WO2019003653A1 - Biopotential measurement device, electrostatic capacitance control device, electroencephalograph, electrostatic capacitance control method, and program - Google Patents

Biopotential measurement device, electrostatic capacitance control device, electroencephalograph, electrostatic capacitance control method, and program Download PDF

Info

Publication number
WO2019003653A1
WO2019003653A1 PCT/JP2018/018025 JP2018018025W WO2019003653A1 WO 2019003653 A1 WO2019003653 A1 WO 2019003653A1 JP 2018018025 W JP2018018025 W JP 2018018025W WO 2019003653 A1 WO2019003653 A1 WO 2019003653A1
Authority
WO
WIPO (PCT)
Prior art keywords
biopotential
capacitance
unit
electrode
electroencephalograph
Prior art date
Application number
PCT/JP2018/018025
Other languages
French (fr)
Japanese (ja)
Inventor
秋憲 松本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019526656A priority Critical patent/JP6909968B2/en
Publication of WO2019003653A1 publication Critical patent/WO2019003653A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]

Definitions

  • the present disclosure relates to a bioelectric potential measurement device, a capacitance control device, an electroencephalograph, a capacitance control method, and a program.
  • bioelectric potential measuring device for measuring bioelectric potentials such as electroencephalograms and electrocardiograms of a living body.
  • the user wears an electrode (bioelectrode) on the skin and acquires biopotentials such as electroencephalograms and electrocardiograms as bioinformation.
  • an output unit that outputs the acquired biological information to an external device by wireless may be provided.
  • Patent Document 1 discloses a medical telemeter which outputs acquired biological information by radio.
  • Patent Document 1 when wireless communication is performed, current consumption is instantaneously increased depending on the communication status, thereby deteriorating the signal quality of the output biological information, interrupting wireless communication, etc. And there is a problem that stable measurement can not be performed.
  • the present disclosure has been made in view of the above problems, and when performing biopotential measurement using wireless communication, it is possible to measure biopotential with stable signal quality with less power fluctuation, instantaneous blackouts, etc. It is an object of the present invention to provide a bioelectric potential measuring device etc.
  • a biopotential measuring device for measuring a biopotential, which comprises a measuring electrode in contact with a living body, and a biopotential for amplifying the biopotential detected by the measuring electrode.
  • a capacitance having a capacitance electrode connected to a wire covering the periphery of the shield as a shield member, wherein the ground potential of the power supply unit is electrically connected to the ground potential of the capacitance.
  • a capacitance control device for controlling a plurality of capacitances included in a biopotential measurement device for measuring a biopotential, the biopotential measurement
  • the apparatus comprises: a measurement electrode in contact with a living body; a biopotential amplification unit for amplifying the biopotential detected by the measurement electrode; and a biopotential output unit for outputting the biopotential amplified by the biopotential amplification unit.
  • the capacitance control device includes: a plurality of capacitances each having a capacitance electrode connected to a wiring that covers the periphery of the measurement electrode as a shield member; and a power supply unit that receives supply of power from the capacitance.
  • a capacitance control unit is provided for changing the sum of capacitance values of the plurality of capacitances in the biopotential measurement device in which the ground potential of the power supply unit is electrically connected to the ground potential of the capacitance. .
  • An electroencephalograph includes the bioelectric potential measurement device and a mounting unit attached to a head of a living body whose biological potential is to be measured, and the measurement electrode is a biological potential of the living body. In order to be in contact with the head of the living body.
  • a capacitance control method is a capacitance control method of a plurality of capacitances included in a biopotential measurement device for measuring a biopotential, wherein the biopotential measurement device is a living body
  • a biopotential amplification unit for amplifying the biopotential detected by the measurement electrode
  • a biopotential output unit for outputting the biopotential amplified by the biopotential amplification unit
  • a power supply unit receiving supply of electric power from the capacitance, the ground potential of the power supply unit is the capacitance of the capacitance.
  • the capacitance control method is electrically connected to the ground potential, and the capacitance control method includes a determination step of determining whether the power supply unit is in the on state or the off state, and the state determined in the determination step. And the plurality of And a control step of changing the total capacitance value of the capacitance.
  • one aspect of the present disclosure can be realized as a program for causing a computer to function the above-described capacitance control method.
  • it may be realized as a computer readable recording medium storing the program.
  • bioelectric potential measurement device and the like of the present disclosure a bioelectric potential measurement device and the like that can perform bioelectric potential measurement of stable signal quality can be provided.
  • FIG. 1 is a view showing a usage scene of the electroencephalograph according to the embodiment.
  • FIG. 2A is a schematic view showing an example of the electroencephalograph according to the embodiment.
  • FIG. 2B is a schematic view showing another example of the electroencephalograph according to the embodiment.
  • FIG. 3A is a schematic view showing a first example of the shape of an electrode.
  • FIG. 3B is a schematic view showing a second example of the shape of the electrode.
  • FIG. 3C is a schematic view showing a third example of the shape of the electrode.
  • FIG. 3D is a schematic view showing a fourth example of the shape of the electrode.
  • FIG. 3E is a schematic view showing a fifth example of the shape of the electrode.
  • FIG. 3A is a schematic view showing a first example of the shape of an electrode.
  • FIG. 3B is a schematic view showing a second example of the shape of the electrode.
  • FIG. 3C is a schematic view showing a third example of the shape of
  • FIG. 4 is a block diagram showing an overall configuration of a system including the bioelectric potential measurement device according to the embodiment.
  • FIG. 5 is a block diagram showing a detailed configuration of a system including the bioelectric potential measurement device according to the embodiment.
  • FIG. 6 is a block diagram showing a hardware configuration of a system including the bioelectric potential measurement device according to the embodiment.
  • FIG. 7 is a block diagram showing the hardware configuration of the information processing apparatus according to the embodiment.
  • FIG. 8 is a flowchart showing a basic processing procedure of the bioelectric potential measuring device and the information processing device according to the embodiment.
  • FIG. 9 is a perspective view showing a detailed configuration of the electroencephalograph provided with the bioelectric potential measurement device according to the embodiment.
  • FIG. 10 is a block diagram showing a detailed configuration when the electroencephalograph according to the embodiment measures a bioelectric potential.
  • FIG. 11 is a block diagram for explaining a circuit configuration of a plurality of capacitances provided in the electroencephalograph according to the embodiment.
  • FIG. 12 is a diagram for explaining an example of the relationship between the operation state of the electroencephalograph and the total capacitance value of the electrostatic capacitance according to the embodiment.
  • FIG. 13 is a timing chart for explaining an example of the relationship between the operation state of the electroencephalograph according to the embodiment and the total capacitance value of the capacitance according to time.
  • FIG. 11 is a block diagram for explaining a circuit configuration of a plurality of capacitances provided in the electroencephalograph according to the embodiment.
  • FIG. 12 is a diagram for explaining an example of the relationship between the operation state of the electroencephalograph and the total capacitance value of the electrostatic capacitance according to the embodiment.
  • FIG. 13 is a timing chart for
  • FIG. 14 is a flowchart for describing control for changing the total capacitance value of the electrostatic capacitance in accordance with the operation state of the electroencephalograph according to the embodiment.
  • FIG. 15 is a diagram showing input noise of the electroencephalograph according to the embodiment and the electroencephalograph according to the comparative example.
  • FIG. 16 is a flowchart for explaining application processing that is changed according to the operation state of the electroencephalograph according to the embodiment.
  • FIG. 17 is a diagram illustrating a first example of an image displayed by the display unit according to the operation state of the electroencephalograph according to the embodiment.
  • FIG. 18 is a diagram illustrating a second example of an image displayed by the display unit according to the operation state of the electroencephalograph according to the embodiment.
  • FIG. 19 is a diagram illustrating a third example of an image displayed by the display unit according to the operation state of the electroencephalograph according to the embodiment.
  • FIG. 1 is a view showing a usage scene of the electroencephalograph according to the embodiment.
  • a bioelectric potential measurement system 100 shown in FIG. 1 includes an electroencephalograph 1, an information processing device 2, and a display unit 3.
  • the electroencephalograph 1, the information processing device 2, and the display unit 3 are communicably connected by wire or wireless, respectively, and mutually output (transmit) and / or acquire (receive) information.
  • the electroencephalograph 1 is a device including the bioelectric potential measurement device 1b (see FIG. 5) according to the embodiment, and is a device for measuring an electroencephalogram that is an example of the bioelectric potential of the user 10.
  • the electroencephalograph 1 is a headset-type electroencephalograph that measures the electroencephalogram of the user 10.
  • the electroencephalograph 1 includes a mounting unit 150 for the user 10 to wear on the head, and a plurality of electrodes (electrodes for measuring biopotential) 51 (for example, see FIG. 2A) for measuring the biopotential of the user 10 Prepare.
  • the plurality of electrodes 51 are in contact with the user 10 when measuring the biopotential.
  • the plurality of electrodes 51 include a measurement electrode 48 (see FIG. 6) for measuring the biopotential, and a reference electrode 49 (see FIG. 6) used to calculate the difference between the potential measured by the measurement electrode 48.
  • the electroencephalograph 1 further includes an operation input device 1a (see FIG. 5) for inputting operation information for the user 10 to operate the bioelectric potential measurement system 100, and an operation for achieving a desired process is input. .
  • the information processing apparatus 2 acquires operation input data from the electroencephalograph 1 and performs predetermined processing.
  • the information processing device 2 is a personal computer (Personal Computer / PC).
  • the predetermined process is, for example, a process of causing the display unit 3 to display data acquired from the electroencephalograph 1.
  • the display unit 3 is a display device that displays the processing result performed by the information processing device 2.
  • the display unit 3 is, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or the like.
  • the display unit 3 displays, for example, the image information acquired from the information processing device 2.
  • the display unit 3 may include a speaker that outputs the acoustic information acquired from the information processing device 2.
  • FIG. 2A is a schematic view showing an example of the electroencephalograph according to the embodiment.
  • FIG. 2B is a schematic view showing another example of the electroencephalograph according to the embodiment.
  • the user 10 wears the electroencephalograph 1 on the head.
  • An example of the appearance of the electroencephalograph 1 is a headphone (headset) type in FIG. 2A and a band type in FIG. 2B.
  • the electroencephalograph 1 shown in FIG. 2A is of an arched headphone type along the head of the user 10.
  • the headphone type electroencephalograph 1 shown in FIG. 2A includes a plurality of electrodes 51, an outer side surface 44, a mounting surface 45, a mounting portion 150, and an operation surface 43.
  • the mounting unit 150 has an arched arm 151 and ear pads 46 attached to both ends of the arm 151 in the electroencephalograph 1 shown in FIG. 2A.
  • the outer side surface 44 is a surface disposed on the opposite side of the head of the user 10 when the user 10 wears the electroencephalograph 1.
  • the mounting surface 45 is a surface disposed on the head side of the user 10 when the user 10 wears the electroencephalograph 1.
  • An operation button 41 and a display device 47 are disposed on the operation surface 43.
  • the plurality of electrodes 51 are provided on the mounting surface 45 of the electroencephalograph 1 and the end of the ear pad 46 on the same side as the mounting surface 45 of the electroencephalograph 1.
  • the user 10 Before wearing the electroencephalograph 1, the user 10 operates the operation button 41 disposed on the operation surface 43 to activate the electroencephalograph 1 and wears the electroencephalograph 1 on the head of the user 10.
  • the left ear pad 46 is positioned at the right ear of the user 10 toward the paper surface of FIG. 2A, and the right ear pad 46 is positioned at the left ear of the user 10 toward the paper surface of FIG. Is mounted on the head of the user 10.
  • the ear pads 46 are applied to cover the left and right ears of the user 10.
  • the electrode 51 provided on the mounting surface 45 is applied to the skin (scalp) of the user 10.
  • An electrode 51 provided at the end of the earpiece 46 is placed behind the ear of the user 10.
  • the electrode 51 provided at the end of the left ear pad 46 toward the paper surface of FIG. 2A is provided at the end of the right ear pad 46 toward the paper surface of FIG. 2A (see FIG. 6).
  • the other electrode 51 may be used as the measuring electrode 48.
  • the ground electrode 73 c is an electrode for applying a reference potential (also referred to as body ground or ground) at which the electroencephalograph 1 operates in the user 10.
  • the arrangement position of the ground electrode 73c and the reference electrode 49 is not limited to this, and the electrode 51 provided at the end of the right ear pad 46 toward the paper surface of FIG. 2A is the ground electrode 73c.
  • the electrode 51 provided at the end of the left ear pad 46 may be used as the reference electrode 49.
  • the display device 47 is, for example, a liquid crystal display or an organic EL display, and displays a state of operation of the operation button 41 of the user 10 or the like.
  • the electroencephalograph 1001 shown in FIG. 2B is in the form of a band that is worn by being wound around the head of the user 10.
  • a band type electroencephalograph 1001 shown in FIG. 2B includes a plurality of electrodes 51, an outer side surface 44, a mounting surface 45, a mounting portion 150, and an operation surface 43.
  • the mounting unit 150 has a band shape without ear pads.
  • the configuration of the electrode 51, the operation button 41 disposed on the operation surface 43, and the display device 47 is the same as that of the headphone type electroencephalograph 1.
  • the electroencephalograph 1 Before the user 10 wears the electroencephalograph 1001, the electroencephalograph 1 is activated by operating the operation button 41 disposed on the operation surface 43, and the half of the outer surface 44 of the band type electroencephalograph 1001 (the operation surface 43). Side) is worn so as to come to the forehead of the user 10.
  • the electrode 51 corresponding to the ground electrode 73c and the electrode 51 corresponding to the reference electrode 49 extend a lead wire (not shown) from the mounting surface 45 to the back of the ear of the user 10. It may be a configuration to apply.
  • Electrode shape 3A to 3E show examples of the shape of the contact surface of the electrode 51 in contact with the skin of the user 10.
  • the material of the electrode (bioelectrode) 51 is made of a conductive substance.
  • the material of the electrode 51 may be silver-silver chloride (Ag / AgCl) or silver which has less polarization when in contact with a living body and stable polarization voltage.
  • the shape of the contact surface of the electrode 51 may be circular (for example, 10 mm in diameter) shown in FIG. 3A, similar to an electrode used for medical use. Further, the shape of the contact surface of the electrode 51 may be various shapes depending on the application other than the electrode 51 having a circular contact surface with the living body. For example, it may be a triangle as shown in FIG. 3B, a square as shown in FIG. 3C, or a square.
  • the electrode 51 may be an electrode configured by a plurality of cylinders (five in FIG. 3D). According to such a configuration, since the electrode 51 is in contact with the skin of the user 10, the hair of the user 10 can be scraped off.
  • the contact surface with the skin in each cylinder may be circular as shown to (a) of FIG. 3D, and other shapes, such as an ellipse, may be sufficient as it.
  • the contact surface with the skin in each cylinder may be circular as shown to (a) of FIG. 3D, and other shapes, such as an ellipse, may be sufficient as it.
  • not only a cylinder but a prism may be sufficient.
  • the number of cylinders or prisms may be five as shown in (a) and (b) of FIG. 3D, or may be any number, and is not particularly limited.
  • the tips of the individual cylinders in FIG. 3D may have a shape in which the corners are in contact with the skin. This can increase the contact area with the skin.
  • FIG. 4 is a block diagram showing an overall configuration of a system including the bioelectric potential measurement device 1b according to the embodiment.
  • the bioelectric potential measurement system 100 includes an electroencephalograph 1, an information processing device 2, and a display unit 3.
  • the electroencephalograph 1 includes an operation input device 1a and a bioelectric potential measurement device 1b.
  • the electroencephalograph 1 acquires information input to the user 10 by the operation input device 1a, and measures the biopotential of the user 10 by the biopotential measuring device 1b.
  • the bioelectric potential measured by the electroencephalograph 1 is output (sent) to the information processing device 2.
  • the information processing device 2 receives an input from the operation input device 1a and / or the bioelectric potential measurement device 1b, performs a predetermined process, and outputs the processing result to the display unit 3.
  • FIG. 5 is a block diagram showing the detailed configurations of the electroencephalograph 1 and the information processing apparatus 2.
  • the case where the electroencephalograph 1 and the information processing device 2 are connected wirelessly will be described as an example.
  • the operation input device 1 a of the electroencephalograph 1 includes an operation input unit 11 and an operation signal output unit 12.
  • the operation input unit 11 is a processing unit that acquires operation input information input by the operation button 41 (see FIGS. 2A and 2B) and determines the content of the operation.
  • the operation signal output unit 12 is a communication interface for outputting the operation input information acquired by the operation input unit 11 to the information processing device 2.
  • the operation input information acquired by the operation input unit 11 is output from the operation signal output unit 12 to the information processing device 2.
  • the bioelectric potential measurement device 1b included in the electroencephalograph 1 includes an electrode unit 13, a bioelectric potential amplification unit 14, a bioelectric potential output unit 15, a power supply unit 220, one or more electrostatic capacitances 201, and electrostatic capacitance control And a unit 210a.
  • the electrode unit 13 is composed of a plurality of electrodes 51.
  • the plurality of electrodes 51 includes the measurement electrode 48, the reference electrode 49, and the ground electrode 73c.
  • the plurality of electrodes 51 are disposed, for example, at positions in contact with the skin of the user 10 in the electroencephalograph 1.
  • the biopotential amplification unit 14 is an amplifier that amplifies a biopotential corresponding to the potential difference between the plurality of electrodes 51. Specifically, the biopotential amplification unit 14 measures the potential difference between the measurement electrode 48 and the reference electrode 49, and amplifies the measured potential difference. The amplified potential difference is converted into a digital signal by, for example, an A / D converter (Analog-to-Digital Converter) 75 (see FIG. 6) provided in the biopotential amplification unit 14.
  • a / D converter Analog-to-Digital Converter
  • the biopotential amplification unit 14 does not have to amplify the biopotential when it can measure the biopotential having a predetermined potential level or more, and may measure only the potentials of the plurality of electrodes 51.
  • the biopotential output unit 15 is a communication interface for outputting the potential difference amplified by the biopotential amplification unit 14 to the information processing device 2.
  • the potential difference of the biopotential converted into the digital value in the biopotential amplification unit 14 is output from the biopotential output unit 15 to the information processing device 2.
  • the power supply unit 220 is a power supply circuit that supplies power to each component of the electroencephalograph 1 such as the biopotential amplification unit 14, the biopotential output unit 15, and the capacitance 201.
  • the electrostatic capacitance 201 is a capacitor that is connected to the battery 81 and temporarily stores the power supplied to the power supply unit 220.
  • the capacitance 201 is arranged to cover at least the periphery of the measurement electrode 48. In this way, the capacitance 201 functions to prevent extraneous noise that can be received by the measurement electrode 48.
  • an electric double layer capacitance (supercapacitor or ultracapacitor) may be adopted from the viewpoint of making the mounting portion 150 flexible and lightening.
  • the capacitance 201 may be a lithium ion capacitor having the features of both the capacitance and the battery.
  • the compression of the temples of the user 10 is reduced and the pain of the user 10 is alleviated by making the mounting unit 150 worn by the user 10 in the electroencephalograph 1 flexible and lightweight. And the effect of preventing the mixing of pulse waves is expected.
  • ground potential of the power supply unit 220 is electrically connected to the ground potential of the electrostatic capacitance 201. That is, the ground potentials of the power supply unit 220 and the electrostatic capacitance 201 are set to be equal.
  • the capacitance control unit 210 a is a processing unit that changes the sum of capacitance values (capacitance values) of the plurality of capacitances 201.
  • the capacitance control unit 210a changes the sum of capacitance values (capacitance values) of the plurality of capacitances 201 in accordance with the operation mode of the bioelectric potential output unit 15.
  • the operation mode for example, a normal mode and a high speed mode in which the amount of data (communication amount) per unit time of the data of the biopotential output from the biopotential output unit 15 are different are set.
  • the capacitance control unit 210a detects the bioelectric potential at the measurement electrode 48, and outputs the detected bioelectric potential to the bioelectric potential output unit 15, and detects the bioelectric potential at the measurement electrode 48.
  • the mode control is performed to switch the detected biopotential to a high-speed mode in which the biopotential output unit 15 outputs the data amount of the biopotential output per unit time more than in the normal mode.
  • the capacitance control unit 210a performs control to increase the sum of the capacitance values of the plurality of capacitances 201 in the high-speed mode than in the normal mode.
  • the capacitance control unit 210a changes the sum of the capacitance values of the plurality of capacitances 201 between when the power of the power supply unit 220 is turned on and when the power of the power supply unit 220 is turned off.
  • the electrostatic capacity control unit 210a changes the sum of the capacitance values of the plurality of electrostatic capacitances 201.
  • the information processing apparatus 2 includes an operation signal acquisition unit 21, a bioelectric potential acquisition unit 22, a bioelectric potential processing unit 23, an application processing unit (application processing unit) 26, a display information output unit 27, and an acoustic information output unit 28. And have.
  • the information processing apparatus 2 acquires (receives) the operation input information output from the electroencephalograph 1 at the operation signal acquisition unit 21 and acquires the bioelectric potential at the bioelectric potential acquisition unit 22 to obtain information from the electroencephalograph 1. get.
  • the bioelectric potential processing unit 23 performs processing of extracting meaningful information from the acquired original signal.
  • the signal is limited to signals in a band (frequency of 0.5 Hz to 100 Hz) including a specific frequency (for example, 10 Hz), and Fast Fourier Transform (FFT) is performed. Calculate Power Spectral Density of the signal.
  • the bioelectric potential processing unit 23 may be disposed in the electroencephalograph 1 instead of the information processing device 2.
  • the application processing unit 26 performs central application processing (application processing) of the information processing apparatus 2.
  • the application processing is realized by receiving a signal from the electroencephalograph 1 and performing predetermined processing.
  • the result processed by the application processing unit 26 is output from the application processing unit 26 to the display information output unit 27 and / or the acoustic information output unit 28.
  • the display information output unit 27 and the acoustic information output unit 28 output a signal serving as visual and / or auditory information to the display unit 3 in order to feed back the result processed by the application processing unit 26 to the user 10.
  • FIG. 6 is a block diagram showing a hardware configuration of a system including the bioelectric potential measurement device 1b according to the embodiment. Specifically, FIG. 6 is a block diagram showing the hardware configuration of the electroencephalograph 1.
  • the electroencephalograph 1 includes an operation button group 71, a control signal conversion circuit 72, a measurement electrode 48, a reference electrode 49, an earth electrode 73c, a biological amplifier 74, an A / D converter 75, and a transmission circuit 79.
  • a signal processing unit 78, an antenna 68, a power supply unit 220, a battery 81, a capacitance control device 210, and a shield member 200 are provided.
  • the components included in the electroencephalograph 1 are connected to one another by a bus 105 so that data can be transmitted and received mutually.
  • the operation button group 71 and the control signal conversion circuit 72 correspond to the operation input unit 11 shown in FIG. Further, each button in the operation button group 71 corresponds to the operation button 41.
  • the measurement electrode 48, the reference electrode 49, and the ground electrode 73c correspond to the electrode 51 shown in FIGS. 2A and 2B and the electrode portion 13 shown in FIG.
  • the living body amplifier 74 and the A / D converter 75 correspond to the living body potential amplification unit 14 shown in FIG. Further, the transmission circuit 79 and the antenna 68 function as the biopotential output unit 15 and / or the operation signal output unit 12 shown in FIG.
  • the battery 81 is a battery for supplying power to the electroencephalograph 1.
  • the battery employed for the battery 81 may be a dry cell, a button cell, a lithium polymer rechargeable battery, a nickel hydrogen rechargeable battery, or the like.
  • the power supply unit 220 converts the voltage supplied from the battery into a desired power supply voltage and supplies the power supply voltage to each component of the electroencephalograph 1.
  • the signal processing unit 78 includes a CPU (Central Processing Unit) 101, a RAM (Random Access Memory) 102 storing a program 103 which is a control program executed by each component of the electroencephalograph 1, and a ROM (Read Only Memory). And 104).
  • the program 103 describes the signal processing procedure in the electroencephalograph 1.
  • the electroencephalograph 1 converts the operation signal and the biological signal into digital signals according to the program 103 by the CPU, and outputs the digital signals from the antenna 68 to the information processing apparatus 2 via the transmission circuit 79.
  • the capacitance control device 210 includes the above-described capacitance control unit 210a.
  • the capacitance control unit 210a includes, for example, a CPU 211, a RAM 212 storing a program 213 which is a control program to be executed by the CPU 211, and a ROM 214.
  • the shield member 200 is provided in the electroencephalograph 1 in order to prevent the measurement electrode 48 from extraneous noise, and includes the one or more capacitances 201 described above.
  • the depression information of each button regarding the operation button group 71 is converted into a control signal for controlling the operation of the electroencephalograph 1 in the control signal conversion circuit 72, and is output to the CPU 101 via the bus 105.
  • the measurement electrode 48, the reference electrode 49, and the earth electrode 73c are connected to the living body amplifier 74. These electrodes are installed at predetermined places of the electroencephalograph 1.
  • the potential difference between the measurement electrode 48 and the reference electrode 49 is amplified by the biological amplifier 74 and converted by the A / D converter 75 from an analog biological signal to a digital biological signal.
  • the potential difference converted into the digital biomedical signal is output to the CPU 101 via the bus 105 as a biomedical signal capable of processing and outputting.
  • the program 103 may be stored in the ROM 104.
  • the signal processing unit 78, the control signal conversion circuit 72, the transmission circuit 79, the living body amplifier 74, and the A / D converter 75 are hardware such as DSP (Digital Signal Processor) in which a computer program is incorporated in one semiconductor integrated circuit. May be realized as By mounting on one semiconductor integrated circuit, the mounting area can be reduced and the power consumption can be reduced.
  • the biological amplifier 74 and the A / D converter 75 are integrated in one semiconductor integrated circuit
  • the signal processing unit 78, the control signal conversion circuit 72, and the transmitting circuit 79 are integrated in another semiconductor integrated circuit.
  • the integrated circuits may be connected in one package and integrated as a system-in-package (SiP), and may be realized as hardware such as a DSP incorporating a computer program.
  • SiP system-in-package
  • DSP digital signal processor
  • FIG. 7 is a block diagram showing the hardware configuration of the information processing apparatus 2 according to the embodiment.
  • the information processing apparatus 2 includes an antenna 80, a receiving circuit 82, a signal processing unit 108, an image control circuit 84, a display information output circuit 85, an acoustic control circuit 86, an acoustic information output circuit 87, and a power supply 88. Is equipped.
  • the antenna 80 and the receiving circuit 82 correspond to the bioelectric potential acquisition unit 22 and / or the operation signal acquisition unit 21 illustrated in FIG. 5.
  • the signal processing unit 108 includes a CPU 111, a RAM 112, a program 113 executed by the CPU 111, and a ROM 114.
  • the signal processing unit 108 corresponds to the bioelectric potential processing unit 23 and / or the application processing unit 26 illustrated in FIG. 5.
  • the image control circuit 84 and the display information output circuit 85 correspond to the display information output unit 27 shown in FIG.
  • the sound control circuit 86 and the sound information output circuit 87 correspond to the sound information output unit 28 shown in FIG.
  • these components are connected to one another by a bus 115, and data can be transmitted and received mutually. Further, power is supplied from the power supply 88 to each component.
  • the operation information and bioelectric potential output from the electroencephalograph 1 are acquired by the receiving circuit 82 via the antenna 80, and are sent to the CPU 111 via the bus 115.
  • the CPU 111 is a processing unit that executes the program 113 stored in the RAM 112.
  • the program 113 describes the signal processing procedure in the information processing device 2.
  • the information processing apparatus 2 converts the operation signal and the biological signal according to the program 113, performs processing for executing a predetermined application (program), and transmits a signal for performing feedback to the user 10 by an image and / or sound.
  • Generate The program 113 may be stored in the ROM 114.
  • the feedback signal of the image generated by the signal processing unit 108 is output from the display information output circuit 85 to the display unit 3 via the image control circuit 84.
  • the acoustic feedback signal generated by the signal processing unit 108 is output from the acoustic information output circuit 87 via the acoustic control circuit 86.
  • the signal processing unit 108, the receiving circuit 82, the image control circuit 84, and the sound control circuit 86 may be realized as hardware such as a DSP in which a program is incorporated in one semiconductor integrated circuit. If one semiconductor integrated circuit is used, an effect of reducing power consumption can be obtained.
  • FIG. 8 is a flowchart showing a basic processing procedure of the electroencephalograph 1 and the information processing device 2 including the bioelectric potential measurement device 1b according to the embodiment. Note that steps S11 to S14 indicate processing in the electroencephalograph 1 (step S10), and steps S21 to S25 indicate processing in the information processing apparatus 2 (step S20).
  • the operation input unit 11 receives an operation input performed by the user 10 (step S11). Specifically, the operation input unit 11 detects which operation button 41 is pressed at the reception timing. An example of the timing of acceptance is when the operation button 41 is pressed. The detection of whether or not the operation button 41 is pressed is performed, for example, by detecting a change in mechanical button position when the operation button 41 is pressed or a change in electric signal. Further, the operation input unit 11 detects the type of the operation input received by the operation input unit 11 according to the type of the pressed operation button 41, and outputs the operation input to the operation signal output unit 12.
  • the operation signal output unit 12 outputs an operation signal corresponding to the operation input received by the operation input unit 11 to the information processing device 2 (step S12).
  • the biopotential amplification unit 14 measures and amplifies the biopotential corresponding to the potential difference between the plurality of electrodes 51 in the electrode unit 13 (step S13). For example, the potential difference between the reference electrode 49 and the measurement electrode 48 disposed on the right head (the electrode position of C4 of the international 10-20 method) among the plurality of electrodes 51 in the electrode unit 13 is measured. In addition, the biopotential amplification unit 14 amplifies the measured biopotential. The amplified biopotential is output from the biopotential amplification unit 14 to the biopotential output unit 15.
  • the bioelectric potential output unit 15 outputs the acquired bioelectric potential to the information processing device 2 (step S14).
  • the steps S11 and S12 and the steps S13 and S14 may be performed as parallel processes, and the processes from the step S11 to the step S14 are all in the order described above. There is no need to do it.
  • the operation signal acquisition unit 21 acquires the operation signal output from the operation signal output unit 12 in step S12 (step S21). Further, the operation signal acquisition unit 21 outputs the acquired operation signal to the application processing unit 26.
  • the biological potential acquisition unit 22 acquires the biological signal output from the biological potential output unit 15 in step S14 (step S22). In addition, the bioelectric potential acquisition unit 22 outputs the acquired biological signal to the bioelectric potential processing unit 23.
  • the biological signal acquired by the biological potential acquisition unit 22 is analyzed by the biological potential processing unit 23 to extract meaningful information (step S23).
  • a biological signal of a predetermined frequency component is extracted.
  • the predetermined frequency component is, for example, 10 Hz in the case of measurement of an electroencephalogram.
  • the application processing unit 26 receives the operation signal from the operation signal acquisition unit 21 and the biological signal from the biological potential processing unit 23, and performs predetermined processing for executing the current application (step S24).
  • the display information output unit 27 outputs the image information to the display unit 3, and the acoustic information output unit 28 outputs the acoustic information to the display unit 3. (Step S25). Thereby, the display unit 3 outputs an image and a sound corresponding to the processing result.
  • processing with Steps S22 and S23, and Step S24 may be performed as parallel processing, respectively.
  • the application processing unit 26 does not have to perform processing using both the operation signal output from the operation signal acquisition unit 21 and the biological signal output from the biological potential processing unit 23, and only the biological signal is processed. You may use and process. In that case, step S21 for acquiring the operation signal may be omitted.
  • FIG. 9 is a perspective view showing a detailed configuration of the electroencephalograph 1 including the bioelectric potential measurement device 1b according to the embodiment.
  • the electroencephalograph 1 shown in FIG. 9 illustrates in detail the configuration of the electroencephalograph 1 shown in FIG. 2A. Further, the electroencephalograph 1 shown in FIG. 9 is illustrated so that the outer side surface 44 and the mounting surface 45 can be seen easily for the sake of explanation, and the shape of the electroencephalograph 1 is not illustrated strictly.
  • the electroencephalograph 1 shown in FIG. 9 is covered by a shield member 200 in which the periphery of the plurality of electrodes 51 is disposed on the outer side surface 44.
  • the shield member 200 is disposed in the electroencephalograph 1 so as to cover the mounting unit 150 that the user 10 of the electroencephalograph 1 wears.
  • the shield member 200 is an electrostatic shield for preventing extraneous noise from coming around.
  • the shield member 200 is configured of a plurality of capacitances 201 from the viewpoint of securing an instantaneous amount of current.
  • a plurality of shield members 200 configured of the electrostatic capacitance 201 are disposed on the outer side surface 44 and the mounting surface 45 of the electroencephalograph 1.
  • a capacitance 201 having a capacitance electrode (an electrode of the capacitance 201) covering the periphery of the measurement electrode 48 as a shield member 200 is disposed on the outer side surface 44 of the electroencephalograph 1.
  • the capacitance 201 includes a dielectric and two capacitance electrodes sandwiching the dielectric.
  • the capacitive electrode of the electrostatic capacitance 201 here means at least one of the two capacitive electrodes (positive electrode and negative electrode) sandwiching the dielectric.
  • a shield member 200 is disposed on the mounting surface 45 of the electroencephalograph 1 with the measurement electrode 48 interposed therebetween. Further, in the electroencephalograph 1, two wires (not shown) for connecting in parallel each of the capacitances 201 of the plurality of shield members 200 are arranged, and are continuous to the outer surface 44 and the mounting surface 45. It is arranged. For example, a capacitance value of 35 mF per capacitance is used for the capacitance 201, and 12 capacitances connected in parallel are configured to be 400 mF or more as a whole.
  • FIG. 9 the configuration in which the outer surface 44 is covered by the shield member 200 so as to cover the plurality of electrodes 51 in the electroencephalograph 1 described above is illustrated.
  • the present invention may be applied to a band-type electroencephalograph 1001 shown in 2B.
  • the shield member 200 is disposed so as to cover the mounting portion 150, but the mounting portion 150 may be configured by the shield member 200.
  • the arm 151 may be configured of the capacitance 201.
  • FIG. 10 is a block diagram showing a detailed configuration when the electroencephalograph 1 according to the embodiment measures a bioelectric potential.
  • a plurality of electrodes 51 (electrodes 13 shown in FIG. 6) disposed on the mounting surface 45 of the electroencephalograph 1 of FIG. Shows an example of a dynamic connection.
  • an electrode used as a measurement electrode is a measurement electrode 48
  • an electrode used as a reference electrode is a reference electrode 49.
  • the measurement electrode 48 may be denoted as Ch1 and the reference electrode 49 may be denoted as Ref.
  • a buffer 90 a is connected to the measurement electrode 48.
  • the buffer 90 b is connected to the reference electrode 49.
  • the combination of an electrode and an op amp circuit (buffer) is called an active electrode.
  • a configuration in which the measurement electrode 48 and the buffer 90a are combined is referred to as a first active electrode 95a
  • a configuration in which the reference electrode 49 and the buffer 90b are combined is referred to as a second active electrode 95b.
  • the output of the buffer converts the impedance of the signal line to a lower value (for example 1 k ⁇ ) even when the contact impedance of the electrode (ie the impedance of the signal source) is high (for example 30 k ⁇ at 10 Hz) be able to.
  • the potentials detected by the measurement electrode 48 and the reference electrode 49 are buffered in the buffers 90a and 90b, respectively, as shown in FIG.
  • the input impedance of the buffers 90a and 90b desirably has an impedance of 500 M ⁇ or more at 10 Hz. Furthermore, it is desirable that the gains and input impedances of buffers 90a and 90b be equal.
  • Buffers 90a and 90b may be replaced with an operational amplifier circuit whose absolute value of gain is 1 or more.
  • amplification of the biological potential in the biological potential amplification unit 14 is the second stage amplification following the operational amplifier circuit, so the requirement for input conversion noise is alleviated compared to the case of the buffers 90a and 90b.
  • Low power consumption amplifiers can be used.
  • the biopotential amplifier 14 of FIG. 10 amplifies the difference (voltage) (differential amplification) by taking the difference between the potential of the measurement electrode 48 and the potential of the reference electrode 49 in the bioamplifier 74 of FIG.
  • the gain of the biological amplifier 74 is, for example, 1200 times. Also, it is desirable that the common-mode rejection ratio (CMRR) of the biological amplifier 74 be, for example, 100 dB.
  • the amplified voltage is filtered by a low pass filter (not shown) and converted into a digital signal by an A / D converter 75 at a predetermined resolution (for example, 12 bits) and a sampling frequency (for example, 1 kHz).
  • the data (digital data) converted into the digital signal is output to the bioelectric potential output unit 15.
  • the electroencephalograph 1 may have a configuration in which the buffers 90a and 90b are not provided in the path between the measurement electrode 48 and the biopotential amplification unit 14 and between the reference electrode 49 and the biopotential amplification unit 14 .
  • the input impedance of the biopotential amplification unit 14 be 500 M ⁇ (value at a frequency of 10 Hz) or more.
  • the output terminals of the first active electrode 95 a and the second active electrode 95 b are connected to the Ch 1 terminal and the Ref terminal of the biopotential amplifier 14 respectively.
  • the biopotential of Ch1 is amplified (differential amplification) after taking a difference from the biopotential of Ref.
  • the amplified biopotential is filtered by a low pass filter (not shown) and converted by the A / D converter 75 into a digital signal.
  • Data (digital data) of the converted digital signal is output to the bioelectric potential output unit 15.
  • the measurement electrode 48 and the buffer 90 a, and the reference electrode 49 and the buffer 90 b are covered by the shield member 200.
  • FIG. 11 is a block diagram for explaining a circuit configuration of a plurality of capacitances 201 provided in the electroencephalograph 1 according to the embodiment.
  • the shield member 200 is configured of a plurality of electrostatic capacitances 201.
  • sixteen capacitances 201 are illustrated as an example of the shield member 200.
  • each of the plurality of capacitances 201 is set to, for example, 50 mF. Further, each of the plurality of capacitances 201 and the power supply unit 220 are grounded and have the same ground potential.
  • a plurality of electrostatic capacitances 201 of the shield member 200 are connected to the wiring connecting the battery 81 and the power supply unit 220.
  • the power supply unit 220 generates a power supply voltage necessary for driving the load circuit, and supplies the power supply voltage to load circuits such as the biopotential amplification unit 14 and the biopotential output unit 15.
  • the power supply unit 220 includes, for example, active electrodes (the first active electrode 95 a and / or the second active electrode 95 b), the biopotential amplification unit 14, and the biopotential output unit 15 (level conversion circuit not shown).
  • Supply 1.8V power supply voltage (1.8V power supply voltage).
  • the power supply unit 220 supplies 3.0 V (a power supply voltage of 3.0 V system) to the biopotential output unit 15 and the other load circuits in FIG. 6.
  • the capacitance 201 functions as a smoothing capacitor. That is, the capacitance 201 suppresses the influence of external noise on the measurement electrode 48, and smoothes the voltage of the battery 81 and various power supply voltages supplied to the load circuit by the power supply unit 220.
  • the capacitance control unit 210a changes the capacitance value of each of the plurality of capacitances 201 by controlling on (switch: closed) and off (switch: open) of the switches S1 to S4.
  • FIG. 12 is a diagram for explaining an example of the relationship between the operation state of the electroencephalograph 1 according to the embodiment and the capacitance value of the capacitance 201.
  • FIG. 13 is a timing chart for explaining an example of the relationship between the operation state of the electroencephalograph 1 according to the embodiment and the capacitance value of the capacitance 201 according to time.
  • the capacitance control unit 210a controls the switches S1 to S4 to change the total value of the capacitance values of the plurality of capacitances 201 to 200 mF.
  • the capacitance control unit 210a outputs a Low (L) signal to the switches S1 to S4, and turns off the switches S1 to S4.
  • the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 600 mF.
  • the capacitance control unit 210a outputs a High (H) signal to the switches S1 to S3 to turn on the switches S1 to S3.
  • the capacitance control unit 210a outputs an L signal to the switch S4, and turns off the switch S4.
  • the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 300 mF. For example, the capacitance control unit 210a outputs an H signal to the switch S1, and turns on the switch S1. Further, the capacitance control unit 210a outputs an L signal to the switches S2 to S4, and turns off the switches S2 to S4.
  • the electroencephalograph 1 acquires the bioelectric potential of the user 10 in the normal mode.
  • the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 400 mF.
  • the capacitance control unit 210a outputs an H signal to the switches S1 and S2, and turns on the switches S1 and S2.
  • the capacitance control unit 210a outputs an L signal to the switches S3 and S4, and turns off the switches S3 and S4.
  • the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 800 mF.
  • the capacitance control unit 210a outputs an H signal to the switches S1 to S4, and turns on the switches S1 to S4.
  • the electroencephalograph 1 changes from the high speed mode to the setting for acquiring the bioelectric potential of the user 10 in the normal mode. For example, it is assumed that an instruction to change the operation mode is acquired from the user 10 through the operation button 41.
  • the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 400 mF.
  • the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 200 mF.
  • the capacitance control unit 210a outputs an L signal to the switches S1 to S4, and turns off the switches S1 to S4.
  • the capacitance control unit 210a changes the sum of capacitance values of the plurality of capacitances 201 according to the operation mode. If the capacitance values mounted on the plurality of capacitances 201 are too large, there is a concern that the rise time of the electroencephalograph 1 may become long. Further, for example, there is a concern that the operation of the electroencephalograph 1 at the time of power on, power off, etc. becomes unstable. In particular, the power-off sequence of the electroencephalograph 1 is not normally performed when the power is shut off, which may cause the power-up of the electroencephalograph 1 to never be performed again from the next time.
  • the capacitance control unit 210a controls the sum of capacitance values of the plurality of capacitances 201 according to the operation mode. For example, as described above, during operation in the high speed mode, the capacitance control unit 210a sets the sum of capacitance values of the plurality of capacitances 201 to a maximum, and maximizes instantaneous current supply capability. Do.
  • FIG. 14 is a flowchart for describing control for changing the capacitance value of the capacitance 201 according to the operation state of the electroencephalograph 1 according to the embodiment. Specifically, FIG. 14 is a flowchart for describing an operation of controlling the sum of capacitance values of the plurality of capacitances 201 performed by the capacitance control unit 210a illustrated in FIGS. 12 and 13. .
  • the capacitance control unit 210a controls the plurality of capacitances 201 (specifically, switches S1 to S4) in advance so that the total capacitance value of the plurality of capacitances 201 is 200 mF. (Step S101). As described above, the capacitance control unit 210a sets a plurality of sums of capacitance values of the plurality of capacitances 201 to 200 mF when the power of the electroencephalograph 1 is shut down (power supply is turned off). The capacitance 201 is controlled.
  • the user 10 turns on the power supply of the electroencephalograph 1 (for example, to turn on the electroencephalograph 1 included in the operation button 41 shown in FIG. 2A and to turn on the power switch, the power button, etc.). 1 is started (step S102).
  • the capacitance control unit 210a determines whether or not the power supply voltage (3.0 V power supply voltage) supplied to the load circuit by the power supply unit 220 is 2.8 V or higher (step S103). .
  • the capacitance control unit 210a determines whether or not the 3.0V power supply voltage supplied to the transmission circuit 79 by the power supply unit 220 is 2.8 V or more.
  • step S103 when the capacitance control unit 210a determines that the power supply unit 220 does not supply the 3.0 V power supply voltage to the load circuit at 2.8 V or more (NO in step S103), the electroencephalograph 1 The determination in step S103 is repeated, judging that it has not risen yet.
  • step S103 when the capacitance control unit 210a determines that the 3.0 V power supply voltage of the electroencephalograph 1 is 2.8 V or more (YES in step S103), a plurality of electrostatics are generated.
  • the plurality of capacitances 201 are controlled such that the total capacitance value of the capacitance 201 is set to 600 mF.
  • the electroencephalograph 1 performs pairing with the information processing device 2 (step S105).
  • step S106 determines whether the pairing with the information processing device 2 is completed. In step S106, when the electroencephalograph 1 determines that the pairing with the information processing device 2 is not completed (NO in step S106), the determination of step S106 is repeated.
  • step S107 the electroencephalograph 1 determines whether to operate in the normal mode (step S107). Specifically, in step S107, the electroencephalograph 1 determines whether to operate in the normal mode in which the bioelectric potential is output to the information processing device 2 at the normal communication speed.
  • the determination as to whether or not to operate in the normal mode may be arbitrarily determined.
  • the setting of the operation mode may be arbitrarily determined by the user 10 operating the operation button 41.
  • the setting of the operation mode may be determined by the number of electrodes 51 used to measure the biopotential. For example, the electroencephalograph 1 may operate in the high speed mode when the number of electrodes 51 used to measure the bioelectric potential is 5 or more, and may operate in the normal mode when the number is less than 5.
  • a plurality of total capacitance values of the plurality of capacitances 201 are set to 400 mF.
  • the capacitance 201 is controlled (step S108).
  • the electroencephalograph 1 acquires a bioelectric potential from the user 10, and outputs the acquired bioelectric potential to the information processing device 2 (step S109).
  • step S110 determines whether it operates in the high speed mode
  • a plurality of capacitance values of the plurality of capacitances 201 are set to 800 mF in total.
  • the capacitance 201 is controlled (step S111).
  • the electroencephalograph 1 acquires a bioelectric potential from the user 10, and outputs the acquired bioelectric potential to the information processing apparatus 2 (step S112).
  • the capacitance control unit 210a determines that the electroencephalograph 1 does not operate in the high-speed mode (No in step S110)
  • the total capacitance value of the plurality of capacitances 201 is set to 300 mF.
  • the plurality of capacitances 201 are controlled (step S113).
  • step S114 the electroencephalograph 1 is in a standby state.
  • step S115 the electroencephalograph 1 determines whether the power is turned off.
  • step S115 When it is determined that the power is not turned off (NO in step S115), the electroencephalograph 1 returns to step S107, and repeats the determination of step S107 to step S114.
  • the capacitance control unit 210a sets the sum of capacitance values of the plurality of capacitances 201 to be 200 mF. Control the plurality of capacitances 201 (step S116).
  • the electroencephalograph 1 turns off the power (step S117).
  • FIG. 15 is a diagram showing input noise (input conversion noise obtained by dividing output noise by the gain of the biological amplifier 74) of the electroencephalograph 1 according to the embodiment and the electroencephalograph according to the comparative example.
  • the solid line shown in FIG. 15 is the input noise of the electroencephalograph 1 according to the embodiment, and the broken line is the input noise of the electroencephalograph according to the comparative example.
  • the electroencephalograph according to the comparative example is characterized in that the functional configuration is the electroencephalogram according to the embodiment except that the plurality of capacitances 201 (that is, the shield member 200) in the electroencephalograph 1 according to the embodiment is not provided. It is the same as 1 in total.
  • the input noise is larger than that of the electroencephalograph 1 according to the embodiment.
  • the amplitude of the electroencephalogram input to the electroencephalograph is 20 ⁇ Vpp
  • input noise exceeding 20 ⁇ Vpp is partially confirmed. Therefore, the electroencephalograph according to the comparative example can not stably detect the biopotential due to the input external noise, and can not make the biopotential to be output stable signal quality.
  • the bioelectric potential can be stably detected, and the bioelectric potential to be output can be stabilized in signal quality.
  • FIG. 16 is a flowchart for explaining application processing that is changed according to the operation state of the electroencephalograph 1 according to the embodiment.
  • the application processing unit 26 performs the processing from step S121 to step S129. Each step from step S121 to step S129 will be described in detail later.
  • the information processed by the application processing unit 26 is, as shown in FIG. 5, an image as shown in FIG. 17, FIG. 18 and FIG. 19 as a display unit via the display information output unit 27 and the acoustic information output unit 28. Displayed on 3.
  • FIG. 17, FIG. 18 and FIG. 19 are diagrams showing examples of images displayed by the display unit 3 according to the operation state of the electroencephalograph 1 according to the embodiment.
  • the images shown in FIGS. 17, 18 and 19 are displayed on the display unit 3.
  • the image displayed on the display unit 3 includes a measurement information display unit 3a, a biopotential waveform display unit 3b, an electrode display unit 3c, and a mode display unit 3d.
  • the current measurement state of the measurement electrode 48 and the reference electrode 49 is displayed on the measurement information display unit 3a.
  • the reference electrode 49 is completely separated from the skin of the user 10 and the measurement of the biopotential is not performed, as shown in FIG. 17, “biopotential not measured”, “electrode Ref is in contact It is displayed as "No". Thereby, it can be informed that the reference electrode 49 is not in contact with the skin of the user 10, and the user 10 can be urged to wear the electroencephalograph 1 normally.
  • the measured bioelectric potential is displayed in time series on the bioelectric potential waveform display unit 3b. Thereby, the user 10 can visually recognize the change of the bioelectric potential.
  • the contact state with the user 10 of the measurement electrode 48 (Ch1) and the reference electrode 49 (Ref) is displayed on the electrode display part 3c.
  • an image of the electroencephalograph 1 viewed from the top of the head of the user 10 is displayed on the electrode display unit 3c.
  • the contact state of the measurement electrode 48 and the reference electrode 49 is displayed on the electrode display unit 3 c together with the positions of the measurement electrode 48 and the reference electrode 49 with respect to the body of the user 10.
  • the user 10 can visually recognize at which position the electrode is shifted, and the electroencephalograph 1 can be worn at a normal position.
  • the display unit 3 is used.
  • the positions corresponding to the measurement electrode 48 and the reference electrode 49 of the displayed image may be colored and displayed.
  • the image showing the reference electrode 49 of the electrode display unit 3 c may be displayed in white.
  • a display that can be distinguished from other images may be described as “highlighted display” by displaying in color and displaying in a flickering manner instead of whiteouting. .
  • the positions of the respective measurement electrodes 48 correspond to the positions of the electrode display portions according to the positions of the attached measurement electrodes 48. It is displayed on the electrode position display sections 3c1 to 3c5 of 3c. In addition, channels (Ch1 to Ch5) corresponding to the respective electrode positions are displayed on the electrode display unit 3c.
  • the mode display unit 3d shown in FIGS. 18 and 19 displays the operation mode that the electroencephalograph 1 is executing. For example, when the electroencephalograph 1 is operating in the normal mode, the mode display unit 3 d displays “normal mode”. Further, for example, when the electroencephalograph 1 is operating in the high speed mode, the mode display unit 3 d displays “high speed mode”.
  • the application processing unit 26 determines whether or not the bioelectric potential is being measured based on the output result of the bioelectric potential processing unit 23 (step S121).
  • the electroencephalograph 1 may include a contact impedance measuring device (not shown) for measuring the contact impedance between each electrode and the user 10.
  • the application processing unit 26 determines that the electrode unit 13 is a living body based on the determination result of whether or not the measurement electrode 48 and the reference electrode 49 are in contact with the skin of the user 10 output from the contact impedance measuring device. It is determined whether or not the potential is being measured.
  • step S121 When the application processing unit 26 determines that the measurement electrode 48 and the reference electrode 49 measure the bioelectric potential (YES in step S121), for example, as shown in FIG. 18, through the display information output unit 27, A message “during biopotential measurement” is displayed on the display unit 3 (step S122). On the measurement information display unit 3a of the display unit 3, "Bioelectric potential measurement in progress” is displayed.
  • step S121 when the application processing unit 26 determines that the measurement electrode 48 and the reference electrode 49 do not measure the biopotential (NO in step S121), for example, “biopotential not measured” via the display information output unit 27 "" Is displayed on the display unit 3 (step S123).
  • step S123 On the measurement information display unit 3 a of the display unit 3, as shown in FIG. 17, “biopotential not measured” is displayed.
  • the reference electrode 49 (Ref) is not in contact with the skin of the user 10, as shown in FIG. 17, “the electrode Ref is not in contact” is displayed on the measurement information display unit 3a and processed Ends.
  • step S122 the display information output unit 27 detects an electrode used for measurement (step S124).
  • the display information output unit 27 causes the display unit 3 to highlight the image representing the electrode used for measuring the bioelectric potential (step S125). For example, in the case where the display information output unit 27 detects the measurement electrode 48 (Ch1) and the reference electrode 49 (Ref) as the electrodes used for measurement, the display information output unit 27 sets the measurement electrode 48 (Ch1) and the reference electrode 49 (Ref) as electrodes. The highlight is displayed on the display unit 3c. For example, as shown in FIG. 18, the display unit 3 displays the measurement electrode 48 and the reference electrode 49 on the electrode display unit 3c with a picture of the electrodes.
  • the display information output unit 27 calculates the number of electrodes used for measuring the bioelectric potential. As an example, the display information output unit 27 determines whether the number of electrodes used for measurement is five or more (step S126). In the flowchart shown in FIG. 16, the operation mode is determined by the number of electrodes used to measure the bioelectric potential.
  • step S126 When the display information output unit 27 determines that the number of electrodes used for measuring the bioelectric potential is five or more (YES in step S126), as shown in FIG. The mode is displayed (step S127).
  • the display information output unit 27 determines that the number of electrodes used for measuring the bioelectric potential is less than 5 (NO in step S126)
  • the mode display unit 3d is displayed as shown in FIG.
  • the "normal mode” is displayed (step S128).
  • the display information output unit 27 causes the biopotential waveform display unit 3b to display the signal waveform of the biopotential measured by each electrode (step S129). For example, in the case of one electrode, one signal waveform is displayed on the biopotential waveform display unit 3b as shown in FIG. 18, and in the case of multiple electrodes, a plurality of signal waveforms are biopotential as shown in FIG. It is displayed on the waveform display unit 3b. In FIG. 19, although five biological signal waveforms corresponding to the number of measurement electrodes 48 are displayed on the biological potential waveform display unit 3b, they are shown in a simplified manner.
  • the biopotential measurement device 1b is a biopotential measurement device for measuring the biopotential.
  • the biopotential measuring device 1 b includes a measuring electrode 48 in contact with a living body, a biopotential amplification unit 14 that amplifies the biopotential detected by the measuring electrode 48, and a living body that outputs the biopotential amplified by the biopotential amplification unit 14. And a potential output unit 15.
  • the biopotential measuring device 1 b further includes a power supply unit 220 that supplies power to at least one of the biopotential amplification unit 14 and the biopotential output unit 15, and a capacitance connected to a wire that covers the periphery of the measurement electrode 48 as the shield member 200. And a capacitance 201 having an electrode. Further, the ground potential of the power supply unit 220 is electrically connected to the ground potential of the electrostatic capacitance 201.
  • the electrostatic capacitance 201 serves as an electrostatic shield, and it is possible to suppress external noise that affects the measurement electrode 48. Thereby, the biopotential detected by the measurement electrode 48 is likely to be stabilized. Therefore, according to the biopotential measurement device 1b, stable biopotential measurement of signal quality can be performed.
  • the capacitance 201 as a shield, it is possible to secure the discharge current other than the battery 81. Thereby, the stability of the operation of the bioelectricity measuring device 1b is improved. Therefore, according to the biopotential measurement device 1b, stable biopotential measurement of signal quality can be performed.
  • bioelectric potential measurement apparatus 1 b further changes the sum of the capacitance values of the plurality of capacitances 201 according to the plurality of capacitances 201 and the operation mode of the bioelectric potential output unit 15. And 210a.
  • the capacitance value of the capacitance 201 mounted on the biopotential measurement device 1b is too large, the rise time becomes long, and there is also a concern that the operation at the time of start-up such as when the power is shut off becomes unstable.
  • the rise time is unlikely to be long, and the operation at the time of rise, power interruption, etc. is easily stabilized.
  • the capacitance control unit 210a may change the sum of capacitance values of the plurality of capacitances 201 between when the power of the power supply unit 220 is turned on and when the power of the power supply unit 220 is turned off.
  • the electrostatic capacity control unit 210a may change the sum of the capacitance values of the plurality of electrostatic capacitances 201.
  • the rise time does not easily become long, and the operation at the time of rising of the battery 81, power interruption, etc. is stable. It becomes easy to do.
  • the capacitance control unit 210a detects the bioelectric potential by the measurement electrode 48, and switches the mode between the normal mode in which the bioelectric potential output unit 15 outputs the detected bioelectric potential to the high speed mode. It may control. In the high-speed mode, the capacitance control unit 210a detects the bioelectric potential at the measurement electrode 48, and outputs the detected bioelectric potential per unit time by a larger amount of data of the bioelectric potential than in the normal mode. Make the part 15 output. Further, in the mode control, the capacitance control unit 210a may perform control to increase the sum of the capacitance values of the plurality of capacitances 201 in the high-speed mode than in the normal mode.
  • the capacitance control unit 210a sets the sum of capacitance values of a plurality of capacitances to a maximum, and maximizes the current supply capability.
  • the biological potential measurement device 1b can perform communication operation quickly and easily.
  • the capacitance 201 may be an electric double layer capacitance.
  • the capacitance control device 210 is a capacitance control device that controls a plurality of capacitances 201 included in a biopotential measurement device 1 b for measuring a biopotential.
  • the biopotential measuring device 1b outputs the biopotential amplified by the biopotential amplifier 14 and the biopotential amplifier 14 that amplifies the biopotential detected by the measuring electrode 48, which is in contact with the living body, and the bioelectrode. And a bioelectric potential output unit 15.
  • the bioelectric potential measurement apparatus 1b includes a plurality of capacitances 201 having capacitance electrodes to which the wiring covering the periphery of the measurement electrode 48 is connected as the shield member 200, and a power supply unit 220 receiving power supply from the capacitances 201.
  • the capacitance control device 210 changes the sum of capacitance values of the plurality of capacitances 201 in the biological potential measurement device 1b in which the ground potential of the power supply unit 220 is electrically connected to the ground potential of the capacitance 201.
  • a capacitance control unit 210a is provided.
  • the rise time is unlikely to be long, and the operation at the time of rise, at the time of power shut off, etc. is stable. It becomes easy to do.
  • the electroencephalograph 1 includes a bioelectric potential measurement device 1b and a mounting unit 150 mounted on the head of a living body whose bioelectric potential is to be measured.
  • the measurement electrode 48 is disposed on the mounting unit 150 so as to be in contact with the head of the living body when measuring the biopotential of the living body.
  • the electroencephalograph 1 As shown in FIG. 15, according to the electroencephalograph 1 according to the embodiment, it is possible to suppress the input extraneous noise to be equal to or less than the amplitude of a general electroencephalogram. That is, the bioelectric potential measurement device 1b according to the embodiment is suitable for the electroencephalograph 1 for measuring an electroencephalogram.
  • the capacitance 201 provided in the electroencephalograph 1 according to the present embodiment may be arranged to cover the mounting unit 150.
  • the mounting unit 150 of the electroencephalograph 1 may be configured of the electrostatic capacitance 201.
  • the electrostatic capacitance 201 functions as a shield which prevents the external noise to each circuit and the electrode 51 with which the electroencephalograph 1 is provided. Therefore, according to the electroencephalograph 1, bioelectric potential measurement of stable signal quality can be performed.
  • the capacitance control method is a capacitance control method of the plurality of capacitances 201 included in the biopotential measuring device 1 b that measures biopotential.
  • the biopotential measuring device 1b outputs the biopotential amplified by the biopotential amplifier 14 and the biopotential amplifier 14 that amplifies the biopotential detected by the measuring electrode 48, which is in contact with the living body, and the bioelectrode.
  • the bioelectric potential measurement apparatus 1b includes a capacitance 201 having a capacitance electrode to which a wire covering the periphery of the measurement electrode 48 is connected as a shield member 200, and a power supply unit 220 receiving power supply from the capacitance 201.
  • the ground potential of the power supply unit 220 is electrically connected to the ground potential of the capacitance.
  • the capacitance control method includes a determination step of determining whether the power supply unit 220 is in the on state or the off state, and a sum of capacitance values of the plurality of capacitances 201 according to the state determined in the determination step. Control steps to change
  • the rise time is unlikely to be long, and the operation at the time of rise, at the time of power shut off, etc. is stable. It becomes easy to do.
  • the present invention may also be implemented as a program that causes a computer to execute the steps included in the capacitance control method according to the present embodiment.
  • the program may also be realized as a non-volatile recording medium such as a compact disc-read only memory (CD-ROM) readable by a computer.
  • CD-ROM compact disc-read only memory
  • the present invention may be realized as information, data or signals indicating the program. And these programs, information, data, and signals may be distributed via a communication network such as the Internet.
  • the capacitance control method can be executed by the computer as a program capable of simply and stably measuring bioelectric potential of signal quality.
  • the present disclosure allows a computer to execute the method described above. It may be a program. Further, the present disclosure may be a digital signal including a program of the computer.
  • the present disclosure relates to a non-transitory recording medium that can read the computer program or the digital signal from a computer, such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD It may be recorded on a Blu-ray (registered trademark) Disc), a semiconductor memory, or the like. Further, the present invention may be the digital signal recorded on these non-temporary recording media.
  • the present disclosure may transmit the computer program or the digital signal via a telecommunications line, a wireless or wired communication line, a communication network represented by the Internet, data broadcasting, and the like.
  • the standard of wireless communication in the present disclosure is Bluetooth (registered trademark), BLE (Bluetooth (registered trademark) Low Energy), ANT (registered trademark), Wi-Fi (registered trademark), Zigbee (registered trademark), or the like. It may be a proprietary communication standard.
  • the present disclosure may be a computer system including a microprocessor and a memory, the memory storing the computer program, and the microprocessor operating according to the computer program.
  • an electroencephalogram is assumed as the bioelectric potential to be measured, but the bioelectric potential to be measured is not limited to the electroencephalogram, and may be an electrocardiogram, an myoelectric potential, or an electrooculogram Or other biometric information.
  • the shape of the device for measuring the bioelectric potential is not limited to the headphone type and the band type, and may be another shape in accordance with the mounting position.
  • the electrode may be an active electrode provided with an amplifier, or may be a digital active electrode capable of converting a biomedical signal into a digital value.
  • At least one measurement electrode and one reference electrode may be provided, or a plurality of measurement electrodes and reference electrodes may be provided.
  • the electroencephalograph and the information processing apparatus may be communicably connected by wire or may be communicably connected by wireless. Further, the information processing apparatus and the display unit may be communicably connected by wire or may be communicably connected by wireless.
  • steps in the above-described embodiment may be changed or omitted. Also, the order of the steps may be reversed. Also, processing of a plurality of steps may be performed in parallel.
  • the embodiments can be realized by various combinations of the embodiments that can be conceived by those skilled in the art, or by combining components and functions in the embodiments within the scope of the present disclosure. This form is also included in the present disclosure.

Abstract

A biopotential measurement device (1b) is for measuring the biopotential of a user (10). The biopotential measurement device (1b) is provided with: a biopotential amplification unit (14) that differentially amplifies a biopotential detected by a reference electrode (49) and a measurement electrode (48) brought into contact with the user (10), and performs A/D conversion thereon; a biopotential output unit (15) that outputs the biopotential converted into a digital signal; a power supply unit (220) that supplies electric power to the biopotential amplification unit (14) and/or the biopotential output unit (15); and an electrostatic capacitance (201) equipped with a capacitance electrode to which a wire as a shield member (200) covering the perimeter of the measurement electrode (48) is connected. The ground potential of the power supply unit (220) is electrically connected to the ground potential of the electrostatic capacitance (201).

Description

生体電位測定装置、静電容量制御装置、脳波計、静電容量制御方法及びプログラムBiopotential measurement device, capacitance control device, electroencephalograph, capacitance control method and program
 本開示は、生体電位測定装置、静電容量制御装置、脳波計、静電容量制御方法及びプログラムに関する。 The present disclosure relates to a bioelectric potential measurement device, a capacitance control device, an electroencephalograph, a capacitance control method, and a program.
 従来、生体の脳波、心電等の生体電位を測定するための生体電位測定装置がある。生体電位測定装置は、例えば、ユーザが電極(生体電極)を皮膚に装着し、脳波、心電等の生体電位を生体情報として取得する。また、生体電位測定装置によっては、取得した生体情報を外部機器に無線により出力する出力部を備える場合がある。例えば、特許文献1には、取得した生体情報を無線により出力する医用テレメータが開示されている。 Conventionally, there is a bioelectric potential measuring device for measuring bioelectric potentials such as electroencephalograms and electrocardiograms of a living body. In the biopotential measurement apparatus, for example, the user wears an electrode (bioelectrode) on the skin and acquires biopotentials such as electroencephalograms and electrocardiograms as bioinformation. In addition, depending on the bioelectric potential measurement device, an output unit that outputs the acquired biological information to an external device by wireless may be provided. For example, Patent Document 1 discloses a medical telemeter which outputs acquired biological information by radio.
特開平5-192304号公報JP-A-5-192304
 しかしながら、特許文献1に記載の技術では、無線通信を行う際に、通信状況に依存して瞬間的に消費電流が増大することにより、出力する生体情報の信号品質の劣化、無線通信の遮断等が起こり、安定した測定ができないという問題がある。 However, in the technique described in Patent Document 1, when wireless communication is performed, current consumption is instantaneously increased depending on the communication status, thereby deteriorating the signal quality of the output biological information, interrupting wireless communication, etc. And there is a problem that stable measurement can not be performed.
 本開示は、上記問題を鑑みてなされたものであり、無線通信を用いた生体電位測定を行う際に、電源変動、瞬時停電等が少なく、安定した信号品質で生体電位の測定を行うことができる生体電位測定装置等を提供することを目的とする。 The present disclosure has been made in view of the above problems, and when performing biopotential measurement using wireless communication, it is possible to measure biopotential with stable signal quality with less power fluctuation, instantaneous blackouts, etc. It is an object of the present invention to provide a bioelectric potential measuring device etc.
 本開示の一態様に係る生体電位測定装置は、生体電位を測定するための生体電位測定装置であって、生体に接触する測定電極と、前記測定電極で検出された生体電位を増幅する生体電位増幅部と、前記生体電位増幅部で増幅された生体電位を出力する生体電位出力部と、前記生体電位増幅部及び前記生体電位出力部の少なくとも一方に電力を供給する電源部と、前記測定電極の周囲をシールド部材として覆う配線が接続される容量電極を有する静電容量と、を備え、前記電源部の接地電位は、前記静電容量の接地電位と電気的に接続される。 A biopotential measuring device according to an aspect of the present disclosure is a biopotential measuring device for measuring a biopotential, which comprises a measuring electrode in contact with a living body, and a biopotential for amplifying the biopotential detected by the measuring electrode. An amplification unit, a biopotential output unit for outputting the biopotential amplified by the biopotential amplification unit, a power supply unit for supplying power to at least one of the biopotential amplification unit and the biopotential output unit, and the measurement electrode And a capacitance having a capacitance electrode connected to a wire covering the periphery of the shield as a shield member, wherein the ground potential of the power supply unit is electrically connected to the ground potential of the capacitance.
 また、本開示の一態様に係る静電容量制御装置は、生体電位を測定するための生体電位測定装置が備える複数の静電容量を制御する静電容量制御装置であって、前記生体電位測定装置は、生体に接触される測定電極と、前記測定電極で検出された生体電位を増幅する生体電位増幅部と、前記生体電位増幅部で増幅された生体電位を出力する生体電位出力部と、前記測定電極の周囲をシールド部材として覆う配線が接続される容量電極を有する複数の静電容量と、前記静電容量から電力の供給を受ける電源部と、を備え、前記静電容量制御装置は、前記電源部の接地電位が前記静電容量の接地電位と電気的に接続された前記生体電位測定装置における、前記複数の静電容量の容量値の合計を変更する静電容量制御部を備える。 Further, a capacitance control device according to an aspect of the present disclosure is a capacitance control device for controlling a plurality of capacitances included in a biopotential measurement device for measuring a biopotential, the biopotential measurement The apparatus comprises: a measurement electrode in contact with a living body; a biopotential amplification unit for amplifying the biopotential detected by the measurement electrode; and a biopotential output unit for outputting the biopotential amplified by the biopotential amplification unit. The capacitance control device includes: a plurality of capacitances each having a capacitance electrode connected to a wiring that covers the periphery of the measurement electrode as a shield member; and a power supply unit that receives supply of power from the capacitance. A capacitance control unit is provided for changing the sum of capacitance values of the plurality of capacitances in the biopotential measurement device in which the ground potential of the power supply unit is electrically connected to the ground potential of the capacitance. .
 また、本開示の一態様に係る脳波計は、上記生体電位測定装置と、生体電位を測定される生体の頭部に装着される装着部と、を備え、前記測定電極は、生体の生体電位を測定する場合に、当該生体の頭部に接触されるように、前記装着部に配置される。 An electroencephalograph according to an aspect of the present disclosure includes the bioelectric potential measurement device and a mounting unit attached to a head of a living body whose biological potential is to be measured, and the measurement electrode is a biological potential of the living body. In order to be in contact with the head of the living body.
 また、本開示の一態様に係る静電容量制御方法は、生体電位を測定する生体電位測定装置が備える複数の静電容量の静電容量制御方法であって、前記生体電位測定装置は、生体に接触される測定電極と、前記測定電極で検出された生体電位を増幅する生体電位増幅部と、前記生体電位増幅部で増幅された生体電位を出力する生体電位出力部と、前記測定電極の周囲をシールド部材として覆う配線が接続される容量電極を有する静電容量と、前記静電容量から電力の供給を受ける電源部と、を備え、前記電源部の接地電位は、前記静電容量の接地電位と電気的に接続されており、前記静電容量制御方法は、前記電源部がオン状態であるかオフ状態であるかを判断する判断ステップと、前記判断ステップで判断された状態に応じて、前記複数の静電容量の容量値の合計を変更する制御ステップと、を含む。 Further, a capacitance control method according to an aspect of the present disclosure is a capacitance control method of a plurality of capacitances included in a biopotential measurement device for measuring a biopotential, wherein the biopotential measurement device is a living body A biopotential amplification unit for amplifying the biopotential detected by the measurement electrode, a biopotential output unit for outputting the biopotential amplified by the biopotential amplification unit, and And a power supply unit receiving supply of electric power from the capacitance, the ground potential of the power supply unit is the capacitance of the capacitance. The capacitance control method is electrically connected to the ground potential, and the capacitance control method includes a determination step of determining whether the power supply unit is in the on state or the off state, and the state determined in the determination step. And the plurality of And a control step of changing the total capacitance value of the capacitance.
 また、本開示の一態様は、上記静電容量制御方法をコンピュータに機能させるためのプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な記録媒体として実現することもできる。 Further, one aspect of the present disclosure can be realized as a program for causing a computer to function the above-described capacitance control method. Alternatively, it may be realized as a computer readable recording medium storing the program.
 本開示の生体電位測定装置等によれば、安定した信号品質の生体電位測定を行うことができる生体電位測定装置等を提供することができる。 According to the bioelectric potential measurement device and the like of the present disclosure, a bioelectric potential measurement device and the like that can perform bioelectric potential measurement of stable signal quality can be provided.
図1は、実施の形態に係る脳波計の利用シーンを示す図である。FIG. 1 is a view showing a usage scene of the electroencephalograph according to the embodiment. 図2Aは、実施の形態に係る脳波計の一例を示す概略図である。FIG. 2A is a schematic view showing an example of the electroencephalograph according to the embodiment. 図2Bは、実施の形態に係る脳波計の別の一例を示す概略図である。FIG. 2B is a schematic view showing another example of the electroencephalograph according to the embodiment. 図3Aは、電極の形状の第一例を示す概略図である。FIG. 3A is a schematic view showing a first example of the shape of an electrode. 図3Bは、電極の形状の第二例を示す概略図である。FIG. 3B is a schematic view showing a second example of the shape of the electrode. 図3Cは、電極の形状の第三例を示す概略図である。FIG. 3C is a schematic view showing a third example of the shape of the electrode. 図3Dは、電極の形状の第四例を示す概略図である。FIG. 3D is a schematic view showing a fourth example of the shape of the electrode. 図3Eは、電極の形状の第五例を示す概略図である。FIG. 3E is a schematic view showing a fifth example of the shape of the electrode. 図4は、実施の形態に係る生体電位測定装置を含むシステムの全体構成を示すブロック図である。FIG. 4 is a block diagram showing an overall configuration of a system including the bioelectric potential measurement device according to the embodiment. 図5は、実施の形態に係る生体電位測定装置を含むシステムの詳細な構成を示すブロック図である。FIG. 5 is a block diagram showing a detailed configuration of a system including the bioelectric potential measurement device according to the embodiment. 図6は、実施の形態に係る生体電位測定装置を含むシステムのハードウェア構成を示すブロック図である。FIG. 6 is a block diagram showing a hardware configuration of a system including the bioelectric potential measurement device according to the embodiment. 図7は、実施の形態に係る情報処理装置のハードウェア構成を示すブロック図である。FIG. 7 is a block diagram showing the hardware configuration of the information processing apparatus according to the embodiment. 図8は、実施の形態に係る生体電位測定装置及び情報処理装置の基本的な処理手順を示すフローチャートである。FIG. 8 is a flowchart showing a basic processing procedure of the bioelectric potential measuring device and the information processing device according to the embodiment. 図9は、実施の形態に係る生体電位測定装置を備える脳波計の詳細な構成を示す斜視図である。FIG. 9 is a perspective view showing a detailed configuration of the electroencephalograph provided with the bioelectric potential measurement device according to the embodiment. 図10は、実施の形態に係る脳波計が生体電位を測定する際の詳細な構成を示すブロック図である。FIG. 10 is a block diagram showing a detailed configuration when the electroencephalograph according to the embodiment measures a bioelectric potential. 図11は、実施の形態に係る脳波計が備える複数の静電容量の回路構成を説明するためのブロック図である。FIG. 11 is a block diagram for explaining a circuit configuration of a plurality of capacitances provided in the electroencephalograph according to the embodiment. 図12は、実施の形態に係る脳波計の動作状態と静電容量の合計容量値との関係の一例を説明するための図である。FIG. 12 is a diagram for explaining an example of the relationship between the operation state of the electroencephalograph and the total capacitance value of the electrostatic capacitance according to the embodiment. 図13は、実施の形態に係る脳波計の動作状態と静電容量の合計容量値との、時間に応じた関係の一例を説明するためのタイミングチャートである。FIG. 13 is a timing chart for explaining an example of the relationship between the operation state of the electroencephalograph according to the embodiment and the total capacitance value of the capacitance according to time. 図14は、実施の形態に係る脳波計の動作状態に応じて静電容量の合計容量値を変更する制御を説明するためのフローチャートである。FIG. 14 is a flowchart for describing control for changing the total capacitance value of the electrostatic capacitance in accordance with the operation state of the electroencephalograph according to the embodiment. 図15は、実施の形態に係る脳波計及び比較例に係る脳波計の入力ノイズを示す図である。FIG. 15 is a diagram showing input noise of the electroencephalograph according to the embodiment and the electroencephalograph according to the comparative example. 図16は、実施の形態に係る脳波計の動作状態によって変更されるアプリケーション処理を説明するためのフローチャートである。FIG. 16 is a flowchart for explaining application processing that is changed according to the operation state of the electroencephalograph according to the embodiment. 図17は、実施の形態に係る脳波計の動作状態に応じて表示部が表示する画像の第一例を示す図である。FIG. 17 is a diagram illustrating a first example of an image displayed by the display unit according to the operation state of the electroencephalograph according to the embodiment. 図18は、実施の形態に係る脳波計の動作状態に応じて表示部が表示する画像の第二例を示す図である。FIG. 18 is a diagram illustrating a second example of an image displayed by the display unit according to the operation state of the electroencephalograph according to the embodiment. 図19は、実施の形態に係る脳波計の動作状態に応じて表示部が表示する画像の第三例を示す図である。FIG. 19 is a diagram illustrating a third example of an image displayed by the display unit according to the operation state of the electroencephalograph according to the embodiment.
 以下、実施の形態に係る生体電位測定装置等について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置、接続形態、ステップ及びステップの順序等は、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a bioelectric potential measurement apparatus and the like according to the embodiment will be described with reference to the drawings. Note that all the embodiments described below show general or specific examples. Numerical values, shapes, materials, components, arrangement positions of components, connection configurations, steps and order of steps, and the like described in the following embodiments are merely examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, components not described in the independent claim indicating the highest concept are described as arbitrary components.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。 Each figure is a schematic view, and is not necessarily illustrated strictly. Further, in the drawings, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions may be omitted or simplified.
 (実施の形態)
 [生体電位測定システムの概要]
 図1は、実施の形態に係る脳波計の利用シーンを示す図である。
Embodiment
[Outline of bioelectric potential measurement system]
FIG. 1 is a view showing a usage scene of the electroencephalograph according to the embodiment.
 図1に示す生体電位測定システム100は、脳波計1と、情報処理装置2と、表示部3とを備える。脳波計1、情報処理装置2、及び、表示部3は、それぞれ有線又は無線で通信可能に接続されており、互いに情報を出力(送信)及び/又は取得(受信)する。 A bioelectric potential measurement system 100 shown in FIG. 1 includes an electroencephalograph 1, an information processing device 2, and a display unit 3. The electroencephalograph 1, the information processing device 2, and the display unit 3 are communicably connected by wire or wireless, respectively, and mutually output (transmit) and / or acquire (receive) information.
 脳波計1は、実施の形態に係る生体電位測定装置1b(図5参照)を有する装置であって、ユーザ10の生体電位の一例である脳波を測定するための装置である。本実施の形態では、脳波計1は、ユーザ10の脳波を測定するヘッドセット型の脳波計である。脳波計1は、ユーザ10が頭部に装着するための装着部150と、ユーザ10の生体電位を測定するための複数の電極(生体電位測定用電極)51(例えば、図2A参照)とを備える。 The electroencephalograph 1 is a device including the bioelectric potential measurement device 1b (see FIG. 5) according to the embodiment, and is a device for measuring an electroencephalogram that is an example of the bioelectric potential of the user 10. In the present embodiment, the electroencephalograph 1 is a headset-type electroencephalograph that measures the electroencephalogram of the user 10. The electroencephalograph 1 includes a mounting unit 150 for the user 10 to wear on the head, and a plurality of electrodes (electrodes for measuring biopotential) 51 (for example, see FIG. 2A) for measuring the biopotential of the user 10 Prepare.
 複数の電極51は、生体電位を測定する場合に、ユーザ10に接触される。複数の電極51は、生体電位を測定する測定電極48(図6参照)と、測定電極48で測定した電位との差を計算するために用いられる参照電極49(図6参照)とを含む。また、脳波計1は、ユーザ10が生体電位測定システム100を操作するための操作情報を入力する操作入力装置1a(図5参照)を備え、所望の処理を実現するための操作が入力される。 The plurality of electrodes 51 are in contact with the user 10 when measuring the biopotential. The plurality of electrodes 51 include a measurement electrode 48 (see FIG. 6) for measuring the biopotential, and a reference electrode 49 (see FIG. 6) used to calculate the difference between the potential measured by the measurement electrode 48. The electroencephalograph 1 further includes an operation input device 1a (see FIG. 5) for inputting operation information for the user 10 to operate the bioelectric potential measurement system 100, and an operation for achieving a desired process is input. .
 情報処理装置2は、脳波計1からの操作入力データを取得し、所定の処理を実施する。例えば、情報処理装置2は、パーソナルコンピュータ(Personal Computer/PC)である。所定の処理とは、例えば、脳波計1から取得したデータを表示部3に表示させる処理である。 The information processing apparatus 2 acquires operation input data from the electroencephalograph 1 and performs predetermined processing. For example, the information processing device 2 is a personal computer (Personal Computer / PC). The predetermined process is, for example, a process of causing the display unit 3 to display data acquired from the electroencephalograph 1.
 表示部3は、情報処理装置2で行われた処理結果を表示する表示装置である。表示部3は、例えば、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等である。表示部3は、例えば、情報処理装置2から取得した画像情報を表示する。なお、表示部3は、情報処理装置2から取得した音響情報を出力するスピーカを備えてもよい。 The display unit 3 is a display device that displays the processing result performed by the information processing device 2. The display unit 3 is, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or the like. The display unit 3 displays, for example, the image information acquired from the information processing device 2. The display unit 3 may include a speaker that outputs the acoustic information acquired from the information processing device 2.
 [脳波計の構成]
 図2Aは、実施の形態に係る脳波計の一例を示す概略図である。図2Bは、実施の形態に係る脳波計の別の一例を示す概略図である。
[Configuration of electroencephalograph]
FIG. 2A is a schematic view showing an example of the electroencephalograph according to the embodiment. FIG. 2B is a schematic view showing another example of the electroencephalograph according to the embodiment.
 例えば、ユーザ10は頭部に脳波計1を装着する。脳波計1の概観の例は、図2Aではヘッドフォン(ヘッドセット)型であり、図2Bではバンド型である。 For example, the user 10 wears the electroencephalograph 1 on the head. An example of the appearance of the electroencephalograph 1 is a headphone (headset) type in FIG. 2A and a band type in FIG. 2B.
 図2Aに示す脳波計1は、ユーザ10の頭部に沿うようにアーチ状のヘッドフォン型をしている。図2Aに示すヘッドフォン型の脳波計1は、複数の電極51と、外側面44と、装着面45と、装着部150と、操作面43とを備えている。装着部150は、図2Aに示す脳波計1においては、アーチ状のアーム151と、アーム151の両端部に取り付けられた耳当て46とを有する。外側面44は、ユーザ10が脳波計1を装着したときにユーザ10の頭部と反対側に配置される面である。装着面45は、ユーザ10が脳波計1を装着したときにユーザ10の頭部側に配置される面である。操作面43には、操作ボタン41と、表示装置47とが配置されている。 The electroencephalograph 1 shown in FIG. 2A is of an arched headphone type along the head of the user 10. The headphone type electroencephalograph 1 shown in FIG. 2A includes a plurality of electrodes 51, an outer side surface 44, a mounting surface 45, a mounting portion 150, and an operation surface 43. The mounting unit 150 has an arched arm 151 and ear pads 46 attached to both ends of the arm 151 in the electroencephalograph 1 shown in FIG. 2A. The outer side surface 44 is a surface disposed on the opposite side of the head of the user 10 when the user 10 wears the electroencephalograph 1. The mounting surface 45 is a surface disposed on the head side of the user 10 when the user 10 wears the electroencephalograph 1. An operation button 41 and a display device 47 are disposed on the operation surface 43.
 複数の電極51は、脳波計1の装着面45と、耳当て46の端であって、脳波計1の装着面45と同一側の面とに設けられている。 The plurality of electrodes 51 are provided on the mounting surface 45 of the electroencephalograph 1 and the end of the ear pad 46 on the same side as the mounting surface 45 of the electroencephalograph 1.
 ユーザ10は、脳波計1を装着する前に、操作面43に配置されている操作ボタン41を操作して脳波計1を起動し、脳波計1をユーザ10の頭部に装着する。脳波計1は、例えば、図2Aの紙面に向かって左の耳当て46がユーザ10の右耳に位置し、図2Aの紙面に向かって右の耳当て46がユーザ10の左耳に位置するようにユーザ10の頭部に装着される。また、耳当て46は、ユーザ10の左右の耳を覆うように当てられる。 Before wearing the electroencephalograph 1, the user 10 operates the operation button 41 disposed on the operation surface 43 to activate the electroencephalograph 1 and wears the electroencephalograph 1 on the head of the user 10. In the electroencephalograph 1, for example, the left ear pad 46 is positioned at the right ear of the user 10 toward the paper surface of FIG. 2A, and the right ear pad 46 is positioned at the left ear of the user 10 toward the paper surface of FIG. Is mounted on the head of the user 10. Also, the ear pads 46 are applied to cover the left and right ears of the user 10.
 装着面45に設けられている電極51は、ユーザ10の皮膚(頭皮)に当てられる。耳当て46の端に設けられている電極51は、ユーザ10の耳の後ろに当てられる。例えば、図2Aの紙面に向かって左の耳当て46の端に設けられている電極51はアース電極73c(図6参照)、図2Aの紙面に向かって右の耳当て46の端に設けられている電極51は参照電極49、その他の電極51は測定電極48としてもよい。アース電極73cは、ユーザ10において脳波計1が動作する基準電位(ボディアース、又はアースとも呼ばれる)を印加するための電極である。 The electrode 51 provided on the mounting surface 45 is applied to the skin (scalp) of the user 10. An electrode 51 provided at the end of the earpiece 46 is placed behind the ear of the user 10. For example, the electrode 51 provided at the end of the left ear pad 46 toward the paper surface of FIG. 2A is provided at the end of the right ear pad 46 toward the paper surface of FIG. 2A (see FIG. 6). The other electrode 51 may be used as the measuring electrode 48. The ground electrode 73 c is an electrode for applying a reference potential (also referred to as body ground or ground) at which the electroencephalograph 1 operates in the user 10.
 なお、アース電極73c及び参照電極49の配置位置は、これに限らず、図2Aの紙面に向かって右の耳当て46の端に設けられている電極51をアース電極73c、図2Aの紙面に向かって左の耳当て46の端に設けられている電極51を参照電極49としてもよい。 The arrangement position of the ground electrode 73c and the reference electrode 49 is not limited to this, and the electrode 51 provided at the end of the right ear pad 46 toward the paper surface of FIG. 2A is the ground electrode 73c. The electrode 51 provided at the end of the left ear pad 46 may be used as the reference electrode 49.
 表示装置47は、例えば液晶ディスプレイ、有機ELディスプレイであり、ユーザ10の操作ボタン41の操作の状態等を表示する。 The display device 47 is, for example, a liquid crystal display or an organic EL display, and displays a state of operation of the operation button 41 of the user 10 or the like.
 図2Bに示す脳波計1001は、ユーザ10の頭部の周囲に巻くことにより装着されるバンド型の形状をしている。図2Bに示すバンド型の脳波計1001は、複数の電極51と、外側面44と、装着面45と、装着部150と、操作面43とを備えている。装着部150は、図2Bに示す脳波計1001においては、耳当てを有さないバンド状である。電極51、操作面43に配置される操作ボタン41、及び、表示装置47の構成は、ヘッドフォン型の脳波計1と同様である。ユーザ10は脳波計1001を装着する前に、操作面43に配置されている操作ボタン41を操作して脳波計1を起動し、バンド型の脳波計1001の外側面44の半分(操作面43の側)がユーザ10の額に来るように装着する。 The electroencephalograph 1001 shown in FIG. 2B is in the form of a band that is worn by being wound around the head of the user 10. A band type electroencephalograph 1001 shown in FIG. 2B includes a plurality of electrodes 51, an outer side surface 44, a mounting surface 45, a mounting portion 150, and an operation surface 43. In the electroencephalograph 1001 shown in FIG. 2B, the mounting unit 150 has a band shape without ear pads. The configuration of the electrode 51, the operation button 41 disposed on the operation surface 43, and the display device 47 is the same as that of the headphone type electroencephalograph 1. Before the user 10 wears the electroencephalograph 1001, the electroencephalograph 1 is activated by operating the operation button 41 disposed on the operation surface 43, and the half of the outer surface 44 of the band type electroencephalograph 1001 (the operation surface 43). Side) is worn so as to come to the forehead of the user 10.
 なお、複数の電極51のうち、アース電極73cに相当する電極51及び参照電極49に相当する電極51は、装着面45からリード線(図示せず)を延長してユーザ10の耳の後ろに当てる構成であってもよい。 Among the plurality of electrodes 51, the electrode 51 corresponding to the ground electrode 73c and the electrode 51 corresponding to the reference electrode 49 extend a lead wire (not shown) from the mounting surface 45 to the back of the ear of the user 10. It may be a configuration to apply.
 [電極形状]
 図3A~図3Eは、ユーザ10の皮膚と接触する電極51の接触面の形状の例を示す図である。
[Electrode shape]
3A to 3E show examples of the shape of the contact surface of the electrode 51 in contact with the skin of the user 10. FIG.
 電極(生体電極)51の材料は、導電性の物質によって構成される。電極51の材料は、生体と接触した場合の分極が少なく、且つ、分極電圧が安定している銀-塩化銀(Ag/AgCl)、又は、銀であるとよい。 The material of the electrode (bioelectrode) 51 is made of a conductive substance. The material of the electrode 51 may be silver-silver chloride (Ag / AgCl) or silver which has less polarization when in contact with a living body and stable polarization voltage.
 電極51の接触面の形状は、医療用で使われる電極と同様の、図3Aに示す円形(例えば、直径10mm)でもよい。また、電極51の接触面の形状は、生体との接触面が円形の電極51以外にも、用途によってさまざまな形状としてもよい。例えば、図3Bに示すような三角形、図3Cに示すような四角形、又は、正方形であってもよい。 The shape of the contact surface of the electrode 51 may be circular (for example, 10 mm in diameter) shown in FIG. 3A, similar to an electrode used for medical use. Further, the shape of the contact surface of the electrode 51 may be various shapes depending on the application other than the electrode 51 having a circular contact surface with the living body. For example, it may be a triangle as shown in FIG. 3B, a square as shown in FIG. 3C, or a square.
 また、電極51としては、図3Dの(a)及び(b)に示すように、複数の円柱(図3Dでは5本)で構成された電極でもよい。このような構成によれば、ユーザ10の皮膚に電極51を接触させるため、ユーザ10の髪の毛を掻き分けることができる。 Further, as shown in (a) and (b) of FIG. 3D, the electrode 51 may be an electrode configured by a plurality of cylinders (five in FIG. 3D). According to such a configuration, since the electrode 51 is in contact with the skin of the user 10, the hair of the user 10 can be scraped off.
 なお、各円柱における皮膚との接触面は、図3Dの(a)に示すように円形であってもよいし、楕円等の他の形状であってもよい。また、円柱に限らず、角柱であってもよい。円柱又は角柱の数は、図3Dの(a)及び(b)に示すように5本であってもよいし、任意の本数であってもよく、特に限定されない。 In addition, the contact surface with the skin in each cylinder may be circular as shown to (a) of FIG. 3D, and other shapes, such as an ellipse, may be sufficient as it. Moreover, not only a cylinder but a prism may be sufficient. The number of cylinders or prisms may be five as shown in (a) and (b) of FIG. 3D, or may be any number, and is not particularly limited.
 また、図3Dの個々の円柱の先端は、皮膚との接触面側に角が取れたものである形状でもよい。これにより、皮膚との接触面積を増加することができる。 Also, the tips of the individual cylinders in FIG. 3D may have a shape in which the corners are in contact with the skin. This can increase the contact area with the skin.
 また、図3Eの(a)に示すように、電極51の形状は、ユーザ10の皮膚との接触面が同心円状であってもよい。このような形状の電極51は、例えば図2Aに示すヘッドフォン型の脳波計1の耳当て46に設けられる電極、又は、図2Bに示すバンド型の脳波計1001に設けられる電極に用いられ、ユーザ10の額、耳の後ろ等、髪の毛の無い箇所に接触される。こうすることで、図3Eの(a)及び(b)に示す形状の電極51は、図3Dの(a)及び(b)に示す形状の電極51に比べて皮膚への圧力が緩和される。そのため、当該形状を有する電極51が設けられる脳波計1及び1001によれば、ユーザ10が受ける負担を緩和させることができる。 Further, as shown in (a) of FIG. 3E, the shape of the electrode 51 may be such that the contact surface with the skin of the user 10 is concentric. The electrode 51 having such a shape is used, for example, as an electrode provided on the ear pad 46 of the headphone type electroencephalograph 1 shown in FIG. 2A or an electrode provided on the band type electroencephalograph 1001 shown in FIG. It is touched by the place without hair, such as the forehead of 10 and the back of the ear. By doing this, the pressure on the skin is relieved in comparison with the electrode 51 of the shape shown in (a) and (b) of FIG. 3D in the electrode 51 of the shape shown in (a) and (b) of FIG. . Therefore, according to the electroencephalographs 1 and 1001 provided with the electrode 51 having the above-mentioned shape, it is possible to ease the burden that the user 10 receives.
 [生体電位測定システムの構成]
 次に、生体電位測定システム100の構成について説明する。図4は、実施の形態に係る生体電位測定装置1bを含むシステムの全体構成を示すブロック図である。
[Configuration of bioelectric potential measurement system]
Next, the configuration of the bioelectric potential measurement system 100 will be described. FIG. 4 is a block diagram showing an overall configuration of a system including the bioelectric potential measurement device 1b according to the embodiment.
 生体電位測定システム100は、脳波計1と、情報処理装置2と、表示部3とを備えている。脳波計1は、操作入力装置1aと、生体電位測定装置1bとを備えている。 The bioelectric potential measurement system 100 includes an electroencephalograph 1, an information processing device 2, and a display unit 3. The electroencephalograph 1 includes an operation input device 1a and a bioelectric potential measurement device 1b.
 脳波計1は、操作入力装置1aでユーザ10に操作入力された情報を取得し、生体電位測定装置1bでユーザ10の生体電位を測定する。脳波計1で測定された生体電位は、情報処理装置2に出力(送信)される。 The electroencephalograph 1 acquires information input to the user 10 by the operation input device 1a, and measures the biopotential of the user 10 by the biopotential measuring device 1b. The bioelectric potential measured by the electroencephalograph 1 is output (sent) to the information processing device 2.
 情報処理装置2は、操作入力装置1a及び/又は生体電位測定装置1bからの入力を受けて、所定の処理を実施し、表示部3に処理結果を出力する。 The information processing device 2 receives an input from the operation input device 1a and / or the bioelectric potential measurement device 1b, performs a predetermined process, and outputs the processing result to the display unit 3.
 図5は、脳波計1及び情報処理装置2の詳細な構成を示すブロック図である。ここでは、脳波計1と情報処理装置2とが無線で接続される場合を例として説明する。 FIG. 5 is a block diagram showing the detailed configurations of the electroencephalograph 1 and the information processing apparatus 2. Here, the case where the electroencephalograph 1 and the information processing device 2 are connected wirelessly will be described as an example.
 脳波計1が有する操作入力装置1aは、操作入力部11と、操作信号出力部12とを備えている。 The operation input device 1 a of the electroencephalograph 1 includes an operation input unit 11 and an operation signal output unit 12.
 操作入力部11は、操作ボタン41(図2A及び図2B参照)で入力された操作入力情報を取得し、操作の内容を判定する処理部である。操作信号出力部12は、操作入力部11で取得された操作入力情報を情報処理装置2に出力するための通信インターフェースである。操作入力部11で取得された操作入力情報は、操作信号出力部12から情報処理装置2に向けて出力される。 The operation input unit 11 is a processing unit that acquires operation input information input by the operation button 41 (see FIGS. 2A and 2B) and determines the content of the operation. The operation signal output unit 12 is a communication interface for outputting the operation input information acquired by the operation input unit 11 to the information processing device 2. The operation input information acquired by the operation input unit 11 is output from the operation signal output unit 12 to the information processing device 2.
 脳波計1が有する生体電位測定装置1bは、電極部13と、生体電位増幅部14と、生体電位出力部15と、電源部220と、1又は複数の静電容量201と、静電容量制御部210aとを備えている。 The bioelectric potential measurement device 1b included in the electroencephalograph 1 includes an electrode unit 13, a bioelectric potential amplification unit 14, a bioelectric potential output unit 15, a power supply unit 220, one or more electrostatic capacitances 201, and electrostatic capacitance control And a unit 210a.
 電極部13は、複数の電極51で構成されている。複数の電極51は、上述したように、測定電極48と参照電極49とアース電極73cとで構成されている。複数の電極51は、例えば、脳波計1におけるユーザ10の皮膚に接触する位置に配置されている。 The electrode unit 13 is composed of a plurality of electrodes 51. As described above, the plurality of electrodes 51 includes the measurement electrode 48, the reference electrode 49, and the ground electrode 73c. The plurality of electrodes 51 are disposed, for example, at positions in contact with the skin of the user 10 in the electroencephalograph 1.
 生体電位増幅部14は、複数の電極51の間の電位差に相当する生体電位を増幅するアンプである。具体的には、生体電位増幅部14は、測定電極48と参照電極49との間の電位差を測定し、測定した電位差を増幅する。増幅された電位差は、例えば、生体電位増幅部14に設けられているA/Dコンバータ(Analog-to-Digital Converter)75(図6参照)によりデジタル信号に変換される。 The biopotential amplification unit 14 is an amplifier that amplifies a biopotential corresponding to the potential difference between the plurality of electrodes 51. Specifically, the biopotential amplification unit 14 measures the potential difference between the measurement electrode 48 and the reference electrode 49, and amplifies the measured potential difference. The amplified potential difference is converted into a digital signal by, for example, an A / D converter (Analog-to-Digital Converter) 75 (see FIG. 6) provided in the biopotential amplification unit 14.
 なお、生体電位増幅部14は、所定以上の電位の大きさの生体電位を測定できる場合には、生体電位を増幅する必要は無く、複数の電極51の電位を測定するだけでもよい。 The biopotential amplification unit 14 does not have to amplify the biopotential when it can measure the biopotential having a predetermined potential level or more, and may measure only the potentials of the plurality of electrodes 51.
 生体電位出力部15は、生体電位増幅部14で増幅された電位差を情報処理装置2に出力するための通信インターフェースである。生体電位増幅部14においてデジタル値に変換された生体電位の電位差は、生体電位出力部15より情報処理装置2に出力される。 The biopotential output unit 15 is a communication interface for outputting the potential difference amplified by the biopotential amplification unit 14 to the information processing device 2. The potential difference of the biopotential converted into the digital value in the biopotential amplification unit 14 is output from the biopotential output unit 15 to the information processing device 2.
 電源部220は、生体電位増幅部14、生体電位出力部15、静電容量201等の脳波計1の各構成要素に電力を供給する電源回路である。 The power supply unit 220 is a power supply circuit that supplies power to each component of the electroencephalograph 1 such as the biopotential amplification unit 14, the biopotential output unit 15, and the capacitance 201.
 静電容量201は、バッテリ81と接続され、電源部220に供給する電力を一時的に蓄えるキャパシタである。静電容量201は、少なくとも測定電極48の周囲を覆うように配置される。こうすることで、静電容量201は、測定電極48が受け得る外来ノイズを防ぐように機能する。静電容量201としては、例えば、装着部150のフレキシブル化、軽量化等の観点から、電気二重層容量(スーパーキャパシタ、又はウルトラキャパシタ)が採用されるとよい。なお、静電容量201は、静電容量と電池との両方の特長を合わせ持つリチウムイオンキャパシタであってもよい。脳波計1におけるユーザ10が装着する装着部150のフレキシブル化、及び軽量化により、ユーザ10が脳波計1を装着した際に、ユーザ10のこめかみ部の圧迫を低減し、ユーザ10の痛みを緩和し、且つ脈波の混入を防ぐ効果が期待される。 The electrostatic capacitance 201 is a capacitor that is connected to the battery 81 and temporarily stores the power supplied to the power supply unit 220. The capacitance 201 is arranged to cover at least the periphery of the measurement electrode 48. In this way, the capacitance 201 functions to prevent extraneous noise that can be received by the measurement electrode 48. As the capacitance 201, for example, an electric double layer capacitance (supercapacitor or ultracapacitor) may be adopted from the viewpoint of making the mounting portion 150 flexible and lightening. The capacitance 201 may be a lithium ion capacitor having the features of both the capacitance and the battery. When the user 10 wears the electroencephalograph 1, the compression of the temples of the user 10 is reduced and the pain of the user 10 is alleviated by making the mounting unit 150 worn by the user 10 in the electroencephalograph 1 flexible and lightweight. And the effect of preventing the mixing of pulse waves is expected.
 また、電源部220の接地電位は、静電容量201の接地電位と電気的に接続されている。つまり、電源部220と静電容量201との接地電位は等しくなるように設定される。 Further, the ground potential of the power supply unit 220 is electrically connected to the ground potential of the electrostatic capacitance 201. That is, the ground potentials of the power supply unit 220 and the electrostatic capacitance 201 are set to be equal.
 静電容量制御部210aは、複数の静電容量201の容量値(静電容量値)の合計を変更する処理部である。例えば、静電容量制御部210aは、生体電位出力部15の動作モードに応じて、複数の静電容量201の容量値(静電容量値)の合計を変更する。当該動作モードとしては、例えば、生体電位出力部15が出力する生体電位のデータの単位時間当たりのデータ量(通信量)が異なる通常モードと高速モードとが設定される。具体的には、静電容量制御部210aは、測定電極48で生体電位を検出し、検出した当該生体電位を生体電位出力部15に出力させる通常モードと、測定電極48で生体電位を検出し、検出した当該生体電位を、単位時間あたりに出力する当該生体電位のデータ量を通常モードよりも多く生体電位出力部15に出力させる高速モードとを切り替えるモード制御をする。この場合、静電容量制御部210aは、高速モードの方が通常モードよりも複数の静電容量201の容量値の合計を高くする制御をする。 The capacitance control unit 210 a is a processing unit that changes the sum of capacitance values (capacitance values) of the plurality of capacitances 201. For example, the capacitance control unit 210a changes the sum of capacitance values (capacitance values) of the plurality of capacitances 201 in accordance with the operation mode of the bioelectric potential output unit 15. As the operation mode, for example, a normal mode and a high speed mode in which the amount of data (communication amount) per unit time of the data of the biopotential output from the biopotential output unit 15 are different are set. Specifically, the capacitance control unit 210a detects the bioelectric potential at the measurement electrode 48, and outputs the detected bioelectric potential to the bioelectric potential output unit 15, and detects the bioelectric potential at the measurement electrode 48. The mode control is performed to switch the detected biopotential to a high-speed mode in which the biopotential output unit 15 outputs the data amount of the biopotential output per unit time more than in the normal mode. In this case, the capacitance control unit 210a performs control to increase the sum of the capacitance values of the plurality of capacitances 201 in the high-speed mode than in the normal mode.
 また、例えば、静電容量制御部210aは、複数の静電容量201の静電容量値の合計を、電源部220の電源オン時と、電源部220の電源オフ時とに変更する。 Also, for example, the capacitance control unit 210a changes the sum of the capacitance values of the plurality of capacitances 201 between when the power of the power supply unit 220 is turned on and when the power of the power supply unit 220 is turned off.
 また、例えば、静電容量制御部210aは、生体電位出力部15がユーザ10の生体電位を出力する場合に、複数の静電容量201の容量値の合計を変更する。 Also, for example, when the bioelectric potential output unit 15 outputs the biological potential of the user 10, the electrostatic capacity control unit 210a changes the sum of the capacitance values of the plurality of electrostatic capacitances 201.
 なお、静電容量制御部210aが実行する静電容量201の容量値の制御の詳細な具体例は、後述する。 A detailed specific example of control of the capacitance value of the capacitance 201 performed by the capacitance control unit 210a will be described later.
 情報処理装置2は、操作信号取得部21と、生体電位取得部22と、生体電位処理部23と、アプリケーション処理部(アプリ処理部)26と、表示情報出力部27と、音響情報出力部28とを備えている。 The information processing apparatus 2 includes an operation signal acquisition unit 21, a bioelectric potential acquisition unit 22, a bioelectric potential processing unit 23, an application processing unit (application processing unit) 26, a display information output unit 27, and an acoustic information output unit 28. And have.
 情報処理装置2は、脳波計1から出力される操作入力情報を操作信号取得部21において取得(受信)し、生体電位を生体電位取得部22において取得することで、脳波計1からの情報を取得する。 The information processing apparatus 2 acquires (receives) the operation input information output from the electroencephalograph 1 at the operation signal acquisition unit 21 and acquires the bioelectric potential at the bioelectric potential acquisition unit 22 to obtain information from the electroencephalograph 1. get.
 生体電位は、記録されただけの原信号では情報として使用できないことが多い。そのため、生体電位処理部23では、取得した原信号から意味のある情報を抽出する処理が行われる。例えば、脳波測定の場合には、特定の周波数(例えば10Hz)を含む帯域(周波数0.5Hz~100Hz)の信号に制限し、高速フーリエ変換(Fast Fourier Transform/FFT)を行い、当該周波数での信号のパワースペクトル密度(Power Spectral Density)を算出する。 Biopotentials often can not be used as information in original signals that have only been recorded. Therefore, the bioelectric potential processing unit 23 performs processing of extracting meaningful information from the acquired original signal. For example, in the case of electroencephalogram measurement, the signal is limited to signals in a band (frequency of 0.5 Hz to 100 Hz) including a specific frequency (for example, 10 Hz), and Fast Fourier Transform (FFT) is performed. Calculate Power Spectral Density of the signal.
 なお、生体電位処理部23は、情報処理装置2ではなく脳波計1に配置されてもよい。 The bioelectric potential processing unit 23 may be disposed in the electroencephalograph 1 instead of the information processing device 2.
 アプリケーション処理部26では、情報処理装置2の中心的なアプリケーション処理(アプリ処理)が行われる。アプリケーション処理は、脳波計1から信号の入力を受けて所定の処理を行うことで実現される。 The application processing unit 26 performs central application processing (application processing) of the information processing apparatus 2. The application processing is realized by receiving a signal from the electroencephalograph 1 and performing predetermined processing.
 アプリケーション処理部26で処理された結果は、アプリケーション処理部26から表示情報出力部27及び/又は音響情報出力部28に出力される。 The result processed by the application processing unit 26 is output from the application processing unit 26 to the display information output unit 27 and / or the acoustic information output unit 28.
 表示情報出力部27及び音響情報出力部28は、アプリケーション処理部26で処理された結果をユーザ10にフィードバックするために、視覚的及び/又は聴覚的な情報となる信号を表示部3に出力するためのインターフェースである。 The display information output unit 27 and the acoustic information output unit 28 output a signal serving as visual and / or auditory information to the display unit 3 in order to feed back the result processed by the application processing unit 26 to the user 10. Interface for
 [ハードウェア構成]
 図6は、実施の形態に係る生体電位測定装置1bを含むシステムのハードウェア構成を示すブロック図である。具体的には、図6は、脳波計1のハードウェア構成を示すブロック図である。
[Hardware configuration]
FIG. 6 is a block diagram showing a hardware configuration of a system including the bioelectric potential measurement device 1b according to the embodiment. Specifically, FIG. 6 is a block diagram showing the hardware configuration of the electroencephalograph 1.
 脳波計1は、操作ボタン群71と、制御信号変換回路72と、測定電極48と、参照電極49と、アース電極73cと、生体アンプ74と、A/Dコンバータ75と、送信回路79と、信号処理ユニット78と、アンテナ68と、電源部220と、バッテリ81と、静電容量制御装置210と、シールド部材200とを備えている。なお、脳波計1が備える各構成要素は、互いにバス105で接続され、相互にデータの送受信が可能となっている。 The electroencephalograph 1 includes an operation button group 71, a control signal conversion circuit 72, a measurement electrode 48, a reference electrode 49, an earth electrode 73c, a biological amplifier 74, an A / D converter 75, and a transmission circuit 79. A signal processing unit 78, an antenna 68, a power supply unit 220, a battery 81, a capacitance control device 210, and a shield member 200 are provided. The components included in the electroencephalograph 1 are connected to one another by a bus 105 so that data can be transmitted and received mutually.
 操作ボタン群71と制御信号変換回路72とは、図5に示す操作入力部11に対応する。また、操作ボタン群71における各ボタンは、操作ボタン41に対応する。また、測定電極48と、参照電極49と、アース電極73cとは、図2A及び図2Bに示す電極51、及び、図5に示す電極部13に対応する。また、生体アンプ74及びA/Dコンバータ75は、図5に示す生体電位増幅部14に対応する。また、送信回路79とアンテナ68とは、図5に示す生体電位出力部15及び/又は操作信号出力部12として機能する。 The operation button group 71 and the control signal conversion circuit 72 correspond to the operation input unit 11 shown in FIG. Further, each button in the operation button group 71 corresponds to the operation button 41. The measurement electrode 48, the reference electrode 49, and the ground electrode 73c correspond to the electrode 51 shown in FIGS. 2A and 2B and the electrode portion 13 shown in FIG. The living body amplifier 74 and the A / D converter 75 correspond to the living body potential amplification unit 14 shown in FIG. Further, the transmission circuit 79 and the antenna 68 function as the biopotential output unit 15 and / or the operation signal output unit 12 shown in FIG.
 バッテリ81は、脳波計1に電力を供給するための電池である。バッテリ81に採用される電池は、乾電池、又はボタン電池、リチウムポリマー充電池、ニッケル水素充電池等であっても良い。電源部220は、バッテリから供給される電圧を所望の電源電圧に変換して、脳波計1の各構成要素に電源電圧を供給する。 The battery 81 is a battery for supplying power to the electroencephalograph 1. The battery employed for the battery 81 may be a dry cell, a button cell, a lithium polymer rechargeable battery, a nickel hydrogen rechargeable battery, or the like. The power supply unit 220 converts the voltage supplied from the battery into a desired power supply voltage and supplies the power supply voltage to each component of the electroencephalograph 1.
 信号処理ユニット78は、CPU(Central Processing Unit)101と、脳波計1が備える各構成要素が実行する制御プログラムであるプログラム103が格納されたRAM(Random Access Memory)102と、ROM(Read Only Memory)104とを有している。プログラム103には、脳波計1における信号の処理手順が記述されている。脳波計1は、CPUによりプログラム103に従って操作信号及び生体信号をデジタル信号に変換し、送信回路79を経由してアンテナ68より情報処理装置2へ出力する。 The signal processing unit 78 includes a CPU (Central Processing Unit) 101, a RAM (Random Access Memory) 102 storing a program 103 which is a control program executed by each component of the electroencephalograph 1, and a ROM (Read Only Memory). And 104). The program 103 describes the signal processing procedure in the electroencephalograph 1. The electroencephalograph 1 converts the operation signal and the biological signal into digital signals according to the program 103 by the CPU, and outputs the digital signals from the antenna 68 to the information processing apparatus 2 via the transmission circuit 79.
 静電容量制御装置210は、上述した静電容量制御部210aを備える。静電容量制御部210aは、例えば、CPU211と、CPU211が実行するための制御プログラムであるプログラム213が記憶されたRAM212と、ROM214とを備える。 The capacitance control device 210 includes the above-described capacitance control unit 210a. The capacitance control unit 210a includes, for example, a CPU 211, a RAM 212 storing a program 213 which is a control program to be executed by the CPU 211, and a ROM 214.
 シールド部材200は、測定電極48を外来ノイズから防ぐために脳波計1に設けられ、上述した1又は複数の静電容量201から構成される。 The shield member 200 is provided in the electroencephalograph 1 in order to prevent the measurement electrode 48 from extraneous noise, and includes the one or more capacitances 201 described above.
 操作ボタン群71に関する各ボタンの押下情報は、制御信号変換回路72において脳波計1の動作を制御する制御信号に変換され、バス105を経由してCPU101に出力される。 The depression information of each button regarding the operation button group 71 is converted into a control signal for controlling the operation of the electroencephalograph 1 in the control signal conversion circuit 72, and is output to the CPU 101 via the bus 105.
 生体アンプ74には、測定電極48と参照電極49とアース電極73cとが接続されている。これらの電極は、脳波計1の所定の場所に設置されている。測定電極48と参照電極49との間の電位差は、生体アンプ74で増幅され、A/Dコンバータ75でアナログの生体信号からデジタルの生体信号に変換される。デジタルの生体信号に変換された電位差は、処理や出力が可能な生体信号としてバス105を経由してCPU101に出力される。 The measurement electrode 48, the reference electrode 49, and the earth electrode 73c are connected to the living body amplifier 74. These electrodes are installed at predetermined places of the electroencephalograph 1. The potential difference between the measurement electrode 48 and the reference electrode 49 is amplified by the biological amplifier 74 and converted by the A / D converter 75 from an analog biological signal to a digital biological signal. The potential difference converted into the digital biomedical signal is output to the CPU 101 via the bus 105 as a biomedical signal capable of processing and outputting.
 なお、プログラム103は、ROM104に格納されていてもよい。また、信号処理ユニット78と制御信号変換回路72と送信回路79と生体アンプ74とA/Dコンバータ75とは、1つの半導体集積回路にコンピュータプログラムを組み込んだDSP(Digital Signal Processor)等のハードウェアとして実現されてもよい。1つの半導体集積回路に実装することで、実装面積が削減され、消費電力が低減され得る。また、生体アンプ74とA/Dコンバータ75とを1つの半導体集積回路に集積し、信号処理ユニット78と制御信号変換回路72と送信回路79とを別の半導体集積回路に集積し、2つの半導体集積回路同士を1つのパッケージ内で接続してSiP(システム・イン・パッケージ)として統合し、コンピュータプログラムを組み込んだDSP等のハードウェアとして実現されてもよい。上記2つの半導体集積回路を別々の製造プロセスで実現することで、1つの半導体集積回路に実装したものに比べコストが低減される効果も得られる。 The program 103 may be stored in the ROM 104. The signal processing unit 78, the control signal conversion circuit 72, the transmission circuit 79, the living body amplifier 74, and the A / D converter 75 are hardware such as DSP (Digital Signal Processor) in which a computer program is incorporated in one semiconductor integrated circuit. May be realized as By mounting on one semiconductor integrated circuit, the mounting area can be reduced and the power consumption can be reduced. In addition, the biological amplifier 74 and the A / D converter 75 are integrated in one semiconductor integrated circuit, the signal processing unit 78, the control signal conversion circuit 72, and the transmitting circuit 79 are integrated in another semiconductor integrated circuit. The integrated circuits may be connected in one package and integrated as a system-in-package (SiP), and may be realized as hardware such as a DSP incorporating a computer program. By realizing the two semiconductor integrated circuits in separate manufacturing processes, an effect of reducing the cost can be obtained as compared with one mounted on one semiconductor integrated circuit.
 図7は、実施の形態に係る情報処理装置2のハードウェア構成を示すブロック図である。 FIG. 7 is a block diagram showing the hardware configuration of the information processing apparatus 2 according to the embodiment.
 情報処理装置2は、アンテナ80と、受信回路82と、信号処理ユニット108と、画像制御回路84と、表示情報出力回路85と、音響制御回路86と、音響情報出力回路87と、電源88とを備えている。アンテナ80と受信回路82とは、図5に示す生体電位取得部22及び/又は操作信号取得部21に対応する。 The information processing apparatus 2 includes an antenna 80, a receiving circuit 82, a signal processing unit 108, an image control circuit 84, a display information output circuit 85, an acoustic control circuit 86, an acoustic information output circuit 87, and a power supply 88. Is equipped. The antenna 80 and the receiving circuit 82 correspond to the bioelectric potential acquisition unit 22 and / or the operation signal acquisition unit 21 illustrated in FIG. 5.
 信号処理ユニット108は、CPU111と、RAM112と、CPU111が実行するプログラム113と、ROM114とを有している。信号処理ユニット108は、図5に示す生体電位処理部23及び/又はアプリケーション処理部26に対応する。また、画像制御回路84及び表示情報出力回路85は、図5に示す表示情報出力部27に対応する。また、音響制御回路86及び音響情報出力回路87は、図5に示す音響情報出力部28に対応する。また、これらの各構成要素は、互いにバス115で接続され、相互にデータの送受信が可能である。また、各構成要素には、電源88から電力が供給されている。 The signal processing unit 108 includes a CPU 111, a RAM 112, a program 113 executed by the CPU 111, and a ROM 114. The signal processing unit 108 corresponds to the bioelectric potential processing unit 23 and / or the application processing unit 26 illustrated in FIG. 5. Further, the image control circuit 84 and the display information output circuit 85 correspond to the display information output unit 27 shown in FIG. The sound control circuit 86 and the sound information output circuit 87 correspond to the sound information output unit 28 shown in FIG. In addition, these components are connected to one another by a bus 115, and data can be transmitted and received mutually. Further, power is supplied from the power supply 88 to each component.
 脳波計1から出力される操作情報及び生体電位は、アンテナ80を経由して受信回路82で取得され、バス115を経由してCPU111に送られる。 The operation information and bioelectric potential output from the electroencephalograph 1 are acquired by the receiving circuit 82 via the antenna 80, and are sent to the CPU 111 via the bus 115.
 CPU111は、RAM112に格納されているプログラム113を実行する処理部である。プログラム113には、情報処理装置2における信号の処理手順が記述されている。情報処理装置2は、プログラム113に従って操作信号と生体信号とを変換し、所定のアプリケーション(プログラム)を実行するための処理を行い、ユーザ10に画像及び/又は音響によってフィードバックを行うための信号を生成する。なお、プログラム113は、ROM114に格納されてもよい。 The CPU 111 is a processing unit that executes the program 113 stored in the RAM 112. The program 113 describes the signal processing procedure in the information processing device 2. The information processing apparatus 2 converts the operation signal and the biological signal according to the program 113, performs processing for executing a predetermined application (program), and transmits a signal for performing feedback to the user 10 by an image and / or sound. Generate The program 113 may be stored in the ROM 114.
 信号処理ユニット108で生成された画像のフィードバック信号は、画像制御回路84を経由して表示情報出力回路85から表示部3に出力される。同様に、信号処理ユニット108で生成された音響のフィードバック信号は、音響制御回路86を経由して音響情報出力回路87から出力される。 The feedback signal of the image generated by the signal processing unit 108 is output from the display information output circuit 85 to the display unit 3 via the image control circuit 84. Similarly, the acoustic feedback signal generated by the signal processing unit 108 is output from the acoustic information output circuit 87 via the acoustic control circuit 86.
 なお、信号処理ユニット108と受信回路82と画像制御回路84と音響制御回路86とは、1つの半導体集積回路にプログラムを組み込んだDSP等のハードウェアとして実現されてもよい。1つの半導体集積回路にすると、消費電力が低減される効果が得られる。 The signal processing unit 108, the receiving circuit 82, the image control circuit 84, and the sound control circuit 86 may be realized as hardware such as a DSP in which a program is incorporated in one semiconductor integrated circuit. If one semiconductor integrated circuit is used, an effect of reducing power consumption can be obtained.
 [生体電位測定システムの処理手順の概要]
 図8は、実施の形態に係る生体電位測定装置1bを備える脳波計1及び情報処理装置2の基本的な処理手順を示すフローチャートである。なお、ステップS11からステップS14までは脳波計1における処理(ステップS10)、ステップS21からステップS25までは情報処理装置2における処理(ステップS20)を示している。
[Summary of processing procedure of bioelectric potential measurement system]
FIG. 8 is a flowchart showing a basic processing procedure of the electroencephalograph 1 and the information processing device 2 including the bioelectric potential measurement device 1b according to the embodiment. Note that steps S11 to S14 indicate processing in the electroencephalograph 1 (step S10), and steps S21 to S25 indicate processing in the information processing apparatus 2 (step S20).
 操作入力部11は、ユーザ10により行われた操作入力を受け付ける(ステップS11)。具体的には、操作入力部11は、受け付けのタイミングでどの操作ボタン41が押されているかを検出する。受け付けのタイミングの例は、操作ボタン41が押下された時である。操作ボタン41が押下されたか否かの検出は、例えば、操作ボタン41が押下されたときの機械的なボタン位置の変化、又は、電気信号の変化を検出することにより行われる。また、操作入力部11は、押下された操作ボタン41の種類により、操作入力部11が受け付けた操作入力の種類を検出し、操作信号出力部12へ出力する。 The operation input unit 11 receives an operation input performed by the user 10 (step S11). Specifically, the operation input unit 11 detects which operation button 41 is pressed at the reception timing. An example of the timing of acceptance is when the operation button 41 is pressed. The detection of whether or not the operation button 41 is pressed is performed, for example, by detecting a change in mechanical button position when the operation button 41 is pressed or a change in electric signal. Further, the operation input unit 11 detects the type of the operation input received by the operation input unit 11 according to the type of the pressed operation button 41, and outputs the operation input to the operation signal output unit 12.
 次に、操作信号出力部12は、操作入力部11が受け付けた操作入力に対応する操作信号を情報処理装置2に出力する(ステップS12)。 Next, the operation signal output unit 12 outputs an operation signal corresponding to the operation input received by the operation input unit 11 to the information processing device 2 (step S12).
 次に、生体電位増幅部14は、電極部13における複数の電極51の間の電位差に相当する生体電位を測定し、増幅する(ステップS13)。例えば、電極部13における複数の電極51のうち、右側頭部(国際10-20法のC4の電極位置)に配置された測定電極48と、参照電極49との間の電位差を測定する。また、生体電位増幅部14は、測定した生体電位を増幅する。増幅された生体電位は、生体電位増幅部14から生体電位出力部15へ出力される。 Next, the biopotential amplification unit 14 measures and amplifies the biopotential corresponding to the potential difference between the plurality of electrodes 51 in the electrode unit 13 (step S13). For example, the potential difference between the reference electrode 49 and the measurement electrode 48 disposed on the right head (the electrode position of C4 of the international 10-20 method) among the plurality of electrodes 51 in the electrode unit 13 is measured. In addition, the biopotential amplification unit 14 amplifies the measured biopotential. The amplified biopotential is output from the biopotential amplification unit 14 to the biopotential output unit 15.
 次に、生体電位出力部15は、取得した生体電位を情報処理装置2へ出力する(ステップS14)。 Next, the bioelectric potential output unit 15 outputs the acquired bioelectric potential to the information processing device 2 (step S14).
 なお、脳波計1による処理ステップS10において、ステップS11及びステップS12と、ステップS13及びステップS14とは、それぞれ並列な処理として行ってもよく、ステップS11からステップS14の処理を、全て上述した順序どおりに行う必要はない。 In the processing step S10 by the electroencephalograph 1, the steps S11 and S12 and the steps S13 and S14 may be performed as parallel processes, and the processes from the step S11 to the step S14 are all in the order described above. There is no need to do it.
 続いて、情報処理装置2における処理ステップS20について説明する。 Subsequently, the processing step S20 in the information processing device 2 will be described.
 操作信号取得部21は、ステップS12で操作信号出力部12から出力された操作信号を取得する(ステップS21)。また、操作信号取得部21は、取得した操作信号をアプリケーション処理部26に出力する。 The operation signal acquisition unit 21 acquires the operation signal output from the operation signal output unit 12 in step S12 (step S21). Further, the operation signal acquisition unit 21 outputs the acquired operation signal to the application processing unit 26.
 次に、生体電位取得部22は、ステップS14で生体電位出力部15から出力された生体信号を取得する(ステップS22)。また、生体電位取得部22は、取得した生体信号を、生体電位処理部23に出力する。 Next, the biological potential acquisition unit 22 acquires the biological signal output from the biological potential output unit 15 in step S14 (step S22). In addition, the bioelectric potential acquisition unit 22 outputs the acquired biological signal to the bioelectric potential processing unit 23.
 次に、生体電位取得部22にて取得した生体信号を、生体電位処理部23にて分析処理して、意味のある情報を抽出する(ステップS23)。例えば、所定の周波数成分の生体信号を抽出する。所定の周波数成分とは、例えば脳波の測定の場合には10Hzである。 Next, the biological signal acquired by the biological potential acquisition unit 22 is analyzed by the biological potential processing unit 23 to extract meaningful information (step S23). For example, a biological signal of a predetermined frequency component is extracted. The predetermined frequency component is, for example, 10 Hz in the case of measurement of an electroencephalogram.
 次に、アプリケーション処理部26は、操作信号取得部21からの操作信号と生体電位処理部23からの生体信号を受けて、現在のアプリを実行するための所定の処理を行う(ステップS24)。 Next, the application processing unit 26 receives the operation signal from the operation signal acquisition unit 21 and the biological signal from the biological potential processing unit 23, and performs predetermined processing for executing the current application (step S24).
 次に、アプリケーション処理部26の処理結果をユーザ10にフィードバックするために、表示情報出力部27は画像情報を表示部3に出力し、音響情報出力部28は音響情報を表示部3に出力する(ステップS25)。これにより、表示部3は、処理結果に対応する画像及び音を出力する。 Next, in order to feed back the processing result of the application processing unit 26 to the user 10, the display information output unit 27 outputs the image information to the display unit 3, and the acoustic information output unit 28 outputs the acoustic information to the display unit 3. (Step S25). Thereby, the display unit 3 outputs an image and a sound corresponding to the processing result.
 なお、情報処理装置2における処理ステップS20において、ステップS22及びステップS23と、ステップS24との処理は、それぞれ並列な処理として行ってもよい。また、アプリケーション処理部26は、操作信号取得部21から出力された操作信号と生体電位処理部23から出力された生体信号との両方の信号を用いて処理を行う必要はなく、生体信号のみを用いて処理を行ってもよい。その場合には、操作信号を取得するステップS21を省略してもよい。 In processing step S20 in information processor 2, processing with Steps S22 and S23, and Step S24 may be performed as parallel processing, respectively. In addition, the application processing unit 26 does not have to perform processing using both the operation signal output from the operation signal acquisition unit 21 and the biological signal output from the biological potential processing unit 23, and only the biological signal is processed. You may use and process. In that case, step S21 for acquiring the operation signal may be omitted.
 [脳波計の構造の詳細]
 続いて、実施の形態に係る脳波計1の詳細な構造について説明する。
[Details of the structure of the electroencephalograph]
Subsequently, the detailed structure of the electroencephalograph 1 according to the embodiment will be described.
 図9は、実施の形態に係る生体電位測定装置1bを備える脳波計1の詳細な構成を示す斜視図である。なお、図9に示す脳波計1は、図2Aに示す脳波計1の構成を詳細に図示したものである。また、図9に示す脳波計1は、説明のために外側面44及び装着面45が見やすいように図示しており、厳密な脳波計1の形状を図示しているものではない。 FIG. 9 is a perspective view showing a detailed configuration of the electroencephalograph 1 including the bioelectric potential measurement device 1b according to the embodiment. The electroencephalograph 1 shown in FIG. 9 illustrates in detail the configuration of the electroencephalograph 1 shown in FIG. 2A. Further, the electroencephalograph 1 shown in FIG. 9 is illustrated so that the outer side surface 44 and the mounting surface 45 can be seen easily for the sake of explanation, and the shape of the electroencephalograph 1 is not illustrated strictly.
 図9に示す脳波計1は、複数の電極51の周囲が外側面44に配置されているシールド部材200により覆われている。 The electroencephalograph 1 shown in FIG. 9 is covered by a shield member 200 in which the periphery of the plurality of electrodes 51 is disposed on the outer side surface 44.
 シールド部材200は、脳波計1のユーザ10が装着する装着部150を覆うように脳波計1に配置されている。シールド部材200は、外来ノイズの回り込みを防ぐための静電シールドである。また、脳波計1の静電容量を増やすため、脳波計1とPC(例えば、情報処理装置2)とのペアリングを行う場合等でバッテリ81の最大放電電流(例えば、150mA)を超える電流が必要になった場合、瞬時的な電流量を確保する観点から、シールド部材200は、複数の静電容量201により構成されている。 The shield member 200 is disposed in the electroencephalograph 1 so as to cover the mounting unit 150 that the user 10 of the electroencephalograph 1 wears. The shield member 200 is an electrostatic shield for preventing extraneous noise from coming around. Moreover, in order to increase the capacitance of the electroencephalograph 1, when the electroencephalograph 1 and PC (for example, the information processing apparatus 2) are paired, etc., the current exceeding the maximum discharge current (for example, 150 mA) of the battery 81 is When it becomes necessary, the shield member 200 is configured of a plurality of capacitances 201 from the viewpoint of securing an instantaneous amount of current.
 本実施の形態において、脳波計1の外側面44及び装着面45には、静電容量201で構成される複数のシールド部材200が配置されている。具体的には、脳波計1の外側面44には、測定電極48の周囲をシールド部材200として覆う容量電極(静電容量201の電極)を有する静電容量201が配置されている。静電容量201は、誘電体と、当該誘電体を挟む2つの容量電極からなる。ここでいう静電容量201の容量電極は、誘電体を挟む2つの容量電極(正極、及び負極)のうちの少なくとも一方の容量電極を意味する。 In the present embodiment, on the outer side surface 44 and the mounting surface 45 of the electroencephalograph 1, a plurality of shield members 200 configured of the electrostatic capacitance 201 are disposed. Specifically, on the outer side surface 44 of the electroencephalograph 1, a capacitance 201 having a capacitance electrode (an electrode of the capacitance 201) covering the periphery of the measurement electrode 48 as a shield member 200 is disposed. The capacitance 201 includes a dielectric and two capacitance electrodes sandwiching the dielectric. The capacitive electrode of the electrostatic capacitance 201 here means at least one of the two capacitive electrodes (positive electrode and negative electrode) sandwiching the dielectric.
 脳波計1の装着面45には、測定電極48を挟んでシールド部材200が配置されている。また、脳波計1には、複数のシールド部材200が有する静電容量201のそれぞれを並列接続する配線(図示せず)が2本配されており、外側面44及び装着面45に連続して配されている。例えば、静電容量201には、一つ当たり35mFの容量値の静電容量が利用され、12並列で接続され、全体として400mF以上となるように構成されている。 A shield member 200 is disposed on the mounting surface 45 of the electroencephalograph 1 with the measurement electrode 48 interposed therebetween. Further, in the electroencephalograph 1, two wires (not shown) for connecting in parallel each of the capacitances 201 of the plurality of shield members 200 are arranged, and are continuous to the outer surface 44 and the mounting surface 45. It is arranged. For example, a capacitance value of 35 mF per capacitance is used for the capacitance 201, and 12 capacitances connected in parallel are configured to be 400 mF or more as a whole.
 なお、図9においては、ヘッドフォン型の脳波計1を例示しているが、上述した脳波計1における複数の電極51を覆うように外側面44にシールド部材200により覆われている構成は、図2Bに示すバンド型の脳波計1001に適用されてもよい。 Although the headphone type electroencephalograph 1 is illustrated in FIG. 9, the configuration in which the outer surface 44 is covered by the shield member 200 so as to cover the plurality of electrodes 51 in the electroencephalograph 1 described above is illustrated. The present invention may be applied to a band-type electroencephalograph 1001 shown in 2B.
 また、図9では、シールド部材200が装着部150を覆うように配置されているが、装着部150がシールド部材200で構成されていてもよい。例えば、アーム151が静電容量201で構成されてもよい。 Further, in FIG. 9, the shield member 200 is disposed so as to cover the mounting portion 150, but the mounting portion 150 may be configured by the shield member 200. For example, the arm 151 may be configured of the capacitance 201.
 図10は、実施の形態に係る脳波計1が生体電位を測定する際の詳細な構成を示すブロック図である。なお、図10には、図9の脳波計1の装着面45に配置された複数の電極51(図6に示す電極部13)を配置し、脳波計1を頭部に装着した時の電気的接続の一例を示している。また、図10では、電極部13を構成する複数の電極51のうち、測定電極として用いられる電極を測定電極48、参照電極として用いられる電極を参照電極49としている。なお、以下では、測定電極48をCh1と示し、参照電極49をRefと示すこともある。 FIG. 10 is a block diagram showing a detailed configuration when the electroencephalograph 1 according to the embodiment measures a bioelectric potential. In FIG. 10, a plurality of electrodes 51 (electrodes 13 shown in FIG. 6) disposed on the mounting surface 45 of the electroencephalograph 1 of FIG. Shows an example of a dynamic connection. Further, in FIG. 10, among the plurality of electrodes 51 constituting the electrode unit 13, an electrode used as a measurement electrode is a measurement electrode 48, and an electrode used as a reference electrode is a reference electrode 49. Hereinafter, the measurement electrode 48 may be denoted as Ch1 and the reference electrode 49 may be denoted as Ref.
 また、図10に示すように、測定電極48には、バッファ90aが接続されている。同様に、参照電極49には、バッファ90bが接続されている。一般に、電極とオペアンプ回路(バッファ)とを組み合わせたものは、アクティブ電極と呼ばれる。 Further, as shown in FIG. 10, a buffer 90 a is connected to the measurement electrode 48. Similarly, the buffer 90 b is connected to the reference electrode 49. Generally, the combination of an electrode and an op amp circuit (buffer) is called an active electrode.
 図10において、測定電極48とバッファ90aとを組み合わせた構成を第1のアクティブ電極95aと呼び、参照電極49とバッファ90bとを組み合わせた構成を第2のアクティブ電極95bと呼ぶ。アクティブ電極を用いると、電極の接触インピーダンス(すなわち、信号源のインピーダンス)が高い場合(例えば、10Hzで30kΩ)においても、バッファの出力で信号線のインピーダンスを低い値(例えば、1kΩ)に変換することができる。 In FIG. 10, a configuration in which the measurement electrode 48 and the buffer 90a are combined is referred to as a first active electrode 95a, and a configuration in which the reference electrode 49 and the buffer 90b are combined is referred to as a second active electrode 95b. With an active electrode, the output of the buffer converts the impedance of the signal line to a lower value (for example 1 kΩ) even when the contact impedance of the electrode (ie the impedance of the signal source) is high (for example 30 kΩ at 10 Hz) be able to.
 測定電極48及び参照電極49で検出した電位は、図10に示すように、それぞれ、バッファ90a及び90bで電圧をバッファリングし、生体電位増幅部14に送られる。バッファ90a及び90bの入力インピーダンスは、10Hzにおいて500MΩ以上のインピーダンスを有することが望ましい。さらに、バッファ90a及び90bの利得及び入力インピーダンスは等しいことが望ましい。 The potentials detected by the measurement electrode 48 and the reference electrode 49 are buffered in the buffers 90a and 90b, respectively, as shown in FIG. The input impedance of the buffers 90a and 90b desirably has an impedance of 500 MΩ or more at 10 Hz. Furthermore, it is desirable that the gains and input impedances of buffers 90a and 90b be equal.
 なお、バッファ90a及び90bは、利得の絶対値が1以上のオペアンプ回路に置き換えられてもよい。この場合には、生体電位増幅部14における生体電位の増幅は、オペアンプ回路に続いて、2段目の増幅となるため、バッファ90a及び90bの場合よりも入力換算ノイズの要件が緩和されるため、低消費電力のアンプを用いることができる。 Buffers 90a and 90b may be replaced with an operational amplifier circuit whose absolute value of gain is 1 or more. In this case, amplification of the biological potential in the biological potential amplification unit 14 is the second stage amplification following the operational amplifier circuit, so the requirement for input conversion noise is alleviated compared to the case of the buffers 90a and 90b. , Low power consumption amplifiers can be used.
 図10の生体電位増幅部14は、図6の生体アンプ74において測定電極48の電位と参照電極49の電位との差をとり、電位差(電圧)を増幅(差動増幅)する。生体アンプ74の利得は、例えば1200倍である。また、生体アンプ74の同相弁別比(Common-Mode Rejection Ratio/CMRR)は、例えば100dBあることが望ましい。増幅された電圧は、低域通過フィルタ(図示せず)でフィルタリングされ、A/Dコンバータ75により所定の解像度(例えば、12ビット)及びサンプリング周波数(例えば、1kHz)でデジタル信号に変換される。デジタル信号に変換されたデータ(デジタルデータ)は、生体電位出力部15へ出力される。 The biopotential amplifier 14 of FIG. 10 amplifies the difference (voltage) (differential amplification) by taking the difference between the potential of the measurement electrode 48 and the potential of the reference electrode 49 in the bioamplifier 74 of FIG. The gain of the biological amplifier 74 is, for example, 1200 times. Also, it is desirable that the common-mode rejection ratio (CMRR) of the biological amplifier 74 be, for example, 100 dB. The amplified voltage is filtered by a low pass filter (not shown) and converted into a digital signal by an A / D converter 75 at a predetermined resolution (for example, 12 bits) and a sampling frequency (for example, 1 kHz). The data (digital data) converted into the digital signal is output to the bioelectric potential output unit 15.
 なお、脳波計1は、測定電極48と生体電位増幅部14との間、及び、参照電極49と生体電位増幅部14との間の経路にバッファ90a及び90bを設置しない構成であってもよい。その場合は、生体電位増幅部14の入力インピーダンスが500MΩ(周波数10Hzでの値)以上であることが望ましい。 The electroencephalograph 1 may have a configuration in which the buffers 90a and 90b are not provided in the path between the measurement electrode 48 and the biopotential amplification unit 14 and between the reference electrode 49 and the biopotential amplification unit 14 . In that case, it is desirable that the input impedance of the biopotential amplification unit 14 be 500 MΩ (value at a frequency of 10 Hz) or more.
 第1のアクティブ電極95a及び第2のアクティブ電極95bの出力端子は、生体電位増幅部14のCh1用端子及びRef用端子のそれぞれに接続される。生体電位増幅部14において、Ch1の生体電位はRefの生体電位との差を取った後に増幅(差動増幅)される。増幅された生体電位は、低域通過フィルタ(図示せず)でフィルタリングされ、A/Dコンバータ75によりデジタル信号に変換される。変換されたデジタル信号のデータ(デジタルデータ)は、生体電位出力部15へ出力される。 The output terminals of the first active electrode 95 a and the second active electrode 95 b are connected to the Ch 1 terminal and the Ref terminal of the biopotential amplifier 14 respectively. In the biopotential amplification unit 14, the biopotential of Ch1 is amplified (differential amplification) after taking a difference from the biopotential of Ref. The amplified biopotential is filtered by a low pass filter (not shown) and converted by the A / D converter 75 into a digital signal. Data (digital data) of the converted digital signal is output to the bioelectric potential output unit 15.
 また、本実施の形態においては、測定電極48及びバッファ90aと、参照電極49及びバッファ90bとは、シールド部材200により覆われている。 Further, in the present embodiment, the measurement electrode 48 and the buffer 90 a, and the reference electrode 49 and the buffer 90 b are covered by the shield member 200.
 図11は、実施の形態に係る脳波計1が備える複数の静電容量201の回路構成を説明するためのブロック図である。 FIG. 11 is a block diagram for explaining a circuit configuration of a plurality of capacitances 201 provided in the electroencephalograph 1 according to the embodiment.
 図11に示すように、シールド部材200は、複数の静電容量201で構成されている。図11には、シールド部材200の一例として、16個の静電容量201が図示されている。 As shown in FIG. 11, the shield member 200 is configured of a plurality of electrostatic capacitances 201. In FIG. 11, sixteen capacitances 201 are illustrated as an example of the shield member 200.
 複数の静電容量201のそれぞれの静電容量値は、例えば、50mFに設定されている。また、複数の静電容量201のそれぞれ及び電源部220は接地されており、同じ接地電位を有する。 The capacitance value of each of the plurality of capacitances 201 is set to, for example, 50 mF. Further, each of the plurality of capacitances 201 and the power supply unit 220 are grounded and have the same ground potential.
 バッテリ81と電源部220とを接続する配線には、シールド部材200が有する複数の静電容量201が接続されている。電源部220は、生体電位増幅部14、生体電位出力部15等の負荷回路へ、当該負荷回路が駆動するのに必要な電源電圧を発生し、当該電源電圧を供給する。電源部220は、例えば、アクティブ電極(第1のアクティブ電極95a及び/又は第2のアクティブ電極95b)、生体電位増幅部14、及び生体電位出力部15(図示していないレベル変換回路)には電源電圧1.8V(1.8V系の電源電圧)を供給する。また、電源部220は、生体電位出力部15、及び図6の他の負荷回路に3.0V(3.0V系の電源電圧)を供給する。これにより、静電容量201は、平滑コンデンサとして機能する。つまり、静電容量201は、測定電極48への外来ノイズの影響を抑制し、且つ、バッテリ81の電圧、及び電源部220が負荷回路に供給する各種の電源電圧を平滑化する。 A plurality of electrostatic capacitances 201 of the shield member 200 are connected to the wiring connecting the battery 81 and the power supply unit 220. The power supply unit 220 generates a power supply voltage necessary for driving the load circuit, and supplies the power supply voltage to load circuits such as the biopotential amplification unit 14 and the biopotential output unit 15. The power supply unit 220 includes, for example, active electrodes (the first active electrode 95 a and / or the second active electrode 95 b), the biopotential amplification unit 14, and the biopotential output unit 15 (level conversion circuit not shown). Supply 1.8V power supply voltage (1.8V power supply voltage). In addition, the power supply unit 220 supplies 3.0 V (a power supply voltage of 3.0 V system) to the biopotential output unit 15 and the other load circuits in FIG. 6. Thereby, the capacitance 201 functions as a smoothing capacitor. That is, the capacitance 201 suppresses the influence of external noise on the measurement electrode 48, and smoothes the voltage of the battery 81 and various power supply voltages supplied to the load circuit by the power supply unit 220.
 静電容量制御部210aは、スイッチS1~S4のオン(スイッチ:閉)とオフ(スイッチ:開)とを制御することにより、複数の静電容量201のそれぞれの静電容量値を変更する。 The capacitance control unit 210a changes the capacitance value of each of the plurality of capacitances 201 by controlling on (switch: closed) and off (switch: open) of the switches S1 to S4.
 [静電容量値の制御]
 続いて、静電容量制御部210aが実行する複数の静電容量201の静電容量値の変更の手順の一具体例の詳細について説明する。
[Control of capacitance value]
Next, the details of a specific example of the procedure of changing the capacitance value of the plurality of capacitances 201 performed by the capacitance control unit 210a will be described.
 図12は、実施の形態に係る脳波計1の動作状態と静電容量201の静電容量値との関係の一例を説明するための図である。図13は、実施の形態に係る脳波計1の動作状態と静電容量201の静電容量値との、時間に応じた関係の一例を説明するためのタイミングチャートである。 FIG. 12 is a diagram for explaining an example of the relationship between the operation state of the electroencephalograph 1 according to the embodiment and the capacitance value of the capacitance 201. FIG. 13 is a timing chart for explaining an example of the relationship between the operation state of the electroencephalograph 1 according to the embodiment and the capacitance value of the capacitance 201 according to time.
 脳波計1を装着したユーザ10は、時刻t=t0に脳波計1を起動して電源を立ち上げる。なお、時刻t=t0の時刻は、脳波計1を装着した時間としてもよい。その際に、静電容量制御部210aは、スイッチS1~S4を制御して、複数の静電容量201の静電容量値の合計値を200mFとなるように変更する。例えば、静電容量制御部210aは、スイッチS1~S4にLow(L)信号を出力し、スイッチS1~S4をオフ状態とする。 The user 10 wearing the electroencephalograph 1 activates the electroencephalograph 1 at time t = t0 to turn on the power. The time t = t0 may be a time when the electroencephalograph 1 is attached. At this time, the capacitance control unit 210a controls the switches S1 to S4 to change the total value of the capacitance values of the plurality of capacitances 201 to 200 mF. For example, the capacitance control unit 210a outputs a Low (L) signal to the switches S1 to S4, and turns off the switches S1 to S4.
 次に、脳波計1は、時刻t=t1において、情報処理装置2とのペアリングを行い、情報処理装置2との通信を確立する。その際に、静電容量制御部210aは、スイッチS1~S4を制御して、複数の静電容量201の静電容量値の合計を600mFとなるように変更する。例えば、静電容量制御部210aは、スイッチS1~S3にHigh(H)信号を出力し、スイッチS1~S3をオン状態とする。また、静電容量制御部210aは、スイッチS4にL信号を出力し、スイッチS4をオフ状態とする。 Next, the electroencephalograph 1 performs pairing with the information processing device 2 at time t = t1, and establishes communication with the information processing device 2. At this time, the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 600 mF. For example, the capacitance control unit 210a outputs a High (H) signal to the switches S1 to S3 to turn on the switches S1 to S3. Further, the capacitance control unit 210a outputs an L signal to the switch S4, and turns off the switch S4.
 もし、脳波計1は、すぐに生体電位の取得が行われない場合、時刻t=t2以降において、待機状態となる。その際に、静電容量制御部210aは、スイッチS1~S4を制御して、複数の静電容量201の静電容量値の合計を300mFとなるように変更する。例えば、静電容量制御部210aは、スイッチS1にH信号を出力し、スイッチS1をオン状態とする。また、静電容量制御部210aは、スイッチS2~S4にL信号を出力し、スイッチS2~S4をオフ状態とする。 If the electroencephalograph 1 does not immediately acquire the bioelectric potential, it will be in a standby state after time t = t2. At this time, the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 300 mF. For example, the capacitance control unit 210a outputs an H signal to the switch S1, and turns on the switch S1. Further, the capacitance control unit 210a outputs an L signal to the switches S2 to S4, and turns off the switches S2 to S4.
 次に、脳波計1は、時刻t=t3において、通常モードでユーザ10の生体電位を取得する。その際に、静電容量制御部210aは、スイッチS1~S4を制御して、複数の静電容量201の静電容量値の合計を400mFとなるように変更する。例えば、静電容量制御部210aは、スイッチS1、S2にH信号を出力し、スイッチS1、S2をオン状態とする。また、静電容量制御部210aは、スイッチS3、S4にL信号を出力し、スイッチS3、S4をオフ状態とする。 Next, at time t = t3, the electroencephalograph 1 acquires the bioelectric potential of the user 10 in the normal mode. At this time, the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 400 mF. For example, the capacitance control unit 210a outputs an H signal to the switches S1 and S2, and turns on the switches S1 and S2. Further, the capacitance control unit 210a outputs an L signal to the switches S3 and S4, and turns off the switches S3 and S4.
 もし、脳波計1は、ユーザ10の生体電位の取得が終了した場合、時刻t=t11以降において、待機状態となる。その際に、静電容量制御部210aは、スイッチS1~S4を制御して、複数の静電容量201の静電容量値の合計を300mFとなるように変更する。 If acquisition of the bioelectric potential of the user 10 is completed, the electroencephalograph 1 is in a standby state after time t = t11. At this time, the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 300 mF.
 次に、脳波計1は、時刻t=t12において、高速モードでユーザ10の生体電位を取得する。その際に、静電容量制御部210aは、スイッチS1~S4を制御して、複数の静電容量201の静電容量値の合計を800mFとなるように変更する。例えば、静電容量制御部210aは、スイッチS1~S4にH信号を出力し、スイッチS1~S4をオン状態とする。 Next, the electroencephalograph 1 acquires the bioelectric potential of the user 10 in the high speed mode at time t = t12. At this time, the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 800 mF. For example, the capacitance control unit 210a outputs an H signal to the switches S1 to S4, and turns on the switches S1 to S4.
 さらに、脳波計1は、時刻t=t13において、高速モードから通常モードでユーザ10の生体電位を取得する設定に変更する。例えば、ユーザ10から操作ボタン41を通じて動作モードを変更するように指示を取得したとする。その際に、静電容量制御部210aは、スイッチS1~S4を制御して、複数の静電容量201の静電容量値の合計を400mFとなるように変更する。 Furthermore, at time t = t13, the electroencephalograph 1 changes from the high speed mode to the setting for acquiring the bioelectric potential of the user 10 in the normal mode. For example, it is assumed that an instruction to change the operation mode is acquired from the user 10 through the operation button 41. At this time, the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 400 mF.
 次に、脳波計1は、時刻t=t21において、電源を立ち下げ(遮断)する。その際に、静電容量制御部210aは、スイッチS1~S4を制御して、複数の静電容量201の静電容量値の合計を200mFとなるように変更する。例えば、静電容量制御部210aは、スイッチS1~S4にL信号を出力し、スイッチS1~S4をオフ状態とする。 Next, the electroencephalograph 1 turns off (shuts off) the power at time t = t21. At this time, the capacitance control unit 210a controls the switches S1 to S4 to change the sum of capacitance values of the plurality of capacitances 201 to 200 mF. For example, the capacitance control unit 210a outputs an L signal to the switches S1 to S4, and turns off the switches S1 to S4.
 このように、静電容量制御部210aは、複数の静電容量201の静電容量値の合計を動作モードに応じて変更する。複数の静電容量201が搭載する容量値が大きすぎると、脳波計1の立ち上がり時間が長くなる懸念がある。また、例えば、電源立ち上り時、電源遮断時等の脳波計1の動作が不安定になる懸念がある。特に、電源遮断時に脳波計1の電源立下りシーケンスが正常に実施されず、次回以降に脳波計1の電源立ち上りが二度と行われない要因になり得る。そこで、静電容量制御部210aは、動作モードに応じて複数の静電容量201の静電容量値の合計を制御する。例えば、上述したように、静電容量制御部210aは、高速モードでの動作時は複数の静電容量201の静電容量値の合計を最大に設定し、瞬時的な電流供給能力を最大にする。 Thus, the capacitance control unit 210a changes the sum of capacitance values of the plurality of capacitances 201 according to the operation mode. If the capacitance values mounted on the plurality of capacitances 201 are too large, there is a concern that the rise time of the electroencephalograph 1 may become long. Further, for example, there is a concern that the operation of the electroencephalograph 1 at the time of power on, power off, etc. becomes unstable. In particular, the power-off sequence of the electroencephalograph 1 is not normally performed when the power is shut off, which may cause the power-up of the electroencephalograph 1 to never be performed again from the next time. Therefore, the capacitance control unit 210a controls the sum of capacitance values of the plurality of capacitances 201 according to the operation mode. For example, as described above, during operation in the high speed mode, the capacitance control unit 210a sets the sum of capacitance values of the plurality of capacitances 201 to a maximum, and maximizes instantaneous current supply capability. Do.
 図14は、実施の形態に係る脳波計1の動作状態に応じて静電容量201の静電容量値を変更する制御を説明するためのフローチャートである。具体的には、図14は、図12及び図13に示す静電容量制御部210aが実行する複数の静電容量201の静電容量値の合計を制御する動作を説明するためのフローチャートである。 FIG. 14 is a flowchart for describing control for changing the capacitance value of the capacitance 201 according to the operation state of the electroencephalograph 1 according to the embodiment. Specifically, FIG. 14 is a flowchart for describing an operation of controlling the sum of capacitance values of the plurality of capacitances 201 performed by the capacitance control unit 210a illustrated in FIGS. 12 and 13. .
 まず、静電容量制御部210aは、複数の静電容量201の静電容量値の合計を200mFとなるように、予め複数の静電容量201(具体的には、スイッチS1~S4)を制御しておく(ステップS101)。上述したように、静電容量制御部210aは、脳波計1の電源遮断(電源立ち下げ)時に、複数の静電容量201の静電容量値の合計を200mFと設定されるように、複数の静電容量201を制御しておく。 First, the capacitance control unit 210a controls the plurality of capacitances 201 (specifically, switches S1 to S4) in advance so that the total capacitance value of the plurality of capacitances 201 is 200 mF. (Step S101). As described above, the capacitance control unit 210a sets a plurality of sums of capacitance values of the plurality of capacitances 201 to 200 mF when the power of the electroencephalograph 1 is shut down (power supply is turned off). The capacitance 201 is controlled.
 ユーザ10は、脳波計1の電源(例えば、図2Aに示す操作ボタン41に含まれる脳波計1を立ち上げるため、及び、立ち下げるための電源スイッチ、電源ボタン等)をオンにして、脳波計1を立ち上げる(ステップS102)。 The user 10 turns on the power supply of the electroencephalograph 1 (for example, to turn on the electroencephalograph 1 included in the operation button 41 shown in FIG. 2A and to turn on the power switch, the power button, etc.). 1 is started (step S102).
 次に、静電容量制御部210aは、電源部220が負荷回路に供給する電源電圧(3.0V系の電源電圧)が2.8V以上で供給されているか否かを判定する(ステップS103)。例えば、静電容量制御部210aは、電源部220が送信回路79に供給する3.0V系の電源電圧が2.8V以上で供給されているか否かを判定する。ステップS103において、静電容量制御部210aは、電源部220が負荷回路に3.0V系の電源電圧を2.8V以上を供給していないと判定した場合(ステップS103でNO)、脳波計1がまだ立ち上がっていないと判断してステップS103の判定を繰り返す。 Next, the capacitance control unit 210a determines whether or not the power supply voltage (3.0 V power supply voltage) supplied to the load circuit by the power supply unit 220 is 2.8 V or higher (step S103). . For example, the capacitance control unit 210a determines whether or not the 3.0V power supply voltage supplied to the transmission circuit 79 by the power supply unit 220 is 2.8 V or more. In step S103, when the capacitance control unit 210a determines that the power supply unit 220 does not supply the 3.0 V power supply voltage to the load circuit at 2.8 V or more (NO in step S103), the electroencephalograph 1 The determination in step S103 is repeated, judging that it has not risen yet.
 一方、ステップS103において、静電容量制御部210aは、脳波計1の3.0V系の電源電圧が2.8V以上が供給されていると判定した場合(ステップS103でYES)、複数の静電容量201の静電容量値の合計が600mFと設定されるように、複数の静電容量201を制御する。 On the other hand, in step S103, when the capacitance control unit 210a determines that the 3.0 V power supply voltage of the electroencephalograph 1 is 2.8 V or more (YES in step S103), a plurality of electrostatics are generated. The plurality of capacitances 201 are controlled such that the total capacitance value of the capacitance 201 is set to 600 mF.
 次に、脳波計1は、情報処理装置2とペアリングを行う(ステップS105)。 Next, the electroencephalograph 1 performs pairing with the information processing device 2 (step S105).
 次に、脳波計1は、情報処理装置2とのペアリングが完了したか否かの判定を行う(ステップS106)。ステップS106において、脳波計1は、情報処理装置2とのペアリングが完了していないと判定した場合(ステップS106でNO)、ステップS106の判定を繰り返す。 Next, the electroencephalograph 1 determines whether the pairing with the information processing device 2 is completed (step S106). In step S106, when the electroencephalograph 1 determines that the pairing with the information processing device 2 is not completed (NO in step S106), the determination of step S106 is repeated.
 一方、ステップS106において、脳波計1は、情報処理装置2とのペアリングが完了したと判定した場合(ステップS106でYES)通常モードで動作するか否かを判定する(ステップS107)。具体的には、ステップS107において、脳波計1は、生体電位を情報処理装置2へ通常の通信速度で出力する通常モードで動作するか否かを判定する。通常モードで動作するか否かの判定は、任意に定められていてもよい。例えば、動作モードの設定は、ユーザ10が操作ボタン41を操作することにより、任意に決定されてもよい。また、動作モードの設定は、生体電位の測定に使用される電極51の数で決定されてもよい。例えば、脳波計1は、生体電位を測定するために使用される電極51の個数が5以上の場合には高速モードで動作し、5未満の場合には通常モードで動作してもよい。 On the other hand, if electroencephalograph 1 determines in step S106 that the pairing with information processing device 2 is completed (YES in step S106), it determines whether to operate in the normal mode (step S107). Specifically, in step S107, the electroencephalograph 1 determines whether to operate in the normal mode in which the bioelectric potential is output to the information processing device 2 at the normal communication speed. The determination as to whether or not to operate in the normal mode may be arbitrarily determined. For example, the setting of the operation mode may be arbitrarily determined by the user 10 operating the operation button 41. Also, the setting of the operation mode may be determined by the number of electrodes 51 used to measure the biopotential. For example, the electroencephalograph 1 may operate in the high speed mode when the number of electrodes 51 used to measure the bioelectric potential is 5 or more, and may operate in the normal mode when the number is less than 5.
 静電容量制御部210aは、脳波計1が通常モードで動作すると判定した場合(ステップS107でYES)、複数の静電容量201の静電容量値の合計が400mFと設定されるように、複数の静電容量201を制御する(ステップS108)。 When the capacitance control unit 210a determines that the electroencephalograph 1 operates in the normal mode (YES in step S107), a plurality of total capacitance values of the plurality of capacitances 201 are set to 400 mF. The capacitance 201 is controlled (step S108).
 次に、脳波計1は、ユーザ10から生体電位を取得し、取得した生体電位を情報処理装置2へ出力する(ステップS109)。 Next, the electroencephalograph 1 acquires a bioelectric potential from the user 10, and outputs the acquired bioelectric potential to the information processing device 2 (step S109).
 一方、脳波計1は、通常モードで動作しないと判定した場合(ステップS107でNO)、高速モードで動作するか否を判定する(ステップS110)。 On the other hand, when the electroencephalograph 1 determines that it does not operate in the normal mode (NO in step S107), it determines whether it operates in the high speed mode (step S110).
 静電容量制御部210aは、脳波計1が高速モードで動作すると判定した場合(ステップS110でYES)、複数の静電容量201の静電容量値の合計が800mFと設定されるように、複数の静電容量201を制御する(ステップS111)。 When the capacitance control unit 210a determines that the electroencephalograph 1 operates in the high-speed mode (YES in step S110), a plurality of capacitance values of the plurality of capacitances 201 are set to 800 mF in total. The capacitance 201 is controlled (step S111).
 次に、脳波計1は、ユーザ10から生体電位を取得し、取得した生体電位を情報処理装置2へ出力する(ステップS112)。 Next, the electroencephalograph 1 acquires a bioelectric potential from the user 10, and outputs the acquired bioelectric potential to the information processing apparatus 2 (step S112).
 一方、静電容量制御部210aは、脳波計1が高速モードで動作しないと判定した場合(ステップS110でNo)、複数の静電容量201の静電容量値の合計が300mFと設定されるように、複数の静電容量201を制御する(ステップS113)。 On the other hand, when the capacitance control unit 210a determines that the electroencephalograph 1 does not operate in the high-speed mode (No in step S110), the total capacitance value of the plurality of capacitances 201 is set to 300 mF. The plurality of capacitances 201 are controlled (step S113).
 次に、脳波計1は、待機状態となる(ステップS114)。 Next, the electroencephalograph 1 is in a standby state (step S114).
 ステップS209、ステップS112、又は、ステップS114の次に、脳波計1は、電源がオフされたか否かを判定する(ステップS115)。 After step S209, step S112, or step S114, the electroencephalograph 1 determines whether the power is turned off (step S115).
 脳波計1は、電源がオフされていないと判定した場合(ステップS115でNO)、ステップS107に戻り、ステップS107~ステップS114の判定を繰り返す。 When it is determined that the power is not turned off (NO in step S115), the electroencephalograph 1 returns to step S107, and repeats the determination of step S107 to step S114.
 一方、脳波計1によって電源がオフされたと判定された場合(ステップS115でYES)、静電容量制御部210aは、複数の静電容量201の静電容量値の合計が200mFと設定されるように、複数の静電容量201を制御する(ステップS116)。 On the other hand, when it is determined that the power is turned off by the electroencephalograph 1 (YES in step S115), the capacitance control unit 210a sets the sum of capacitance values of the plurality of capacitances 201 to be 200 mF. Control the plurality of capacitances 201 (step S116).
 次に、脳波計1は、電源を立ち下げる(ステップS117)。 Next, the electroencephalograph 1 turns off the power (step S117).
 図15は、実施の形態に係る脳波計1及び比較例に係る脳波計の入力ノイズ(出力ノイズを生体アンプ74の利得で除算した入力換算ノイズ)を示す図である。なお、図15に示す実線が実施の形態に係る脳波計1の入力ノイズであり、破線が比較例に係る脳波計の入力ノイズである。また、比較例に係る脳波計は、実施の形態に係る脳波計1における複数の静電容量201(つまり、シールド部材200)を備えない以外は、特徴的な機能構成は実施の形態に係る脳波計1と同様である。 FIG. 15 is a diagram showing input noise (input conversion noise obtained by dividing output noise by the gain of the biological amplifier 74) of the electroencephalograph 1 according to the embodiment and the electroencephalograph according to the comparative example. The solid line shown in FIG. 15 is the input noise of the electroencephalograph 1 according to the embodiment, and the broken line is the input noise of the electroencephalograph according to the comparative example. In addition, the electroencephalograph according to the comparative example is characterized in that the functional configuration is the electroencephalogram according to the embodiment except that the plurality of capacitances 201 (that is, the shield member 200) in the electroencephalograph 1 according to the embodiment is not provided. It is the same as 1 in total.
 図15に示すように、比較例に係る脳波計では、実施の形態に係る脳波計1よりも入力ノイズが大きいことが確認できる。一般的に、脳波計に入力される脳波の振幅は20μVppであり、比較例に係る脳波計では、一部で20μVppを超える入力ノイズが確認される。そのために、比較例に係る脳波計では、入力される外来ノイズによって生体電位を安定して検出できず、出力する生体電位を安定した信号品質にすることができない。 As shown in FIG. 15, in the electroencephalograph according to the comparative example, it can be confirmed that the input noise is larger than that of the electroencephalograph 1 according to the embodiment. Generally, the amplitude of the electroencephalogram input to the electroencephalograph is 20 μVpp, and in the electroencephalograph according to the comparative example, input noise exceeding 20 μVpp is partially confirmed. Therefore, the electroencephalograph according to the comparative example can not stably detect the biopotential due to the input external noise, and can not make the biopotential to be output stable signal quality.
 一方、実施の形態に係る脳波計1では、20μVppを超える入力ノイズが確認されない。そのために、実施の形態に係る脳波計1では、生体電位を安定して検出することができ、出力する生体電位を安定した信号品質にすることができる。 On the other hand, in the electroencephalograph 1 according to the embodiment, input noise exceeding 20 μVpp is not confirmed. Therefore, in the electroencephalograph 1 according to the embodiment, the bioelectric potential can be stably detected, and the bioelectric potential to be output can be stabilized in signal quality.
 [アプリケーション処理]
 続いて、生体電位測定システム100を用いて生体電位の測定を行う際のアプリケーション処理について説明する。図16は、実施の形態に係る脳波計1の動作状態によって変更されるアプリケーション処理を説明するためのフローチャートである。
[Application processing]
Subsequently, application processing when measuring the bioelectric potential using the bioelectric potential measurement system 100 will be described. FIG. 16 is a flowchart for explaining application processing that is changed according to the operation state of the electroencephalograph 1 according to the embodiment.
 図16に示すように、アプリケーション処理部26は、ステップS121からステップS129までの処理を行う。ステップS121からステップS129までの各ステップについては後に詳述する。アプリケーション処理部26により処理された情報は、図5に示したように、表示情報出力部27及び音響情報出力部28を介して、図17、図18及び図19に示すような画像が表示部3に表示される。 As shown in FIG. 16, the application processing unit 26 performs the processing from step S121 to step S129. Each step from step S121 to step S129 will be described in detail later. The information processed by the application processing unit 26 is, as shown in FIG. 5, an image as shown in FIG. 17, FIG. 18 and FIG. 19 as a display unit via the display information output unit 27 and the acoustic information output unit 28. Displayed on 3.
 図17、図18及び図19は、実施の形態に係る脳波計1の動作状態に応じて表示部3が表示する画像の例を示す図である。 FIG. 17, FIG. 18 and FIG. 19 are diagrams showing examples of images displayed by the display unit 3 according to the operation state of the electroencephalograph 1 according to the embodiment.
 図17、図18及び図19に示される画像は、表示部3に表示される。表示部3に表示される画像には、測定情報表示部3aと、生体電位波形表示部3bと、電極表示部3cと、モード表示部3dとが含まれる。 The images shown in FIGS. 17, 18 and 19 are displayed on the display unit 3. The image displayed on the display unit 3 includes a measurement information display unit 3a, a biopotential waveform display unit 3b, an electrode display unit 3c, and a mode display unit 3d.
 測定情報表示部3aには、測定電極48及び参照電極49における現在の測定状態が表示される。例えば、参照電極49がユーザ10の皮膚から完全に離れており生体電位の測定が行われていない場合には、図17に示すように、「生体電位未測定」、「電極Refが接触していません」等と表示される。これにより、ユーザ10の皮膚に参照電極49が接触していないことを報知し、ユーザ10に脳波計1を正常に装着するように促すことができる。 The current measurement state of the measurement electrode 48 and the reference electrode 49 is displayed on the measurement information display unit 3a. For example, when the reference electrode 49 is completely separated from the skin of the user 10 and the measurement of the biopotential is not performed, as shown in FIG. 17, “biopotential not measured”, “electrode Ref is in contact It is displayed as "No". Thereby, it can be informed that the reference electrode 49 is not in contact with the skin of the user 10, and the user 10 can be urged to wear the electroencephalograph 1 normally.
 生体電位波形表示部3bには、測定した生体電位が時系列に沿って表示される。これにより、ユーザ10は、生体電位の変化を視覚的に認識することができる。 The measured bioelectric potential is displayed in time series on the bioelectric potential waveform display unit 3b. Thereby, the user 10 can visually recognize the change of the bioelectric potential.
 また、電極表示部3cには、測定電極48(Ch1)及び参照電極49(Ref)のユーザ10との接触状態が表示される。例えば、電極表示部3cには、脳波計1をユーザ10の頭頂部から見た画像が表示される。電極表示部3cには、測定電極48及び参照電極49の接触状態がユーザ10の体に対する測定電極48及び参照電極49の位置とともに表示される。これにより、ユーザ10は、どの位置の電極がずれたかを視覚的に認識することができ、脳波計1を正常な位置に装着することができる。 Moreover, the contact state with the user 10 of the measurement electrode 48 (Ch1) and the reference electrode 49 (Ref) is displayed on the electrode display part 3c. For example, an image of the electroencephalograph 1 viewed from the top of the head of the user 10 is displayed on the electrode display unit 3c. The contact state of the measurement electrode 48 and the reference electrode 49 is displayed on the electrode display unit 3 c together with the positions of the measurement electrode 48 and the reference electrode 49 with respect to the body of the user 10. As a result, the user 10 can visually recognize at which position the electrode is shifted, and the electroencephalograph 1 can be worn at a normal position.
 なお、図18及び図19に示すように、現在測定されている生体電位波形が生体電位波形表示部3bにて表示されることに加えて、生体電位が測定中の場合は、表示部3に表示される画像の測定電極48及び参照電極49に対応する位置が、色が付されて表示されてもよい。生体電位を測定していない場合は、図17に示すように、電極表示部3cの参照電極49を示す画像は、白抜き表示とされてもよい。なお、以下では、白抜き表示ではなく、色を付けて表示したり点滅表示させたりすることで、他の画像と区別することができる表示のことを「ハイライト表示」と記載する場合がある。 As shown in FIG. 18 and FIG. 19, in addition to the biopotential waveform currently being measured being displayed on the biopotential waveform display unit 3b, when the biopotential is being measured, the display unit 3 is used. The positions corresponding to the measurement electrode 48 and the reference electrode 49 of the displayed image may be colored and displayed. When the bioelectric potential is not measured, as shown in FIG. 17, the image showing the reference electrode 49 of the electrode display unit 3 c may be displayed in white. In the following description, a display that can be distinguished from other images may be described as “highlighted display” by displaying in color and displaying in a flickering manner instead of whiteouting. .
 図19に示されるように、測定電極48がユーザ10の複数の位置に取り付けられている場合、取り付けられている測定電極48の位置に応じて、例えば、各測定電極48の位置が電極表示部3cの電極位置表示部3c1~3c5に表示される。また、電極表示部3cには、各電極位置に対応したチャンネル(Ch1~Ch5)が表示される。 As shown in FIG. 19, when the measurement electrodes 48 are attached to a plurality of positions of the user 10, for example, the positions of the respective measurement electrodes 48 correspond to the positions of the electrode display portions according to the positions of the attached measurement electrodes 48. It is displayed on the electrode position display sections 3c1 to 3c5 of 3c. In addition, channels (Ch1 to Ch5) corresponding to the respective electrode positions are displayed on the electrode display unit 3c.
 図18及び図19に示されるモード表示部3dには、脳波計1が実行している動作モードが表示される。例えば、脳波計1が通常モードとして動作している場合には、モード表示部3dには、「通常モード」と表示される。また、例えば、脳波計1が高速モードとして動作している場合には、モード表示部3dには、「高速モード」と表示される。 The mode display unit 3d shown in FIGS. 18 and 19 displays the operation mode that the electroencephalograph 1 is executing. For example, when the electroencephalograph 1 is operating in the normal mode, the mode display unit 3 d displays “normal mode”. Further, for example, when the electroencephalograph 1 is operating in the high speed mode, the mode display unit 3 d displays “high speed mode”.
 続いて、アプリケーション処理部26で行われるアプリケーション処理の各ステップについて、図17~図19に示す表示部3に表示される画像を参照しながら説明する。 Subsequently, each step of application processing performed by the application processing unit 26 will be described with reference to an image displayed on the display unit 3 shown in FIGS. 17 to 19.
 まず、アプリケーション処理部26は、生体電位処理部23の出力結果に基づいて、生体電位を測定している状態かどうかを判断する(ステップS121)。アプリケーション処理部26が当該判断を実行するために、例えば、脳波計1は、各電極とユーザ10との接触インピーダンスを測定するための図示しない接触インピーダンス測定器を備えてもよい。この場合に、アプリケーション処理部26は、当該接触インピーダンス測定器から出力される、測定電極48と参照電極49とがユーザ10の皮膚に接触しているかどうかの判定結果に基づき、電極部13が生体電位を測定している状態かどうかを判断する。 First, the application processing unit 26 determines whether or not the bioelectric potential is being measured based on the output result of the bioelectric potential processing unit 23 (step S121). For the application processing unit 26 to perform the determination, for example, the electroencephalograph 1 may include a contact impedance measuring device (not shown) for measuring the contact impedance between each electrode and the user 10. In this case, the application processing unit 26 determines that the electrode unit 13 is a living body based on the determination result of whether or not the measurement electrode 48 and the reference electrode 49 are in contact with the skin of the user 10 output from the contact impedance measuring device. It is determined whether or not the potential is being measured.
 アプリケーション処理部26は、測定電極48及び参照電極49が生体電位を測定していると判定した場合(ステップS121でYES)、表示情報出力部27を介して、例えば、図18に示すように、「生体電位測定中」というメッセージを表示部3に表示させる(ステップS122)。表示部3の測定情報表示部3aには、「生体電位測定中」と表示される。 When the application processing unit 26 determines that the measurement electrode 48 and the reference electrode 49 measure the bioelectric potential (YES in step S121), for example, as shown in FIG. 18, through the display information output unit 27, A message "during biopotential measurement" is displayed on the display unit 3 (step S122). On the measurement information display unit 3a of the display unit 3, "Bioelectric potential measurement in progress" is displayed.
 一方、アプリケーション処理部26は、測定電極48及び参照電極49が生体電位を測定していないと判定した場合(ステップS121でNO)、表示情報出力部27を介して、例えば、「生体電位未測定」というメッセージを表示部3に表示させる(ステップS123)。表示部3の測定情報表示部3aには、図17に示すように、「生体電位未測定」と表示される。例えば、ユーザ10の皮膚に参照電極49(Ref)が接触していない場合には、図17に示すように、「電極Refが接触していません」と測定情報表示部3aに表示され、処理が終了する。 On the other hand, when the application processing unit 26 determines that the measurement electrode 48 and the reference electrode 49 do not measure the biopotential (NO in step S121), for example, “biopotential not measured” via the display information output unit 27 "" Is displayed on the display unit 3 (step S123). On the measurement information display unit 3 a of the display unit 3, as shown in FIG. 17, “biopotential not measured” is displayed. For example, when the reference electrode 49 (Ref) is not in contact with the skin of the user 10, as shown in FIG. 17, “the electrode Ref is not in contact” is displayed on the measurement information display unit 3a and processed Ends.
 ステップS122の次に、表示情報出力部27は、測定に使用されている電極を検出する(ステップS124)。 After step S122, the display information output unit 27 detects an electrode used for measurement (step S124).
 次に、表示情報出力部27は、生体電位の測定に使用されている電極を表す画像を表示部3にハイライト表示させる(ステップS125)。例えば、表示情報出力部27は、測定電極48(Ch1)及び参照電極49(Ref)を測定に使用されている電極として検出した場合、測定電極48(Ch1)及び参照電極49(Ref)を電極表示部3cにハイライト表示させる。例えば、図18に示すように、表示部3は、測定電極48及び参照電極49を電極表示部3cに電極の絵で表示する。 Next, the display information output unit 27 causes the display unit 3 to highlight the image representing the electrode used for measuring the bioelectric potential (step S125). For example, in the case where the display information output unit 27 detects the measurement electrode 48 (Ch1) and the reference electrode 49 (Ref) as the electrodes used for measurement, the display information output unit 27 sets the measurement electrode 48 (Ch1) and the reference electrode 49 (Ref) as electrodes. The highlight is displayed on the display unit 3c. For example, as shown in FIG. 18, the display unit 3 displays the measurement electrode 48 and the reference electrode 49 on the electrode display unit 3c with a picture of the electrodes.
 次に、表示情報出力部27は、生体電位の測定に使用されている電極の数を算出する。一例としては、表示情報出力部27は、測定に使用されている電極の数が5個以上であるか否かを判定する(ステップS126)。なお、図16に示すフローチャートにおいては、動作モードは、生体電位の測定に使用される電極の数で決定されるものとする。 Next, the display information output unit 27 calculates the number of electrodes used for measuring the bioelectric potential. As an example, the display information output unit 27 determines whether the number of electrodes used for measurement is five or more (step S126). In the flowchart shown in FIG. 16, the operation mode is determined by the number of electrodes used to measure the bioelectric potential.
 表示情報出力部27は、生体電位の測定に使用されている電極の数が5個以上であると判定した場合(ステップS126でYES)、図19に示すように、モード表示部3dに「高速モード」と表示させる(ステップS127)。 When the display information output unit 27 determines that the number of electrodes used for measuring the bioelectric potential is five or more (YES in step S126), as shown in FIG. The mode is displayed (step S127).
 一方、表示情報出力部27は、生体電位の測定に使用されている電極の数が5個未満であると判定した場合(ステップS126でNO)、図19に示すように、モード表示部3dに「通常モード」と表示させる(ステップS128)。 On the other hand, when the display information output unit 27 determines that the number of electrodes used for measuring the bioelectric potential is less than 5 (NO in step S126), the mode display unit 3d is displayed as shown in FIG. The "normal mode" is displayed (step S128).
 ステップS127又はステップS128の次に、表示情報出力部27は、各電極で測定された生体電位の信号波形を生体電位波形表示部3bに表示させる(ステップS129)。例えば、電極が一つの場合には図18に示すように1つの信号波形が生体電位波形表示部3bに表示され、電極が複数の場合には図19に示すように複数の信号波形が生体電位波形表示部3bに表示される。なお、図19においては、測定電極48の数に対応した5個の生体信号波形が生体電位波形表示部3bに表示されるが、簡略化して図示している。 After step S127 or step S128, the display information output unit 27 causes the biopotential waveform display unit 3b to display the signal waveform of the biopotential measured by each electrode (step S129). For example, in the case of one electrode, one signal waveform is displayed on the biopotential waveform display unit 3b as shown in FIG. 18, and in the case of multiple electrodes, a plurality of signal waveforms are biopotential as shown in FIG. It is displayed on the waveform display unit 3b. In FIG. 19, although five biological signal waveforms corresponding to the number of measurement electrodes 48 are displayed on the biological potential waveform display unit 3b, they are shown in a simplified manner.
 [効果等]
 以上のように、本実施の形態に係る生体電位測定装置1bは、生体電位を測定するための生体電位測定装置である。生体電位測定装置1bは、生体に接触する測定電極48と、測定電極48で検出された生体電位を増幅する生体電位増幅部14と、生体電位増幅部14で増幅された生体電位を出力する生体電位出力部15とを備える。生体電位測定装置1bは、さらに、生体電位増幅部14及び生体電位出力部15の少なくとも一方に電力を供給する電源部220と、測定電極48の周囲をシールド部材200として覆う配線が接続される容量電極を有する静電容量201とを備える。また、電源部220の接地電位は、静電容量201の接地電位と電気的に接続される。
[Effects, etc.]
As described above, the biopotential measurement device 1b according to the present embodiment is a biopotential measurement device for measuring the biopotential. The biopotential measuring device 1 b includes a measuring electrode 48 in contact with a living body, a biopotential amplification unit 14 that amplifies the biopotential detected by the measuring electrode 48, and a living body that outputs the biopotential amplified by the biopotential amplification unit 14. And a potential output unit 15. The biopotential measuring device 1 b further includes a power supply unit 220 that supplies power to at least one of the biopotential amplification unit 14 and the biopotential output unit 15, and a capacitance connected to a wire that covers the periphery of the measurement electrode 48 as the shield member 200. And a capacitance 201 having an electrode. Further, the ground potential of the power supply unit 220 is electrically connected to the ground potential of the electrostatic capacitance 201.
 このような構成によれば、静電容量201が静電シールドとなり、測定電極48に影響を与える外来ノイズを抑制することができる。これにより、測定電極48で検出される生体電位は、安定化されやすい。そのため、生体電位測定装置1bによれば、安定した信号品質の生体電位測定を行うことができる。 According to such a configuration, the electrostatic capacitance 201 serves as an electrostatic shield, and it is possible to suppress external noise that affects the measurement electrode 48. Thereby, the biopotential detected by the measurement electrode 48 is likely to be stabilized. Therefore, according to the biopotential measurement device 1b, stable biopotential measurement of signal quality can be performed.
 また、静電容量201をシールドとして採用することで、バッテリ81以外で放電電流の確保を行うことができる。これにより、生体電位測定装置1bの動作の安定性は向上される。そのため、生体電位測定装置1bによれば、安定した信号品質の生体電位測定を行うことができる。 Further, by adopting the capacitance 201 as a shield, it is possible to secure the discharge current other than the battery 81. Thereby, the stability of the operation of the bioelectricity measuring device 1b is improved. Therefore, according to the biopotential measurement device 1b, stable biopotential measurement of signal quality can be performed.
 また、生体電位測定装置1bは、さらに、複数の静電容量201と、生体電位出力部15の動作モードに応じて、複数の静電容量201の容量値の合計を変更する静電容量制御部210aと、を備えてもよい。 In addition, the bioelectric potential measurement apparatus 1 b further changes the sum of the capacitance values of the plurality of capacitances 201 according to the plurality of capacitances 201 and the operation mode of the bioelectric potential output unit 15. And 210a.
 生体電位測定装置1bに搭載される静電容量201の容量値が大きすぎると、立ち上がり時間が長くなり、また、立ち上げ時に電源遮断時等の動作が不安定になる懸念がある。生体電位測定装置1bに搭載される静電容量201の静電容量値の合計を適宜調整することで、立ち上がり時間が長くなりにくく、且つ、立ち上り、電源遮断時等の動作が安定しやすくなる。 If the capacitance value of the capacitance 201 mounted on the biopotential measurement device 1b is too large, the rise time becomes long, and there is also a concern that the operation at the time of start-up such as when the power is shut off becomes unstable. By appropriately adjusting the total capacitance value of the capacitance 201 mounted on the biopotential measurement device 1b, the rise time is unlikely to be long, and the operation at the time of rise, power interruption, etc. is easily stabilized.
 例えば、静電容量制御部210aは、複数の静電容量201の容量値の合計を、電源部220の電源オン時と、電源部220の電源オフ時とに変更してもよい。 For example, the capacitance control unit 210a may change the sum of capacitance values of the plurality of capacitances 201 between when the power of the power supply unit 220 is turned on and when the power of the power supply unit 220 is turned off.
 また、例えば、静電容量制御部210aは、生体電位出力部15が生体電位を出力する場合に、複数の静電容量201の容量値の合計を変更してもよい。 Also, for example, when the bioelectric potential output unit 15 outputs the bioelectric potential, the electrostatic capacity control unit 210a may change the sum of the capacitance values of the plurality of electrostatic capacitances 201.
 これらのように、生体電位測定装置1bに搭載される静電容量201の容量値の合計を適宜調整することで、立ち上がり時間が長くなりにくく、バッテリ81の立ち上り、電源遮断時等の動作が安定しやすくなる。 As described above, by appropriately adjusting the total of the capacitance values of the capacitances 201 mounted on the biopotential measurement device 1b, the rise time does not easily become long, and the operation at the time of rising of the battery 81, power interruption, etc. is stable. It becomes easy to do.
 また、本実施の形態に係る静電容量制御部210aは、測定電極48で生体電位を検出し、検出した当該生体電位を生体電位出力部15に出力させる通常モードと、高速モードとを切り替えるモード制御をしてもよい。高速モードでは、静電容量制御部210aは、測定電極48で生体電位を検出し、検出した当該生体電位を、単位時間あたりに出力する当該生体電位のデータ量を通常モードよりも多く生体電位出力部15に出力させる。また、モード制御では、静電容量制御部210aは、高速モードの方が通常モードよりも複数の静電容量201の容量値の合計を高くする制御をしてもよい。 In addition, the capacitance control unit 210a according to the present embodiment detects the bioelectric potential by the measurement electrode 48, and switches the mode between the normal mode in which the bioelectric potential output unit 15 outputs the detected bioelectric potential to the high speed mode. It may control. In the high-speed mode, the capacitance control unit 210a detects the bioelectric potential at the measurement electrode 48, and outputs the detected bioelectric potential per unit time by a larger amount of data of the bioelectric potential than in the normal mode. Make the part 15 output. Further, in the mode control, the capacitance control unit 210a may perform control to increase the sum of the capacitance values of the plurality of capacitances 201 in the high-speed mode than in the normal mode.
 例えば、静電容量制御部210aは、高速モードでの動作時は複数の静電容量の容量値の合計を最大に設定し、電流供給能力を最大にする。これにより、静電容量201の容量値の合計を適宜調整することで、生体電位測定装置1bは、通信動作が速く、且つ、安定しやすくなる。 For example, when operating in the high speed mode, the capacitance control unit 210a sets the sum of capacitance values of a plurality of capacitances to a maximum, and maximizes the current supply capability. Thus, by appropriately adjusting the total of the capacitance values of the capacitance 201, the biological potential measurement device 1b can perform communication operation quickly and easily.
 また、本実施の形態に係る静電容量201は、電気二重層容量でもよい。 The capacitance 201 according to the present embodiment may be an electric double layer capacitance.
 これにより、生体電位測定装置1bの軽量化が可能となる。 Thereby, weight reduction of the bioelectric potential measuring device 1b is attained.
 本実施の形態に係る静電容量制御装置210は、生体電位を測定するための生体電位測定装置1bが備える複数の静電容量201を制御する静電容量制御装置である。生体電位測定装置1bは、生体に接触される測定電極48と、測定電極48で検出された生体電位を増幅する生体電位増幅部14と、生体電位増幅部14で増幅された生体電位を出力する生体電位出力部15と、を備える。また、生体電位測定装置1bは、測定電極48の周囲をシールド部材200として覆う配線が接続される容量電極を有する複数の静電容量201と、静電容量201から電力の供給を受ける電源部220とを備える。静電容量制御装置210は、電源部220の接地電位が静電容量201の接地電位と電気的に接続された生体電位測定装置1bにおける、複数の静電容量201の容量値の合計を変更する静電容量制御部210aを備える。 The capacitance control device 210 according to the present embodiment is a capacitance control device that controls a plurality of capacitances 201 included in a biopotential measurement device 1 b for measuring a biopotential. The biopotential measuring device 1b outputs the biopotential amplified by the biopotential amplifier 14 and the biopotential amplifier 14 that amplifies the biopotential detected by the measuring electrode 48, which is in contact with the living body, and the bioelectrode. And a bioelectric potential output unit 15. In addition, the bioelectric potential measurement apparatus 1b includes a plurality of capacitances 201 having capacitance electrodes to which the wiring covering the periphery of the measurement electrode 48 is connected as the shield member 200, and a power supply unit 220 receiving power supply from the capacitances 201. And The capacitance control device 210 changes the sum of capacitance values of the plurality of capacitances 201 in the biological potential measurement device 1b in which the ground potential of the power supply unit 220 is electrically connected to the ground potential of the capacitance 201. A capacitance control unit 210a is provided.
 これにより、生体電位測定装置1bに搭載される静電容量201の静電容量値の合計を適宜調整することで、立ち上がり時間が長くなりにくく、且つ、立ち上り時、電源遮断時等の動作が安定しやすくなる。 As a result, by appropriately adjusting the total capacitance value of the capacitance 201 mounted on the biopotential measurement device 1b, the rise time is unlikely to be long, and the operation at the time of rise, at the time of power shut off, etc. is stable. It becomes easy to do.
 本実施の形態に係る脳波計1は、生体電位測定装置1bと、生体電位を測定される生体の頭部に装着される装着部150と、を備える。測定電極48は、生体の生体電位を測定する場合に、当該生体の頭部に接触されるように、装着部150に配置される。 The electroencephalograph 1 according to the present embodiment includes a bioelectric potential measurement device 1b and a mounting unit 150 mounted on the head of a living body whose bioelectric potential is to be measured. The measurement electrode 48 is disposed on the mounting unit 150 so as to be in contact with the head of the living body when measuring the biopotential of the living body.
 図15に示すように、実施の形態に係る脳波計1によれば、入力される外来ノイズを一般的な脳波の振幅以下に抑えることができる。つまり、実施の形態に係る生体電位測定装置1bは、脳波を測定するための脳波計1に好適である。 As shown in FIG. 15, according to the electroencephalograph 1 according to the embodiment, it is possible to suppress the input extraneous noise to be equal to or less than the amplitude of a general electroencephalogram. That is, the bioelectric potential measurement device 1b according to the embodiment is suitable for the electroencephalograph 1 for measuring an electroencephalogram.
 例えば、本実施の形態に係る脳波計1が備える静電容量201は、装着部150を覆うように配置されてもよい。 For example, the capacitance 201 provided in the electroencephalograph 1 according to the present embodiment may be arranged to cover the mounting unit 150.
 また、例えば、本実施の形態に係る脳波計1の装着部150は、静電容量201で構成されてもよい。 Also, for example, the mounting unit 150 of the electroencephalograph 1 according to the present embodiment may be configured of the electrostatic capacitance 201.
 これにより、静電容量201は、脳波計1が備える各回路、電極51への外来ノイズを防ぐシールドとして機能する。そのため、脳波計1によれば、安定した信号品質の生体電位測定を行うことができる。 Thereby, the electrostatic capacitance 201 functions as a shield which prevents the external noise to each circuit and the electrode 51 with which the electroencephalograph 1 is provided. Therefore, according to the electroencephalograph 1, bioelectric potential measurement of stable signal quality can be performed.
 また、本実施の形態に係る静電容量制御方法は、生体電位を測定する生体電位測定装置1bが備える複数の静電容量201の静電容量制御方法である。生体電位測定装置1bは、生体に接触される測定電極48と、測定電極48で検出された生体電位を増幅する生体電位増幅部14と、生体電位増幅部14で増幅された生体電位を出力する生体電位出力部15と、を備える。また、生体電位測定装置1bは、測定電極48の周囲をシールド部材200として覆う配線が接続される容量電極を有する静電容量201と、静電容量201から電力の供給を受ける電源部220とを備える。電源部220の接地電位は、前記静電容量の接地電位と電気的に接続されている。静電容量制御方法は、電源部220がオン状態であるかオフ状態であるかを判断する判断ステップと、判断ステップで判断された状態に応じて、複数の静電容量201の容量値の合計を変更する制御ステップと、を含む。 Further, the capacitance control method according to the present embodiment is a capacitance control method of the plurality of capacitances 201 included in the biopotential measuring device 1 b that measures biopotential. The biopotential measuring device 1b outputs the biopotential amplified by the biopotential amplifier 14 and the biopotential amplifier 14 that amplifies the biopotential detected by the measuring electrode 48, which is in contact with the living body, and the bioelectrode. And a bioelectric potential output unit 15. In addition, the bioelectric potential measurement apparatus 1b includes a capacitance 201 having a capacitance electrode to which a wire covering the periphery of the measurement electrode 48 is connected as a shield member 200, and a power supply unit 220 receiving power supply from the capacitance 201. Prepare. The ground potential of the power supply unit 220 is electrically connected to the ground potential of the capacitance. The capacitance control method includes a determination step of determining whether the power supply unit 220 is in the on state or the off state, and a sum of capacitance values of the plurality of capacitances 201 according to the state determined in the determination step. Control steps to change
 これにより、生体電位測定装置1bに搭載される静電容量201の静電容量値の合計を適宜調整することで、立ち上がり時間が長くなりにくく、且つ、立ち上り時、電源遮断時等の動作が安定しやすくなる。 As a result, by appropriately adjusting the total capacitance value of the capacitance 201 mounted on the biopotential measurement device 1b, the rise time is unlikely to be long, and the operation at the time of rise, at the time of power shut off, etc. is stable. It becomes easy to do.
 また、本実施の形態に係る静電容量制御方法に含まれるステップをコンピュータに実行させるプログラムとして実現されてもよい。また、そのプログラムを記録したコンピュータによって読み取り可能なCD-ROM(Compact Disc-Read Only Memory)などの不揮発性の記録媒体として実現されてもよい。また、そのプログラムを示す情報、データ又は信号として実現されてもよい。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信されてもよい。 The present invention may also be implemented as a program that causes a computer to execute the steps included in the capacitance control method according to the present embodiment. The program may also be realized as a non-volatile recording medium such as a compact disc-read only memory (CD-ROM) readable by a computer. Also, the present invention may be realized as information, data or signals indicating the program. And these programs, information, data, and signals may be distributed via a communication network such as the Internet.
 これにより、静電容量制御方法は、簡便に安定した信号品質の生体電位測定を行うことができるプログラムとしてコンピュータが実行できる。 As a result, the capacitance control method can be executed by the computer as a program capable of simply and stably measuring bioelectric potential of signal quality.
 (その他の実施の形態)
 以上、本開示の実施の形態に係る生体電位測定装置、静電容量制御装置、脳波計、静電容量制御方法及びプログラムについて説明したが、本開示は、上述した実施の形態に限定されるものではない。
(Other embodiments)
The biopotential measurement device, the capacitance control device, the electroencephalograph, the capacitance control method, and the program according to the embodiment of the present disclosure have been described above, but the present disclosure is limited to the above-described embodiment is not.
 例えば、上記実施の形態では、本開示の一態様として、生体電位測定装置、静電容量制御装置及び静電容量制御方法について説明したが、本開示は、上述した方法をコンピュータに実行させるためのプログラムであるとしてもよい。また、本開示は、上記コンピュータのプログラムからなるデジタル信号であるとしてもよい。 For example, although the biopotential measurement device, the capacitance control device, and the capacitance control method have been described as one aspect of the present disclosure in the above embodiment, the present disclosure allows a computer to execute the method described above. It may be a program. Further, the present disclosure may be a digital signal including a program of the computer.
 さらに、本開示は、上記コンピュータプログラム又は上記デジタル信号をコンピュータ読み取り可能な非一時的な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray(登録商標) Disc)、半導体メモリなどに記録したものとしてもよい。また、これらの非一時的な記録媒体に記録されている上記デジタル信号であるとしてもよい。 Furthermore, the present disclosure relates to a non-transitory recording medium that can read the computer program or the digital signal from a computer, such as a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD It may be recorded on a Blu-ray (registered trademark) Disc), a semiconductor memory, or the like. Further, the present invention may be the digital signal recorded on these non-temporary recording media.
 また、本開示は、上記コンピュータプログラム又は上記デジタル信号を、電気通信回線、無線又は有線通信回線、インターネットを代表とする通信ネットワーク、データ放送等を経由して伝送するものとしてもよい。 Further, the present disclosure may transmit the computer program or the digital signal via a telecommunications line, a wireless or wired communication line, a communication network represented by the Internet, data broadcasting, and the like.
 また、本開示における無線通信の規格は、Bluetooth(登録商標)、BLE(Bluetooth(登録商標) Low Energy)、ANT(登録商標)、Wi-Fi(登録商標)、Zigbee(登録商標)等、又は独自の通信規格であってもよい。 Also, the standard of wireless communication in the present disclosure is Bluetooth (registered trademark), BLE (Bluetooth (registered trademark) Low Energy), ANT (registered trademark), Wi-Fi (registered trademark), Zigbee (registered trademark), or the like. It may be a proprietary communication standard.
 また、本開示は、マイクロプロセッサとメモリとを備えたコンピュータシステムであって、上記メモリは、上記コンピュータプログラムを記憶しており、上記マイクロプロセッサは、上記コンピュータプログラムに従って動作するとしてもよい。 Further, the present disclosure may be a computer system including a microprocessor and a memory, the memory storing the computer program, and the microprocessor operating according to the computer program.
 また、上記プログラム又は上記デジタル信号を上記非一時的な記録媒体に記録して移送することにより、又は上記プログラム又は上記デジタル信号を、上記通信ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。 In addition, by recording and transferring the program or the digital signal on the non-temporary recording medium, or by transferring the program or the digital signal via the communication network etc. May be implemented by a computer system of
 また、例えば、上述した実施の形態では、測定する生体電位として、脳波を想定しているが、測定する生体電位は、脳波に限らず、心電、筋電、又は眼電であってもよいし、他の生体情報であってもよい。この場合、生体電位を測定する装置の形状は、上述したように、ヘッドフォン型及びバンド型に限らず、装着する位置に合わせて他の形状であってもよい。 Furthermore, for example, in the above-described embodiment, an electroencephalogram is assumed as the bioelectric potential to be measured, but the bioelectric potential to be measured is not limited to the electroencephalogram, and may be an electrocardiogram, an myoelectric potential, or an electrooculogram Or other biometric information. In this case, as described above, the shape of the device for measuring the bioelectric potential is not limited to the headphone type and the band type, and may be another shape in accordance with the mounting position.
 また、電極は、アンプを備えたアクティブ電極であってもよいし、さらに、生体信号をデジタル値に変換することができるデジタルアクティブ電極であってもよい。 Also, the electrode may be an active electrode provided with an amplifier, or may be a digital active electrode capable of converting a biomedical signal into a digital value.
 また、測定電極及び参照電極は、少なくとも1つあればよく、複数であってもよい。 Also, at least one measurement electrode and one reference electrode may be provided, or a plurality of measurement electrodes and reference electrodes may be provided.
 また、脳波計と情報処理装置とは有線で通信可能に接続されていてもよいし、無線で通信可能に接続されていてもよい。また、情報処理装置と表示部とは有線で通信可能に接続されていてもよいし、無線で通信可能に接続されていてもよい。 The electroencephalograph and the information processing apparatus may be communicably connected by wire or may be communicably connected by wireless. Further, the information processing apparatus and the display unit may be communicably connected by wire or may be communicably connected by wireless.
 また、上述した実施の形態におけるステップは、変更又は省略してもよい。また、ステップの順序は入れ替えてもよい。また、複数のステップの処理が平行して実行されてもよい。 Also, the steps in the above-described embodiment may be changed or omitted. Also, the order of the steps may be reversed. Also, processing of a plurality of steps may be performed in parallel.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、又は、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, the embodiments can be realized by various combinations of the embodiments that can be conceived by those skilled in the art, or by combining components and functions in the embodiments within the scope of the present disclosure. This form is also included in the present disclosure.
 1、1001 脳波計
 1a 操作入力装置
 1b 生体電位測定装置
 2 情報処理装置
 3 表示部
 3a 測定情報表示部
 3b 生体電位波形表示部
 3c 電極表示部
 3c1、3c2、3c3、3c4、3c5 電極位置表示部
 3d モード表示部
 10 ユーザ
 11 操作入力部
 12 操作信号出力部
 13 電極部
 14 生体電位増幅部
 15 生体電位出力部
 21 操作信号取得部
 22 生体電位取得部
 23 生体電位処理部
 26 アプリケーション処理部(アプリ処理部)
 27 表示情報出力部
 28 音響情報出力部
 41 操作ボタン
 43 操作面
 44 外側面
 45 装着面
 46 耳当て
 47 表示装置
 48 測定電極
 49 参照電極
 51 電極(生体電位測定用電極)
 68、80 アンテナ
 71 操作ボタン群
 72 制御信号変換回路
 73c アース電極
 74 生体アンプ
 75 A/Dコンバータ
 78、108 信号処理ユニット
 79 送信回路
 81 バッテリ
 82 受信回路
 84 画像制御回路
 85 表示情報出力回路
 86 音響制御回路
 87 音響情報出力回路
 88 電源
 90a、90b バッファ
 95a 第1のアクティブ電極
 95b 第2のアクティブ電極
 100 生体電位測定システム
 101、111、211 CPU
 102、112、212 RAM
 103、113、213 プログラム
 104、114、214 ROM
 105、115 バス
 150 装着部
 151 アーム
 200 シールド部材
 201 静電容量
 210 静電容量制御装置
 210a 静電容量制御部
 220 電源部
 S1、S2、S3、S4 スイッチ
1, 1001 electroencephalograph 1a operation input device 1b bioelectric potential measurement device 2 information processing device 3 display unit 3a measurement information display unit 3b biopotential waveform display unit 3c electrode display unit 3c1, 3c2, 3c3, 3c4, 3c5 electrode position display unit 3d Mode display unit 10 user 11 operation input unit 12 operation signal output unit 13 electrode unit 14 biopotential amplification unit 15 biopotential output unit 21 operation signal acquisition unit 22 biopotential acquisition unit 23 biopotential processing unit 26 application processing unit (application processing unit )
27 Display information output unit 28 Acoustic information output unit 41 Operation button 43 Operation surface 44 Outer surface 45 Mounting surface 46 Ear rest 47 Display 48 Measurement electrode 49 Reference electrode 51 Electrode (electrode for measuring biopotential)
68, 80 Antenna 71 Operation Button Group 72 Control Signal Conversion Circuit 73c Earthing Electrode 74 Biological Amplifier 75 A / D Converter 78, 108 Signal Processing Unit 79 Transmission Circuit 81 Battery 82 Reception Circuit 84 Image Control Circuit 85 Display Information Output Circuit 86 Sound Control Circuit 87 acoustic information output circuit 88 power supply 90a, 90b buffer 95a first active electrode 95b second active electrode 100 biopotential measurement system 101, 111, 211 CPU
102, 112, 212 RAM
103, 113, 213 programs 104, 114, 214 ROM
DESCRIPTION OF SYMBOLS 105, 115 Bus 150 Mounting part 151 Arm 200 Shield member 201 Capacitance 210 Capacitance control device 210a Capacitance control part 220 Power supply part S1, S2, S3, S4 switch

Claims (12)

  1.  生体電位を測定するための生体電位測定装置であって、
     生体に接触する測定電極と、
     前記測定電極で検出された生体電位を増幅する生体電位増幅部と、
     前記生体電位増幅部で増幅された生体電位を出力する生体電位出力部と、
     前記生体電位増幅部及び前記生体電位出力部の少なくとも一方に電力を供給する電源部と、
     前記測定電極の周囲をシールド部材として覆う配線が接続される容量電極を有する静電容量と、を備え、
     前記電源部の接地電位は、前記静電容量の接地電位と電気的に接続される
     生体電位測定装置。
    A biopotential measuring device for measuring a biopotential comprising:
    Measuring electrodes in contact with the living body,
    A biopotential amplification unit for amplifying a biopotential detected by the measurement electrode;
    A biopotential output unit that outputs the biopotential amplified by the biopotential amplification unit;
    A power supply unit for supplying power to at least one of the biopotential amplification unit and the biopotential output unit;
    And a capacitance having a capacitive electrode connected to a wire covering the periphery of the measurement electrode as a shield member,
    The ground potential of the power supply unit is electrically connected to the ground potential of the electrostatic capacitance.
  2.  さらに、複数の前記静電容量と、
     前記生体電位出力部の動作モードに応じて、前記複数の静電容量の容量値の合計を変更する静電容量制御部と、を備える
     請求項1に記載の生体電位測定装置。
    Furthermore, a plurality of said capacitances,
    The bioelectric potential measurement device according to claim 1, further comprising: a capacitance control unit that changes a sum of capacitance values of the plurality of capacitances according to an operation mode of the bioelectric potential output unit.
  3.  前記静電容量制御部は、
     前記複数の静電容量の容量値の合計を、前記電源部の電源オン時と、前記電源部の電源オフ時とに変更する
     請求項2に記載の生体電位測定装置。
    The capacitance control unit
    The bioelectric potential measurement device according to claim 2, wherein a sum of capacitance values of the plurality of electrostatic capacitances is changed between when the power supply unit is turned on and when the power supply unit is turned off.
  4.  前記静電容量制御部は、前記生体電位出力部が前記生体電位を出力する場合に、前記複数の静電容量の容量値の合計を変更する
     請求項2又は3に記載の生体電位測定装置。
    The bioelectric potential measurement device according to claim 2 or 3, wherein the capacitance control unit changes a sum of capacitance values of the plurality of capacitors when the bioelectric potential output unit outputs the bioelectric potential.
  5.  前記静電容量制御部は、
     前記測定電極で生体電位を検出し、検出した当該生体電位を前記生体電位出力部に出力させる通常モードと、前記測定電極で生体電位を検出し、検出した当該生体電位を、単位時間あたりに出力する当該生体電位のデータ量を前記通常モードよりも多く前記生体電位出力部に出力させる高速モードとを切り替えるモード制御をし、
     前記モード制御では、前記高速モードの方が前記通常モードよりも前記複数の静電容量の容量値の合計を高くする制御をする
     請求項2~4のいずれか1項に記載の生体電位測定装置。
    The capacitance control unit
    The bioelectric potential is detected by the measurement electrode, and the bioelectric potential is detected by the measurement electrode, and the bioelectric potential detected is output per unit time in the normal mode in which the bioelectric potential detected is output to the bioelectric potential output unit Mode control for switching to a high speed mode in which the amount of data of the biopotential concerned is output to the biopotential output unit more than the normal mode,
    The bioelectric potential measurement device according to any one of claims 2 to 4, wherein in the mode control, the high speed mode controls the sum of capacitance values of the plurality of capacitances to be higher than the normal mode. .
  6.  前記静電容量は、電気二重層容量である
     請求項1~5のいずれか1項に記載の生体電位測定装置。
    The bioelectric potential measurement device according to any one of claims 1 to 5, wherein the capacitance is an electric double layer capacitance.
  7.  生体電位を測定するための生体電位測定装置が備える複数の静電容量を制御する静電容量制御装置であって、
     前記生体電位測定装置は、
     生体に接触される測定電極と、
     前記測定電極で検出された生体電位を増幅する生体電位増幅部と、
     前記生体電位増幅部で増幅された生体電位を出力する生体電位出力部と、
     前記測定電極の周囲をシールド部材として覆う配線が接続される容量電極を有する複数の静電容量と、
     前記静電容量から電力の供給を受ける電源部と、を備え、
     前記静電容量制御装置は、前記電源部の接地電位が前記静電容量の接地電位と電気的に接続された前記生体電位測定装置における、前記複数の静電容量の容量値の合計を変更する静電容量制御部を備える
     静電容量制御装置。
    A capacitance control device for controlling a plurality of capacitances included in a biopotential measuring device for measuring a biopotential, comprising:
    The biopotential measuring device
    Measuring electrodes brought into contact with the living body,
    A biopotential amplification unit for amplifying a biopotential detected by the measurement electrode;
    A biopotential output unit that outputs the biopotential amplified by the biopotential amplification unit;
    A plurality of capacitances each having a capacitance electrode connected to a wire covering a periphery of the measurement electrode as a shield member;
    A power supply unit that receives supply of power from the capacitance;
    The capacitance control device changes the sum of capacitance values of the plurality of capacitances in the biopotential measuring device in which the ground potential of the power supply unit is electrically connected to the ground potential of the capacitance. A capacitance control device comprising a capacitance control unit.
  8.  請求項1~6のいずれか1項に記載の生体電位測定装置と、
     前記生体電位を測定される前記生体の頭部に装着される装着部と、を備え、
     前記測定電極は、前記生体の前記生体電位を測定する場合に、当該生体の頭部に接触されるように、前記装着部に配置される
     脳波計。
    The bioelectric potential measurement device according to any one of claims 1 to 6,
    And a mounting unit mounted on a head of the living body whose biopotential is to be measured.
    The measurement electrode is disposed on the mounting unit so as to be in contact with the head of the living body when the bioelectric potential of the living body is measured.
  9.  前記静電容量は、前記装着部を覆うように配置される
     請求項8に記載の脳波計。
    The electroencephalograph according to claim 8, wherein the capacitance is arranged to cover the mounting portion.
  10.  前記装着部は、前記静電容量で構成される
     請求項8に記載の脳波計。
    The electroencephalograph according to claim 8, wherein the mounting unit is configured by the capacitance.
  11.  生体電位を測定する生体電位測定装置が備える複数の静電容量の静電容量制御方法であって、
     前記生体電位測定装置は、
     生体に接触される測定電極と、
     前記測定電極で検出された生体電位を増幅する生体電位増幅部と、
     前記生体電位増幅部で増幅された生体電位を出力する生体電位出力部と、
     前記測定電極の周囲をシールド部材として覆う配線が接続される容量電極を有する静電容量と、
     前記静電容量から電力の供給を受ける電源部と、を備え、
     前記電源部の接地電位は、前記静電容量の接地電位と電気的に接続されており、
     前記静電容量制御方法は、
     前記電源部がオン状態であるかオフ状態であるかを判断する判断ステップと、
     前記判断ステップで判断された状態に応じて、前記複数の静電容量の容量値の合計を変更する制御ステップと、を含む
     静電容量制御方法。
    A capacitance control method for a plurality of capacitances included in a biopotential measuring device for measuring a biopotential, comprising:
    The biopotential measuring device
    Measuring electrodes brought into contact with the living body,
    A biopotential amplification unit for amplifying a biopotential detected by the measurement electrode;
    A biopotential output unit that outputs the biopotential amplified by the biopotential amplification unit;
    A capacitance having a capacitive electrode connected to a wire covering a periphery of the measurement electrode as a shield member;
    A power supply unit that receives supply of power from the capacitance;
    The ground potential of the power supply unit is electrically connected to the ground potential of the capacitance,
    The capacitance control method is
    A determination step of determining whether the power supply unit is in the on state or the off state;
    A control step of changing a sum of capacitance values of the plurality of capacitances in accordance with the state determined in the determination step.
  12.  生体電位を測定する生体電位測定装置が備える複数の静電容量の静電容量制御方法をコンピュータに実行させるためのプログラムであって、
     前記生体電位測定装置は、
     生体に接触される測定電極と、
     前記測定電極で検出された生体電位を増幅する生体電位増幅部と、
     前記生体電位増幅部で増幅された生体電位を出力する生体電位出力部と、
     前記測定電極の周囲をシールド部材として覆う配線が接続される容量電極を有する静電容量と、
     前記静電容量から電力の供給を受ける電源部と、を備え、
     前記電源部の接地電位は、前記静電容量の接地電位と電気的に接続されており、
     前記静電容量制御方法は、
     前記電源部がオン状態であるかオフ状態であるかを判断する判断ステップと、
     前記判断ステップで判断された状態に応じて、前記複数の静電容量の容量値の合計を変更する制御ステップと、を含み、前記静電容量制御方法をコンピュータに実行させるための
     プログラム。
    A program for causing a computer to execute a capacitance control method of a plurality of capacitances included in a biopotential measuring device for measuring a biopotential, comprising:
    The biopotential measuring device
    Measuring electrodes brought into contact with the living body,
    A biopotential amplification unit for amplifying a biopotential detected by the measurement electrode;
    A biopotential output unit that outputs the biopotential amplified by the biopotential amplification unit;
    A capacitance having a capacitive electrode connected to a wire covering a periphery of the measurement electrode as a shield member;
    A power supply unit that receives supply of power from the capacitance;
    The ground potential of the power supply unit is electrically connected to the ground potential of the capacitance,
    The capacitance control method is
    A determination step of determining whether the power supply unit is in the on state or the off state;
    A control step of changing the sum of capacitance values of the plurality of capacitances according to the state determined in the determination step, and a program for causing a computer to execute the capacitance control method.
PCT/JP2018/018025 2017-06-30 2018-05-10 Biopotential measurement device, electrostatic capacitance control device, electroencephalograph, electrostatic capacitance control method, and program WO2019003653A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019526656A JP6909968B2 (en) 2017-06-30 2018-05-10 Biopotential measuring device, electroencephalograph, capacitance control method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-129519 2017-06-30
JP2017129519 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019003653A1 true WO2019003653A1 (en) 2019-01-03

Family

ID=64741485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018025 WO2019003653A1 (en) 2017-06-30 2018-05-10 Biopotential measurement device, electrostatic capacitance control device, electroencephalograph, electrostatic capacitance control method, and program

Country Status (2)

Country Link
JP (1) JP6909968B2 (en)
WO (1) WO2019003653A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525063A (en) * 2004-12-23 2008-07-17 フラウンホファー‐ゲゼルシャフト・ツア・フェルダルング ・デア・アンゲバンテン・フォルシュング・エー・ファウ. Sensor system and method for measuring capacitance of bioelectromagnetic signals
JP2009543643A (en) * 2006-07-18 2009-12-10 ザ ユニバーシティ オブ サセックス Potential sensor
JP2014036862A (en) * 2012-08-17 2014-02-27 Nielsen Co (Us) Llc System and method for collecting and analyzing brain wave data

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031732A (en) * 1983-07-31 1985-02-18 日本光電工業株式会社 Electrode for living body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525063A (en) * 2004-12-23 2008-07-17 フラウンホファー‐ゲゼルシャフト・ツア・フェルダルング ・デア・アンゲバンテン・フォルシュング・エー・ファウ. Sensor system and method for measuring capacitance of bioelectromagnetic signals
JP2009543643A (en) * 2006-07-18 2009-12-10 ザ ユニバーシティ オブ サセックス Potential sensor
JP2014036862A (en) * 2012-08-17 2014-02-27 Nielsen Co (Us) Llc System and method for collecting and analyzing brain wave data

Also Published As

Publication number Publication date
JPWO2019003653A1 (en) 2020-01-09
JP6909968B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
CA2846338C (en) Eeg monitor with capacitive electrodes and method of monitoring brain waves
US8694084B2 (en) Non-contact biopotential sensor
JP6713482B2 (en) Active electrode, sensor system, and potential difference detection method
JP4711718B2 (en) ECG and electrode pads
US20190380597A1 (en) Device for monitoring activities of daily living and physiological parameters to determine a condition and diagnosis of the human brain and body
KR102026740B1 (en) Electrode for measuring bio-signal and a method thereof, and system for measuring bio-signal
CA2792498A1 (en) A two part eeg monitor with databus and method of communicating between the parts
Looney et al. Ear-EEG: user-centered and wearable BCI
US11134898B2 (en) Electronic apparatus, information processing apparatus, information processing method, and recording medium
Paul et al. Electrode-skin impedance characterization of in-ear electrophysiology accounting for cerumen and electrodermal response
JP2012055588A (en) Bioelectric signal detector
JP6909968B2 (en) Biopotential measuring device, electroencephalograph, capacitance control method and program
US20230302273A1 (en) Arrhythmia treatment device and method for treating arrhythmia of user by using same
WO2019225244A1 (en) Biological signal acquisition electrode, biological signal acquisition electrode pair, and biological signal measurement system
KR20190084679A (en) EEG measuring earphone detecting sleepiness while driving and the system using it
EP4059429B1 (en) Hearing aid with ear eeg recording
US10617309B2 (en) Electronic device, method for controlling electronic device, and recording medium
WO2019163374A1 (en) Biosignal measurement device, electroencephalograph, and control method
US20230225659A1 (en) Biosignal Sensing Device Using Dynamic Selection of Electrodes
JP2020018693A (en) Active electrode, electroencephalograph, control device, and control method
WO2019163375A1 (en) Biosignal measurement device, electroencephalograph, and control method
JP2017500978A (en) Active low impedance electrode
Sheeraz et al. A Wearable EEG Acquisition Device With Flexible Silver Ink Screen Printed Dry Sensors
JP2019024585A (en) Biological signal measuring device and control method of biological signal measuring device
CN116439714A (en) Biosignal sensing device using dynamic selection of electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822908

Country of ref document: EP

Kind code of ref document: A1