.
  • the data is transmitted to either the edge server 600-1 via the edge server network 500-1 or the cloud server 600-2 via the cloud server network 500-2.
  • FIG. 12 shows an example of the processing attribute determination table for each item of information.
  • the large classification classifies whether each item belongs to any of dynamic information, quasi-dynamic information, and quasi-static information, and the presence or absence of the mark of the determination result indicates the hierarchy of the processing attribute.
  • the processing attribute determination table is not limited to the items listed in FIG. 12, and the determination result is not limited to the initial state.
  • updates such as addition of items and change of the determination result may be added.
  • FIG. 13 is a schematic view showing a concept of performing a detailed data request to the vehicles 101-1 and 101-2 of each area according to the analysis result of the cloud server 600-2 in the present embodiment. That is, as shown in FIG. 13, when the cloud server 600-2 requests the detailed data related to the data having high wide area property, the detailed data is sent to the own vehicle 101-1 and 101-2 by the request signal shown by the star mark. To request.
  • FIG. 14 shows an example of detailed data requested by the information processing system server 600 (the edge server 600-1 and the cloud server 600-2). For example, although it is determined that road surface slippage has occurred as an analysis result based on narrow area data from the detection data of sudden change of the in-vehicle acceleration sensor by the edge server 600-1, the cause can not be identified with the current data If it is determined, the edge server 600-1 requests the sensor detection result such as the road surface temperature and the light reflectance in the vicinity of the detection position as the detailed data. This is to determine whether the cause of road surface slippage is puddle, road surface freezing, or road surface snow according to the required detailed data.
  • the edge server 600-1 requests the sensor detection result such as the road surface temperature and the light reflectance in the vicinity of the detection position as the detailed data. This is to determine whether the cause of road surface slippage is puddle, road surface freezing, or road surface snow according to the required detailed data.
  • the cloud server 600-2 determines that the wide area is not visible as an analysis result based on the detection data of the decrease in the camera view, but if it is determined that the current data can not identify the cause, the cloud server 600-2 requests the scattering coefficient in the vicinity of the detection position as detailed data. This is to determine whether the cause of the wide area visibility is fog, PM 2.5 or volcanic ash, based on the required detailed data.
  • the information processing system server 600 ( The edge server 600-1 or the cloud server 600-2) may request data that can prove the detection result as detailed data.
  • FIG. 15 shows an example of the items included in the detailed data request packet created when the information processing system server 600 (the edge server 600-1 and the cloud server 600-2) requests the detailed data.
  • the detailed data request packet includes, for example, a packet number, a transmission server ID, a request data position, a request data range, and a request data item.
  • the terminal load applied to the data center can be reduced by changing the layer for processing the information according to the wide area of the information to be shared, and the operation regarding the data for which real time property is required It is possible to realize processing efficiency and network traffic efficiency.
  • This embodiment calculates the probability while displaying the maximum number of recognition results for the same target detection data shared by many vehicles when the information processing system is actually operated, along with the recognition results By displaying, it is an embodiment intended to take advantage of the statistical data of multiple data collection shared by many traveling vehicles.
  • the information processing system 100 according to the present embodiment will be described with reference to FIGS. 16 and 17.
  • FIG. 16A is a schematic diagram showing the concept of processing of detection data of the same object shared by many vehicles in this embodiment.
  • detection data from a total of six transmission vehicle IDs A, B, C, D, E, and F are shared by the information processing system server 600, and detection data includes the surroundings of each vehicle.
  • the results detected and recognized by the information acquisition unit 102 are included.
  • FIG. 17 is a flowchart of the same target detection data process performed by the information processing system server 600 in the present embodiment.
  • step S1702 it is determined whether or not the first detection data exists in the area that the information processing system server 600 takes charge of. If it is determined that the first detection data is not detected (No in step S1702), the process proceeds to step S1702 again, and step S1702 is repeated until the determination becomes Yes. When it is determined that the first detection data is detected (Yes in step S1702), the process proceeds to step S1703.
  • step S1703 the information processing system server 600 performs attribute classification on the first detection data according to the attribute classification table prepared in advance. If attribute classification is completed, it will transfer to step S1704.
  • step S1704 a circular initial determination range 1600-1 having a radius of Rdef set in advance is set as a two-dimensional area, with the detection position 804 of the first detection data as the first position center.
  • a circular area of white dots on the black background in FIG. 16A represents the initial determination range 1600-1.
  • step S1705 it is determined whether there is additional detection data in the initial determination range 1600-1 set in step S1705 other than the first detection data. If there is no additional detection data (No in step S1705), the process returns to step S1705 again, and step S1705 is repeated until the determination becomes Yes. If it is determined that there is additional detection data within the initial determination range 1600-1 (Yes in step S1705), the process moves to step S1706.
  • step S1706 attribute division is performed on the data detected in step S1705 according to the attribute division table prepared in advance as in step S1703. If attribute classification is completed, it will transfer to step S1707.
  • step S1707 it is determined whether the number of data having the same detection data attribute in the initial determination range 1600-1 is equal to or greater than a predetermined number of data Nth. If the number of data of the same detected data attribute is smaller than Nth (No in step S1707), the process advances to step S1705. If it is determined that the number of data of the same detection data attribute is equal to or greater than Nth (Yes in step S1707), the process proceeds to step S1708.
  • step S1708 the standard deviation .sigma. Is calculated with respect to the variation in the distance from the average value of the detection position 804 represented by the two-dimensional coordinates of all the data determined to be the same detection data attribute to the detection position. Further, a circular identical detection data judgment range 1600-2 is created with a radius of 3 ⁇ with respect to the standard deviation ⁇ with the average coordinate value X of the detection position 804 as the center. The circle region of the tile pattern represents the same detection data determination range 1600-2 on the white background in FIG. 16 (a). When the same detection data determination range 1600-2 is set, the process proceeds to step S1709.
  • step S1709 the ratio of the detection data number of the largest number of recognition results in all the data determined to be the same detection data attribute detected so far is calculated.
  • the calculation result of the recognition result probability P with respect to six detection results is expressed by (Expression 1).
  • the number of identical detection data attributes which is the denominator of (Equation 1), is five for the same attributes A to E in the road surface condition, while the maximum number of recognition results for the numerator is B to E Since there are four, as a result, the recognition result is road surface freezing, and the recognition result probability P at that time is 80%.
  • the process moves to step S1710.
  • step S1710 it is determined whether there is additional detection data in the same detection data determination range 1600-2. If additional detection data is present (Yes in step S1710), the process advances to step S1711. In step S1711, attribute classification is performed on the new detection data detected in step S1710 according to the attribute classification table prepared in advance as in step S1703. If attribute classification is completed, it will transfer to step S1708. On the other hand, when it is determined in step S1710 that there is no additional detection data in the initial determination range 1600-1 (No in step S1710), the process proceeds to step S1712.
  • step S1712 a timeout is determined. That is, it is determined whether the time elapsed since the last addition of new detection data exceeds a preset time Tth. If it is determined in step S1712 that the time elapsed since the last addition of new detection data did not exceed Tth (No in step S1712), the process moves to step S1710. On the other hand, if it is determined that the elapsed time since the last addition of the new detection data exceeds Tth (Yes in step S1712), the process moves to step S1713, and the identical target detection data processing ends.
  • the recognition result and the recognition result probability P are sequentially updated in real time, for example, when the own vehicle 101 approaches the vicinity of the detection position 804 in a display such as 1600-3 in FIG. The driver may be notified.
  • the recognition result probability P may be derived not only by the simple average as described above, but also by a calculation method in which the surrounding information acquisition unit 102 of each vehicle sharing the detection data is weighted.
  • the recognition result probability P indicates the probability that the recognition result by the surrounding information acquisition unit 102 in the past agrees with the largest number of recognition results derived by the same object detection data processing shown in FIG.
  • the recognition result probability P 'in the case of the table of FIG. 16 (b) is expressed by (Expression 2).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

The purpose of the present invention is to provide an information processing device and an information processing method by which various types of detected information from various transmission sources can be appropriately shared between vehicles or between users using a map information system. In order to achieve the foregoing, this information processing system includes: peripheral information acquisition units that detect information of the surroundings thereof as peripheral information; a data storage unit that gathers detected position information resulting from detection of the surrounding information of a plurality of objects having a periphery information acquisition unit; and a shared data creation means for creating shared data by analyzing the surrounding information and detected position information of the plurality of objects. The shared data is shared with the plurality of objects.

Description

情報処理システム及びそれに用いる情報処理システムインフラ及び情報処理方法Information processing system, information processing system infrastructure used therefor, and information processing method
 本発明は、情報処理システムに係り、特に、車車間通信システム、車路間通信システム、交通管理システムに関する。 The present invention relates to an information processing system, and more particularly to an inter-vehicle communication system, an inter-road communication system, and a traffic management system.
 近年、先進運転支援システムの普及や一般道路での自動運転の実現を目指して、自動車の運転経路や制御に影響を与え得る、地図情報の高度化技術の開発が進んでいる。本技術分野の背景技術として、例えばWO2017/038888号公報(特許文献1)がある。特許文献1には、「自動運転システムでは、地図情報の高度化技術(ダイナミックマップ)の研究開発が行われている。ダイナミックマップは、動的情報(周辺車両、歩行者情報、信号情報等)、准動的情報(事故情報、渋滞情報、狭域気象情報等)、准静的情報(交通規制情報、道路工事情報、広域気象情報等)、静的情報(路面情報、車線情報、3次元構造物情報等)等からなる各階層の情報を紐付けして構成される。」と記載されている。また、そうした地図情報を用いた車両間の通信システムとして例えば特開2009-9486号公報(特許文献2)がある。特許文献2には、車車間通信システムは、各車両に搭載された無線通信装置と、固定配置された中継装置と、からなり、各無線通信装置は、直接受信したデータよりも中継装置を経由で受信したデータは衝突危険度の高い自動車のデータであるとして優先度を高く判断している点が記載されている。 In recent years, with the aim of spreading advanced driving support systems and realizing automatic driving on general roads, development of advanced technology of map information that can affect driving routes and control of vehicles is progressing. As background art of this technical field, there is WO 2017/038888 (patent document 1), for example. In Patent Document 1, "In an autonomous driving system, research and development of advanced technology (dynamic map) of map information is performed. Dynamic map is dynamic information (peripheral vehicles, pedestrian information, signal information, etc.) Semi-dynamic information (accident information, traffic jam information, narrow-area weather information, etc.), quasi-static information (traffic regulation information, road construction information, wide-area weather information, etc.), static information (road surface information, lane information, three-dimensional It is described that information of each hierarchy made up of structure information etc.) is linked. Further, as a communication system between vehicles using such map information, there is, for example, JP-A-2009-9486 (Patent Document 2). In Patent Document 2, the inter-vehicle communication system includes a wireless communication device mounted in each vehicle and a relay device fixedly arranged, and each wireless communication device passes the relay device more than the data received directly. It is described that the data received in is judged to have a high priority as being data of a car having a high collision risk.
WO2017/038888号公報WO 2017/038888 特開2009-9486号公報JP, 2009-9486, A
 特許文献2では、車両間の衝突を回避することが可能な技術を提供することを目的として、無線通信装置で送信される情報は、例えば車両位置情報や車両速度情報といった車両に関する情報のみが記載されている。しかし、車載センサが取得できるデータは特許文献2における衝突を回避する為の特定のデータに限定されるものではない。今日のセンサ技術の向上に伴い、今後の地図情報システムで共有される情報は、路面の凍結状況や積雪状況といった運転の安全性に関わる重要なデータから、駐車場の空き状況といった運転の安全性の観点からは重要性が低いものの有用性のあるデータ等まで、様々な種類のデータを検出することが可能である。自動運転が実用化される将来を鑑みると、各自動車はそれぞれ異なる目的の為に異なる種類の車載センサを備えることとなる。 In Patent Document 2, for the purpose of providing a technology capable of avoiding a collision between vehicles, the information transmitted by the wireless communication device only describes information related to vehicles such as vehicle position information and vehicle speed information. It is done. However, the data that can be acquired by the in-vehicle sensor is not limited to the specific data for avoiding the collision in Patent Document 2. With the improvement of today's sensor technology, the information shared by future map information systems is from the important data related to driving safety such as road surface freezing condition and snow condition, driving safety such as parking lot availability condition. From the point of view, it is possible to detect various types of data, such as data of low importance but useful data. In view of the future in which autonomous driving is put to practical use, each automobile will be equipped with different types of on-vehicle sensors for different purposes.
 また、共有する情報の送信元については、特許文献1に記載されている「車両が搭載する自律センサ」や、従来の車車間通信、車路間通信や交通システムで用いる定点の監視カメラ等に限定されるものではない。 In addition, the source of the information to be shared may be the "autonomous sensor mounted on a vehicle" described in Patent Document 1, a conventional monitoring camera for inter-vehicle communication, fixed-point monitoring used in inter-vehicle communication, traffic system, etc. It is not limited.
 よりリアルタイム性の高い動的情報、順動的情報を広く共有することが可能なシステムを実現する為には、近年のスマホに代表されるセンサを搭載したデバイス、および電話通信網のネットワークインフラの普及を背景として、共有可能な情報の送信元は従来のシステムの枠にとらわれない、個人所有のデバイスも含み得る、新たな地図情報システムが必要となる。 In order to realize a system capable of widely sharing dynamic information and forward dynamic information with high real-time capability, devices equipped with sensors such as smartphones in recent years, and network infrastructures of telephone networks. Against the background of the spread, there is a need for a new map information system, which can also include a privately owned device, as the source of sharable information is not confined to the conventional system.
 そこで、本発明の目的は、様々な送信元からの様々な種類の検出情報を、車両間や利用者間で適切に共有可能な情報処理システム及びそれに用いる情報処理システムインフラ及び情報処理方法を提供することである。 Therefore, an object of the present invention is to provide an information processing system capable of appropriately sharing various types of detection information from various transmission sources between vehicles and users, and an information processing system infrastructure and information processing method used therefor. It is to be.
 本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、情報処理システムであって、自身の周囲の情報を周囲情報として検出する周囲情報取得部と、周囲情報取得部を有する複数の対象の周囲情報を検出した検出位置情報を収集するデータ記憶部と、複数の対象の周囲情報と検出位置情報を解析して共有データを作成する共有データ作成手段とを有し、共有データを複数の対象と共有する構成とする。 In view of the above background art and problems, the present invention is an information processing system, for example, a plurality of ambient information acquiring units that detect information around itself as ambient information, and a plurality of ambient information acquiring units. Data storage unit for collecting detection position information in which surrounding information of the target of the object is detected, shared data generating means for generating shared data by analyzing the peripheral information on the plurality of targets and the detection position information, Share with multiple targets.
 本発明によれば、様々な送信元からの様々な種類の検出情報を、車両間や利用者間で適切に共有可能な情報処理システム及びそれに用いる情報処理システムインフラ及び情報処理方法を提供できる。 According to the present invention, it is possible to provide an information processing system capable of appropriately sharing various types of detection information from various transmission sources between vehicles and users, and an information processing system infrastructure and an information processing method used therefor.
実施例1における情報処理システムの模式図である。FIG. 1 is a schematic view of an information processing system in a first embodiment. 実施例1における車載通信機の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of an in-vehicle communication device in Embodiment 1. 実施例1における情報処理システムインフラの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an information processing system infrastructure in Embodiment 1. 実施例1における情報処理システムの概念を示した模式図である。FIG. 1 is a schematic view showing a concept of an information processing system in a first embodiment. 実施例1におけるデータ共有処理のフローチャートである。5 is a flowchart of data sharing processing according to the first embodiment. 実施例1における自車両および対向車両が送信するデータ共有パケットの構成を示した模式図である。FIG. 5 is a schematic view showing a configuration of a data sharing packet transmitted by the host vehicle and the oncoming vehicle in the first embodiment. 実施例1における情報処理システムインフラが送信するデータ共有パケットの構成を示した模式図である。FIG. 6 is a schematic view showing a configuration of a data sharing packet transmitted by the information processing system infrastructure in the first embodiment. 実施例1におけるデータ構成を示した模式図である。FIG. 3 is a schematic view showing a data configuration in Example 1; 実施例1における情報の項目別の処理属性判定テーブルの一例である。It is an example of the processing attribute decision table according to item of information in execution example 1. 実施例2における情報の地域性に応じてサーバアップロードを行う処理階層を変更する概念を表した模式図である。FIG. 18 is a schematic view showing a concept of changing a processing hierarchy for performing server uploading according to regionality of information in the second embodiment. 実施例2における情報処理システムインフラの機能構成を表したブロック図である。FIG. 8 is a block diagram showing a functional configuration of an information processing system infrastructure in a second embodiment. 実施例2における情報の項目別の処理属性判定テーブルの一例である。17 is an example of a process attribute determination table according to items of information in the second embodiment. 実施例2におけるクラウドサーバの解析結果に応じて各エリアの自車両に詳細なデータ要求を行う概念を表した模式図である。It is a schematic diagram showing the concept which performs a detailed data request with respect to the own vehicle of each area according to the analysis result of the cloud server in Example 2. FIG. 実施例2における情報処理システムサーバが要求する詳細なデータの一例である。It is an example of the detailed data which the information processing system server in Example 2 requests. 実施例2における情報処理システムサーバが詳細データを要求する際に作成する詳細データ要求パケットに含まれる項目の一例である。It is an example of the item contained in the detailed data request packet created when the information processing system server in the second embodiment requests detailed data. 実施例3における情報処理システムの概念を示した模式図である。FIG. 14 is a schematic view showing the concept of the information processing system in the third embodiment. 実施例3における情報処理システムサーバが行う同一対象検出データ処理のフローチャートである。FIG. 18 is a flowchart of identical object detection data processing performed by the information processing system server in the third embodiment. FIG.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例は、様々な種類のデータを共有する情報処理システムにおいて、通信網におけるネットワークトラフィックや通信時間を効率的に利用することを目的として、情報の局所性とリアルタイム性に応じて情報を処理する階層を分けることを特徴としている。 In this embodiment, in an information processing system sharing various types of data, information is processed according to locality and real-time nature of information for the purpose of efficiently using network traffic and communication time in the communication network. It is characterized by separating the layers to be
 まず、情報の局所性とリアルタイム性に応じて処理する階層を分ける必要性について説明する。本実施例を利用した情報処理システムでは、例えば、車両の進行方向前方に、運転者の死角から飛び出してくる歩行者情報や、PM2.5による視界不良に代表される広域気象情報などの様々な種類の情報を送信および受信する。 First, the necessity of dividing the processing layer according to the locality of information and the real time property will be described. In the information processing system using the present embodiment, for example, various information such as pedestrian information jumping out from the driver's blind spot ahead of the traveling direction of the vehicle, wide area weather information represented by poor visibility by PM 2.5, etc. Send and receive type information.
 上記2つの例において、前者の歩行者情報は、局所的、かつリアルタイム性が極めて高い動的情報であることを考慮して、本実施例では情報の共有は該情報を検出した位置付近の車両に限定した通信である、車車間通信や車路間通信によってのみ共有する。これは、リアルタイム性と局所性の高い歩行者情報は、通信網の有限なネットワークトラフィックを占有してアップロードしてまで広域の車両と共有する必要はない為である。 In the above two examples, considering that the former pedestrian information is dynamic information with extremely high locality and real-time property, in the present embodiment sharing of information is a vehicle near the position where the information is detected It is shared only by inter-vehicle communication and inter-vehicle communication, which is communication limited to the above. This is because pedestrian information having high real-time and locality need not occupy and upload limited network traffic of the communication network and share it with a wide-area vehicle until uploading.
 一方で、後者の広域気象情報は、その観測事象が広域的である為、情報を必要とする車両は、該情報を検出した位置を含む広域にまで広がる。また、リアルタイム性はそれ程高くない准静的情報であることを考慮すると、車車間通信や車路間通信だけで通信可能な狭域だけでなく、サーバ上にアップロードして広域を走行する車両で共有する必要がある。 On the other hand, the latter wide area weather information spreads to a wide area including the position where the information is detected, since the observation event is wide area. Also, considering that real-time performance is not so high as quasi-static information, not only in a narrow area where communication is possible only with inter-vehicle communication or inter-vehicle communication, but with vehicles that travel on wide area by uploading on servers. Need to share.
 上記2つの例だけでなく、限られたネットワークトラフィックの効率的な利用を鑑みると、車車間通信および車路間通信での処理、あるいは、それらに加えてサーバにアップロードしてネットワーク全体で共有する処理というように、共有する情報によって最終的な情報の処理を変更する必要がある。ここで、本実施例では、車車間通信および車路間通信のみを行う第1の処理と、車車間通信および車路間通信に加えてサーバにアップロードしてネットワーク全体で共有する第2の処理を総称して処理階層という。 In addition to the above two examples, in view of the efficient use of limited network traffic, processing in inter-vehicle communication and inter-vehicle communication, or in addition to them, upload to a server and share across the entire network It is necessary to change the final information processing according to the information to be shared, such as processing. Here, in the present embodiment, in addition to the first process for performing only inter-vehicle communication and inter-vehicle communication, and the second process for uploading to a server in addition to the inter-vehicle communication and inter-vehicle communication and sharing the entire network Are collectively called processing hierarchy.
 続いて、図面を用いて本実施例における情報処理システムの概要について説明する。図1は本実施例における情報処理システム100を示した模式図である。情報処理システム100は、自動車の運転経路や制御に影響を与え得る情報を車両間で共有するシステムであり、図1は、その一例として、システムを利用する車両が道路を走行中に車載センサによって検出した情報を他の車両と共有する場合について示した模式図である。 Subsequently, an outline of the information processing system in the present embodiment will be described using the drawings. FIG. 1 is a schematic view showing an information processing system 100 in the present embodiment. The information processing system 100 is a system for sharing between the vehicles information that may affect the driving route and control of the vehicle. As an example, FIG. 1 shows that the vehicle using the system travels by the on-vehicle sensor while traveling on the road. It is a schematic diagram shown about the case where the detected information is shared with other vehicles.
 図1に示すように、情報処理システム100は、自車両101と同一車線を走行する他車両200、対向車線を走行する対向車両300、情報処理システムインフラ400、情報処理システムネットワーク500、情報処理システムサーバ600を含む。情報処理システムインフラ400は、例えば、路側に立てられたポールを通じ、道路や交差に張り出すように設置される。別例として、信号機に取り付けられてもよい。情報処理システムインフラ400は車両との車路間通信を行う。各車両はそれぞれ、カメラやレーダー等のセンサである周囲情報取得部102と車載通信機103を搭載する。また、周囲情報取得部102以外に情報処理システム100で共有する情報の提供元の例として、自動車会社の情報処理システム(サーバ)700、情報サービス会社の情報処理システム(サーバ)900、地図情報会社の情報処理システム(サーバ)1000、バス会社の情報処理システム(サーバ)1100、交通情報センターの情報処理システム(サーバ)1200、基盤地図会社の情報処理システム(サーバ)1300、携帯電話通信会社の情報処理システム(サーバ)1400を示している。 As shown in FIG. 1, the information processing system 100 includes another vehicle 200 traveling in the same lane as the host vehicle 101, an oncoming vehicle 300 traveling in the opposite lane, an information processing system infrastructure 400, an information processing system network 500, and an information processing system. The server 600 is included. The information processing system infrastructure 400 is installed, for example, to project on a road or a crossing through a pole erected on the roadside. Alternatively, it may be attached to a traffic light. The information processing system infrastructure 400 performs inter-vehicle communication with a vehicle. Each vehicle is equipped with an ambient information acquisition unit 102 and an in-vehicle communication device 103, which are sensors such as a camera and a radar. Also, as an example of a provider of information shared by the information processing system 100 other than the ambient information acquisition unit 102, an information processing system (server) 700 of a car company, an information processing system (server) 900 of an information service company, a map information company Information processing system (server) 1000, bus company information processing system (server) 1100, traffic information center information processing system (server) 1200, basic map company information processing system (server) 1300, mobile phone communication company information A processing system (server) 1400 is shown.
 図2は本実施例における車載通信機103の機能構成を表したブロック図である。図2において、車載通信機103は、データ記憶部103-1、車両到達位置計算部103-2、保持データリスト作成部103-3、通信部103-4、および優先度判定部103-5によって構成される。さらに、通信部103-4は無線データ送信部103-4-1および無線データ受信部103-4-2によって構成される。データ記憶部103-1は、過去の移動経路の情報や、周囲情報取得部102で検出した周囲情報や周囲情報を検出した検出位置情報を収集し記憶する。 FIG. 2 is a block diagram showing a functional configuration of the in-vehicle communication device 103 in the present embodiment. In FIG. 2, the on-vehicle communication device 103 includes a data storage unit 103-1, a vehicle arrival position calculation unit 103-2, a held data list creation unit 103-3, a communication unit 103-4 and a priority determination unit 103-5. Configured Furthermore, the communication unit 103-4 is configured of a wireless data transmission unit 103-4-1 and a wireless data reception unit 103-4-2. The data storage unit 103-1 collects and stores information on past travel routes, surrounding information detected by the surrounding information acquisition unit 102, and detected position information detected from the surrounding information.
 図3は本実施例における情報処理システムインフラ400の機能構成を表したブロック図である。図3において、情報処理システムインフラ400は、無線データ送受信部400-1、データ記憶部400-2、処理属性判定部400-3、送信データリスト作成部400-4、サーバデータ送受信部400-5、によって構成される。さらに、無線データ送受信部400-1は、無線データ受信部400-1-1および無線データ送信部400-1-2によって構成される。サーバデータ送受信部400-5は、サーバデータ送信部400-5-1およびサーバデータ受信部400-5-2によって構成される。なお、データ記憶部400-2は、無線データ受信部400-1-1を経由して、周囲情報取得部102で検出した周囲情報や周囲情報を検出した検出位置情報を収集し記憶する。 FIG. 3 is a block diagram showing a functional configuration of the information processing system infrastructure 400 in the present embodiment. In FIG. 3, the information processing system infrastructure 400 includes a wireless data transmission / reception unit 400-1, a data storage unit 400-2, a processing attribute determination unit 400-3, a transmission data list creation unit 400-4, and a server data transmission / reception unit 400-5. Composed of Further, the wireless data transmission / reception unit 400-1 is configured of a wireless data reception unit 400-1-1 and a wireless data transmission unit 400-1-2. The server data transmission / reception unit 400-5 includes a server data transmission unit 400-5-1 and a server data reception unit 400-5-2. The data storage unit 400-2 collects and stores surrounding information detected by the surrounding information acquisition unit 102 and detected position information detected from the surrounding information via the wireless data receiving unit 400-1-1.
 以下、情報処理システム100における、自車両101が搭載した周囲情報取得部102によって取得したデータの配布手法について記す。自車両101は道路を走行することで同一車線を走行する他車両200との縦列走行時、対向車である対向車両300との対向車線や交差点でのすれ違い時に接続することでデータを配布する。このとき、車車間の接続は直接接続だけに限定されるものでなく、複数の自動車を経由したマルチホップ通信でもよい。また、車車間だけの通信が遮蔽物によるシャドーイングにより困難な場合は、情報処理システムインフラ400の中継を経由したマルチホップ通信でもよい。 Hereinafter, the distribution method of the data acquired by the surrounding information acquisition part 102 which the own vehicle 101 mounted in the information processing system 100 is described. The host vehicle 101 distributes data by connecting to the oncoming traffic lane with an oncoming vehicle 300 or an intersection at an intersection when traveling in parallel with another vehicle 200 traveling on the same lane by traveling on a road. At this time, the connection between vehicles is not limited to direct connection, but may be multi-hop communication via a plurality of vehicles. In addition, when communication only between vehicles is difficult due to shadowing by a shield, multi-hop communication via relay of the information processing system infrastructure 400 may be used.
 前述のように、情報処理システム100では情報のリアルタイム性と局所性に応じて最終的な情報の処理階層が異なる。図4は情報処理システム100が情報のリアルタイム性と局所性に応じて、異なる階層で処理を行う概念を表した模式図である。図4(a)は処理階層が車車間通信および車路間通信のみの場合を表しており、図4(b)は処理階層が車車間通信および車路間通信に加えてサーバにアップロードしてネットワーク全体で共有する処理階層を表す。図4(a)および図4(b)ともに、検出した情報はリアルタイム性の最も低い車線情報を含む静的情報に対して検出位置情報によって紐付けられる。図4(a)と図4(b)の違いは情報の共有に用いる通信の処理階層の違いのみである。すなわち、図4(a)では各車両が車車間通信および車路間通信にて共有した、例えば、緊急車両情報や障害物(落下物)情報、歩行者情報などの動的情報が紐付けられる。一方で、図4(b)の処理階層では、車車間通信および車路間通信に加え、情報処理システムインフラ400を経てサーバにアップロードしてネットワーク全体で共有した、例えば、障害物(落下物)情報などの動的情報、例えば、天候情報や渋滞情報などの准動的情報、例えば、PM2.5の情報や霧情報などの准静的情報がそれぞれ紐付けられる。ここで、図4(b)からも分かるように動的情報は必ずしも図4(a)の車車間通信および車路間通信の処理階層でのみ共有されるわけでなく、情報のリアルタイム性と局所性によっては、図4(b)の情報処理システムインフラ400を経てネットワーク全体での処理階層で共有してもよい。 As described above, in the information processing system 100, the processing hierarchy of the final information differs depending on the real-time nature and the locality of the information. FIG. 4 is a schematic view showing a concept in which the information processing system 100 performs processing in different layers according to the real time property and the locality of information. FIG. 4 (a) shows the case where the processing hierarchy is only inter-vehicle communication and inter-vehicle communication, and FIG. 4 (b) shows that the processing hierarchy is uploaded to the server in addition to inter-vehicle communication and inter-vehicle communication. Represents a processing hierarchy shared by the entire network. In both FIG. 4 (a) and FIG. 4 (b), the detected information is linked to the static information including the lowest real-time lane information by the detected position information. The difference between FIG. 4 (a) and FIG. 4 (b) is only the difference in the processing hierarchy of communication used to share information. That is, in FIG. 4A, dynamic information such as emergency vehicle information, obstacle (falling object) information, pedestrian information, etc. shared by each vehicle by inter-vehicle communication and inter-vehicle communication is linked. . On the other hand, in the processing hierarchy of FIG. 4B, in addition to the inter-vehicle communication and the inter-vehicle communication, they are uploaded to the server via the information processing system infrastructure 400 and shared across the entire network, for example, obstacles (falling objects) Dynamic information such as information, for example, semi-dynamic information such as weather information and traffic jam information, for example, quasi-static information such as PM 2.5 information and fog information are linked. Here, as can be seen from FIG. 4B, dynamic information is not necessarily shared only in the processing hierarchy of inter-vehicle communication and inter-vehicle communication in FIG. Depending on the nature, it may be shared in the processing hierarchy in the entire network through the information processing system infrastructure 400 of FIG. 4 (b).
 図5は、本実施例におけるデータ共有処理のフローチャートを示したものである。以下、図1、図2、図3および図5を用いて自車両101が対向車両300や情報処理システムインフラ400と接続して、データ共有処理をする際の詳細を説明する。まず、自車両101の車載通信機103は、対向車両300と直接の接続や、複数の対向車両300を経由したマルチホップ通信によって接続、あるいは情報処理システムインフラ400を中継したマルチホップ通信によって接続したと認識すると、データ共有処理を開始する(ステップS501)。 FIG. 5 shows a flowchart of data sharing processing in the present embodiment. Hereinafter, details of data sharing processing when the host vehicle 101 is connected to the oncoming vehicle 300 and the information processing system infrastructure 400 will be described using FIGS. 1, 2, 3 and 5. First, the on-vehicle communication device 103 of the own vehicle 101 is connected by direct connection with the oncoming vehicle 300, by multihop communication via a plurality of oncoming vehicles 300, or by multihop communication relaying the information processing system infrastructure 400. When it is recognized, the data sharing process is started (step S501).
 ステップS502では、自車両101は自身のデータ記憶部103-1に保存された過去の移動経路の情報から車両到達位置計算部103-2はTf秒後に自身が到達すると予測される位置を計算する。さらに、車両到達位置計算部103-2からの入力と自身のデータ記憶部103-1に保存された検出データを基に保持データリスト作成部103-3は、車両到達位置計算部103-2によって得られた到達位置と現在の自身の位置を頂点とする二次元の矩形領域内で作成されたデータのリストを保持データリストとして作成する。データリストの作成が完了するとステップS503に移行する。 In step S 502, the vehicle arrival position calculation unit 103-2 calculates the position predicted to be reached by the vehicle at Tf seconds from the information on the past travel route stored in the data storage unit 103-1 of the own vehicle 101. . Further, based on the input from the vehicle arrival position calculation unit 103-2 and the detection data stored in the data storage unit 103-1 of the own, the held data list creation unit 103-3 is operated by the vehicle arrival position calculation unit 103-2. A list of data created in a two-dimensional rectangular area having the obtained arrival position and the current position of itself as vertices is created as a held data list. If creation of a data list is completed, it will transfer to step S503.
 ステップS503では、ステップS503で作成したデータ共有要求パケットを接続した対象に対して通信部103-4を構成するデータ送信部103-4-1から送信する。 In step S 503, the data transmission request packet created in step S 503 is transmitted from the data transmission unit 103-4 constituting the communication unit 103-4 to the connected object.
 ステップS502およびステップS503の処理は、接続先の対象(対向車両300あるいは情報処理システムインフラ400)でも同様に実施される。接続先の対象が対向車両300である場合、対向車両300が到達すると予測される到達位置と現在の自身の位置を頂点とする二次元の矩形領域内で作成されたデータリストを基に対向車両300からもデータ共有要求パケットを自車両101へと送信する。自車両101は受信した対向車両300からのデータ共有要求パケットを基に、対向車両300が将来アクセスする可能性の高い、すなわち、対向車両300の現在位置と到達位置を頂点とした矩形領域内のデータを優先的に共有する。図6に、自車両101および対向車両300が作成するデータ共有要求パケットに含まれる項目の一例を示す。データ共有要求パケットは、例えば、パケット番号、送信車両ID、送信車両現在位置、送信車両予測位置、送信車両速度ベクトル、ホップ数、および保持データリストによって構成される。 The processes of step S502 and step S503 are performed similarly for the connection target (the oncoming vehicle 300 or the information processing system infrastructure 400). When the target of connection destination is the oncoming vehicle 300, the oncoming vehicle is obtained based on a data list created in a two-dimensional rectangular area with the arrival position predicted to be reached by the oncoming vehicle 300 and the current position of itself as a vertex. A data sharing request packet is also transmitted to the host vehicle 101 from 300. The own vehicle 101 is likely to access the oncoming vehicle 300 in the future based on the received data sharing request packet from the oncoming vehicle 300, that is, within the rectangular area with the on position and the oncoming position of the oncoming vehicle 300 at the top. Share data preferentially. An example of the item contained in the data sharing request packet which the own vehicle 101 and the oncoming vehicle 300 create in FIG. 6 is shown. The data sharing request packet includes, for example, a packet number, a transmission vehicle ID, a transmission vehicle current position, a transmission vehicle predicted position, a transmission vehicle speed vector, a hop number, and a held data list.
 一方で、接続先の対象が情報処理システムインフラ400である場合も、情報処理システムインフラ400からデータ共有要求パケットを自車両101へと送信する。図7に、情報処理インフラ400が作成するデータ共有要求パケットに含まれる項目の一例を示す。データ共有要求パケットは、例えば、パケット番号、送信インフラID、送信インフラ設置位置、ホップ数、および保持データリストによって構成される。 On the other hand, even when the target of the connection destination is the information processing system infrastructure 400, the information processing system infrastructure 400 transmits a data sharing request packet to the host vehicle 101. FIG. 7 shows an example of items included in the data sharing request packet created by the information processing infrastructure 400. The data sharing request packet includes, for example, a packet number, a transmission infrastructure ID, a transmission infrastructure installation position, a hop number, and a held data list.
 図5における、ステップS504では自車両101において、接続先の対象から送信される共有要求パケットの受信タイムアウト判定を行う。通信部103-4を構成する無線データ受信部103-4-2が、予め設定されたタイムアウト時間内に接続先の対象から送信された共有要求パケットを受信しなかった場合(ステップS504におけるYes)、共有要求通信が成立しなかった旨を使用者に知らせた後に、ステップS511に移行し、データ共有処理は終了する。一方、設定したタイムアウト時間中にデータ受信部103-4-2が共有要求パケットを受信した場合(ステップS504におけるNo)、ステップS505に移行する。 In step S504 in FIG. 5, in the own vehicle 101, the reception timeout determination of the share request packet transmitted from the target of the connection destination is performed. When the wireless data reception unit 103-4-2 configuring the communication unit 103-4 does not receive the sharing request packet transmitted from the connection target within the preset timeout time (Yes in step S 504) After notifying the user that the sharing request communication has not been established, the process proceeds to step S511, and the data sharing process ends. On the other hand, when the data receiving unit 103-4-2 receives the sharing request packet during the set timeout time (No in step S504), the process proceeds to step S505.
 ステップS505では、接続先の対象からの共有要求パケットに含まれるID(送信車両ID、送信インフラID)を基に、接続先の対象が情報処理システムインフラ400であるか否かを判定する。ステップS505において接続先が情報処理システムインフラ400でないと判定された場合(ステップS505におけるNo)、ステップS506に移行する。 In step S505, it is determined whether the target of the connection destination is the information processing system infrastructure 400 based on the ID (transmission vehicle ID, transmission infrastructure ID) included in the sharing request packet from the connection destination target. If it is determined in step S505 that the connection destination is not the information processing system infrastructure 400 (No in step S505), the process proceeds to step S506.
 ステップS506では、車載通信機103の処理として、優先度判定部103-5によって、データの優先度を判定し、データ共有時の送信データリストが作成される。送信データリスト作成の一例として、優先度判定部103-5は、共有するデータの優先度を決定したデータ記憶部103-1に保存された自車両101の保持データの中で、対向車両300の現在位置と到達位置を頂点とした矩形領域を頂点とする範囲内で作成されたデータに対して共有時の優先度を上げてリスト作成を行う。また、接続先の対向車両300から送信された保持データリストを自車両101の保持データリストと比較することで、送信データリストから重複データを削除する。ここで、ステップS506においてステップS512(詳細は後述)を経由してステップS506を実施する場合は、上記矩形領域内の優先度処理は省略され、重複データの削除のみが実施される。共有する送信データリスト作成が完了すると、ステップS507に移行する。 In step S506, as the processing of the in-vehicle communication device 103, the priority determination unit 103-5 determines the priority of the data, and a transmission data list at the time of data sharing is created. As an example of transmission data list creation, priority determination unit 103-5 selects the priority of the data to be shared among the holding data of host vehicle 101 stored in data storage unit 103-1 and is determined by oncoming vehicle 300. The list creation is performed by raising the priority at the time of sharing with respect to data created within a range having a rectangular area having the current position and the arrival position as a vertex. Further, by comparing the held data list transmitted from the oncoming vehicle 300 of the connection destination with the held data list of the own vehicle 101, the duplicate data is deleted from the transmission data list. Here, when step S506 is performed via step S512 (details will be described later) in step S506, the priority processing in the rectangular area is omitted, and only deletion of duplicate data is performed. When creation of the transmission data list to be shared is completed, the process proceeds to step S507.
 図8に本実施例におけるデータ形式の構成の一例を示す。データ形式は、例えば、各データに関する特徴等が記されたインデックスデータ800と、周囲情報取得部102等で検出された詳細な検出情報を含むデータ本体801の2つに分けられる。インデックスデータ800は、検出データの処理属性802、検出時の時刻803、データを検出した検出位置804で構成される。インデックスデータ800は非常にデータサイズが小さく、インデックスデータ800のみの通信はデータ本体に比較すると短時間に終えることが出来る。そこで、図6や図7のデータ共有要求パケットの保持データリストを構成するデータ情報はデータ本体を含まず、インデックスデータ800のみで構成される。 FIG. 8 shows an example of the configuration of the data format in this embodiment. The data format is divided into two, for example, index data 800 in which characteristics and the like related to each data are described, and a data main body 801 including detailed detection information detected by the ambient information acquisition unit 102 and the like. The index data 800 includes a processing attribute 802 of detection data, a time 803 of detection, and a detection position 804 at which data is detected. The index data 800 has a very small data size, and communication of only the index data 800 can be completed in a short time as compared with the data body. Therefore, the data information constituting the held data list of the data sharing request packet shown in FIG. 6 and FIG. 7 does not include the data main body, and is constituted only by the index data 800.
 図5における、ステップS507では、ステップS506で作成された送信データリストに基づいて、優先度の高い順から、通信部103-4を構成するデータ送信部103-4-1から接続した対向車両300へとデータを送信する。 In step S507 in FIG. 5, the oncoming vehicle 300 connected from the data transmission unit 103-4-1 configuring the communication unit 103-4 in descending order of priority based on the transmission data list created in step S506. Send data to
 続くステップS508では、ステップS507にて送信を開始したデータの送信が終了したか、あるいは共有予定データを送信中に通信が遮蔽物によるシャドーイングにより困難となる等の不測の理由によって接続が切断されたかどうかを判定する。共有予定データを送信中である場合(ステップS508におけるNo)、再びステップS508に移行して判定がYesとなるまでステップS508を繰り返す。配布予定データの送信が終了あるいは通信が切断された場合(ステップS508におけるYes)、ステップS509に移行する。 In the following step S508, the connection is disconnected due to an unexpected reason, such as transmission of the data started to be transmitted in step S507 is finished, or communication becomes difficult due to shadowing by a shield during transmission of the sharing planned data. Determine if it was. When the sharing planned data is being transmitted (No in step S508), the process proceeds to step S508 again, and step S508 is repeated until the determination becomes Yes. If the transmission of the distribution schedule data is completed or the communication is disconnected (Yes in step S508), the process proceeds to step S509.
 ステップS509では、自車両101の使用者に対して、ディスプレイ等の視認可能なインターフェースや音声等の任意の手段にて、データ配布処理が終了した旨を通知して、ステップS510に移行する。なお、ステップS509の終了通知は必ずしも必要でなく、データ配布処理については処理の終了を使用者に伝えなくてもよい。続くステップS510では、対向車両300において、自車両101から共有した各データの検出位置804の情報を、自身のデータ記憶部103-1に記憶した車線情報を含む静的情報に対して紐付ける。すなわち、対向車両300は、自車両101の周囲情報と検出位置情報を解析して共有データを作成する共有データ作成手段として機能し、全共有データの紐付けが終了すると、データ共有処理は終了する(ステップS511)。 In step S509, the user of the host vehicle 101 is notified of the end of the data distribution process using a visible interface such as a display or an arbitrary means such as voice, and the process proceeds to step S510. Note that the end notification in step S 509 is not necessarily required, and the user may not be notified of the end of the data distribution process. In the following step S510, in the oncoming vehicle 300, the information of the detection position 804 of each data shared from the own vehicle 101 is linked to static information including lane information stored in the data storage unit 103-1 of its own. That is, the oncoming vehicle 300 functions as shared data creation means for creating shared data by analyzing surrounding information of the host vehicle 101 and detected position information, and when the linking of all shared data is completed, the data sharing process is terminated. (Step S511).
 一方で、ステップS505において、接続先が情報処理システムインフラ400であると判定された場合(ステップS505におけるYes)、ステップS512に移行する。ステップS512では、保持データリストに含まれる、検出データの処理属性802に応じて、処理属性判定部400-3は処理属性を判定する。該処理属性判別の結果、処理属性がサーバアップロードの階層を含まないと判定された場合(ステップS512におけるNo)、上記ステップS506に移行する。ステップS506からステップS511までの処理の説明は重複する為、省略する。 On the other hand, when it is determined in step S505 that the connection destination is the information processing system infrastructure 400 (Yes in step S505), the process proceeds to step S512. In step S512, the processing attribute determination unit 400-3 determines the processing attribute according to the processing attribute 802 of the detection data included in the held data list. As a result of the process attribute determination, when it is determined that the process attribute does not include the server upload layer (No in step S512), the process proceeds to step S506. The description of the process from step S506 to step S511 is omitted because it is redundant.
 ステップS512において、処理属性判定の結果、処理属性がサーバアップロードの階層を含むと判定された場合(ステップS512におけるYes)、ステップS513に移行する。ステップS513では、情報処理インフラ400の処理として、送信データリスト作成部400-4によって、情報処理システムサーバ600の保持データリストと、自車両101から受信した保持データリストとを比較することで、保持データリストから情報処理システムサーバ600が既に保持している重複データを削除して送信データリストを作成する。共有する送信データリスト作成が完了すると、ステップS514に移行する。 When it is determined in step S512 that the process attribute includes the server upload hierarchy as a result of the process attribute determination (Yes in step S512), the process proceeds to step S513. In step S513, as processing of the information processing infrastructure 400, the transmission data list creation unit 400-4 compares the held data list of the information processing system server 600 with the held data list received from the host vehicle 101 to hold the data. The duplicate data already stored in the information processing system server 600 is deleted from the data list to create a transmission data list. When creation of the transmission data list to be shared is completed, the process proceeds to step S514.
 図9に情報の項目別の処理属性判定テーブルの一例を示す。大分類は各項目が動的情報、准動的情報、准静的情報のいずれに属するかを分類したものであり、判定結果の丸印の有無が処理属性の階層をそれぞれ表す。判定結果のうち、車車間通信/車路間通信の欄にのみ丸印があるものが、ステップS512においてNoと判定される項目を、サーバアップロードの欄にも丸印があるものが、ステップS512においてYesと判定される項目をそれぞれ表している。この処理属性判定テーブルは図9に挙げた項目に限定するものでなく、判定結果も初期状態に限定されるものではない。情報処理システム100の変更に伴い、項目の追加および判定結果の変更等のアップデートが加えられてもよい。 FIG. 9 shows an example of the processing attribute determination table for each item of information. The large classification classifies whether each item belongs to any of dynamic information, quasi-dynamic information, and quasi-static information, and the presence or absence of a circle in the determination result indicates the hierarchy of the processing attribute. Of the determination results, those with a circle only in the inter-vehicle communication / inter-vehicle communication column, those with a circle in the server upload column that are determined as No in step S512, and step S512. Items which are determined as Yes in. The process attribute determination table is not limited to the items listed in FIG. 9, and the determination result is not limited to the initial state. Along with the change of the information processing system 100, updates such as addition of items and change of the determination result may be added.
 ステップS514ではステップS513で作成された送信データリストに基づいて、サーバデータ送信部400-5-1から情報処理システムネットワーク500を介してデータを情報処理システムサーバ600へと送信していく。 In step S514, based on the transmission data list created in step S513, the server data transmission unit 400-5-1 transmits data to the information processing system server 600 via the information processing system network 500.
 続くステップS515では、ステップS514にて送信を開始したデータの送信が終了したか、あるいは共有予定データを送信中に通信が遮蔽物によるシャドーイングにより困難となる等の不測の理由によって接続が切断されたかどうかを判定する。共有予定データを送信中である場合(ステップS515におけるNo)、再びステップS515に移行して判定がYesとなるまでステップS515を繰り返す。配布予定データの送信が終了あるいは通信が切断された場合(ステップS515におけるYes)、ステップS517に移行する。 In the subsequent step S515, the connection is disconnected due to an unexpected reason, such as transmission of the data whose transmission has been started in step S514 has ended, or communication becomes difficult due to shadowing by a shield during transmission of the sharing scheduled data. Determine if it was. When the sharing planned data is being transmitted (No in step S515), the process returns to step S515 again, and step S515 is repeated until the determination becomes Yes. If the transmission of the distribution schedule data is completed or the communication is disconnected (Yes in step S515), the process proceeds to step S517.
 ステップS517では、情報処理システムサーバ600において、自車両101から共有した各データの検出位置804の情報を、記憶している車線情報を含む静的情報に対して紐付ける。すなわち、情報処理システムサーバ600は、自車両101の周囲情報と検出位置情報を解析して共有データを作成する共有データ作成手段として機能し、全共有データの紐付けが終了すると、データ共有処理は終了する(ステップS511)。 In step S517, in the information processing system server 600, the information of the detection position 804 of each data shared from the host vehicle 101 is linked to static information including stored lane information. That is, the information processing system server 600 functions as a shared data creation unit that analyzes the surrounding information of the own vehicle 101 and the detected position information to create shared data, and when linking of all shared data is completed, the data sharing process The process ends (step S511).
 以上、本実施例の構成および処理によれば、共有する情報のリアルタイム性と局所性に応じて情報を処理する階層を変更することで、限られたネットワークトラフィックの効率的な利用を可能となる。ひいては、様々な送信元からの様々な種類の検出情報を、地図情報システムを利用する車両間や利用者間で適切に共有可能な新しい情報処理装置および情報処理システムを実現することが出来る。 As described above, according to the configuration and processing of the present embodiment, it is possible to efficiently use limited network traffic by changing the layer for processing information according to the real time property and the locality of the information to be shared. . As a result, it is possible to realize a new information processing apparatus and information processing system capable of appropriately sharing various types of detection information from various transmission sources between vehicles and users using the map information system.
 実施例1では共有する情報のリアルタイム性と局所性に応じて情報を処理する階層を車車間通信/車路間通信のみ行う階層とサーバアップロードを行う階層に分類することで、ネットワークトラフィックの有効活用を図る例について述べた。本実施例は、実施例1では、サーバアップロードを行う処理階層として、情報処理システムサーバ600に一纏めにしていた階層を、情報の地域性に応じて、情報処理システムインフラ400から物理的に近い場所にあるサーバ(エッジサーバ)上での処理と、情報処理システムインフラ400から物理的に遠い場所にあるサーバ(クラウドサーバ)上での処理に分散する例について具体的に説明する。 In the first embodiment, the layer for processing information is classified into a layer for performing only inter-vehicle communication / inter-vehicle communication and a layer for performing server upload according to the real-time property and the locality of information to be shared. An example of trying to In the present embodiment, in the first embodiment, as a processing hierarchy for performing server upload, a hierarchy which has been grouped together in the information processing system server 600 is physically close to the information processing system infrastructure 400 according to the regionality of information. An example in which processing on a server (edge server) and processing on a server (cloud server) physically distant from the information processing system infrastructure 400 are distributed will be specifically described.
 図10は、本実施例における情報の地域性に応じてサーバアップロードを行う処理階層を変更する概念を表した模式図である。図10では、エリアAを走行する自車両101-1およびエリアBを走行する自車両101-2は、それぞれ周囲情報取得部102により広域性の高いデータを検出した様子を表している。ここで、広域性の高いデータの一例としてエリアをまたいで検出される広域気象情等の准静的情報等が挙げられる。ただし、広域性の高いデータは准静的情報に限定するものでなく、准動的情報であってもよい。すなわち、広域性の高いデータには該データの検出されたエリア以外のエリアを走行する車両の経路にも影響を与え得る主要幹線道路における事故情報や渋滞情報等も含まれ得る。図10は、一例として広域性の高いデータの例として、エリアAおよびエリアBをまたいで観測される広域気象情報を観測している様子を表している。 FIG. 10 is a schematic view showing the concept of changing the processing hierarchy for performing server uploading according to the regionality of information in the present embodiment. In FIG. 10, the situation in which the surrounding information acquisition unit 102 detects data with high wide-area characteristics is represented by the vehicle 101-1 traveling in the area A and the vehicle 101-2 traveling in the area B. Here, quasi-static information such as wide-area weather information detected across an area may be mentioned as an example of data having high wide-area characteristics. However, data with high regionality is not limited to quasi-static information, but may be quasi-dynamic information. That is, data with high wide-area characteristics may include accident information and traffic congestion information on a major arterial road that can also affect the route of a vehicle traveling in an area other than the area in which the data is detected. FIG. 10 shows a state in which wide-area meteorological information observed across the area A and the area B is observed as an example of data with high wide-area characteristics as an example.
 図10において、自車両101-1および101-2によって観測されたデータはエリアAの情報処理システムインフラ400-AおよびエリアBの情報処理システムインフラ400-Bに接続することでそれぞれの車両が検出したデータをアップロードする。エリアAの情報処理システムインフラ400-Aは、それぞれデータの広域性に応じてデータの処理階層を判定し、エリアAのエッジサーバネットワーク500-1-1を経由してエリアAのエッジサーバ600-1-1へと、あるいはエリアAのクラウドサーバネットワーク500-2-1を経由してクラウドサーバ600-2へと、更にアップロードする。エリアBの情報処理システムインフラ400-Bは、それぞれデータの広域性に応じてデータの処理階層を判定し、エリアBのエッジサーバネットワーク500-1-2を経由してエリアBのエッジサーバ600-1-2へと、あるいはエリアBのクラウドサーバネットワーク500-2-2を経由してクラウドサーバ600-2へと、更にアップロードする。 In FIG. 10, the data observed by the vehicles 101-1 and 101-2 are detected by the respective vehicles by connecting to the information processing system infrastructure 400-A in area A and the information processing system infrastructure 400-B in area B. Upload data. The information processing system infrastructure 400-A of the area A determines the processing hierarchy of the data according to the wide area of the data, and the edge server 600- of the area A via the edge server network 500-1-1 of the area A. 1-1, or upload to the cloud server 600-2 via the cloud server network 500-2-1 in area A. The information processing system infrastructure 400-B in the area B determines the processing hierarchy of data according to the wide area of the data, and the edge server 600- in the area B via the edge server network 500-1-2 in the area B. Further, the image data is uploaded to the cloud server 600-2 via the cloud server network 500-2-2 of the area B or 1-2.
 上記のように、エッジサーバとクラウドサーバの二階層で処理階層を分散させることで、データセンタにかかる端末負荷を軽減できる。さらに、本実施例における階層の分別は、データの広域性に応じて実施している。これにより、エリア内での狭域性が高く、リアルタイム性が求められるデータに関しては物理距離の近いエッジサーバによって処理を行うことで演算処理の効率化が図ることができる。また、複数のエリアにまたがった広域性の高いデータのみをクラウドサーバで一括処理することで、本当に広域解析が必要なデータのみで長距離ネットワーク帯域を使うことが出来る為、ネットワークトラフィックの効率化を図りつつ、一つのエリアのデータだけでは分からない都市計画への利用や車両の運行時間が最も短くなる長距離経路の導出などを実現することが可能となる。 As described above, the terminal load on the data center can be reduced by distributing the processing hierarchy in two layers of the edge server and the cloud server. Furthermore, the classification of the hierarchy in the present embodiment is performed according to the wide area of the data. As a result, processing can be performed by an edge server having a close physical distance with respect to data for which area narrowness is high and real-timeness is required, and efficiency of arithmetic processing can be achieved. In addition, by collectively processing only wide area data across multiple areas with the cloud server, long distance network bandwidth can be used only with data that really needs wide area analysis, thus improving network traffic efficiency. It is possible to realize utilization for city planning that can not be understood only by data of one area and derivation of a long distance route in which the operation time of the vehicle is the shortest while planning.
 図11に本実施例における情報処理システムインフラ400の機能構成を表したブロック図を示す。実施例1における情報処理システムインフラ400の機能構成を表す図3と比較して重複する部分の説明は省略する。図3とは異なり、本実施例における情報処理システムインフラ400はサーバデータ送信部400-5-1を構成するサーバデータ送信部の後段にサーバ処理属性判定部400-6を備える。本実施例における情報処理システムインフラ400は図5におけるステップS514のデータ送信時において、サーバ処理属性判定部400-6がインデックスデータに含まれる検出データの処理属性802に応じて処理属性を判定し、エッジサーバネットワーク500-1を介したエッジサーバ600-1か、クラウドサーバネットワーク500-2を介したクラウドサーバ600-2のいずれかにデータを送信する。 FIG. 11 is a block diagram showing the functional configuration of the information processing system infrastructure 400 in the present embodiment. The description of the overlapping portions will be omitted as compared with FIG. 3 showing the functional configuration of the information processing system infrastructure 400 in the first embodiment. Unlike in FIG. 3, the information processing system infrastructure 400 in the present embodiment includes a server processing attribute determination unit 400-6 at a stage subsequent to the server data transmission unit constituting the server data transmission unit 400-5-1. At the time of data transmission in step S514 in FIG. 5, the information processing system infrastructure 400 in the present embodiment determines the processing attribute according to the processing attribute 802 of the detection data included in the index data. The data is transmitted to either the edge server 600-1 via the edge server network 500-1 or the cloud server 600-2 via the cloud server network 500-2.
 図12に情報の項目別の処理属性判定テーブルの一例を示す。大分類は各項目が動的情報、准動的情報、准静的情報のいずれに属するかを分類したものであり、判定結果の印の有無が処理属性の階層をそれぞれ表す。上述のように、准動的情報であっても幹線道路での検出情報の場合は広域性の高いデータとして、クラウドサーバにアップロードされる項目も存在する。この処理属性判定テーブルは図12に挙げた項目に限定するものでなく、判定結果も初期状態に限定されるものではない。情報処理システム100の変更に伴い、項目の追加および判定結果の変更等のアップデートが加えられてもよい。 FIG. 12 shows an example of the processing attribute determination table for each item of information. The large classification classifies whether each item belongs to any of dynamic information, quasi-dynamic information, and quasi-static information, and the presence or absence of the mark of the determination result indicates the hierarchy of the processing attribute. As described above, there is also an item to be uploaded to the cloud server as data having a wide area in the case of detection information on a highway even though it is quasi-dynamic information. The processing attribute determination table is not limited to the items listed in FIG. 12, and the determination result is not limited to the initial state. Along with the change of the information processing system 100, updates such as addition of items and change of the determination result may be added.
 さらに、情報処理システムサーバ600(エッジサーバ600-1やクラウドサーバ600-2)は車両からアップロードされたデータの解析結果を基に、解析対象をより詳細に、あるいは正確に解析する為に各車両に先に共有したデータの、より詳細なデータを要求してもよい。図13は本実施例における、クラウドサーバ600-2の解析結果に応じて各エリアの自車両101-1および101-2に詳細なデータ要求を行う概念を表した模式図である。すなわち、図13に示すように、広域性の高いデータに関連する詳細データをクラウドサーバ600-2が要求すると、星印で示す要求信号により、自車両101-1および101-2に詳細データを要求する。 Furthermore, the information processing system server 600 (the edge server 600-1 and the cloud server 600-2) can analyze each object in more detail or accurately based on the analysis result of the data uploaded from the vehicle. You may request more detailed data from previously shared data. FIG. 13 is a schematic view showing a concept of performing a detailed data request to the vehicles 101-1 and 101-2 of each area according to the analysis result of the cloud server 600-2 in the present embodiment. That is, as shown in FIG. 13, when the cloud server 600-2 requests the detailed data related to the data having high wide area property, the detailed data is sent to the own vehicle 101-1 and 101-2 by the request signal shown by the star mark. To request.
 図14に、情報処理システムサーバ600(エッジサーバ600-1やクラウドサーバ600-2)が要求する詳細なデータの一例を示す。例えば、エッジサーバ600-1によって車載加速度センサの急変化の検出データ等から狭域データを基にした解析結果として路面滑りが生じていると判定したものの、現状のデータではその原因が特定できないと判定された場合、エッジサーバ600-1は該検出位置付近における、路面温度や光反射率等のセンサ検出結果を詳細データとして要求する。これは要求する詳細データにより、路面滑りの原因が水たまり、路面の凍結、あるいは路面積雪であるかを判定する為である。別例として、クラウドサーバ600-2によってカメラ視野の低下の検出データを基にした解析結果として広域の視界不良と判定したものの、現状のデータではその原因が特定できないと判定された場合、クラウドサーバ600-2は該検出位置付近における、散乱係数を詳細データとして要求する。これは要求する詳細データにより、広域の視界不良の原因が霧、PM2.5、あるいは火山灰であるかを判定する為である。また、その他にも車両から送られてきた検出データが該検出位置における従来の検出データ等を鑑みて、解析結果として非常に稀な検出データであると判定された場合、情報処理システムサーバ600(エッジサーバ600-1あるいはクラウドサーバ600-2)は検出結果を証明可能なデータを詳細データとして要求してもよい。 FIG. 14 shows an example of detailed data requested by the information processing system server 600 (the edge server 600-1 and the cloud server 600-2). For example, although it is determined that road surface slippage has occurred as an analysis result based on narrow area data from the detection data of sudden change of the in-vehicle acceleration sensor by the edge server 600-1, the cause can not be identified with the current data If it is determined, the edge server 600-1 requests the sensor detection result such as the road surface temperature and the light reflectance in the vicinity of the detection position as the detailed data. This is to determine whether the cause of road surface slippage is puddle, road surface freezing, or road surface snow according to the required detailed data. As another example, the cloud server 600-2 determines that the wide area is not visible as an analysis result based on the detection data of the decrease in the camera view, but if it is determined that the current data can not identify the cause, the cloud server 600-2 requests the scattering coefficient in the vicinity of the detection position as detailed data. This is to determine whether the cause of the wide area visibility is fog, PM 2.5 or volcanic ash, based on the required detailed data. In addition, if it is determined that detection data sent from a vehicle is very rare detection data as an analysis result in view of conventional detection data etc. at the detection position, the information processing system server 600 ( The edge server 600-1 or the cloud server 600-2) may request data that can prove the detection result as detailed data.
 図15に、情報処理システムサーバ600(エッジサーバ600-1やクラウドサーバ600-2)が詳細データを要求する際に作成する詳細データ要求パケットに含まれる項目の一例を示す。詳細データ要求パケットは、例えばパケット番号、送信サーバID、要求データ位置、要求データ範囲、および要求データ項目によって構成される。 FIG. 15 shows an example of the items included in the detailed data request packet created when the information processing system server 600 (the edge server 600-1 and the cloud server 600-2) requests the detailed data. The detailed data request packet includes, for example, a packet number, a transmission server ID, a request data position, a request data range, and a request data item.
 以上、本実施例の構成および処理によれば、共有する情報の広域性に応じて情報を処理する階層を変更することで、データセンタにかかる端末負荷を軽減、リアルタイム性が求められるデータに関する演算処理の効率化、ネットワークトラフィックの効率化を実現することが可能となる。 As described above, according to the configuration and processing of the present embodiment, the terminal load applied to the data center can be reduced by changing the layer for processing the information according to the wide area of the information to be shared, and the operation regarding the data for which real time property is required It is possible to realize processing efficiency and network traffic efficiency.
 本実施例は、情報処理システムが実際に運用される際に多くの車両から共有される同一対象の検出データに対して、最大多数の認識結果を表示する一方で確率を計算し、認識結果とともに表示することで、走行する多くの車両から共有される多データ収集の統計データのメリットを生かすことを目的とした実施例である。以下、図16、図17を用いて本実施例における情報処理システム100について説明する。 This embodiment calculates the probability while displaying the maximum number of recognition results for the same target detection data shared by many vehicles when the information processing system is actually operated, along with the recognition results By displaying, it is an embodiment intended to take advantage of the statistical data of multiple data collection shared by many traveling vehicles. Hereinafter, the information processing system 100 according to the present embodiment will be described with reference to FIGS. 16 and 17.
 図16(a)は、本実施例における多くの車両から共有される同一対象の検出データの処理の概念を表した模式図である。一例として、情報処理システムサーバ600には送信車両IDがA、B、C、D、E、および、Fの計6台の車両からの検出データが共有され、検出データには、各車両の周囲情報取得部102によって検出および認識された結果が含まれている。 FIG. 16A is a schematic diagram showing the concept of processing of detection data of the same object shared by many vehicles in this embodiment. As an example, detection data from a total of six transmission vehicle IDs A, B, C, D, E, and F are shared by the information processing system server 600, and detection data includes the surroundings of each vehicle. The results detected and recognized by the information acquisition unit 102 are included.
 図17は、本実施例における情報処理システムサーバ600が行う同一対象検出データ処理のフローチャートを示したものである。図17において、まず、同一対象検出データ処理が開始されると(ステップS1701)、ステップS1702では、情報処理システムサーバ600が担当するエリアにおける最初の検出データの有無を判定する。最初の検出データが検出されていないと判定された場合(ステップS1702におけるNo)、再びステップS1702に移行して判定がYesとなるまでステップS1702を繰り返す。最初の検出データが検出されたと判定された場合(ステップS1702におけるYes)、ステップS1703に移行する。 FIG. 17 is a flowchart of the same target detection data process performed by the information processing system server 600 in the present embodiment. In FIG. 17, first, when the same target detection data process is started (step S1701), in step S1702, it is determined whether or not the first detection data exists in the area that the information processing system server 600 takes charge of. If it is determined that the first detection data is not detected (No in step S1702), the process proceeds to step S1702 again, and step S1702 is repeated until the determination becomes Yes. When it is determined that the first detection data is detected (Yes in step S1702), the process proceeds to step S1703.
 ステップS1703では、情報処理システムサーバ600は最初の検出データに対して、予め用意した属性分けテーブルに従って、属性分けを実施する。属性分けが完了すると、ステップS1704に移行する。続くステップS1704では最初の検出データの検出位置804を最初の位置中心として、予め設定されたRdefを半径とする円形のイニシャル判定範囲1600-1を二次元の領域として設定する。図16(a)の黒地に白点の円領域がイニシャル判定範囲1600-1を表している。イニシャル判定範囲1600-1が設定されるとステップS1705に移行する。 In step S1703, the information processing system server 600 performs attribute classification on the first detection data according to the attribute classification table prepared in advance. If attribute classification is completed, it will transfer to step S1704. In the following step S1704, a circular initial determination range 1600-1 having a radius of Rdef set in advance is set as a two-dimensional area, with the detection position 804 of the first detection data as the first position center. A circular area of white dots on the black background in FIG. 16A represents the initial determination range 1600-1. When the initial determination range 1600-1 is set, the process proceeds to step S1705.
 ステップS1705では、最初の検出データ以外に、ステップS1705で設定したイニシャル判定範囲1600-1内に追加の検出データがあるか否かを判定する。追加の検出データがない場合(ステップS1705におけるNo)、再びステップS1705に移行して判定がYesとなるまでステップS1705を繰り返す。イニシャル判定範囲1600-1内に追加の検出データがあると判定された場合(ステップS1705におけるYes)、ステップS1706に移行する。 In step S1705, it is determined whether there is additional detection data in the initial determination range 1600-1 set in step S1705 other than the first detection data. If there is no additional detection data (No in step S1705), the process returns to step S1705 again, and step S1705 is repeated until the determination becomes Yes. If it is determined that there is additional detection data within the initial determination range 1600-1 (Yes in step S1705), the process moves to step S1706.
 ステップS1706では、ステップS1705で検出したデータについて、ステップS1703と同様に予め用意した属性分けテーブルに従って、属性分けを実施する。属性分けが完了すると、ステップS1707に移行する。 In step S1706, attribute division is performed on the data detected in step S1705 according to the attribute division table prepared in advance as in step S1703. If attribute classification is completed, it will transfer to step S1707.
 ステップS1707では、イニシャル判定範囲1600-1における同一の検出データ属性であるデータ数が予め設定したデータ数Nth以上であるか否かを判定する。同一の検出データ属性のデータ数がNthよりも少ない場合(ステップS1707におけるNo)、ステップS1705に移行する。同一の検出データ属性のデータ数がNth以上であると判定された場合(ステップS1707におけるYes)、ステップS1708に移行する。 In step S1707, it is determined whether the number of data having the same detection data attribute in the initial determination range 1600-1 is equal to or greater than a predetermined number of data Nth. If the number of data of the same detected data attribute is smaller than Nth (No in step S1707), the process advances to step S1705. If it is determined that the number of data of the same detection data attribute is equal to or greater than Nth (Yes in step S1707), the process proceeds to step S1708.
 ステップS1708では、これまでに検出した同一検出データ属性と判定された全データの二次元座標で表される検出位置804の平均値からの各検出位置までの距離ばらつきに対する標準偏差σを計算する。さらに、検出位置804の平均座標値Xを中心として、該標準偏差σに対して3σを半径とする円形の同一検出データ判定範囲1600-2を作成する。図16(a)の白地にタイル柄の円領域が同一検出データ判定範囲1600-2を表す。同一検出データ判定範囲1600-2が設定されるとステップS1709に移行する。 In step S1708, the standard deviation .sigma. Is calculated with respect to the variation in the distance from the average value of the detection position 804 represented by the two-dimensional coordinates of all the data determined to be the same detection data attribute to the detection position. Further, a circular identical detection data judgment range 1600-2 is created with a radius of 3σ with respect to the standard deviation σ with the average coordinate value X of the detection position 804 as the center. The circle region of the tile pattern represents the same detection data determination range 1600-2 on the white background in FIG. 16 (a). When the same detection data determination range 1600-2 is set, the process proceeds to step S1709.
 ステップS1709では、これまでに検出した同一検出データ属性と判定された全データにおける最大多数の認識結果の検出データ数の占める割合を計算する。例えば、図16(a)の表のように6つの検出結果に対する認識結果確率Pの計算結果は(式1)で表される。 In step S1709, the ratio of the detection data number of the largest number of recognition results in all the data determined to be the same detection data attribute detected so far is calculated. For example, as shown in the table of FIG. 16A, the calculation result of the recognition result probability P with respect to six detection results is expressed by (Expression 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すなわち、(式1)の分母である同一検出データ属性数は、属性が路面状況で同じA~Eの5つに対して、分子の最大多数の認識結果数は、路面凍結のB~Eの4つであるので、結果として、認識結果は路面凍結、その時の認識結果確率Pは80%となる。認識結果確率Pの計算が終了するとステップS1710に移行する。 That is, the number of identical detection data attributes, which is the denominator of (Equation 1), is five for the same attributes A to E in the road surface condition, while the maximum number of recognition results for the numerator is B to E Since there are four, as a result, the recognition result is road surface freezing, and the recognition result probability P at that time is 80%. When the calculation of the recognition result probability P ends, the process moves to step S1710.
 ステップS1710では、同一検出データ判定範囲1600-2内に追加の検出データがあるか否かを判定する。追加の検出データがある場合(ステップS1710におけるYes)、ステップS1711に移行する。ステップS1711ではステップS1710で検出した新規検出データに対して、ステップS1703と同様に予め用意した属性分けテーブルに従って、属性分けを実施する。属性分けが完了すると、ステップS1708に移行する。一方、ステップS1710においてイニシャル判定範囲1600-1内に追加の検出データがないと判定された場合(ステップS1710におけるNo)、ステップS1712に移行する。 In step S1710, it is determined whether there is additional detection data in the same detection data determination range 1600-2. If additional detection data is present (Yes in step S1710), the process advances to step S1711. In step S1711, attribute classification is performed on the new detection data detected in step S1710 according to the attribute classification table prepared in advance as in step S1703. If attribute classification is completed, it will transfer to step S1708. On the other hand, when it is determined in step S1710 that there is no additional detection data in the initial determination range 1600-1 (No in step S1710), the process proceeds to step S1712.
 ステップS1712ではタイムアウト判定がなされる。すなわち、最後に新規の検出データが追加されてからの経過時間が予め設定した時間Tthを超過しているか否かを判定する。ステップS1712において最後に新規の検出データが追加されてからの経過時間がTthを超過していないと判定された場合(ステップS1712におけるNo)、ステップS1710に移行する。一方、最後に新規の検出データが追加されてからの経過時間がTthを超過していると判定された場合(ステップS1712におけるYes)、ステップS1713に移行し、同一対象検出データ処理は終了する。 In step S1712, a timeout is determined. That is, it is determined whether the time elapsed since the last addition of new detection data exceeds a preset time Tth. If it is determined in step S1712 that the time elapsed since the last addition of new detection data did not exceed Tth (No in step S1712), the process moves to step S1710. On the other hand, if it is determined that the elapsed time since the last addition of the new detection data exceeds Tth (Yes in step S1712), the process moves to step S1713, and the identical target detection data processing ends.
 同一対象検出データ処理において認識結果および認識結果確率Pはリアルタイムで逐次更新され、例えば、図16(a)における1600-3のような表示で自車両101が該検出位置804付近に接近した場合、運転者に対して通知してもよい。 In the same object detection data processing, the recognition result and the recognition result probability P are sequentially updated in real time, for example, when the own vehicle 101 approaches the vicinity of the detection position 804 in a display such as 1600-3 in FIG. The driver may be notified.
 また、認識結果確率Pは上述のような単純平均だけでなく、検出データを共有する各車両の周囲情報取得部102に対して重み付けをした計算方法により導出してもよい。例えば、図16(a)の表のような検出データを共有した場合において、過去の各車両の周囲情報取得部102の過去認識一致率が図16(b)の表のようになった場合を考える。ここで、過去認識一致率とは、過去の周囲情報取得部102による認識結果が、図17で示した同一対象検出データ処理により導出された最大多数の認識結果と一致した確率を表す。図16(b)の表の場合における、認識結果確率P’は(式2)で表される。 Further, the recognition result probability P may be derived not only by the simple average as described above, but also by a calculation method in which the surrounding information acquisition unit 102 of each vehicle sharing the detection data is weighted. For example, in the case where detection data as shown in the table of FIG. 16 (a) are shared, the case where the past recognition agreement rate of the surrounding information acquisition unit 102 of each vehicle in the past becomes as shown in the table of FIG. Think. Here, the past recognition agreement rate indicates the probability that the recognition result by the surrounding information acquisition unit 102 in the past agrees with the largest number of recognition results derived by the same object detection data processing shown in FIG. The recognition result probability P 'in the case of the table of FIG. 16 (b) is expressed by (Expression 2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 すなわち、(式2)の分母は、A~Eの過去認識一致率の和、分子は、B~Eの過去認識一致率の和であるので、認識結果確率P’は78.9%となる。以上、本実施例の構成および処理によれば、情報処理システム100の実際の運用において、走行する多くの車両から共有される多データ収集の統計データのメリットを生かすことが可能となる。 That is, since the denominator of (Equation 2) is the sum of the past recognition coincidence rates of A to E, and the numerator is the sum of the past recognition coincidence rates of B to E, the recognition result probability P 'is 78.9% . As described above, according to the configuration and processing of the present embodiment, in actual operation of the information processing system 100, it is possible to make use of the merits of statistical data of multiple data collection shared by many traveling vehicles.
 100:情報処理システム、101:自車両、102:周囲情報取得部、103:車載通信機、200:他車両、300:対向車両、400:情報処理システムインフラ、400-1:無線データ送受信部、400-2:データ記憶部、400-3:処理属性判定部、400-4:送信データリスト作成部、400-5:サーバデータ送受信部、500:情報処理システムネットワーク、600:情報処理システムサーバ、600-1:エッジサーバ、600-2:クラウドサーバ、804:検出位置 100: information processing system, 101: own vehicle, 102: ambient information acquisition unit, 103: in-vehicle communication device, 200: other vehicle, 300: oncoming vehicle, 400: information processing system infrastructure, 400-1: wireless data transceiver, 400-2: data storage unit, 400-3: processing attribute determination unit, 400-4: transmission data list creation unit, 400-5: server data transmission / reception unit, 500: information processing system network, 600: information processing system server, 600-1: Edge server, 600-2: Cloud server, 804: Detection position

Claims (11)

  1. 自身の周囲の情報を周囲情報として検出する周囲情報取得部と、
    前記周囲情報取得部を有する複数の対象の前記周囲情報を検出した検出位置情報を収集するデータ記憶部と、
    前記複数の対象の前記周囲情報と前記検出位置情報を解析して共有データを作成する共有データ作成手段とを有し、
    前記共有データを前記複数の対象と共有することを特徴とする情報処理システム。
    An ambient information acquisition unit that detects information around itself as ambient information;
    A data storage unit for collecting detection position information obtained by detecting the surrounding information of a plurality of targets having the surrounding information acquisition unit;
    A shared data creation unit configured to analyze the plurality of target ambient information and the detected position information to create shared data;
    An information processing system, wherein the shared data is shared with the plurality of targets.
  2. 請求項1に記載の情報処理システムであって、
    前記周囲情報取得部は前記自身に備えられたセンサを含み、前記複数の種類の周囲情報を検出することを特徴とする情報処理システム。
    The information processing system according to claim 1, wherein
    The information processing system according to claim 1, wherein the ambient information acquisition unit includes a sensor provided in the self and detects the plurality of types of ambient information.
  3. 請求項1に記載の情報処理システムであって、
    前記共有データ作成手段は、複数の処理階層を備え、
    前記周囲情報取得部で検出した前記周囲情報の属性によって前記複数の処理階層を選択することを特徴とする情報処理システム。
    The information processing system according to claim 1, wherein
    The shared data creation means comprises a plurality of processing hierarchies,
    An information processing system, comprising: selecting the plurality of processing layers according to an attribute of the ambient information detected by the ambient information acquisition unit.
  4. 請求項3に記載の情報処理システムであって、
    前記複数の対象は車両であって、
    前記周囲情報取得部は前記車両に搭載されており、
    前記データ記憶部は、前記車両との車路間通信により情報授受を行う情報処理システムインフラが有し、
    前記共有データ作成手段は、前記情報処理システムインフラとネットワークを介して接続された情報処理システムサーバであることを特徴とする情報処理システム。
    The information processing system according to claim 3, wherein
    The plurality of objects are vehicles,
    The ambient information acquisition unit is mounted on the vehicle,
    The data storage unit includes an information processing system infrastructure that exchanges information by inter-vehicle communication with the vehicle.
    An information processing system characterized in that the shared data creation means is an information processing system server connected to the information processing system infrastructure via a network.
  5. 請求項3または4に記載の情報処理システムであって、
    前記複数の処理階層はネットワーク上の処理階層を含み、
    前記ネットワーク上の処理階層は前記周囲情報と前記検出位置情報を送信する物理基点からの距離の異なる複数の処理階層を持ち、
    前記周囲情報取得部で取得した前記周囲情報の種類によって前記ネットワーク上の処理階層を選択することを特徴とする情報処理システム。
    The information processing system according to claim 3 or 4, wherein
    The plurality of processing hierarchies include processing hierarchies on a network,
    The processing layers on the network have a plurality of processing layers having different distances from the physical base point for transmitting the surrounding information and the detected position information,
    An information processing system, comprising: selecting a processing hierarchy on the network according to a type of the ambient information acquired by the ambient information acquiring unit.
  6. 請求項5に記載の情報処理システムであって、
    前記ネットワーク上の処理階層は、前記周囲情報の広域性の高低によって選択することを特徴とする情報処理システム。
    The information processing system according to claim 5, wherein
    An information processing system, wherein a processing hierarchy on the network is selected according to the level of the wide area of the surrounding information.
  7. 請求項3または4に記載の情報処理システムであって、
    前記共有データ作成手段は、同一の前記周囲情報に対する複数の周囲情報が検出された場合に、最大多数の認識結果を表示することを特徴とする情報処理システム。
    The information processing system according to claim 3 or 4, wherein
    The information processing system according to claim 1, wherein the shared data creation unit displays a maximum number of recognition results when a plurality of pieces of ambient information for the same ambient information are detected.
  8. 請求項7に記載の情報処理システムであって、
    前記共有データ作成手段は、前記最大多数の認識結果を表示するとともに全周囲情報における最大多数の認識結果の占める割合を併せて表示することを特徴とする情報処理システム。
    The information processing system according to claim 7, wherein
    The information processing system, wherein the shared data creating means displays the largest number of recognition results and also displays the ratio of the largest number of recognition results in all the surrounding information.
  9. 請求項8に記載の情報処理システムであって、
    前記共有データ作成手段は、前記最大多数の認識結果の占める割合に重み付けをして表示することを特徴とする情報処理システム。
    The information processing system according to claim 8, wherein
    7. The information processing system according to claim 1, wherein the shared data creating unit weights and displays the ratio of the largest number of recognition results.
  10. 車両の周囲情報を共有する情報処理システムに用いる情報処理システムインフラであって、
    前記車両の検出した周囲情報と該周囲情報を検出した検出位置情報を収集するデータ記憶部と、
    前記周囲情報の属性に応じてサーバにアップデートする処理階層を含むかを判断する処理属性判断部と、
    前記処理属性判断部によって、サーバにアップデートする処理階層を含むと判断した場合は送信データリストを作成する送信データリスト作成部と、
    前記送信データリスト作成部の作成した送信データリストに基づいてデータをサーバに送信するサーバデータ送信部とを有することを特徴とする情報処理システムインフラ。
    An information processing system infrastructure used for an information processing system that shares the surrounding information of a vehicle,
    A data storage unit for collecting surrounding information detected by the vehicle and detected position information at which the surrounding information is detected;
    A processing attribute determination unit that determines whether to include a processing hierarchy to be updated in the server according to the attribute of the ambient information;
    A transmission data list creation unit that creates a transmission data list when the processing attribute determination unit determines that the server includes a processing hierarchy to be updated in the server;
    An information processing system infrastructure comprising: a server data transmission unit that transmits data to a server based on the transmission data list created by the transmission data list creation unit;
  11. 車両の周囲情報を共有する情報処理方法であって、
    複数の車両の周囲情報を検出し、
    該周囲情報を検出した検出位置情報を収集し、
    前記複数の車両の前記周囲情報と前記検出位置情報を解析して共有データを作成し、
    前記周囲情報の属性によって前記共有データの共有処理の階層を選択することを特徴とする情報処理方法。
    An information processing method for sharing surrounding information of a vehicle,
    Detect the surrounding information of multiple vehicles,
    Collecting detection position information that detected the ambient information;
    Analyzing the surrounding information and the detected position information of the plurality of vehicles to create shared data;
    An information processing method comprising: selecting a hierarchy of sharing processing of the shared data according to an attribute of the ambient information.
PCT/JP2017/024996 2017-07-07 2017-07-07 Information processing system, and information processing system infrastructure and information processing method used in same WO2019008755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024996 WO2019008755A1 (en) 2017-07-07 2017-07-07 Information processing system, and information processing system infrastructure and information processing method used in same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024996 WO2019008755A1 (en) 2017-07-07 2017-07-07 Information processing system, and information processing system infrastructure and information processing method used in same

Publications (1)

Publication Number Publication Date
WO2019008755A1 true WO2019008755A1 (en) 2019-01-10

Family

ID=64950844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024996 WO2019008755A1 (en) 2017-07-07 2017-07-07 Information processing system, and information processing system infrastructure and information processing method used in same

Country Status (1)

Country Link
WO (1) WO2019008755A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736176A (en) * 2020-06-23 2020-10-02 中国人民解放军陆军炮兵防空兵学院 Atmospheric environment data sharing method based on laser radar
JP2021024457A (en) * 2019-08-06 2021-02-22 株式会社Subaru Vehicular travel control system
JP2021076962A (en) * 2019-11-06 2021-05-20 財団法人車輌研究測試中心 Method and system for generating dynamic map information capable of providing environmental information
CN111736176B (en) * 2020-06-23 2024-05-31 中国人民解放军陆军炮兵防空兵学院 Atmospheric environment data sharing method based on laser radar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013985A1 (en) * 2012-07-17 2014-01-23 日産自動車株式会社 Driving assistance system and driving assistance method
JP2017021584A (en) * 2015-07-10 2017-01-26 矢崎総業株式会社 Network system
JP2017068589A (en) * 2015-09-30 2017-04-06 ソニー株式会社 Information processing apparatus, information terminal, and information processing method
WO2017057044A1 (en) * 2015-09-30 2017-04-06 ソニー株式会社 Information processing device and information processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013985A1 (en) * 2012-07-17 2014-01-23 日産自動車株式会社 Driving assistance system and driving assistance method
JP2017021584A (en) * 2015-07-10 2017-01-26 矢崎総業株式会社 Network system
JP2017068589A (en) * 2015-09-30 2017-04-06 ソニー株式会社 Information processing apparatus, information terminal, and information processing method
WO2017057044A1 (en) * 2015-09-30 2017-04-06 ソニー株式会社 Information processing device and information processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021024457A (en) * 2019-08-06 2021-02-22 株式会社Subaru Vehicular travel control system
US11661080B2 (en) 2019-08-06 2023-05-30 Subaru Corporation Vehicle traveling control system
JP7312054B2 (en) 2019-08-06 2023-07-20 株式会社Subaru Vehicle cruise control system
JP2021076962A (en) * 2019-11-06 2021-05-20 財団法人車輌研究測試中心 Method and system for generating dynamic map information capable of providing environmental information
JP6999625B2 (en) 2019-11-06 2022-02-04 財団法人車輌研究測試中心 Methods and systems for generating dynamic map information that can provide environmental information
CN111736176A (en) * 2020-06-23 2020-10-02 中国人民解放军陆军炮兵防空兵学院 Atmospheric environment data sharing method based on laser radar
CN111736176B (en) * 2020-06-23 2024-05-31 中国人民解放军陆军炮兵防空兵学院 Atmospheric environment data sharing method based on laser radar

Similar Documents

Publication Publication Date Title
EP3580084B1 (en) Autonomous vehicle operational management including operating a partially observable markov decision process model instance
CA3052952C (en) Autonomous vehicle operational management control
CA3052951C (en) Autonomous vehicle operational management
US11113973B2 (en) Autonomous vehicle operational management blocking monitoring
US11548531B2 (en) Autonomous vehicle fleet management for reduced traffic congestion
US20140063196A1 (en) Comprehensive and intelligent system for managing traffic and emergency services
CN111724616B (en) Method and device for acquiring and sharing data based on artificial intelligence
US11501640B2 (en) Processing device, processing method, and processing program
US11568741B2 (en) Communication device, control method thereof, and communication system including the same
WO2019052327A1 (en) Transportation information processing method and related device
WO2021171828A1 (en) Vehicle interior/exterior linking device and method
US11645913B2 (en) System and method for location data fusion and filtering
CN113327415A (en) Method, apparatus, device, storage medium and system for distributing traffic information
CN112270834A (en) Vehicle-road-people running method and system applied to 5G intelligent transportation means
Malik et al. Intelligent transport system: An important aspect of emergency management in smart cities
Santamaria et al. An efficient traffic management protocol based on IEEE802. 11p standard
WO2019008755A1 (en) Information processing system, and information processing system infrastructure and information processing method used in same
JP2020091652A (en) Information providing system, server, and computer program
Jantošová et al. Cooperative and emergency services feasible in future vehicular networks
Wang et al. Smart mobility digital twin for automated driving: Design and proof-of-concept
JP2023034510A (en) Management device, information providing method, vehicle allocation system, and computer program
WO2023189878A1 (en) Intersection-based offboard vehicle path generation
WO2023189881A1 (en) Collision warning based on intersection information from map messages
WO2023189879A1 (en) Intersection-based map message generation and broadcasting
WO2023189880A1 (en) Path prediction based on intersection information from map messages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP