WO2019000647A1 - Method and apparatus for beam management - Google Patents

Method and apparatus for beam management Download PDF

Info

Publication number
WO2019000647A1
WO2019000647A1 PCT/CN2017/101378 CN2017101378W WO2019000647A1 WO 2019000647 A1 WO2019000647 A1 WO 2019000647A1 CN 2017101378 W CN2017101378 W CN 2017101378W WO 2019000647 A1 WO2019000647 A1 WO 2019000647A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
beams
indication
target
group
Prior art date
Application number
PCT/CN2017/101378
Other languages
French (fr)
Inventor
Qiaoling YU
Ting Zhou
Umer Salim
Xin XIA
Zhenhong Li
Original Assignee
Jrd Communication (Shenzhen) Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jrd Communication (Shenzhen) Ltd filed Critical Jrd Communication (Shenzhen) Ltd
Publication of WO2019000647A1 publication Critical patent/WO2019000647A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • Embodiments of the present disclosure generally relate to communication technology, and in particular relate to a method and apparatus for beam management.
  • the new radio (NR) system is envisaged to operate over a frequency range up to 100 GHz, which is considered as an important technology for capacity improvement.
  • NR new radio
  • beamforming is adopted as an essential technique and beam sweeping is proposed to improve cell coverage. Therefore, beams play an inevitable role in the NR system.
  • the beam sweeping is that a same signal/channel is at least carried by two beams, and is transmitted during at least two time unit of a period (e.g. sub-frame, timeslot or symbol) .
  • beam management i.e. beam level mobility
  • the beam management includes beam measurement, beam determination, beam reporting, etc.
  • each beam has a name to be distinguished and identified.
  • the user equipment has to report the name of the beam when executing the beam reporting, largely increasing reporting overhead.
  • the technical problem to be solved by the present disclosure is to provide a method and apparatus for beam management, such that the problem in the prior art may be solved, in which signaling overhead is increased by reporting names of beams when performing a beam report.
  • the present disclosure provides a method for beam management, and the method includes: selecting target beams from downlink beams transmitted by a base station; and; sending an uplink report to the base station on a reporting instant corresponding to at least one of the target beams.
  • the present disclosure provides a method for beam management, and the method includes: transmitting downlink beams to a user equipment; and receiving an uplink report from the user equipment on a reporting instant corresponding to at least one target beams, wherein the at least one target beams are selected from the downlink beams by the user equipment.
  • the present disclosure provides a method for beam management, and the method includes selecting target beams from downlink beams transmitted by a base station; . and sending an uplink report to the base station, wherein the uplink report comprises a bitmap indication, and a value of the bitmap indication is configured to indicate information of the target beams.
  • the present disclosure provides a method for beam management, and the method includes transmitting downlink beams to a user equipment; and receiving an uplink report from the user equipment, wherein the uplink report comprises a bitmap indication, a value of the bitmap indication is configured to indicate information of target beams, and the target beams are selected from the downlink beams by the user equipment.
  • the present disclosure provides an apparatus for beam management, and the apparatus includes a processor and a communication circuit, wherein the processor is connected to the communication circuit, and the processor is configured for executing programs to perform any one aforementioned method.
  • a relationship is defined between a target beam and a reporting instant thereof.
  • the UE sends an uplink report to the base station on the reporting instant of the target beam, and the base station can determine which target beam it is according to the instant on which it receives the uplink report even when the uplink report doesn’t include the name of the target beam.
  • FIG. 1 is a flow chart of a method for beam management according to a first embodiment of the present disclosure.
  • FIG. 2 is a flow chart of a method for beam management according to a second embodiment of the present disclosure.
  • FIG. 3 is a flow chart of a method for beam management according to a third embodiment of the present disclosure.
  • FIG. 4 is a flow chart of a method for beam management according to a fourth embodiment of the present disclosure.
  • FIG. 5 is a flow chart of a method for beam management according to a fifth embodiment of the present disclosure.
  • FIG. 6 is a flow chart of an example of priority-based scheduling according to the fifth embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an example of a bitmap indication according to a sixth embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another example of a bitmap indication according to a sixth embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another example of a bitmap indication according to a sixth embodiment of the present disclosure.
  • FIG. 10 is a flow chart of a method for beam management according to a seventh embodiment of the present disclosure.
  • FIG. 11 is a flow chart of a method for beam management according to an eighth embodiment of the present disclosure.
  • FIG. 12 is a flow chart of a method for beam management according to a ninth embodiment of the present disclosure.
  • FIG. 13 is a flow chart of a method for beam management according to a tenth embodiment of the present disclosure.
  • FIG. 14 is a schematic view of an apparatus for beam management according to a first embodiment of the present disclosure.
  • FIG. 15 is a schematic view of an apparatus for beam management according to a second embodiment of the present disclosure.
  • FIG. 16 is a schematic view of an apparatus for beam management according to a third embodiment of the present disclosure.
  • Fig. 1 is a flow chart of a method for beam management according to a first embodiment of the present disclosure.
  • the execution subject of the method for beam management in this embodiment may be a user equipment (UE) .
  • the user equipment may be fixed and also mobile, such as cellular phones, personal digital assistants (PDA) , wireless modems, tablet PCs, laptops, cordless phones, etc.
  • PDA personal digital assistants
  • the method for beam management may include the following blocks in this embodiment.
  • the UE selects target beams from downlink beams which are transmitted by a base station.
  • the base station may be connected to a core network, and has a wireless communication with a user equipment, providing communication coverage for a corresponding region.
  • the base station may be a macro base station, a micro base station, a pico base station or femtocell.
  • the base station may be called as the wireless base station, access point, B node, long term B node (eNodeB, eNB) , gNB or other suitable terms.
  • the base station may be configured to denote the CU and a plurality of DU controlled thereby.
  • the CU/DU architecture one CU is connected to and controls one or more DUs. Both CU and DU are used for bearing an air interface protocol stack.
  • the base station may also be one DU of the CU/DU architecture, or transmission point (TP) , transmission reception point (TRP) or radio remote head (RRH) of other similar architectures.
  • TP transmission point
  • TRP transmission reception point
  • RRH radio remote head
  • the downlink beams may comes from one or more DU/TRP/TP/RRH.
  • the UE measures the downlink beams and then selects one or more target beams according to the measurement result.
  • the measurement result may be signal quality of the downlink beams.
  • the UE may select the downlink beams of which measurement results are larger than a preset threshold as the target beams, and/or select a specified number of downlink beams with best measurement result as the target beams.
  • the UE transmits an uplink report to the base station on a reporting instant corresponding to at least one of the target beams.
  • the uplink report may not include a name of a target beam corresponding to the uplink report, such that signaling overhead is reduced.
  • the uplink report may include a measurement result of the target beam corresponding to the uplink report.
  • the UE transmits the uplink report periodically or aperiodically. For a same uplink report, the UE may only transmit once, and the UE may also transmit twice.
  • the UE may transmit one uplink report for each target beam respectively. In this way, each uplink report isn’t required to include information of other target beams except for the corresponding target beam.
  • the UE may also choose to adopt uplink reports of which the number is less than the total number of the target beams to report all the target beams. For example, if one uplink report includes information of all the target beams, there must be at least one uplink report which bears information of other target beams.
  • each downlink beam may be corresponding to a plurality of reporting instants which are distributed periodically.
  • the reporting instants for different downlink beams may be different.
  • one reporting instant may be for at least two of downlink beams.
  • the downlink beams are divided into at least two sweeping groups, downlink beams of the same sweeping group have the same reporting instant, while downlink beams of different sweeping group have different reporting instant.
  • the number of downlink beams of different sweeping groups may be same, or also different.
  • One sweeping group generally includes a plurality of adjacent beams. As beams in high-frequency are very narrow, the beams which are adjacent each other have same or similar fading characteristics, and have large probability to be simultaneously selected by the UE.
  • a relationship is defined between a target beam and a reporting instant thereof.
  • the UE sends an uplink report to the base station on the reporting instant of the target beam, and the base station can determine which target beam it is according to the instant on which it receives the uplink report even when the uplink report doesn’t include the name of the target beam.
  • Fig. 2 is a flow chart of a method for beam management according to a second embodiment of the present disclosure, which is based on the method for beam management in the first embodiment.
  • the relationship between downlink beams and reporting instants is defined in a beam mapping message sent by the base station to the UE.
  • the method for beam management may include the following blocks.
  • the UE receives the beam mapping message from the base station.
  • the base station may send the beam mapping message in a broadcast manner.
  • the beam mapping message bears the relationship between downlink beams and transmission instants and reporting instants thereof.
  • the beam mapping message may include the downlink beams and transmission instants and reporting instants thereof. It may also bears parameters needed to calculate the transmission instants and reporting instants. It may also include an identifier of the relationship, such that the UE can determine which relationship that the base station chooses from a plurality of known relationship.
  • the UE acquires the transmission instant and reporting instant of a downlink beam through the beam mapping message.
  • the UE can directly read the transmission instant and reporting instant of the downlink beam. If the beam mapping message bears parameters needed to calculate the transmission instant and reporting instant, the UE can calculate the transmission instant and reporting instant of the downlink beam according to the parameters. If the beam mapping message includes an identifier of a corresponding relationship, the UE look up the corresponding relationship corresponding to the identifier, thereby determining the transmission instant and reporting instant of the downlink beam.
  • the UE measures the downlink beam on the transmission instant corresponding to at least one downlink beams to obtain a measurement result.
  • the UE may measure a Beam Management Reference Signal (BMRS) that the downlink beam bears to obtain the measurement result.
  • BMRS Beam Management Reference Signal
  • the UE selects target beams from the downlink beams according the measurement result.
  • the UE sends the uplink report to the base station on the reporting instant corresponding to at least one target beams.
  • the downlink beams are periodically transmitted in the beam sweeping manner, it is discontinuous for the UE to transmit.
  • the UE miss one downlink beam it is needed to wait for the downlink beam to measure it until the downlink beam is transmitted next time, bringing unnecessary latency.
  • the UE can employ the beam mapping message to obtain the transmission instants of the downlink beams, such that it can measure a corresponding downlink beam on an exact transmission instant, avoiding unnecessary latency.
  • Fig. 3 is a flow chart of a method for beam management according to a third embodiment of the present disclosure, which is based on the method for beam management in the second embodiment.
  • the beam mapping message includes a beam mapping table, thus as shown in Fig. 3, the block S112 specifically includes the following block.
  • the UE calculates the transmission instants and reporting instants of the downlink beams according to the beam mapping table.
  • the beam mapping table may include at least one of the following: a sweeping period, a sweeping instant, current status, uplink/downlink switching period and uplink/downlink switching mode of at least one downlink beams.
  • the sweeping period is used for representing an activating period of the downlink beam.
  • the sweeping instant means that the downlink beams are activated at which time unit in a transmission period.
  • the downlink beam may be in an uplink status or downlink status when being activated.
  • the base station will transmit the downlink beam, and when in the uplink status, the UE may transmit an uplink report regarding the downlink beam.
  • the uplink/downlink switching period is used to denote a switching period of a downlink beam that is switched between the uplink status and the downlink status, which is applicable for a case in which the uplink and downlink status are regularly arranged, such as uplink-to-downlink, uplink-to-uplink-to-downlink-to-downlink and the like.
  • the uplink/downlink switching mode is used to indicate a specific arrangement of uplink status and downlink status of a downlink beam. A regular or irregular arrangement of uplink status and downlink status can be employed.
  • the beam mapping table includes a sweeping period, a sweeping instant, current status, uplink/downlink switching period of K downlink beams.
  • D in the column of the current status as shown in table 1 indicates the downlink status
  • U indicates the uplink status, which is only for illustrative purpose.
  • the sweeping periods of different downlink beams may be the same, or different. In order to avoid conflicts that happen to the reporting instants of different downlink beams, all the sweeping periods are summarized to obtain a summary period, and the summary period is divided by all the sweeping periods. Sweeping instants which different downlink beams occupy in the summary period may be different.
  • the k th downlink beam when its current status is uplink, its transmission instant is T k +m*P k +2n*S k , and its reporting instant is T k +m*P k + (2n+1) *S k .
  • its transmission instant is T k +m*P k + (2n+1) *S k
  • its reporting instant is T k +m*P k +2n*S k .
  • n is an integer which is greater than or equal to 0.
  • a duration of the uplink/downlink switching period is generally integer multiple of the sweeping period.
  • the value of the uplink/downlink switching period is its actual duration.
  • the actual value of the uplink/downlink switching period may also be a value obtained through dividing its actual duration by the sweeping period.
  • K downlink beams are divided into a plurality of sweeping groups. Downlink beams of each sweeping group have the same transmission instant and reporting instant.
  • the beam mapping table includes a sweeping period, a sweeping instant, current status, and uplink/downlink switching period of each sweeping group.
  • the transmission instant and reporting instant of each sweeping group are calculated in the same way as the transmission instant and reporting instant of a single downlink beam in table 1 are calculated, which will not be described here.
  • the beam mapping table includes a sweeping period, a sweeping instant, current status, and uplink/downlink switching mode of K downlink beams.
  • H k ⁇ h k1 , h k2 , ...h kj ⁇
  • a value of each element in the H indicates that a corresponding status is uplink /downlink.
  • the transmission instant is T k + (q+n*j) *P k
  • the reporting instant is Tk+ (r+n*j) *Pk.
  • n is a integer which is greater than or equal to 0.
  • a status corresponding to h kq is downlink
  • a status corresponding to h kr is uplink.
  • the uplink/downlink switching mode specifically defines the uplink/downlink statuses of downlink beams.
  • several uplink/downlink switching modes may be pre-defined.
  • Each uplink/downlink switching mode has an identifier, then the uplink/downlink switching mode in the beam mapping table may be the identifier of a specific switching mode.
  • downlink beams are divided into a plurality of sweeping groups, the transmission instants and reporting instants thereof are calculated in the same as the transmission instant and reporting instant of a single downlink beam in table 3 are calculated, which will not be described here.
  • Various parameters in the beam mapping table have a default value. When one parameters of all the beams or sweeping group are all being default values, then the parameter will be omitted.
  • the calculation of the transmission instant and reporting instant of downlink beams or sweeping groups are for illustrative purpose, and is not meant to be limitation of the present disclosure. In fact, other ways may be adopted to calculate them.
  • Fig. 4 is a flow chart of a method for beam management according to a fourth embodiment of the present disclosure, which is based on the method for beam management in the second embodiment.
  • the beam mapping message includes a beam mapping table identifier, thus as shown in Fig. 4, the block S112 specifically includes the following blocks.
  • the UE looks up a beam mapping table according to the beam mapping table identifier.
  • a set of beam mapping tables may be pre-defined by the base station and the UE.
  • the set of beam mapping tables includes a plurality beam mapping tables, and each beam mapping table has a corresponding identifier (i.e., the beam mapping table identifier) .
  • the UE looks up among the pre-defined set of beam mapping tables with the received beam mapping table identifier to obtain beam mapping table corresponding to the beam mapping table identifier.
  • the UE calculates the transmission instants and reporting instants of the downlink beams.
  • the base station only requires to transmit the beam mapping table identifier instead of a whole beam mapping table, reducing signaling overhead.
  • Fig. 5 is a flow chart of a method for beam management according to a fifth embodiment of the present disclosure, which is based on the method for beam management in the first embodiment.
  • the UE transmits the uplink reports in a reporting order to the base station.
  • the method for beam management may include the following blocks.
  • the UE receives the reporting order from the base station.
  • the reporting order is determined by the base station with a pre-determined scheduling strategy.
  • the scheduling strategy may be polling, priority-based and the like.
  • the UE selects the target beams from the downlink beams transmitted by the base station.
  • the execution sequence of the block S122 and S121 is only illustrative. In fact, they may be executed simultaneously. Also, the block S122 is executed before the block S121.
  • the UE transmits uplink reports to the base station on the Nth reporting instant after selecting the target beams.
  • the value of N is determined by the reporting order. For example, when the scheduling strategy is priority-based, the reporting order is a priority of the UE, and then lower priority is, greater N is.
  • the transmission instant of beam 1 is T1 and T3, and its reporting instant is T2 and T4.
  • Both UEs 1 and 2 measure the beam 1 on the T1 to obtain measurement results which are greater a preset threshold, and select the beam 1 as the target beam.
  • the priority of the UE 1 is higher and that of the UE 2, then UE 1 sends an uplink report on the T2, and UE 2 transmits an uplink report on the T4.
  • different UEs which select a same target beam, can respectively send its uplink reports in time-division mode.
  • interface among UEs can be reduced.
  • the uplink report can load with mark information of its own.
  • the base station can distinguish different UEs with the mark information.
  • the uplink report may directly include the mark information.
  • the uplink report may be scrambled and /or encrypted with the mark information.
  • a method for beam management according to a sixth embodiment of the present disclosure is based on the method for beam management in the first embodiment.
  • the uplink report includes a bitmap indication.
  • the value of the bitmap indication is used for representing information of the target beam (s) .
  • the bitmap indication may carry information of one or more target beams.
  • the names of target beams are replaced by the bitmap indication to reduce signaling overhead for reporting.
  • the bitmap indication may carry information of at least two target beams, such as information of all the target beams. Therefore, the number of uplink reports which are needed to be transmitted can be reduced, further reducing signaling overhead for reporting.
  • the bitmap indication may also be adopted to represent information of the target beam.
  • the bitmap indication may be a binary number. Each bit of the bitmap indication indicates one downlink beam, and a value of each bit indicates whether its corresponding downlink beam is a target beam or not.
  • the mapping relationship between each bit of the bitmap indication and downlink beams is pre-defined. After obtaining the bitmap indication, the base station determines target beams according to its value combined with the mapping relationship between the bitmap indication and downlink beams.
  • the total number of downlink beams is K, where the (k+1) th , (k-1) th and (K-1) th downlink beams are target beams.
  • the bitmap indication is a binary number with K bits. When one bit is 1, it indicates that the corresponding downlink beam is a target beam, and when it is 0, it indicates that the corresponding downlink beam isn’t a target beam.
  • the value of the bitmap indication is ⁇ 00...0110...10 ⁇ .
  • Downlink beams may be divided into at least two groups.
  • the groups herein may be same with the sweeping groups described in above-mentioned embodiments. Also they may be different from the sweeping groups described in above-mentioned embodiments.
  • the bitmap indication is needed to carry both information of a group which target beams belong to and information of beams in a group.
  • the information of the group may be indicated by a similar binary number or a group name.
  • the information of the beams in the group may be indicated by a similar binary number.
  • downlink beams are divided into G groups, where the (k g +1) th and (k g +2) th downlink beams in the g th group, and (k g+1 ) th , (k g+1 +2) th and (k g+1 +3) th downlink beams are target beams.
  • the bitmap indication may include a group indication (denoted by a dashed line) and a beam indication (denoted by a solid line) .
  • the group indication is a binary number with G bits. When one bit is 1, it indicates that the corresponding group includes target beam (s) , and when it is 0, it indicates that the corresponding group doesn’t include target beam (s) . Thus, the value of the group indication is ⁇ 0...11...0 ⁇ .
  • the beam indication is a binary number with (K g +K g+1 ) bits, where K g denotes a total number of beams in the g th group, and K g+1 denotes a total number of beams in the (g+1) th group.
  • the value of the beam indication is ⁇ 00...0110...000...1011...0 ⁇ .
  • Downlink beams corresponding to the beam indications belong to the group which includes target beam (s) .
  • downlink beams corresponding to the beam indications in this example are only included in the g th and (g+1) th groups.
  • downlink beams are divided into G groups, where the (k g +1) th and (k g +2) th downlink beams in the g th group, and (k g+1 ) th (k g+1 +2) th and (k g+1 +3) th downlink beams are target beams.
  • the bitmap indication may include a group name and a beam indication.
  • the groups corresponding to the group names includes target beam (s) , i.e., the g th and (g+1) th groups.
  • the beam indication includes two binary numbers, one of which has K g bits, the other of which has K g+1 , where K g denotes a total number of beams in the g th group, and K g+1 denotes a total number of beams in the (g+1) th group.
  • K g denotes a total number of beams in the g th group
  • K g+1 denotes a total number of beams in the (g+1) th group.
  • the values of the beam indications are respectively ⁇ 00...0110...0 ⁇ and ⁇ 00...1011...0 ⁇
  • the beam indications of a group are located after the group name thereof.
  • all group names may be set together and all beam indications of groups are set together.
  • the corresponding relationship between the value of each bit of the bitmap indication and whether corresponding downlink beam is a target beam or not, or the corresponding relationship between the value of each bit of the bitmap indication and whether a corresponding group includes target beam (s) or not is only for illustrative purpose. It may actually also be set in turn. That is, the value as 0 denotes that the corresponding downlink beam is a target beam or a group includes target beam (s) , and the value as 1 denotes that the corresponding downlink beam isn’t a target beam or a group doesn’t include target beam (s) .
  • uplink report may be transmitted on a reporting instant corresponding one target beam or some target beams, bit (s) corresponding to the target beam or these target beams of the bitmap indication may be omitted. If downlink beams are divided into groups, a group which the target beam belong to doesn’t a target beam which isn’t determined by other base stations via the reporting instant, then the group may be omitted.
  • Fig. 10 is a flow chart of a method for beam management according to a seventh embodiment of the present disclosure.
  • the execution subject of the method for beam management in this embodiment may be a base station.
  • the method for beam management may include the following blocks in this embodiment.
  • the base station transmits downlink beams to a UE.
  • the base station generally transmits the downlink beams in a beam sweeping manner.
  • frequencies of the downlink beams are higher, such as 100 GHz, and bandwidth of the downlink beams is narrower.
  • the base station receives an uplink report from the UE on a reporting instant corresponding to at least one target beams.
  • the target beams are selected from the downlink beams by the UE.
  • the UE measures the downlink beams and then selects one or more target beams according to the measurement result.
  • the measurement result may be signal quality of the downlink beams.
  • the UE may select the downlink beams of which measurement results are larger than a preset threshold as the target beams, and/or select a specified number of downlink beams with best measurement result as the target beams.
  • the uplink report may not include a name of a target beam corresponding to the uplink report, such that signaling overhead is reduced.
  • the uplink report may include a measurement result of the target beam corresponding to the uplink report.
  • the UE may transmit one uplink report for each target beam respectively. In this way, each uplink report isn’t required to include information of other target beams except for its corresponding target beam.
  • the UE may also choose to adopt uplink reports of which the number is less than the total number of the target beams to report all the target beams. For example, if one uplink report includes information of all the target beams, there must be at least one of uplink report which bears information of other target beams.
  • each downlink beam may be corresponding to a plurality of reporting instants which are distributed periodically.
  • the reporting instants for different downlink beams may be different.
  • one reporting instant may be for at least two of downlink beams.
  • the downlink beams are divided into at least two sweeping groups, downlink beams of the same sweeping group have the same reporting instant, while downlink beams of different sweeping group have different reporting instant.
  • the number of downlink beams of different sweeping groups may be same, or also different.
  • One sweeping group generally includes a plurality of adjacent beams. As beams in high-frequency are very narrow, the beams which are adjacent each other have same or similar fading characteristics, and have large probability to be simultaneously selected by the UE.
  • the base station may define the corresponding relationship between the downlink beams and reporting instants via a beam mapping message sent to the UE, which is referred to description in the second embodiment.
  • the beam mapping message may include a beam mapping table or a beam mapping table identifier, which is provided for the UE to calculate transmission instants and reporting instants of the downlink beams, which is referred to description in the third and fourth embodiments and will not be described here.
  • a relationship is defined between a target beam and a reporting instant thereof.
  • the UE sends an uplink report to the base station on the reporting instant of the target beam, and the base station can determine which target beam it is according to the instant on which it receives the uplink report even when the uplink report doesn’t include the name of the target beam.
  • Fig. 11 is a flow chart of a method for beam management according to an eighth embodiment of the present disclosure, which is based on the method for beam management in the seventh embodiment. As shown in Fig. 11, the method for beam management may further include the following block before the block S22.
  • the base station sends a reporting order to the UE.
  • the UE transmits uplink reports to the base station on the Nth reporting instant after selecting the target beams.
  • the value of N is determined by the reporting order.
  • the reporting order is determined by the base station with a pre-determined scheduling strategy.
  • the scheduling strategy may be polling, priority-based and the like. For example, when the scheduling strategy is priority-based, the reporting order is a priority of the UE, and then the lower priority is, the greater N is. A specific example can be referred in Fig. 6 and description thereof.
  • different UEs which select a same target beam, can respectively send its uplink reports in time-division mode.
  • interface among UEs can be reduced.
  • the uplink report can load with mark information of its own.
  • the base station can distinguish different UEs with the mark information, so as to code division multiplexing is achieved.
  • the uplink report may directly include the mark information. Also, the uplink report may be scrambled and /or encrypted with the mark information.
  • Fig. 12 is a flow chart of a method for beam management according to a ninth embodiment of the present disclosure.
  • the execution subject of the method for beam management in this embodiment may be a user equipment (UE) .
  • UE user equipment
  • the UE selects target beams from downlink beams which are transmitted by a base station.
  • the UE measures the downlink beams and then selects one or more target beams according to the measurement result.
  • the measurement result may be signal quality of the downlink beams.
  • the UE may select the downlink beams of which measurement results are larger than a preset threshold as the target beams, and/or select a specified number of downlink beams with best measurement result as the target beams.
  • the UE transmits an uplink report to the base station, where the uplink report includes a bitmap indication and a value of the bitmap indication is configured to indicate information of the target beams.
  • the UE transmits the uplink report periodically or aperiodically. In this embodiment, when the UE sends the uplink report is not limited.
  • the uplink report may not include a name of a target beam corresponding to the uplink report, such that signaling overhead is reduced.
  • the uplink report may include a measurement result of the target beam corresponding to the uplink report.
  • the bitmap indication may carry information of one or more target beams.
  • the bitmap indication may carry information of at least two target beams, such as information of all the target beams. Therefore, the number of uplink reports which are needed to be transmitted can be reduced, further reducing signaling overhead for reporting.
  • the bitmap indication may also be adopted to represent information of the target beam.
  • the bitmap indication may be a binary number. Each bit of the bitmap indication indicates one downlink beam, and a value of each bit indicates whether its corresponding downlink beam is a target beam or not.
  • the mapping relationship between each bit of the bitmap indication and downlink beams is pre-defined. After obtaining the bitmap indication, the base station determines target beams according to its value combined with the mapping relationship between the bitmap indication and downlink beams.
  • Downlink beams may be divided into at least two groups.
  • the bitmap indication is needed to carry both information of a group which target beams belong to and information of beams in a group.
  • the information of the group may be indicated by a similar binary number or a group name.
  • the information of the beams in the group may be indicated by a similar binary number.
  • the names of target beams can be replaced by the bitmap indication to reduce signaling overhead for reporting. That is, the uplink report cannot have the names of the target beams. Thus the signaling overhead can be reduced.
  • Fig. 13 is a flow chart of a method for beam management according to a tenth embodiment of the present disclosure.
  • the execution subject of the method for beam management in this embodiment may be a base station.
  • the method for beam management may include the following blocks in this embodiment.
  • the base station transmits downlink beams to a UE.
  • the base station generally transmits the downlink beams in a beam sweeping manner.
  • the base station receives an uplink report from the UE, where the uplink report includes a bitmap indication, and a value of the bitmap indication is configured to indicate information of the target beams.
  • the target beams are selected from the downlink beams by the UE.
  • the UE measures the downlink beams and then selects one or more target beams according to the measurement result.
  • the measurement result may be signal quality of the downlink beams.
  • the UE may select the downlink beams of which measurement results are larger than a preset threshold as the target beams, and/or select a specified number of downlink beams with best measurement result as the target beams.
  • the uplink report may not include a name of a target beam corresponding to the uplink report, such that signaling overhead is reduced.
  • the uplink report may include a measurement result of the target beam corresponding to the uplink report.
  • the bitmap indication may carry information of one or more target beams.
  • the bitmap indication may carry information of at least two target beams, such as information of all the target beams. Therefore, the number of uplink reports which are needed to be transmitted can be reduced, further reducing signaling overhead for reporting.
  • the bitmap indication may also be adopted to represent information of the target beam.
  • the bitmap indication may be a binary number. Each bit of the bitmap indication indicates one downlink beam, and a value of each bit indicates whether its corresponding downlink beam is a target beam or not.
  • the mapping relationship between each bit of the bitmap indication and downlink beams is pre-defined. After obtaining the bitmap indication, the base station determines target beams according to its value combined with the mapping relationship between the bitmap indication and downlink beams.
  • Downlink beams may be divided into at least two groups.
  • the bitmap indication is needed to carry both information of a group which target beams belong to and information of beams in a group.
  • the information of the group may be indicated by a similar binary number or a group name.
  • the information of the beams in the group may be indicated by a similar binary number.
  • the names of target beams can be replaced by the bitmap indication to reduce signaling overhead for reporting. That is, the uplink report cannot have the names of the target beams. Thus the signaling overhead can be reduced.
  • Fig. 14 is schematic view of an apparatus for beam management according to a first embodiment of the present disclosure.
  • the apparatus for beam management includes a processor 110 and a communication circuit 120.
  • the processor 110 may be connected to the communication circuit 120.
  • the communication circuit 120 may be configured for transmitting and receiving data, which is an interface for communication between the apparatus for beam management and other communication devices.
  • the processor 110 may be configured for performing programs to achieve any one of the methods for beam management in accordance with the first to sixth and ninth embodiment or a method provided with arbitrary and non-conflicting combination of the methods for beam management therein.
  • the apparatus for beam management in the present embodiment may be a user equipment, and also be a separate component integrated in a user equipment, such as a base band chip.
  • Fig. 15 is schematic view of an apparatus for beam management according to a second embodiment of the present disclosure.
  • the apparatus for beam management includes a processor 210 and a communication circuit 220.
  • the processor 210 may be connected to the communication circuit 220.
  • the communication circuit 220 may be configured for transmitting and receiving data, which is an interface for communication between the beam-based communication apparatus and other communication devices.
  • the processor 210 may be configured for performing programs to achieve any one of the methods for beam management in accordance with the seventh to eighth and tenth embodiment or a method provided with arbitrary and non-conflicting combination of the methods for beam management therein.
  • the apparatus for beam management in the present embodiment may be a base station, and also be a separate component integrated in a base station, such as a base band board.
  • Fig. 16 is schematic view of an apparatus for beam management according to a third embodiment of the present disclosure.
  • the apparatus for beam management includes a memory 310.
  • the memory 310 is used to store instructions therein. When the instructions is performed, any one of the methods for beam management in accordance with the first to sixth and ninth embodiment, or seventh to eighth and tenth embodiment, or a method provided with arbitrary and non-conflicting combination of the beam-based communication methods therein may be achieved.
  • the memory 310 may include a Read-Only Memory (ROM) , a Random Access Memory (RAM) , a Flash Memory, hard disk, optical disk, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Flash Memory hard disk, optical disk, etc.
  • each part of each apparatus for beam management and the feasible expansion can be referred to the description of the corresponding method for beam management according to embodiments of the present disclosure, and be no longer repeated to describe herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus for beam management are disclosed. The method for beam management includes: selecting target beams from downlink beams transmitted by a base station; and sending an uplink report to the base station on a reporting instant corresponding to at least one of the target beams.

Description

METHOD AND APPARATUS FOR BEAM MANAGEMENT TECHNICAL FIELD
Embodiments of the present disclosure generally relate to communication technology, and in particular relate to a method and apparatus for beam management.
BACKGROUND
The new radio (NR) system is envisaged to operate over a frequency range up to 100 GHz, which is considered as an important technology for capacity improvement. However, there come challenges of fragile radio link and high penetration loss. To address these problems, beamforming is adopted as an essential technique and beam sweeping is proposed to improve cell coverage. Therefore, beams play an inevitable role in the NR system. The beam sweeping is that a same signal/channel is at least carried by two beams, and is transmitted during at least two time unit of a period (e.g. sub-frame, timeslot or symbol) .
To meet requirements of system performance, beam management (i.e. beam level mobility) is required between a user equipment and a base station to execute a series of processes to acquire and maintain beams for uplink and downlink transmission. The beam management includes beam measurement, beam determination, beam reporting, etc.
As the beam width is narrow in high frequency, the number of beams is required to be very large for the purpose of good coverage area. In prior art, each beam has a name to be distinguished and identified. The user equipment has to report the name of the beam when executing the beam reporting, largely increasing reporting overhead.
SUMMARY
The technical problem to be solved by the present disclosure is to provide a method and apparatus for beam management, such that the problem in the prior art may be solved, in which signaling overhead is increased by reporting names of beams when performing a beam report.
In order to solve the above-mentioned problems, in accordance with a first aspect, the present disclosure provides a method for beam management, and the method includes: selecting target beams from downlink beams transmitted by a base station; and; sending an uplink report to the base station on a reporting instant corresponding to at least one of the target beams.
In order to solve the above-mentioned problems, in accordance with a second aspect, the present disclosure provides a method for beam management, and the method includes: transmitting downlink beams to a user equipment; and receiving an uplink report from the user equipment on a reporting instant corresponding to at least one target beams, wherein the at least one target beams are selected from the downlink beams by the user equipment.
In order to solve the above-mentioned problems, in accordance with a third aspect, the present disclosure provides a method for beam management, and the method includes selecting target beams from downlink beams transmitted by a base station; . and sending an uplink report to the base station, wherein the uplink report comprises a bitmap indication, and a value of the bitmap indication is configured to indicate information of the target beams.
In order to solve the above-mentioned problems, in accordance with a fourth aspect, the present disclosure provides a method for beam management, and the method includes transmitting downlink beams to a user equipment; and receiving an uplink report from the user equipment, wherein the uplink report comprises a bitmap  indication, a value of the bitmap indication is configured to indicate information of target beams, and the target beams are selected from the downlink beams by the user equipment.
In order to solve the above-mentioned problems, in accordance with a fifth aspect, the present disclosure provides an apparatus for beam management, and the apparatus includes a processor and a communication circuit, wherein the processor is connected to the communication circuit, and the processor is configured for executing programs to perform any one aforementioned method.
The subsequent advantages of the present disclosure may be achieved: a relationship is defined between a target beam and a reporting instant thereof. The UE sends an uplink report to the base station on the reporting instant of the target beam, and the base station can determine which target beam it is according to the instant on which it receives the uplink report even when the uplink report doesn’t include the name of the target beam.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flow chart of a method for beam management according to a first embodiment of the present disclosure.
FIG. 2 is a flow chart of a method for beam management according to a second embodiment of the present disclosure.
FIG. 3 is a flow chart of a method for beam management according to a third embodiment of the present disclosure.
FIG. 4 is a flow chart of a method for beam management according to a fourth embodiment of the present disclosure.
FIG. 5 is a flow chart of a method for beam management according to a fifth embodiment of the present disclosure.
FIG. 6 is a flow chart of an example of priority-based scheduling according to the fifth embodiment of the present disclosure.
FIG. 7 is a schematic diagram of an example of a bitmap indication according to a sixth embodiment of the present disclosure.
FIG. 8 is a schematic diagram of another example of a bitmap indication according to a sixth embodiment of the present disclosure.
FIG. 9 is a schematic diagram of another example of a bitmap indication according to a sixth embodiment of the present disclosure.
FIG. 10 is a flow chart of a method for beam management according to a seventh embodiment of the present disclosure.
FIG. 11 is a flow chart of a method for beam management according to an eighth embodiment of the present disclosure.
FIG. 12 is a flow chart of a method for beam management according to a ninth embodiment of the present disclosure.
FIG. 13 is a flow chart of a method for beam management according to a tenth embodiment of the present disclosure.
FIG. 14 is a schematic view of an apparatus for beam management according to a first embodiment of the present disclosure.
FIG. 15 is a schematic view of an apparatus for beam management according to a second embodiment of the present disclosure.
FIG. 16 is a schematic view of an apparatus for beam management according to a third embodiment of the present disclosure.
DETAILED DESCRIPTION
Fig. 1 is a flow chart of a method for beam management according to a first embodiment of the present disclosure. The execution subject of the method for beam  management in this embodiment may be a user equipment (UE) . The user equipment may be fixed and also mobile, such as cellular phones, personal digital assistants (PDA) , wireless modems, tablet PCs, laptops, cordless phones, etc. As shown in FIG. 1, the method for beam management may include the following blocks in this embodiment.
In block S11: the UE selects target beams from downlink beams which are transmitted by a base station.
The base station may be connected to a core network, and has a wireless communication with a user equipment, providing communication coverage for a corresponding region. The base station may be a macro base station, a micro base station, a pico base station or femtocell. In some embodiments, the base station may be called as the wireless base station, access point, B node, long term B node (eNodeB, eNB) , gNB or other suitable terms.
When the wireless access network is a central unit (CU) /distributed unit (DU) architecture or some other similar architectures, the base station may be configured to denote the CU and a plurality of DU controlled thereby. In the CU/DU architecture, one CU is connected to and controls one or more DUs. Both CU and DU are used for bearing an air interface protocol stack.
The base station may also be one DU of the CU/DU architecture, or transmission point (TP) , transmission reception point (TRP) or radio remote head (RRH) of other similar architectures.
When the wireless access network is the CU /DU architecture or other similar architectures, the downlink beams may comes from one or more DU/TRP/TP/RRH.
The UE measures the downlink beams and then selects one or more target beams according to the measurement result. The measurement result may be signal  quality of the downlink beams. The UE may select the downlink beams of which measurement results are larger than a preset threshold as the target beams, and/or select a specified number of downlink beams with best measurement result as the target beams.
In block S12: the UE transmits an uplink report to the base station on a reporting instant corresponding to at least one of the target beams.
The uplink report may not include a name of a target beam corresponding to the uplink report, such that signaling overhead is reduced. In addition, the uplink report may include a measurement result of the target beam corresponding to the uplink report.
The UE transmits the uplink report periodically or aperiodically. For a same uplink report, the UE may only transmit once, and the UE may also transmit twice.
If the number of the target beam is greater than 1, the UE may transmit one uplink report for each target beam respectively. In this way, each uplink report isn’t required to include information of other target beams except for the corresponding target beam. The UE may also choose to adopt uplink reports of which the number is less than the total number of the target beams to report all the target beams. For example, if one uplink report includes information of all the target beams, there must be at least one uplink report which bears information of other target beams.
There is a relationship between the downlink beams and the reporting instants, and the same relationship is adopted between the base station and the UE. As the base station generally transmits downlink beams periodically in the beam sweeping manner, each downlink beam may be corresponding to a plurality of reporting instants which are distributed periodically. For convenience to distinguish different beams, the reporting instants for different downlink beams may be different. Further, one reporting instant may be for at least two of downlink beams.
In one embodiment, the downlink beams are divided into at least two sweeping groups, downlink beams of the same sweeping group have the same reporting instant, while downlink beams of different sweeping group have different reporting instant. The number of downlink beams of different sweeping groups may be same, or also different. One sweeping group generally includes a plurality of adjacent beams. As beams in high-frequency are very narrow, the beams which are adjacent each other have same or similar fading characteristics, and have large probability to be simultaneously selected by the UE.
With the implementation of the above embodiment, a relationship is defined between a target beam and a reporting instant thereof. The UE sends an uplink report to the base station on the reporting instant of the target beam, and the base station can determine which target beam it is according to the instant on which it receives the uplink report even when the uplink report doesn’t include the name of the target beam.
Fig. 2 is a flow chart of a method for beam management according to a second embodiment of the present disclosure, which is based on the method for beam management in the first embodiment. The relationship between downlink beams and reporting instants is defined in a beam mapping message sent by the base station to the UE. The same details with that in the first embodiment will not be described again herein. As shown in Fig. 2, the method for beam management may include the following blocks.
In block S111: the UE receives the beam mapping message from the base station.
The base station may send the beam mapping message in a broadcast manner. The beam mapping message bears the relationship between downlink beams and transmission instants and reporting instants thereof.
The beam mapping message may include the downlink beams and transmission instants and reporting instants thereof. It may also bears parameters needed to calculate the transmission instants and reporting instants. It may also include an identifier of the relationship, such that the UE can determine which relationship that the base station chooses from a plurality of known relationship.
In block S112: the UE acquires the transmission instant and reporting instant of a downlink beam through the beam mapping message.
If the beam mapping message includes a downlink beam and transmission instant and reporting instant thereof, the UE can directly read the transmission instant and reporting instant of the downlink beam. If the beam mapping message bears parameters needed to calculate the transmission instant and reporting instant, the UE can calculate the transmission instant and reporting instant of the downlink beam according to the parameters. If the beam mapping message includes an identifier of a corresponding relationship, the UE look up the corresponding relationship corresponding to the identifier, thereby determining the transmission instant and reporting instant of the downlink beam.
In block S113: the UE measures the downlink beam on the transmission instant corresponding to at least one downlink beams to obtain a measurement result.
The UE may measure a Beam Management Reference Signal (BMRS) that the downlink beam bears to obtain the measurement result.
In block S114: the UE selects target beams from the downlink beams according the measurement result.
In block S115: the UE sends the uplink report to the base station on the reporting instant corresponding to at least one target beams.
As the downlink beams are periodically transmitted in the beam sweeping manner, it is discontinuous for the UE to transmit. When the UE miss one downlink  beam, it is needed to wait for the downlink beam to measure it until the downlink beam is transmitted next time, bringing unnecessary latency.
However, in this embodiment, the UE can employ the beam mapping message to obtain the transmission instants of the downlink beams, such that it can measure a corresponding downlink beam on an exact transmission instant, avoiding unnecessary latency.
Fig. 3 is a flow chart of a method for beam management according to a third embodiment of the present disclosure, which is based on the method for beam management in the second embodiment. The beam mapping message includes a beam mapping table, thus as shown in Fig. 3, the block S112 specifically includes the following block.
In block S1120: the UE calculates the transmission instants and reporting instants of the downlink beams according to the beam mapping table.
The beam mapping table may include at least one of the following: a sweeping period, a sweeping instant, current status, uplink/downlink switching period and uplink/downlink switching mode of at least one downlink beams. The sweeping period is used for representing an activating period of the downlink beam. The sweeping instant means that the downlink beams are activated at which time unit in a transmission period. The downlink beam may be in an uplink status or downlink status when being activated. When a downlink beam is in the downlink status, the base station will transmit the downlink beam, and when in the uplink status, the UE may transmit an uplink report regarding the downlink beam. The uplink/downlink switching period is used to denote a switching period of a downlink beam that is switched between the uplink status and the downlink status, which is applicable for a case in which the uplink and downlink status are regularly arranged, such as uplink-to-downlink, uplink-to-uplink-to-downlink-to-downlink and the like. The  uplink/downlink switching mode is used to indicate a specific arrangement of uplink status and downlink status of a downlink beam. A regular or irregular arrangement of uplink status and downlink status can be employed.
Now examples are given to illustrate the beam mapping table and how to calculate the transmission instant and reporting instant of a downlink beam.
In one example, as shown in table 1, the beam mapping table includes a sweeping period, a sweeping instant, current status, uplink/downlink switching period of K downlink beams.
Table 1
Figure PCTCN2017101378-appb-000001
D in the column of the current status as shown in table 1 indicates the downlink status, and U indicates the uplink status, which is only for illustrative purpose.
The sweeping periods of different downlink beams may be the same, or different. In order to avoid conflicts that happen to the reporting instants of different downlink beams, all the sweeping periods are summarized to obtain a summary period, and the summary period is divided by all the sweeping periods. Sweeping instants which different downlink beams occupy in the summary period may be different.
As for the kth downlink beam, when its current status is uplink, its transmission instant is Tk+m*Pk+2n*Sk, and its reporting instant is Tk+m*Pk+ (2n+1) *Sk. When its current status is downlink, its transmission instant is  Tk+m*Pk+ (2n+1) *Sk, and its reporting instant is Tk+m*Pk+2n*Sk. k=1, 2, …, K, m=0, …, S/P-1, n is an integer which is greater than or equal to 0.
A duration of the uplink/downlink switching period is generally integer multiple of the sweeping period. In this embodiment, the value of the uplink/downlink switching period is its actual duration. The actual value of the uplink/downlink switching period may also be a value obtained through dividing its actual duration by the sweeping period.
In another example, as shown in table 2, K downlink beams are divided into a plurality of sweeping groups. Downlink beams of each sweeping group have the same transmission instant and reporting instant. The beam mapping table includes a sweeping period, a sweeping instant, current status, and uplink/downlink switching period of each sweeping group.
Table 2
Figure PCTCN2017101378-appb-000002
In table 2, all the downlink beams of each sweeping group have the same transmission instant. In other embodiments, different downlink beams of the same sweeping group have different transmission instants.
The transmission instant and reporting instant of each sweeping group are calculated in the same way as the transmission instant and reporting instant of a single downlink beam in table 1 are calculated, which will not be described here.
In another example, as shown in table 3, the beam mapping table includes a sweeping period, a sweeping instant, current status, and uplink/downlink switching  mode of K downlink beams.
Table 3
Figure PCTCN2017101378-appb-000003
As for the kth downlink beam, its uplink/downlink switching mode is indicated with Hk= {hk1, hk2, …hkj} , a value of each element in the H indicates that a corresponding status is uplink /downlink. The transmission instant is Tk+ (q+n*j) *Pk, and the reporting instant is Tk+ (r+n*j) *Pk. n is a integer which is greater than or equal to 0. A status corresponding to hkq is downlink, and a status corresponding to hkr is uplink. For example, Hk= {1, 0, 0, 1} , where “1” indicates uplink status, “0” indicates downlink status, then q=2, 3, and r=1, 4.
In this example, the uplink/downlink switching mode specifically defines the uplink/downlink statuses of downlink beams. In fact, several uplink/downlink switching modes may be pre-defined. Each uplink/downlink switching mode has an identifier, then the uplink/downlink switching mode in the beam mapping table may be the identifier of a specific switching mode.
If downlink beams are divided into a plurality of sweeping groups, the transmission instants and reporting instants thereof are calculated in the same as the transmission instant and reporting instant of a single downlink beam in table 3 are calculated, which will not be described here.
Various parameters in the beam mapping table have a default value. When one parameters of all the beams or sweeping group are all being default values, then the parameter will be omitted.
In the aforementioned examples, the calculation of the transmission instant and reporting instant of downlink beams or sweeping groups are for illustrative purpose, and is not meant to be limitation of the present disclosure. In fact, other ways may be adopted to calculate them.
Fig. 4 is a flow chart of a method for beam management according to a fourth embodiment of the present disclosure, which is based on the method for beam management in the second embodiment. The beam mapping message includes a beam mapping table identifier, thus as shown in Fig. 4, the block S112 specifically includes the following blocks.
In block S1121: the UE looks up a beam mapping table according to the beam mapping table identifier.
A set of beam mapping tables may be pre-defined by the base station and the UE. The set of beam mapping tables includes a plurality beam mapping tables, and each beam mapping table has a corresponding identifier (i.e., the beam mapping table identifier) . The UE looks up among the pre-defined set of beam mapping tables with the received beam mapping table identifier to obtain beam mapping table corresponding to the beam mapping table identifier.
In block S1122: the UE calculates the transmission instants and reporting instants of the downlink beams.
The context of the beam mapping table and the calculation of the transmission instants and reporting instants of downlink beams can be referred to description in the third embodiment, which will not be described here.
Compared to the previous embodiment, the base station only requires to transmit the beam mapping table identifier instead of a whole beam mapping table, reducing signaling overhead.
Fig. 5 is a flow chart of a method for beam management according to a fifth  embodiment of the present disclosure, which is based on the method for beam management in the first embodiment. The UE transmits the uplink reports in a reporting order to the base station. The same details with that in the first embodiment will not be described again herein. As shown in Fig. 5, the method for beam management may include the following blocks.
In block S121: the UE receives the reporting order from the base station.
The reporting order is determined by the base station with a pre-determined scheduling strategy. The scheduling strategy may be polling, priority-based and the like.
In block S122: the UE selects the target beams from the downlink beams transmitted by the base station.
The execution sequence of the block S122 and S121 is only illustrative. In fact, they may be executed simultaneously. Also, the block S122 is executed before the block S121.
In block S123: the UE transmits uplink reports to the base station on the Nth reporting instant after selecting the target beams.
The value of N is determined by the reporting order. For example, when the scheduling strategy is priority-based, the reporting order is a priority of the UE, and then lower priority is, greater N is.
Now an example is described in accordance with Fig. 6. As shown in Fig. 6, the transmission instant of beam 1 is T1 and T3, and its reporting instant is T2 and T4. Both  UEs  1 and 2 measure the beam 1 on the T1 to obtain measurement results which are greater a preset threshold, and select the beam 1 as the target beam. The priority of the UE 1 is higher and that of the UE 2, then UE 1 sends an uplink report on the T2, and UE 2 transmits an uplink report on the T4.
With the implementation of this embodiment, different UEs, which select a  same target beam, can respectively send its uplink reports in time-division mode. Thus interface among UEs can be reduced.
In other embodiments, for the UE, the uplink report can load with mark information of its own. The base station can distinguish different UEs with the mark information. The uplink report may directly include the mark information. Also, the uplink report may be scrambled and /or encrypted with the mark information.
A method for beam management according to a sixth embodiment of the present disclosure is based on the method for beam management in the first embodiment. The uplink report includes a bitmap indication. The value of the bitmap indication is used for representing information of the target beam (s) . The bitmap indication may carry information of one or more target beams.
The names of target beams are replaced by the bitmap indication to reduce signaling overhead for reporting.
When the number of the target beams is greater than one, the bitmap indication may carry information of at least two target beams, such as information of all the target beams. Therefore, the number of uplink reports which are needed to be transmitted can be reduced, further reducing signaling overhead for reporting.
When there is only one target beam, the bitmap indication may also be adopted to represent information of the target beam.
The bitmap indication may be a binary number. Each bit of the bitmap indication indicates one downlink beam, and a value of each bit indicates whether its corresponding downlink beam is a target beam or not. The mapping relationship between each bit of the bitmap indication and downlink beams is pre-defined. After obtaining the bitmap indication, the base station determines target beams according to its value combined with the mapping relationship between the bitmap indication and downlink beams.
Now an example is described in accordance with Fig. 7. As shown in Fig. 7, the total number of downlink beams is K, where the (k+1) th, (k-1) th and (K-1) th downlink beams are target beams. The bitmap indication is a binary number with K bits. When one bit is 1, it indicates that the corresponding downlink beam is a target beam, and when it is 0, it indicates that the corresponding downlink beam isn’t a target beam. Thus, in this example, the value of the bitmap indication is {00…0110…10} .
Downlink beams may be divided into at least two groups. The groups herein may be same with the sweeping groups described in above-mentioned embodiments. Also they may be different from the sweeping groups described in above-mentioned embodiments. Thus the bitmap indication is needed to carry both information of a group which target beams belong to and information of beams in a group. The information of the group may be indicated by a similar binary number or a group name. The information of the beams in the group may be indicated by a similar binary number.
Now examples are described in accordance with figures. In one example, as shown in Fig. 8, downlink beams are divided into G groups, where the (kg+1) th and (kg+2) th downlink beams in the gth group, and (kg+1th, (kg+1+2) th and (kg+1+3) th downlink beams are target beams.
The bitmap indication may include a group indication (denoted by a dashed line) and a beam indication (denoted by a solid line) . The group indication is a binary number with G bits. When one bit is 1, it indicates that the corresponding group includes target beam (s) , and when it is 0, it indicates that the corresponding group doesn’t include target beam (s) . Thus, the value of the group indication is {0…11…0} . The beam indication is a binary number with (Kg+Kg+1) bits, where Kg denotes a total number of beams in the gth group, and Kg+1 denotes a total number of beams in the  (g+1) th group. When one bit is 1, it indicates that the corresponding downlink beam is a target beam, and when it is 0, it indicates that the corresponding downlink beam isn’t a target beam. Thus, in this example, the value of the beam indication is {00…0110…000…1011…0} .
Except for groups which include target beam (s) such as the gth and (g+1) th groups, values of beam indications in other groups are set as 0. In order to further reduce signaling overhead, these beam indications in other groups may be omitted. Downlink beams corresponding to the beam indications belong to the group which includes target beam (s) . For instance, downlink beams corresponding to the beam indications in this example are only included in the gth and (g+1) th groups.
In another example, as shown in Fig. 9, downlink beams are divided into G groups, where the (kg+1) th and (kg+2) th downlink beams in the gth group, and (kg+1th (kg+1+2) th and (kg+1+3) th downlink beams are target beams.
The bitmap indication may include a group name and a beam indication. The groups corresponding to the group names includes target beam (s) , i.e., the gth and (g+1) th groups. The beam indication includes two binary numbers, one of which has Kg bits, the other of which has Kg+1, where Kg denotes a total number of beams in the gth group, and Kg+1 denotes a total number of beams in the (g+1) th group. When one bit is 1, it indicates that the corresponding downlink beam is a target beam, and when it is 0, it indicates that the corresponding downlink beam isn’t a target beam. Thus, in this example, the values of the beam indications are respectively {00…0110…0} and {00…1011…0} .
In this example, the beam indications of a group are located after the group name thereof. In fact, all group names may be set together and all beam indications of groups are set together.
In aforementioned examples, the corresponding relationship between the  value of each bit of the bitmap indication and whether corresponding downlink beam is a target beam or not, or the corresponding relationship between the value of each bit of the bitmap indication and whether a corresponding group includes target beam (s) or not, is only for illustrative purpose. It may actually also be set in turn. That is, the value as 0 denotes that the corresponding downlink beam is a target beam or a group includes target beam (s) , and the value as 1 denotes that the corresponding downlink beam isn’t a target beam or a group doesn’t include target beam (s) .
As uplink report may be transmitted on a reporting instant corresponding one target beam or some target beams, bit (s) corresponding to the target beam or these target beams of the bitmap indication may be omitted. If downlink beams are divided into groups, a group which the target beam belong to doesn’t a target beam which isn’t determined by other base stations via the reporting instant, then the group may be omitted.
Fig. 10 is a flow chart of a method for beam management according to a seventh embodiment of the present disclosure. The execution subject of the method for beam management in this embodiment may be a base station. As shown in FIG. 10, the method for beam management may include the following blocks in this embodiment.
In block S21: the base station transmits downlink beams to a UE.
The base station generally transmits the downlink beams in a beam sweeping manner. In general, frequencies of the downlink beams are higher, such as 100 GHz, and bandwidth of the downlink beams is narrower.
In block S12: the base station receives an uplink report from the UE on a reporting instant corresponding to at least one target beams.
The target beams are selected from the downlink beams by the UE. The UE measures the downlink beams and then selects one or more target beams  according to the measurement result. The measurement result may be signal quality of the downlink beams. The UE may select the downlink beams of which measurement results are larger than a preset threshold as the target beams, and/or select a specified number of downlink beams with best measurement result as the target beams.
The uplink report may not include a name of a target beam corresponding to the uplink report, such that signaling overhead is reduced. In addition, the uplink report may include a measurement result of the target beam corresponding to the uplink report.
If the number of the target beam is greater than 1, the UE may transmit one uplink report for each target beam respectively. In this way, each uplink report isn’t required to include information of other target beams except for its corresponding target beam. The UE may also choose to adopt uplink reports of which the number is less than the total number of the target beams to report all the target beams. For example, if one uplink report includes information of all the target beams, there must be at least one of uplink report which bears information of other target beams.
There is a relationship between the downlink beams and the reporting instants, and the same relationship is adopted between the base station and the UE. As the base station generally transmits downlink beams periodically in the beam sweeping manner, each downlink beam may be corresponding to a plurality of reporting instants which are distributed periodically. For convenience to distinguish different beams, the reporting instants for different downlink beams may be different. Further, one reporting instant may be for at least two of downlink beams.
In one embodiment, the downlink beams are divided into at least two sweeping groups, downlink beams of the same sweeping group have the same reporting instant, while downlink beams of different sweeping group have different reporting instant. The number of downlink beams of different sweeping groups may  be same, or also different. One sweeping group generally includes a plurality of adjacent beams. As beams in high-frequency are very narrow, the beams which are adjacent each other have same or similar fading characteristics, and have large probability to be simultaneously selected by the UE.
The base station may define the corresponding relationship between the downlink beams and reporting instants via a beam mapping message sent to the UE, which is referred to description in the second embodiment. The beam mapping message may include a beam mapping table or a beam mapping table identifier, which is provided for the UE to calculate transmission instants and reporting instants of the downlink beams, which is referred to description in the third and fourth embodiments and will not be described here.
With the implementation of the above embodiment, a relationship is defined between a target beam and a reporting instant thereof. The UE sends an uplink report to the base station on the reporting instant of the target beam, and the base station can determine which target beam it is according to the instant on which it receives the uplink report even when the uplink report doesn’t include the name of the target beam.
Fig. 11 is a flow chart of a method for beam management according to an eighth embodiment of the present disclosure, which is based on the method for beam management in the seventh embodiment. As shown in Fig. 11, the method for beam management may further include the following block before the block S22.
In block S23: the base station sends a reporting order to the UE.
The UE transmits uplink reports to the base station on the Nth reporting instant after selecting the target beams. The value of N is determined by the reporting order.
The reporting order is determined by the base station with a pre-determined  scheduling strategy. The scheduling strategy may be polling, priority-based and the like. For example, when the scheduling strategy is priority-based, the reporting order is a priority of the UE, and then the lower priority is, the greater N is. A specific example can be referred in Fig. 6 and description thereof.
With the implementation of this embodiment, different UEs, which select a same target beam, can respectively send its uplink reports in time-division mode. Thus interface among UEs can be reduced.
In other embodiments, for the UE, the uplink report can load with mark information of its own. The base station can distinguish different UEs with the mark information, so as to code division multiplexing is achieved. The uplink report may directly include the mark information. Also, the uplink report may be scrambled and /or encrypted with the mark information.
Fig. 12 is a flow chart of a method for beam management according to a ninth embodiment of the present disclosure. The execution subject of the method for beam management in this embodiment may be a user equipment (UE) .
In block S31: the UE selects target beams from downlink beams which are transmitted by a base station.
The UE measures the downlink beams and then selects one or more target beams according to the measurement result. The measurement result may be signal quality of the downlink beams. The UE may select the downlink beams of which measurement results are larger than a preset threshold as the target beams, and/or select a specified number of downlink beams with best measurement result as the target beams.
In block S32: the UE transmits an uplink report to the base station, where the uplink report includes a bitmap indication and a value of the bitmap indication is configured to indicate information of the target beams.
The UE transmits the uplink report periodically or aperiodically. In this embodiment, when the UE sends the uplink report is not limited.
The uplink report may not include a name of a target beam corresponding to the uplink report, such that signaling overhead is reduced. In addition, the uplink report may include a measurement result of the target beam corresponding to the uplink report.
The bitmap indication may carry information of one or more target beams.
When the number of the target beams is greater than one, the bitmap indication may carry information of at least two target beams, such as information of all the target beams. Therefore, the number of uplink reports which are needed to be transmitted can be reduced, further reducing signaling overhead for reporting.
When there is only one target beam, the bitmap indication may also be adopted to represent information of the target beam.
The bitmap indication may be a binary number. Each bit of the bitmap indication indicates one downlink beam, and a value of each bit indicates whether its corresponding downlink beam is a target beam or not. The mapping relationship between each bit of the bitmap indication and downlink beams is pre-defined. After obtaining the bitmap indication, the base station determines target beams according to its value combined with the mapping relationship between the bitmap indication and downlink beams.
Downlink beams may be divided into at least two groups. Thus the bitmap indication is needed to carry both information of a group which target beams belong to and information of beams in a group. The information of the group may be indicated by a similar binary number or a group name. The information of the beams in the group may be indicated by a similar binary number.
Examples can be referred to what has been described with the Figs. 7-9.
With the implementation of this embodiment, the names of target beams can be replaced by the bitmap indication to reduce signaling overhead for reporting. That is, the uplink report cannot have the names of the target beams. Thus the signaling overhead can be reduced.
Fig. 13 is a flow chart of a method for beam management according to a tenth embodiment of the present disclosure. The execution subject of the method for beam management in this embodiment may be a base station. As shown in FIG. 13, the method for beam management may include the following blocks in this embodiment.
In block S41: the base station transmits downlink beams to a UE.
The base station generally transmits the downlink beams in a beam sweeping manner.
In block S12: the base station receives an uplink report from the UE, where the uplink report includes a bitmap indication, and a value of the bitmap indication is configured to indicate information of the target beams.
The target beams are selected from the downlink beams by the UE. The UE measures the downlink beams and then selects one or more target beams according to the measurement result. The measurement result may be signal quality of the downlink beams. The UE may select the downlink beams of which measurement results are larger than a preset threshold as the target beams, and/or select a specified number of downlink beams with best measurement result as the target beams.
The uplink report may not include a name of a target beam corresponding to the uplink report, such that signaling overhead is reduced. In addition, the uplink report may include a measurement result of the target beam corresponding to the uplink report.
The bitmap indication may carry information of one or more target beams.
When the number of the target beams is greater than one, the bitmap indication may carry information of at least two target beams, such as information of all the target beams. Therefore, the number of uplink reports which are needed to be transmitted can be reduced, further reducing signaling overhead for reporting.
When there is only one target beam, the bitmap indication may also be adopted to represent information of the target beam.
The bitmap indication may be a binary number. Each bit of the bitmap indication indicates one downlink beam, and a value of each bit indicates whether its corresponding downlink beam is a target beam or not. The mapping relationship between each bit of the bitmap indication and downlink beams is pre-defined. After obtaining the bitmap indication, the base station determines target beams according to its value combined with the mapping relationship between the bitmap indication and downlink beams.
Downlink beams may be divided into at least two groups. Thus the bitmap indication is needed to carry both information of a group which target beams belong to and information of beams in a group. The information of the group may be indicated by a similar binary number or a group name. The information of the beams in the group may be indicated by a similar binary number.
Examples can be referred to what has been described with the Figs. 7-9.
With the implementation of this embodiment, the names of target beams can be replaced by the bitmap indication to reduce signaling overhead for reporting. That is, the uplink report cannot have the names of the target beams. Thus the signaling overhead can be reduced.
Fig. 14 is schematic view of an apparatus for beam management according to a first embodiment of the present disclosure. As shown in Fig. 14, the apparatus for beam management includes a processor 110 and a communication circuit 120. The  processor 110 may be connected to the communication circuit 120.
The communication circuit 120 may be configured for transmitting and receiving data, which is an interface for communication between the apparatus for beam management and other communication devices.
The processor 110 may be configured for performing programs to achieve any one of the methods for beam management in accordance with the first to sixth and ninth embodiment or a method provided with arbitrary and non-conflicting combination of the methods for beam management therein.
The apparatus for beam management in the present embodiment may be a user equipment, and also be a separate component integrated in a user equipment, such as a base band chip.
Fig. 15 is schematic view of an apparatus for beam management according to a second embodiment of the present disclosure. As shown in Fig. 15, the apparatus for beam management includes a processor 210 and a communication circuit 220. The processor 210 may be connected to the communication circuit 220.
The communication circuit 220 may be configured for transmitting and receiving data, which is an interface for communication between the beam-based communication apparatus and other communication devices.
The processor 210 may be configured for performing programs to achieve any one of the methods for beam management in accordance with the seventh to eighth and tenth embodiment or a method provided with arbitrary and non-conflicting combination of the methods for beam management therein.
The apparatus for beam management in the present embodiment may be a base station, and also be a separate component integrated in a base station, such as a base band board.
Fig. 16 is schematic view of an apparatus for beam management according  to a third embodiment of the present disclosure. As shown in Fig. 16, the apparatus for beam management includes a memory 310. The memory 310 is used to store instructions therein. When the instructions is performed, any one of the methods for beam management in accordance with the first to sixth and ninth embodiment, or seventh to eighth and tenth embodiment, or a method provided with arbitrary and non-conflicting combination of the beam-based communication methods therein may be achieved. The memory 310 may include a Read-Only Memory (ROM) , a Random Access Memory (RAM) , a Flash Memory, hard disk, optical disk, etc.
The functions of each part of each apparatus for beam management and the feasible expansion can be referred to the description of the corresponding method for beam management according to embodiments of the present disclosure, and be no longer repeated to describe herein.
The above description depicts merely some exemplary embodiments of the disclosure, but is meant to limit the scope of the disclosure. Any equivalent structure or flow transformations made to the disclosure, or any direct or indirect applications of the disclosure on other related fields, shall all be covered within the protection of the disclosure.

Claims (37)

  1. A method for beam management, comprising:
    selecting target beams from downlink beams transmitted by a base station; and
    sending an uplink report to the base station on a reporting instant corresponding to at least one of the target beams.
  2. The method of claim 1, wherein the uplink report doesn’t comprise names of the target beams.
  3. The method of claim 1, wherein the reporting instants which are respectively corresponding to each of the downlink beams are distributed in periodic;
    before the sending the uplink report to the base station on the reporting instant, the method further comprises:
    receiving a reporting order from the base station; and
    the sending the uplink report to the base station on the reporting instant comprises:
    sending the uplink report to the base station on the Nth reporting instant after selecting the target beams, wherein a value of the N is determined by the reporting order.
  4. The method of claim 3, wherein the reporting order is a priority, and the lower the priority is and the greater the N is.
  5. The method of claim 1, wherein the uplink report loads with mark information of a user equipment.
  6. The method of claim 1, before selecting the target beams from the downlink beams, further comprising:
    receiving a beam mapping message from the base station;
    obtaining transmission instants and reporting instants of the downlink beams via the beam mapping message;
    measuring the downlink beams on a transmission instant corresponding to at least one of the downlink beams to obtain a measurement result; and
    the selecting the target beams from the downlink beams sent by the base station comprises:
    selecting the target beams from the downlink beams according to the measurement result.
  7. The method of claim 6, wherein the beam mapping message comprises a beam mapping table, and the beam mapping table comprises at least one of the following: sweeping periods, sweeping instants, current statuses, uplink/downlink switching periods and uplink/downlink switching modes of at least one of downlink beams; and
    the obtaining the transmission instants and the reporting instants of the downlink beams via the beam mapping message comprises:
    calculating the transmission instants and the reporting instants of the downlink beams according to the beam mapping table.
  8. The method of claim 6, wherein the beam mapping message comprises a beam mapping table identifier; and
    the obtaining the transmission instants and the reporting instants of the downlink beams via the beam mapping message comprises:
    looking up a beam mapping table according to the beam mapping table identifier, wherein the beam mapping table comprises at least one of the following: sweeping periods, sweeping instants, current statuses, uplink/downlink switching periods and uplink/downlink switching modes of at least one of downlink beams; and
    calculating the transmission instants and the reporting instants of the downlink beams according to the beam mapping table.
  9. The method of claim 7 or 8, wherein the calculating the transmission instants and the reporting instants of the downlink beams according to the beam mapping table comprises:
    the transmission instants is T+m*P+2n*S, and the reporting instant is T+m*P+ (2n+1) *Swhen the current status is uplink, ; and
    the transmission instant is T+m*P+ (2n+1) *S, and the reporting instant is T+m*P+2n*Swhen the current status is downlink;
    wherein T indicates the sweeping instant, P indicates the sweeping period of the at least one of the downlink beams, S denotes the uplink/downlink switching period, m=0, …, S/P-1, and n is integer greater than or equal to 0.
  10. The method of claim 7 or 8, wherein the calculating the transmission instant and reporting instant of the downlink beams according to the beam mapping table comprises:
    the transmission instant is T+ (q+n*j) *P, and the reporting instant is T+ (r+n*j) *P, wherein P indicates the sweeping period of the at least one of the downlink beams, T indicates the sweeping instant, uplink/downlink switching mode is indicated with H= {h1, h2, …hj} in which a valued of each element indicates that a corresponding status is uplink/downlink, and the element hq indicates that the corresponding status is uplink and the element hr indicates that the corresponding status is downlink.
  11. The method of any one of claims 1-8, wherein the downlink beams is divided into at least two of sweeping groups, downlink beams in a same sweeping group have a same reporting instant, and downlink beams in different sweeping groups have different reporting instants.
  12. The method of any one of claims 1-8, wherein the uplink report comprises measurement results of the target beams.
  13. The method of any one of claims 1-8, wherein the uplink report comprises a bitmap indication, and a value of the bitmap indication is configured to indicate information of the target beams.
  14. The method of claim 13, wherein the bitmap indication carries information of at least two of the target beams.
  15. The method of claim 13, wherein the bitmap indication is a binary number, each bit of which indicates one downlink beam, and a value of each bit represents whether the one downlink beam is one of the target beams or not.
  16. The method of claim 13, wherein the downlink beams are divided into at least two groups; the bitmap indication comprises a group indication and a beam indication, the group indication is a binary number, each bit of the group indication indicates one group and a value of each bit represents whether the target beams are included in the one group or not, and each bit of beam indication indicates one downlink beam, and a value of each bit represents whether the one downlink beam is one of the target beams or not.
  17. The method of claim 16, wherein the downlink beams indicated by the beam indication belong to the group of the target beams.
  18. The method of claim 13, wherein the downlink beams are divided into at least two groups; the bitmap indication comprises a group name and a beam indication, the group with the group name comprises the target beams, each bit of the beam indication indicates one downlink beam and a value of each bit represents whether the one downlink beam is one of the target beams or not.
  19. A method for beam management, comprising:
    transmitting downlink beams to a user equipment; and
    receiving an uplink report from the user equipment on a reporting instant corresponding to at least one of target beams, wherein the at least one of the target beams are selected from the downlink beams by the user equipment.
  20. The method of claim 19, wherein the uplink report doesn’t comprise names of the target beams.
  21. The method of claim 19, before receiving the uplink report from the user equipment on the reporting instant corresponding to the at least one of the target beams, further comprising:
    sending a reporting order to the user equipment, such that the user equipment sending the uplink report on the Nth reporting instant after selecting the target beams, wherein a value of the N is determined by the reporting order.
  22. The method of claim 19, before transmitting the downlink beams to the user equipment, further comprising:
    sending a beam mapping message to the user equipment, such that the user equipment obtains transmission instants and reporting instants of the downlink beams via the beam mapping message;
    wherein the transmitting the downlink beams to the user equipment comprises:
    transmitting the downlink beams to the user equipment on the transmission instants.
  23. The method of claim 22, the beam mapping message comprises a beam mapping table or a beam mapping table identifier, and the beam mapping table comprises at least one of the following: sweeping periods, sweeping instants, current statuses, uplink/downlink switching periods and uplink/downlink switching modes of at least one of the downlink beams.
  24. The method of any one of claims 19-23, wherein the downlink beams is divided into at least two of sweeping groups, downlink beams in a same sweeping  group have a same reporting instant, and downlink beams in different sweeping groups have different reporting instants.
  25. The method of any one of claims 19-23, wherein the uplink report comprises measurement results of the target beams.
  26. The method of any one of claims 19-23, wherein the uplink report comprises a bitmap indication, and a value of the bitmap indication is configured to indicate information of the target beams.
  27. The method of claim 26, wherein the bitmap indication carries information of at least two of the target beams.
  28. The method of claim 26, wherein the bitmap indication is a binary number, each bit of which indicates one downlink beam, and a value of each bit represents whether the one downlink beam is one of the target beams or not.
  29. The method of claim 26, wherein the downlink beams are divided into at least two groups; the bitmap indication comprises a group indication and a beam indication, the group indication is a binary number, each bit of the group indication indicates one group and a value of each bit represents whether the target beams are included in the one group or not, and each bit of beam indication indicates one downlink beam, and a value of each bit represents whether the one downlink beam is one of the target beams or not.
  30. The method of claim 26, wherein the downlink beams are divided into at least two groups; the bitmap indication comprises a group name and a beam indication, the group with the group name comprises the target beams, each bit of the beam indication indicates one downlink beam and a value of each bit represents whether the one downlink beam is one of the target beams.
  31. A method for beam management, comprising:
    selecting target beams from downlink beams transmitted by a base station; and
    sending an uplink report to the base station, wherein the uplink report comprises a bitmap indication, and a value of the bitmap indication is configured to indicate information of the target beams.
  32. The method of claim 31, wherein the bitmap indication carries information of at least two of the target beams.
  33. The method of claim 31, wherein the bitmap indication is a binary number, each bit of which indicates one downlink beam, and a value of each bit represents whether the one downlink beam is one of the target beams or not; or
    the downlink beams are divided into at least two groups; the bitmap indication comprises a group indication and a beam indication, the group indication is a binary number, each bit of the group indication indicates one group and a value of each bit represents whether the target beams are included in the one group or not, and each bit of beam indication indicates one downlink beam, and a value of each bit represents whether the one downlink beam is one of the target beams or not; or
    the downlink beams are divided into at least two groups; the bitmap indication comprises a group name and a beam indication, the group with the group name comprises the target beams, each bit of the beam indication indicates one downlink beam and a value of each bit represents whether the one downlink beam is one of the target beams.
  34. A method for beam management, comprising:
    transmitting downlink beams to a user equipment; and
    receiving an uplink report from the user equipment, wherein the uplink report comprises a bitmap indication, a value of the bitmap indication is configured to indicate information of target beams, and the target beams are selected from the downlink beams by the user equipment.
  35. The method of claim 34, wherein the bitmap indication carries information of at least two of the target beams.
  36. The method of claim 34, wherein the bitmap indication is a binary number, each bit of which indicates one downlink beam, and a value of each bit represents whether the one downlink beam is the target beam or not; or
    the downlink beams are divided into at least two groups; the bitmap indication comprises a group indication and a beam indication, the group indication is a binary number, each bit of the group indication indicates one group and a value of each bit represents whether the target beams are included in the one group or not, and each bit of beam indication indicates one downlink beam, and a value of each bit represents whether the one downlink beam is one of the target beams or not; or
    the downlink beams are divided into at least two groups; the bitmap indication comprises a group name and a beam indication, the group with the group name comprises the target beams, each bit of the beam indication indicates one downlink beam and a value of each bit represents whether the one downlink beam is one of the target beams.
  37. An apparatus for beam management, comprising a processor and a communication circuit, wherein the processor is connected to the communication circuit, and the processor is configured for executing programs to perform any one method in claims 1-36.
PCT/CN2017/101378 2017-06-28 2017-09-12 Method and apparatus for beam management WO2019000647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710508206.9 2017-06-28
CN201710508206.9A CN109150273B (en) 2017-06-28 2017-06-28 Beam management method and device

Publications (1)

Publication Number Publication Date
WO2019000647A1 true WO2019000647A1 (en) 2019-01-03

Family

ID=64742787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101378 WO2019000647A1 (en) 2017-06-28 2017-09-12 Method and apparatus for beam management

Country Status (2)

Country Link
CN (1) CN109150273B (en)
WO (1) WO2019000647A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155805A (en) * 2023-10-31 2023-12-01 青岛创新奇智科技集团股份有限公司 Equipment management method and device based on statistical machine learning

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007216B (en) * 2020-07-28 2022-11-11 维沃移动通信有限公司 Beam management method and device and relay node
CN114916070A (en) * 2021-02-10 2022-08-16 华为技术有限公司 Communication method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078565A1 (en) * 2014-11-17 2016-05-26 Mediatek Inc. Transceiver architecture for multiple antenna systems
CN106465375A (en) * 2015-04-28 2017-02-22 联发科技股份有限公司 A spatial diversity scheme in communication systems of beamforming

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428709B1 (en) * 2001-08-17 2004-04-27 한국전자통신연구원 Apparatus for Forward Beamforming using Feedback of Multipath Information and Method Thereof
EP1973238B1 (en) * 2007-03-21 2011-03-02 Alcatel Lucent Method for determining MIMO transmission techniques, base station and mobile terminal
JP5037615B2 (en) * 2007-07-05 2012-10-03 パナソニック株式会社 Wireless communication apparatus, wireless communication system, and wireless communication method
KR20090097754A (en) * 2008-03-11 2009-09-16 엘지전자 주식회사 Method for beam tracking in a wireless communication network
KR101847400B1 (en) * 2011-09-01 2018-04-10 삼성전자주식회사 Apparatus and method for selecting best beam in wireless communication system
CN103918196B (en) * 2011-09-16 2018-06-22 三星电子株式会社 For the method and device of beam allocation in a wireless communication system
WO2014189206A1 (en) * 2013-05-23 2014-11-27 엘지전자 주식회사 Method and apparatus for reporting channel state information in wireless communication system
KR102299326B1 (en) * 2013-09-27 2021-09-08 삼성전자주식회사 Apparatus and method for transmitting and receiving beam information in wireless communication system
CN104734760A (en) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Method, device and system for processing downlink wave beam index
CN104734761A (en) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Uplink and downlink wave beam mixture indicating method, base station, terminal and system
US9154172B1 (en) * 2013-12-31 2015-10-06 Hrl Laboratories, Llc Time encoded circuits and methods and a time encoder based beamformer for use in receiving and transmitting applications
CN105991238A (en) * 2015-03-06 2016-10-05 中兴通讯股份有限公司 Measurement and feedback method of channel state information, sending end, and receiving end
CN106412942A (en) * 2015-07-31 2017-02-15 株式会社Ntt都科摩 Sending method of beamformed reference signals, beam selection method, base station, and user equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078565A1 (en) * 2014-11-17 2016-05-26 Mediatek Inc. Transceiver architecture for multiple antenna systems
CN106465375A (en) * 2015-04-28 2017-02-22 联发科技股份有限公司 A spatial diversity scheme in communication systems of beamforming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT ET AL.: "WF on Beam management", 3GPP TSG RAN WG1 MEETING #86BIS, R1-1610539, 14 October 2016 (2016-10-14), pages 1 - 5, XP055558715 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155805A (en) * 2023-10-31 2023-12-01 青岛创新奇智科技集团股份有限公司 Equipment management method and device based on statistical machine learning
CN117155805B (en) * 2023-10-31 2024-02-02 青岛创新奇智科技集团股份有限公司 Equipment management method and device based on statistical machine learning

Also Published As

Publication number Publication date
CN109150273B (en) 2022-06-10
CN109150273A (en) 2019-01-04

Similar Documents

Publication Publication Date Title
US10972924B2 (en) Beam-based multi-connection communication method, terminal device, and network device
JP6896061B2 (en) Beam tracking method, terminal device, and network side device
US10742300B2 (en) Communication method, network device, and terminal device
JP5436601B2 (en) Mobile station apparatus, measurement method, and communication system
US10171138B2 (en) Indicating optional parameter groups
US11595108B2 (en) Wireless communication method, network device, and terminal device
JP7151115B2 (en) BASE STATION, COMMUNICATION TERMINAL, WIRELESS COMMUNICATION METHOD, PROGRAM AND WIRELESS COMMUNICATION SYSTEM
CN111757336B (en) Coverage adjustment method, device and system
US11064499B2 (en) Communication method and apparatus
RU2565250C1 (en) Radio communication system, base station, mobile station and radio communication method
US20220014943A1 (en) Measurement method and apparatus, and device
EP3499947B1 (en) Resource management indication method and device
US10666409B2 (en) Mobility reference signal allocation
CN113796022A (en) Method, wireless device and network node for realizing beam reference signaling
WO2019000647A1 (en) Method and apparatus for beam management
JP2020529802A (en) Methods and devices for directing and determining beam information, as well as communication systems
KR20170018324A (en) Device and method
EP3869897B1 (en) Methods and apparatus of spatial relation switching in new radio system
CN111095814A (en) User equipment performing beam reporting
CN114208262B (en) Carrier wave measuring method and device
CN109565786A (en) Paging equipment, method and communication system
US11445436B2 (en) Cell selection and resource allocation thresholds
TWI815083B (en) Methods for spatial relation switching and user equipment
JP2018011130A (en) Communication control apparatus, base station device and communication control method
JP2016158012A (en) Radio communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915672

Country of ref document: EP

Kind code of ref document: A1