WO2018230385A1 - Information input device and medical treatment system - Google Patents

Information input device and medical treatment system Download PDF

Info

Publication number
WO2018230385A1
WO2018230385A1 PCT/JP2018/021418 JP2018021418W WO2018230385A1 WO 2018230385 A1 WO2018230385 A1 WO 2018230385A1 JP 2018021418 W JP2018021418 W JP 2018021418W WO 2018230385 A1 WO2018230385 A1 WO 2018230385A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer shell
information input
input device
finger
user
Prior art date
Application number
PCT/JP2018/021418
Other languages
French (fr)
Japanese (ja)
Inventor
一生 本郷
侑紀 糸谷
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/620,019 priority Critical patent/US20200100856A1/en
Publication of WO2018230385A1 publication Critical patent/WO2018230385A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0312Detection arrangements using opto-electronic means for tracking the rotation of a spherical or circular member, e.g. optical rotary encoders used in mice or trackballs using a tracking ball or in mouse scroll wheels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/741Glove like input devices, e.g. "data gloves"
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • A61B2034/744Mouse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension

Definitions

  • the technology disclosed in this specification relates to an information input device and a medical system capable of inputting a rotation angle of three degrees of freedom.
  • the master-slave system realizes remote operation of the manipulator by the user (operator) operating the master device with the input user interface (UI) and tracing the movement by the remote slave arm. Can do.
  • the end effector of the slave arm is equipped with medical instruments such as forceps and levers, and the user operates the instrument remotely via the master console (for example, (See Patent Document 1).
  • An object of the technology disclosed in the present specification is to provide an information input device and a medical system capable of inputting a rotation angle of three degrees of freedom.
  • the rotation detection unit includes at least one of an acceleration sensor, an angle sensor, and a magnetic sensor, or a combination of two or more, and is disposed in the vicinity of the center of the sphere to detect a rotation angle of three degrees of freedom of the outer shell. To do.
  • the center of gravity of the outer shell is configured to be near the center of the sphere.
  • the outer shell portion has a first opening for inserting the user's first finger and a second opening for inserting the user's second finger.
  • the information input device further includes a gripping mechanism disposed in the outer shell that can be pinched with the first finger and the second finger.
  • the information input device further includes a finger detection sensor that detects that the finger has been inserted into the opening.
  • the finger detection sensor includes an optical sensor or an electrostatic sensor.
  • a master-slave medical system An outer shell portion formed of a hollow sphere structure, and an operation unit including a rotation detection unit that detects a rotation angle of the outer shell portion;
  • a translational structure that adsorbs and rotatably supports the outer shell of the operation unit, detects a translational force acting on the outer shell, or presents a translational force;
  • a medical system comprising:
  • the translation structure portion may have a parallel link structure including a plurality of links that support the outer shell portion on the distal end side and are rotatably supported on the master device body on the proximal end side. Moreover, you may further provide the actuator for rotationally driving each of these some links, and presenting the said translational force.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a master-slave type robot system 1.
  • FIG. 2 is a diagram showing an external configuration of the information input apparatus 100 that can input a rotation angle of three degrees of freedom proposed in this specification.
  • FIG. 3 is a diagram illustrating a state of the information input device 100 in which the outer shell 110 is rotated.
  • FIG. 4 is a diagram illustrating a state of the information input device 100 in which the outer shell part 110 is rotated.
  • FIG. 5 is a diagram illustrating a specific configuration example of the information input device 100.
  • FIG. 6 is a diagram illustrating a specific configuration example inside the information input device 100.
  • FIG. 7 is a diagram for explaining a gripping operation by the gripping mechanism.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a master-slave type robot system 1.
  • FIG. 2 is a diagram showing an external configuration of the information input apparatus 100 that can input a rotation angle of three degrees of freedom proposed in this specification
  • FIG. 8 is a diagram for explaining a gripping operation by the gripping mechanism.
  • FIG. 9 is a diagram for explaining a gripping operation by the gripping mechanism.
  • FIG. 10 is a diagram for explaining a gripping operation by the gripping mechanism.
  • FIG. 11 is a diagram illustrating an example in which an intermediate member is disposed on the contact surface 121 of the outer shell portion 110 and the connection portion 120.
  • FIG. 12 is a diagram illustrating another application example of the information input device 100.
  • FIG. 13 is a diagram illustrating another application example of the information input device 100.
  • FIG. 14 is a perspective view of the master device 60 to which the information input device 100 is applied as an operation unit.
  • FIG. 15 is a diagram illustrating a state in which a pair of left and right master devices 60L and 60R are installed.
  • FIG. 16 is a diagram illustrating an installation example of the master devices 60L and 60R.
  • FIG. 17 is a diagram illustrating an installation example of the master devices 60L and 60R.
  • FIG. 18 is a diagram illustrating a modification of the connection unit 120.
  • FIG. 19 is a diagram illustrating a configuration example of the information input device 100 in which an actuator for presenting a rotational reaction force is provided.
  • FIG. 20 is a diagram illustrating a configuration example of the information input device 100 in which an actuator for presenting a rotational reaction force is disposed.
  • FIG. 1 schematically shows a configuration example of a master-slave type robot system 1.
  • the illustrated robot system 1 is a medical robot system that performs endoscopic surgical operations such as an abdominal cavity and a chest cavity.
  • the robot system 1 includes a master device 60 and a slave device 90.
  • a user surgeon
  • an operation command for the slave device 90 is transmitted by wired or wireless communication means, and the slave device 90 is operated.
  • the slave device 90 is, for example, a forceps unit that includes an arm having multiple degrees of freedom and in which forceps are attached to the end effector of the arm (in FIG. 1, both the arm and the end effector are omitted).
  • the end effector of the arm may be attached with other medical instruments such as a lever or a cutting instrument that touch the patient during a surgical operation, or an imaging device such as an endoscope or a microscope. Good.
  • the slave device 90 changes the position and orientation of the forceps based on an operation command from the master device 60, and performs a gripping operation with the forceps.
  • the master device 60 is, for example, an arm device that includes an operation unit operated by a user and an arm having multiple degrees of freedom with the operation unit attached to the tip (in FIG. 1, the operation unit and the arm). Are both omitted).
  • the user can remotely control the position and posture of the forceps on the slave device 90 side by displacing the position and posture of the operation unit of the master device 60. Further, the user can remotely operate the forceps gripping operation of the slave device 90 by performing a gripping operation on the operation unit of the master device 60.
  • the robot system 1 further includes a control device 79.
  • the control device 79 drives the slave device 90 in accordance with an instruction input via the master device 60.
  • some or all of the functions of the control device 79 may be provided in at least one of the slave device 90 or the master device 60.
  • at least one CPU (Central Processing Unit) (not shown) of the master device 60 or the slave device 90 functions as the control device 79.
  • CPU Central Processing Unit
  • the drive control of the slave device 90 when a user operates an operation unit attached to the tip of the arm of the master device 60, information indicating an instruction for driving the arm of the slave device 90 is transmitted from the master device 60 to the control device 79. Sent to. When a medical surgical instrument such as a forceps is attached to the end effector of the arm of the slave device 90, information indicating an instruction for driving the surgical instrument is also sent from the master device 60 to the control device 79. You may make it transmit to.
  • the force sensor 61 is provided, for example, at a connection portion between an arm and an operation unit attached to the tip of the arm, and detects forces acting in three axial directions orthogonal to each other. That is, the force input by the user to the operation unit is detected by the force sensor 61.
  • the rotation angle sensor 63 is provided at a plurality of joint portions of the arm and detects the rotation angle of each joint portion.
  • the rotation angle sensor 63 may be an encoder, for example.
  • the control device 79 performs various calculations related to drive control of the slave device 90 based on information input from the force sensor 61 and the rotation angle sensor 63 on the master device 60 side.
  • the control device 79 when controlling the slave device 90 by force control, the control device 79 is generated in each motor 95 of the arm of the slave device 90 based on the force acting on the operation unit detected by the force sensor 61.
  • the torque to be calculated is calculated and transmitted to the slave device 90.
  • the control device 79 is based on the rotation angle of each joint portion of the arm detected by the rotation angle sensor 63 on the master device 60 side.
  • the target value of the rotation angle of each joint of the arm is calculated and transmitted to the slave device 90.
  • the control device 79 drives the surgical instrument.
  • the control amount is calculated and transmitted to the slave device 90.
  • the arm on the slave device 90 side operates as instructed by the user via the master device 60 (operation unit).
  • the arm end effector is provided with a surgical instrument having a drive part (for example, forceps capable of grasping)
  • a drive signal of a motor for operating the part is sent from the control device 79.
  • the surgical instrument operates as instructed by the user via the master device 60 (operation unit).
  • the force sensor 91 detects an external force acting on the surgical instrument.
  • the force sensor 91 is provided, for example, at a plurality of joint portions of the arm, and detects a force (torque) acting on each joint portion.
  • the rotation angle sensor 93 is provided, for example, at a plurality of joint portions of the arm, and detects the rotation angle of each joint portion.
  • the rotation angle sensor 93 may be an encoder, for example.
  • Information detected by the force sensor 91 and the rotation angle sensor 93 is transmitted to the control device 79.
  • the control device 79 sequentially grasps the current state of the arm based on the information, and calculates the control amount for the slave device 90 described above in consideration of the current state of the arm.
  • the force sensor 91 detects the force acting on each joint.
  • the control device 79 extracts the component of the force acting on the surgical instrument from the forces acting on each joint detected by the force sensor 91 and calculates the control amount of the motor 65 of the master device 60.
  • the motor 65 is constituted by a servo motor, for example.
  • the control device 79 operates the arm on the master device 60 side by the motor 65 so as to give resistance corresponding to the force acting on the surgical instrument when the user performs an operation input to the operation unit.
  • the force acting on the tool can be presented to the user. Therefore, it can be said that the robot system 1 has a function of detecting a force acting on the surgical instrument and feeding back the force to the user.
  • the robot system 1 further includes a first vibration transmission unit 70 and a second vibration transmission unit 80.
  • the first vibration transmission unit 70 transmits the vibration detected by the tactile vibration sensor 97 provided in the slave device 90 to the master device 60.
  • the second vibration transmission unit 80 transmits the vibration detected by the auditory vibration sensor 99 provided in the slave device 90 to the master device 60.
  • the first vibration transmission unit 70 includes an amplifier 71, a frequency characteristic correction circuit 73, a bandpass filter (BPF) 75, and a drive circuit (driver) 77.
  • the second vibration transmission unit 80 includes an amplifier 81, a frequency characteristic correction circuit 83, a bandpass filter (BPF) 85, and a drive circuit (driver) 87.
  • some or all of the components of the first vibration transmission unit 70 and the second vibration transmission unit 80 may be provided in at least one of the slave device 90 or the master device 60.
  • the slave device 90 includes a tactile vibration sensor 97 and an auditory vibration sensor 99 as elements used for vibration transmission to the user.
  • the tactile vibration sensor 97 and the auditory vibration sensor 99 may be attached to the proximal end side of the surgical instrument, for example.
  • the tactile vibration sensor 97 detects tactile vibration generated in the surgical instrument
  • the auditory vibration sensor 99 detects auditory vibration (that is, sound) generated in the surgical instrument.
  • the tactile vibration sensor 97 is composed of, for example, an acceleration sensor.
  • the auditory vibration sensor 99 is composed of, for example, a condenser microphone.
  • a signal indicating the haptic vibration detected by the haptic vibration sensor 97 is input to the first vibration transmitting unit 70.
  • the first vibration transmission unit 70 generates a drive signal for the vibration source 67 of the master device 60 based on the input signal indicating the tactile vibration.
  • the frequency characteristic correction circuit 73 performs vibration frequency correction processing
  • the band-pass filter 75 performs filtering processing.
  • the drive circuit 77 drives the vibration generation source 67 of the master device 60 based on the input signal.
  • the vibration generation source 67 is, for example, one of a piezoelectric vibration actuator, a voice coil motor vibration actuator, a linear vibration actuator, an ERM (Eccentric Rotating Mass) vibration actuator, or an EPAM (Electroactive Polymer Muscular) vibration actuator.
  • a piezoelectric vibration actuator for example, one of a piezoelectric vibration actuator, a voice coil motor vibration actuator, a linear vibration actuator, an ERM (Eccentric Rotating Mass) vibration actuator, or an EPAM (Electroactive Polymer Muscular) vibration actuator.
  • ERM Electronic Rotating Mass vibration actuator
  • EPAM Electroactive Polymer Muscular vibration actuator
  • a signal indicating the auditory vibration detected by the auditory vibration sensor 99 is input to the second vibration transmitting unit 80.
  • the second vibration transmission unit 80 outputs a drive signal for the speaker 69 of the master device 60 based on the input signal indicating auditory vibration.
  • the frequency characteristic correction circuit 83 performs vibration frequency correction processing
  • the band-pass filter 85 performs filtering processing.
  • the drive circuit 87 drives the speaker 69 of the master device 60 based on the input signal.
  • the sound corresponding to the auditory vibration detected by the slave device 90 is output from the speaker 69 on the master device 60 side, and the auditory vibration generated in the surgical instrument is transmitted to the user.
  • master-slave type robot system 1 applied to endoscopic surgery or the like may be equipped with components other than those shown in FIG. 1, but the illustration is omitted for the sake of simplicity of explanation. .
  • the master device 60 is an arm device including an operation unit operated by a user and an arm having multiple degrees of freedom with the operation unit attached to the tip.
  • the user can remotely control the position and posture of a surgical instrument such as forceps attached to the arm on the slave device 90 side and the end effector of the arm by displacing the position and posture of the operation unit.
  • the master device 60 can present a sense of force to the user via the operation unit by driving the arm device and displacing the position and posture of the operation unit.
  • the operation unit is connected to the master device 60 main body by an arm having a three-axis translation structure, and is rotatably attached to the tip of the arm. Accordingly, the user moves the operation unit relative to the main body of the master device 60 and rotates the arm tip to instruct the position and posture of the end effector at the arm tip on the slave device 90 side. be able to. Furthermore, by providing a gripping mechanism in the operation unit, the user can instruct an opening / closing operation of forceps attached to the arm tip on the slave device 90 side by gripping the gripping mechanism. Further, by driving the grip mechanism of the arm or the operation unit by the motor 65, the force acting on the slave device 90 side can be presented to the user.
  • the operation unit and arm on the master device 60 side are input UIs in the robot system 1.
  • the illustration of the structure of the operation unit and arm on the master device 60 side is omitted in FIG. 1, since the movable range of the human arm is very wide, it is possible to provide a wide movable range of the operating unit as an input UI. It is strongly demanded.
  • a gimbal structure is widely used as a three-axis orthogonal joint. If the gimbal structure is applied, an operation unit capable of rotating operation with three degrees of freedom can be configured.
  • three-axis orthogonal joints are assembled by a rotation joint one by one, there is a problem that a singular point always occurs when the intermediate axis is rotated by ⁇ 90 degrees.
  • a ball joint structure (ball joint) can be cited as another joint structure with three degrees of freedom.
  • a structure that covers more than half of the sphere is common, and the range of motion is limited to about ⁇ 30 degrees.
  • an information input device that can be applied as an operation unit of the master device 60, has a wide rotation movable range, and is lightweight and can input or measure a rotation angle of three degrees of freedom is described below.
  • FIG. 2 shows an external configuration of the information input apparatus 100 that can input a rotation angle of three degrees of freedom proposed in this specification.
  • the information input device 100 includes an outer shell portion 110 having a hollow sphere structure and a connection portion 120 that adsorbs and rotatably supports the surface of the outer shell portion 110. That is, the information input device 100 constitutes a ball joint that can rotate with three degrees of freedom, as indicated by arrows with reference numerals 201 to 203 in the figure.
  • the spherical structure of the outer shell part 110 may be configured by only one spherical surface, or may be configured by connecting a plurality of surfaces.
  • the outer shell part 110 is made of a magnetic material
  • the one connection part 120 is made of a magnet
  • the connection part 120 can adsorb the surface of the outer shell part 110 by the magnetic force of the magnet.
  • the outer shell portion 110 can be rotated by sliding with respect to the connecting portion 120 while receiving an attractive force due to magnetic force.
  • the connecting portion 120 may attract the outer shell portion 110 by using attraction by air pressure or attraction by electrostatic force instead of the magnetic force of the magnet.
  • the outer shell portion 110 can be made of a material having a small specific gravity other than a magnetic material (metal) to reduce the weight.
  • the friction between the outer shell part 110 and the contact surface 121 of the connection part 120 can be adjusted by devising the roughness and material of the surface. When there is appropriate friction, it becomes easy to hold the rotational position of the outer shell portion 110 and the operability is improved. Further, in order to suppress the torque that is likely to rotate freely due to the weight of the outer shell portion 110, it is preferable that there is an appropriate friction between the outer shell portion 110 and the contact surface 121 of the connection portion 120. However, it is preferable to consider the balance of the center of gravity so that the center of gravity of the outer shell 110 is arranged in the vicinity of the center of the sphere so as not to generate a rotational moment due to its own weight.
  • the outer shell portion 110 having a spherical structure can be obtained by finishing the contact surface 121 on the connection portion 120 side, which is in contact with the outer shell portion 110, or by performing a treatment such as coating so as to reduce friction. It becomes easy to slip on the contact surface 121 with the connection part 120, and the user can easily rotate the outer shell part 110.
  • the surface of the outer shell portion 110 (at least in a range in contact with the contact surface 121 of the connection portion 120), not the connection portion 120 side, may be subjected to a treatment such as coating so as to have low friction. Good.
  • a low friction coating may be applied to both the contact surface 121 on the connection part 120 side and the surface of the outer shell part 110.
  • an intermediate member (not shown) for generating a frictional sound may be disposed between the outer shell portion 110 and the connection portion 120.
  • the intermediate member is made of a material such as resin.
  • the intermediate member may be fixed to the magnet.
  • the magnetic force of the magnet is adjusted according to how much the connecting portion 120 should attract (or pull) the outer shell 110. Further, the attractive force is adjusted not only by the magnetic force of the magnet but also by the thickness of the coating applied to the contact surface 121 of the connection part 120 or the surface of the outer shell part 110 and the material disposed between the outer shell part 110 and the connection part 120. can do. If the adsorption force is increased, the outer shell part 110 can be prevented from falling, but the outer shell part 110 is firmly held by the connection part 120 and is difficult to rotate, and the operability is lowered. Further, if the adsorption force is weakened, the operability of the outer shell portion 110 is improved, but it is easy to drop from the connection portion 120.
  • an intermediate such as a thrust ball bearing 1101 such as a bearing capable of receiving a force acting in the axial direction of the rotating body.
  • a thrust ball bearing 1101 such as a bearing capable of receiving a force acting in the axial direction of the rotating body.
  • the outer shell 110 is a sphere having a diameter of about 80 mm, for example. If the outer diameter of the connection part 120 is 3/4 or less of the diameter of the outer shell part 110, good rotational operability of the outer shell part 110 can be obtained while maintaining an appropriate suction force. Note that the diameter of 80 mm is a size that assumes that the user is an adult, and may be a smaller size when targeting a child.
  • a first opening 111 for inserting the user's thumb and one or both of the index finger or the middle finger of the user are inserted into the outer shell 110 on the opposite side of the contact surface 121 with the connecting portion 120.
  • a second opening 112 is formed.
  • a gripping mechanism (not shown in FIG. 2) is accommodated in the outer shell portion 110. This gripping mechanism has an open / close structure so that the user can appropriately pinch or grip with the thumb and index finger or middle finger, but the details will be given later.
  • the rotation angle sensor 3 of the outer shell 110 is used.
  • a shaft rotation angle is detected.
  • the triaxial rotation angle detected by the rotation angle sensor is information indicating an instruction for driving the arm on the slave device 90 side and its end effector.
  • the gripping force can be presented to the thumb and index finger or middle finger of the user holding the gripping mechanism.
  • a medical surgical instrument such as forceps is attached to the end effector of the arm on the slave device 90 side, and the surgical instrument is opened and closed by gripping the gripping mechanism with the thumb and index finger or middle finger as described above.
  • the force acting on the surgical instrument from the forces acting on the joints detected by the force sensor 91 on the slave device 90 side, and the control amount of the motor of the grasping mechanism Is calculated. And the force which acts on a surgical instrument can be shown to a user by driving a motor according to the calculated control amount.
  • the tactile vibration sensor 97 detects the tactile vibration generated in the surgical instrument, and after the tactile signal is subjected to signal processing (described above) by the first vibration transmitting unit 70, Are input as drive signals to the tactile sense presentation actuator. Therefore, vibration corresponding to the haptic vibration detected by the slave device 90 (for example, an end effector) is generated by the haptic presentation actuator in the outer shell 110, and the haptic vibration generated in the surgical instrument can be transmitted to the user. it can.
  • the finger detection sensor detects that the user's thumb, index finger or middle finger has been inserted into the outer shell 110. Based on this detection signal, it can be determined whether or not the information input device 100 is in use.
  • the electronic component housed in the outer shell 110 includes a signal line that supplies a control signal to a motor for a gripping mechanism and a tactile sense actuator, and a signal line that outputs a detection signal of each sensor to the outside.
  • a wiring hole 113 for inserting a wiring 140 for electrical connection is formed in the outer shell portion 110.
  • the wiring hole 113 is formed near the middle of the first opening 111 and the second opening 112, and the wiring 140 passes between the user's thumb and the index finger or middle finger.
  • the rotation center of the outer shell part 110 having a spherical structure, the center of gravity of the outer shell part 110, and the gripping center that the user grips with the thumb and index finger or middle finger are all substantially the same point. Is preferred.
  • the center of gravity of the outer shell part 110 is arranged in the vicinity of the center of the sphere, the rotational moment due to the center of gravity of the outer shell part 110 is suppressed, and the outer shell part is spontaneously (naturally) not operated by the user. It is possible to prevent a malfunction / false detection that the 110 rotates. Further, since the user does not need to receive extra torque when rotating the outer shell portion 110, the operability is improved and fatigue is reduced.
  • the gripping center that the user grips with the index finger or middle finger is arranged near the center of the sphere, so that when the user performs a pinching operation on the gripping mechanism in the outer shell 110, It is possible to prevent the influence of the posture change from affecting the position change of the outer shell portion 110.
  • the master is connected via the force sensor 130 that detects an external force acting on the operation unit. It is connected to an arm (not shown) having a three-axis translation structure connected to the apparatus 60 main body.
  • This force sensor 130 corresponds to the force sensor 61 in FIG. 1, but is composed of, for example, a six-axis force sensor, and detects an external force acting on the outer shell 110 when operated by a user. Then, by appropriately calculating the detection signal of the force sensor 61, the translational forces Fx, Fy, and Fz in the orthogonal three-axis XYZ directions and the moments Mx, My, and Mz around each axis can be obtained.
  • the force sensor 130 may be used to detect a force that the user acts on the outer shell 110 and may be used for controlling the arm and the end effector on the slave device 90 side.
  • the information input device 100 is an input device that allows a user to perform an input operation intuitively and has a wide range of motion.
  • the information input device 100 can be said to be an input device that is easy for humans to use.
  • FIG. 5 shows a specific configuration example of the information input device 100. However, this figure shows an external appearance when a portion where the first opening 111 and the second opening 112 are formed in the outer shell 110 is viewed in perspective.
  • the outer shell part 110 Since the outer shell part 110 has an internal structure as described above (various parts including a gripping mechanism are accommodated), it is difficult to manufacture the spherical structure as an integral part. Therefore, a manufacturing method is practical in which the sphere is divided into two or more parts, the internal structure is inserted from a part of the part, and then the parts are connected to assemble the sphere structure. On the other hand, the outer shell part 110 must rotate smoothly in a state where it is attracted to the contact surface 121 of the connection part 120 using a magnetic force by a magnet or the like. For this reason, it is strongly desired that the outer shell 110 has a seamless range (movable range) in which the outer shell 110 can slide on the contact surface 121 of the connecting portion 120, that is, is an integral part.
  • a seamless range movable range
  • the outer shell portion 110 is divided into two parts of the outer shell front portion 501 and the outer shell rear portion 502, and the outer shell front portion 501 and the outer shell rear portion 502 are disassembled (or joined together).
  • the internal structure can be inserted in a state that is not.
  • the outer shell rear portion 502 includes a region that slides on the contact surface 121 of the connection portion 120, but the outer shell front portion 501 does not slide the outer shell portion 110 on the contact surface 121 of the connection portion 120.
  • the outer shell rear portion 502 is drawn with a dot pattern. Since the outer shell rear portion 502 is a seamless integral part, the outer shell rear portion 502 can smoothly move on the contact surface 121 of the connecting portion 120. Since the outer shell front part 501 is not attracted by magnetic force, it may be made of a material other than metal to reduce the weight.
  • the outer shell part 110 After attaching the internal structure in the outer shell part 110 with the outer shell front part 501 removed, the outer shell part 110 can be assembled by connecting the outer shell front part 501 to the outer shell rear part 502. Alternatively, the outer shell part 110 can be assembled by attaching the outer shell front part 501 to the outer shell rear part 502 after assembling the inner structure to the outer shell front part 501 (the inner wall thereof).
  • the first opening 111 and the second opening 112 are formed using the boundary between the outer shell front portion 501 and the outer shell rear portion 502. You may form larger than the 1st opening part 111.
  • FIG. The outer shell front portion 501 is provided with a wiring hole 113 near the center between the first opening 111 and the second opening 112.
  • a wiring (not shown in FIG. 5) constituted by a signal line that electrically connects the electronic component housed in the outer shell portion 110 and the outside is inserted into the wiring hole 113.
  • the internal structure is assembled to the outer shell front portion 501 (inner wall), and the outer shell front portion 501 is attached to the outer shell rear portion 502.
  • the outer shell part 110 can be assembled.
  • FIG. 6 shows a specific configuration example inside the information input device 100. However, this figure shows a state in which the inside of the information input device 100 with the outer shell rear portion 502 removed is viewed from the back side of the information input device 100, that is, the side connected to the connection portion 120.
  • a rotation angle sensor 601 that detects the rotation angle of the three axes of the outer shell 110, a gripping mechanism that allows the user to grip with the thumb and index finger or middle finger, and opening and closing the gripping mechanism Motor 621, encoder for detecting the rotation angle of the gripping mechanism, tactile presentation actuator for presenting tactile sensation to the thumb, index finger or middle finger of the user gripping the gripping mechanism, and the user's thumb, index finger or middle finger inside the outer shell 110 Finger detection sensors 631 and 632 for detecting that they have been inserted into the device.
  • the rotation angle sensor 601 is mounted on the surface of the substrate part 602 fixed to the outer shell front part 501.
  • the rotation angle sensor 601 is configured by using an IMU (Internal Measurement Unit), and is disposed substantially at the center of a sphere that configures the outer shell portion 110 to act on the outer shell portion 110 (or the information input device 100 main body). 3D acceleration and angular velocity can be detected.
  • IMU Internal Measurement Unit
  • the IMU basically comprises a 3-axis gyro sensor, a 3-axis geomagnetic sensor, and a 3-direction acceleration sensor.
  • the high-speed operation of the outer shell portion 110 in a short time can be measured using a gyro sensor.
  • the drift that occurs for a long time can be measured by using both the acceleration sensor and the geomagnetic sensor. That is, the horizontal drift can be corrected by measuring both the acceleration sensor and the geomagnetic sensor.
  • the rotational drift around the gravity direction axis can be corrected by measuring the magnetic field generated by the magnet of the connecting portion 120 for attracting the outer shell portion 110.
  • the IMU can be arranged near the center of the sphere of the outer shell portion 110, thereby suppressing the influence on the acceleration sensor when the outer shell portion 110 is rotated with respect to the connection portion 120. Since the magnet that attracts the outer shell 110 is fixed in one direction, the current angle can be estimated by the geomagnetic sensor by arranging the IMU near the center of the sphere.
  • the rotation angle sensor 601 can be configured not by the IMU but by a camera (not shown) installed on the connection unit 120 side or outside the apparatus.
  • the camera images the pattern formed on the outer wall of the outer shell 110 and the direction of the operator's hand.
  • the rotation angle of the outer shell 110 can be detected by tracking these subjects by image analysis.
  • circuit parts (not shown) other than the rotation angle sensor 601 such as IMU may be mounted on the substrate part 602, or a wiring pattern (not shown) may be formed on the surface.
  • the gripping operation of the gripping mechanism that is, the opening / closing operation of the first gripping plate 611 and the second gripping plate 612 is realized using the rotational motion of the four-bar linkage mechanism.
  • a gripping operation of the gripping mechanism using the rotational motion of the four-bar linkage mechanism will be described with reference to FIGS.
  • the gripping mechanism can be realized by a configuration other than the four-bar linkage mechanism.
  • the four-joint link mechanism referred to here is a fixed link 701 configured using a part of the substrate unit 602 on which an IMU or the like is mounted, and one joint shaft (drive shaft) fixed to one end of the fixed link 701.
  • a drive link 702 that is rotatably connected to 701a and is given a driving force by a motor 621 (not shown in FIGS. 7 to 10), and a joint shaft (driven shaft) fixed to the other end of the fixed link 701.
  • a driven link 703 that is rotatably connected to the drive link 702, and an intermediate link 704 that rotatably connects the drive link 702 and the driven link 703 by joint shafts 704a and 704b, respectively.
  • the driven link 703 When the driving force is applied to the drive link 702 in the rotation direction indicated by the arrow 710 by the motor 621, the driven link 703 is driven via the intermediate link 704. Then, when the T-shaped driven link 703 rotates around the driven shaft 701b, the first transmission link 706 and the second transmission link 707 and the first grip plate 611 according to the T-shaped rotation angle. When the rear ends of the second gripping plate 612 are pulled toward each other (see FIG. 7) or pulled apart (see FIG. 10), the opening / closing operation of the gripping mechanism is realized.
  • the gripping force can be presented to the user's thumb and index finger or middle finger holding the first gripping plate 611 and the second gripping plate 612. .
  • the encoder detects the rotation angle of the gripping mechanism when the user performs a pinching operation using the thumb and forefinger or middle finger.
  • the rotation angle detected by the encoder is information indicating an instruction for driving an end effector (for example, a medical instrument such as forceps) of the arm on the slave device 90 side.
  • the output shaft of the motor 621 does not need to be directly connected to the drive shaft 701a of the above-described four-bar linkage mechanism, and can be arranged away from the drive shaft 701a using a transmission mechanism (not shown). It is.
  • the weight of the motor 621 is high in the weight of the entire outer shell 110, and the arrangement of the motor 621 greatly affects the position of the center of gravity of the outer shell 110. It is preferable to consider the balance of the center of gravity so that the position of the center of gravity of the outer shell 110 is arranged in the vicinity of the center of the sphere so as not to generate a rotational moment due to the weight of the outer shell 110 (described above).
  • the center of gravity of the outer shell 110 including the motor 621 so that it is located near the center of the sphere.
  • the motor 621 is arranged near the outer shell front portion 501 (or in the vicinity of the opening 111 or 112), it is easy to balance the weight with the outer shell 110.
  • a finger pad recess 613 is formed on the contact surface of the first grip plate 611 and the second grip plate 612 with the user's index finger or middle finger.
  • a finger pad recess is also formed on the first grip plate 611 side on the contact surface with the user's thumb.
  • a tactile sense presentation actuator for presenting a tactile sensation is arranged on the contact surface of the first grip plate 611 and the second grip plate 612 with the user's thumb and index finger or middle finger. It is installed.
  • the tactile sense presentation actuator corresponds to the vibration generation source 67 in FIG. 1, and is, for example, any one of a piezoelectric vibration actuator, a voice coil motor vibration actuator, a linear vibration actuator, an ERM vibration actuator, or an EPAM vibration actuator. It is composed of one or a combination of two or more. If the tactile sense presenting actuator is arranged at the place where the finger pad recess 613 passes, the tactile sense can be surely presented to the fingertip of the user.
  • the finger detection sensor 631 is disposed on the side edge of the first gripping plate 611, and indicates that the user's finger (thumb) inserted from the first opening 111 is placed on the first gripping plate 611. To detect.
  • the finger detection sensor 632 is disposed on the side edge of the second grip plate 612, and the user's finger (forefinger or middle finger) inserted from the second opening 112 is placed on the second grip plate 612. Detects being placed.
  • the finger detection sensors 631 and 632 can be configured using, for example, an optical sensor such as a photo reflector, a capacitance sensor, or other human sensor. Whether or not the information input device 100 is in use can be determined based on detection signals of the finger detection sensors 631 and 632.
  • General-purpose switches 641 and 642 are constituted by seesaw type, push type, slide type, etc. switches that can be operated by the user with a fingertip. The user can operate the general-purpose switches 641 and 642 using the index finger or the middle finger inserted from the second opening 112. Applications of the general-purpose switches 641 and 642 are arbitrary. General-purpose switches 641 and 642 can be used to input instructions other than the three-axis rotation angle.
  • a wiring hole 113 (described above) is formed in the approximate center of the outer shell front portion 501.
  • Wiring (not shown in FIG. 6) for electrically connecting the electronic component housed in the outer shell 110 and the outside is inserted into the wiring hole 113.
  • the wiring fixing frame 651 fixes the wiring so that the wiring does not interfere with the operation of the gripping mechanism by the user's finger.
  • a spherical assembly portion 661 is disposed at the end of the substrate portion 602 (the front side of the paper). The spherical assembly portion 661 is attached with the outer shell rear portion 502 (not shown in FIG. 6).
  • a battery (not shown) that supplies power to the internal parts of the outer shell 110 may be further accommodated in the outer shell 110. Or you may make it carry out wireless electric power feeding with respect to the internal component of the outer shell part 110, and may equip the wireless communication part for implementing wireless electric power feeding as an internal component further. Since the battery is heavy, when the battery is accommodated in the outer shell 110, the balance of the center of gravity is taken into consideration so that the position of the center of gravity of the outer shell 110 of the sphere structure does not deviate from the vicinity of the center of the sphere. It is preferable to determine the location of the battery.
  • the magnet When applying a configuration in which the outer shell portion 110 (outer shell rear portion 502) made of a magnetic material is attracted and connected by a magnet, the magnet reaches the boundary portion between the outer shell rear portion 502 and the outer shell front portion 501. Since the reaction force acts on the occasion, it is possible to present the limit of motion range softly to the user who operates the outer shell portion 110.
  • the information input device 100 is configured by an IMU, a camera, or the like with respect to a rotation angle of three axes when the outer shell portion 110 having a spherical structure that is a user's operation target moves on the contact surface 121 of the connection portion 120.
  • the rotation angle sensor housed in the outer shell 110 is used for measurement. Therefore, it is not necessary to mount a bearing or a joint angle sensor for each axis. As a result, the information input device 100 can be designed and manufactured in a small size and light weight.
  • the rotational moment due to the weight of the outer shell 110 can be suppressed by considering the balance of the center of gravity so that the center of gravity of the outer shell 110 having the spherical structure is arranged near the center of the sphere.
  • the risk that the outer shell 110 rotates by its own weight and the posture changes unintentionally can be reduced.
  • the operability is improved and fatigue is reduced.
  • the information input device 100 has a simple connection structure in which the outer shell 110 having a spherical structure that is a user's operation target is attracted by a magnetic force of a magnet or the like. Therefore, when an excessive force is applied to the outer shell portion 110, the outer shell portion 110 is separated from the connection portion 120 by overcoming the attractive force of the magnet, and thus the information input device 100 can be prevented from being broken or damaged.
  • the information input device 100 is applied as an operation unit at the tip of a master device 60 (described later) having a three-axis translation structure, when the master device 60 unintentionally generates excessive force (for example, runaway) Even when the outer shell portion 110 is detached from the connecting portion 120, it is possible to prevent injury of the user during operation.
  • the information input device 100 has a relatively simple structure in which the surface of the outer shell portion formed of a hollow spherical structure is rotatably supported by being attracted by the magnetic force of a magnet. Therefore, it is possible to use the information input device 100 as a simple UI for inputting only the attitude around the three axes by directly attaching the outer shell 110 to the ground or the wall surface with a magnet.
  • FIG. 12 shows a state where the outer shell 110 of the information input device 100 is directly attached to the ground.
  • FIG. 13 shows a state where the outer shell 110 of the information input device 100 is directly attached to the wall surface.
  • the information input device 100 can be used as a tip structure of a six-axis input UI for operating a robot or VR (Virtual Reality) in combination with, for example, a three-axis translation structure.
  • VR Virtual Reality
  • the information input device 100 can be used as an operation unit on the master device 60 side of the master-slave robot system 1 (see FIG. 1).
  • the information input device 100 is attached as an operation unit at the tip of the master device 60 having a three-axis translation structure, and the master device 60 main body provides a function of detecting the translational force and presenting the translational force.
  • the input device 100 can provide functions for detecting rotational force, detecting gripping force, and presenting gripping force.
  • FIG. 14 is a perspective view of the master device 60 of the robot system 1 to which the information input device 100 shown in FIGS. 2 to 4 is applied as an operation unit.
  • a master device 60 illustrated in FIG. 14 includes a main body unit 30, an operation unit (information input device) 100, and a support arm unit 20.
  • illustration of wiring that passes through the wiring hole at the tip of the operation unit 100 is omitted.
  • the support arm portion 20 has a delta parallel link structure including three link portions 20a to 20c, and has a three-axis translation structure.
  • Each of the link portions 20a to 20c is rotatably connected to the main body portion 30 on the base end side.
  • the main body 30 is equipped with motors (for example, servo motors) 65a to 65c for driving the connecting portions with the link portions 20a to 20c.
  • motors for example, servo motors
  • an encoder for detecting the rotation angle of each link part 20a to 20c relative to the main body part 30 (not shown in FIG. 14 is omitted) at the connecting part between the main body part 30 and each link part 20a to 20c. (Corresponding to the rotation angle sensor 63 in the middle).
  • an operation unit 100 is attached to the tip side of each link unit 20a to 20c.
  • the operation unit 100 includes a spherical outer shell part 110 and a connection part 120 that rotatably sucks the outer shell part 110 (described above), but the distal end side of each link part 20a to 20c.
  • the outer shell portion 110 is rotatably supported through the connection portion 120.
  • the connecting portions between the link portions 20a to 20c and the connecting portion 120 are also rotatably connected.
  • the connection unit 120 includes the force sensor 130 described above.
  • the link portions 20a to 20c are arranged at intervals of approximately 120 degrees on a circumference having the same radius centered on a center point (not shown) set on the mounting surface 31 of the main body portion 30. Has been. Therefore, the support arm portion 20 forms a substantially symmetric shape with respect to the axis passing through the attachment surface 31 at this center point.
  • One end of a pair of passive links 22 is rotatably connected to the other end of the drive link 21. Further, as described above, the connecting portion 120 is attached to the other end (tip side) of the pair of passive links 22.
  • the user can displace the operation unit 100 to an arbitrary position in the three-dimensional space by inserting a thumb and forefinger or middle finger into the outer shell 110 and performing a pinching operation. Then, the rotation angle of each of the link portions 20a to 20c can be detected by an encoder disposed at a connecting portion between the main body portion 30 and each of the link portions 20a to 20c (drive link 21). For example, when a medical surgical instrument such as forceps is attached to the end effector of the arm on the slave device 90 side, a signal indicating the rotation angle of the drive link 21 of each link portion 20a to 20c is the surgical instrument. Is transmitted to the control device 79 as information indicating an instruction for displacing.
  • the master device 60 shown in FIG. 14 provides a function of detecting rotational force, detection of running force, and presentation of gripping force by the operation unit (information input device) 100 attached to the tip portion, and the master device 60 main body. By this, it is possible to provide a function of detecting and presenting the translational force of three axes.
  • the master device 60 shown in FIG. 14 is operated by the user using either the left or right arm and hand.
  • a master-slave type robot system 1 applied to endoscopic surgery or the like, a user as an operator performs treatment using both left and right arms and hands as shown in FIG.
  • a pair of left and right master devices 60L and 60R should be installed.
  • the elbow is bent to a certain extent, it is easier for the person to operate, it can respond instantly, and the elbow is less likely to hurt. Therefore, ergonomically, it can be said that it is preferable that the user's left and right hand fingers (thumb and forefinger or middle finger) come from the left and right outer sides toward the front of the body. Therefore, as can be seen from FIG. 16, the operation units 100L and 100R are attached to the front ends of the master devices 60L and 60R so that the finger insertion openings face the left and right sides.
  • the operation units 100L and 100R are attached in a direction in which human hands are difficult to point without considering ergonomics (for example, the first opening 111 and the second opening 112 are connected to the master device 60).
  • the user can use only a part of the movable range of his / her arm for the rotation operation of the operation units 100L and 100R.
  • FIGS. 14 to 17 illustrate the master device 60 having a parallel link structure
  • the master device 60 main body may include other translation structures such as a structure in which linear actuators are serially connected.
  • a translational structure with one axis or two axes may be used instead of three axes.
  • the wiring 140 connected to the information input device 100 is illustrated.
  • the wiring 140 is made of a metal that connects the information input device 100 and an external fixed portion or a material that is difficult to cut. A rope may be provided. Thereby, the information input device 100 can be prevented from being stolen or lost.
  • FIG. 2 shows an embodiment in which the connecting portion 120 is made of a magnet and the contact surface 121 of the contact portion 120 is coated with a low friction coating
  • FIG. 11 shows a thrust ball bearing 1101 instead of the low friction coating.
  • the outer shell portion 110 is arranged so as to rotate more smoothly around three axes.
  • FIG. 18 shows an embodiment in which the distance between the magnet of the connecting portion 120 and the outer shell portion 110 can be controlled as a modification of FIG.
  • the connecting portion 120 includes a thrust ball bearing 1101 disposed on the contact surface with the outer shell portion 110, a support portion 1802 having a hollow portion 1801, and a magnet 1803 disposed in the hollow portion 1801.
  • the drive unit 1804 for displacing the position of the magnet 1803 is provided.
  • the drive unit 1804 drives the magnet 1803 to move back and forth in the radial direction of the outer shell 110 within the hollow portion 1801.
  • the driving of the driving unit 1804 is controlled by a controller not shown in FIG.
  • This controller may be a control device 79 that controls force feedback to the user.
  • the distance between the magnet 1803 and the outer shell 110 can be changed. If the distance between the magnet 1803 and the outer shell portion 110 is reduced, the force with which the magnet 1803 attracts the outer shell portion 110 is increased, and it becomes difficult for the user to rotate the information input device 100. Conversely, if the distance between the magnet 1803 and the outer shell 110 is increased, the force with which the magnet 1803 attracts the outer shell 110 is reduced, and the user can easily rotate the information input device 100.
  • the control device 79 controls the driving of the driving unit 1804 based on the force detected by the force sensor 91 on the slave device 90 side, so The adsorption force of the shell 110 can be changed. That is, by controlling the position of the magnet 1803 by the driving unit 1804, a resistance corresponding to the force acting on the surgical instrument can be given and the force can be presented to the user.
  • a magnetic shield portion 1810 made of, for example, permalloy or the like is provided between the connecting portion 120 and the force sensor 130 (or between the magnet 1803 and the force sensor 130). It may be arranged.
  • FIG. 18 shows a configuration in which the magnetic force is changed by changing the relative position of the magnet 1803 and the outer shell portion 110, but the magnetic force can also be controlled by using the magnet 1803 as an electromagnet and controlling the amount of current flowing through the electromagnet.
  • the force presentation can be realized in the same manner as described above.
  • the actuators 1901 and 1902 can be easily arranged.
  • the actuator 1903 at the center back (or on the side opposite to the wiring hole 113) may be disposed slightly above for weight balance.
  • the rotation of the actuators 1901 to 1903 is controlled by a controller (not shown in FIGS. 19 and 20).
  • This controller may be a control device 79 that controls force feedback to the user.
  • the control device 79 can control the rotation of the actuators 1901 to 1903 based on the force detected by the force sensor 91 on the slave device 90 side, so that the force detected by the slave device 91 can be presented to the user. It becomes.
  • a wireless power feeding device (not shown) may be provided in the connecting portion 120 (for example, in the hollow portion 1801 included in the support portion 1802 in FIG. 18) to perform wireless power feeding to the information input device 100.
  • a controller such as the control device 79 starts wireless power feeding when detecting that the information input device 100 is not rotated. Thereby, malfunctioning of the information input device 100 due to wireless power feeding can be suppressed.
  • connection unit 120 when the information input device 100 is disconnected from the connection unit 120 directly or indirectly for a certain time, an alert is given to the user, or whether the connection state of the information input device 100 is normal ( For example, the information input device 100 can be presented to the user directly or indirectly with respect to the connection unit 120.
  • a configuration may be adopted in which it is determined whether or not the information input device 100 is out of order from the attitude position of the magnetic sensor and the information input device 100. Further, a configuration may be adopted in which it is determined whether or not the object on the ball attached to the connection unit 120 is the genuine information input device 100 based on the amount of magnetic change.
  • the thrust ball bearing 1101 is preferably provided with a resin cover in order to suppress damage due to friction.
  • a controller such as the control device 79 detects the amount of friction generated by the resin cover and the sliding condition of the information input device 100 (outer shell portion 110) based on the degree of rotation of the information input device 100 and the like. You may make it show a user the replacement
  • a method for measuring the amount of friction and the degree of sliding of the outer shell 110 for example, the posture change speed (rotational speed) when the user moves by the weight or magnetic force of the information input device 100 when the user is not performing an input operation of the information input device 100. And a method of measuring by a change with time in a posture change speed (rotational speed) when the user performs an input operation. In order to detect a change with time, it is preferable to perform classification by machine learning.
  • the technology disclosed in this specification has been described mainly with respect to an embodiment in which the technology is applied to a master-slave type medical robot system.
  • the gist of the technology disclosed in this specification is limited to this. is not.
  • An input device to which the technology disclosed in this specification is applied can also be used for a master console of a robot system that is introduced into various industrial fields other than medical applications.
  • an input device to which the technology disclosed in the present specification is applied is a game controller, an input device for a personal computer, a 3D model operation in a CAD, an apparatus having a rotating structure such as a robot, or a VR. It can also be used for a 6-axis input UI for operation, an input UI for operating the attitude of a camera mounted on a drone or a ceiling camera.
  • an outer shell having a hollow sphere structure A connection part that adsorbs the outer shell part and rotatably supports it; A rotation detector that detects a rotation angle of the outer shell,
  • An information input device comprising: (2) The rotation detection unit detects a rotation angle of three degrees of freedom of the outer shell part.
  • the rotation detection unit includes at least one of an acceleration sensor, an angle sensor, and a magnetic sensor, or a combination of two or more.
  • the rotation detection unit is disposed near the center of the sphere, The information input device according to (3) above.
  • the rotation detection unit includes a camera, tracks the pattern captured by the camera or the direction of the user's finger operating the outer shell, and detects the rotation angle of the outer shell.
  • the outer diameter of the connection portion is not more than three-quarters of the diameter of the outer shell portion.
  • the center of gravity of the outer shell is configured to be near the center of the sphere.
  • the outer shell portion has an opening for inserting a user's finger, The rotation detection unit detects a rotation angle when the outer shell is manually operated with the inserted finger.
  • the outer shell portion includes a first opening for inserting the user's first finger and a second opening for inserting the user's second finger, A gripping mechanism disposed in the outer shell that can be pinched with the first finger and the second finger; The information input device according to any one of (1) to (8) above.
  • the gripping mechanism is disposed so that the centers of the first finger and the second finger to be gripped are in the vicinity of the center of the sphere.
  • the center of gravity position of the outer shell portion including the actuator is disposed in the vicinity of the center of the sphere.
  • the outer shell portion is configured by connecting a plurality of surfaces including a first outer shell spherical portion and a second outer shell spherical portion.
  • the information input device according to any one of (1) to (13) above.
  • the outer shell portion or at least one surface of the connection portion has been subjected to a treatment for low friction.
  • the information input device according to any one of (1) to (14).
  • the connection portion adsorbs the outer shell portion by any of magnetic force, air pressure, and electrostatic force of a magnet.
  • the information input device according to any one of (1) to (15).
  • a force sensor for detecting an external force acting on the outer shell portion is further provided.
  • the outer shell portion houses one or more internal parts, and a wiring hole for inserting a wiring for electrically connecting the internal part and the outside is provided in the first opening and the second part.
  • the information input device according to any one of (10) to (13). (19) Attached to a master device in a master-slave system and used as an operation unit operated by a user. The information input device according to any one of (1) to (18).
  • a master-slave medical system wherein the master device is An outer shell portion formed of a hollow sphere structure, and an operation unit including a rotation detection unit that detects a rotation angle of the outer shell portion; A translational structure that adsorbs and rotatably supports the outer shell of the operation unit, detects a translational force acting on the outer shell, or presents a translational force; A medical system comprising: (20-1) The translational structure portion has a parallel link structure including a plurality of links that support the outer shell portion on the distal end side and are rotatably supported on the master device main body on the proximal end side. , An actuator for rotationally driving each of the plurality of links to present the translational force; The medical system according to (20) above. (21) A medical device, further including a slave device that controls an operation of the medical device based on a detection signal in the operation unit or the translation structure unit in the master device. The medical system according to (20) above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Robotics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Dermatology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Manipulator (AREA)

Abstract

Provided is an information input device with which a rotation angle with three degrees of freedom can be input. The information input device is equipped with: an outer shell part that is made of a hollow spherical structure; a connecting part for attaching to and rotatably supporting the outer shell part; and a rotation-detecting unit for detecting the rotation angle of the outer shell part. The rotation-detecting unit comprises one or a combination of two or more from among an acceleration sensor, angle sensor and a magnetic sensor, is disposed near the center of the sphere, and detects the rotation angle of the outer shell part with three degrees of freedom. The outer shell part has openings into which the user's fingers are inserted and the rotation-detecting unit detects the rotation angle when the outer shell part is manually operated using the inserted fingers.

Description

情報入力装置並びに医療システムInformation input device and medical system
 本明細書で開示する技術は、3自由度の回転角度を入力可能な情報入力装置並びに医療システムに関する。 The technology disclosed in this specification relates to an information input device and a medical system capable of inputting a rotation angle of three degrees of freedom.
 近年のロボティクス技術の進歩は目覚ましく、さまざまな産業分野の作業現場にロボティクス技術が広く浸透してきている。例えば、医療分野では、患者の体を大きく切開することなく患部へのアプローチを可能とする腹腔や胸腔といった内視鏡外科手術において、マスタ-スレーブ方式の医療システムが導入されてきている。 Recent advances in robotics technology have been remarkable, and robotics technology has been widely used in workplaces in various industrial fields. For example, in the medical field, a master-slave type medical system has been introduced in endoscopic surgery such as an abdominal cavity or a chest cavity that allows an approach to an affected area without making a large incision in the body of a patient.
 マスタ-スレーブシステムは、ユーザ(術者)が入力ユーザ・インターフェース(UI)を備えたマスタ装置を操作し、その動きを遠隔のスレーブ・アームがトレースすることで、マニピュレータの遠隔操作を実現することができる。医療マスタ-スレーブシステムの場合、スレーブ・アームのエンド・エフェクターには鉗子や攝子といった医療用術具が装備されており、ユーザはマスタ・コンソールを介して術具を遠隔的に操作する(例えば、特許文献1を参照のこと)。 The master-slave system realizes remote operation of the manipulator by the user (operator) operating the master device with the input user interface (UI) and tracing the movement by the remote slave arm. Can do. In the case of a medical master-slave system, the end effector of the slave arm is equipped with medical instruments such as forceps and levers, and the user operates the instrument remotely via the master console (for example, (See Patent Document 1).
特開2009-131446号公報JP 2009-131446 A
 本明細書で開示する技術の目的は、3自由度の回転角度を入力可能な情報入力装置並びに医療システムを提供することにある。 An object of the technology disclosed in the present specification is to provide an information input device and a medical system capable of inputting a rotation angle of three degrees of freedom.
 本明細書で開示する技術の第1の側面は、
 中空の球体構造からなる外殻部と、
 前記外殻部を吸着して回転可能に支持する接続部と、
 前記外殻部の回転角度を検出する回転検出部と、
を具備する情報入力装置である。
The first aspect of the technology disclosed in this specification is:
An outer shell made of a hollow sphere structure;
A connection part that adsorbs the outer shell part and rotatably supports it;
A rotation detector that detects a rotation angle of the outer shell,
Is an information input device.
 前記回転検出部は、加速度センサ、角度センサ、磁気センサのうち少なくとも1つ又は2以上の組み合わせからなり、前記球体の中心近傍に配置されて、前記外殻部の3自由度の回転角度を検出する。 The rotation detection unit includes at least one of an acceleration sensor, an angle sensor, and a magnetic sensor, or a combination of two or more, and is disposed in the vicinity of the center of the sphere to detect a rotation angle of three degrees of freedom of the outer shell. To do.
 前記外殻部の重心位置が前記球体の中心近傍となるように構成される。前記外殻部は、ユーザの第1の指を挿入する第1の開口部と、ユーザの第2の指を挿入する第2の開口部を有している。そして、情報入力装置は、前記第1の指と前記第2の指を用いたつまむ操作が可能な、前記外殻部内に配設された把持機構をさらに備えている。また、情報入力装置は、前記開口部に前記指が挿入されたことを検出する指検知センサをさらに備えている。前記指検知センサは、光学式センサ又は静電式センサで構成される。 The center of gravity of the outer shell is configured to be near the center of the sphere. The outer shell portion has a first opening for inserting the user's first finger and a second opening for inserting the user's second finger. The information input device further includes a gripping mechanism disposed in the outer shell that can be pinched with the first finger and the second finger. The information input device further includes a finger detection sensor that detects that the finger has been inserted into the opening. The finger detection sensor includes an optical sensor or an electrostatic sensor.
 また、本明細書で開示する技術の第2の側面は、
 マスタースレーブ方式の医療システムであって、マスタ装置は、
 中空の球体構造からなる外殻部と、前記外殻部の回転角度を検出する回転検出部を備える操作部と、
 前記操作部の前記外殻部を吸着して回転可能に支持するとともに、前記外殻部に作用する並進力を検出し又は並進力を提示する並進構造部と、
を具備する、医療システムである。
In addition, the second aspect of the technology disclosed in this specification is:
A master-slave medical system, the master device
An outer shell portion formed of a hollow sphere structure, and an operation unit including a rotation detection unit that detects a rotation angle of the outer shell portion;
A translational structure that adsorbs and rotatably supports the outer shell of the operation unit, detects a translational force acting on the outer shell, or presents a translational force;
A medical system comprising:
 前記並進構造部は、それぞれ先端側で前記外殻部を支持するとともに基端側で前記マスタ装置本体に回動可能に支持される複数のリンクからなるパラレルリンク構造であってもよい。また、前記複数のリンクの各々を回転駆動して前記並進力を提示するためのアクチュエータをさらに備えていてもよい。 The translation structure portion may have a parallel link structure including a plurality of links that support the outer shell portion on the distal end side and are rotatably supported on the master device body on the proximal end side. Moreover, you may further provide the actuator for rotationally driving each of these some links, and presenting the said translational force.
 本明細書で開示する技術によれば、3自由度の回転角度を入力可能な情報入力装置並びに医療システムを提供することができる。 According to the technology disclosed in this specification, it is possible to provide an information input device and a medical system that can input a rotation angle of three degrees of freedom.
 なお、本明細書に記載された効果は、あくまでも例示であり、本発明の効果はこれに限定されるものではない。また、本発明が、上記の効果以外に、さらに付加的な効果を奏する場合もある。 In addition, the effect described in this specification is an illustration to the last, and the effect of this invention is not limited to this. In addition to the above effects, the present invention may have additional effects.
 本明細書で開示する技術のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。 Other objects, features, and advantages of the technology disclosed in the present specification will become apparent from a more detailed description based on embodiments to be described later and the accompanying drawings.
図1は、マスタースレーブ方式のロボット・システム1の構成例を模式的に示した図である。FIG. 1 is a diagram schematically illustrating a configuration example of a master-slave type robot system 1. 図2は、本明細書で提案する、3自由度の回転角度を入力可能な情報入力装置100の外観構成を示した図である。FIG. 2 is a diagram showing an external configuration of the information input apparatus 100 that can input a rotation angle of three degrees of freedom proposed in this specification. 図3は、外殻部110が回転操作された情報入力装置100の様子を例示した図である。FIG. 3 is a diagram illustrating a state of the information input device 100 in which the outer shell 110 is rotated. 図4は、外殻部110が回転操作された情報入力装置100の様子を例示した図である。FIG. 4 is a diagram illustrating a state of the information input device 100 in which the outer shell part 110 is rotated. 図5は、情報入力装置100の具体的な構成例を示した図である。FIG. 5 is a diagram illustrating a specific configuration example of the information input device 100. 図6は、情報入力装置100の内部の具体的な構成例を示した図である。FIG. 6 is a diagram illustrating a specific configuration example inside the information input device 100. 図7は、把持機構による把持動作を説明するための図である。FIG. 7 is a diagram for explaining a gripping operation by the gripping mechanism. 図8は、把持機構による把持動作を説明するための図である。FIG. 8 is a diagram for explaining a gripping operation by the gripping mechanism. 図9は、把持機構による把持動作を説明するための図である。FIG. 9 is a diagram for explaining a gripping operation by the gripping mechanism. 図10は、把持機構による把持動作を説明するための図である。FIG. 10 is a diagram for explaining a gripping operation by the gripping mechanism. 図11は、外殻部110と接続部120の接触面121に中間部材を配置した例を示した図である。FIG. 11 is a diagram illustrating an example in which an intermediate member is disposed on the contact surface 121 of the outer shell portion 110 and the connection portion 120. 図12は、情報入力装置100の他の適用例を示した図である。FIG. 12 is a diagram illustrating another application example of the information input device 100. 図13は、情報入力装置100の他の適用例を示した図である。FIG. 13 is a diagram illustrating another application example of the information input device 100. 図14は、情報入力装置100を操作部として適用した、マスタ装置60の斜視図を示した図である。FIG. 14 is a perspective view of the master device 60 to which the information input device 100 is applied as an operation unit. 図15は、左右一組のマスタ装置60L及び60Rを設置した様子を示した図である。FIG. 15 is a diagram illustrating a state in which a pair of left and right master devices 60L and 60R are installed. 図16は、マスタ装置60L及び60Rの設置例を示した図である。FIG. 16 is a diagram illustrating an installation example of the master devices 60L and 60R. 図17は、マスタ装置60L及び60Rの設置例を示した図である。FIG. 17 is a diagram illustrating an installation example of the master devices 60L and 60R. 図18は、接続部120の変形例を示した図である。FIG. 18 is a diagram illustrating a modification of the connection unit 120. 図19は、回転反力を提示するためのアクチュエータを内部に配設した情報入力装置100の構成例を示した図である。FIG. 19 is a diagram illustrating a configuration example of the information input device 100 in which an actuator for presenting a rotational reaction force is provided. 図20は、回転反力を提示するためのアクチュエータを内部に配設した情報入力装置100の構成例を示した図である。FIG. 20 is a diagram illustrating a configuration example of the information input device 100 in which an actuator for presenting a rotational reaction force is disposed.
 以下、図面を参照しながら本明細書で開示する技術の実施形態について詳細に説明する。 Hereinafter, embodiments of the technology disclosed in this specification will be described in detail with reference to the drawings.
 図1には、マスタースレーブ方式のロボット・システム1の構成例を模式的に示している。図示のロボット・システム1は、例えば、腹腔や胸腔といった内視鏡外科手術を実施する医療ロボット・システムである。ロボット・システム1は、マスタ装置60と、スレーブ装置90からなる。ユーザ(術者)がマスタ装置60を操作すると、スレーブ装置90に対する操作指令が有線又は無線の通信手段により送信され、スレーブ装置90が操作される。 FIG. 1 schematically shows a configuration example of a master-slave type robot system 1. The illustrated robot system 1 is a medical robot system that performs endoscopic surgical operations such as an abdominal cavity and a chest cavity. The robot system 1 includes a master device 60 and a slave device 90. When a user (surgeon) operates the master device 60, an operation command for the slave device 90 is transmitted by wired or wireless communication means, and the slave device 90 is operated.
 スレーブ装置90は、例えば、多自由度を有するアームを備え、当該アームのエンド・エフェクターに鉗子が取り付けられた鉗子ユニットである(図1では、アーム及びエンド・エフェクターをともに省略している)。また、当該アームのエンド・エフェクターには、鉗子の代わりに、攝子又は切断器具など外科手術中に患者に触れる他の医療用術具や、内視鏡や顕微鏡といった撮像装置が取り付けられていてもよい。スレーブ装置90は、マスタ装置60からの操作指令に基づいて鉗子の位置や向きを変化させ、また、鉗子による把持動作を行なう。 The slave device 90 is, for example, a forceps unit that includes an arm having multiple degrees of freedom and in which forceps are attached to the end effector of the arm (in FIG. 1, both the arm and the end effector are omitted). In addition to the forceps, the end effector of the arm may be attached with other medical instruments such as a lever or a cutting instrument that touch the patient during a surgical operation, or an imaging device such as an endoscope or a microscope. Good. The slave device 90 changes the position and orientation of the forceps based on an operation command from the master device 60, and performs a gripping operation with the forceps.
 一方、マスタ装置60は、例えば、ユーザによって操作される操作部と、当該操作部が先端に取り付けられた多自由度を有するアームとを備えたアーム装置である(図1では、操作部及びアームをともに省略している)。ユーザは、マスタ装置60の操作部の位置及び姿勢を変位させることで、スレーブ装置90側の鉗子の位置及び姿勢を遠隔操作することができる。また、ユーザは、マスタ装置60の操作部に対して把持動作を行なうことで、スレーブ装置90の鉗子の把持動作を遠隔操作することができる。 On the other hand, the master device 60 is, for example, an arm device that includes an operation unit operated by a user and an arm having multiple degrees of freedom with the operation unit attached to the tip (in FIG. 1, the operation unit and the arm). Are both omitted). The user can remotely control the position and posture of the forceps on the slave device 90 side by displacing the position and posture of the operation unit of the master device 60. Further, the user can remotely operate the forceps gripping operation of the slave device 90 by performing a gripping operation on the operation unit of the master device 60.
 また、ロボット・システム1には、力覚提示が適用されており、スレーブ装置90側のエンド・エフェクターが患部などから受ける外力を、マスタ装置60は操作部などを介してユーザに提示する。これによって、内視鏡下での低侵襲の施術の実現に寄与することができる。 In addition, force sense presentation is applied to the robot system 1, and the master device 60 presents external force received from the affected part or the like by the end effector on the slave device 90 side to the user via the operation unit or the like. This can contribute to the realization of a minimally invasive treatment under an endoscope.
 ロボット・システム1は、マスタ装置60とスレーブ装置90間の情報伝達の系統として、マスタ装置60によりスレーブ装置90を駆動制御するとともにユーザに対し力覚提示を行なうための系統と、スレーブ装置90側で検出された振動をユーザに伝達するための系統を備えている。以下、各情報伝達の系統について説明する。 The robot system 1 includes a system for controlling driving of the slave device 90 by the master device 60 and presenting a force sense to the user as a system for transmitting information between the master device 60 and the slave device 90, and a slave device 90 side. Is provided with a system for transmitting the vibration detected in step 1 to the user. Hereinafter, each information transmission system will be described.
 まず、スレーブ装置90の駆動制御及びユーザへの力覚提示を行なうための系統について説明する。 First, a system for performing drive control of the slave device 90 and force sense presentation to the user will be described.
 この情報伝達を実現するために、ロボット・システム1は、制御装置79をさらに備えている。制御装置79は、マスタ装置60を介して入力される指示に応じてスレーブ装置90を駆動させる。但し、制御装置79の機能の一部又は全部が、スレーブ装置90又はマスタ装置60の少なくとも一方に装備されていてもよい。例えば、マスタ装置60又はスレーブ装置90の少なくとも一方のCPU(Central Processing Unit)(図示しない)が、制御装置79として機能する。 In order to realize this information transmission, the robot system 1 further includes a control device 79. The control device 79 drives the slave device 90 in accordance with an instruction input via the master device 60. However, some or all of the functions of the control device 79 may be provided in at least one of the slave device 90 or the master device 60. For example, at least one CPU (Central Processing Unit) (not shown) of the master device 60 or the slave device 90 functions as the control device 79.
 スレーブ装置90の駆動制御においては、ユーザがマスタ装置60のアームの先端に取り付けられた操作部を操作すると、スレーブ装置90のアームを駆動するための指示を示す情報がマスタ装置60から制御装置79に送信される。鉗子のような医療用術具がスレーブ装置90のアームのエンド・エフェクターに取り付けられている場合には、当該術具を駆動するための指示を示す情報も、併せてマスタ装置60から制御装置79に送信するようにしてもよい。 In the drive control of the slave device 90, when a user operates an operation unit attached to the tip of the arm of the master device 60, information indicating an instruction for driving the arm of the slave device 90 is transmitted from the master device 60 to the control device 79. Sent to. When a medical surgical instrument such as a forceps is attached to the end effector of the arm of the slave device 90, information indicating an instruction for driving the surgical instrument is also sent from the master device 60 to the control device 79. You may make it transmit to.
 マスタ装置60は、スレーブ装置90の駆動制御及び力覚提示を行なうための構成要素として、力センサ(トルクセンサ)61と、回転角度センサ63と、モータ65を備えている。また、スレーブ装置90は、自身のアームの駆動制御及びマスタ装置60への力覚提示を行なうための構成要素として、力センサ(トルクセンサ)91、回転角度センサ93、及びモータ95を備えている。なお、スレーブ装置90の駆動制御の方式は任意であり、各種の公知の制御方式を適用することができる。また、制御装置79は、スレーブ装置90において採用された制御方式に応じて適宜構築することができるので、その詳細な説明は省略する。 The master device 60 includes a force sensor (torque sensor) 61, a rotation angle sensor 63, and a motor 65 as components for performing drive control and force sense presentation of the slave device 90. In addition, the slave device 90 includes a force sensor (torque sensor) 91, a rotation angle sensor 93, and a motor 95 as components for performing drive control of its own arm and force sense presentation to the master device 60. . Note that the drive control method of the slave device 90 is arbitrary, and various known control methods can be applied. Further, since the control device 79 can be appropriately constructed according to the control method adopted in the slave device 90, detailed description thereof is omitted.
 マスタ装置60側において、力センサ61は、例えば、アームと、当該アームの先端に取り付けられた操作部との接続部分に設けられて、互いに直交する3軸方向に作用する力を検出する。つまり、ユーザが操作部に入力する力は、力センサ61によって検出される。また、回転角度センサ63は、アームの複数の関節部に設けられ、各関節部の回転角度を検出する。回転角度センサ63は、例えばエンコーダでもよい。 On the master device 60 side, the force sensor 61 is provided, for example, at a connection portion between an arm and an operation unit attached to the tip of the arm, and detects forces acting in three axial directions orthogonal to each other. That is, the force input by the user to the operation unit is detected by the force sensor 61. The rotation angle sensor 63 is provided at a plurality of joint portions of the arm and detects the rotation angle of each joint portion. The rotation angle sensor 63 may be an encoder, for example.
 制御装置79は、マスタ装置60側の力センサ61及び回転角度センサ63から入力される情報に基づいて、スレーブ装置90の駆動制御に係る各種の演算を行なう。 The control device 79 performs various calculations related to drive control of the slave device 90 based on information input from the force sensor 61 and the rotation angle sensor 63 on the master device 60 side.
 例えば、制御装置79は、力制御によりスレーブ装置90の駆動制御を行なう場合には、力センサ61により検出される操作部に作用する力に基づいて、スレーブ装置90のアームの各モータ95に発生させるべきトルクを算出して、スレーブ装置90に送信する。 For example, when controlling the slave device 90 by force control, the control device 79 is generated in each motor 95 of the arm of the slave device 90 based on the force acting on the operation unit detected by the force sensor 61. The torque to be calculated is calculated and transmitted to the slave device 90.
 また、制御装置79は、位置制御によりスレーブ装置90の駆動制御を行なう場合には、マスタ装置60側の回転角度センサ63により検出されるアームの各関節部の回転角度に基づいて、スレーブ装置90のアームの各関節部の回転角度の目標値を算出して、スレーブ装置90に送信する。 In addition, when the drive control of the slave device 90 is performed by position control, the control device 79 is based on the rotation angle of each joint portion of the arm detected by the rotation angle sensor 63 on the master device 60 side. The target value of the rotation angle of each joint of the arm is calculated and transmitted to the slave device 90.
 また、スレーブ装置90の術具が駆動部位を有する場合(例えば、把持動作が可能な鉗子がアームのエンド・エフェクターに取り付けられている場合)には、制御装置79は、当該術具を駆動するための制御量を算出して、スレーブ装置90に送信する。 When the surgical instrument of the slave device 90 has a drive part (for example, when a forceps capable of gripping is attached to the end effector of the arm), the control device 79 drives the surgical instrument. The control amount is calculated and transmitted to the slave device 90.
 上述したように、制御装置79は、マスタ装置60における入力情報に基づいてスレーブ装置90に対する制御量を算出し、算出した制御量に応じた駆動信号をスレーブ装置90側のモータ95に送信する。モータ95は、例えばアームの複数の関節部に配設され、各関節部を回転駆動する。 As described above, the control device 79 calculates a control amount for the slave device 90 based on input information in the master device 60, and transmits a drive signal corresponding to the calculated control amount to the motor 95 on the slave device 90 side. The motor 95 is disposed, for example, at a plurality of joint portions of the arm and rotationally drives each joint portion.
 そして、制御装置79によって算出された制御量に応じてモータ95が駆動することにより、ユーザがマスタ装置60(の操作部)を介して指示した通りにスレーブ装置90側のアームが動作する。また、アームのエンド・エフェクターに駆動部位を有する術具(例えば、把持動作が可能な鉗子など)が備えられている場合には、当該部位を動作させるためのモータの駆動信号が制御装置79から送信され、当該モータが駆動することによって、ユーザがマスタ装置60(の操作部)を介して指示した通りに術具が動作する。 Then, when the motor 95 is driven according to the control amount calculated by the control device 79, the arm on the slave device 90 side operates as instructed by the user via the master device 60 (operation unit). When the arm end effector is provided with a surgical instrument having a drive part (for example, forceps capable of grasping), a drive signal of a motor for operating the part is sent from the control device 79. When the motor is transmitted and the motor is driven, the surgical instrument operates as instructed by the user via the master device 60 (operation unit).
 また、スレーブ装置90側において、力センサ91は、術具に対して作用する外力を検出する。力センサ91は、例えば、アームの複数の関節部に設けられ、各関節部に作用する力(トルク)を検出する。また、回転角度センサ93は、例えば、アームの複数の関節部に設けられ、各関節部の回転角度を検出する。回転角度センサ93は、例えばエンコーダでもよい。これらの力センサ91及び回転角度センサ93により検出された情報は、制御装置79に送信される。制御装置79は、当該情報に基づいてアームの現在の状態を逐次把握し、アームの現在の状態も考慮して、上述したスレーブ装置90に対する制御量を算出する。 Further, on the slave device 90 side, the force sensor 91 detects an external force acting on the surgical instrument. The force sensor 91 is provided, for example, at a plurality of joint portions of the arm, and detects a force (torque) acting on each joint portion. Further, the rotation angle sensor 93 is provided, for example, at a plurality of joint portions of the arm, and detects the rotation angle of each joint portion. The rotation angle sensor 93 may be an encoder, for example. Information detected by the force sensor 91 and the rotation angle sensor 93 is transmitted to the control device 79. The control device 79 sequentially grasps the current state of the arm based on the information, and calculates the control amount for the slave device 90 described above in consideration of the current state of the arm.
 ここで、力センサ91は各関節部に作用する力を検出する。例えば、アームのエンド・エフェクターに取り付けられた術具に作用する力が各関節部に作用し、力センサ91によって検出されると想定される。制御装置79は、力センサ91によって検出された各関節部に作用する力の中から、術具に作用する力の成分を抽出して、マスタ装置60のモータ65の制御量を算出する。モータ65は、例えばサーボモータで構成される。制御装置79は、ユーザが操作部に対して操作入力を行なう際に、術具に作用する力に応じた抵抗を与えるように、マスタ装置60側のアームをモータ65によって駆動させることにより、術具に作用する力をユーザに提示することができる。したがって、ロボット・システム1は、術具に作用した力を検出して、当該力をユーザに対してフィードバックする機能を備えている、ということができる。 Here, the force sensor 91 detects the force acting on each joint. For example, it is assumed that the force acting on the surgical instrument attached to the end effector of the arm acts on each joint and is detected by the force sensor 91. The control device 79 extracts the component of the force acting on the surgical instrument from the forces acting on each joint detected by the force sensor 91 and calculates the control amount of the motor 65 of the master device 60. The motor 65 is constituted by a servo motor, for example. The control device 79 operates the arm on the master device 60 side by the motor 65 so as to give resistance corresponding to the force acting on the surgical instrument when the user performs an operation input to the operation unit. The force acting on the tool can be presented to the user. Therefore, it can be said that the robot system 1 has a function of detecting a force acting on the surgical instrument and feeding back the force to the user.
 続いて、スレーブ装置90側で検出された振動をユーザに伝達するための系統について説明する。 Subsequently, a system for transmitting the vibration detected on the slave device 90 side to the user will be described.
 この情報伝達を実現するために、ロボット・システム1は、第1の振動伝達部70と第2の振動伝達部80をさらに備えている。第1の振動伝達部70は、スレーブ装置90に設けられた触覚振動センサ97によって検出された振動を、マスタ装置60に伝達する。また、第2の振動伝達部80は、スレーブ装置90に設けられた聴覚振動センサ99によって検出された振動を、マスタ装置60に伝達する。第1の振動伝達部70は、増幅器71と、周波数特性補正回路73と、バンドパス・フィルタ(BPF)75と、駆動回路(ドライバ)77を備えている。第2の振動伝達部80は、増幅器81と、周波数特性補正回路83と、バンドパス・フィルタ(BPF)85と、駆動回路(ドライバ)87を備えている。但し、第1の振動伝達部70及び第2の振動伝達部80の構成要素の一部又は全部が、スレーブ装置90又はマスタ装置60の少なくとも一方に装備されていてもよい。 In order to realize this information transmission, the robot system 1 further includes a first vibration transmission unit 70 and a second vibration transmission unit 80. The first vibration transmission unit 70 transmits the vibration detected by the tactile vibration sensor 97 provided in the slave device 90 to the master device 60. The second vibration transmission unit 80 transmits the vibration detected by the auditory vibration sensor 99 provided in the slave device 90 to the master device 60. The first vibration transmission unit 70 includes an amplifier 71, a frequency characteristic correction circuit 73, a bandpass filter (BPF) 75, and a drive circuit (driver) 77. The second vibration transmission unit 80 includes an amplifier 81, a frequency characteristic correction circuit 83, a bandpass filter (BPF) 85, and a drive circuit (driver) 87. However, some or all of the components of the first vibration transmission unit 70 and the second vibration transmission unit 80 may be provided in at least one of the slave device 90 or the master device 60.
 また、スレーブ装置90は、ユーザへの振動伝達に用いられる要素として、触覚振動センサ97と、聴覚振動センサ99を備えている。触覚振動センサ97と聴覚振動センサ99は、例えば、術具の基端側に取り付けられてもよい。触覚振動センサ97は、術具に生じた触覚振動を検出し、聴覚振動センサ99は、術具に生じた聴覚振動(すなわち、音)を検出する。触覚振動センサ97は、例えば、加速度センサで構成される。聴覚振動センサ99は、例えば、コンデンサ・マイクで構成される。 The slave device 90 includes a tactile vibration sensor 97 and an auditory vibration sensor 99 as elements used for vibration transmission to the user. The tactile vibration sensor 97 and the auditory vibration sensor 99 may be attached to the proximal end side of the surgical instrument, for example. The tactile vibration sensor 97 detects tactile vibration generated in the surgical instrument, and the auditory vibration sensor 99 detects auditory vibration (that is, sound) generated in the surgical instrument. The tactile vibration sensor 97 is composed of, for example, an acceleration sensor. The auditory vibration sensor 99 is composed of, for example, a condenser microphone.
 触覚振動センサ97によって検出された触覚振動を示す信号は、第1の振動伝達部70に入力される。第1の振動伝達部70は、入力された触覚振動を示す信号に基づいて、マスタ装置60の振動発生源67の駆動信号を生成する。具体的には、増幅器71が入力された触覚振動を示す信号を増幅処理した後、周波数特性補正回路73が振動周波数の補正処理を行ない、さらにバンドパス・フィルタ75がフィルタリング処理を行なう。そして、駆動回路77は、入力された信号に基づいて、マスタ装置60の振動発生源67を駆動させる。これにより、スレーブ装置90で検出された触覚振動に対応する振動がマスタ装置60側で振動発生源67により生成され、術具に生じた触覚振動がユーザに対して伝達される。振動発生源67は、例えば、ピエゾ式振動アクチュエータ、ボイスコイルモータ式振動アクチュエータ、リニア振動アクチュエータ、ERM(Eccentric Rotating Mass)式振動アクチュエータ、又はEPAM(Electroactive Polymer Artifical Muscle)式振動アクチュエータのうちのいずれか1つ又は2以上の組み合わせであってもよい。 A signal indicating the haptic vibration detected by the haptic vibration sensor 97 is input to the first vibration transmitting unit 70. The first vibration transmission unit 70 generates a drive signal for the vibration source 67 of the master device 60 based on the input signal indicating the tactile vibration. Specifically, after the amplifier 71 performs amplification processing on the input signal indicating tactile vibration, the frequency characteristic correction circuit 73 performs vibration frequency correction processing, and the band-pass filter 75 performs filtering processing. Then, the drive circuit 77 drives the vibration generation source 67 of the master device 60 based on the input signal. Thereby, the vibration corresponding to the haptic vibration detected by the slave device 90 is generated by the vibration generating source 67 on the master device 60 side, and the haptic vibration generated in the surgical instrument is transmitted to the user. The vibration generation source 67 is, for example, one of a piezoelectric vibration actuator, a voice coil motor vibration actuator, a linear vibration actuator, an ERM (Eccentric Rotating Mass) vibration actuator, or an EPAM (Electroactive Polymer Muscular) vibration actuator. One or a combination of two or more may be used.
 聴覚振動センサ99により検出された聴覚振動を示す信号は、第2の振動伝達部80に入力される。第2の振動伝達部80は、入力された聴覚振動を示す信号に基づいて、マスタ装置60のスピーカ69の駆動信号を出力する。具体的には、増幅器81が入力された聴覚振動を示す信号を増幅処理した後、周波数特性補正回路83が振動周波数の補正処理を行ない、さらにバンドパス・フィルタ85がフィルタリング処理を行なす。そして、駆動回路87は、入力された信号に基づいて、マスタ装置60のスピーカ69を駆動させる。これにより、スレーブ装置90で検出された聴覚振動に対応する音声がマスタ装置60側でスピーカ69から出力され、術具に生じた聴覚振動がユーザに対して伝達される。 A signal indicating the auditory vibration detected by the auditory vibration sensor 99 is input to the second vibration transmitting unit 80. The second vibration transmission unit 80 outputs a drive signal for the speaker 69 of the master device 60 based on the input signal indicating auditory vibration. Specifically, after the amplifier 81 performs amplification processing on the signal indicating auditory vibration, the frequency characteristic correction circuit 83 performs vibration frequency correction processing, and the band-pass filter 85 performs filtering processing. Then, the drive circuit 87 drives the speaker 69 of the master device 60 based on the input signal. Thereby, the sound corresponding to the auditory vibration detected by the slave device 90 is output from the speaker 69 on the master device 60 side, and the auditory vibration generated in the surgical instrument is transmitted to the user.
 なお、内視鏡外科手術などに適用されるマスタースレーブ方式のロボット・システム1は、図1に示した以外の構成要素を装備してもよいが、説明の簡素化のため、図示を省略した。 Note that the master-slave type robot system 1 applied to endoscopic surgery or the like may be equipped with components other than those shown in FIG. 1, but the illustration is omitted for the sake of simplicity of explanation. .
 マスタ装置60は、ユーザによって操作される操作部と、当該操作部が先端に取り付けられた多自由度を有するアームとを備えたアーム装置である。ユーザは、この操作部の位置及び姿勢を変位させることで、スレーブ装置90側のアーム及びアームのエンド・エフェクターに取り付けられた鉗子などの術具の位置及び姿勢を遠隔操作することができる。また、マスタ装置60は、アーム装置を駆動させて操作部の位置及び姿勢を変位させることで、操作部を介してユーザに力覚を提示することができる。 The master device 60 is an arm device including an operation unit operated by a user and an arm having multiple degrees of freedom with the operation unit attached to the tip. The user can remotely control the position and posture of a surgical instrument such as forceps attached to the arm on the slave device 90 side and the end effector of the arm by displacing the position and posture of the operation unit. Further, the master device 60 can present a sense of force to the user via the operation unit by driving the arm device and displacing the position and posture of the operation unit.
 例えば、操作部は、3軸並進構造のアームによってマスタ装置60本体に接続されるとともに、アームの先端に対して回転可能に取り付けられる。したがって、ユーザは、操作部をマスタ装置60本体に対して相対移動させるとともに、アームの先端に対して回転操作することによって、スレーブ装置90側のアーム先端のエンド・エフェクターの位置及び姿勢を指示することができる。さらに操作部に把持機構を備えることで、ユーザはこの把持機構を把持操作することによって、スレーブ装置90側のアーム先端に取り付けられた鉗子の開閉操作などを指示することができる。また、アームや操作部の把持機構をモータ65によって駆動させることによって、スレーブ装置90側に作用する力をユーザに提示することができる。 For example, the operation unit is connected to the master device 60 main body by an arm having a three-axis translation structure, and is rotatably attached to the tip of the arm. Accordingly, the user moves the operation unit relative to the main body of the master device 60 and rotates the arm tip to instruct the position and posture of the end effector at the arm tip on the slave device 90 side. be able to. Furthermore, by providing a gripping mechanism in the operation unit, the user can instruct an opening / closing operation of forceps attached to the arm tip on the slave device 90 side by gripping the gripping mechanism. Further, by driving the grip mechanism of the arm or the operation unit by the motor 65, the force acting on the slave device 90 side can be presented to the user.
 要するに、マスタ装置60側の操作部及びアームは、ロボット・システム1における入力UIである。図1では、マスタ装置60側の操作部及びアームの構造の図示を省略したが、人間の腕の可動域は非常に広いことから、入力UIとしても操作部の広い可動域を提供することが強く求められる。 In short, the operation unit and arm on the master device 60 side are input UIs in the robot system 1. Although the illustration of the structure of the operation unit and arm on the master device 60 side is omitted in FIG. 1, since the movable range of the human arm is very wide, it is possible to provide a wide movable range of the operating unit as an input UI. It is strongly demanded.
 例えば、3軸直交関節としてはジンバル構造が広く用いられている。ジンバル構造を適用すれば、3自由度の回転操作が可能な操作部を構成することができる。しかしながら、3軸直交関節を1軸ずつ回転ジョイントで組んだ場合には、中間軸を±90度だけ回転した場合に必ず特異点となるという問題がある。 For example, a gimbal structure is widely used as a three-axis orthogonal joint. If the gimbal structure is applied, an operation unit capable of rotating operation with three degrees of freedom can be configured. However, when three-axis orthogonal joints are assembled by a rotation joint one by one, there is a problem that a singular point always occurs when the intermediate axis is rotated by ± 90 degrees.
 4自由度の回転構造を備える操作部を構成することにより、特異点を回避することができる。しかしながら、4自由度とするためのリンク構造の自重が重くなるため、操作感が重たくなるという問題が新たに生じる。 Singular points can be avoided by configuring an operation unit having a rotational structure with 4 degrees of freedom. However, since the weight of the link structure for achieving four degrees of freedom becomes heavy, a new problem arises that the feeling of operation becomes heavy.
 また、3自由度の他の関節構造として、球関節構造(ボール・ジョイント)を挙げることができる。しかしながら、内部の球の落下を防ぐには球の半分以上を覆う構造が一般的であり、可動域が±30度程度までに制限されてしまう。 Also, a ball joint structure (ball joint) can be cited as another joint structure with three degrees of freedom. However, in order to prevent the falling of the internal sphere, a structure that covers more than half of the sphere is common, and the range of motion is limited to about ± 30 degrees.
 また、パラレルリンク構造は操作感が軽い。しかしながら、パラレルリンク構造を用いた球面回転ジョイントは±90度までしか回転できず、可動域をさらに広げることは困難である。 Also, the parallel link structure is light in operation. However, a spherical rotary joint using a parallel link structure can only rotate up to ± 90 degrees, and it is difficult to further expand the range of motion.
 そこで、本明細書では、マスタ装置60の操作部として適用可能で、回転可動域が広く、且つ、軽量な、3自由度の回転角度を入力若しくは計測することが可能な情報入力装置について、以下で提案する。 Therefore, in the present specification, an information input device that can be applied as an operation unit of the master device 60, has a wide rotation movable range, and is lightweight and can input or measure a rotation angle of three degrees of freedom is described below. Propose in
 図2には、本明細書で提案する、3自由度の回転角度を入力可能な情報入力装置100の外観構成を示している。情報入力装置100は、中空の球体構造からなる外殻部110と、外殻部110の表面を吸着して回転可能に支持する接続部120を備えている。すなわち、情報入力装置100は、図中の参照番号201~203の矢印で示すように、3自由度に回転することができる球関節を構成している。なお、外殻部110の球体構造は、1つの球面のみで構成してもよいし、複数の面を連結して構成してもよい。 FIG. 2 shows an external configuration of the information input apparatus 100 that can input a rotation angle of three degrees of freedom proposed in this specification. The information input device 100 includes an outer shell portion 110 having a hollow sphere structure and a connection portion 120 that adsorbs and rotatably supports the surface of the outer shell portion 110. That is, the information input device 100 constitutes a ball joint that can rotate with three degrees of freedom, as indicated by arrows with reference numerals 201 to 203 in the figure. In addition, the spherical structure of the outer shell part 110 may be configured by only one spherical surface, or may be configured by connecting a plurality of surfaces.
 基本的には、外殻部110は磁性体からなり、一方の接続部120は磁石からなり、接続部120は磁石の磁力により外殻部110の表面を吸着することができる。外殻部110は、磁力による吸着力を受けながら、接続部120に対して滑り動くことによって回転操作が可能となっている。但し、接続部120は、磁石の磁力ではなく、空気圧による吸着や静電力による吸着を利用して、外殻部110を吸着するようにしてもよい。空気圧や静電力による吸着を利用する場合、外殻部110を磁性体(金属)以外の比重が小さな材料で構成して、軽量化を図ることができる。 Basically, the outer shell part 110 is made of a magnetic material, the one connection part 120 is made of a magnet, and the connection part 120 can adsorb the surface of the outer shell part 110 by the magnetic force of the magnet. The outer shell portion 110 can be rotated by sliding with respect to the connecting portion 120 while receiving an attractive force due to magnetic force. However, the connecting portion 120 may attract the outer shell portion 110 by using attraction by air pressure or attraction by electrostatic force instead of the magnetic force of the magnet. When using adsorption by air pressure or electrostatic force, the outer shell portion 110 can be made of a material having a small specific gravity other than a magnetic material (metal) to reduce the weight.
 外殻部110と接続部120の接触面121の間の摩擦は、表面の粗さや材質を工夫することによって調整することができる。適度な摩擦があると、外殻部110の回転位置を保持し易くなり、操作性が向上する。また、外殻部110の自重により勝手に回転しそうになるトルクを抑制するために、外殻部110と接続部120の接触面121の間に適度な摩擦があることが好ましい。但し、そもそも外殻部110の自重による回転モーメントが発生しないように、外殻部110の重心位置が球体の中心近傍に配置されるように重心バランスを考慮することが好ましい。 The friction between the outer shell part 110 and the contact surface 121 of the connection part 120 can be adjusted by devising the roughness and material of the surface. When there is appropriate friction, it becomes easy to hold the rotational position of the outer shell portion 110 and the operability is improved. Further, in order to suppress the torque that is likely to rotate freely due to the weight of the outer shell portion 110, it is preferable that there is an appropriate friction between the outer shell portion 110 and the contact surface 121 of the connection portion 120. However, it is preferable to consider the balance of the center of gravity so that the center of gravity of the outer shell 110 is arranged in the vicinity of the center of the sphere so as not to generate a rotational moment due to its own weight.
 例えば、接続部120側の、外殻部110と接触する接触面121を、表面仕上げしたり、低摩擦となるようにコーティングなどの処理を施したりすることによって、球体構造の外殻部110は接続部120との接触面121上で滑り易くなり、ユーザは外殻部110を回転操作し易くなる。また、接続部120側ではなく、外殻部110の表面(少なくとも、接続部120の接触面121と接触する範囲)に対して、低摩擦となるようにコーティングなどの処理を施すようにしてもよい。もちろん、接続部120側の接触面121と外殻部110の表面の両方に低摩擦コーティングを施してもよい。 For example, the outer shell portion 110 having a spherical structure can be obtained by finishing the contact surface 121 on the connection portion 120 side, which is in contact with the outer shell portion 110, or by performing a treatment such as coating so as to reduce friction. It becomes easy to slip on the contact surface 121 with the connection part 120, and the user can easily rotate the outer shell part 110. In addition, the surface of the outer shell portion 110 (at least in a range in contact with the contact surface 121 of the connection portion 120), not the connection portion 120 side, may be subjected to a treatment such as coating so as to have low friction. Good. Of course, a low friction coating may be applied to both the contact surface 121 on the connection part 120 side and the surface of the outer shell part 110.
 外殻部110と接続部120との接触面に低摩擦コーティングを施しても、摩擦音が発生して、ユーザやその周囲の人の耳障りになることもある。そこで、摩擦音を発生するための中間部材(図示しない)を外殻部110と接続部120の間に配置するようにしてもよい。中間部材は、例えば樹脂などの素材で構成される。中間部材は、磁石に固定されていてもよい。 Even if a low friction coating is applied to the contact surface between the outer shell part 110 and the connection part 120, a frictional sound is generated, which may be annoying to the user and the surrounding people. Therefore, an intermediate member (not shown) for generating a frictional sound may be disposed between the outer shell portion 110 and the connection portion 120. The intermediate member is made of a material such as resin. The intermediate member may be fixed to the magnet.
 接続部120がどの程度の吸着力で外殻部110を吸着すべきか(若しくは引っ張るべきか)に応じて、磁石の磁力が調整される。また、吸着力は、磁石の磁力だけでなく、接続部120の接触面121又は外殻部110の表面に施すコーティングの厚さや、外殻部110と接続部120間に配置する材料によっても調整することができる。吸着力を強くすれば、外殻部110の落下を防止することができるが、外殻部110が接続部120に強固に保持され回転し難くなり、操作性が低下する。また、吸着力を弱くすれば、外殻部110の操作性は向上するが、接続部120から落下し易くなる。 The magnetic force of the magnet is adjusted according to how much the connecting portion 120 should attract (or pull) the outer shell 110. Further, the attractive force is adjusted not only by the magnetic force of the magnet but also by the thickness of the coating applied to the contact surface 121 of the connection part 120 or the surface of the outer shell part 110 and the material disposed between the outer shell part 110 and the connection part 120. can do. If the adsorption force is increased, the outer shell part 110 can be prevented from falling, but the outer shell part 110 is firmly held by the connection part 120 and is difficult to rotate, and the operability is lowered. Further, if the adsorption force is weakened, the operability of the outer shell portion 110 is improved, but it is easy to drop from the connection portion 120.
 なお、接続部120の接触面121に低摩擦コーティングを施す代わりに、図11に示すように、スラスト球軸受1101のような、回転体の軸方向に働く力受け容れることができるベアリングなどの中間部材を使用することによっても、外殻部110の3軸(201~203)回りの回転を滑らかにすることができる(厳密には、スラスト球軸受1101のうち、真ん中の、ボールを保持する保持機の部分だけでよく、両側の軸軌道盤(Shaft Washer)及びハウジング軌道盤(Housing Washer)は不要である)。 Instead of applying a low friction coating to the contact surface 121 of the connecting portion 120, as shown in FIG. 11, an intermediate such as a thrust ball bearing 1101 such as a bearing capable of receiving a force acting in the axial direction of the rotating body. By using the member, the rotation of the outer shell 110 around the three axes (201 to 203) can be smoothed (strictly speaking, in the thrust ball bearing 1101, the center holding the ball is held. Only the machine part is necessary, and the shaft washer and the housing washer on both sides are not required.
 外殻部110は、例えば直径80ミリメートル程度の球体である。接続部120の外径が外殻部110の直径の4分の3以下であれば、適当な吸着力を保ちつつ、外殻部110の良好な回転操作性を得ることができる。なお、直径80ミリメートルは、ユーザが大人であることを想定した寸法であり、子供を対象とする場合にはさらに小さい寸法でもよい。 The outer shell 110 is a sphere having a diameter of about 80 mm, for example. If the outer diameter of the connection part 120 is 3/4 or less of the diameter of the outer shell part 110, good rotational operability of the outer shell part 110 can be obtained while maintaining an appropriate suction force. Note that the diameter of 80 mm is a size that assumes that the user is an adult, and may be a smaller size when targeting a child.
 外殻部110の、接続部120との接触面121の反対側には、ユーザの親指を挿入するための第1の開口部111と、ユーザの人差し指又は中指の一方又は両方を挿入するための第2の開口部112が穿設されている。また、外殻部110内には、把持機構(図2では図示しない)が収容されている。この把持機構は、ユーザが親指と人差し指又は中指とで好適につまむ動作若しくは把持する動作ができるように開閉構造を備えているが、詳細については後述に譲る。 A first opening 111 for inserting the user's thumb and one or both of the index finger or the middle finger of the user are inserted into the outer shell 110 on the opposite side of the contact surface 121 with the connecting portion 120. A second opening 112 is formed. In addition, a gripping mechanism (not shown in FIG. 2) is accommodated in the outer shell portion 110. This gripping mechanism has an open / close structure so that the user can appropriately pinch or grip with the thumb and index finger or middle finger, but the details will be given later.
 ユーザは、つまむ操作、すなわち第1の開口部111及び第2の開口部からそれぞれ挿入した親指と人差し指又は中指で把持機構を把持しながら、接続部120による吸着状態から離脱しないように、外殻部110を参照番号201~203の矢印で示す3自由度に回転操作することができる。図3及び図4には、外殻部110が回転操作された情報入力装置100の様子をそれぞれ例示している。 The user can pinch the outer shell so as not to leave the attracting state by the connecting portion 120 while holding the gripping mechanism with the thumb and index finger or middle finger inserted through the first opening 111 and the second opening, respectively. The unit 110 can be rotated with three degrees of freedom indicated by arrows 201-203. FIGS. 3 and 4 each illustrate the state of the information input device 100 in which the outer shell 110 has been rotated.
 図2~図4では図示を省略するが、外殻部110の内部には、外殻部110の3軸の回転角度を検出する回転角度センサ(図1中の回転角度センサ63に相当)と、把持機構を開閉動作させるアクチュエータ(図1中のモータ65に相当)及び開閉構造の回転角度を検出するエンコーダ(図1中の回転角度センサ63に相当)と、把持機構のユーザの親指や人差し指又は中指との接触面で触覚を提示する触覚提示アクチュエータ(図1中の振動発生源67に相当)、ユーザの親指や人差し指又は中指が外殻部110の内部に挿入されたことを検出する指検知センサ、などが収容されている。 Although not shown in FIGS. 2 to 4, a rotation angle sensor (corresponding to the rotation angle sensor 63 in FIG. 1) for detecting the rotation angle of the three axes of the outer shell portion 110 is provided inside the outer shell portion 110. An actuator for opening / closing the gripping mechanism (corresponding to the motor 65 in FIG. 1), an encoder for detecting the rotation angle of the opening / closing structure (corresponding to the rotation angle sensor 63 in FIG. 1), and the thumb or index finger of the user of the gripping mechanism Alternatively, a tactile sense presenting actuator (corresponding to the vibration generation source 67 in FIG. 1) that presents a tactile sensation on the contact surface with the middle finger, a finger that detects that the user's thumb, index finger, or middle finger is inserted into the outer shell 110 A detection sensor and the like are accommodated.
 ユーザが親指と人差し指又は中指で把持機構を把持しながら、接続部120による吸着状態から離脱しないように、外殻部110を回転操作したとき、上記の回転角度センサによって、外殻部110の3軸回転角度が検出される。この回転角度センサによって検出された3軸回転角度は、スレーブ装置90側のアームやそのエンド・エフェクターを駆動するための指示を示す情報となる。 When the user rotates the outer shell 110 while holding the grip mechanism with the thumb and forefinger or middle finger so that the outer shell 110 is not removed from the attracted state by the connecting portion 120, the rotation angle sensor 3 of the outer shell 110 is used. A shaft rotation angle is detected. The triaxial rotation angle detected by the rotation angle sensor is information indicating an instruction for driving the arm on the slave device 90 side and its end effector.
 また、ユーザが親指と人差し指又は中指でつまむ動作をしたとき、すなわち把持機構を把持したときの開閉構造の回転角度をエンコーダで検出することができる。例えばスレーブ装置90側のアームのエンド・エフェクターに鉗子のような医療用術具が取り付けられている場合には、エンコーダで検出された回転角度は、当該術具を駆動するための指示を示す情報となる。 Also, the rotation angle of the opening / closing structure when the user performs the operation of pinching with the thumb and forefinger or middle finger, that is, when the gripping mechanism is gripped can be detected by the encoder. For example, when a medical surgical instrument such as forceps is attached to the end effector of the arm on the slave device 90 side, the rotation angle detected by the encoder is information indicating an instruction for driving the surgical instrument. It becomes.
 また、把持機構のアクチュエータを駆動させて開閉動作させることによって、把持機構を把持しているユーザの親指と人差し指又は中指に対して把持力を提示することができる。例えばスレーブ装置90側のアームのエンド・エフェクターに鉗子のような医療用術具が取り付けられ、上記のようにユーザが親指と人差し指又は中指で把持機構を把持して開閉操作することによって当該術具の駆動を指示する際に、スレーブ装置90側で力センサ91によって検出された各関節部に作用する力の中から術具に作用する力の成分を抽出して、把持機構のモータの制御量を算出する。そして、算出した制御量に従ってモータを駆動させることによって、術具に作用する力をユーザに提示することができる。 In addition, by driving the actuator of the gripping mechanism to open and close, the gripping force can be presented to the thumb and index finger or middle finger of the user holding the gripping mechanism. For example, a medical surgical instrument such as forceps is attached to the end effector of the arm on the slave device 90 side, and the surgical instrument is opened and closed by gripping the gripping mechanism with the thumb and index finger or middle finger as described above. Of the force acting on the surgical instrument from the forces acting on the joints detected by the force sensor 91 on the slave device 90 side, and the control amount of the motor of the grasping mechanism Is calculated. And the force which acts on a surgical instrument can be shown to a user by driving a motor according to the calculated control amount.
 また、スレーブ装置90側では、触覚振動センサ97が術具に生じた触覚振動を検出し、この触覚信号が第1の振動伝達部70で信号処理(上述)された後に、外殻部110内の触覚提示アクチュエータに駆動信号として入力される。したがって、スレーブ装置90(例えば、エンド・エフェクター)で検出された触覚振動に対応する振動が外殻部110内の触覚提示アクチュエータにより生成され、術具に生じた触覚振動をユーザに伝達することができる。 On the slave device 90 side, the tactile vibration sensor 97 detects the tactile vibration generated in the surgical instrument, and after the tactile signal is subjected to signal processing (described above) by the first vibration transmitting unit 70, Are input as drive signals to the tactile sense presentation actuator. Therefore, vibration corresponding to the haptic vibration detected by the slave device 90 (for example, an end effector) is generated by the haptic presentation actuator in the outer shell 110, and the haptic vibration generated in the surgical instrument can be transmitted to the user. it can.
 また、指検知センサは、ユーザの親指や人差し指又は中指が外殻部110の内部に挿入されたことを検出する。この検出信号によって、情報入力装置100が使用中か否かを判定することができる。 Also, the finger detection sensor detects that the user's thumb, index finger or middle finger has been inserted into the outer shell 110. Based on this detection signal, it can be determined whether or not the information input device 100 is in use.
 上述したモータやアクチュエータ、センサ以外の各種回路部品も、必要に応じて外殻部110の内部に収容することができる。また、把持機構用のモータや触覚提示アクチュエータへの制御信号を供給する信号線や、各センサの検出信号を外部に出力する信号線を含む、外殻部110に収容された電子部品と外部とを電気接続するための配線140を挿通させる配線穴113が、外殻部110に穿設されている。好ましくは、配線穴113は、第1の開口部111と第2の開口部112の中間付近に形成され、ユーザの親指と人差し指又は中指の間を配線140が通過する。 Various circuit components other than the motors, actuators, and sensors described above can be accommodated in the outer shell 110 as necessary. In addition, the electronic component housed in the outer shell 110 includes a signal line that supplies a control signal to a motor for a gripping mechanism and a tactile sense actuator, and a signal line that outputs a detection signal of each sensor to the outside. A wiring hole 113 for inserting a wiring 140 for electrical connection is formed in the outer shell portion 110. Preferably, the wiring hole 113 is formed near the middle of the first opening 111 and the second opening 112, and the wiring 140 passes between the user's thumb and the index finger or middle finger.
 外殻部110の内部の構成やレイアウトの詳細については後述に譲る。但し、球体構造をなす外殻部110の回転中心と、外殻部110の重心、及び、ユーザが親指と人差し指又は中指で把持する把持中心が、すべてほぼ同じ1点となるように構成することが好ましい。 Details of the internal configuration and layout of the outer shell 110 will be described later. However, the rotation center of the outer shell part 110 having a spherical structure, the center of gravity of the outer shell part 110, and the gripping center that the user grips with the thumb and index finger or middle finger are all substantially the same point. Is preferred.
 外殻部110の重心が球体の中心近傍に配置されることにより、外殻部110の重心による回転モーメントが抑制され、ユーザが操作していないにも拘らず勝手に(自然と)外殻部110が回転してしまうという誤動作・誤検出を防止することができる。また、ユーザは、外殻部110を回転操作させる際に、余分なトルクを受けずに済むので、操作性が向上するとともに、疲労が軽減される。 Since the center of gravity of the outer shell part 110 is arranged in the vicinity of the center of the sphere, the rotational moment due to the center of gravity of the outer shell part 110 is suppressed, and the outer shell part is spontaneously (naturally) not operated by the user. It is possible to prevent a malfunction / false detection that the 110 rotates. Further, since the user does not need to receive extra torque when rotating the outer shell portion 110, the operability is improved and fatigue is reduced.
 また、ユーザが親指と人差し指又は中指で把持する把持中心が球体の中心近傍に配置されることにより、ユーザが外殻部110内の把持機構に対してつまむ操作を行なう際に、ユーザの指の姿勢変化の影響が外殻部110の位置変化へと影響しないようにすることができる。 Further, the gripping center that the user grips with the index finger or middle finger is arranged near the center of the sphere, so that when the user performs a pinching operation on the gripping mechanism in the outer shell 110, It is possible to prevent the influence of the posture change from affecting the position change of the outer shell portion 110.
 図2~図4に示した情報入力装置100が、ロボット・システム1のマスタ装置60における操作部として利用される場合には、操作部に作用する外力を検出する力センサ130を介して、マスタ装置60本体に連結された3軸並進構造を持つアーム(図示を省略)に連結される。 When the information input device 100 shown in FIGS. 2 to 4 is used as an operation unit in the master device 60 of the robot system 1, the master is connected via the force sensor 130 that detects an external force acting on the operation unit. It is connected to an arm (not shown) having a three-axis translation structure connected to the apparatus 60 main body.
 この力センサ130は、図1中の力センサ61に相当するが、例えば6軸力センサで構成され、ユーザが操作したときなどに外殻部110に作用する外力を検出する。そして、力センサ61の検出信号を適切に演算することで、直交する3軸XYZ方向の並進力Fx、Fy、Fzと、各軸回りのモーメントMx、My、Mzを求めることができる。力センサ130を利用して、ユーザが外殻部110に対して作用させる力を検出して、スレーブ装置90側でアームやエンド・エフェクターの制御に利用するようにしてもよい。このとき、外殻部110と接続部120間の摩擦による力と、ユーザの指による発生力とを分離するようにしてもよい。但し、力センサ130に6軸ではなく3軸力センサを用いても、同等の効果を得ることができる。 This force sensor 130 corresponds to the force sensor 61 in FIG. 1, but is composed of, for example, a six-axis force sensor, and detects an external force acting on the outer shell 110 when operated by a user. Then, by appropriately calculating the detection signal of the force sensor 61, the translational forces Fx, Fy, and Fz in the orthogonal three-axis XYZ directions and the moments Mx, My, and Mz around each axis can be obtained. The force sensor 130 may be used to detect a force that the user acts on the outer shell 110 and may be used for controlling the arm and the end effector on the slave device 90 side. At this time, you may make it isolate | separate the force by the friction between the outer shell part 110 and the connection part 120, and the generated force by a user's finger | toe. However, even if a triaxial force sensor is used as the force sensor 130 instead of six axes, the same effect can be obtained.
 図2~図4から、情報入力装置100は、ユーザが直感的に入力操作を行なうことができ、且つ、広い可動域を持つ入力デバイスである、という点を十分理解されたい。また、ユーザが親指を含む少なくとも2本の指を外殻部110に挿し込むことによって入力操作することができるので、情報入力装置100は人間にとって使い易い入力デバイスであるということもできる。 2 to 4, it should be fully understood that the information input device 100 is an input device that allows a user to perform an input operation intuitively and has a wide range of motion. In addition, since the user can perform an input operation by inserting at least two fingers including the thumb into the outer shell portion 110, the information input device 100 can be said to be an input device that is easy for humans to use.
 図5には、情報入力装置100の具体的な構成例を示している。但し、同図は、外殻部110に第1の開口部111及び第2の開口部112が穿設された部分を斜視したときの外観を示している。 FIG. 5 shows a specific configuration example of the information input device 100. However, this figure shows an external appearance when a portion where the first opening 111 and the second opening 112 are formed in the outer shell 110 is viewed in perspective.
 外殻部110は、上述したように内部構造を有する(把持機構を始めとして、さまざまな部品が収容されている)ために、その球体構造を一体部品で製作することは困難である。したがって、球体を2以上の部位に分割して、一部の部位から内部構造を挿入した後に、部位同士を連結して球体構造を組み立てる、という製作方法が現実的である。他方、外殻部110は、磁石による磁力などを利用して接続部120の接触面121に吸着された状態で、滑らかに回転しなければならない。このため、外殻部110は、接続部120の接触面121上を滑り得る範囲(可動域)は、継ぎ目がないこと、すなわち一体部品であることが強く望まれる。 Since the outer shell part 110 has an internal structure as described above (various parts including a gripping mechanism are accommodated), it is difficult to manufacture the spherical structure as an integral part. Therefore, a manufacturing method is practical in which the sphere is divided into two or more parts, the internal structure is inserted from a part of the part, and then the parts are connected to assemble the sphere structure. On the other hand, the outer shell part 110 must rotate smoothly in a state where it is attracted to the contact surface 121 of the connection part 120 using a magnetic force by a magnet or the like. For this reason, it is strongly desired that the outer shell 110 has a seamless range (movable range) in which the outer shell 110 can slide on the contact surface 121 of the connecting portion 120, that is, is an integral part.
 そこで、本実施形態では、外殻部110を、外殻前部501と外殻後部502の2体に分割した構造とし、外殻前部501と外殻後部502を分解した(若しくは、結合していない)状態で内部構造を挿入可能としている。外殻後部502は、接続部120の接触面121上を滑らせる領域を含むが、外殻前部501は、外殻部110を、接続部120の接触面121上を滑らせることがない。図5では、外殻後部502をドット柄で描いている。外殻後部502は、継ぎ目のない一体部品であることから、接続部120の接触面121上を滑らかに移動することができる。外殻前部501は、磁力で吸引されることはないので、金属以外の材料で構成して、軽量化を図るようにしてもよい。 Therefore, in the present embodiment, the outer shell portion 110 is divided into two parts of the outer shell front portion 501 and the outer shell rear portion 502, and the outer shell front portion 501 and the outer shell rear portion 502 are disassembled (or joined together). The internal structure can be inserted in a state that is not. The outer shell rear portion 502 includes a region that slides on the contact surface 121 of the connection portion 120, but the outer shell front portion 501 does not slide the outer shell portion 110 on the contact surface 121 of the connection portion 120. In FIG. 5, the outer shell rear portion 502 is drawn with a dot pattern. Since the outer shell rear portion 502 is a seamless integral part, the outer shell rear portion 502 can smoothly move on the contact surface 121 of the connecting portion 120. Since the outer shell front part 501 is not attracted by magnetic force, it may be made of a material other than metal to reduce the weight.
 外殻前部501が外れた状態で内部構造を外殻部110内に取り付けた後、外殻後部502に外殻前部501を連結させて、外殻部110を組み立てることができる。あるいは、内部構造を外殻前部501(の内壁)に組み付けた後、外殻後部502に外殻前部501を取り付けることで、外殻部110を組み立てることができる。 After attaching the internal structure in the outer shell part 110 with the outer shell front part 501 removed, the outer shell part 110 can be assembled by connecting the outer shell front part 501 to the outer shell rear part 502. Alternatively, the outer shell part 110 can be assembled by attaching the outer shell front part 501 to the outer shell rear part 502 after assembling the inner structure to the outer shell front part 501 (the inner wall thereof).
 外殻前部501と外殻後部502の境目を利用して、第1の開口部111と第2の開口部112が形成されている。第1の開口部111よりも大きく形成してもよい。また、外殻前部501には、第1の開口部111と第2の開口部112間の中央付近に、配線穴113が穿設されている。外殻部110に収容された電子部品と外部とを電気接続する信号線で構成される配線(図5では図示しない)は、この配線穴113に挿通される。例えば、内部構造から延設される配線を配線穴113に挿通させてから、内部構造を外殻前部501(の内壁)に組み付け、さらに外殻後部502に外殻前部501を取り付けることで、外殻部110を組み立てることができる。 The first opening 111 and the second opening 112 are formed using the boundary between the outer shell front portion 501 and the outer shell rear portion 502. You may form larger than the 1st opening part 111. FIG. The outer shell front portion 501 is provided with a wiring hole 113 near the center between the first opening 111 and the second opening 112. A wiring (not shown in FIG. 5) constituted by a signal line that electrically connects the electronic component housed in the outer shell portion 110 and the outside is inserted into the wiring hole 113. For example, by inserting a wiring extending from the internal structure into the wiring hole 113, the internal structure is assembled to the outer shell front portion 501 (inner wall), and the outer shell front portion 501 is attached to the outer shell rear portion 502. The outer shell part 110 can be assembled.
 前述したように、外殻部110の内部には、ユーザが親指と人差し指又は中指とで把持することができる把持機構、把持機構を開閉動作させるモータ、把持機構の回転角度を検出するエンコーダ、外殻部110の3軸の回転角度を検出する回転角度センサ、把持機構を把持するユーザの親指や人差し指又は中指に対して触覚を提示する触覚提示アクチュエータ、ユーザの親指や人差し指又は中指が外殻部110の内部に挿入されたことを検出する指検知センサなどが収容されている。 As described above, the outer shell 110 includes a gripping mechanism that allows the user to grip with the thumb and index finger or middle finger, a motor that opens and closes the gripping mechanism, an encoder that detects the rotation angle of the gripping mechanism, Rotation angle sensor for detecting the rotation angle of the three axes of the shell 110, a tactile presentation actuator for presenting a tactile sensation to the user's thumb, index finger or middle finger holding the gripping mechanism, and the user's thumb, index finger or middle finger being the outer shell The finger detection sensor etc. which detect having inserted in the inside of 110 are accommodated.
 図6には、情報入力装置100の内部の具体的な構成例を示している。但し、同図は、外殻後部502を取り外した状態の情報入力装置100の内部を、情報入力装置100の背面側、すなわち接続部120と接続する側から斜視した様子を示している。 FIG. 6 shows a specific configuration example inside the information input device 100. However, this figure shows a state in which the inside of the information input device 100 with the outer shell rear portion 502 removed is viewed from the back side of the information input device 100, that is, the side connected to the connection portion 120.
 外殻部110の内部には、外殻部110の3軸の回転角度を検出する回転角度センサ601、ユーザが親指と人差し指又は中指とで把持することができる把持機構、把持機構を開閉動作させるモータ621、把持機構の回転角度を検出するエンコーダ、把持機構を把持するユーザの親指や人差し指又は中指に対して触覚を提示する触覚提示アクチュエータ、ユーザの親指や人差し指又は中指が外殻部110の内部に挿入されたことを検出する指検知センサ631、632などを装備している。 Inside the outer shell 110, a rotation angle sensor 601 that detects the rotation angle of the three axes of the outer shell 110, a gripping mechanism that allows the user to grip with the thumb and index finger or middle finger, and opening and closing the gripping mechanism Motor 621, encoder for detecting the rotation angle of the gripping mechanism, tactile presentation actuator for presenting tactile sensation to the thumb, index finger or middle finger of the user gripping the gripping mechanism, and the user's thumb, index finger or middle finger inside the outer shell 110 Finger detection sensors 631 and 632 for detecting that they have been inserted into the device.
 回転角度センサ601は、外殻前部501に固定された基板部602の表面に搭載されている。回転角度センサ601は、IMU(Inertial Measurement Unit)を用いて構成され、外殻部110を構成する球体のほぼ中心に配設されて、外殻部110(若しくは、情報入力装置100本体)に作用する3次元の加速度及び角速度を検出することができる。 The rotation angle sensor 601 is mounted on the surface of the substrate part 602 fixed to the outer shell front part 501. The rotation angle sensor 601 is configured by using an IMU (Internal Measurement Unit), and is disposed substantially at the center of a sphere that configures the outer shell portion 110 to act on the outer shell portion 110 (or the information input device 100 main body). 3D acceleration and angular velocity can be detected.
 IMUは、基本的には、3軸のジャイロセンサと、3軸の地磁気センサと、3方向の加速度センサで構成される。ちなみに、短時間における外殻部110の高速動作は、ジャイロセンサを用いて計測することができる。一方、長時間で発生するドリフトについては、加速度センサと地磁気センサを併用して計測することができる。すなわち、水平方向のドリフトについては、加速度センサと地磁気センサをともに計測することで補正が可能である。また、重力方向軸を中心とした回転ドリフトについては、外殻部110を吸着するための接続部120の磁石による磁場を計測することにより、補正することが可能である。 The IMU basically comprises a 3-axis gyro sensor, a 3-axis geomagnetic sensor, and a 3-direction acceleration sensor. Incidentally, the high-speed operation of the outer shell portion 110 in a short time can be measured using a gyro sensor. On the other hand, the drift that occurs for a long time can be measured by using both the acceleration sensor and the geomagnetic sensor. That is, the horizontal drift can be corrected by measuring both the acceleration sensor and the geomagnetic sensor. In addition, the rotational drift around the gravity direction axis can be corrected by measuring the magnetic field generated by the magnet of the connecting portion 120 for attracting the outer shell portion 110.
 なお、IMUは、外殻部110の球体の中心近傍に配置することにより、外殻部110が接続部120に対して回転操作された際の加速度センサへの影響を抑えることができる。また、外殻部110を吸引する磁石が一方向に固定された構造であるので、IMUを球体の中心近傍に配置することにより、地磁気センサで現在角度を推定することができる。 It should be noted that the IMU can be arranged near the center of the sphere of the outer shell portion 110, thereby suppressing the influence on the acceleration sensor when the outer shell portion 110 is rotated with respect to the connection portion 120. Since the magnet that attracts the outer shell 110 is fixed in one direction, the current angle can be estimated by the geomagnetic sensor by arranging the IMU near the center of the sphere.
 あるいは、回転角度センサ601は、IMUではなく、接続部120側や、装置外部に設置されたカメラ(図示しない)で構成することもできる。カメラは、外殻部110の外壁に形成された模様や、操作者の手の方向を撮像する。そして、画像解析によりこれらの被写体をトラッキングすることによって、外殻部110の回転角度を検出することができる。 Alternatively, the rotation angle sensor 601 can be configured not by the IMU but by a camera (not shown) installed on the connection unit 120 side or outside the apparatus. The camera images the pattern formed on the outer wall of the outer shell 110 and the direction of the operator's hand. The rotation angle of the outer shell 110 can be detected by tracking these subjects by image analysis.
 また、基板部602には、IMUなどの回転角度センサ601以外の回路部品(図示しない)が実装されていてもよいし、表面に配線パターン(図示しない)が形成されていてもよい。 In addition, circuit parts (not shown) other than the rotation angle sensor 601 such as IMU may be mounted on the substrate part 602, or a wiring pattern (not shown) may be formed on the surface.
 把持機構は、第1の開口部111から挿入されたユーザの親指が当接する第1の把持板611と、第2の開口部112から挿入されたユーザの親指と人差し指又は中指の一方又は両方が当接する第2の把持板612で構成される。第1の把持板611と第2の把持板612は、それぞれ前端部分において、外殻前部501若しくは基板部602に回動可能に軸支されている。したがって、第1の把持板611と第2の把持板612が前端の回動軸回りに互いに逆回転することによって、開閉動作が実現する。 The gripping mechanism includes a first grip plate 611 with which the user's thumb inserted from the first opening 111 abuts, and one or both of the user's thumb and index finger or middle finger inserted from the second opening 112. It is comprised with the 2nd holding | grip board 612 to contact | abut. The first holding plate 611 and the second holding plate 612 are pivotally supported by the front outer shell portion 501 or the substrate portion 602 at their front end portions, respectively. Accordingly, the first holding plate 611 and the second holding plate 612 rotate in the opposite directions around the rotation axis of the front end, thereby realizing an opening / closing operation.
 本実施形態では、4節リンク機構の回転運動を利用して把持機構の把持動作、すなわち、第1の把持板611と第2の把持板612の開閉動作を実現している。ここで、図7~図10を参照しながら、4節リンク機構の回転運動を利用した把持機構の把持動作について説明する。但し、4節リンク機構以外の構成によっても把持機構を実現できるという点を十分理解されたい。 In the present embodiment, the gripping operation of the gripping mechanism, that is, the opening / closing operation of the first gripping plate 611 and the second gripping plate 612 is realized using the rotational motion of the four-bar linkage mechanism. Here, a gripping operation of the gripping mechanism using the rotational motion of the four-bar linkage mechanism will be described with reference to FIGS. However, it should be fully understood that the gripping mechanism can be realized by a configuration other than the four-bar linkage mechanism.
 ここで言う4節リンク機構は、IMUなどが実装される基板部602の一部を用いて構成される固定リンク701とし、この固定リンク701の一端に固定された一方の関節軸(駆動軸)701aに回動可能に連結され、モータ621(前述:図7~図10では図示しない)によって駆動力が与えられる駆動リンク702と、固定リンク701の他端に固定された関節軸(従動軸)701bに回動可能に連結され、駆動リンク702と対向する従動リンク703と、駆動リンク702と従動リンク703とをそれぞれ関節軸704a及び704bで回動可能に接続する中間リンク704で構成される。 The four-joint link mechanism referred to here is a fixed link 701 configured using a part of the substrate unit 602 on which an IMU or the like is mounted, and one joint shaft (drive shaft) fixed to one end of the fixed link 701. A drive link 702 that is rotatably connected to 701a and is given a driving force by a motor 621 (not shown in FIGS. 7 to 10), and a joint shaft (driven shaft) fixed to the other end of the fixed link 701. A driven link 703 that is rotatably connected to the drive link 702, and an intermediate link 704 that rotatably connects the drive link 702 and the driven link 703 by joint shafts 704a and 704b, respectively.
 駆動リンク702は、モータ621によって駆動力が与えられると、参照番号710の矢印で示すように駆動軸701a回りに回動して、中間リンク704を揺動する。また、モータ621には、出力軸の回転角度を検出するためのエンコーダ(図示しない)が内蔵されているものとする。 When the driving force is applied by the motor 621, the driving link 702 rotates around the driving shaft 701a as shown by the arrow of reference numeral 710 to swing the intermediate link 704. Further, it is assumed that the motor 621 incorporates an encoder (not shown) for detecting the rotation angle of the output shaft.
 一方、従動リンク703は、従動リンク703と直交するリンクが従動軸701bの左右からそれぞれ延設された分岐部を持つT字形状をなしており、各分岐部の両端にて、第1の把持板611及び第2の把持板612の各後端にそれぞれ連結されている第1の伝達リンク706及び第2の伝達リンク707を回動可能に軸支している。 On the other hand, the driven link 703 has a T-shape having a branch portion in which a link orthogonal to the driven link 703 extends from the left and right sides of the driven shaft 701b. A first transmission link 706 and a second transmission link 707 connected to the respective rear ends of the plate 611 and the second gripping plate 612 are pivotally supported.
 モータ621によって駆動リンク702に対して矢印710で示す回転方向に駆動力が与えられると、中間リンク704を介して従動リンク703が駆動される。そして、T字形状の従動リンク703が従動軸701b回りに回動すると、T字の回転角に応じて、第1の伝達リンク706及び第2の伝達リンク707によって、第1の把持板611と第2の把持板612の後端同士が引き寄せられ(図7を参照のこと)、あるいは逆に引き離されることによって(図10を参照のこと)、把持機構の開閉動作が実現する。 When the driving force is applied to the drive link 702 in the rotation direction indicated by the arrow 710 by the motor 621, the driven link 703 is driven via the intermediate link 704. Then, when the T-shaped driven link 703 rotates around the driven shaft 701b, the first transmission link 706 and the second transmission link 707 and the first grip plate 611 according to the T-shaped rotation angle. When the rear ends of the second gripping plate 612 are pulled toward each other (see FIG. 7) or pulled apart (see FIG. 10), the opening / closing operation of the gripping mechanism is realized.
 図7~図10を参照すると、モータ621によって駆動リンク702が紙面時計回りに駆動されると、把持機構すなわち第1の把持板611と第2の把持板612は開成する。逆に、モータ621によって駆動リンク702が紙面反時計回りに駆動されると、把持機構は閉成する。また、把持機構の回転角度は、モータ621に内蔵されたエンコーダによって逐次検出される。 7 to 10, when the driving link 702 is driven clockwise by the motor 621, the gripping mechanism, that is, the first gripping plate 611 and the second gripping plate 612 are opened. Conversely, when the drive link 702 is driven counterclockwise by the motor 621, the gripping mechanism is closed. Further, the rotation angle of the gripping mechanism is sequentially detected by an encoder built in the motor 621.
 モータ621を駆動させて把持機構を開閉動作させることによって、第1の把持板611及び第2の把持板612を抑えているユーザの親指と人差し指又は中指に対して把持力を提示することができる。また、エンコーダは、ユーザが親指と人差し指又は中指を用いてつまむ動作を行なったときの把持機構の回転角度を検出する。エンコーダで検出された回転角度は、スレーブ装置90側のアームのエンド・エフェクター(例えば、鉗子のような医療用術具)を駆動するための指示を示す情報となる。 By driving the motor 621 to open and close the gripping mechanism, the gripping force can be presented to the user's thumb and index finger or middle finger holding the first gripping plate 611 and the second gripping plate 612. . The encoder detects the rotation angle of the gripping mechanism when the user performs a pinching operation using the thumb and forefinger or middle finger. The rotation angle detected by the encoder is information indicating an instruction for driving an end effector (for example, a medical instrument such as forceps) of the arm on the slave device 90 side.
 なお、モータ621の出力軸は、上述した4節リンク機構の駆動軸701aと直結している必要はなく、伝達機構(図示しない)を利用して駆動軸701aから離間して配置することも可能である。モータ621の重量は、外殻部110全体の重量に占める割合が高く、モータ621の配置は外殻部110の重心位置に大いに影響する。外殻部110の自重による回転モーメントが発生しないように、外殻部110の重心位置が球体の中心近傍に配置されるように重心バランスを考慮することが好ましい(前述)。したがって、モータ621を含む外殻部110の重心位置が球体の中心近傍に配置されるように設計することがより好ましい。例えば、外殻前部501寄り(若しくは、開口部111又は112の近傍)にモータ621を配置すると、外殻部110との重量バランスを取り易い。 Note that the output shaft of the motor 621 does not need to be directly connected to the drive shaft 701a of the above-described four-bar linkage mechanism, and can be arranged away from the drive shaft 701a using a transmission mechanism (not shown). It is. The weight of the motor 621 is high in the weight of the entire outer shell 110, and the arrangement of the motor 621 greatly affects the position of the center of gravity of the outer shell 110. It is preferable to consider the balance of the center of gravity so that the position of the center of gravity of the outer shell 110 is arranged in the vicinity of the center of the sphere so as not to generate a rotational moment due to the weight of the outer shell 110 (described above). Therefore, it is more preferable to design the center of gravity of the outer shell 110 including the motor 621 so that it is located near the center of the sphere. For example, if the motor 621 is arranged near the outer shell front portion 501 (or in the vicinity of the opening 111 or 112), it is easy to balance the weight with the outer shell 110.
 再び図6を参照しながら、情報入力装置100の内部構成について引き続き説明する。 Referring to FIG. 6 again, the internal configuration of the information input device 100 will be continuously described.
 第1の把持板611と第2の把持板612の、ユーザの人差し指又は中指との接触面には、指腹用くぼみ613が形設されている。また、図6では隠れて見えないが、第1の把持板611側にも、ユーザの親指との接触面には、指腹用窪みが形設されている。ユーザは、自分の親指と人差し指又は中指をそれぞれ開口部111及び112から挿入すると、内部の様子を目視することはできないが、指先で指腹用くぼみ613を探すことで、各把持板上で把持操作に適した場所を見つけ出すことができる。 On the contact surface of the first grip plate 611 and the second grip plate 612 with the user's index finger or middle finger, a finger pad recess 613 is formed. Although not visible in FIG. 6, a finger pad recess is also formed on the first grip plate 611 side on the contact surface with the user's thumb. When the user inserts his / her thumb and forefinger or middle finger through the openings 111 and 112, respectively, the user cannot visually see the inside, but the user grasps on each gripping plate by looking for the finger pad recess 613 with the fingertip. It is possible to find a suitable place for operation.
 ユーザが親指と人差し指又は中指で把持機構に対してつまむ動作をしたときに、指(親指と人差し指又は中指)の中心が外殻部110を構成する球体の中心位置の近傍となるように把持機構を配置することで、把持する際のユーザの指の姿勢変化の影響が外殻部110の位置変化へと影響しないようにすることができる。また、第1の把持板611と第2の把持板612の適切な場所に指腹用くぼみ613を形成すれば、ユーザは、自分の親指と人差し指又は中指の中心を指腹用くぼみ613の場所に合わせて把持動作を行なうようにすれば、把持する際のユーザの指の姿勢変化の影響が外殻部110の位置変化へと影響しないようにすることができる。 When the user pinches the grip mechanism with the thumb and index finger or middle finger, the grip mechanism is such that the center of the finger (thumb and index finger or middle finger) is in the vicinity of the center position of the sphere constituting the outer shell 110. By arranging, it is possible to prevent the influence of the posture change of the user's finger when gripping from affecting the position change of the outer shell portion 110. In addition, if the finger pad recess 613 is formed at appropriate locations on the first grip plate 611 and the second grip plate 612, the user can place the center of his / her thumb and index finger or middle finger on the location of the finger pad recess 613. If the gripping operation is performed according to the above, it is possible to prevent the influence of the posture change of the user's finger when gripping from affecting the position change of the outer shell portion 110.
 また、図6では図示を省略したが、第1の把持板611と第2の把持板612の、ユーザの親指、並びに人差し指又は中指との接触面には、触覚を提示する触覚提示アクチュエータが配設されている。触覚提示アクチュエータは、図1中の振動発生源67に相当し、例えば、ピエゾ式振動アクチュエータ、ボイスコイルモータ式振動アクチュエータ、リニア振動アクチュエータ、ERM式振動アクチュエータ、又はEPAM式振動アクチュエータのうちのいずれか1つ又は2以上の組み合わせで構成される。指腹用くぼみ613が通過する場所に触覚提示アクチュエータを配設するようにすれば、確実にユーザの指先に触覚を提示することができる。 Although not shown in FIG. 6, a tactile sense presentation actuator for presenting a tactile sensation is arranged on the contact surface of the first grip plate 611 and the second grip plate 612 with the user's thumb and index finger or middle finger. It is installed. The tactile sense presentation actuator corresponds to the vibration generation source 67 in FIG. 1, and is, for example, any one of a piezoelectric vibration actuator, a voice coil motor vibration actuator, a linear vibration actuator, an ERM vibration actuator, or an EPAM vibration actuator. It is composed of one or a combination of two or more. If the tactile sense presenting actuator is arranged at the place where the finger pad recess 613 passes, the tactile sense can be surely presented to the fingertip of the user.
 指検知センサ631は、第1の把持板611の側縁に配設され、第1の開口部111から挿入されたユーザの指(親指)が第1の把持版611上に置かれたことを検出する。同様に、指検知センサ632は、第2の把持板612の側縁に配設され、第2の開口部112から挿入されたユーザの指(人差し指又は中指)が第2の把持版612上に置かれたことを検出する。指検知センサ631及び632は、例えばフォトリフレクタのような光学式センサや、静電容量センサ、あるいはその他の人感センサを用いて構成することができる。指検知センサ631及び632の検出信号によって、情報入力装置100が使用中か否かを判定することができる。 The finger detection sensor 631 is disposed on the side edge of the first gripping plate 611, and indicates that the user's finger (thumb) inserted from the first opening 111 is placed on the first gripping plate 611. To detect. Similarly, the finger detection sensor 632 is disposed on the side edge of the second grip plate 612, and the user's finger (forefinger or middle finger) inserted from the second opening 112 is placed on the second grip plate 612. Detects being placed. The finger detection sensors 631 and 632 can be configured using, for example, an optical sensor such as a photo reflector, a capacitance sensor, or other human sensor. Whether or not the information input device 100 is in use can be determined based on detection signals of the finger detection sensors 631 and 632.
 汎用スイッチ641、642は、ユーザが指先で操作できるシーソー式、押圧式、スライド式などのスイッチで構成される。ユーザは、第2の開口部112から挿入した人差し指又は中指を用いて汎用スイッチ641、642を操作することができる。汎用スイッチ641、642の用途は任意である。3軸回転角度以外の指示入力に、汎用スイッチ641、642を利用することができる。 General-purpose switches 641 and 642 are constituted by seesaw type, push type, slide type, etc. switches that can be operated by the user with a fingertip. The user can operate the general-purpose switches 641 and 642 using the index finger or the middle finger inserted from the second opening 112. Applications of the general-purpose switches 641 and 642 are arbitrary. General-purpose switches 641 and 642 can be used to input instructions other than the three-axis rotation angle.
 外殻前部501のほぼ中央には、配線穴113(前述)が穿設されている。外殻部110に収容された電子部品と外部とを電気接続するための配線(図6では図示を省略)は、この配線穴113に挿通される。また、配線固定フレーム651は、配線を固定して、ユーザの指による把持機構の操作を配線が邪魔しないようにする。 A wiring hole 113 (described above) is formed in the approximate center of the outer shell front portion 501. Wiring (not shown in FIG. 6) for electrically connecting the electronic component housed in the outer shell 110 and the outside is inserted into the wiring hole 113. The wiring fixing frame 651 fixes the wiring so that the wiring does not interfere with the operation of the gripping mechanism by the user's finger.
 基板部602の最後尾(紙面の手前側)には、球面組み付け部661が配設されている。球面組み付け部661は、図6では図示を省略した外殻後部502が取り付けられる。 A spherical assembly portion 661 is disposed at the end of the substrate portion 602 (the front side of the paper). The spherical assembly portion 661 is attached with the outer shell rear portion 502 (not shown in FIG. 6).
 外殻部110の内部部品に電源を供給するバッテリ(図示しない)をさらに外殻部110内に収容してもよい。あるいは、外殻部110の内部部品に対して無線給電を行なうようにしてもよいし、無線給電を実施するための無線通信部をさらに内部部品として装備してもよい。バッテリは重量物であることから、外殻部110内にバッテリを収容する場合には、球体構造の外殻部110の重心位置が球体の中心近傍から外れないように、重心バランスを考慮しながら、バッテリの配置場所を決定することが好ましい。 A battery (not shown) that supplies power to the internal parts of the outer shell 110 may be further accommodated in the outer shell 110. Or you may make it carry out wireless electric power feeding with respect to the internal component of the outer shell part 110, and may equip the wireless communication part for implementing wireless electric power feeding as an internal component further. Since the battery is heavy, when the battery is accommodated in the outer shell 110, the balance of the center of gravity is taken into consideration so that the position of the center of gravity of the outer shell 110 of the sphere structure does not deviate from the vicinity of the center of the sphere. It is preferable to determine the location of the battery.
 本実施形態に係る情報入力装置100は、3軸の回転検出と、ユーザの把持力検出及び把持力の提示が可能である。情報入力装置100は、ユーザの操作対象となる球体構造の外殻部110を磁石の磁力などで吸着することにより接続する構成であり、ジンバル構造のような特異点がなく、可動域が広い3自由度の回転入力UIとして利用することができる。基本的には、外殻後部502の表面全体が可動域となり、特異点は存在しない。 The information input apparatus 100 according to the present embodiment can detect rotation of three axes, detect a user's gripping force, and present a gripping force. The information input device 100 is configured to be connected by attracting the outer shell 110 of a spherical structure that is a user's operation target with the magnetic force of a magnet, and has no singularity like the gimbal structure and has a wide range of motion. It can be used as a rotational input UI with a degree of freedom. Basically, the entire surface of the outer shell rear portion 502 becomes a movable range, and there is no singular point.
 磁性体からなる外殻部110(外殻後部502)を磁石で吸着して接続するという構成を適用する場合には、磁石が外殻後部502と外殻前部501との境界部分に到達した際に反力が作用することから、外殻部110を操作するユーザに対して柔らかく可動域限界を提示することができる。 When applying a configuration in which the outer shell portion 110 (outer shell rear portion 502) made of a magnetic material is attracted and connected by a magnet, the magnet reaches the boundary portion between the outer shell rear portion 502 and the outer shell front portion 501. Since the reaction force acts on the occasion, it is possible to present the limit of motion range softly to the user who operates the outer shell portion 110.
 また、情報入力装置100は、ユーザの操作対象となる球体構造の外殻部110が接続部120の接触面121上を活動する際の3軸の回転角度を、IMUやカメラなどで構成され、外殻部110内に収容された回転角度センサで計測するように構成されている。したがって、軸毎にベアリングや関節角度センサを搭載する必要がない。その結果として、情報入力装置100を小型且つ軽量に設計・製作することが可能である。 In addition, the information input device 100 is configured by an IMU, a camera, or the like with respect to a rotation angle of three axes when the outer shell portion 110 having a spherical structure that is a user's operation target moves on the contact surface 121 of the connection portion 120. The rotation angle sensor housed in the outer shell 110 is used for measurement. Therefore, it is not necessary to mount a bearing or a joint angle sensor for each axis. As a result, the information input device 100 can be designed and manufactured in a small size and light weight.
 また、球体構造の外殻部110の重心位置が球体の中心近傍に配置されるように重心バランスを考慮することにより、外殻部110の自重による回転モーメントを抑制することができる。この結果、ユーザが外殻部110から手を離しても、外殻部110が自重で回転して姿勢が意図せず変化するリスクを低減することができる。また、ユーザは、外殻部110を回転操作させる際に、余分なトルクを受けずに済むので、操作性が向上するとともに、疲労が軽減される。 In addition, the rotational moment due to the weight of the outer shell 110 can be suppressed by considering the balance of the center of gravity so that the center of gravity of the outer shell 110 having the spherical structure is arranged near the center of the sphere. As a result, even when the user removes his / her hand from the outer shell 110, the risk that the outer shell 110 rotates by its own weight and the posture changes unintentionally can be reduced. Further, since the user does not need to receive extra torque when rotating the outer shell portion 110, the operability is improved and fatigue is reduced.
 外殻部110の回転角度センサにIMUを用いる場合には、IMUを外殻部110の球体の中心近傍に配置することにより、外殻部110が回転操作された際の加速度センサへの影響を抑えることができる。また、外殻部110を吸引する磁石が一方向に固定された構造であるので、IMUを球体の中心近傍に配置することにより、地磁気センサで現在角度を推定することができる。 When an IMU is used for the rotation angle sensor of the outer shell part 110, the IMU is arranged in the vicinity of the center of the sphere of the outer shell part 110, thereby affecting the acceleration sensor when the outer shell part 110 is rotated. Can be suppressed. Since the magnet that attracts the outer shell 110 is fixed in one direction, the current angle can be estimated by the geomagnetic sensor by arranging the IMU near the center of the sphere.
 情報入力装置100は、ユーザの操作対象となる球体構造の外殻部110を磁石の磁力などで吸着するという簡単な接続構造である。したがって、外殻部110に過剰な力が加えられたときには、磁石による吸着力に打ち勝って外殻部110が接続部120から離脱するので、情報入力装置100の故障や損傷を防ぐことができる。また、情報入力装置100が3軸並進構造を有するマスタ装置60(後述)の先端に操作部として適用されるユースケースにおいて、マスタ装置60が意図せず過大な力を発生した場合(例えば、暴走した場合)であっても、外殻部110が接続部120から離脱することによって、操作中のユーザの怪我を防ぐことができる。 The information input device 100 has a simple connection structure in which the outer shell 110 having a spherical structure that is a user's operation target is attracted by a magnetic force of a magnet or the like. Therefore, when an excessive force is applied to the outer shell portion 110, the outer shell portion 110 is separated from the connection portion 120 by overcoming the attractive force of the magnet, and thus the information input device 100 can be prevented from being broken or damaged. Also, in a use case where the information input device 100 is applied as an operation unit at the tip of a master device 60 (described later) having a three-axis translation structure, when the master device 60 unintentionally generates excessive force (for example, runaway) Even when the outer shell portion 110 is detached from the connecting portion 120, it is possible to prevent injury of the user during operation.
 情報入力装置100は、中空の球体構造からなる外殻部の表面を磁石の磁力により吸着して回転可能に支持するという、比較的簡易な構造である。したがって、地面や壁面に対して磁石で外殻部110を直接取り付けて、情報入力装置100を3軸回りの姿勢だけを入力する簡易なUIとして活用することができる。図12には、情報入力装置100の外殻部110を地面に対して直接取り付けている様子を示している。また、図13には、情報入力装置100の外殻部110を壁面に対して直接取り付けている様子を示している。 The information input device 100 has a relatively simple structure in which the surface of the outer shell portion formed of a hollow spherical structure is rotatably supported by being attracted by the magnetic force of a magnet. Therefore, it is possible to use the information input device 100 as a simple UI for inputting only the attitude around the three axes by directly attaching the outer shell 110 to the ground or the wall surface with a magnet. FIG. 12 shows a state where the outer shell 110 of the information input device 100 is directly attached to the ground. FIG. 13 shows a state where the outer shell 110 of the information input device 100 is directly attached to the wall surface.
 また、情報入力装置100を、例えば3軸並進構造と組み合わせて、ロボットやVR(Virtual Reality)を操作するための6軸入力UIの先端構造として使用することができる。 Also, the information input device 100 can be used as a tip structure of a six-axis input UI for operating a robot or VR (Virtual Reality) in combination with, for example, a three-axis translation structure.
 具体的には、情報入力装置100を、マスタースレーブ方式のロボット・システム1(図1を参照のこと)のマスタ装置60側の操作部として活用することができる。例えば、3軸並進構造を有するマスタ装置60の先端の操作部として情報入力装置100を取り付けて、マスタ装置60本体で並進力の検出並びに並進力の提示機能を提供するとともに、操作部としての情報入力装置100により、回転力の検出、把持力の検出及び把持力の提示機能を提供することができる。 Specifically, the information input device 100 can be used as an operation unit on the master device 60 side of the master-slave robot system 1 (see FIG. 1). For example, the information input device 100 is attached as an operation unit at the tip of the master device 60 having a three-axis translation structure, and the master device 60 main body provides a function of detecting the translational force and presenting the translational force. The input device 100 can provide functions for detecting rotational force, detecting gripping force, and presenting gripping force.
 図14には、図2~図4に示した情報入力装置100を操作部として適用した、ロボット・システム1のマスタ装置60の斜視図を示している。図14に例示するマスタ装置60は、本体部30と、操作部(情報入力装置)100と、支持アーム部20を備えている。なお、図14では、操作部100の先端の配線穴を挿通する配線は、図示を省略している。 FIG. 14 is a perspective view of the master device 60 of the robot system 1 to which the information input device 100 shown in FIGS. 2 to 4 is applied as an operation unit. A master device 60 illustrated in FIG. 14 includes a main body unit 30, an operation unit (information input device) 100, and a support arm unit 20. In FIG. 14, illustration of wiring that passes through the wiring hole at the tip of the operation unit 100 is omitted.
 支持アーム部20は、3本のリンク部20a~20cからなるデルタ型パラレルリンク構造であり、3軸並進構造を有する。各リンク部20a~20cは、基端側で本体部30に回動可能に連結されている。本体部30には、各リンク部20a~20cとの連結部分を駆動するモータ(例えば、サーボモータ)65a~65cがそれぞれ装備されている。また、本体部30と、各リンク部20a~20cとの連結部分には、各リンク部20a~20cの本体部30に対する回転角度を検出するためのエンコーダ(図14では、図示を省略。図1中の回転角度センサ63に相当)が配設されている。 The support arm portion 20 has a delta parallel link structure including three link portions 20a to 20c, and has a three-axis translation structure. Each of the link portions 20a to 20c is rotatably connected to the main body portion 30 on the base end side. The main body 30 is equipped with motors (for example, servo motors) 65a to 65c for driving the connecting portions with the link portions 20a to 20c. In addition, an encoder for detecting the rotation angle of each link part 20a to 20c relative to the main body part 30 (not shown in FIG. 14 is omitted) at the connecting part between the main body part 30 and each link part 20a to 20c. (Corresponding to the rotation angle sensor 63 in the middle).
 また、各リンク部20a~20cの先端側には、操作部100が取り付けられている。具体的には、操作部100は、球体構造の外殻部110と、外殻部110を回転可能に吸着する接続部120で構成されるが(前述)、各リンク部20a~20cの先端側には、接続部120を介して外殻部110が回転可能に支持されている。各リンク部20a~20cと接続部120との連結部分も回動可能に連結されている。また、図14では簡素化のため図示を省略したが、接続部120は上述した力センサ130を含むものとする。 In addition, an operation unit 100 is attached to the tip side of each link unit 20a to 20c. Specifically, the operation unit 100 includes a spherical outer shell part 110 and a connection part 120 that rotatably sucks the outer shell part 110 (described above), but the distal end side of each link part 20a to 20c. The outer shell portion 110 is rotatably supported through the connection portion 120. The connecting portions between the link portions 20a to 20c and the connecting portion 120 are also rotatably connected. Further, although not shown in FIG. 14 for simplification, the connection unit 120 includes the force sensor 130 described above.
 各リンク部20a~20cは、本体部30の取り付け面31上に設定された中心点(図示を省略)を中心とする同一の半径からなる円周上に、ほぼ120度毎に離間して配置されている。したがって、支持アーム部20は、この中心点で取り付け面31を通過する軸線に対してほぼ対称形状を形成している。 The link portions 20a to 20c are arranged at intervals of approximately 120 degrees on a circumference having the same radius centered on a center point (not shown) set on the mounting surface 31 of the main body portion 30. Has been. Therefore, the support arm portion 20 forms a substantially symmetric shape with respect to the axis passing through the attachment surface 31 at this center point.
 ここで、各リンク部20a~20cはそれぞれ、駆動リンク21と、一対の受動リンク22を備えている。駆動リンク21は、本体部30の取り付け面31上の上記の中心点から放射状に延びる径方向の外側に延在している。各駆動リンク21の一端はモータ65a~65cの出力軸にそれぞれ連結されている。そして、各リンク21は、上記の中心点を通過する軸線を中心にして、取り付け面31に対して垂直で上記軸線を含む垂直面内で回動可能である。 Here, each of the link portions 20a to 20c includes a drive link 21 and a pair of passive links 22. The drive link 21 extends radially outward from the center point on the attachment surface 31 of the main body 30 and extends radially. One end of each drive link 21 is connected to the output shaft of each of the motors 65a to 65c. Each link 21 is rotatable in a vertical plane that is perpendicular to the attachment surface 31 and includes the axis, with the axis passing through the center point as the center.
 駆動リンク21の他端には、一対の受動リンク22の一端が回動可能に連結されている。また、一対の受動リンク22の他端(先端側)には、上述したように、接続部120が取り付けられている。 One end of a pair of passive links 22 is rotatably connected to the other end of the drive link 21. Further, as described above, the connecting portion 120 is attached to the other end (tip side) of the pair of passive links 22.
 したがって、各モータ65a~65cを同期的に駆動させると、駆動リンク21と受動リンク22は垂直面内で回動し、その結果、各リンク部20a~20cの先端側に連結された操作部100を3次元空間上の任意の位置に変位させることができる。 Therefore, when the motors 65a to 65c are driven synchronously, the drive link 21 and the passive link 22 rotate in the vertical plane, and as a result, the operation unit 100 connected to the distal end side of each link unit 20a to 20c. Can be displaced to any position in the three-dimensional space.
 ユーザは、外殻部110に親指と人差し指又は中指を挿入して、つまむ動作を実施することにより、操作部100を3次元空間上の任意の位置に変位させることができる。そして、本体部30と各リンク部20a~20c(駆動リンク21)との連結部分に配設されたエンコーダによって、各リンク部20a~20cの回転角度を検出することができる。例えばスレーブ装置90側のアームのエンド・エフェクターに鉗子のような医療用術具が取り付けられている場合には、各リンク部20a~20cの駆動リンク21の回転角度を示す信号は、当該術具を変位させるための指示を示す情報として制御装置79に送信される。 The user can displace the operation unit 100 to an arbitrary position in the three-dimensional space by inserting a thumb and forefinger or middle finger into the outer shell 110 and performing a pinching operation. Then, the rotation angle of each of the link portions 20a to 20c can be detected by an encoder disposed at a connecting portion between the main body portion 30 and each of the link portions 20a to 20c (drive link 21). For example, when a medical surgical instrument such as forceps is attached to the end effector of the arm on the slave device 90 side, a signal indicating the rotation angle of the drive link 21 of each link portion 20a to 20c is the surgical instrument. Is transmitted to the control device 79 as information indicating an instruction for displacing.
 また、本体部30と各リンク部20a~20cとの連結部分に配設された各モータ65a~65cを駆動することによって、外殻部110内の把持機構(前述)をつまんでいるユーザに対して並進力を提示することができる。例えばスレーブ装置90側で術具を変位させる際に、力センサ91によって検出された各関節部に作用する力の中から術具に作用する力の成分を抽出して、各リンク部20a~20cの駆動リンク21の連結部分を駆動する各モータ65a~65cの制御量を算出する。そして、算出した制御量に従って各モータ65a~65cを駆動させることによって、術具に作用する並進力をユーザに提示することができる。 In addition, by driving the motors 65a to 65c disposed at the connecting portion between the main body 30 and the link portions 20a to 20c, a user holding the gripping mechanism (described above) in the outer shell portion 110 can be prevented. Translation force can be presented. For example, when displacing the surgical instrument on the slave device 90 side, components of the force acting on the surgical instrument are extracted from the forces acting on the joints detected by the force sensor 91, and the link parts 20a to 20c are extracted. The control amount of each of the motors 65a to 65c that drives the connecting portion of the drive link 21 is calculated. Then, by driving the motors 65a to 65c in accordance with the calculated control amount, the translational force acting on the surgical instrument can be presented to the user.
 したがって、図14に示すマスタ装置60は、先端部分に取り付けた操作部(情報入力装置)100によって回転力の検出と、走力の検出及び把持力の提示機能を提供するとともに、マスタ装置60本体により3軸の並進力の検出及び提示機能を提供することができる。 Accordingly, the master device 60 shown in FIG. 14 provides a function of detecting rotational force, detection of running force, and presentation of gripping force by the operation unit (information input device) 100 attached to the tip portion, and the master device 60 main body. By this, it is possible to provide a function of detecting and presenting the translational force of three axes.
 図14に示したマスタ装置60は、ユーザが左右いずれか一方の腕及び手を用いて操作を行なうものである。内視鏡外科手術などに適用されるマスタースレーブ方式のロボット・システム1に適用される場合、術者としてのユーザが左右両方の腕及び手を用いて施術するには、図15に示すように左右一組のマスタ装置60L及び60Rを設置すべきである。 The master device 60 shown in FIG. 14 is operated by the user using either the left or right arm and hand. When applied to a master-slave type robot system 1 applied to endoscopic surgery or the like, a user as an operator performs treatment using both left and right arms and hands as shown in FIG. A pair of left and right master devices 60L and 60R should be installed.
 ここで、各マスタ装置60L及び60Rにおいて、人間工学を考慮して、ユーザが左右それぞれの腕及び手で操作し易くなる姿勢で操作部(情報入力装置)100が取り付けられていることが好ましい。マスタ装置60L及び60Rの先端部で、適切な角度で操作部(情報入力装置)100が取り付けられていると、ユーザは操作し易くなり、高い精度で作業を行なうことができる。また、ユーザは、腕や手の疲労を感じ難くなるので、長時間の作業にも耐えられるようになる。 Here, in each of the master devices 60L and 60R, in consideration of ergonomics, it is preferable that the operation unit (information input device) 100 is attached in such a posture that the user can easily operate with the left and right arms and hands. If the operation unit (information input device) 100 is attached at an appropriate angle at the tip of the master devices 60L and 60R, the user can easily operate and can perform work with high accuracy. In addition, since it becomes difficult for the user to feel fatigue of arms and hands, the user can endure long-time work.
 一般には、人間は、手が上から下に向かう状態では疲れ難い。図16及び図17には、手が上から下に向かう状態を想定して、マスタ装置60L及び60Rの各々の先端部に、指挿入用の開口部が上を向くように操作部100L及び100Rが取り付けられている様子を例示している。但し、図16はマスタ装置60L及び60Rを上方から眺めた様子を示し、図17はマスタ装置60L及び60Rを横から眺めた様子を示している。 In general, humans are less likely to get tired when their hands are moving from top to bottom. 16 and 17, assuming that the hand is directed from the top to the bottom, the operation units 100L and 100R are arranged such that the finger insertion opening faces upward at the tip of each of the master devices 60L and 60R. The state where is attached is illustrated. However, FIG. 16 shows a state where the master devices 60L and 60R are viewed from above, and FIG. 17 shows a state where the master devices 60L and 60R are viewed from the side.
 また、肘をある程度曲げた方が、人は操作し易く、瞬時に対応することができるとともに、肘を痛め難い。したがって、人間工学的には、ユーザの左右の手の指(親指と人差し指又は中指)が、それぞれ左右の外側から体の正面に向かってくる姿勢であることが好ましいということができる。そこで、図16からも分かるように、マスタ装置60L及び60Rの各々の先端部には、指挿入用の開口部が左右の外側を向くように、操作部100L及び100Rが取り付けられている。 Also, if the elbow is bent to a certain extent, it is easier for the person to operate, it can respond instantly, and the elbow is less likely to hurt. Therefore, ergonomically, it can be said that it is preferable that the user's left and right hand fingers (thumb and forefinger or middle finger) come from the left and right outer sides toward the front of the body. Therefore, as can be seen from FIG. 16, the operation units 100L and 100R are attached to the front ends of the master devices 60L and 60R so that the finger insertion openings face the left and right sides.
 図16並びに図17に示したように、人間工学を考慮して、左右のマスタ装置60L及び60Rの各々の先端部に操作部100L及び100Rを取り付けることで、ユーザは、人間の腕が本来持つ広い可動域を利用して、可動域が広い3自由度の回転入力を実現することができる。逆に言えば、人間工学を考慮せず、人間の手が向けづらい方向に操作部100L及び100Rを取り付けると(例えば、第1の開口部111と第2の開口部112が、マスタ装置60と対峙するユーザに向けられていない場合)、ユーザは、自分の腕が持つ可動域の一部しか操作部100L及び100Rの回転操作に利用できなくなってしまう。 As shown in FIGS. 16 and 17, in consideration of ergonomics, by attaching the operation units 100L and 100R to the distal ends of the left and right master devices 60L and 60R, the user originally has the human arm. By using a wide range of motion, it is possible to realize a rotational input with a wide range of motion and three degrees of freedom. In other words, if the operation units 100L and 100R are attached in a direction in which human hands are difficult to point without considering ergonomics (for example, the first opening 111 and the second opening 112 are connected to the master device 60). When the user is not directed to the opposite user), the user can use only a part of the movable range of his / her arm for the rotation operation of the operation units 100L and 100R.
 なお、図14~図17では、パラレルリンク構造を備えたマスタ装置60について例示したが、もちろん、パラレルリンク以外の3軸並進構造を適用することも可能である。例えば、マスタ装置60本体は、リニアアクチュエータをシリアルに接続した構造など、他の並進構造を備えていてもよい。また、用途に応じて、3軸ではなく、1軸又は2軸の並進構造であってもよい。 Although FIGS. 14 to 17 illustrate the master device 60 having a parallel link structure, it is of course possible to apply a three-axis translation structure other than the parallel link. For example, the master device 60 main body may include other translation structures such as a structure in which linear actuators are serially connected. Further, depending on the application, a translational structure with one axis or two axes may be used instead of three axes.
  また、図2では、情報入力装置100に接続される配線140を例示したが、この配線140に沿って、情報入力装置100と外部の固定箇所を接続する金属製若しくは切断が困難な素材からなるロープが設けられてもよい。これにより情報入力装置100の盗難又は紛失を防止することができる。 In FIG. 2, the wiring 140 connected to the information input device 100 is illustrated. However, the wiring 140 is made of a metal that connects the information input device 100 and an external fixed portion or a material that is difficult to cut. A rope may be provided. Thereby, the information input device 100 can be prevented from being stolen or lost.
 また、図2では、接続部120が磁石からなり、且つ接触部120の接触面121に低摩擦コーティングを施す実施例を示し、さらに図11には、低摩擦コーティングの代わりにスラスト球軸受1101を配設して外殻部110を3軸回りにより滑らかに回転するように構成した実施例を示した。図18には、さらに図17の変形例として、接続部120の磁石と外殻部110との距離を位置制御可能に構成した実施例を示している。 2 shows an embodiment in which the connecting portion 120 is made of a magnet and the contact surface 121 of the contact portion 120 is coated with a low friction coating, and FIG. 11 shows a thrust ball bearing 1101 instead of the low friction coating. In the embodiment, the outer shell portion 110 is arranged so as to rotate more smoothly around three axes. FIG. 18 shows an embodiment in which the distance between the magnet of the connecting portion 120 and the outer shell portion 110 can be controlled as a modification of FIG.
 図18において、接続部120は、外殻部110との接触面に配設されたスラスト球軸受1101と、中空部1801を有する支持部1802と、中空部1801内に配設された磁石1803と、磁石1803の位置を変位させる駆動部1804を備えている。駆動部1804は、中空部1801内で、磁石1803を外殻部110の半径方向に前後に動かすように駆動する。 In FIG. 18, the connecting portion 120 includes a thrust ball bearing 1101 disposed on the contact surface with the outer shell portion 110, a support portion 1802 having a hollow portion 1801, and a magnet 1803 disposed in the hollow portion 1801. The drive unit 1804 for displacing the position of the magnet 1803 is provided. The drive unit 1804 drives the magnet 1803 to move back and forth in the radial direction of the outer shell 110 within the hollow portion 1801.
 駆動部1804には、ボールねじ、リンク機構、リニアアクチュエータなど任意の駆動機構若しくはアクチュエータ素子を用いることができる。但し、ボールねじによる駆動はバックドライブが少ないという観点から、駆動部1804にボールねじを用いることが好ましい。また、図18では、便宜上、駆動部1804を略円柱形状に描いているが、中空部1801内に収容可能で、且つ他の部材と干渉しない限りにおいて、任意の形状でよい。なお、外殻部110の内部構造は上述と同様なので、ここでは詳細な説明を省略する。 The drive unit 1804 can be an arbitrary drive mechanism or actuator element such as a ball screw, a link mechanism, or a linear actuator. However, it is preferable to use a ball screw for the drive unit 1804 from the viewpoint that the drive by the ball screw has few back drives. In FIG. 18, for convenience, the drive unit 1804 is drawn in a substantially cylindrical shape, but may be any shape as long as it can be accommodated in the hollow portion 1801 and does not interfere with other members. In addition, since the internal structure of the outer shell part 110 is the same as the above-mentioned, detailed description is abbreviate | omitted here.
 駆動部1804の駆動は、図18には図示しないコントローラによって制御される。このコントローラは、ユーザに対する力フィードバックなどを制御する制御装置79であってもよい。駆動部1804を駆動して、磁石1803を位置制御することによって、磁石1803と外殻部110間の距離を変化させることができる。磁石1803と外殻部110間の距離を小さくすれば、磁石1803が外殻部110を吸着する力が増し、ユーザは情報入力装置100を回転操作させ難くなる。逆に、磁石1803と外殻部110間の距離を大きくすれば、磁石1803が外殻部110を吸着する力が低減して、ユーザは情報入力装置100を回転操作させ易くなる。 The driving of the driving unit 1804 is controlled by a controller not shown in FIG. This controller may be a control device 79 that controls force feedback to the user. By driving the drive unit 1804 to control the position of the magnet 1803, the distance between the magnet 1803 and the outer shell 110 can be changed. If the distance between the magnet 1803 and the outer shell portion 110 is reduced, the force with which the magnet 1803 attracts the outer shell portion 110 is increased, and it becomes difficult for the user to rotate the information input device 100. Conversely, if the distance between the magnet 1803 and the outer shell 110 is increased, the force with which the magnet 1803 attracts the outer shell 110 is reduced, and the user can easily rotate the information input device 100.
 したがって、ユーザが情報入力装置100を回転操作する際に、制御装置79は、スレーブ装置90側の力センサ91が検出した力に基づいて駆動部1804の駆動を制御することによって、磁石1803による外殻部110の吸着力を変化させることができる。すなわち、駆動部1804により磁石1803を位置制御することで、術具に作用する力に応じた抵抗を与え、ユーザに力を提示することができる。 Therefore, when the user rotates the information input device 100, the control device 79 controls the driving of the driving unit 1804 based on the force detected by the force sensor 91 on the slave device 90 side, so The adsorption force of the shell 110 can be changed. That is, by controlling the position of the magnet 1803 by the driving unit 1804, a resistance corresponding to the force acting on the surgical instrument can be given and the force can be presented to the user.
 なお、磁気の影響が力センサ130に及ばないように、接続部120と力センサ130の間(若しくは、磁石1803と力センサ130の間)に、例えばパーマロイなどで製作される磁気シールド部1810を配設するようにしてもよい。 In order to prevent the influence of magnetism from exerting on the force sensor 130, a magnetic shield portion 1810 made of, for example, permalloy or the like is provided between the connecting portion 120 and the force sensor 130 (or between the magnet 1803 and the force sensor 130). It may be arranged.
 また、図18では、磁石1803と外殻部110の相対位置を変化させることにより磁力を変化させる構成を示したが、磁石1803を電磁石にして、電磁石に流れる電流量を制御することによっても磁力を変化させて、上記と同様に力提示を実現することかできる。 FIG. 18 shows a configuration in which the magnetic force is changed by changing the relative position of the magnet 1803 and the outer shell portion 110, but the magnetic force can also be controlled by using the magnet 1803 as an electromagnet and controlling the amount of current flowing through the electromagnet. The force presentation can be realized in the same manner as described above.
 また、図19及び図20には、回転反力を提示するためのアクチュエータを内部に配設した情報入力装置100の構成例を示している。但し、図19は、ユーザが親指、人差し指及び中指で操作している情報入力装置100を側面から眺めた様子を示し、図20は、情報入力装置100を正面(第1の開口部111及び第2の開口部112を有する側面)から眺めた様子を示している。 19 and 20 show a configuration example of the information input device 100 in which an actuator for presenting a rotational reaction force is provided. However, FIG. 19 shows a state where the information input device 100 operated by the user with the thumb, forefinger, and middle finger is viewed from the side, and FIG. 20 shows the information input device 100 in front (the first opening 111 and the first finger). 2 shows a side view from the side having the two openings 112.
 例えば、回転反力を提示するために少なくとも2つアクチュエータを、外殻部110の内部に配設する。図19及び図20に示す例では、回転反力提示用の3個のアクチュエータ1901~1903が配設されている。各アクチュエータ1901~1903は、例えば、人工衛星や宇宙船などにも用いられる、リアクションホイールのような姿勢制御アクチュエータであってもよい。アクチュエータ1901~1903の配置としては親指を差し込む位置付近に、開口部111と開口部112を通る面に対して面対称(すなわち、図20に示した情報入力装置100を左右に分割する面に対して面対称)となるように設けることが好ましい。また、人素子及び中指を挿入する第2の開口部112よりも、親指のみを挿入する第1の開口部111の方が穴の幅が狭いことから、アクチュエータ1901及び1902を配置し易い。また、図20中、中央奥(若しくは、配線穴113の反対側)のアクチュエータ1903は、重量バランスのため、少し上側に配置してもよい。 For example, at least two actuators are arranged inside the outer shell 110 in order to present a rotational reaction force. In the example shown in FIG. 19 and FIG. 20, three actuators 1901 to 1903 for presenting the rotational reaction force are provided. Each of the actuators 1901 to 1903 may be an attitude control actuator such as a reaction wheel that is also used for an artificial satellite or a spacecraft. The actuators 1901 to 1903 are arranged symmetrically with respect to the plane passing through the opening 111 and the opening 112 near the position where the thumb is inserted (that is, with respect to the plane dividing the information input apparatus 100 shown in FIG. It is preferable to provide it so as to be plane symmetric. Further, since the first opening 111 into which only the thumb is inserted has a narrower hole width than the second opening 112 into which the human element and the middle finger are inserted, the actuators 1901 and 1902 can be easily arranged. In FIG. 20, the actuator 1903 at the center back (or on the side opposite to the wiring hole 113) may be disposed slightly above for weight balance.
 各アクチュエータ1901~1903の回転は、図19及び図20には図示しないコントローラによって制御される。このコントローラは、ユーザに対する力フィードバックなどを制御する制御装置79であってもよい。制御装置79の制御に基づいて各アクチュエータ1901~1903を回転させることで、回転反力をユーザに提示することが可能となる。例えば、制御装置79が、スレーブ装置90側の力センサ91が検知した力に基づいて各アクチュエータ1901~1903の回転を制御することで、ユーザにスレーブ装置91が検知した力を提示することが可能となる。 The rotation of the actuators 1901 to 1903 is controlled by a controller (not shown in FIGS. 19 and 20). This controller may be a control device 79 that controls force feedback to the user. By rotating the actuators 1901 to 1903 based on the control of the control device 79, the rotational reaction force can be presented to the user. For example, the control device 79 can control the rotation of the actuators 1901 to 1903 based on the force detected by the force sensor 91 on the slave device 90 side, so that the force detected by the slave device 91 can be presented to the user. It becomes.
 また、接続部120(例えば、図18中の支持部1802が有する中空部1801内)に無線給電装置(図示しない)を設け、情報入力装置100に対して無線給電を行うようにしてもよい。この場合、制御装置79などのコントローラは、情報入力装置100が回転操作されていないことを検知したときに、無線給電を開始することが好ましい。これにより、無線給電による情報入力装置100の誤動作を抑制することができる。 Further, a wireless power feeding device (not shown) may be provided in the connecting portion 120 (for example, in the hollow portion 1801 included in the support portion 1802 in FIG. 18) to perform wireless power feeding to the information input device 100. In this case, it is preferable that a controller such as the control device 79 starts wireless power feeding when detecting that the information input device 100 is not rotated. Thereby, malfunctioning of the information input device 100 due to wireless power feeding can be suppressed.
 また、接続部120に情報入力装置100が直接的又は間接的に接続されているかどうかを検知し、制御装置79などのコントローラは、この検知結果に基づく制御を行うようにしてもよい。例えば、接続部120又は情報入力装置100に設けられた磁気センサにより接続部120周辺の磁気変化を検知することで、接続部120と情報入力装置100との接続状態を検知することができる。そして、制御装置79は、検知結果に基づいて、情報入力装置100との接続状態をユーザに提示するようにしてもよい。このような構成にすることで、情報入力装置100が接続部120から直接的又は間接的に一定時間外れている場合にはユーザにアラートしたり、情報入力装置100の接続状態が正常かどうか(例えば、接続部120に対して直接的又は間接的に情報入力装置100が正常な状態に配置されているかどうか)をユーザに提示したりすることができる。 Further, it may be detected whether the information input device 100 is directly or indirectly connected to the connection unit 120, and a controller such as the control device 79 may perform control based on the detection result. For example, a connection state between the connection unit 120 and the information input device 100 can be detected by detecting a magnetic change around the connection unit 120 using a magnetic sensor provided in the connection unit 120 or the information input device 100. And the control apparatus 79 may show a user the connection state with the information input device 100 based on a detection result. With this configuration, when the information input device 100 is disconnected from the connection unit 120 directly or indirectly for a certain time, an alert is given to the user, or whether the connection state of the information input device 100 is normal ( For example, the information input device 100 can be presented to the user directly or indirectly with respect to the connection unit 120.
 また、磁気センサと情報入力装置100の姿勢位置から、情報入力装置100が故障しているか否かを判定する構成を採用してもよい。また、磁気変化量に基づいて、接続部120に取り付けられたボール上の物体が正規品の情報入力装置100であるかどうかを判定する構成を採用してもよい。 In addition, a configuration may be adopted in which it is determined whether or not the information input device 100 is out of order from the attitude position of the magnetic sensor and the information input device 100. Further, a configuration may be adopted in which it is determined whether or not the object on the ball attached to the connection unit 120 is the genuine information input device 100 based on the amount of magnetic change.
 また、スラスト球軸受1101には、摩擦による損傷を抑制するために、樹脂カバーを設けることが好ましい。このとき、制御装置79などのコントローラは、情報入力装置100の回転の度合いなどに基づいて、樹脂カバーにより生じる摩擦量や情報入力装置100(外殻部110)の滑り具合を検出し、その検出結果に基づいて樹脂カバーの交換や外殻部110の表面磨きのタイミングをユーザに提示するようにしてもよい。摩擦量や外殻部110の滑り具合の測定方法として、例えば、ユーザが情報入力装置100の入力操作していないときの情報入力装置100の自重又は磁力により動く際の姿勢変化速度(回転速度)により測定する方法や、ユーザが入力操作行っているときの姿勢変化速度(回転速度)の経時変化により測定する方法などを挙げることができる。なお、経時変化の検出には、機械学習による分類を行うことが好ましい。 Also, the thrust ball bearing 1101 is preferably provided with a resin cover in order to suppress damage due to friction. At this time, a controller such as the control device 79 detects the amount of friction generated by the resin cover and the sliding condition of the information input device 100 (outer shell portion 110) based on the degree of rotation of the information input device 100 and the like. You may make it show a user the replacement | exchange time of the resin cover, or the timing of surface polishing of the outer shell part 110 based on a result. As a method for measuring the amount of friction and the degree of sliding of the outer shell 110, for example, the posture change speed (rotational speed) when the user moves by the weight or magnetic force of the information input device 100 when the user is not performing an input operation of the information input device 100. And a method of measuring by a change with time in a posture change speed (rotational speed) when the user performs an input operation. In order to detect a change with time, it is preferable to perform classification by machine learning.
 制御装置79などのコントローラは、上述したような機能を実現できる回路を装備した情報処理装置で構成することができる。この種の情報処理装置は、CPUと、ROM(Read Only Memory)と、RAM(Random Access Memory)と、ストレージ装置などを備えている。制御装置79などのコントローラの機能は、例えばROM又はストレージ装置にあらかじめ記録されたプログラムをRAM上に展開してCPUが実行するという形態で実現することができる。また、情報処理装置は、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などのハードウェアにより構成されてもよいし、GPU(Graphics Processing Unit)を用いて構成されてもよい。本実施形態の実施時期における技術水準に応じて、適宜、情報処理装置のハードウェア構成を変更することが可能である。 The controller such as the control device 79 can be configured by an information processing device equipped with a circuit capable of realizing the functions described above. This type of information processing apparatus includes a CPU, a ROM (Read Only Memory), a RAM (Random Access Memory), a storage device, and the like. The function of the controller such as the control device 79 can be realized, for example, in a form in which a program recorded in advance in a ROM or a storage device is expanded on the RAM and executed by the CPU. The information processing apparatus may be configured by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit), or may be configured by using GPU (Graphics Processing Unit). The hardware configuration of the information processing apparatus can be changed as appropriate according to the technical level at the time of implementation of the present embodiment.
 以上、特定の実施形態を参照しながら、本明細書で開示する技術について詳細に説明してきた。しかしながら、本明細書で開示する技術の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。 As described above, the technology disclosed in this specification has been described in detail with reference to specific embodiments. However, it is obvious that those skilled in the art can make modifications and substitutions of the embodiments without departing from the scope of the technology disclosed in this specification.
 本明細書では、本明細書で開示する技術をマスタースレーブ方式の医療ロボット・システムに適用した実施形態を中心に説明してきたが、本明細書で開示する技術の要旨はこれに限定されるものではない。本明細書で開示する技術を適用した入力装置を、医療用途以外のさまざまな産業分野に導入されるロボット・システムのマスタ・コンソールに利用することもできる。 In the present specification, the technology disclosed in this specification has been described mainly with respect to an embodiment in which the technology is applied to a master-slave type medical robot system. However, the gist of the technology disclosed in this specification is limited to this. is not. An input device to which the technology disclosed in this specification is applied can also be used for a master console of a robot system that is introduced into various industrial fields other than medical applications.
 さらに、本明細書で開示する技術を適用した入力装置を、ゲーム用コントローラや、パーソナル・コンピュータ用の入力デバイス、CADなどにおける3Dモデルの操作、ロボットを始めとする回転構造を有する装置やVRを操作するための6軸入力UI、ドローンに搭載されたカメラや天吊りカメラの姿勢を操作するための入力UIなどに利用することも可能である。 Further, an input device to which the technology disclosed in the present specification is applied is a game controller, an input device for a personal computer, a 3D model operation in a CAD, an apparatus having a rotating structure such as a robot, or a VR. It can also be used for a 6-axis input UI for operation, an input UI for operating the attitude of a camera mounted on a drone or a ceiling camera.
 要するに、例示という形態により本明細書で開示する技術について説明してきたが、本明細書の記載内容を限定的に解釈するべきではない。本明細書で開示する技術の要旨を判断するためには、特許請求の範囲を参酌すべきである。 In short, the technology disclosed in the present specification has been described in the form of exemplification, but the content described in the present specification should not be interpreted in a limited manner. In order to determine the gist of the technology disclosed in this specification, the claims should be taken into consideration.
 なお、本明細書の開示の技術は、以下のような構成をとることも可能である。
(1)中空の球体構造からなる外殻部と、
 前記外殻部を吸着して回転可能に支持する接続部と、
 前記外殻部の回転角度を検出する回転検出部と、
を具備する情報入力装置。
(2)前記回転検出部は、前記外殻部の3自由度の回転角度を検出する、
上記(1)に記載の情報入力装置。
(3)前記回転検出部は、加速度センサ、角度センサ、磁気センサのうち少なくとも1つ又は2以上の組み合わせからなる、
上記(1)又は(2)のいずれかに記載の情報入力装置。
(4)前記回転検出部は、前記球体の中心近傍に配置される、
上記(3)に記載の情報入力装置。
(5)前記回転検出部は、カメラを備え、前記カメラが撮像する模様又は前記外殻部を操作するユーザの指の方向をトラッキングして、前記外殻部の回転角度を検出する、
上記(1)又は(2)のいずれかに記載の情報入力装置。
(6)前記接続部の外径は、前記外殻部の直径の4分の3以下である、
上記(1)乃至(5)のいずれかに記載の情報入力装置。
(7)前記外殻部の重心位置が前記球体の中心近傍となるように構成される、
上記(1)乃至(6)のいずれかに記載の情報入力装置。
(8)前記外殻部は、ユーザの指を挿入する開口部を有し、
 前記回転検出部は、挿入された前記指により前記外殻部を手動操作したときの回転角度を検出する、
上記(1)乃至(7)のいずれかに記載の情報入力装置。
(8-1)前記開口部から挿入された指を用いたつまむ操作が可能な、前記外殻部内に配設された把持機構をさらに備える、
上記(8)に記載の情報入力装置。
(9)前記開口部に前記指が挿入されたことを検出する指検知センサをさらに備える、
上記(8)に記載の情報入力装置。
(9-1)前記指検知センサは、光学式センサ又は静電式センサからなる、
上記(9)に記載の情報入力装置。
(10)前記外殻部は、ユーザの第1の指を挿入する第1の開口部と、ユーザの第2の指を挿入する第2の開口部を有し、
 前記第1の指と前記第2の指を用いたつまむ操作が可能な、前記外殻部内に配設された把持機構をさらに備える、
上記(1)乃至(8)のいずれかに記載の情報入力装置。
(11)前記把持機構を開閉動作させて把持力を提示するアクチュエータと、前記第1の指と前記第2の指で把持されたときの前記把持機構の回転角度を検出するエンコーダをさらに備える、
上記(10)に記載の情報入力装置。
(12)前記把持機構は、把持する前記第1の指と前記第2の指の中心が前記球体の中心近傍となるように配置される、
上記(10)又は(11)のいずれかに記載の情報入力装置。
(13)前記アクチュエータを含む前記外殻部の重心位置は前記球体の中心近傍に配置される、
上記(11)に記載の情報入力装置。
(14)前記外殻部は、第1の外殻球面部と第2の外殻球面部を含む複数の面を連結して構成される、
上記(1)乃至(13)のいずれかに記載の情報入力装置。
(15)前記外殻部、又は、前記接続部の少なくとも一方の表面に対して低摩擦となる処理が施されている、
上記(1)乃至(14)のいずれかに記載の情報入力装置。
(16)前記接続部は、磁石の磁力、空気圧、静電力のいずれかにより前記外殻部を吸着する、
上記(1)乃至(15)のいずれかに記載の情報入力装置。
(17)前記外殻部に作用する外力を検出する力センサをさらに備える、
上記(1)乃至(16)のいずれかに記載の情報入力装置。
(18)前記外殻部は、1以上の内部部品を収容し、前記内部部品と外部とを電気接続するための配線を挿通させるための配線穴を前記第1の開口部と前記第2の開口部の間に有する、
上記(10)乃至(13)のいずれかに記載の情報入力装置。
(19)マスタースレーブシステムにおけるマスタ装置に取り付けられ、ユーザが操作する操作部として用いられる、
上記(1)乃至(18)のいずれかに記載の情報入力装置。
(20)マスタースレーブ方式の医療システムであって、マスタ装置は、
 中空の球体構造からなる外殻部と、前記外殻部の回転角度を検出する回転検出部を備える操作部と、
 前記操作部の前記外殻部を吸着して回転可能に支持するとともに、前記外殻部に作用する並進力を検出し又は並進力を提示する並進構造部と、
を具備する、医療システム。
(20-1)前記並進構造部は、それぞれ先端側で前記外殻部を支持するとともに基端側で前記マスタ装置本体に回動可能に支持される複数のリンクからなるパラレルリンク構造を有し、
 前記複数のリンクの各々を回転駆動して前記並進力を提示するためのアクチュエータをさらに備える、
上記(20)に記載の医療システム。
(21)医療用器具を備え、前記マスタ装置における前記操作部又は前記並進構造部における検出信号に基づいて前記医療用器具の動作を制御するスレーブ装置をさらに含む、
上記(20)に記載の医療システム。
Note that the technology disclosed in the present specification can also be configured as follows.
(1) an outer shell having a hollow sphere structure;
A connection part that adsorbs the outer shell part and rotatably supports it;
A rotation detector that detects a rotation angle of the outer shell,
An information input device comprising:
(2) The rotation detection unit detects a rotation angle of three degrees of freedom of the outer shell part.
The information input device according to (1) above.
(3) The rotation detection unit includes at least one of an acceleration sensor, an angle sensor, and a magnetic sensor, or a combination of two or more.
The information input device according to any one of (1) and (2) above.
(4) The rotation detection unit is disposed near the center of the sphere,
The information input device according to (3) above.
(5) The rotation detection unit includes a camera, tracks the pattern captured by the camera or the direction of the user's finger operating the outer shell, and detects the rotation angle of the outer shell.
The information input device according to any one of (1) and (2) above.
(6) The outer diameter of the connection portion is not more than three-quarters of the diameter of the outer shell portion.
The information input device according to any one of (1) to (5) above.
(7) The center of gravity of the outer shell is configured to be near the center of the sphere.
The information input device according to any one of (1) to (6) above.
(8) The outer shell portion has an opening for inserting a user's finger,
The rotation detection unit detects a rotation angle when the outer shell is manually operated with the inserted finger.
The information input device according to any one of (1) to (7).
(8-1) It further comprises a gripping mechanism disposed in the outer shell, which can be pinched using a finger inserted from the opening.
The information input device according to (8) above.
(9) It further includes a finger detection sensor that detects that the finger has been inserted into the opening.
The information input device according to (8) above.
(9-1) The finger detection sensor includes an optical sensor or an electrostatic sensor.
The information input device according to (9) above.
(10) The outer shell portion includes a first opening for inserting the user's first finger and a second opening for inserting the user's second finger,
A gripping mechanism disposed in the outer shell that can be pinched with the first finger and the second finger;
The information input device according to any one of (1) to (8) above.
(11) An actuator that opens and closes the gripping mechanism to present a gripping force, and an encoder that detects a rotation angle of the gripping mechanism when gripped by the first finger and the second finger,
The information input device according to (10) above.
(12) The gripping mechanism is disposed so that the centers of the first finger and the second finger to be gripped are in the vicinity of the center of the sphere.
The information input device according to any one of (10) and (11) above.
(13) The center of gravity position of the outer shell portion including the actuator is disposed in the vicinity of the center of the sphere.
The information input device according to (11) above.
(14) The outer shell portion is configured by connecting a plurality of surfaces including a first outer shell spherical portion and a second outer shell spherical portion.
The information input device according to any one of (1) to (13) above.
(15) The outer shell portion or at least one surface of the connection portion has been subjected to a treatment for low friction.
The information input device according to any one of (1) to (14).
(16) The connection portion adsorbs the outer shell portion by any of magnetic force, air pressure, and electrostatic force of a magnet.
The information input device according to any one of (1) to (15).
(17) A force sensor for detecting an external force acting on the outer shell portion is further provided.
The information input device according to any one of (1) to (16) above.
(18) The outer shell portion houses one or more internal parts, and a wiring hole for inserting a wiring for electrically connecting the internal part and the outside is provided in the first opening and the second part. Having between the openings,
The information input device according to any one of (10) to (13).
(19) Attached to a master device in a master-slave system and used as an operation unit operated by a user.
The information input device according to any one of (1) to (18).
(20) A master-slave medical system, wherein the master device is
An outer shell portion formed of a hollow sphere structure, and an operation unit including a rotation detection unit that detects a rotation angle of the outer shell portion;
A translational structure that adsorbs and rotatably supports the outer shell of the operation unit, detects a translational force acting on the outer shell, or presents a translational force;
A medical system comprising:
(20-1) The translational structure portion has a parallel link structure including a plurality of links that support the outer shell portion on the distal end side and are rotatably supported on the master device main body on the proximal end side. ,
An actuator for rotationally driving each of the plurality of links to present the translational force;
The medical system according to (20) above.
(21) A medical device, further including a slave device that controls an operation of the medical device based on a detection signal in the operation unit or the translation structure unit in the master device.
The medical system according to (20) above.
 1…ロボット・システム
 20…支持アーム部、20a~20c…リンク部
 21…駆動リンク、22…受動リンク
 30…本体部
 60…マスタ装置
 61…力センサ、63…回転角度センサ
 65…モータ、65a~65c…モータ
 67…振動発生源、69…スピーカ
 70…第1の振動伝達部
 71…増幅器、73…周波数特性補正回路
 75…バンドパス・フィルタ、77…駆動回路
 79…制御装置
 80…第2の振動伝達部
 81…増幅器、83…周波数特性補正回路
 85…バンドパス・フィルタ、87…駆動回路
 90…スレーブ装置
 91…力センサ、93…回転角度センサ、95…モータ
 97…触覚振動センサ、99…聴覚振動センサ
 100…情報入力装置
 110…外殻部
 111…第1の開口部、112…第2の開口部、113…配線穴
 120…接続部、121…接触面
 130…力センサ、140…配線
 501…外殻前部、502…外殻後部
 601…回転角度センサ(IMU)、602…基板部
 611…第1の把持板、612…第2の把持板、613…指腹用くぼみ
 621…モータ
 631、632…指検知センサ
 641、642…汎用スイッチ
 651…配線固定フレーム、661…球面組み付け部
 701…固定リンク、702…駆動リンク
 703…従動リンク、704…中間リンク
 706…第1の伝達リンク、707…第2の伝達リンク
 1101…スラスト球軸受
 1801…中空部、1802…支持部、1803…磁石
 1804…駆動部、1810…磁気シールド部
 1901~1903…アクチュエータ(リアクションホイール)
DESCRIPTION OF SYMBOLS 1 ... Robot system 20 ... Support arm part, 20a-20c ... Link part 21 ... Drive link, 22 ... Passive link 30 ... Main body part 60 ... Master apparatus 61 ... Force sensor, 63 ... Rotation angle sensor 65 ... Motor, 65a- 65c ... motor 67 ... vibration generating source, 69 ... speaker 70 ... first vibration transmission unit 71 ... amplifier, 73 ... frequency characteristic correction circuit 75 ... band pass filter, 77 ... drive circuit 79 ... control device 80 ... second Vibration transmission unit 81 ... Amplifier, 83 ... Frequency characteristic correction circuit 85 ... Bandpass filter, 87 ... Drive circuit 90 ... Slave device 91 ... Force sensor, 93 ... Rotation angle sensor, 95 ... Motor 97 ... Tactile vibration sensor, 99 ... Auditory vibration sensor 100 ... information input device 110 ... outer shell part 111 ... first opening part, 112 ... second opening part, 113 ... wiring hole DESCRIPTION OF SYMBOLS 20 ... Connection part, 121 ... Contact surface 130 ... Force sensor, 140 ... Wiring 501 ... Outer shell front part, 502 ... Outer shell rear part 601 ... Rotation angle sensor (IMU), 602 ... Substrate part 611 ... First holding plate, 612: Second grip plate, 613: Indentation for finger pad 621: Motor 631, 632 ... Finger detection sensor 641, 642 ... General-purpose switch 651 ... Wiring fixing frame, 661 ... Spherical assembly part 701 ... Fixed link, 702 ... Drive link 703 ... Follower link, 704 ... Intermediate link 706 ... First transmission link, 707 ... Second transmission link 1101 ... Thrust ball bearing 1801 ... Hollow part, 1802 ... Support part, 1803 ... Magnet 1804 ... Drive part, 1810 ... Magnetic Shield part 1901-1903 ... Actuator (Reaction Wheel)

Claims (21)

  1.  中空の球体構造からなる外殻部と、
     前記外殻部を吸着して回転可能に支持する接続部と、
     前記外殻部の回転角度を検出する回転検出部と、
    を具備する情報入力装置。
    An outer shell made of a hollow sphere structure;
    A connection part that adsorbs the outer shell part and rotatably supports it;
    A rotation detector that detects a rotation angle of the outer shell,
    An information input device comprising:
  2.  前記回転検出部は、前記外殻部の3自由度の回転角度を検出する、
    請求項1に記載の情報入力装置。
    The rotation detection unit detects a rotation angle of three degrees of freedom of the outer shell part,
    The information input device according to claim 1.
  3.  前記回転検出部は、加速度センサ、角度センサ、磁気センサのうち少なくとも1つ又は2以上の組み合わせからなる、
    請求項1に記載の情報入力装置。
    The rotation detection unit is composed of at least one of an acceleration sensor, an angle sensor, and a magnetic sensor, or a combination of two or more.
    The information input device according to claim 1.
  4.  前記回転検出部は、前記球体の中心近傍に配置される、
    請求項3に記載の情報入力装置。
    The rotation detection unit is disposed near the center of the sphere,
    The information input device according to claim 3.
  5.  前記回転検出部は、カメラを備え、前記カメラが撮像する模様又は前記外殻部を操作するユーザの指の方向をトラッキングして、前記外殻部の回転角度を検出する、
    請求項1に記載の情報入力装置。
    The rotation detection unit includes a camera, tracks a pattern imaged by the camera or a user's finger operating the outer shell, and detects a rotation angle of the outer shell,
    The information input device according to claim 1.
  6.  前記接続部の外径は、前記外殻部の直径の4分の3以下である、
    請求項1に記載の情報入力装置。
    The outer diameter of the connecting portion is not more than three quarters of the diameter of the outer shell portion.
    The information input device according to claim 1.
  7.  前記外殻部の重心位置が前記球体の中心近傍となるように構成される、
    請求項1に記載の情報入力装置。
    The center of gravity of the outer shell is configured to be near the center of the sphere,
    The information input device according to claim 1.
  8.  前記外殻部は、ユーザの指を挿入する開口部を有し、
     前記回転検出部は、挿入された前記指により前記外殻部を手動操作したときの回転角度を検出する、
    請求項1記載の情報入力装置。
    The outer shell has an opening for inserting a user's finger,
    The rotation detection unit detects a rotation angle when the outer shell is manually operated with the inserted finger.
    The information input device according to claim 1.
  9.  前記開口部に前記指が挿入されたことを検出する指検知センサをさらに備える、
    請求項8に記載の情報入力装置。
    A finger detection sensor for detecting that the finger has been inserted into the opening;
    The information input device according to claim 8.
  10.  前記外殻部は、ユーザの第1の指を挿入する第1の開口部と、ユーザの第2の指を挿入する第2の開口部を有し、
     前記第1の指と前記第2の指を用いたつまむ操作が可能な、前記外殻部内に配設された把持機構をさらに備える、
    請求項1に記載の情報入力装置。
    The outer shell portion has a first opening for inserting the user's first finger and a second opening for inserting the user's second finger,
    A gripping mechanism disposed in the outer shell that can be pinched with the first finger and the second finger;
    The information input device according to claim 1.
  11.  前記把持機構を開閉動作させて把持力を提示するアクチュエータと、前記第1の指と前記第2の指で把持されたときの前記把持機構の回転角度を検出するエンコーダをさらに備える、
    請求項10に記載の情報入力装置。
    An actuator for presenting a gripping force by opening and closing the gripping mechanism; and an encoder for detecting a rotation angle of the gripping mechanism when gripped by the first finger and the second finger.
    The information input device according to claim 10.
  12.  前記把持機構は、把持する前記第1の指と前記第2の指の中心が前記球体の中心近傍となるように配置される、
    請求項10に記載の情報入力装置。
    The gripping mechanism is arranged so that the centers of the first and second fingers to be gripped are in the vicinity of the center of the sphere.
    The information input device according to claim 10.
  13.  前記アクチュエータを含む前記外殻部の重心位置は前記球体の中心近傍に配置される、
    請求項11に記載の情報入力装置。
    The position of the center of gravity of the outer shell portion including the actuator is disposed near the center of the sphere,
    The information input device according to claim 11.
  14.  前記外殻部は、第1の外殻球面部と第2の外殻球面部を含む複数の面を連結して構成される、
    請求項1に記載の情報入力装置。
    The outer shell part is configured by connecting a plurality of surfaces including a first outer shell spherical part and a second outer shell spherical part,
    The information input device according to claim 1.
  15.  前記外殻部、又は、前記接続部の少なくとも一方の表面に対して低摩擦となる処理が施されている、
    請求項1に記載の情報入力装置。
    The outer shell part, or a process of low friction is applied to at least one surface of the connection part,
    The information input device according to claim 1.
  16.  前記接続部は、磁石の磁力、空気圧、静電力のいずれかにより前記外殻部を吸着する、
    請求項1に記載の情報入力装置。
    The connection portion adsorbs the outer shell portion by any of magnetic force, air pressure, and electrostatic force of a magnet.
    The information input device according to claim 1.
  17.  前記外殻部に作用する外力を検出する力センサをさらに備える、
    請求項1に記載の情報入力装置。
    A force sensor for detecting an external force acting on the outer shell portion;
    The information input device according to claim 1.
  18.  前記外殻部は、1以上の内部部品を収容し、前記内部部品と外部とを電気接続するための配線を挿通させるための配線穴を前記第1の開口部と前記第2の開口部の間に有する、
    請求項10に記載の情報入力装置。
    The outer shell portion accommodates one or more internal parts, and wiring holes for inserting wirings for electrically connecting the internal parts and the outside are formed in the first opening and the second opening. In between,
    The information input device according to claim 10.
  19.  マスタースレーブシステムにおけるマスタ装置に取り付けられ、ユーザが操作する操作部として用いられる、
    請求項1に記載の情報入力装置。
    Attached to the master device in the master-slave system, used as the operation unit operated by the user,
    The information input device according to claim 1.
  20.  マスタースレーブ方式の医療システムであって、マスタ装置は、
     中空の球体構造からなる外殻部と、前記外殻部の回転角度を検出する回転検出部を備える操作部と、
     前記操作部の前記外殻部を吸着して回転可能に支持するとともに、前記外殻部に作用する並進力を検出し又は並進力を提示する並進構造部と、
    を具備する、医療システム。
    A master-slave medical system, the master device
    An outer shell portion formed of a hollow sphere structure, and an operation unit including a rotation detection unit that detects a rotation angle of the outer shell portion;
    A translational structure that adsorbs and rotatably supports the outer shell of the operation unit, detects a translational force acting on the outer shell, or presents a translational force;
    A medical system comprising:
  21.  医療用器具を備え、前記マスタ装置における前記操作部又は前記並進構造部における検出信号に基づいて前記医療用器具の動作を制御するスレーブ装置をさらに含む、
    請求項20に記載の医療システム。
    A slave device that includes a medical instrument and that controls an operation of the medical instrument based on a detection signal in the operation unit or the translation structure unit in the master device;
    The medical system according to claim 20.
PCT/JP2018/021418 2017-06-15 2018-06-04 Information input device and medical treatment system WO2018230385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/620,019 US20200100856A1 (en) 2017-06-15 2018-06-04 Information input apparatus and medical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-118029 2017-06-15
JP2017118029 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230385A1 true WO2018230385A1 (en) 2018-12-20

Family

ID=64660723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021418 WO2018230385A1 (en) 2017-06-15 2018-06-04 Information input device and medical treatment system

Country Status (2)

Country Link
US (1) US20200100856A1 (en)
WO (1) WO2018230385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239294A1 (en) * 2021-05-11 2022-11-17 ソニーグループ株式会社 Information input device, control device, and surgery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138372B (en) * 2019-04-25 2021-04-09 华为技术有限公司 Touch press key assembly, control circuit and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165185U (en) * 1984-04-12 1985-11-01 三井造船株式会社 Master for remote control
JPH0857779A (en) * 1994-08-18 1996-03-05 Sanyo Electric Co Ltd Remote operating device
US20140165770A1 (en) * 2012-12-13 2014-06-19 Omid Abri Gripping Element And Gripper Input Module For A Haptic Input System
WO2016079987A1 (en) * 2014-11-19 2016-05-26 パナソニックIpマネジメント株式会社 Input/output operation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552782A (en) * 1994-11-04 1996-09-03 Horn; Martin E. Single-hand mounted and operated keyboard
AU1694001A (en) * 1999-12-08 2001-06-18 Vescovi, Marcos R. Detecting rotation of a physical object using gravity
AU2757501A (en) * 2000-01-03 2001-07-16 David J. Levenson Adjustable ergonomic keyboard for use with stationary palm and elements thereof
US8521331B2 (en) * 2009-11-13 2013-08-27 Intuitive Surgical Operations, Inc. Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165185U (en) * 1984-04-12 1985-11-01 三井造船株式会社 Master for remote control
JPH0857779A (en) * 1994-08-18 1996-03-05 Sanyo Electric Co Ltd Remote operating device
US20140165770A1 (en) * 2012-12-13 2014-06-19 Omid Abri Gripping Element And Gripper Input Module For A Haptic Input System
WO2016079987A1 (en) * 2014-11-19 2016-05-26 パナソニックIpマネジメント株式会社 Input/output operation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239294A1 (en) * 2021-05-11 2022-11-17 ソニーグループ株式会社 Information input device, control device, and surgery system

Also Published As

Publication number Publication date
US20200100856A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US10617484B2 (en) Hyperdexterous surgical system user interface devices
EP2907467B1 (en) Master devices for surgical robots and control methods thereof
US10743949B2 (en) Methods, systems, and devices relating to force control surgical systems
US20170209737A1 (en) Upper limb rehabilitation system
US9333039B2 (en) Systems and methods for providing vibration feedback in robotic systems
JP2021524291A (en) Master controller assembly and method for robotic surgery systems
US11504200B2 (en) Wearable user interface device
WO2018230385A1 (en) Information input device and medical treatment system
WO2012153152A1 (en) Medical master/slave type device for minimally invasive surgery
WO2019163359A1 (en) Tactile sensation presentation device and tactile sensation presentation system
KR20110095529A (en) Master manipulation device for robot and surgical robot using the same
JP4117954B2 (en) Haptic interface device with 4-axis force feedback
US10507069B2 (en) Operating device for a robot-assisted surgical system
JPWO2020044838A1 (en) Parallel wire devices, parallel wire systems, medical robot operating devices, mobile projection devices, and mobile imaging devices
KR20150084552A (en) Control method for surgical robot
JPH08224246A (en) Medical manipulator
WO2022239294A1 (en) Information input device, control device, and surgery system
JP2022530843A (en) Multi-axis operation control device
JP6714059B2 (en) 3-axis motion device
WO2023145249A1 (en) Operation input device and operation console device
KR102160729B1 (en) Triaxial motion device
Harada et al. Modular Robotic Approach in Surgical Applications–Wireless Robotic Modules and a Reconfigurable Master Device for Endoluminal Surgery–
Watanabe et al. A reconfigurable master device for a modular surgical robot and evaluation of its feasibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP