WO2018225364A1 - Wireless communication method and wireless communication system - Google Patents

Wireless communication method and wireless communication system Download PDF

Info

Publication number
WO2018225364A1
WO2018225364A1 PCT/JP2018/014518 JP2018014518W WO2018225364A1 WO 2018225364 A1 WO2018225364 A1 WO 2018225364A1 JP 2018014518 W JP2018014518 W JP 2018014518W WO 2018225364 A1 WO2018225364 A1 WO 2018225364A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
processing unit
bit
bit information
wireless communication
Prior art date
Application number
PCT/JP2018/014518
Other languages
French (fr)
Japanese (ja)
Inventor
敬亮 山本
矢野 隆
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2019523367A priority Critical patent/JP6812546B2/en
Publication of WO2018225364A1 publication Critical patent/WO2018225364A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/23Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using convolutional codes, e.g. unit memory codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present invention relates to a wireless communication method for transmitting and receiving data via a wireless propagation path.
  • Non-Patent Document 1 discloses a HARQ scheme using a turbo code having excellent error correction capability.
  • the encoded parity sequence is punctured and transmitted, and when an error occurs, the punctured parity sequence is sequentially added and transmitted for each retransmission.
  • BICM-ID Bit Interleaved Coded Modulation with Iterative decoding
  • BICM-ID Bit Interleaved Coded Modulation with Iterative decoding
  • excellent characteristics can be obtained by repeating demodulation processing for modulation and decoding processing for encoding.
  • the characteristics of the BICM-ID are determined not by the characteristics of the demodulator and the decoder but by their matching. For this reason, it is possible to analyze a convergence characteristic using EXT (Extrinsic Information Transfer) analysis and design a demodulator and a decoder that realize excellent characteristics (see, for example, Non-Patent Document 3).
  • EXT Extransic Information Transfer
  • Non-Patent Document 4 encoding is performed with a code based on a repetitive code, which is a simple code, and multi-level modulation using non-Gray mapping and extended mapping is performed to reduce transmission rate loss.
  • a method for providing BICM-ID with a small processing capacity is disclosed.
  • the conventional HARQ system performs error-free communication by changing the coding rate of an error correction code based on an effective signal-to-noise power ratio (SNR) and an estimated value of channel capacity.
  • SNR signal-to-noise power ratio
  • the performance of the BICM-ID is determined by the convergence characteristics of the demodulator and the decoder. For this reason, even if the SNR and channel capacity are the same, the convergence characteristics of the demodulator differ depending on the propagation path characteristics and the modulation method, and the characteristics of the decoder that matches the convergence characteristics of the demodulator differ. Therefore, in the code configuration determined based on the SNR and the channel capacity, inappropriate redundant bits are used for retransmission, and there may occur a situation where communication is more error-prone when larger than necessary redundant bits.
  • a typical example of the invention disclosed in the present application is as follows. That is, a wireless communication method for transmitting data from a transmission device to a reception device, wherein the reception device demodulates a radio signal and outputs bit information; a decoder that decodes the bit information; An interleave processing unit for switching the bit order of bit information, a deinterleaving processing unit for switching the bit order of the bit information, and a first code optimization processing unit for generating redundant bit control information, Performs coding using a convolutional code having at least two types of free-distance codewords, wherein the demodulator demodulates a radio signal using prior information and outputs first bit information.
  • the interleaving unit performs a dein that restores the order of the bits exchanged in the interleaving process for changing the order of the bits with respect to the first bit information. Performs a leave process, outputs second bit information, the decoder decodes the second bit information, outputs third bit information, and the deinterleave processing unit outputs the third bit information.
  • the bit information is subjected to an interleaving process that is an inverse process of the deinterleaving process, the fourth bit information is generated, and the fourth bit information is input to the demodulator as the prior information, thereby repeatedly.
  • the decoding process is performed, and the first code optimization processing unit generates redundant bit control information based on a combination of two pieces of likelihood information of the input and output of the iterative decoding process, and the generated control information To the transmitter, and the transmitter transmits an additional redundant bit using at least one of the codewords having different free distances based on the generated control information.
  • communication can be performed while suppressing an increase in redundant bits due to retransmission.
  • FIG. 3 is a diagram showing iterative decoding processing in the retransmission method of the present invention
  • FIG. 3A is a diagram showing a receiving side iterative decoding processing unit in this embodiment
  • FIG. 3B is an EXIT analysis at the time of initial transmission
  • FIG. 3C is a diagram showing the results of EXIT analysis after N times of transmission. It is a figure which shows an example of a structure of the encoding modulation process part using the resending method of this invention.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system of the present embodiment includes an encoder 10, an interleaver 11, a modulator 12, a transmitter having a code optimization processing unit 19 and an antenna 13, and an iterative decoding processing unit 18, a code optimization processing unit 21 and an antenna 22. It is comprised by the receiver which has. The transmitter and the receiver are connected via a radio propagation path 14.
  • the encoder 10 encodes information bits
  • the interleaver 11 switches the bit order in the codeword output from the encoder 10
  • the modulator 12 modulates
  • the antenna 13 outputs it.
  • the iterative decoding processing unit 18 of the receiver includes a demodulator 15, a deinterleaver 16, a decoder 17, and an interleaver 20.
  • a signal is received via the radio propagation path 14, the demodulator 15 demodulates the received signal, a deinterleaver 16 that performs reverse processing of the interleaver 11 returns the bit order, and a decoder 17 decodes the signal. To do.
  • the decoding result is input to the demodulator 15 via the interleaver 20, and the demodulator 15 refers to the decoding result of the decoder 17 and outputs a further highly accurate demodulation result.
  • the transmitter performs encoding and modulation using the encoder 10, the interleaver 11, and the modulator 12, and the receiver uses the demodulator 15, the deinterleaver 16, the decoder 17, and the interleaver.
  • the BICM-ID is configured by performing iterative decryption processing using 20.
  • the code optimization processing unit 19 of the transmitter has a function of controlling a redundant bit generation method based on likelihood information obtained by iterative decoding processing with BICM-ID.
  • the external information Extrinsic Information
  • the prior information Priori Information
  • Control information redundant bit information or likelihood information
  • the receiver feeds back control information (redundant bit information or likelihood information) to the transmitter together with the retransmission request.
  • the transmitter determines additional redundant bits to be retransmitted and controls the encoder 10.
  • Likelihood information used for code optimization is equivalent before and after the interleaver 20 and the deinterleaver 16, and either of them may be used.
  • the likelihood information used by the code optimization processor 19 is based on a combination of likelihood information of demodulator external information or decoder prior information and likelihood information of demodulator prior information or decoder external information. A retransmission code is determined.
  • FIG. 2 is a diagram showing a retransmission procedure according to the present embodiment.
  • First transmission is performed from the transmitter (24), and when an error is detected at the receiver, a retransmission request and code optimization information are fed back from the receiver to the transmitter (25).
  • the transmitter generates a code to be used for retransmission based on the fed back code optimization information, adds a redundant bit, and performs the second transmission (26).
  • the receiver repeats the decoding process by combining the received signal at the first transmission stored in the buffer and the redundant bit added for the second time. If an error remains, the receiver again sends it from the receiver to the transmitter.
  • a retransmission request and code optimization information are fed back (27).
  • the retransmission process is repeated until there is no error at the receiver or the upper limit of the number of retransmissions is reached (28), and when the decoding process is completed without error at the receiver, a reception confirmation response is fed back to the transmitter. (29) The communication process is terminated.
  • the decoder 17 uses the algorithm for determining the same redundant bits in the code optimization processing unit 19 of the transmitter and the code optimization processing unit 21 of the receiver, and the decoder 17 performs redundancy from the code optimization processing unit 21 of the receiver. The bit configuration is obtained and the decoding process is performed.
  • FIG. 3A is a diagram illustrating the iterative decoding processing unit 18 of the receiver in the present embodiment
  • FIG. 3B is a diagram illustrating an EXIT analysis result at the time of initial transmission
  • FIG. These are figures which show the EXIT analysis result after N times transmission.
  • LLR Log Likelihood Ratio
  • the convergence characteristics of the BICM-ID iterative decoding process can be analyzed by EXT (Extrinsic Information Transfer) analysis described in Non-Patent Document 3.
  • EXIT Extrinsic Information Transfer
  • the input / output characteristics of the decoder and demodulator are displayed in the form of the mutual information amount Im of the bit expressed by Equation (2), and the characteristics of both are overlapped and plotted on one chart for repeated decoding.
  • the amount of information obtained by processing can be analyzed.
  • the mutual information amount in Equation (2) is an average of the entire code word of the mutual information amount of bits, and is expressed by a value of 0 to 1, and the closer to 1, the greater the bit likelihood of the entire code word.
  • the mutual information amount increases along each characteristic by the iterative decoding process.
  • the increase in the mutual information amount is stopped at the point where the characteristics of the two intersect, and errors remain in the decoding result.
  • FIG. 4 is a diagram illustrating an example of a configuration of a coded modulation processing unit using a convolutional code according to the present embodiment.
  • the encoder 10 is composed of a convolutional encoder 40.
  • a puncture processing unit 41 that punctures codes is provided between the convolutional encoder 40 and the interleaver 11.
  • the error correction capability of a convolutional code is determined by the free distance of the code with respect to the constraint length (corresponding to the circuit scale), and a code with a large (preferably maximum) free distance with respect to the constraint length is generally used.
  • a generator polynomial 133, 171
  • the convolutional code of this embodiment is characterized by having a generator polynomial having at least two types of free distances.
  • code design at the time of retransmission can be made according to the characteristics of the demodulator, and good iterative decoding can be realized.
  • FIG. 5 is a diagram illustrating an example of a convolutional encoder according to the present embodiment.
  • the information bits are input to the shift register 50 having a memory length with a constraint length of ⁇ 1, and a convolutional code is formed by the logical operation of the output extracted from the tap of the shift register.
  • the convolutional encoder of this embodiment is characterized by having at least two branches having different free distances d. Even if the free distance is the same, but the generator polynomials are different, the convergence characteristics of the decoder are not completely the same, and therefore, a plurality of branches having the same free distance may be included.
  • FIG. 6 is a diagram illustrating an example in which the convolutional code according to the present embodiment is configured by separating memories for different branches with different free distances and generator polynomials.
  • branches having different free distances are generated from the output of one large shift register tap.
  • the convolutional encoder shown in FIG. 6 is divided into a plurality of shift registers. Also good.
  • FIG. 7 is a diagram illustrating an example of an encoder having a constraint length of 7.
  • a code Ca of a generator polynomial (133, 171) with a degree of freedom distance of 10 and a code Cb of a generator polynomial (5, 7) with a free distance of 5 Have By selecting and puncturing the codes having different free distances and designing the codes and retransmission codes, the retransmission codes when HARQ is applied to the BICM-ID are optimized.
  • FIG. 8 is a diagram illustrating an example of the convergence characteristics of the convolutional code decoder according to the present embodiment.
  • FIG. 8 shows a convergence characteristic 80 of a convolutional code decoder with a free distance of 3 and a coding rate of 1/2, and a convergence characteristic 81 of a convolutional code decoder with a free distance of 10 and a coding rate of 1/2. It shows. Since the convergence characteristics 80 and 81 have the same coding rate but different convergence characteristics, it is possible to realize iterative decoding with good characteristics by designing the code according to the characteristics of the demodulator.
  • FIG. 9 is a diagram illustrating an example of a retransmission method using a convolutional code according to the present embodiment.
  • the encoder 10 (convolutional encoder 40, puncture processing unit 41) shown in FIG. 9A is used to puncture a code Ca having a free distance d0 and a code Cb having a free distance d1.
  • the information bits are encoded, two code words having different free distances are generated, a part of the code words 90 are extracted by puncturing, and the first transmission is performed.
  • an additional redundant bit is selected from among the punctured codes based on the code optimization information fed back, and the additional redundant bit (91 after the second time) , 92).
  • the convergence characteristic of the decoder is controlled according to which free distance is used to select additional redundant bits.
  • the receiver stores all codewords from the first transmission until it is confirmed that decoding can be performed without error, and repeatedly performs decoding processing using all the stored codewords.
  • FIG. 10 is a diagram illustrating an example of convergence characteristics of a decoder in a retransmission method using a convolutional code.
  • FIG. 10 shows a convergence characteristic 101 at the first transmission, a convergence characteristic 102 at the second transmission, a convergence characteristic 103 at the third transmission, and a convergence characteristic 100 of the demodulator.
  • the number of additional redundant bits to be transmitted in one retransmission is assumed to be 1/4 the size of the codeword at the time of initial transmission, and the redundant bits can be arbitrarily controlled by the 1/4 size of the codeword.
  • a convolutional code having a code rate of 1/4 and a coding rate of 1/4 is used as an encoder.
  • codes having 50% puncture of codewords having free distances of 3 and 10 at the time of initial transmission are used, and the convergence characteristics 91 of the decoder at the time of initial transmission are the convergence characteristics 100 of the demodulator, It intersects at the point of the horizontal axis 0.013 and the vertical axis 0.16, and an error has occurred in the decoding result.
  • the method of generating additional redundant bits used for the second transmission is controlled, and additional redundant bits are selected.
  • An additional redundant bit option is either a punctured untransmitted codeword of codewords with a free distance of 3, 10 and there are two methods.
  • the external information output by the encoder when retransmitted in each method is 0.038 and 0.022, respectively.
  • the method of transmitting puncture bits with a free distance of 3 increases the external information when providing prior information of the decoder at the intersection. Thereafter, the same procedure is repeated, and the output of the demodulator reaches 1 in the convergence characteristic 103 of the decoder after the third transmission. For this reason, an iterative decoding result without error can be obtained.
  • the code generation method is controlled according to the convergence characteristics of the demodulator, the BICM-ID whose characteristics cannot be determined only by the signal-to-noise power ratio and the communication capacity is used. Even in the existing systems, communication can be performed while suppressing an increase in redundant bits due to retransmission.
  • the code optimization processing unit 21 of the receiving apparatus and the code optimization processing unit 19 of the transmitting apparatus use the same algorithm, and are necessary for retransmission when the configuration of redundant bits is not explicitly notified to the receiver. Overhead can be reduced.
  • an algorithm for determining the configuration of redundant bits on the transmission side is provided. This is unnecessary, and the processing amount on the transmission side can be reduced.
  • the present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • another configuration may be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Error Detection And Correction (AREA)

Abstract

A demodulator demodulates a wireless signal and outputs first bit information; an interleave processing unit performs de-interleave processing on the first bit information to return bits that were exchanged with interleave processing to their original sequence and outputs second bit information; a decoder decodes the second bit information and outputs third bit information; a de-interleave processing unit performs interleave processing, which is the reverse process to the de-interleave processing, on the third bit information and generates fourth bit information, and performs a decoding process repeatedly by inputting the fourth bit information as advance information to the demodulator; a first code optimization processing unit generates control information for redundant bits on the basis of a combination of two pieces of likelihood information of repeated input and output of the decoding process; and a transmitting device uses at least one code word for which the free distance differs on the basis of the generated control information and transmits additional redundant bits.

Description

無線通信方法及び無線通信システムWireless communication method and wireless communication system 参照による取り込みImport by reference
 本出願は、平成29年(2017年)6月6日に出願された日本出願である特願2017-111439の優先権を主張し、その内容を参照することにより、本出願に取り込む。 This application claims the priority of Japanese Patent Application No. 2017-111439, which was filed on June 6, 2017, and is incorporated herein by reference.
 本発明は、無線伝搬路を介してデータを送受信する無線通信方法に関する。 The present invention relates to a wireless communication method for transmitting and receiving data via a wireless propagation path.
 本技術分野の背景技術として、Hybrid-ARQ(HARQ)が広く知られている。HARQは、ARQと誤り訂正符号を組み合わせた方法であり、以前の再送結果を復号時に利用して再送時の誤り訂正能力を向上させる技術である。例えば、非特許文献1では、優れた誤り訂正能力を持つターボ符号を用いたHARQ方式が開示されている。非特許文献1に開示された方法では、符号化後のパリティ系列をパンクチャして送信し、誤りが発生した場合に、再送毎にパンクチャされたパリティ系列を順次追加して送信する。 Hybrid-ARQ (HARQ) is widely known as background technology in this technical field. HARQ is a method combining ARQ and an error correction code, and is a technique for improving error correction capability at the time of retransmission by using a previous retransmission result at the time of decoding. For example, Non-Patent Document 1 discloses a HARQ scheme using a turbo code having excellent error correction capability. In the method disclosed in Non-Patent Document 1, the encoded parity sequence is punctured and transmitted, and when an error occurs, the punctured parity sequence is sequentially added and transmitted for each retransmission.
 また、BICM-ID(Bit Interleaved Coded Modulation with Iterative decoding)という技術が提案されている。例えば、特許文献1や非特許文献2に記載されるように、BICM-IDでは、変調に対する復調処理と符号化に対する復号処理とを繰り返して優れた特性を得ることができる。BICM-IDの特性は、復調器と復号器の各々の特性ではなく、それらの整合(マッチング)によって決定される。このため、EXIT(Extrinsic Information Transfer)解析を用いて収束特性を解析し、優れた特性を実現する復調器と復号器を設計することができる(例えば、非特許文献3参照)。また、非特許文献4には、単純な符号である反復符号を基本とした符号により符号化を行い、非Grayマッピングと拡張マッピングを用いた多値変調を行うことにより伝送レート損失が小さく、復号器の処理量が小さいBICM-IDを提供する方法が開示されている。 Also, a technique called BICM-ID (Bit Interleaved Coded Modulation with Iterative decoding) has been proposed. For example, as described in Patent Document 1 and Non-Patent Document 2, in BICM-ID, excellent characteristics can be obtained by repeating demodulation processing for modulation and decoding processing for encoding. The characteristics of the BICM-ID are determined not by the characteristics of the demodulator and the decoder but by their matching. For this reason, it is possible to analyze a convergence characteristic using EXT (Extrinsic Information Transfer) analysis and design a demodulator and a decoder that realize excellent characteristics (see, for example, Non-Patent Document 3). In Non-Patent Document 4, encoding is performed with a code based on a repetitive code, which is a simple code, and multi-level modulation using non-Gray mapping and extended mapping is performed to reduce transmission rate loss. Disclosed is a method for providing BICM-ID with a small processing capacity.
特開2010-124367号公報JP 2010-124367 A
 従来のHARQ方式は、実効的な信号対雑音電力比(SNR)や、チャネル容量の推定値に基づいて誤り訂正符号の符号化率を変化させることにより誤りのない通信を行う。しかしながら、本発明で必要とされるBICM-IDにHARQを適用する場合、BICM-IDでは復調器の収束特性と復号器の収束特性によって性能が決定される。このため、SNRやチャネル容量が同一であっても、伝搬路の特性や変調方式によって復調器の収束特性が異なり、復調器の収束特性と整合する復号器の特性が異なる。従って、SNRやチャネル容量に基づいて決定した符号の構成では、不適切な冗長ビットが再送に用いられ、必要な冗長ビットより大きい場合や、誤りが多い通信となる状況が発生し得る。 The conventional HARQ system performs error-free communication by changing the coding rate of an error correction code based on an effective signal-to-noise power ratio (SNR) and an estimated value of channel capacity. However, when HARQ is applied to the BICM-ID required in the present invention, the performance of the BICM-ID is determined by the convergence characteristics of the demodulator and the decoder. For this reason, even if the SNR and channel capacity are the same, the convergence characteristics of the demodulator differ depending on the propagation path characteristics and the modulation method, and the characteristics of the decoder that matches the convergence characteristics of the demodulator differ. Therefore, in the code configuration determined based on the SNR and the channel capacity, inappropriate redundant bits are used for retransmission, and there may occur a situation where communication is more error-prone when larger than necessary redundant bits.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、送信装置から受信装置へデータを送信する無線通信方法であって、前記受信装置は、無線信号を復調し、ビット情報を出力する復調器と、前記ビット情報を復号する復号器と、前記ビット情報のビット順序を入れ替えるインタリーブ処理部と、前記ビット情報のビット順序を入れ替えるデインタリーブ処理部と、冗長ビットの制御情報を生成する第1の符号最適化処理部とを有し、前記送信装置は、少なくとも2種類の自由距離の符号語を持つ畳み込み符号を用いて符号化を行い、前記方法は、前記復調器が、事前情報を用いて無線信号を復調し、第1のビット情報を出力し、前記インタリーブ処理部が、前記第1のビット情報に対し、ビットの順序を入れ替えるインタリーブ処理で入れ替えられたビットの順序を元に戻すデインタリーブ処理を行い、第2のビット情報を出力し、前記復号器が、前記第2のビット情報を復号して、第3のビット情報を出力し、前記デインタリーブ処理部が、前記第3のビット情報に対し、前記デインタリーブ処理の逆処理となるインタリーブ処理を行い、第4のビット情報を生成し、前記第4のビット情報を前記事前情報として前記復調器へ入力することによって、繰り返し復号処理を行い、前記第1の符号最適化処理部が、前記繰り返し復号処理の入力及び出力の2つの尤度情報の組み合わせに基づいて冗長ビットの制御情報を生成し、前記生成された制御情報を前記送信装置へ通知し、前記送信装置が、前記生成された制御情報に基づいて前記自由距離が異なる符号語の少なくとも一方を用いて追加の冗長ビットを送信する。 A typical example of the invention disclosed in the present application is as follows. That is, a wireless communication method for transmitting data from a transmission device to a reception device, wherein the reception device demodulates a radio signal and outputs bit information; a decoder that decodes the bit information; An interleave processing unit for switching the bit order of bit information, a deinterleaving processing unit for switching the bit order of the bit information, and a first code optimization processing unit for generating redundant bit control information, Performs coding using a convolutional code having at least two types of free-distance codewords, wherein the demodulator demodulates a radio signal using prior information and outputs first bit information. And the interleaving unit performs a dein that restores the order of the bits exchanged in the interleaving process for changing the order of the bits with respect to the first bit information. Performs a leave process, outputs second bit information, the decoder decodes the second bit information, outputs third bit information, and the deinterleave processing unit outputs the third bit information. The bit information is subjected to an interleaving process that is an inverse process of the deinterleaving process, the fourth bit information is generated, and the fourth bit information is input to the demodulator as the prior information, thereby repeatedly. The decoding process is performed, and the first code optimization processing unit generates redundant bit control information based on a combination of two pieces of likelihood information of the input and output of the iterative decoding process, and the generated control information To the transmitter, and the transmitter transmits an additional redundant bit using at least one of the codewords having different free distances based on the generated control information.
 本発明の代表的な実施の形態によれば、再送による冗長ビットの増加を抑えて通信できる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to the representative embodiment of the present invention, communication can be performed while suppressing an increase in redundant bits due to retransmission. Problems, configurations, and effects other than those described above will become apparent from the description of the following embodiments.
本発明の無線通信システムの構成を示す図である。It is a figure which shows the structure of the radio | wireless communications system of this invention. 本発明の再送方法の再送手順を示す図である。It is a figure which shows the resending procedure of the resending method of this invention. 本発明の再送方法における繰り返し復号処理を示す図であり、図3(A)は本実施例における受信側の繰り返し復号処理部を示す図であり、図3(B)は初回送信時のEXIT解析結果を示す図であり、図3(C)はN回送信後のEXIT解析結果を示す図である。FIG. 3 is a diagram showing iterative decoding processing in the retransmission method of the present invention, FIG. 3A is a diagram showing a receiving side iterative decoding processing unit in this embodiment, and FIG. 3B is an EXIT analysis at the time of initial transmission FIG. 3C is a diagram showing the results of EXIT analysis after N times of transmission. 本発明の再送方法を用いる符号化変調処理部の構成の一例を示す図である。It is a figure which shows an example of a structure of the encoding modulation process part using the resending method of this invention. 本発明の再送方法で用いる符号器の構成の一例を示す図である。It is a figure which shows an example of a structure of the encoder used with the retransmission method of this invention. 本発明の再送方法で用いる符号器の構成の一例を示す図である。It is a figure which shows an example of a structure of the encoder used with the retransmission method of this invention. 本発明で用いる拘束長が7の符号器の構成の一例を示す図である。It is a figure which shows an example of a structure of the encoder whose constraint length used by this invention is 7. 本発明の再送方法で用いる符号の特性の一例を示す図である。It is a figure which shows an example of the characteristic of the code | symbol used with the resending method of this invention. 本発明の再送方法を用いる符号化処理の一例を示す図である。It is a figure which shows an example of the encoding process using the resending method of this invention. 本発明の再送方法における復号器の収束特性の一例を示す図である。It is a figure which shows an example of the convergence characteristic of the decoder in the resending method of this invention.
 以下、本発明の実施例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例の無線通信システムの構成を示す図である。 FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment of the present invention.
 本実施例の無線通信システムは、符号器10、インタリーバ11、変調器12、符号最適化処理部19及びアンテナ13を有する送信機、及び繰り返し復号処理部18、符号最適化処理部21及びアンテナ22を有する受信機によって構成される。送信機と受信機との間は、無線伝搬路14を介して接続されている。 The wireless communication system of the present embodiment includes an encoder 10, an interleaver 11, a modulator 12, a transmitter having a code optimization processing unit 19 and an antenna 13, and an iterative decoding processing unit 18, a code optimization processing unit 21 and an antenna 22. It is comprised by the receiver which has. The transmitter and the receiver are connected via a radio propagation path 14.
 送信機では、符号器10が情報ビットを符号化し、符号器10から出力される符号語内のビット順序をインタリーバ11が入れ替え、変調器12が変調し、アンテナ13から出力する。 In the transmitter, the encoder 10 encodes information bits, the interleaver 11 switches the bit order in the codeword output from the encoder 10, the modulator 12 modulates, and the antenna 13 outputs it.
 受信機の繰り返し復号処理部18は、復調器15、デインタリーバ16、復号器17及びインタリーバ20を有する。受信機では、無線伝搬路14を介して信号を受信し、受信した信号を復調器15が復調し、インタリーバ11の逆処理を行うデインタリーバ16がビット順序を元に戻し、復号器17が復号する。復号結果はインタリーバ20を介して復調器15に入力され、復調器15は復号器17の復号結果を参照してさらに高精度の復調結果を出力する。本実施例の無線通信システムでは、送信機で、符号器10、インタリーバ11、変調器12を用いて符号化、変調を行い、受信機で、復調器15、デインタリーバ16、復号器17及びインタリーバ20を用いて繰り返し復号処理を行うことにより、BICM-IDを構成する。 The iterative decoding processing unit 18 of the receiver includes a demodulator 15, a deinterleaver 16, a decoder 17, and an interleaver 20. In the receiver, a signal is received via the radio propagation path 14, the demodulator 15 demodulates the received signal, a deinterleaver 16 that performs reverse processing of the interleaver 11 returns the bit order, and a decoder 17 decodes the signal. To do. The decoding result is input to the demodulator 15 via the interleaver 20, and the demodulator 15 refers to the decoding result of the decoder 17 and outputs a further highly accurate demodulation result. In the wireless communication system of this embodiment, the transmitter performs encoding and modulation using the encoder 10, the interleaver 11, and the modulator 12, and the receiver uses the demodulator 15, the deinterleaver 16, the decoder 17, and the interleaver. The BICM-ID is configured by performing iterative decryption processing using 20.
 本実施例の無線通信システムでは、送信機の符号最適化処理部19が、BICM-IDでの繰り返し復号処理で得られる尤度情報に基づいて、冗長ビットの生成方法を制御する機能を有する。受信機では、BICM-IDの繰り返し処理の結果、誤りが残留した場合、復調器15から出力される外部情報(Extrinsic Information)と復調器15に入力される事前情報(A Priori Information)とを尤度情報として用いて、送信機から再送する追加の冗長ビットを決定するための制御情報(冗長ビットの情報又は尤度情報)を生成する。受信機では、再送要求と共に、制御情報(冗長ビットの情報又は尤度情報)を送信機へフィードバックする。送信機では、受信機からの制御情報に基づいて、再送する追加の冗長ビットを決定し、符号器10を制御する。符号最適化に用いる尤度情報は、インタリーバ20、デインタリーバ16の前後で等価であり、そのどちらを用いてもよい。符号最適化処理部19が用いる尤度情報は、復調器の外部情報又は復号器の事前情報の尤度情報と、復調器の事前情報又は復号器の外部情報の尤度情報の組み合わせに基づいて再送符号を決定する。 In the wireless communication system of the present embodiment, the code optimization processing unit 19 of the transmitter has a function of controlling a redundant bit generation method based on likelihood information obtained by iterative decoding processing with BICM-ID. In the receiver, when an error remains as a result of the repetition process of BICM-ID, the external information (Extrinsic Information) output from the demodulator 15 and the prior information (A Priori Information) input to the demodulator 15 are estimated. Control information (redundant bit information or likelihood information) for determining additional redundant bits to be retransmitted from the transmitter is used as the degree information. The receiver feeds back control information (redundant bit information or likelihood information) to the transmitter together with the retransmission request. Based on the control information from the receiver, the transmitter determines additional redundant bits to be retransmitted and controls the encoder 10. Likelihood information used for code optimization is equivalent before and after the interleaver 20 and the deinterleaver 16, and either of them may be used. The likelihood information used by the code optimization processor 19 is based on a combination of likelihood information of demodulator external information or decoder prior information and likelihood information of demodulator prior information or decoder external information. A retransmission code is determined.
 図2は、本実施例の再送手順を示す図である。 FIG. 2 is a diagram showing a retransmission procedure according to the present embodiment.
 送信機から初回送信が行われ(24)、受信機でエラーが検出された場合、受信機から送信機へ再送要求と符号最適化情報とがフィードバックされる(25)。送信機では、フィードバックされた符号最適化情報に基づいて再送に用いる符号を生成し、冗長ビットを追加して2回目の送信を行う(26)。受信機では、バッファに蓄積された初回送信時の受信信号と2回目に追加された冗長ビットとを合わせて繰り返し復号処理を行い、エラーが残留する場合には、再度、受信機から送信機へ再送要求と符号最適化情報とをフィードバックする(27)。以後、受信機でのエラーが無くなるか、又は再送回数の上限値に達するまで繰り返し再送処理を行い(28)、受信機でエラー無く復号処理が完了した場合に受信確認応答を送信機へフィードバックし(29)、通信処理を終了する。 First transmission is performed from the transmitter (24), and when an error is detected at the receiver, a retransmission request and code optimization information are fed back from the receiver to the transmitter (25). The transmitter generates a code to be used for retransmission based on the fed back code optimization information, adds a redundant bit, and performs the second transmission (26). The receiver repeats the decoding process by combining the received signal at the first transmission stored in the buffer and the redundant bit added for the second time. If an error remains, the receiver again sends it from the receiver to the transmitter. A retransmission request and code optimization information are fed back (27). Thereafter, the retransmission process is repeated until there is no error at the receiver or the upper limit of the number of retransmissions is reached (28), and when the decoding process is completed without error at the receiver, a reception confirmation response is fed back to the transmitter. (29) The communication process is terminated.
 なお、送信機の符号最適化処理部19が設計した冗長ビットの構成を明示的に受信機へ通知しないことにより再送に必要なオーバーヘッドを削減してもよい。この場合、送信機の符号最適化処理部19と受信機の符号最適化処理部21とで同一の冗長ビットを決定するアルゴリズムを用い、復号器17は受信機の符号最適化処理部21から冗長ビットの構成を得て復号処理を行う。 Note that the overhead required for retransmission may be reduced by not explicitly notifying the receiver of the redundant bit configuration designed by the code optimization processing unit 19 of the transmitter. In this case, the decoder 17 uses the algorithm for determining the same redundant bits in the code optimization processing unit 19 of the transmitter and the code optimization processing unit 21 of the receiver, and the decoder 17 performs redundancy from the code optimization processing unit 21 of the receiver. The bit configuration is obtained and the decoding process is performed.
 図3(A)は、本実施例における受信機の繰り返し復号処理部18を示す図であり、図3(B)は、初回送信時のEXIT解析結果を示す図であり、図3(C)は、N回送信後のEXIT解析結果を示す図である。 FIG. 3A is a diagram illustrating the iterative decoding processing unit 18 of the receiver in the present embodiment, and FIG. 3B is a diagram illustrating an EXIT analysis result at the time of initial transmission, and FIG. These are figures which show the EXIT analysis result after N times transmission.
 BICM-IDで復調器と復号器の間でやり取りされる尤度情報としては、ビット単位の対数尤度比(LLR:Log Likelihood Ratio)が一般的に用いられる。LLRは、当該ビットbが0である確率と1である確率の比の対数表現であり、数式(1)で表される。 As the likelihood information exchanged between the demodulator and the decoder using BICM-ID, a log-likelihood ratio (LLR: Log Likelihood Ratio) in units of bits is generally used. LLR is a logarithmic expression of the ratio between the probability that the bit b is 0 and the probability that it is 1, and is expressed by Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(1)において、P(b=0)はbが0である確率、P(b=1)はbが1である確率を示す。 In Equation (1), P (b = 0) indicates the probability that b is 0, and P (b = 1) indicates the probability that b is 1.
 BICM-IDの繰り返し復号処理の収束特性は、非特許文献3に記載されたEXIT(Extrinsic Information Transfer)解析によって解析できる。EXIT解析では、復号器、復調器の入出力特性を、数式(2)で表わされるビットの相互情報量Imの形で表示し、両者の特性を重ねて一つのチャートにプロットすることによって繰り返し復号処理で得られる情報量を解析できる。 The convergence characteristics of the BICM-ID iterative decoding process can be analyzed by EXT (Extrinsic Information Transfer) analysis described in Non-Patent Document 3. In the EXIT analysis, the input / output characteristics of the decoder and demodulator are displayed in the form of the mutual information amount Im of the bit expressed by Equation (2), and the characteristics of both are overlapped and plotted on one chart for repeated decoding. The amount of information obtained by processing can be analyzed.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数式(2)の相互情報量は、ビットの相互情報量の符号語全体の平均であり、0~1の値で表され、1に近いほど符号語全体のビット尤度が大きいことを示す。 The mutual information amount in Equation (2) is an average of the entire code word of the mutual information amount of bits, and is expressed by a value of 0 to 1, and the closer to 1, the greater the bit likelihood of the entire code word.
 復調器の事前情報IA,DEMと復号器の外部情報IE,DECを横軸に、復調器の外部情報IE,DEM、復号器の事前情報IA,DECを縦軸に取ると、繰り返し復号処理により相互情報量はそれぞれの特性に沿って増加する。図3(B)に示す初回送信時のEXIT解析結果30で、両者の特性が交差している点で相互情報量の増加が停止し、復号結果に誤りが残留する。この交差点における相互情報量から、復号器の特性を、交差点の座標の事前情報を与えた際の外部情報の値が大きくなるように変更することによって、交差点がより1に近付く。つまり、再送による追加の情報ビットを変更し、交差点がより1に近づくように復号器の特性を変更することによって、再送後の繰り返し復号での残留誤りを低減できる。この処理を繰り返すことによって、図3(C)に示すように、N回送信後のEXIT解析結果31で復調器と復号器の収束特性が交差しないように復号器の特性を変更し、誤りのない結果を得ることが可能となる。 Prior information I A demodulator, DEM and the decoder of the external information I E, the DEC on the horizontal axis, the demodulator of the external information I E, DEM, prior information I A decoder, taking the vertical axis to DEC, The mutual information amount increases along each characteristic by the iterative decoding process. In the EXIT analysis result 30 at the time of initial transmission shown in FIG. 3B, the increase in the mutual information amount is stopped at the point where the characteristics of the two intersect, and errors remain in the decoding result. By changing the characteristics of the decoder from the mutual information amount at the intersection so that the value of the external information when the prior information of the coordinates of the intersection is given becomes larger, the intersection becomes closer to 1. That is, by changing the additional information bits due to retransmission and changing the characteristics of the decoder so that the intersection is closer to 1, residual errors in iterative decoding after retransmission can be reduced. By repeating this process, as shown in FIG. 3C, the characteristics of the decoder are changed so that the convergence characteristics of the demodulator and the decoder do not intersect in the EXIT analysis result 31 after N transmissions. It is possible to obtain no results.
 図4は、本実施例の畳み込み符号を用いた符号化変調処理部の構成の一例を示す図である。 FIG. 4 is a diagram illustrating an example of a configuration of a coded modulation processing unit using a convolutional code according to the present embodiment.
 図4に示す符号化変調処理部は畳み込み符号を用いるので、符号器10が畳み込み符号器40で構成される。また、畳み込み符号器40とインタリーバ11との間に、符号をパンクチャ処理するパンクチャ処理部41が設けられる。 Since the encoded modulation processing unit shown in FIG. 4 uses a convolutional code, the encoder 10 is composed of a convolutional encoder 40. In addition, a puncture processing unit 41 that punctures codes is provided between the convolutional encoder 40 and the interleaver 11.
 畳み込み符号の誤り訂正能力は、拘束長(回路規模に相当)に対する符号の自由距離で決定されることが知られており、拘束長に対する自由距離が大きくなる(好ましくは、最大の)符号が一般に用いられる。例えば、拘束長が7、符号化率が1/2(ブランチ数が2)の畳み込み符号では生成多項式(133,171)が、最大自由距離を持つことが知られており、一般に用いられている。一方で、本実施例の畳み込み符号では、少なくとも2種類の自由距離を持つ生成多項式を持つことを特徴とする。つまり、一般には誤り訂正能力が劣るため用いられていない自由距離が小さい生成多項式を用いることによって、復調器の特性に応じて再送時の符号設計を可能とし、良好な繰り返し復号を実現する。 It is known that the error correction capability of a convolutional code is determined by the free distance of the code with respect to the constraint length (corresponding to the circuit scale), and a code with a large (preferably maximum) free distance with respect to the constraint length is generally used. Used. For example, it is known that a generator polynomial (133, 171) has a maximum free distance in a convolutional code with a constraint length of 7 and an encoding rate of 1/2 (the number of branches is 2) and is generally used. . On the other hand, the convolutional code of this embodiment is characterized by having a generator polynomial having at least two types of free distances. That is, in general, by using a generator polynomial having a small free distance that is not used due to poor error correction capability, code design at the time of retransmission can be made according to the characteristics of the demodulator, and good iterative decoding can be realized.
 図5は、本実施例の畳み込み符号器の一例を示す図である。 FIG. 5 is a diagram illustrating an example of a convolutional encoder according to the present embodiment.
 まず、情報ビットは拘束長が-1のメモリ長を持つシフトレジスタ50に入力され、シフトレジスタのタップから取り出した出力の論理演算によって、畳み込み符号を構成する。本実施例の畳み込み符号器は、自由距離dが異なる少なくとも二つのブランチ有することを特徴とする。また、自由距離が同一でも、生成多項式が異なる場合には、復号器の収束特性は完全には同一にならないため、同じ自由距離の複数のブランチを有してもよい。 First, the information bits are input to the shift register 50 having a memory length with a constraint length of −1, and a convolutional code is formed by the logical operation of the output extracted from the tap of the shift register. The convolutional encoder of this embodiment is characterized by having at least two branches having different free distances d. Even if the free distance is the same, but the generator polynomials are different, the convergence characteristics of the decoder are not completely the same, and therefore, a plurality of branches having the same free distance may be included.
 図6は、本実施例の畳み込み符号を自由距離や生成多項式の異なるブランチ毎にメモリを分離して構成した場合の一例を示す図である。 FIG. 6 is a diagram illustrating an example in which the convolutional code according to the present embodiment is configured by separating memories for different branches with different free distances and generator polynomials.
 図5に示す畳み込み符号器では、一つの大きなシフトレジスタのタップの出力から自由距離が異なるブランチを生成したが、図6に示す畳み込み符号器のように、複数のシフトレジスタに分けて構成してもよい。 In the convolutional encoder shown in FIG. 5, branches having different free distances are generated from the output of one large shift register tap. However, the convolutional encoder shown in FIG. 6 is divided into a plurality of shift registers. Also good.
 図7は、拘束長が7の符号器の一例を示す図である。この符号器では、拘束長が7の畳み込み符号において、自由度距離が10となる生成多項式(133,171)の符号Ca、と自由距離が5となる生成多項式(5,7)の符号Cbとを有する。これらの自由距離が異なる符号を選択及びパンクチャ処理を行い、符号や再送符号を設計することにより、BICM-IDにHARQを適用する場合の再送符号を最適化する。 FIG. 7 is a diagram illustrating an example of an encoder having a constraint length of 7. In this encoder, in a convolutional code with a constraint length of 7, a code Ca of a generator polynomial (133, 171) with a degree of freedom distance of 10 and a code Cb of a generator polynomial (5, 7) with a free distance of 5 Have By selecting and puncturing the codes having different free distances and designing the codes and retransmission codes, the retransmission codes when HARQ is applied to the BICM-ID are optimized.
 図8は、本実施例の畳み込み符号の復号器の収束特性の一例を示す図である。 FIG. 8 is a diagram illustrating an example of the convergence characteristics of the convolutional code decoder according to the present embodiment.
 図8は、自由距離が3、符号化率が1/2の畳み込み符号の復号器の収束特性80と、自由距離が10、符号化率が1/2の畳み込み符号の復号器の収束特性81とを示す。収束特性80及び81は同じ符号化率でありながら異なる収束特性を持つため、復調器の特性に応じて符号を設計することによって良好な特性の繰り返し復号が実現できる。 FIG. 8 shows a convergence characteristic 80 of a convolutional code decoder with a free distance of 3 and a coding rate of 1/2, and a convergence characteristic 81 of a convolutional code decoder with a free distance of 10 and a coding rate of 1/2. It shows. Since the convergence characteristics 80 and 81 have the same coding rate but different convergence characteristics, it is possible to realize iterative decoding with good characteristics by designing the code according to the characteristics of the demodulator.
 図9は、本実施例の畳み込み符号を用いた再送方法の一例を示す図である。 FIG. 9 is a diagram illustrating an example of a retransmission method using a convolutional code according to the present embodiment.
 図9では、図9(A)に示す符号器10(畳み込み符号器40、パンクチャ処理部41)を用いて、自由距離d0を持つ符号Caと自由距離d1を持つ符号Cbとの二つをパンクチャ処理して出力符号を生成する符号器を用いた場合を示す。 In FIG. 9, the encoder 10 (convolutional encoder 40, puncture processing unit 41) shown in FIG. 9A is used to puncture a code Ca having a free distance d0 and a code Cb having a free distance d1. The case where the encoder which processes and produces | generates an output code is shown is shown.
 まず、情報ビットを符号化し、異なる自由距離を持つ二つの符号語を生成し、パンクチャ処理により一部の符号語90を取り出して初回の送信を行う。初回送信の後、受信機からの再送要求を受信した場合、フィードバックされる符号最適化情報に基づいて追加の冗長ビットをパンクチャした符号の中から選択し、2回目以降の追加の冗長ビット(91、92)として送信する。どちらの自由距離を持つ符号語から追加の冗長ビットを選択するかによって復号器の収束特性を制御する。受信機では、誤りなく復号できることが確認されるまでは、初回送信時からの全ての符号語を蓄積しており、蓄積された全ての符号語を用いて繰り返し復号処理を行う。 First, the information bits are encoded, two code words having different free distances are generated, a part of the code words 90 are extracted by puncturing, and the first transmission is performed. When a retransmission request is received from the receiver after the initial transmission, an additional redundant bit is selected from among the punctured codes based on the code optimization information fed back, and the additional redundant bit (91 after the second time) , 92). The convergence characteristic of the decoder is controlled according to which free distance is used to select additional redundant bits. The receiver stores all codewords from the first transmission until it is confirmed that decoding can be performed without error, and repeatedly performs decoding processing using all the stored codewords.
 図10は、畳み込み符号を用いた再送方法における復号器の収束特性の一例を示す図である。図10には、初回送信時の収束特性101、2回目の送信時の収束特性102、3回目の送信の収束特性103及び復調器の収束特性100を示す。 FIG. 10 is a diagram illustrating an example of convergence characteristics of a decoder in a retransmission method using a convolutional code. FIG. 10 shows a convergence characteristic 101 at the first transmission, a convergence characteristic 102 at the second transmission, a convergence characteristic 103 at the third transmission, and a convergence characteristic 100 of the demodulator.
 説明のため、1回あたりの再送で送信する追加の冗長ビット数は初回送信時の符号語の1/4のサイズとし、冗長ビットは符号語の1/4のサイズで任意に制御できるものとする。また、符号器として、自由距離が3、10の符号語を持つ、符号化率1/4の畳み込み符号を用いる。 For the sake of explanation, the number of additional redundant bits to be transmitted in one retransmission is assumed to be 1/4 the size of the codeword at the time of initial transmission, and the redundant bits can be arbitrarily controlled by the 1/4 size of the codeword. To do. Further, a convolutional code having a code rate of 1/4 and a coding rate of 1/4 is used as an encoder.
 図10において、初回送信時は自由距離が3、10の符号語を、それぞれ50%パンクチャした符号を用いており、初回送信時の復号器の収束特性91は、復調器の収束特性100と、横軸0.013、縦軸0.16の点で交差しており、復号結果に誤りが生じている。 In FIG. 10, codes having 50% puncture of codewords having free distances of 3 and 10 at the time of initial transmission are used, and the convergence characteristics 91 of the decoder at the time of initial transmission are the convergence characteristics 100 of the demodulator, It intersects at the point of the horizontal axis 0.013 and the vertical axis 0.16, and an error has occurred in the decoding result.
 この交差点の座標に基づいて、2回目の送信に用いる追加の冗長ビットの生成方法を制御し、追加の冗長ビットを選択する。追加の冗長ビットの選択肢は、自由距離が3、10の符号語のパンクチャされた未送信の符号語のどちらかであり、2通りの方法がある。各方法において再送した場合に符号器が出力する外部情報は、それぞれ、0.038、0.022となる。このため、自由距離が3のパンクチャビットを送信する方法が、交差点における復号器の事前情報を与える際の外部情報が大きくなる。以下、同様の手順を繰り返し、3回目の送信後の復号器の収束特性103において、復調器の出力が1に到達する。このため、誤りのない繰り返し復号結果を得ることができる。 * Based on the coordinates of this intersection, the method of generating additional redundant bits used for the second transmission is controlled, and additional redundant bits are selected. An additional redundant bit option is either a punctured untransmitted codeword of codewords with a free distance of 3, 10 and there are two methods. The external information output by the encoder when retransmitted in each method is 0.038 and 0.022, respectively. For this reason, the method of transmitting puncture bits with a free distance of 3 increases the external information when providing prior information of the decoder at the intersection. Thereafter, the same procedure is repeated, and the output of the demodulator reaches 1 in the convergence characteristic 103 of the decoder after the third transmission. For this reason, an iterative decoding result without error can be obtained.
 以上に説明したように、本発明の実施例によると、復調器の収束特性に応じて符号生成方法を制御するため、信号対雑音電力比や通信容量のみでは特性が決定できないBICM-IDを用いたシステムでも再送による冗長ビットの増加を抑えて通信できる。 As described above, according to the embodiment of the present invention, since the code generation method is controlled according to the convergence characteristics of the demodulator, the BICM-ID whose characteristics cannot be determined only by the signal-to-noise power ratio and the communication capacity is used. Even in the existing systems, communication can be performed while suppressing an increase in redundant bits due to retransmission.
 また、繰り返し復号処理で得られる尤度情報に基づく値を制御情報として受信装置から送信装置へ通知するので、受信装置から送信装置へフィードバックする情報の量を少なくすることができる。また、受信装置の符号最適化処理部21と送信装置の符号最適化処理部19とが同一のアルゴリズムを用いて、冗長ビットの構成を明示的に受信機に通知しない場合における、再送に必要なオーバーヘッドを少なくすることができる。 Further, since the value based on the likelihood information obtained by the iterative decoding process is notified as control information from the receiving apparatus to the transmitting apparatus, the amount of information fed back from the receiving apparatus to the transmitting apparatus can be reduced. In addition, the code optimization processing unit 21 of the receiving apparatus and the code optimization processing unit 19 of the transmitting apparatus use the same algorithm, and are necessary for retransmission when the configuration of redundant bits is not explicitly notified to the receiver. Overhead can be reduced.
 また、前記繰り返し復号処理で得られる尤度情報に基づいて決定された符号の構成を制御情報として受信装置から送信装置へ通知する場合には、送信側で冗長ビットの構成を決定するアルゴリズムを持つ必要がなく、送信側での処理量を低減することができる。 Also, in the case where the code configuration determined based on the likelihood information obtained by the iterative decoding process is notified as control information from the reception device to the transmission device, an algorithm for determining the configuration of redundant bits on the transmission side is provided. This is unnecessary, and the processing amount on the transmission side can be reduced.
 また、冗長ビットの構成を明示的に受信機に通知する場合には、受信側で冗長ビットの構成を決定するアルゴリズムを持つ必要がなく、受信側での処理量を低減することができる。 Also, when the configuration of redundant bits is explicitly notified to the receiver, it is not necessary to have an algorithm for determining the configuration of redundant bits on the receiving side, and the processing amount on the receiving side can be reduced.
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 The present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Moreover, you may add the structure of another Example to the structure of a certain Example. In addition, for a part of the configuration of each embodiment, another configuration may be added, deleted, or replaced.
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Claims (8)

  1.  送信装置から受信装置へデータを送信する無線通信方法であって、
     前記受信装置は、
     無線信号を復調し、ビット情報を出力する復調器と、
     前記ビット情報を復号する復号器と、
     前記ビット情報のビット順序を入れ替えるインタリーブ処理部と、
     前記ビット情報のビット順序を入れ替えるデインタリーブ処理部と、
     冗長ビットの制御情報を生成する第1の符号最適化処理部とを有し、
     前記送信装置は、少なくとも2種類の自由距離の符号語を持つ畳み込み符号を用いて符号化を行い、
     前記方法は、
     前記復調器が、事前情報を用いて無線信号を復調し、第1のビット情報を出力し、
     前記インタリーブ処理部が、前記第1のビット情報に対し、ビットの順序を入れ替えるインタリーブ処理で入れ替えられたビットの順序を元に戻すデインタリーブ処理を行い、第2のビット情報を出力し、
     前記復号器が、前記第2のビット情報を復号して、第3のビット情報を出力し、
     前記デインタリーブ処理部が、前記第3のビット情報に対し、前記デインタリーブ処理の逆処理となるインタリーブ処理を行い、第4のビット情報を生成し、前記第4のビット情報を前記事前情報として前記復調器へ入力することによって、繰り返し復号処理を行い、
     前記第1の符号最適化処理部が、前記繰り返し復号処理の入力及び出力の2つの尤度情報の組み合わせに基づいて冗長ビットの制御情報を生成し、前記生成された制御情報を前記送信装置へ通知し、
     前記送信装置が、前記生成された制御情報に基づいて前記自由距離が異なる符号語の少なくとも一方を用いて追加の冗長ビットを送信することを特徴とする無線通信方法。
    A wireless communication method for transmitting data from a transmitting device to a receiving device,
    The receiving device is:
    A demodulator that demodulates a radio signal and outputs bit information;
    A decoder for decoding the bit information;
    An interleave processing unit for changing the bit order of the bit information;
    A deinterleave processing unit for changing the bit order of the bit information;
    A first code optimization processing unit for generating redundant bit control information,
    The transmitter performs encoding using a convolutional code having at least two types of free-distance codewords,
    The method
    The demodulator demodulates the radio signal using prior information and outputs first bit information;
    The interleave processing unit performs deinterleaving processing for returning the order of the bits replaced in the interleaving processing for replacing the order of bits to the first bit information, and outputs second bit information,
    The decoder decodes the second bit information and outputs third bit information;
    The deinterleave processing unit performs an interleave process on the third bit information, which is a reverse process of the deinterleave process, generates fourth bit information, and converts the fourth bit information to the prior information. As an input to the demodulator to perform an iterative decoding process,
    The first code optimization processing unit generates redundant bit control information based on a combination of two likelihood information of input and output of the iterative decoding process, and transmits the generated control information to the transmission device. Notify
    The wireless communication method, wherein the transmitting device transmits an additional redundant bit using at least one of codewords having different free distances based on the generated control information.
  2.  請求項1に記載の無線通信方法であって、
     前記送信装置は、第2の符号最適化処理部を有し、
     前記受信装置から前記送信装置へ通知される制御情報は、前記繰り返し復号処理で得られる尤度情報に基づく値であり、
     前記第1の符号最適化処理部と前記第2の符号最適化処理部とは、前記制御情報に基づいて符号の構成を決定する同一のアルゴリズムを有することを特徴とする無線通信方法。
    The wireless communication method according to claim 1,
    The transmission device includes a second code optimization processing unit,
    The control information notified from the receiving device to the transmitting device is a value based on likelihood information obtained by the iterative decoding process,
    The wireless communication method according to claim 1, wherein the first code optimization processing unit and the second code optimization processing unit have the same algorithm for determining a code configuration based on the control information.
  3.  請求項1に記載の無線通信方法であって、
     前記受信装置から前記送信装置へ通知される制御情報は、前記繰り返し復号処理で得られる尤度情報に基づいて決定された符号の構成であることを特徴とする無線通信方法。
    The wireless communication method according to claim 1,
    The wireless communication method characterized in that the control information notified from the receiving device to the transmitting device has a code structure determined based on likelihood information obtained by the iterative decoding process.
  4.  請求項1に記載の無線通信方法であって、
     前記送信装置は、第2の符号最適化処理部を有し、
     前記第2の符号最適化処理部は、前記送信装置が送信する冗長ビットの構成を前記受信装置に送信することを特徴とする無線通信方法。
    The wireless communication method according to claim 1,
    The transmission device includes a second code optimization processing unit,
    The second code optimization processing unit transmits a configuration of redundant bits transmitted by the transmission device to the reception device.
  5.  送信装置から受信装置へデータを送信する無線通信システムであって、
     前記受信装置は、
     無線信号を復調し、ビット情報を出力する復調器と、
     前記ビット情報を復号する復号器と、
     前記ビット情報のビット順序を入れ替えるインタリーブ処理部と、
     前記ビット情報のビット順序を入れ替えるデインタリーブ処理部と、
     冗長ビットの制御情報を生成する第1の符号最適化処理部とを有し、
     前記送信装置は、少なくとも2種類の自由距離の符号語を持つ畳み込み符号を用いて符号化を行い、
     前記復調器は、事前情報を用いて無線信号を復調し、第1のビット情報を出力し、
     前記インタリーブ処理部は、前記第1のビット情報に対し、ビットの順序を入れ替えるインタリーブ処理で入れ替えられたビットの順序を元に戻すデインタリーブ処理を行い、第2のビット情報を出力し、
     前記復号器は、前記第2のビット情報を復号して、第3のビット情報を出力し、
     前記デインタリーブ処理部が、前記第3のビット情報に対し、前記デインタリーブ処理の逆処理となるインタリーブ処理を行い、第4のビット情報を生成し、前記第4のビット情報を前記事前情報として前記復調器へ入力することにより、繰り返し復号処理を行い、
     前記第1の符号最適化処理部が、前記繰り返し復号処理の入力及び出力の2つの尤度情報の組み合わせに基づいて冗長ビットの制御情報を生成し、前記生成された制御情報を前記送信装置へ通知し、
     前記送信装置が、前記生成された制御情報に基づいて前記自由距離が異なる符号語の少なくとも一方を用いて追加の冗長ビットを送信することを特徴とする無線通信システム。
    A wireless communication system for transmitting data from a transmitting device to a receiving device,
    The receiving device is:
    A demodulator that demodulates a radio signal and outputs bit information;
    A decoder for decoding the bit information;
    An interleave processing unit for changing the bit order of the bit information;
    A deinterleave processing unit for changing the bit order of the bit information;
    A first code optimization processing unit for generating redundant bit control information,
    The transmitter performs encoding using a convolutional code having at least two types of free-distance codewords,
    The demodulator demodulates the radio signal using prior information and outputs first bit information;
    The interleave processing unit performs deinterleaving processing for returning the order of the bits replaced in the interleaving processing for replacing the order of the bits to the first bit information, and outputs second bit information,
    The decoder decodes the second bit information and outputs third bit information;
    The deinterleave processing unit performs an interleave process on the third bit information, which is a reverse process of the deinterleave process, generates fourth bit information, and converts the fourth bit information to the prior information. As an input to the demodulator to perform iterative decoding processing,
    The first code optimization processing unit generates redundant bit control information based on a combination of two likelihood information of input and output of the iterative decoding process, and transmits the generated control information to the transmission device. Notify
    The wireless communication system, wherein the transmitting device transmits an additional redundant bit using at least one of codewords having different free distances based on the generated control information.
  6.  請求項5に記載の無線通信システムであって、
     前記送信装置は、第2の符号最適化処理部を有し、
     前記受信装置から前記送信装置へ通知される制御情報は、前記繰り返し復号処理で得られる尤度情報に基づく値であり、
     前記第1の符号最適化処理部と前記第2の符号最適化処理部とは、前記制御情報に基づいて符号の構成を決定する同一のアルゴリズムを有することを特徴とする無線通信システム。
    The wireless communication system according to claim 5,
    The transmission device includes a second code optimization processing unit,
    The control information notified from the receiving device to the transmitting device is a value based on likelihood information obtained by the iterative decoding process,
    The wireless communication system, wherein the first code optimization processing unit and the second code optimization processing unit have the same algorithm for determining a code configuration based on the control information.
  7.  請求項5に記載の無線通信システムであって、
     前記受信装置から前記送信装置へ通知される制御情報は、前記繰り返し復号処理で得られる尤度情報に基づいて決定された符号の構成であることを特徴とする無線通信システム。
    The wireless communication system according to claim 5,
    The wireless communication system, wherein the control information notified from the receiving device to the transmitting device has a code configuration determined based on likelihood information obtained by the iterative decoding process.
  8.  請求項5に記載の無線通信システムであって、
     前記送信装置は、第2の符号最適化処理部を有し、
     前記第2の符号最適化処理部は、前記送信装置が送信する冗長ビットの構成を前記受信装置に送信することを特徴とする無線通信システム。
    The wireless communication system according to claim 5,
    The transmission device includes a second code optimization processing unit,
    The wireless communication system, wherein the second code optimization processing unit transmits a configuration of redundant bits transmitted by the transmission device to the reception device.
PCT/JP2018/014518 2017-06-06 2018-04-05 Wireless communication method and wireless communication system WO2018225364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523367A JP6812546B2 (en) 2017-06-06 2018-04-05 Wireless communication method and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-111439 2017-06-06
JP2017111439 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018225364A1 true WO2018225364A1 (en) 2018-12-13

Family

ID=64566637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014518 WO2018225364A1 (en) 2017-06-06 2018-04-05 Wireless communication method and wireless communication system

Country Status (2)

Country Link
JP (1) JP6812546B2 (en)
WO (1) WO2018225364A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087707A (en) * 2008-09-30 2010-04-15 Sharp Corp Transmission/reception system and mobile communication method
JP2014064112A (en) * 2012-09-20 2014-04-10 Hitachi Kokusai Electric Inc Radio communication method, radio transmitter, radio receiver, and radio communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087707A (en) * 2008-09-30 2010-04-15 Sharp Corp Transmission/reception system and mobile communication method
JP2014064112A (en) * 2012-09-20 2014-04-10 Hitachi Kokusai Electric Inc Radio communication method, radio transmitter, radio receiver, and radio communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ASSIMI, A. N. ET AL.: "Packet combining for turbo- diversity in HARQ systems with integrated turbo- equalization", TURBO CODES AND RELATED TOPICS, 2008 5TH INTERNATIONAL SYMPOSIUM, September 2008 (2008-09-01), pages 61 - 65, XP031353663 *
EL-HAJJAR, M. ET AL.: "EXIT charts for system design and analysis", IEEE COMMUNICATIONS SURVEYS & TUTORIALS, vol. 16, 1 May 2013 (2013-05-01), pages 127 - 153, XP011539563 *
IBI, SHINSUKE ET AL.: "EXIT chart-aided adaptive coding for multilevel BICM with turbo equalization in frequency-selective MIMO channels", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 56, 6 November 2007 (2007-11-06), pages 3757 - 3769, XP011194731 *
OTENG-AMOAKO, K. ET AL.: "Asymmetric rate compatible turbo codes in hybrid automatic repeat request schemes", IEE PROCEEDINGS-COMMUNICATIONS, vol. 153, 5 October 2006 (2006-10-05), pages 603 - 610, XP006027340 *

Also Published As

Publication number Publication date
JPWO2018225364A1 (en) 2020-02-27
JP6812546B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP3476807B2 (en) Apparatus and method for transmitting data in data communication system using combined retransmission scheme
JP7189161B2 (en) Rate matching method and apparatus for communication and broadcasting systems
US7251285B2 (en) Method and apparatus for transmitting and receiving using turbo code
KR100584170B1 (en) Turbo Coded Hybrid Automatic Repeat Request System And Error Detection Method
WO2017156792A1 (en) Transmission of new data in a hybrid automatic repeat request (harq) retransmission with polar coded transmissions
EP2111703B1 (en) Method for sub -packet generation with adaptive bit index
CN108400844B (en) Information processing method and device, communication equipment and communication system
KR20070059696A (en) Signal transmitting/receiving apparatus for supporting variable coding rate in a communication system and method thereof
CN1275278A (en) Communications systems and methods employing parallel coding without interleaving
CA2490802A1 (en) A fast h-arq acknowledgement generation method using a stopping rule for turbo decoding
US10338996B2 (en) Pipelined decoder and method for conditional storage
EP3540947A1 (en) Data transmission method, sending device, receiving device and communication system
EP2405590A1 (en) Coder, receiver, wireless communication system, puncture pattern selection method, and program therefor
KR20210006807A (en) Apparatus and method to transmit and receive signal in communication system
KR20080010609A (en) Method and apparatus for error correction in multiple-input multiple-output communication system
WO2018076194A1 (en) Hybrid automatic repeat request for encoded data
CN100486235C (en) Iterative receiving method for maintaining soft information
WO2014053838A1 (en) Signal processing apparatus and method using llr and a priori probability
CN102308507B (en) Wireless communication apparatus
JP6602955B2 (en) Wireless communication method and wireless communication system
WO2018225364A1 (en) Wireless communication method and wireless communication system
JP6872073B2 (en) Wireless communication method and wireless communication system
Li et al. Outer Codes
WO2010113216A1 (en) Transmission device, receiver, communication system, and communication method
KR20130102820A (en) Operating method of encoding device and decoding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812786

Country of ref document: EP

Kind code of ref document: A1