WO2018231570A1 - Sensor system integrated with a glove - Google Patents

Sensor system integrated with a glove Download PDF

Info

Publication number
WO2018231570A1
WO2018231570A1 PCT/US2018/035848 US2018035848W WO2018231570A1 WO 2018231570 A1 WO2018231570 A1 WO 2018231570A1 US 2018035848 W US2018035848 W US 2018035848W WO 2018231570 A1 WO2018231570 A1 WO 2018231570A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensor system
glove
circuitry
traces
Prior art date
Application number
PCT/US2018/035848
Other languages
French (fr)
Inventor
Keith A. Mcmillen
Kyle LOBEDAN
Gregory WILLE
Florian Muller
Maxime STINNETT
Original Assignee
Bebop Sensors, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/621,935 external-priority patent/US10362989B2/en
Application filed by Bebop Sensors, Inc. filed Critical Bebop Sensors, Inc.
Priority to JP2019568095A priority Critical patent/JP2020523690A/en
Priority to DE112018002989.1T priority patent/DE112018002989T5/en
Publication of WO2018231570A1 publication Critical patent/WO2018231570A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • a sensor system includes a flexible substrate for alignment or integration with a portion of a glove.
  • a plurality of conductive trace groups formed directly on the substrate at sensor locations correspond to at least some finger joints of a human hand.
  • Each of the conductive trace groups includes two or more conductive traces.
  • the resistance between the conductive traces in each of the conductive trace groups varies with force on piezoresistive material in contact with the conductive trace group.
  • Circuitry is configured to receive a signal from each of the conductive trace groups and generate control information in response thereto. The control information represents the force on the piezoresistive material in contact with each of the conductive trace groups.
  • the flexible substrate is a dielectric material
  • the piezoresistive material is a plurality of patches. Each patch of piezoresistive material is in contact with a corresponding one of the conductive trace groups at the sensor locations.
  • the dielectric material is a thermoplastic material
  • the sensor system includes a second flexible substrate of the thermoplastic material. The flexible substrate on which the conductive trace groups are formed, the patches of
  • piezoresistive material, and the second flexible substrate are thermally bonded together such that the patches of piezoresistive material are secured in contact with the corresponding conductive trace groups.
  • the flexible substrate is the piezoresistive material which may be, for example, a piezoresistive fabric.
  • FIG. 1 shows examples of trace patterns that may be integrated with a flexible substrate.
  • FIG. 2 shows examples of different types of distortions to a flexible substrate.
  • FIG. 3 shows a particular implementation of a sensor array.
  • FIG. 4 is a simplified block diagram of sensor circuitry suitable for use with various implementations.
  • FIG. 5 shows examples of relationships among a piezoresistive substrate, conductive traces, and other conductive elements in one-sided and two-sided sensor implementations.
  • FIG. 6 shows another implementation of a sensor array.
  • FIG. 7 shows another implementation of a sensor array.
  • FIG. 8 shows an example of a cross-section of some of the components of a sensor system.
  • FIG. 9 shows an example of a sensor array integrated with a glove blank.
  • FIG. 10 shows another implementation of a sensor array.
  • FIG. 11 shows another implementation of a sensor array.
  • FIGs. 12-14C show another implementation of a sensor system.
  • FIGs. 15 and 16 show another implementation of a sensor system.
  • Piezoresistive materials include any of a class of materials that exhibit a change in electrical resistance in response to mechanical force or pressure applied to the material.
  • One class of sensor systems described herein includes conductive traces formed directly on or otherwise integrated with a flexible substrate of piezoresistive material, e.g., a piezoresistive fabric or other flexible material.
  • Another class of sensor systems described herein includes conductive traces formed directly on or otherwise integrated with a flexible dielectric substrate with flexible piezoresistive material that is tightly integrated with the dielectric substrate and in contact with portions of the traces. When force or pressure is applied to such a sensor system, the resistance between traces connected by the piezoresistive material changes in a time- varying manner that is representative of the applied force.
  • a signal representative of the magnitude of the applied force is generated based on the change in resistance.
  • This signal is captured via the conductive traces (e.g., as a voltage or a current), digitized (e.g., via an analog-to-digital converter), processed (e.g., by an associated processor, controller, or suitable control circuitry), and mapped (e.g., by the associated processor, controller, or control circuitry) to a control function that may be used in conjunction with virtually any type of process, device, or system.
  • the output signals from such sensor systems may also be used to detect a variety of distortions and/or deformations of the substrate(s) on which they are formed or with which they are integrated such as, for example, bends, stretches, torsions, rotations, etc.
  • piezoresistive material on which the traces are formed or with which the traces are in contact may be any of a variety of woven and non-woven fabrics having piezoresistive properties. Implementations are also contemplated in which the piezoresistive material may be any of a variety of flexible, stretchable, or otherwise deformable materials (e.g., rubber, or a stretchable fabric such as spandex or open mesh fabrics) having piezoresistive properties.
  • the conductive traces may be formed on the piezoresistive material or a flexible dielectric substrate using any of a variety of conductive inks or paints. Implementations are also contemplated in which the conductive traces are formed using any flexible conductive material that may be formed on a flexible substrate. It should therefore be understood that, while specific implementations are described with reference to specific materials and techniques, the scope of this disclosure is not so limited.
  • Both one-sided and two-side implementations are contemplated, e.g., conductive traces can be printed on one or both sides of flexible substrate. As will be understood, two-sided implementations may require some mechanism for connecting conductive traces on one side of the substrate to those on the other side. Some implementations use vias in which conductive ink or paint is flowed through the vias to establish the connections. Alternatively, metal vias or rivets may make connections through the flexible substrate. [0024] Both single and double-sided implementations may use insulating materials formed over conductive traces. This allows for the stacking or layering of conductive traces and signal lines, e.g., to allow the routing of signal line to isolated structures in a manner analogous to the different layers of a printed circuit board.
  • Routing of signals on and off the flexible substrate may be achieved in a variety of ways.
  • a particular class of implementations uses elastomeric connectors (e.g., ZEBRA® connectors) which alternate conductive and non-conductive rubber at a density typically an order of magnitude greater than the width of the conductive traces to which they connect (e.g., at the edge of the substrate).
  • elastomeric connectors e.g., ZEBRA® connectors
  • a circuit board possibly made of a flexible material such as Kapton
  • a bundle of conductors may be riveted to the substrate. The use of rivets may also provide mechanical reinforcement to the connection.
  • Matching conductive traces or pads on both the flexible substrate and a circuit board can be made to face each.
  • a layer of conductive adhesive e.g., a conductive epoxy such as Masterbond EP79 from Masterbond, Inc. of Hackensack, New Jersey
  • the conductive traces or pads can also be held together with additional mechanical elements such as a plastic sonic weld or rivets. If conductive rivets are used to make the electrical connections to the conductive traces of the flexible substrate, the conductive adhesive may not be required.
  • Conductive threads may also be used to connect the conductive traces of the flexible substrate to an external assembly.
  • the piezoresistive material is a pressure sensitive fabric manufactured by Eeonyx, Inc., of Pinole, California.
  • the fabric includes conductive particles that are polymerized to keep them suspended in the fabric.
  • the base material is a polyester felt selected for uniformity in density and thickness as this promotes greater uniformity in
  • the fabric may be woven.
  • the fabric may be non-woven such as, for example, a calendared fabric e.g., fibers, bonded together by chemical, mechanical, heat or solvent treatment.
  • calendared material presents a smoother outer surface which promotes more accurate screening of conductive inks than a non-calendared material.
  • the conductive particles in the fabric may be any of a wide variety of materials including, for example, silver, copper, gold, aluminum, carbon, etc. Some implementations may employ carbon graphenes that are formed to grip the fabric.
  • Such materials may be fabricated using techniques described in U.S. Patent No.
  • conductive traces having varying levels of conductivity are formed on flexible piezoresistive material or an adjacent flexible dielectric substrate using conductive silicone-based inks manufactured by, for example, E.I. du Pont de Nemours and Company (DuPont) of Wilmington, Delaware, and/or Creative Materials of Ayer, Massachusetts.
  • conductive silicone-based inks manufactured by, for example, E.I. du Pont de Nemours and Company (DuPont) of Wilmington, Delaware, and/or Creative Materials of Ayer, Massachusetts.
  • An example of a conductive ink suitable for implementing highly conductive traces for use with various implementations is product number 125-19 from Creative Materials, a flexible, high temperature, electrically conductive ink.
  • Examples of conductive inks for implementing lower conductivity traces for use with various implementations are product numbers 7102 and 7105 from DuPont, both carbon conductive compositions.
  • dielectric materials suitable for implementing insulators for use with various implementations are product numbers 5018 and 5036 from DuPont, a UV curable dielectric and an encapsulant, respectively. These inks are flexible and durable and can handle creasing, washing, etc. The degree of conductivity for different traces and applications is controlled by the amount or concentration of conductive particles (e.g., silver, copper, aluminum, carbon, etc.) suspended in the silicone. These inks can be screen printed or printed from an inkjet printer. Another class of implementations uses conductive paints (e.g., carbon particles mixed with paint) such as those that are commonly used for EMI shielding and ESD protection.
  • conductive paints e.g., carbon particles mixed with paint
  • Forming sensors on flexible substrates enables numerous useful devices. Many of these devices employ such sensors to detect the occurrence of touch events, the force or pressure of touch events, the duration of touch events, the location of touch events, the direction of touch events, and/or the speed of motion of touch events.
  • the output signals from such sensors may also be used to detect a variety of distortions and/or deformations of the substrate on which they are formed or with which they are integrated such as, for example, bends, stretches, torsions, rotations, etc.
  • the information derived from such sensors may be used to effect a wide variety of controls and/or effects. Examples of distortions and/or deformations are described below with reference to the accompanying figures. As will be understood, the specific details described are merely examples for the purpose of illustrating the range of techniques enabled by this disclosure.
  • FIG. 1 shows an example of a sensor trace pattern 100 integrated with a flexible substrate 102.
  • the flexible substrate may be a piezoresistive material or a dielectric material. In the latter case, a flexible piezoresistive material is tightly integrated with the dielectric material an in contact with the sensor trace pattern.
  • Trace pattern 100 includes a pair of conductive traces, one of which (trace 104) provides a sensor signal to associated circuitry (not shown), and the other of which (trace 106) is connected to ground or a suitable reference. Some representative examples of other trace patterns 108-116 are shown.
  • the traces of a trace pattern may be formed directly, e.g., by screening or printing, on the flexible substrate which might be, for example, a piezoresistive fabric.
  • the arrangement of the sensors, the relationship of the sensors to the substrate, the number of layers or substrates, and the nature of the substrate(s) may vary considerably from application to application, and that the depicted configurations are merely examples for illustrative purposes.
  • FIG. 2 shows examples of different types of distortions to flexible substrate 102 that may be detected via sensor trace pattern 100.
  • FIG. 2(a) shows substrate 102 in its non-distorted state.
  • FIG. 2(b) shows a side view of substrate 102 bending;
  • FIG. 2(c) shows substrate 102 stretching;
  • FIG. 2(d) represents substrate 102 rotating relative to surrounding material;
  • FIG. 2(e) shows a side view of substrate 102 twisting due to an applied torque (i.e., torsion).
  • the resistance of the piezoresistive material in contact with trace pattern 100 changes in response to the applied force (e.g., goes down or up due to compression or increased separation of conductive particles in the piezoresistive material).
  • sensor trace patterns are formed on the stretchable material of a sensor glove 300 that may be used, for example, to translate a human's hand motions and the hand's interactions with the physical world into a virtual representation of the hand (or some other virtual object) and its interactions in a virtual environment.
  • the hand's motions and interactions may be used to control a robotic hand or device in the physical world.
  • the material on which the trace patterns are formed may be a flexible piezoresistive material or a flexible dielectric material. Again, in the latter case, a flexible piezoresistive material is tightly integrated with the flexible substrate on which the trace patterns are formed and in contact with the trace patterns at the various sensor locations (i.e., S1-S19).
  • trace patterns corresponding to some of the sensors are placed to coincide with various joints of the fingers (e.g., knuckles or finger joints) to capture distortion and/or deformation of the glove in response to bending and flexing of those joints.
  • Other sensors e.g., S6-S13 and SI 9
  • Other sensors may also be placed on the palm of the glove and/or the tips of the fingers to detect bending and flexing forces as well as forces relating, for example, to touching, gripping, or otherwise coming into contact with objects or surfaces.
  • Portions of the conductive traces that are not intended to be part of a sensor may be shielded or insulated to reduce any unwanted contributions to the sensor signals. That is, the portions of the conductive traces that bring the drive and sense signals to and from the sensors may be insulated from the piezoresistive material using, for example, a dielectric or non-conducting material between the piezoresistive material and the conductive traces. According to some implementations in which the conductive traces are formed on a flexible dielectric material, isolated pieces of piezoresistive material may be selectively located at the respective sensor locations.
  • each of the sensors includes two adjacent traces, the respective patterns of which include extensions that alternate. See, for example, the magnified view of sensor S4.
  • One of the traces 301 receives a drive signal; the other trace 302 transmits the sensor signal to associated sensor circuitry (not shown).
  • the drive signal might be provided, for example, by connecting the trace (permanently or temporarily) to a voltage reference, a signal source that may include additional information in the drive signal, a GPIO (General Purpose Input Output) pin of an associated processor or controller, etc. And as shown in the example in FIG.
  • the sensor signal might be generated using a voltage divider in which one of the resistors of the divider includes the resistance between the two traces through the intervening piezoresistive material.
  • the other resistor represented by Rl
  • the sensor signal also varies as a divided portion of the drive signal.
  • the sensors are energized (via the drive signals) and interrogated (via the sensor signals) to generate an output signal for each that is a representation of the force exerted on that sensor.
  • implementations are contemplated having more or fewer sensors.
  • different sets of sensors may be selectively energized and interrogated thereby reducing the number and overall area of traces on the substrate, as well as the required connections to sensor circuitry on an associated PCB (which may be positioned, for example, in cutout 322).
  • the 19 sensors are driven via 11 drive signal outputs from the sensor circuitry (not shown), and the sensor signals are received via 2 sensor signal inputs to the sensor circuitry; with 13 connections between the flexible substrate on which the conductive traces are formed and the PCB in cutout 322 as shown.
  • the set of sensors providing sensor signals to one of the 2 sensor signal inputs may be energized in any suitable sequence or pattern such that any signal received on the corresponding sensor signal input can be correlated with the corresponding sensor drive signal by the sensor circuitry.
  • a PCB may be connected to the conductive traces of the sensor array as described U.S. Patent Application No.
  • any of a variety of techniques may be employed to make such a connection including, for example, elastomeric connectors (e.g., ZEBRA® connectors) which alternate conductive and non-conductive rubber at a density typically an order of magnitude greater than the width of the conductive traces to which they connect (e.g., at the edge of the fabric).
  • elastomeric connectors e.g., ZEBRA® connectors
  • ZEBRA® connectors alternate conductive and non-conductive rubber at a density typically an order of magnitude greater than the width of the conductive traces to which they connect (e.g., at the edge of the fabric).
  • FIG. 4 is a simplified diagram of sensor circuitry that may be provided on a PCB for use with implementations described herein.
  • such sensor circuitry could be provided on a PCB in cutout 322 and connected to the conductive traces associated with sensors SI -SI 9.
  • a resulting signal (captured via the corresponding traces) is received and digitized (e.g., via multiplexer 402 and A-D converter 404) and may be processed locally (e.g., by processor 406) and/or transmitted to a connected device (e.g., via a Bluetooth or other wireless connection, or even via a USB connection).
  • a connected device e.g., via a Bluetooth or other wireless connection, or even via a USB connection.
  • the sensors may be selectively energized by the sensor circuitry (e.g., under the control of processor 406 via D-A converter 408 and multiplexer 410) to effect the generation of the sensor signals.
  • the C8051F380- GM controller (provided by Silicon Labs of Austin, Texas) is an example of a processor suitable for use with various implementations.
  • power may be provided to the sensor circuitry via a USB connection.
  • systems that transmit data wirelessly may provide power to the sensor circuitry using any of a variety of mechanisms and techniques including, for example, using one or more batteries, solar cells, and/or mechanisms that harvest mechanical energy.
  • the LTC3588 (provided by Linear Technology Corporation of Milpitas, California) is an example of an energy harvesting power supply that may be used with at least some of these diverse energy sources.
  • Other suitable variations will be appreciated by those of skill in the art.
  • the sensor circuitry shown in FIG. 4 is merely an example. A wide range of sensor circuitry components, configurations, and functionalities are contemplated.
  • Both one-sided and two-side implementations are contemplated, e.g., conductive traces can be formed on one or both sides of a flexible substrate. As will be understood, two-sided implementations may require some mechanism for connecting conductive traces on one side of the substrate to those on the other side. Some implementations use vias in which conductive ink or paint is flowed through the vias to establish the connections. Alternatively or additionally, metal vias or rivets may make connections through the substrate.
  • FIG. 5 illustrates the use of vias or rivets through the flexible substrate (e.g., configuration 502), and the use of insulating materials to insulate conductive traces from the substrate where the substrate is a piezoresistive material (e.g., configuration 504).
  • Such mechanisms enable complex patterns of traces and routing of signals in a manner analogous to the different layers of a PCB.
  • conductive traces that transmit signals to and from the sensors of glove 300 may be insulated from the underlying piezoresistive substrate by an insulating material.
  • insulators 304 and 306 that are associated with the drive and sense signal lines connected to sensor S4.
  • sense signal lines from multiple sensors are connected to each other on the opposite side (not shown) of the material depicted in FIG. 3 through the use of vias at locations 310-318.
  • sensor trace patterns may be placed in a roughly cylindrical configuration around the wrist to detect bending of the wrist in two dimensions (e.g., up, down, left, right). When all four sensors register a similar response, this could mean that the wrist is twisting. However, this configuration may not provide sufficient information to determine the direction of the twist. Therefore, according to a particular implementation, an outer cylinder 608 may be attached to an inner cylinder 610 with at least two stretch sensors (e.g., 612 and 614). By comparison of the outputs of these stretch sensors, the direction (e.g., 616) as well as the amount of the rotation can be captured.
  • stretch sensors e.g., 612 and 614
  • FIG. 7 illustrates particular class of implementations of a sensor array 700 for use in a sensor glove in which conductive traces are formed on a flexible dielectric substrate 702. Operation of sensor array 700 is similar to operation of the sensor array of sensor glove 300 as described above. And it should be noted that the depicted configuration of traces might also be included in implementations in which the traces are formed on piezoresistive material.
  • substrate 702 may be constructed from a thermoplastic polyurethane (TPU) material such as, for example, Products 3415 or 3914 from Bemis Associates Inc. of Shirley, Massachusetts.
  • TPU thermoplastic polyurethane
  • the conductive traces may be screen printed on the substrate using a conductive flexible ink such as, for example, conductive silicone-based inks manufactured by E.I. du Pont de Nemours and Company (DuPont) of Wilmington, Delaware, or Creative Materials of Ayer, Massachusetts.
  • Patches of a piezoresistive material e.g., the Eeonyx fabric discussed above
  • a second substrate of the TPU material (not shown) is placed over array 700, and the assembly is heated to thermally bond the components together, fixing the piezoresistive patches in contact with their respective sensor traces.
  • FIG. 8 shows a flexible substrate 802 on which a conductive trace 804 is formed. Piezoresistive material 806 is maintained in contact with trace 804 by a second flexible substrate 808.
  • substrates 802 and 808 are TPU substrates and trace 804 is a conductive ink that is screen printed on TPU substrate 802.
  • TPU substrate 802 has an adhesive-barrier-adhesive (ABA) structure that allows for the assembly to be thermally bonded (e.g., melted) to another substrate such as, for example, a fabric glove blank 900 as depicted in FIG. 9.
  • ABA adhesive-barrier-adhesive
  • the other TPU substrate 808 is shown an adhesive-barrier (AB) structure so that it only bonds to the assembly.
  • this substrate has an ABA structure to enable thermal bonding on both sides of the assembly.
  • stiffeners may be placed in alignment with at least some of the piezoresistive patches and the corresponding trace patterns for the purpose of amplifying the signals generated by the corresponding sensors, e.g., by the force of the stiffener resisting bending of a knuckle and compressing the piezoresistive material.
  • a stiffener might be a plastic film (e.g., polyethylene terephthalate or PET). Alternatively, a stiffener may be another piece of fabric.
  • a stiffening material such as DuPont 5036 Dielectric ink may be silk-screened or printed on one of the components of the stack.
  • stiffeners may be inserted at any point in the stack of materials (e.g., as depicted in FIG. 8) as long as the electrical connection between the conductive traces and the piezoresistive material is not unduly degraded.
  • a stiffener 706 (e.g., of PET or other suitable material) may be adhered to substrate 702 near the terminations of the conductive traces to allow for the insertion of the assembly into a connector 708 (see the exploded view in the lower right hand corner of the drawing).
  • connector 708 is a Molex ZIF flat flex connector such as, for example, the Molex connector 52207-2860 (a 28 position connector) or the Molex connector 0522710869 (an 8 position connector as shown in FIG. 11).
  • sensor glove implementations are contemplated in which sensors are placed on the palm of the glove and/or the tips of the fingers to detect, for example, touching, gripping, or otherwise coming into contact with objects or surfaces.
  • FIG. 10 An example of how such a sensor might be integrated with an array is shown in FIG. 10.
  • flexible substrate 1002 extends beyond sensor S4 and includes a tab 1004 on which the conductive traces of sensor S15 are formed.
  • Tab 1004 can be wrapped around inside the glove (as indicated by the arrow) so that it coincides with the fingertip of the glove.
  • any forces acting on the fingertip of the glove e.g., by virtue of the fingertip coming into contact with a surface
  • sensor SI 5 any forces acting on the fingertip of the glove (e.g., by virtue of the fingertip coming into contact with a surface) will be detected by sensor SI 5.
  • such sensors may be integrated with a sensor array for the back of the hand as shown in FIG. 10.
  • such sensors may be implemented as separate array for the palm and fingertips.
  • FIG. 11 shows an alternative design for a sensor array 1100 for use in a sensor glove which includes only four elongated sensors; SI -S3 for the three middle fingers, and S4 for the thumb.
  • this simpler design may be easier and/or cheaper to manufacture and may be sufficient or even more well-suited for some applications than the designs described above with reference to FIGs. 3 and 7.
  • sensor array 1100 operates similarly to the sensor arrays described and may be constructed using either approach. According to a particular
  • substrate 1102 is constructed from a TPU material and the conductive traces are screen printed on substrate 1102 using a conductive flexible ink as described above with reference to FIGs. 7 and 8.
  • Patches of a piezoresistive material e.g., the Eeonyx fabric discussed above
  • sensors S1-S4 See for example, piezoresistive patch 1104 at sensor S3.
  • a second substrate of the TPU material (not shown) is placed over array 1100, and the assembly is heated to thermally bond the components together, fixing the piezoresistive patches in contact with their respective sensor traces.
  • a stiffener (not shown) may be adhered to substrate 1102 near the terminations of the conductive traces to allow for the insertion of the assembly into a connector 1108.
  • use of the stiffener allows for connection of sensor array 1100 to any of a wide variety of industry standard connectors including, for example, the Molex connector 0522710869.
  • stiffeners (not shown) may be placed in alignment with at least some of the piezoresistive patches and the corresponding trace patterns of sensor array 1100 for the purpose of amplifying the signals generated by the corresponding sensors.
  • FIGs. 12-14C illustrate another class of implementations for use in a sensor glove.
  • sensor system 1200 includes five digit assemblies 1202 (one for each finger or digit of the hand) and four abductor assemblies 1204 (one for each space between each pair of adjacent digits). These assemblies are connected to a circuit board 1206 on which is implemented the circuitry (not shown) for energizing and reading signals from the knuckle sensors and abductor sensors on each assembly. Digit assemblies 1202 are interconnected via substrate 1208 and abductor assemblies 1204 are interconnected via substrate 1210. Substrates 1208 and 1210 are secured to opposite sides of circuit board 1206 to form sensor system 1200.
  • Conductors on substrates 1208 and 1210 provide connections between conductors on digit assemblies 1202 and abductor assemblies 1204 and corresponding conductors on circuit board 1206 (not shown).
  • Sensor system 1200 is secured by top enclosure 1209 and ergonomic back plate 1211 and is aligned with the back of a hand inserted in a sensor glove 1300 as illustrated in FIG.13.
  • Each digit assembly 1202 includes two knuckle sensors, each knuckle sensor being formed using a strip of piezoresistive material 1212 (e.g., a fabric) in contact with a group of sensor traces (obscured by material 1212 in FIG. 12) on the surface of a flexible dielectric substrate 1214.
  • Routing traces 1216 by which signals are transmitted to and received from the individual sensors are adjacent the opposite surface of substrate 1214 from the sensor trace groups (i.e., the underside of substrate 1214 in the figure). Routing traces 1216 are connected to the sensor traces through substrate 1214, e.g., using vias. Substrate 1214 is depicted as being transparent so that routing traces 1216 on its underside are at least partially visible. Each knuckle sensor generates a sensor signal that represents the degree of bend in the
  • Each abductor assembly 1204 includes one abductor sensor formed using a strip of piezoresistive material 1218 (only one of which is shown in FIG. 12), e.g., a fabric, in contact with a group of sensor traces 1219 (one set of which is obscured by material 1218) on the surface of a flexible dielectric substrate 1220. Routing traces (not shown) by which signals are transmitted to and received from the abductor sensor are adjacent the opposite surface of substrate 1220 from the sensor trace group (i.e., the underside of substrate 1220 in the figure). The routing traces are connected to sensor traces 1219 through substrate 1220, e.g., using vias.
  • Each abductor sensor generates a sensor signal that represents the spread angle between two adjacent digits.
  • the orientation of sensor system 1200 within a glove may be understood with reference to FIG. 13. [0058] As shown in FIG. 13, each digit assembly 1302 extends along the back of the glove and along one of the corresponding fingers (referring to the thumb as one of the fingers). As a particular finger bends, the degree of bend of its knuckles are represented by the sensor signals generated by the corresponding knuckle sensors.
  • each abductor assembly 1304 including the abductor sensor is bent back on itself almost 180 degrees (e.g., like a taco shell or a "v") with the center line of the bend being aligned with the crux of the two corresponding adjacent digits.
  • the abductor sensor is considered to be "at rest” in this position.
  • the abductor sensor flattens out and stretches, generating a corresponding sensor signal representing the spread angle.
  • each of the sensors may be energized and interrogated as described above with reference to FIG. 3 using sensor circuitry such as that described with reference to FIG. 4. That is, each of the sensors includes two traces. One of the traces receives a drive signal, and the other transmits the sensor signal to the sensor circuitry.
  • the sensor signal may be generated using a voltage divider in which one of the resistors of the divider includes the resistance between the two traces through the intervening piezoresistive material, and the other is included with the sensor circuitry. As the resistance of the piezoresistive material changes with applied force or pressure, the sensor signal also varies as a divided portion of the drive signal.
  • calibrated sensor data are stored (e.g., in memory 407 of processor 406) that represent the response of each of the sensors. Such data ensure consistency and accuracy in the way the sensor outputs are processed and used to represent the motion and articulation of the parts of the hand.
  • the output of each sensor e.g., as captured by ADC 404
  • ADC 406 the output of each sensor
  • a set of data points for each sensor is captured (e.g., in a table in memory 407) associating ADC values with corresponding finger positions.
  • the data set for each sensor may capture a value (or an offset value) for many (or even every) of the possible values of the ADC output. Alternatively, fewer data points may be captured and the sensor circuitry may use interpolation to derive force values for ADC outputs not represented in the data set.
  • the calibration data for each abductor sensor represent a range of the spread of the corresponding pair of fingers with a range of data values.
  • the calibration data for each knuckle sensor represent a range of the bend of the corresponding knuckle with a range of data values.
  • calibration involves holding the hand in various positions and storing data values for those positions. For example, the user might be instructed (e.g., in a video or animation) to hold her hand out relaxed with the fingers together, make a fist, spread the fingers out, etc. Data values for each sensor may then be captured for each position.
  • the calibration data capture two positions of the range for each sensor. These positions may be, for example, at the extreme ends of each range. For example, for an abductor sensor, the two positions might be (1) the pair of fingers together and (2) the pair of fingers spread apart as far as possible. Similarly, for a knuckle sensor, the two positions might be (1) the knuckle straight and (2) the knuckle bent as far as possible. Interpolation (e.g., linear interpolation) is then used at run time to determine positions in the range between the extremes for each knuckle and abductor sensor.
  • Interpolation e.g., linear interpolation
  • the calibration data can be regenerated for each session, e.g., by running the user through the various hand positions of the calibration routine.
  • the sensor circuitry on circuit board 1206 includes an inertial measurement unit (IMU) (not shown) that includes a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. The information from these components is blended by the IMU to give the attitude of the hand, i.e., pitch, roll, and yaw.
  • IMU inertial measurement unit
  • Translation i.e., movement of the hand in x, y, and z
  • one or more cameras e.g., gaming system cameras
  • one or more ultrasonic sensors e.g., ultrasonic sensors
  • one or more electromagnetic sensors etc.
  • the position, attitude, and finger articulations of the user's hand can be captured.
  • An example of an FMU that may be employed with various implementations is the BNO055 provided by Bosch Sensortec GmbH of Reutlingen / Kusterdingen, Germany.
  • Other examples of suitable IMUs are provided by InvenSense, Inc. of San Jose, California, and ST Microelectronics of Geneva, Switzerland.
  • each digit assembly also includes a haptic actuator (not shown for clarity) which is connected to its own set of routing traces (partially visible) via pads 1224.
  • the haptic actuators are aligned with each fingertip for the purpose of creating the sensation that the fingertip is in contact with an object or a surface (e.g., in a virtual space or at a remote location) thereby giving the user a sense of feel. Because sensor system 1200 is aligned with the back of the hand, the haptic actuators are connected to pads 1224 via conductors (not shown) that wrap around the finger.
  • each actuator is a flexible metal membrane (e.g., a kapton-mylar film) stretched over a rigid substrate.
  • the membrane shrinks or expands based on a voltage applied by the sensor circuitry via pads 1224.
  • the haptic actuators can be thought of as tiny “speakers” that are driven with different waveforms to simulate different surfaces, signaling that the fingers have contacted something in the virtual world or at the remote location.
  • the waveforms for these contact events depend on the nature of the surface being simulated, the number of fingertips contacting the surface, the rate of movement across the virtual surface, etc. In some cases, accompanying audio may be provided to enhance the perception of the contact. Examples of haptic actuators that may be used with various implementations include those provided by Novasentis Inc. of Berkeley, California.
  • FIGs. 14A-14C show a stack of components of a sensor system that includes the knuckle sensors and haptic actuators.
  • the components relating to the abductor sensors are not shown for clarity. However, it will be understood that the abductor assemblies may be formed similarly to the depicted digit assemblies in terms of the materials and the ordering of the components (without the components relating to the haptic actuators).
  • ergonomic back plate 1402 is shown at the bottom of the stack relative to the orientation of the figure.
  • Back plate 1402 has a curved surface that conforms to the back of the user's hand.
  • Haptic bus lines 1404 (for connection to the haptic actuators which are not shown) are printed with conductive ink on one side of PET substrate 1406.
  • Sensor bus lines 1408 (including pads for connection to the sensor circuitry circuit board) that are used to energize and read signals from each of the knuckle sensors are printed with conductive ink on the other side of PET substrate 1406.
  • PET substrates 1410 are placed over sensor bus lines 1408 and PET substrate 1406.
  • Sensor traces 1412 (including some traces to connect to the bus lines) are printed in conductive ink on PET substrates 1410 (and partially on PET substrate 1406 to connect with bus lines 1408).
  • Each parallel pair of traces (e.g., 1413) on PET substrates 1410 corresponds to a knuckle sensor.
  • a carbon passivation layer 1414 is printed over sensor traces 1412, and exposed portions of bus lines 1408 to protect the conductive traces from tarnishing and creeping. Dielectric strips may be placed over portions of the bus traces to insulate them from the sensor traces and the piezoresistive material.
  • piezoresistive fabric strips 1416 are placed in contact with each pair of sensor traces 1412 to form the knuckle sensors.
  • Each fabric strip 1416 has a PET strip 1418 applied as a stiffener that is secured using pressure sensitive adhesive (PSA) 1420.
  • PSA pressure sensitive adhesive
  • PET 1418 makes fabric 1416 asymmetrically stiffer, resisting the bend of the fabric, causing it to distort, thereby enhancing the bend signal and helping to achieve the desired sensor response and dynamic range.
  • PSA pressure sensitive adhesive
  • TPU strips 1422 are placed over the knuckle sensors and heated to thermally bond the components together, fixing the piezoresistive strips in contact with their respective sensor traces.
  • sensor traces 1412 are printed such that portions of the sensor traces are on PET substrates 1410 and other portions are contacting and connecting with bus lines 1408 on the underlying PET substrate 1406. Connections between sensor traces 1412 and bus lines 1408 may also be made through PET substrate 1406, e.g., using vias. And although the knuckle sensors are depicted as using two parallel traces other trace group configurations are contemplated. For example, sensor traces having interdigitated extensions are employed with some implementations as discussed above. Another example of such an implementation is shown in FIGs. 15 and 16. [0071] FIG. 15 shows the sensor traces and bus lines of a sensor system 1500 without other layers and components so as not to obscure details of these structures.
  • Each of the five digit assemblies 1502 includes four knuckle sensors 1504 as indicated on the digit assembly corresponding to the middle finger. Having two sensors per knuckle may allow for finer detection and/or representation of motion. Four abductor assemblies 1506 are also shown.
  • bus lines 1602 (which include both sensor and haptic bus lines) are printed in conductive ink on one side of a TPU substrate 1604.
  • Sensor traces 1606 are printed in conductive ink on the other side of TPU substrate 1604 and connected to the corresponding bus lines through TPU substrate 1604, e.g., using vias.
  • This assembly is then placed in contact with piezoresistive fabric, e.g., in the shape of a glove blank (not shown). These components are then heated, securing the sensor traces 1606 to the
  • Abductor assemblies 1608 (of which only the traces are shown) may be similarly constructed.
  • abductor assemblies 1608 may be formed on the piezoresistive fabric, e.g., printed using conductive ink and insulators (for the bus lines extending to and from the abductor sensors).
  • the applications for sensor gloves enabled by the present disclosure are numerous and diverse.
  • the action of a human hand in such a sensor glove may be translated to control systems, devices, and processes in both the real and virtual worlds.
  • a human can interact with objects in a virtual space, having utility in video and online gaming, as well as educational and artistic applications.
  • a sensor glove may be used to simulate a surgical procedure, playing of a virtual musical instrument, conducting of a virtual orchestra, painting of a virtual work of art, etc.
  • Translation of the movements of a human hand into the virtual world could support more realistic computer aided animation.
  • Industrial applications might include remote control of manufacturing apparatus or robotics handling hazardous materials. As will be appreciated from the diversity of these examples, the range of applications is virtually limitless. The scope of this disclosure should therefore not be limited by reference to specific applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Sensor systems are described that are designed to be integrated with gloves for the human hand. An array of sensors detects forces associated with action of a hand in the glove, and associated circuitry generates corresponding control information that may be used to control a wide variety of processes and devices.

Description

SENSOR SYSTEM INTEGRATED WITH A GLOVE
RELATED APPLICATION DATA
[0001] The present application claims priority to U.S. Patent Application No. 15/621,935 entitled Sensor System Integrated With a Glove filed on June 13, 2017 (Attorney Docket No. BBOPP007X1), which is a continuation-in-part of and claims priority under 35 U.S.C. 120 to U.S. Patent Application No. 14/928,058 entitled Sensor System Integrated with a Glove filed on October 30, 2015 (Attorney Docket No. BBOPP007), which is a non-provisional of and claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 62/072,798 entitled Flexible Sensors and Applications filed on October 30, 2014 (Attorney Docket No.
BBOPP004P3). U.S. Patent Application No. 14/928,058 is also a continuation-in-part of and claims priority under 35 U.S.C. 120 to U.S. Patent Application No. 14/671,821 entitled Flexible Sensors and Applications filed on March 27, 2015 (Attorney Docket No. BBOPP004X2), which is a continuation-in-part of and claims priority under 35 U.S.C. 120 to U.S. Patent Application No. 14/299,976 entitled Piezoresistive Sensors and Applications filed June 9, 2014 (Attorney Docket No. BBOPP004). The entire disclosure of each of the foregoing applications is incorporated herein by reference for all purposes.
BACKGROUND [0002] Demand is rapidly rising for technologies that bridge the gap between computing devices and the physical world. These interfaces typically require some form of sensor technology that translates information from the physical domain to the digital domain. The "Internet of Things" contemplates the use of sensors in a virtually limitless range of applications, for many of which conventional sensor technology is not well suited.
SUMMARY
[0003] According to various implementations, sensors and applications of sensors are provided. According to some implementations, a sensor system includes a flexible substrate for alignment or integration with a portion of a glove. A plurality of conductive trace groups formed directly on the substrate at sensor locations correspond to at least some finger joints of a human hand. Each of the conductive trace groups includes two or more conductive traces. The resistance between the conductive traces in each of the conductive trace groups varies with force on piezoresistive material in contact with the conductive trace group. Circuitry is configured to receive a signal from each of the conductive trace groups and generate control information in response thereto. The control information represents the force on the piezoresistive material in contact with each of the conductive trace groups.
[0004] According to a particular class of implementations, the flexible substrate is a dielectric material, and the piezoresistive material is a plurality of patches. Each patch of piezoresistive material is in contact with a corresponding one of the conductive trace groups at the sensor locations. According to a more specific implementation, the dielectric material is a thermoplastic material, and the sensor system includes a second flexible substrate of the thermoplastic material. The flexible substrate on which the conductive trace groups are formed, the patches of
piezoresistive material, and the second flexible substrate are thermally bonded together such that the patches of piezoresistive material are secured in contact with the corresponding conductive trace groups.
[0005] According to another class of implementations, the flexible substrate is the piezoresistive material which may be, for example, a piezoresistive fabric.
[0006] A further understanding of the nature and advantages of various implementations may be realized by reference to the remaining portions of the specification and the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS [0007] FIG. 1 shows examples of trace patterns that may be integrated with a flexible substrate.
[0008] FIG. 2 shows examples of different types of distortions to a flexible substrate.
[0009] FIG. 3 shows a particular implementation of a sensor array. [0010] FIG. 4 is a simplified block diagram of sensor circuitry suitable for use with various implementations.
[0011] FIG. 5 shows examples of relationships among a piezoresistive substrate, conductive traces, and other conductive elements in one-sided and two-sided sensor implementations.
[0012] FIG. 6 shows another implementation of a sensor array.
[0013] FIG. 7 shows another implementation of a sensor array.
[0014] FIG. 8 shows an example of a cross-section of some of the components of a sensor system.
[0015] FIG. 9 shows an example of a sensor array integrated with a glove blank.
[0016] FIG. 10 shows another implementation of a sensor array.
[0017] FIG. 11 shows another implementation of a sensor array.
[0018] FIGs. 12-14C show another implementation of a sensor system.
[0019] FIGs. 15 and 16 show another implementation of a sensor system.
DETAILED DESCRIPTION
[0020] Sensors and sensor systems incorporating piezoresistive materials are described in this disclosure. In particular, sensor systems for integration with gloves for the human hand are described. Specific implementations are described herein including the best modes contemplated. Examples of these implementations are illustrated in the accompanying drawings. However, the scope of this disclosure is not limited to the described implementations. Rather, this disclosure is intended to cover alternatives, modifications, and equivalents of these implementations. In the following description, specific details are set forth in order to provide a thorough understanding of the described implementations. Some implementations may be practiced without some or all of these specific details. In addition, well known features may not have been described in detail to promote clarity. [0021] Piezoresistive materials include any of a class of materials that exhibit a change in electrical resistance in response to mechanical force or pressure applied to the material. One class of sensor systems described herein includes conductive traces formed directly on or otherwise integrated with a flexible substrate of piezoresistive material, e.g., a piezoresistive fabric or other flexible material. Another class of sensor systems described herein includes conductive traces formed directly on or otherwise integrated with a flexible dielectric substrate with flexible piezoresistive material that is tightly integrated with the dielectric substrate and in contact with portions of the traces. When force or pressure is applied to such a sensor system, the resistance between traces connected by the piezoresistive material changes in a time- varying manner that is representative of the applied force. A signal representative of the magnitude of the applied force is generated based on the change in resistance. This signal is captured via the conductive traces (e.g., as a voltage or a current), digitized (e.g., via an analog-to-digital converter), processed (e.g., by an associated processor, controller, or suitable control circuitry), and mapped (e.g., by the associated processor, controller, or control circuitry) to a control function that may be used in conjunction with virtually any type of process, device, or system. The output signals from such sensor systems may also be used to detect a variety of distortions and/or deformations of the substrate(s) on which they are formed or with which they are integrated such as, for example, bends, stretches, torsions, rotations, etc.
[0022] Printing, screening, depositing, or otherwise forming conductive traces directly onto flexible substrates allows for the creation of a sensor or sensor array that fits any arbitrary shape or volume. The piezoresistive material on which the traces are formed or with which the traces are in contact may be any of a variety of woven and non-woven fabrics having piezoresistive properties. Implementations are also contemplated in which the piezoresistive material may be any of a variety of flexible, stretchable, or otherwise deformable materials (e.g., rubber, or a stretchable fabric such as spandex or open mesh fabrics) having piezoresistive properties. The conductive traces may be formed on the piezoresistive material or a flexible dielectric substrate using any of a variety of conductive inks or paints. Implementations are also contemplated in which the conductive traces are formed using any flexible conductive material that may be formed on a flexible substrate. It should therefore be understood that, while specific implementations are described with reference to specific materials and techniques, the scope of this disclosure is not so limited.
[0023] Both one-sided and two-side implementations are contemplated, e.g., conductive traces can be printed on one or both sides of flexible substrate. As will be understood, two-sided implementations may require some mechanism for connecting conductive traces on one side of the substrate to those on the other side. Some implementations use vias in which conductive ink or paint is flowed through the vias to establish the connections. Alternatively, metal vias or rivets may make connections through the flexible substrate. [0024] Both single and double-sided implementations may use insulating materials formed over conductive traces. This allows for the stacking or layering of conductive traces and signal lines, e.g., to allow the routing of signal line to isolated structures in a manner analogous to the different layers of a printed circuit board.
[0025] Routing of signals on and off the flexible substrate may be achieved in a variety of ways. A particular class of implementations uses elastomeric connectors (e.g., ZEBRA® connectors) which alternate conductive and non-conductive rubber at a density typically an order of magnitude greater than the width of the conductive traces to which they connect (e.g., at the edge of the substrate). Alternatively, a circuit board (possibly made of a flexible material such as Kapton), or a bundle of conductors may be riveted to the substrate. The use of rivets may also provide mechanical reinforcement to the connection.
[0026] Matching conductive traces or pads on both the flexible substrate and a circuit board can be made to face each. A layer of conductive adhesive (e.g., a conductive epoxy such as Masterbond EP79 from Masterbond, Inc. of Hackensack, New Jersey) can be applied to one of the surfaces and then mated to the other surface. The conductive traces or pads can also be held together with additional mechanical elements such as a plastic sonic weld or rivets. If conductive rivets are used to make the electrical connections to the conductive traces of the flexible substrate, the conductive adhesive may not be required. Conductive threads may also be used to connect the conductive traces of the flexible substrate to an external assembly. [0027] According to a particular class of implementations, the piezoresistive material is a pressure sensitive fabric manufactured by Eeonyx, Inc., of Pinole, California. The fabric includes conductive particles that are polymerized to keep them suspended in the fabric. The base material is a polyester felt selected for uniformity in density and thickness as this promotes greater uniformity in
conductivity of the finished piezoresistive fabric. That is, the mechanical uniformity of the base material results in a more even distribution of conductive particles when the slurry containing the conductive particles is introduced. The fabric may be woven. Alternatively, the fabric may be non-woven such as, for example, a calendared fabric e.g., fibers, bonded together by chemical, mechanical, heat or solvent treatment. For implementations in which conductive traces are formed on the piezoresistive fabric, calendared material presents a smoother outer surface which promotes more accurate screening of conductive inks than a non-calendared material.
[0028] The conductive particles in the fabric may be any of a wide variety of materials including, for example, silver, copper, gold, aluminum, carbon, etc. Some implementations may employ carbon graphenes that are formed to grip the fabric.
Such materials may be fabricated using techniques described in U.S. Patent No.
7,468,332 for Electroconductive Woven and Non-Woven Fabric issued on December
23, 2008, the entire disclosure of which is incorporated herein by reference for all purposes. However, it should again be noted that any flexible material that exhibits a change in resistance or conductivity when force or pressure is applied to the material will be suitable for implementation of sensors as described herein.
[0029] According to a particular class of implementations, conductive traces having varying levels of conductivity are formed on flexible piezoresistive material or an adjacent flexible dielectric substrate using conductive silicone-based inks manufactured by, for example, E.I. du Pont de Nemours and Company (DuPont) of Wilmington, Delaware, and/or Creative Materials of Ayer, Massachusetts. An example of a conductive ink suitable for implementing highly conductive traces for use with various implementations is product number 125-19 from Creative Materials, a flexible, high temperature, electrically conductive ink. Examples of conductive inks for implementing lower conductivity traces for use with various implementations are product numbers 7102 and 7105 from DuPont, both carbon conductive compositions. Examples of dielectric materials suitable for implementing insulators for use with various implementations are product numbers 5018 and 5036 from DuPont, a UV curable dielectric and an encapsulant, respectively. These inks are flexible and durable and can handle creasing, washing, etc. The degree of conductivity for different traces and applications is controlled by the amount or concentration of conductive particles (e.g., silver, copper, aluminum, carbon, etc.) suspended in the silicone. These inks can be screen printed or printed from an inkjet printer. Another class of implementations uses conductive paints (e.g., carbon particles mixed with paint) such as those that are commonly used for EMI shielding and ESD protection. [0030] Examples of sensors and arrays of sensors that may be used with various implementations enabled by the present disclosure are described in U.S. Patent Application No. 14/299,976 entitled Piezoresistive Sensors and Applications filed on June 9, 2014 (Attorney Docket No. BBOPP004), the entire disclosure of which is incorporated herein by reference for all purposes. However, it should be noted that implementations are contemplated that employ a variety of other suitable sensor technologies.
[0031] Forming sensors on flexible substrates enables numerous useful devices. Many of these devices employ such sensors to detect the occurrence of touch events, the force or pressure of touch events, the duration of touch events, the location of touch events, the direction of touch events, and/or the speed of motion of touch events. The output signals from such sensors may also be used to detect a variety of distortions and/or deformations of the substrate on which they are formed or with which they are integrated such as, for example, bends, stretches, torsions, rotations, etc. The information derived from such sensors may be used to effect a wide variety of controls and/or effects. Examples of distortions and/or deformations are described below with reference to the accompanying figures. As will be understood, the specific details described are merely examples for the purpose of illustrating the range of techniques enabled by this disclosure.
[0032] FIG. 1 shows an example of a sensor trace pattern 100 integrated with a flexible substrate 102. The flexible substrate may be a piezoresistive material or a dielectric material. In the latter case, a flexible piezoresistive material is tightly integrated with the dielectric material an in contact with the sensor trace pattern. Trace pattern 100 includes a pair of conductive traces, one of which (trace 104) provides a sensor signal to associated circuitry (not shown), and the other of which (trace 106) is connected to ground or a suitable reference. Some representative examples of other trace patterns 108-116 are shown. In some implementations, the traces of a trace pattern may be formed directly, e.g., by screening or printing, on the flexible substrate which might be, for example, a piezoresistive fabric. However, it should be noted that, among other things, the geometries of the sensor trace pattern(s), the number of traces associated with each sensor, the number, spacing, or
arrangement of the sensors, the relationship of the sensors to the substrate, the number of layers or substrates, and the nature of the substrate(s) may vary considerably from application to application, and that the depicted configurations are merely examples for illustrative purposes.
[0033] FIG. 2 shows examples of different types of distortions to flexible substrate 102 that may be detected via sensor trace pattern 100. FIG. 2(a) shows substrate 102 in its non-distorted state. FIG. 2(b) shows a side view of substrate 102 bending; FIG. 2(c) shows substrate 102 stretching; FIG. 2(d) represents substrate 102 rotating relative to surrounding material; and FIG. 2(e) shows a side view of substrate 102 twisting due to an applied torque (i.e., torsion). In each of these scenarios, the resistance of the piezoresistive material in contact with trace pattern 100 changes in response to the applied force (e.g., goes down or up due to compression or increased separation of conductive particles in the piezoresistive material). This change (including its magnitude and time-varying nature) is detectable via sensor trace pattern 100 and associated electronics (not shown). [0034] According to a particular implementation illustrated in FIG. 3, sensor trace patterns are formed on the stretchable material of a sensor glove 300 that may be used, for example, to translate a human's hand motions and the hand's interactions with the physical world into a virtual representation of the hand (or some other virtual object) and its interactions in a virtual environment. In another example, the hand's motions and interactions may be used to control a robotic hand or device in the physical world. The material on which the trace patterns are formed may be a flexible piezoresistive material or a flexible dielectric material. Again, in the latter case, a flexible piezoresistive material is tightly integrated with the flexible substrate on which the trace patterns are formed and in contact with the trace patterns at the various sensor locations (i.e., S1-S19).
[0035] As shown, trace patterns corresponding to some of the sensors (e.g., S1-S5 and S14-S18) are placed to coincide with various joints of the fingers (e.g., knuckles or finger joints) to capture distortion and/or deformation of the glove in response to bending and flexing of those joints. Other sensors (e.g., S6-S13 and SI 9) are placed to capture stretching of the glove, e.g., as occurs when the fingers of the hand are spread out. Other sensors (not shown) may also be placed on the palm of the glove and/or the tips of the fingers to detect bending and flexing forces as well as forces relating, for example, to touching, gripping, or otherwise coming into contact with objects or surfaces.
[0036] Portions of the conductive traces that are not intended to be part of a sensor (e.g., signal routing traces) may be shielded or insulated to reduce any unwanted contributions to the sensor signals. That is, the portions of the conductive traces that bring the drive and sense signals to and from the sensors may be insulated from the piezoresistive material using, for example, a dielectric or non-conducting material between the piezoresistive material and the conductive traces. According to some implementations in which the conductive traces are formed on a flexible dielectric material, isolated pieces of piezoresistive material may be selectively located at the respective sensor locations.
[0037] In the depicted implementation there are 19 sensors, SI -SI 9. Each of the sensors includes two adjacent traces, the respective patterns of which include extensions that alternate. See, for example, the magnified view of sensor S4. One of the traces 301 receives a drive signal; the other trace 302 transmits the sensor signal to associated sensor circuitry (not shown). The drive signal might be provided, for example, by connecting the trace (permanently or temporarily) to a voltage reference, a signal source that may include additional information in the drive signal, a GPIO (General Purpose Input Output) pin of an associated processor or controller, etc. And as shown in the example in FIG. 3, the sensor signal might be generated using a voltage divider in which one of the resistors of the divider includes the resistance between the two traces through the intervening piezoresistive material. The other resistor (represented by Rl) might be included, for example, with the associated sensor circuitry. As the resistance of the piezoresistive material changes with applied force or pressure, the sensor signal also varies as a divided portion of the drive signal. [0038] The sensors are energized (via the drive signals) and interrogated (via the sensor signals) to generate an output signal for each that is a representation of the force exerted on that sensor. As will also be appreciated, and depending on the application, implementations are contemplated having more or fewer sensors.
[0039] According to various implementations, different sets of sensors may be selectively energized and interrogated thereby reducing the number and overall area of traces on the substrate, as well as the required connections to sensor circuitry on an associated PCB (which may be positioned, for example, in cutout 322). For example, in the sensor system of FIG. 3, the 19 sensors are driven via 11 drive signal outputs from the sensor circuitry (not shown), and the sensor signals are received via 2 sensor signal inputs to the sensor circuitry; with 13 connections between the flexible substrate on which the conductive traces are formed and the PCB in cutout 322 as shown. The set of sensors providing sensor signals to one of the 2 sensor signal inputs (e.g., S6-S13 in one set and S1-S5 and S14-S19 in the other) may be energized in any suitable sequence or pattern such that any signal received on the corresponding sensor signal input can be correlated with the corresponding sensor drive signal by the sensor circuitry.
[0040] And because the sensor signals in this implementation are received by the sensor circuitry via two different sensor signal inputs, two sensors can be
simultaneously energized as long as they are connected to different sensor signal inputs to the sensor circuitry. This allows for the sharing of drive signal lines. For example, in the implementation of FIG. 3, eight pairs of sensors share a common drive signal line, i.e., S2 and S8, S3 and S10, S4 and S12, S6 and S14, S7 and S15, S9 and SI 6, Sl l and SI 7, and S13 and SI 9. The sharing of the common drive signal lines may be enabled by insulators which allow the conductive traces to cross, as well as locations at which the conductive traces simply diverge. Other suitable variations on this theme will be understood by those of skill in the art to be within the scope of this disclosure.
[0041] According to some implementations, a PCB may be connected to the conductive traces of the sensor array as described U.S. Patent Application No.
14/671,821 entitled Flexible Sensors and Applications filed on March 27, 2015
(Attorney Docket No. BBOPP004X2), the entire disclosure of which is incorporated herein by reference for all purposes. According to other implementations, any of a variety of techniques may be employed to make such a connection including, for example, elastomeric connectors (e.g., ZEBRA® connectors) which alternate conductive and non-conductive rubber at a density typically an order of magnitude greater than the width of the conductive traces to which they connect (e.g., at the edge of the fabric). A variety of other suitable alternatives are available to those of skill in the art.
[0042] FIG. 4 is a simplified diagram of sensor circuitry that may be provided on a PCB for use with implementations described herein. For example, in the implementation described above with reference to FIG, 3, such sensor circuitry could be provided on a PCB in cutout 322 and connected to the conductive traces associated with sensors SI -SI 9. When force is applied to one of the sensors, a resulting signal (captured via the corresponding traces) is received and digitized (e.g., via multiplexer 402 and A-D converter 404) and may be processed locally (e.g., by processor 406) and/or transmitted to a connected device (e.g., via a Bluetooth or other wireless connection, or even via a USB connection). The sensors may be selectively energized by the sensor circuitry (e.g., under the control of processor 406 via D-A converter 408 and multiplexer 410) to effect the generation of the sensor signals. The C8051F380- GM controller (provided by Silicon Labs of Austin, Texas) is an example of a processor suitable for use with various implementations.
[0043] In addition to transmission of data to and from a connected device, power may be provided to the sensor circuitry via a USB connection. Alternatively, systems that transmit data wirelessly (e.g., via Bluetooth) may provide power to the sensor circuitry using any of a variety of mechanisms and techniques including, for example, using one or more batteries, solar cells, and/or mechanisms that harvest mechanical energy. The LTC3588 (provided by Linear Technology Corporation of Milpitas, California) is an example of an energy harvesting power supply that may be used with at least some of these diverse energy sources. Other suitable variations will be appreciated by those of skill in the art. And as will be appreciated, the sensor circuitry shown in FIG. 4 is merely an example. A wide range of sensor circuitry components, configurations, and functionalities are contemplated.
[0044] Both one-sided and two-side implementations are contemplated, e.g., conductive traces can be formed on one or both sides of a flexible substrate. As will be understood, two-sided implementations may require some mechanism for connecting conductive traces on one side of the substrate to those on the other side. Some implementations use vias in which conductive ink or paint is flowed through the vias to establish the connections. Alternatively or additionally, metal vias or rivets may make connections through the substrate. FIG. 5 illustrates the use of vias or rivets through the flexible substrate (e.g., configuration 502), and the use of insulating materials to insulate conductive traces from the substrate where the substrate is a piezoresistive material (e.g., configuration 504). Such mechanisms enable complex patterns of traces and routing of signals in a manner analogous to the different layers of a PCB.
[0045] For example, assuming an implementation in which the conductive traces are formed on piezoresistive material and referring again to FIG. 3, conductive traces that transmit signals to and from the sensors of glove 300 may be insulated from the underlying piezoresistive substrate by an insulating material. This is most clearly illustrated in the figure by insulators 304 and 306 that are associated with the drive and sense signal lines connected to sensor S4. In addition, sense signal lines from multiple sensors are connected to each other on the opposite side (not shown) of the material depicted in FIG. 3 through the use of vias at locations 310-318.
[0046] According to a particular implementation of a sensor glove and as shown in FIG. 6, sensor trace patterns (e.g., 601-604) may be placed in a roughly cylindrical configuration around the wrist to detect bending of the wrist in two dimensions (e.g., up, down, left, right). When all four sensors register a similar response, this could mean that the wrist is twisting. However, this configuration may not provide sufficient information to determine the direction of the twist. Therefore, according to a particular implementation, an outer cylinder 608 may be attached to an inner cylinder 610 with at least two stretch sensors (e.g., 612 and 614). By comparison of the outputs of these stretch sensors, the direction (e.g., 616) as well as the amount of the rotation can be captured.
[0047] FIG. 7 illustrates particular class of implementations of a sensor array 700 for use in a sensor glove in which conductive traces are formed on a flexible dielectric substrate 702. Operation of sensor array 700 is similar to operation of the sensor array of sensor glove 300 as described above. And it should be noted that the depicted configuration of traces might also be included in implementations in which the traces are formed on piezoresistive material.
[0048] According to a particular implementation, substrate 702 may be constructed from a thermoplastic polyurethane (TPU) material such as, for example, Products 3415 or 3914 from Bemis Associates Inc. of Shirley, Massachusetts. The conductive traces may be screen printed on the substrate using a conductive flexible ink such as, for example, conductive silicone-based inks manufactured by E.I. du Pont de Nemours and Company (DuPont) of Wilmington, Delaware, or Creative Materials of Ayer, Massachusetts. Patches of a piezoresistive material (e.g., the Eeonyx fabric discussed above) are placed in contact with the conductive traces at the locations of sensors S1-S14. See for example, piezoresistive patch 704 at sensor S4. A second substrate of the TPU material (not shown) is placed over array 700, and the assembly is heated to thermally bond the components together, fixing the piezoresistive patches in contact with their respective sensor traces.
[0049] The relationships of the components of this assembly may be understood with reference to FIG. 8 which shows a flexible substrate 802 on which a conductive trace 804 is formed. Piezoresistive material 806 is maintained in contact with trace 804 by a second flexible substrate 808. In the depicted example, substrates 802 and 808 are TPU substrates and trace 804 is a conductive ink that is screen printed on TPU substrate 802. According to a particular implementation, TPU substrate 802 has an adhesive-barrier-adhesive (ABA) structure that allows for the assembly to be thermally bonded (e.g., melted) to another substrate such as, for example, a fabric glove blank 900 as depicted in FIG. 9. The other TPU substrate 808 is shown an adhesive-barrier (AB) structure so that it only bonds to the assembly. However, implementations are contemplated in which this substrate has an ABA structure to enable thermal bonding on both sides of the assembly. [0050] According to a more specific implementation, stiffeners (not shown) may be placed in alignment with at least some of the piezoresistive patches and the corresponding trace patterns for the purpose of amplifying the signals generated by the corresponding sensors, e.g., by the force of the stiffener resisting bending of a knuckle and compressing the piezoresistive material. A stiffener might be a plastic film (e.g., polyethylene terephthalate or PET). Alternatively, a stiffener may be another piece of fabric. As yet another alternative, a stiffening material such as DuPont 5036 Dielectric ink may be silk-screened or printed on one of the components of the stack. As will be appreciated, stiffeners may be inserted at any point in the stack of materials (e.g., as depicted in FIG. 8) as long as the electrical connection between the conductive traces and the piezoresistive material is not unduly degraded.
[0051] Referring back to FIG. 7, a stiffener 706 (e.g., of PET or other suitable material) may be adhered to substrate 702 near the terminations of the conductive traces to allow for the insertion of the assembly into a connector 708 (see the exploded view in the lower right hand corner of the drawing). As will be appreciated, with stiffener 706 and the appropriate conductor spacing, this configuration allows for connection of sensor array 700 to any of a wide variety of industry standard connectors. According to a particular implementation, connector 708 is a Molex ZIF flat flex connector such as, for example, the Molex connector 52207-2860 (a 28 position connector) or the Molex connector 0522710869 (an 8 position connector as shown in FIG. 11).
[0052] As discussed above, sensor glove implementations are contemplated in which sensors are placed on the palm of the glove and/or the tips of the fingers to detect, for example, touching, gripping, or otherwise coming into contact with objects or surfaces. An example of how such a sensor might be integrated with an array is shown in FIG. 10. In the depicted example, flexible substrate 1002 extends beyond sensor S4 and includes a tab 1004 on which the conductive traces of sensor S15 are formed. Tab 1004 can be wrapped around inside the glove (as indicated by the arrow) so that it coincides with the fingertip of the glove. Thus, any forces acting on the fingertip of the glove (e.g., by virtue of the fingertip coming into contact with a surface) will be detected by sensor SI 5. As will be appreciated, such sensors may be integrated with a sensor array for the back of the hand as shown in FIG. 10.
Alternatively, such sensors may be implemented as separate array for the palm and fingertips.
[0053] FIG. 11 shows an alternative design for a sensor array 1100 for use in a sensor glove which includes only four elongated sensors; SI -S3 for the three middle fingers, and S4 for the thumb. As will be appreciated, this simpler design may be easier and/or cheaper to manufacture and may be sufficient or even more well-suited for some applications than the designs described above with reference to FIGs. 3 and 7. Nevertheless, sensor array 1100 operates similarly to the sensor arrays described and may be constructed using either approach. According to a particular
implementation, substrate 1102 is constructed from a TPU material and the conductive traces are screen printed on substrate 1102 using a conductive flexible ink as described above with reference to FIGs. 7 and 8. Patches of a piezoresistive material (e.g., the Eeonyx fabric discussed above) are placed in contact with the conductive traces at the locations of sensors S1-S4. See for example, piezoresistive patch 1104 at sensor S3. A second substrate of the TPU material (not shown) is placed over array 1100, and the assembly is heated to thermally bond the components together, fixing the piezoresistive patches in contact with their respective sensor traces.
[0054] As with sensor array 700, a stiffener (not shown) may be adhered to substrate 1102 near the terminations of the conductive traces to allow for the insertion of the assembly into a connector 1108. As discussed above, use of the stiffener allows for connection of sensor array 1100 to any of a wide variety of industry standard connectors including, for example, the Molex connector 0522710869. Also as discussed above with reference to sensor array 700, stiffeners (not shown) may be placed in alignment with at least some of the piezoresistive patches and the corresponding trace patterns of sensor array 1100 for the purpose of amplifying the signals generated by the corresponding sensors. [0055] FIGs. 12-14C illustrate another class of implementations for use in a sensor glove. Referring to the partially exploded view of FIG. 12, sensor system 1200 includes five digit assemblies 1202 (one for each finger or digit of the hand) and four abductor assemblies 1204 (one for each space between each pair of adjacent digits). These assemblies are connected to a circuit board 1206 on which is implemented the circuitry (not shown) for energizing and reading signals from the knuckle sensors and abductor sensors on each assembly. Digit assemblies 1202 are interconnected via substrate 1208 and abductor assemblies 1204 are interconnected via substrate 1210. Substrates 1208 and 1210 are secured to opposite sides of circuit board 1206 to form sensor system 1200. Conductors on substrates 1208 and 1210 provide connections between conductors on digit assemblies 1202 and abductor assemblies 1204 and corresponding conductors on circuit board 1206 (not shown). Sensor system 1200 is secured by top enclosure 1209 and ergonomic back plate 1211 and is aligned with the back of a hand inserted in a sensor glove 1300 as illustrated in FIG.13. [0056] Each digit assembly 1202 includes two knuckle sensors, each knuckle sensor being formed using a strip of piezoresistive material 1212 (e.g., a fabric) in contact with a group of sensor traces (obscured by material 1212 in FIG. 12) on the surface of a flexible dielectric substrate 1214. Routing traces 1216 by which signals are transmitted to and received from the individual sensors are adjacent the opposite surface of substrate 1214 from the sensor trace groups (i.e., the underside of substrate 1214 in the figure). Routing traces 1216 are connected to the sensor traces through substrate 1214, e.g., using vias. Substrate 1214 is depicted as being transparent so that routing traces 1216 on its underside are at least partially visible. Each knuckle sensor generates a sensor signal that represents the degree of bend in the
corresponding knuckle.
[0057] Each abductor assembly 1204 includes one abductor sensor formed using a strip of piezoresistive material 1218 (only one of which is shown in FIG. 12), e.g., a fabric, in contact with a group of sensor traces 1219 (one set of which is obscured by material 1218) on the surface of a flexible dielectric substrate 1220. Routing traces (not shown) by which signals are transmitted to and received from the abductor sensor are adjacent the opposite surface of substrate 1220 from the sensor trace group (i.e., the underside of substrate 1220 in the figure). The routing traces are connected to sensor traces 1219 through substrate 1220, e.g., using vias. Each abductor sensor generates a sensor signal that represents the spread angle between two adjacent digits. The orientation of sensor system 1200 within a glove may be understood with reference to FIG. 13. [0058] As shown in FIG. 13, each digit assembly 1302 extends along the back of the glove and along one of the corresponding fingers (referring to the thumb as one of the fingers). As a particular finger bends, the degree of bend of its knuckles are represented by the sensor signals generated by the corresponding knuckle sensors. And as will be understood from the figure, when the fingers of the hand are together, the portion of each abductor assembly 1304 including the abductor sensor is bent back on itself almost 180 degrees (e.g., like a taco shell or a "v") with the center line of the bend being aligned with the crux of the two corresponding adjacent digits. The abductor sensor is considered to be "at rest" in this position. As the fingers are spread apart, the abductor sensor flattens out and stretches, generating a corresponding sensor signal representing the spread angle.
[0059] The individual sensors on the digit and abductor assemblies may be energized and interrogated as described above with reference to FIG. 3 using sensor circuitry such as that described with reference to FIG. 4. That is, each of the sensors includes two traces. One of the traces receives a drive signal, and the other transmits the sensor signal to the sensor circuitry. As discussed above, the sensor signal may be generated using a voltage divider in which one of the resistors of the divider includes the resistance between the two traces through the intervening piezoresistive material, and the other is included with the sensor circuitry. As the resistance of the piezoresistive material changes with applied force or pressure, the sensor signal also varies as a divided portion of the drive signal.
[0060] And as will be understood, the responses of the individual sensors in sensor systems enabled by the present disclosure may exhibit variation relative to each other as well as the corresponding sensors in similar systems. According to some implementations, calibrated sensor data are stored (e.g., in memory 407 of processor 406) that represent the response of each of the sensors. Such data ensure consistency and accuracy in the way the sensor outputs are processed and used to represent the motion and articulation of the parts of the hand. During calibration, the output of each sensor (e.g., as captured by ADC 404) is measured for a range of known input forces corresponding to specific positions of the hand. In this way, a set of data points for each sensor is captured (e.g., in a table in memory 407) associating ADC values with corresponding finger positions. The data set for each sensor may capture a value (or an offset value) for many (or even every) of the possible values of the ADC output. Alternatively, fewer data points may be captured and the sensor circuitry may use interpolation to derive force values for ADC outputs not represented in the data set. [0061] The calibration data for each abductor sensor represent a range of the spread of the corresponding pair of fingers with a range of data values. The calibration data for each knuckle sensor represent a range of the bend of the corresponding knuckle with a range of data values. According to a particular implementation, calibration involves holding the hand in various positions and storing data values for those positions. For example, the user might be instructed (e.g., in a video or animation) to hold her hand out relaxed with the fingers together, make a fist, spread the fingers out, etc. Data values for each sensor may then be captured for each position.
[0062] According to a particular implementation, the calibration data capture two positions of the range for each sensor. These positions may be, for example, at the extreme ends of each range. For example, for an abductor sensor, the two positions might be (1) the pair of fingers together and (2) the pair of fingers spread apart as far as possible. Similarly, for a knuckle sensor, the two positions might be (1) the knuckle straight and (2) the knuckle bent as far as possible. Interpolation (e.g., linear interpolation) is then used at run time to determine positions in the range between the extremes for each knuckle and abductor sensor. These calibration data can be stored across sessions. And because such data can be user-specific, this might include the storing of multiple sets; one for each unique user. Alternatively, the calibration data can be regenerated for each session, e.g., by running the user through the various hand positions of the calibration routine. [0063] According to some implementations, the sensor circuitry on circuit board 1206 includes an inertial measurement unit (IMU) (not shown) that includes a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. The information from these components is blended by the IMU to give the attitude of the hand, i.e., pitch, roll, and yaw. Translation, i.e., movement of the hand in x, y, and z, may be tracked using one or more cameras (e.g., gaming system cameras), one or more ultrasonic sensors, one or more electromagnetic sensors, etc., to determine the position of the glove in space. Thus, using the information generated by the sensor system, the IMU, and any translation sensing system, the position, attitude, and finger articulations of the user's hand can be captured. An example of an FMU that may be employed with various implementations is the BNO055 provided by Bosch Sensortec GmbH of Reutlingen / Kusterdingen, Germany. Other examples of suitable IMUs are provided by InvenSense, Inc. of San Jose, California, and ST Microelectronics of Geneva, Switzerland. [0064] In the implementation depicted in FIG. 12, each digit assembly also includes a haptic actuator (not shown for clarity) which is connected to its own set of routing traces (partially visible) via pads 1224. The haptic actuators are aligned with each fingertip for the purpose of creating the sensation that the fingertip is in contact with an object or a surface (e.g., in a virtual space or at a remote location) thereby giving the user a sense of feel. Because sensor system 1200 is aligned with the back of the hand, the haptic actuators are connected to pads 1224 via conductors (not shown) that wrap around the finger.
[0065] According to a particular implementation, each actuator is a flexible metal membrane (e.g., a kapton-mylar film) stretched over a rigid substrate. The membrane shrinks or expands based on a voltage applied by the sensor circuitry via pads 1224. The haptic actuators can be thought of as tiny "speakers" that are driven with different waveforms to simulate different surfaces, signaling that the fingers have contacted something in the virtual world or at the remote location. The waveforms for these contact events depend on the nature of the surface being simulated, the number of fingertips contacting the surface, the rate of movement across the virtual surface, etc. In some cases, accompanying audio may be provided to enhance the perception of the contact. Examples of haptic actuators that may be used with various implementations include those provided by Novasentis Inc. of Berkeley, California.
[0066] FIGs. 14A-14C show a stack of components of a sensor system that includes the knuckle sensors and haptic actuators. The components relating to the abductor sensors are not shown for clarity. However, it will be understood that the abductor assemblies may be formed similarly to the depicted digit assemblies in terms of the materials and the ordering of the components (without the components relating to the haptic actuators).
[0067] Referring to FIG. 14A, ergonomic back plate 1402 is shown at the bottom of the stack relative to the orientation of the figure. Back plate 1402 has a curved surface that conforms to the back of the user's hand. Haptic bus lines 1404 (for connection to the haptic actuators which are not shown) are printed with conductive ink on one side of PET substrate 1406. Sensor bus lines 1408 (including pads for connection to the sensor circuitry circuit board) that are used to energize and read signals from each of the knuckle sensors are printed with conductive ink on the other side of PET substrate 1406.
[0068] Referring to FIG. 14B, PET substrates 1410 are placed over sensor bus lines 1408 and PET substrate 1406. Sensor traces 1412 (including some traces to connect to the bus lines) are printed in conductive ink on PET substrates 1410 (and partially on PET substrate 1406 to connect with bus lines 1408). Each parallel pair of traces (e.g., 1413) on PET substrates 1410 corresponds to a knuckle sensor. A carbon passivation layer 1414 is printed over sensor traces 1412, and exposed portions of bus lines 1408 to protect the conductive traces from tarnishing and creeping. Dielectric strips may be placed over portions of the bus traces to insulate them from the sensor traces and the piezoresistive material.
[0069] Referring to FIG. 14C, piezoresistive fabric strips 1416 are placed in contact with each pair of sensor traces 1412 to form the knuckle sensors. Each fabric strip 1416 has a PET strip 1418 applied as a stiffener that is secured using pressure sensitive adhesive (PSA) 1420. PET 1418 makes fabric 1416 asymmetrically stiffer, resisting the bend of the fabric, causing it to distort, thereby enhancing the bend signal and helping to achieve the desired sensor response and dynamic range. As will be appreciated, a variety of materials of varying stiffness and/or thickness can be used as stiff eners depending on the desired response and dynamic range. TPU strips 1422 are placed over the knuckle sensors and heated to thermally bond the components together, fixing the piezoresistive strips in contact with their respective sensor traces.
[0070] As mentioned above, sensor traces 1412 are printed such that portions of the sensor traces are on PET substrates 1410 and other portions are contacting and connecting with bus lines 1408 on the underlying PET substrate 1406. Connections between sensor traces 1412 and bus lines 1408 may also be made through PET substrate 1406, e.g., using vias. And although the knuckle sensors are depicted as using two parallel traces other trace group configurations are contemplated. For example, sensor traces having interdigitated extensions are employed with some implementations as discussed above. Another example of such an implementation is shown in FIGs. 15 and 16. [0071] FIG. 15 shows the sensor traces and bus lines of a sensor system 1500 without other layers and components so as not to obscure details of these structures. Each of the five digit assemblies 1502 includes four knuckle sensors 1504 as indicated on the digit assembly corresponding to the middle finger. Having two sensors per knuckle may allow for finer detection and/or representation of motion. Four abductor assemblies 1506 are also shown.
[0072] According to this class of implementations and as depicted in FIG. 16, bus lines 1602 (which include both sensor and haptic bus lines) are printed in conductive ink on one side of a TPU substrate 1604. Sensor traces 1606 are printed in conductive ink on the other side of TPU substrate 1604 and connected to the corresponding bus lines through TPU substrate 1604, e.g., using vias. This assembly is then placed in contact with piezoresistive fabric, e.g., in the shape of a glove blank (not shown). These components are then heated, securing the sensor traces 1606 to the
piezoresistive fabric from which a sensor glove is then made. Abductor assemblies 1608 (of which only the traces are shown) may be similarly constructed.
Alternatively, because of their relatively simple structures, abductor assemblies 1608 may be formed on the piezoresistive fabric, e.g., printed using conductive ink and insulators (for the bus lines extending to and from the abductor sensors).
[0073] As should be appreciated with reference to the foregoing description, the applications for sensor gloves enabled by the present disclosure are numerous and diverse. As mentioned above, the action of a human hand in such a sensor glove may be translated to control systems, devices, and processes in both the real and virtual worlds. Using a sensor glove, a human can interact with objects in a virtual space, having utility in video and online gaming, as well as educational and artistic applications. For example, a sensor glove may be used to simulate a surgical procedure, playing of a virtual musical instrument, conducting of a virtual orchestra, painting of a virtual work of art, etc. Translation of the movements of a human hand into the virtual world could support more realistic computer aided animation.
Industrial applications might include remote control of manufacturing apparatus or robotics handling hazardous materials. As will be appreciated from the diversity of these examples, the range of applications is virtually limitless. The scope of this disclosure should therefore not be limited by reference to specific applications.
[0074] It will be understood by those skilled in the art that changes in the form and details of the implementations described herein may be made without departing from the scope of this disclosure. In addition, although various advantages and aspects may have been described with reference to particular implementations, the scope of this disclosure should not be limited by reference to such advantages and aspects.

Claims

What is claimed is:
1. A sensor system for integration with a glove, comprising: a plurality of digit assemblies, each digit assembly being configured for alignment with a corresponding finger of the glove, each digit assembly including a flexible dielectric substrate, a plurality of sensor trace groups on the flexible dielectric substrate, routing traces connected to each sensor trace group, and a plurality of patches of piezoresistive fabric, each patch forming a knuckle sensor with a corresponding one of the sensor trace groups; a plurality of haptic actuators, each haptic actuator being disposed near a fingertip- end of a corresponding one of the digit assemblies and configured to provide tactile stimulation to a fingertip in the glove; and a circuit board to which the digit assemblies are connected, the circuit board including circuitry configured to activate and receive a knuckle signal from each knuckle sensor on each digit assembly using the corresponding routing traces, each knuckle signal representing bending of a knuckle in the corresponding finger of the glove, the circuitry also being configured to generate digital information using the knuckle signals, the digital information representing movement of a hand in the glove, the circuitry also being configured to activate each of the haptic actuators.
2. The sensor system of claim 1, wherein each digit assembly includes a thermoplastic material by which the corresponding patches of piezoresistive fabric are thermally bonded to the corresponding sensor trace groups.
3. The sensor system of claim 1 or 2, wherein the sensor trace groups of each digit assembly comprise a flexible conductive ink printed on a first surface of the corresponding flexible dielectric substrate, and wherein the routing traces of each digit assembly comprise the flexible conductive ink adjacent a second surface of the
corresponding flexible dielectric substrate, the second surface being opposite the first surface.
4. The sensor system of any of claims 1-3, wherein each sensor trace group of each digit assembly includes two substantially parallel sensor traces aligned with a longitudinal axis of the corresponding digit assembly.
5. The sensor system of any of claims 1-4, wherein each sensor trace group of each digit assembly includes two sensor traces having interdigitated extensions.
6. The sensor system of any of claims 1-5, further comprising a plurality of stiffeners, each stiffener being associated with a corresponding one of the knuckle sensors, each stiffener being aligned with the corresponding patch of piezoresistive fabric.
7. The sensor system of any of claims 1-6, wherein the circuitry is further configured to generate the digital information using stored calibration data that represent a range of motion for each knuckle sensor.
8. The sensor system of claim 7, wherein the circuitry is configured generate the digital information using the calibration data by interpolating between data values of the calibration data to generate position data for positions within the range of motion for each knuckle sensor.
9. The sensor system of claim 7, wherein the circuitry is configured to generate the calibration data for each user session, or wherein the calibration data is user specific and the circuitry is configured to save the calibration data for subsequent user sessions.
10. The sensor system of any of claims 1-9, wherein the digital information is configured for use by a computing device to control a virtual hand in a virtual environment, or wherein the digital information is configured for use by an electronic system to control a robotic device.
11. The sensor system of any of claims 1-10, further comprising a plurality of abductor assemblies connected to the circuit board, each abductor assembly being configured for alignment with a corresponding pair of the fingers of the glove, each abductor assembly including a flexible dielectric substrate, a sensor trace group on the flexible dielectric substrate, routing traces connected to the sensor trace group, and a patch of piezoresistive fabric, the patch forming an abductor sensor with the corresponding sensor trace group, wherein the circuitry is further configured to activate and receive an abductor signal from each abductor sensor on each abductor assembly using the corresponding routing traces, each abductor signal representing spreading of digits in the corresponding pair of the fingers of the glove, and wherein the circuitry is configured to generate the digital information using the abductor signals.
12. The sensor system of any of claims 1-1 1, wherein the tactile stimulation provided by each haptic actuator represents contact between the corresponding fingertip and an object or surface in a virtual environment or at a location remote from the sensor system.
13. The sensor system of any of claims 1-12, wherein each haptic actuator includes a flexible metal membrane stretched over a rigid substrate, and wherein the flexible metal membrane shrinks or expands in response to activation by the circuitry.
14. The sensor system of any of claims 1-13, wherein the circuitry is configured to activate each haptic actuator with each of a plurality of waveforms, each waveform representing one or both of a nature of a surface being simulated, or a rate of movement across the surface.
15. The sensor system of any of claims 1-14, further comprising an inertial measurement unit configured to generate inertial data representing an attitude of the hand in the glove.
16. The sensor system of claim 16, wherein the inertial measurement unit includes an accelerometer, a gyroscope, and a magnetometer, and wherein the inertial data represents pitch, roll, and yaw of the hand in the glove.
17. The sensor system of any of claims 1-1 1, further comprising a wireless transceiver configured to facilitate communication between the circuitry and a computing device.
18. The glove, comprising the sensor system of any of claims 1-17.
PCT/US2018/035848 2017-06-13 2018-06-04 Sensor system integrated with a glove WO2018231570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019568095A JP2020523690A (en) 2017-06-13 2018-06-04 Sensor system integrated with globe-related application data
DE112018002989.1T DE112018002989T5 (en) 2017-06-13 2018-06-04 Sensor system that is integrated into a glove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/621,935 US10362989B2 (en) 2014-06-09 2017-06-13 Sensor system integrated with a glove
US15/621,935 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018231570A1 true WO2018231570A1 (en) 2018-12-20

Family

ID=64659461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/035848 WO2018231570A1 (en) 2017-06-13 2018-06-04 Sensor system integrated with a glove

Country Status (3)

Country Link
JP (1) JP2020523690A (en)
DE (1) DE112018002989T5 (en)
WO (1) WO2018231570A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021236600A1 (en) * 2020-05-18 2021-11-25 Bebop Sensors, Inc. Sensors for robotic manipulation
DE102020003703A1 (en) 2020-06-22 2021-12-23 Ewald Dörken Ag Construction film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211984A1 (en) * 1985-08-19 1987-03-04 Inc. Vpl Research Computer data entry and manipulation apparatus
US7138976B1 (en) * 2000-07-13 2006-11-21 Rutgers, The State University Of New Jersey Hand force feedback and sensing system
US20130113704A1 (en) * 2011-11-04 2013-05-09 The Regents Of The University Of California Data fusion and mutual calibration for a sensor network and a vision system
US20150331522A1 (en) * 2014-05-15 2015-11-19 Kesumo Llc Piezoresistive sensors and applications
US20160070347A1 (en) * 2014-06-09 2016-03-10 Bebop Sensors, Inc. Sensor system integrated with a glove
US20170108929A1 (en) * 2015-04-28 2017-04-20 Morgan Walker Sinko System and Method for Full Motion Capture and Haptic Feedback Suite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211984A1 (en) * 1985-08-19 1987-03-04 Inc. Vpl Research Computer data entry and manipulation apparatus
US7138976B1 (en) * 2000-07-13 2006-11-21 Rutgers, The State University Of New Jersey Hand force feedback and sensing system
US20130113704A1 (en) * 2011-11-04 2013-05-09 The Regents Of The University Of California Data fusion and mutual calibration for a sensor network and a vision system
US20150331522A1 (en) * 2014-05-15 2015-11-19 Kesumo Llc Piezoresistive sensors and applications
US20160070347A1 (en) * 2014-06-09 2016-03-10 Bebop Sensors, Inc. Sensor system integrated with a glove
US20170108929A1 (en) * 2015-04-28 2017-04-20 Morgan Walker Sinko System and Method for Full Motion Capture and Haptic Feedback Suite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021236600A1 (en) * 2020-05-18 2021-11-25 Bebop Sensors, Inc. Sensors for robotic manipulation
DE102020003703A1 (en) 2020-06-22 2021-12-23 Ewald Dörken Ag Construction film

Also Published As

Publication number Publication date
DE112018002989T5 (en) 2020-02-27
JP2020523690A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US11147510B2 (en) Flexible sensors and sensor systems
US9710060B2 (en) Sensor system integrated with a glove
JP7028523B2 (en) Sensor system integrated with the glove
US10654486B2 (en) Sensor systems integrated with steering wheels
CN101512311B (en) Tactile sensor for curved surfaces and manufacturing method thereof
WO2015175317A1 (en) Piezoresistive sensors and applications
JP2017538187A5 (en)
JP2012521550A (en) Sensor
WO2014058806A1 (en) Improved pliable pressure-sensing fabric
CN110531863B (en) Flexible touch glove based on super-capacitor sensing principle and preparation method thereof
CN101258389B (en) Touch feeling sensor and touch feeling sensor application apparatus
WO2018231570A1 (en) Sensor system integrated with a glove
JP2014016871A (en) Input device, input operation analyzing method, and input operation analyzing program
Kim et al. A novel all-in-one manufacturing process for a soft sensor system and its application to a soft sensing glove
Pannen et al. A low-cost, easy-to-manufacture, flexible, multi-taxel tactile sensor and its application to in-hand object recognition
Kim et al. Robot fingertip tactile sensing module with a 3D-curved shape using molding technique
McCaw et al. Sensory glove for dynamic hand proprioception and tactile sensing
US20170234673A1 (en) Pliable pressure-sending fabric
Wicaksono et al. SensorNets: Towards reconfigurable multifunctional fine-grained soft and stretchable electronic skins
Teng et al. Haptic Permeability: Adding Holes to Tactile Devices Improves Dexterity
US20210356335A1 (en) Sensors for robotic manipulation
KR20180117890A (en) Glove of sensing pressure
CN109820266A (en) A kind of digital flexion identification gloves
JP2004330370A (en) Tactile sensor for robot hand
CN211577846U (en) Tactile feedback glove and VR (virtual reality) equipment assembly with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568095

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18818343

Country of ref document: EP

Kind code of ref document: A1