WO2018221456A1 - Route searching device, control method, program, and storage medium - Google Patents

Route searching device, control method, program, and storage medium Download PDF

Info

Publication number
WO2018221456A1
WO2018221456A1 PCT/JP2018/020368 JP2018020368W WO2018221456A1 WO 2018221456 A1 WO2018221456 A1 WO 2018221456A1 JP 2018020368 W JP2018020368 W JP 2018020368W WO 2018221456 A1 WO2018221456 A1 WO 2018221456A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
information
route
vehicle
voxel
Prior art date
Application number
PCT/JP2018/020368
Other languages
French (fr)
Japanese (ja)
Inventor
和紀 小山
加藤 正浩
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018221456A1 publication Critical patent/WO2018221456A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids

Definitions

  • the present invention relates to route search technology.
  • Patent Document 1 when a road whose traffic volume has changed significantly before and after a specific reference date is detected based on probe information from a plurality of probe cars, it is important to affect the road.
  • a road network analysis system that searches for a survey route that passes through a change-related road that is regarded as a change-related road that has undergone a change in the road network is disclosed.
  • a main object of the present invention is to provide a route search device capable of preferably searching for a route on which a measurement vehicle for map maintenance should travel.
  • the invention according to claim 1 is a route search device, and a first acquisition unit that acquires first point cloud information about each distance from a reference position to a plurality of positions measured by the measurement unit; Measurement is performed based on a second acquisition unit that acquires map information in which second point group information based on a plurality of position information is recorded for each region, and a comparison result of the first point group information and the second point group information.
  • a search unit that determines a necessary target area and searches for a route that uses a position where the target area can be measured as a transit point.
  • the invention according to claim 9 is a control method executed by the route search apparatus, wherein the first point cloud information about each distance from the reference position to a plurality of positions measured by the measurement unit, and a map for each region Based on the collation result with the second point cloud information recorded in the information, a determination step for determining the target area that is an area that needs to be measured, and a route that uses the target area as a route from the position where the target area can be measured are searched. And a search step.
  • the invention according to claim 10 is a program executed by a computer, and is recorded in map information for each area and first point cloud information about each distance from a reference position to a plurality of positions measured by a measurement unit.
  • a determination unit that determines a target region that is a region that needs to be measured based on a collation result with the second point cloud information that has been performed, and a search unit that searches for a route that uses a position where the target region can be measured as a waypoint To make the computer function.
  • FIG. 1 is a schematic configuration of a map generation system.
  • the block configuration of a vehicle equipment, a server apparatus, and a measurement system is shown.
  • An example of the schematic data structure of voxel data is shown.
  • a specific example of NDT scan matching will be described.
  • It is a flowchart which shows the process sequence which an onboard equipment performs.
  • It is a flowchart which shows the process sequence which a server apparatus performs.
  • An overhead view around the measurement vehicle when the measurement vehicle travels based on the measurement route is shown.
  • a route search device the first point group information relating to each distance from the reference position to a plurality of positions measured by the measurement unit, and recorded in the map information for each area.
  • a determination unit that determines a target region that is a region that needs to be measured based on a collation result with the second point cloud information that has been performed, and a search unit that searches for a route that uses a position where the target region can be measured as a waypoint And comprising.
  • the route search device can identify a target area that needs to be measured based on a result of matching between the first point cloud information measured by the measurement unit and the second point cloud information of the map information, and can measure the target area. It is possible to search for a suitable route.
  • the search unit outputs information on the route in which the lane on which the measurement vehicle should travel is specified at least within a range in which the target area can be measured.
  • the route search device can output route information of a measurement vehicle in which a lane suitable for measuring the target region is designated.
  • the search unit outputs information related to the route that specifies a speed at which the measurement vehicle should travel at least within a range in which the target area can be measured.
  • the route search device can output route information of the measurement vehicle that specifies a speed suitable for measuring the target region.
  • the search unit acquires the current position of the measurement vehicle, and searches for the route using the current position as a departure point.
  • the route search device can suitably search for a route on which a specific measurement vehicle should travel.
  • the first acquisition unit acquires information on measurement conditions when the first point group information is measured together with the first point group information
  • the determination unit includes: The target region is determined based on the collation result and information on the measurement condition.
  • the route search device can determine the target region to be measured in consideration of the measurement conditions when the first point cloud information is measured.
  • the determination unit may use the target region based on at least one of a time zone, day of the week, and weather when the first point cloud information is measured as the measurement condition. To decide.
  • the route search device can determine the target region to be measured in consideration of the time zone at the time of measurement, the day of the week, or the weather.
  • the first acquisition unit receives the verification result from a plurality of vehicles including the measurement unit, and the search unit provides information on the route as driving assistance for the measurement vehicle. Is transmitted to the control device.
  • the route search device functions as a server device that collects the matching results received from a plurality of vehicles, and transmits information on the route searched based on the collected matching results to the control device of the measurement vehicle. it can.
  • the route search device further includes a drive support unit that is mounted on the measurement vehicle and performs drive support so that the measurement vehicle travels on the route searched by the search unit.
  • the route search device can search for a route on which the measurement vehicle should travel, and suitably perform driving support so that the measurement vehicle travels on the searched route.
  • a control method executed by the route search apparatus executed by the route search apparatus, the first point cloud information about each distance from the reference position to a plurality of positions measured by the measurement unit, A determination step for determining a target region that is a region that needs to be measured based on a collation result with the second point cloud information recorded in the map information for each region, and a location where the target region can be measured And a search step for searching for a route to be performed.
  • the route search device identifies a target region that needs to be measured based on a result of matching between the first point cloud information and the second point cloud information, and creates a route that can measure the target region. It can search suitably.
  • a program executed by a computer, the first point cloud information regarding each distance from a reference position to a plurality of positions measured by a measurement unit, and a map for each region Based on the collation result with the second point cloud information recorded in the information, a determination unit that determines a target area that is an area that needs to be measured, and a route that uses the position where the target area can be measured as a route
  • the computer is caused to function as a search unit.
  • the computer specifies a target area that needs to be measured based on a result of collation between the first point cloud information and the second point cloud information, and suitably searches for a path that can measure the target area. can do.
  • the program is stored in a storage medium.
  • FIG. 1 is a schematic configuration of a map generation system according to this embodiment.
  • the map generation system includes an in-vehicle device 1 mounted on a general vehicle, a server device 2 that distributes and updates map information, and a measurement system 4 mounted on a measurement vehicle for map maintenance.
  • the in-vehicle device 1 is electrically connected to an external sensor such as a lidar (Lidal: Light Detection and Ranging, or Laser Illuminated Detection And Ranging), an internal sensor such as a gyro sensor or a vehicle speed sensor, and based on these outputs.
  • an external sensor such as a lidar (Lidal: Light Detection and Ranging, or Laser Illuminated Detection And Ranging), an internal sensor such as a gyro sensor or a vehicle speed sensor, and based on these outputs.
  • the position of a general vehicle on which the in-vehicle device 1 is mounted also referred to as “own vehicle position” is estimated.
  • the in-vehicle device 1 stores map data including voxel data.
  • the voxel data is data in which position information of a stationary structure is recorded for each area (also referred to as “voxel”) when the three-dimensional space is divided into a plurality of
  • the voxel data includes data representing the point cloud data measured for the stationary structure in each voxel by a normal distribution.
  • the in-vehicle device 1 performs scan matching based on NDT (Normal Distributions Transform) based on the point cloud data output by the lidar and the voxel data corresponding to the voxel to which the point cloud data belongs. Then, when the degree of matching with the stored voxel data is lower than the threshold, the in-vehicle device 1 determines that the region used for matching has changed significantly, and all of the used in matching at positions where the degree of matching is lower than the threshold. Is transmitted to the server apparatus 2 as change point information “D1”.
  • NDT Normal Distributions Transform
  • the degree of matching for each voxel is calculated.
  • a voxel whose degree of matching for each voxel is lower than a threshold value is detected, it is determined that the voxel may include a change point at which a change from the map data has occurred, and information regarding the detected voxel is changed point information D1.
  • the function equivalent to the vehicle equipment 1 may be incorporated in the general vehicle.
  • the server device 2 performs data communication with the in-vehicle device 1 corresponding to a plurality of general vehicles.
  • the server device 2 stores a distribution map DB 20 for distribution to the vehicle-mounted device 1 corresponding to a plurality of vehicles, and the distribution map DB 20 includes voxel data corresponding to each voxel.
  • the server device 2 accumulates the change point information D1 received from the vehicle-mounted device 1, and specifies a voxel (also referred to as “measurement target voxel Btag”) that requires measurement by the measurement vehicle based on the accumulated change point information D1. .
  • the server device 2 determines a route (also referred to as “measurement route”) via a position where the measurement target voxel Btag can be measured, and obtains measurement route information “D2” specifying the measurement route. Transmit to the measurement system 4.
  • the change point information D1 is an example of the “matching result” in the present invention
  • the measurement target voxel Btag is an example of the “target region” in the present invention.
  • the measurement system 4 is a system that generates highly accurate 3D point cloud data, and performs driving such as automatic driving and route guidance so that the measurement vehicle travels along the measurement route indicated by the measurement route information D2 received from the server device 2.
  • the measurement system 4 is an example of the “control device” in the present invention.
  • FIG. 2A is a block diagram showing a functional configuration of the in-vehicle device 1.
  • the in-vehicle device 1 mainly includes a communication unit 11, a storage unit 12, a sensor unit 13, an input unit 14, a control unit 15, and an output unit 16.
  • the communication unit 11, the storage unit 12, the sensor unit 13, the input unit 14, the control unit 15, and the output unit 16 are connected to each other via a bus line.
  • the communication unit 11 receives the map information distributed from the server device 2 based on the control of the control unit 15 or transmits the change point information D1 generated by the control unit 15 to the server device 2.
  • the storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process. In the present embodiment, the storage unit 12 stores a map DB 10 including voxel data.
  • the sensor unit 13 includes a rider 30, a camera 31, a GPS receiver 32, a gyro sensor 33, and a speed sensor 34.
  • the lidar 30 emits a pulse laser in a predetermined angular range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group data.
  • the lidar 30 scans data based on an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and a light reception signal output by the light receiving unit.
  • Output unit is
  • the scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal.
  • the lidar 30 is an example of the “measurement unit” in the present invention, and the point cloud data output by the lidar 30 is an example of the “first point cloud information” in the present invention.
  • the input unit 14 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate, and accepts an input for specifying a destination for route search, an input for specifying on / off of automatic driving, and the like.
  • the generated input signal is supplied to the control unit 15.
  • the output unit 16 is, for example, a display or a speaker that performs output based on the control of the control unit 15.
  • the control unit 15 includes a CPU that executes a program and controls the entire vehicle-mounted device 1. For example, the control unit 15 estimates the host vehicle position by performing scan matching based on NDT based on the point cloud data output from the lidar 30 and the voxel data corresponding to the voxel to which the point cloud data belongs. Do. Further, the control unit 15 detects a voxel that is estimated to have low matching accuracy based on an evaluation value (a comprehensive evaluation function value described later) obtained by scan matching based on NDT and an evaluation value for each voxel. And the control part 15 produces
  • FIG. 2B shows a schematic configuration of the server device 2.
  • the server device 2 includes a communication unit 21, a storage unit 22, and a control unit 25.
  • the communication unit 21, the storage unit 22, and the control unit 25 are connected to each other via a bus line.
  • the communication unit 21 communicates various data with the in-vehicle device 1 and the measurement system 4 based on the control of the control unit 25.
  • the storage unit 22 stores a program for controlling the operation of the server device 2 and holds information necessary for the operation of the server device 2.
  • the storage unit 22 stores the distribution map DB 20 and also stores change point information D1 transmitted from the plurality of in-vehicle devices 1.
  • the control unit 25 includes a CPU, a ROM, a RAM, and the like (not shown), and performs various controls on each component in the server device 2.
  • the control unit 25 accumulates the change point information D1 received from the in-vehicle device 1 in the storage unit 22, and specifies the measurement target voxel Btag based on the accumulated change point information D1. Then, the control unit 25 determines a measurement route including the measurement target voxel Btag in the measurement range, and transmits the measurement route information D2 including the measurement route information to the measurement system 4 of the measurement vehicle by the communication unit 21.
  • the control unit 25 is an example of a “determination unit”, a “search unit” in the present invention, and a “computer” that executes a program in the present invention.
  • FIG. 2C shows a schematic configuration of the measurement system 4.
  • the measurement system 4 functionally includes a communication unit 41, a storage unit 42, a sensor unit 43, and a control unit 45. Each of these elements is connected to each other via a bus line.
  • the communication unit 41 communicates various data with the server device 2 based on the control of the control unit 45.
  • the communication unit 41 transmits a signal for controlling the measurement vehicle to the measurement vehicle, or receives a signal related to the state of the measurement vehicle from the measurement vehicle.
  • the storage unit 42 stores a program executed by the control unit 45 and stores measurement data measured by the sensor unit 43.
  • the sensor unit 43 includes a lidar 46, an RTK-GPS 47, an IMU (Internal Measurement Unit) 48, and the like.
  • the RTK-GPS 3 generates highly accurate position information indicating the absolute position (for example, the three-dimensional position of latitude, longitude, and altitude) of the measurement vehicle based on the RTK positioning method (that is, the interference positioning method).
  • the IMU 48 generates information on the acceleration and angular velocity (or angle) of the measurement vehicle in the three-axis directions.
  • the control unit 45 executes a program or the like stored in the storage unit 42 or the like, and controls the entire measurement system 4.
  • the control unit 45 receives the measurement route information D2 transmitted from the server device 2, and performs automatic driving control on the measurement vehicle so that the measurement vehicle travels on the route indicated by the received measurement route information D2. Provide driving assistance such as route guidance. Further, the control unit 45 stores the measurement data output from the sensor unit 43 in the storage unit 42 and transmits the stored measurement data to the server device 2.
  • FIG. 3 shows an example of a schematic data structure of voxel data.
  • the voxel data includes parameter information when the point group in the voxel is expressed by a normal distribution.
  • the voxel ID, voxel coordinates, average vector, and covariance matrix are used.
  • point cloud number information point cloud number information.
  • voxel coordinates indicate absolute three-dimensional coordinates of a reference position such as the center position of each voxel.
  • Each voxel is a cube obtained by dividing the space into a lattice shape, and since the shape and size are determined in advance, the space of each voxel can be specified by the voxel coordinates.
  • the voxel coordinates may be used as a voxel ID.
  • Average vector and “covariance matrix” indicate an average vector and a covariance matrix corresponding to parameters when a point group in the target voxel is expressed by a normal distribution, and an arbitrary vector in any voxel “k” The coordinates of the point "i"
  • the average vector and the covariance matrix included in the voxel data are an example of “second point group information” in the present invention.
  • Point cloud number information is information indicating the number of point clouds used to calculate the corresponding mean vector and covariance matrix.
  • the point group number information may be information indicating the number of specific point groups, or information indicating the level of the number of point groups (for example, large, medium, small, etc.).
  • T x indicates the amount of movement in the x direction
  • t y indicates the amount of movement in the y direction
  • indicates the rotation angle (ie, yaw angle) in the xy plane.
  • the vertical movement amount, pitch angle, and roll angle are small enough to be ignored, although they are caused by road gradients and vibrations.
  • the in-vehicle device 1 uses the coordinate-converted point group, the average vector ⁇ k and the covariance matrix V k included in the voxel data, and the voxel k represented by the following equation (4).
  • a comprehensive evaluation function “E” (also referred to as “overall evaluation function”) for all voxels to be matched indicated by the evaluation function “E k ” and Expression (5) is calculated.
  • M indicates the number of voxels to be matched.
  • the coordinates of the point cloud data obtained by the lidar 30 are relative coordinates with respect to the vehicle position, and the average vector of the voxel data is an absolute coordinate. Therefore, when calculating the equation (4), for example, the lidar The coordinates of the point cloud data obtained by 30 are converted based on the vehicle position predicted from the output of the GPS receiver 32 or the like.
  • the in-vehicle device 1 normalizes the evaluation function E k by the number of point groups N k .
  • the vehicle-mounted device 1 on the basis of the value of the evaluation function E k, the degree of matching to identify the relatively low voxel.
  • the vehicle-mounted device 1 calculates an estimation parameter P that maximizes the comprehensive evaluation function E by an arbitrary root finding algorithm such as Newton's method.
  • the in-vehicle device 1 estimates the own vehicle position with high accuracy by applying the estimation parameter P to the own vehicle position predicted from the output of the GPS receiver 32 or the like.
  • FIG. 4A in four adjacent voxels “B1” to “B4”, point clouds measured by a rider or the like when traveling with a measurement vehicle for map creation are indicated by circles. It is the figure which showed the two-dimensional normal distribution created from Formula (1) and Formula (2) based on gradation based on.
  • the average and variance of the normal distribution shown in FIG. 4A correspond to the average vector and covariance matrix in the voxel data, respectively.
  • FIG. 4B is a diagram showing the point cloud acquired by the lidar 30 while the vehicle-mounted device 1 is traveling in FIG.
  • the position of the point cloud of the lidar 30 indicated by the asterisk is aligned with the voxels B1 to B4 based on the estimated position based on the output of the GPS receiver 32 or the like.
  • FIG. 4C is a diagram illustrating a state after the point cloud (star) acquired by the vehicle-mounted device 1 is moved based on the matching result of the NDT scan matching.
  • a parameter P that maximizes the evaluation function E shown in the equations (4) and (5) is calculated based on the mean and variance of the normal distribution shown in FIGS. 4 (A) and 4 (B).
  • the calculated parameter P is applied to the star point cloud shown in FIG. In this case, the deviation between the point cloud (circle) measured by the measurement vehicle and the point cloud (star) acquired by the in-vehicle device 1 is suitably reduced.
  • the evaluation function E1 of the voxel B1 having a large number of point groups is large.
  • the evaluation functions E1 to E4 and the comprehensive evaluation function E are values that are not easily affected by the number of point groups in the voxel, so that the degree of matching between voxels can be easily compared.
  • the in-vehicle device 1 determines whether or not the change point information D1 needs to be transmitted based on the evaluation function E k calculated based on the equation (4).
  • the in-vehicle device 1 identifies a voxel in which a static structure change may occur (that is, the distribution map DB 20 needs to be updated) based on the comprehensive evaluation function E and the evaluation function E k , and information on the voxel Is transmitted to the server apparatus 2 as the change point information D1. For example, in the vehicle-mounted device 1, when the comprehensive evaluation function E is lower than a predetermined value, the surrounding environment corresponding to all the voxels used for matching at the position where the comprehensive evaluation function E is lower than the predetermined value may be greatly changed. The change point information D1 regarding all the voxels used for matching at that position is transmitted to the server apparatus 2.
  • the vehicle-mounted unit 1 the synthetic evaluation function E is greater than a predetermined value, among the evaluation function E k, if there is a predetermined value smaller than the evaluation function E k, the voxel k corresponding to the evaluation function E k, Judge that there is a possibility that the stationary structure has changed. Therefore, when the in-vehicle device 1 detects such a voxel k, the in-vehicle device 1 transmits the change point information D1 related to the voxel k to the server device 2.
  • the change point information D1 includes, for example, a voxel ID, time information, estimated vehicle position information, a comprehensive evaluation function E, an evaluation function Ek, and the like.
  • in-vehicle device 1 detects a voxel with a small number of point groups N k in the voxel in addition to or instead of detecting an evaluation function E k that is smaller than other evaluation functions E k .
  • the change point information D1 for the voxel may be transmitted to the server device 2.
  • evaluation for function E k is normalized by point group number N k, when the number of point group N k is low due to the deformation or disappearance or the like of the static structure also, the value of the evaluation function E k May not be smaller than a predetermined value.
  • the in-vehicle device 1 when the in-vehicle device 1 detects a voxel having a point cloud number Nk smaller than a predetermined threshold value, the in-vehicle device 1 transmits change point information D1 for the voxel to the server device 2.
  • the in-vehicle device 1 may refer to the point cloud number information of the voxel data and set the above threshold value smaller as the point cloud number indicated by the point cloud number information is smaller.
  • FIG. 5 is an example of a flowchart showing a procedure of transmission processing of the change point information D1 executed by each vehicle-mounted device 1.
  • the in-vehicle device 1 repeatedly executes the process of the flowchart of FIG.
  • the in-vehicle device 1 sets an initial value of the vehicle position based on the output of the GPS receiver 32 or the like (step S101).
  • the vehicle-mounted device 1 acquires the vehicle body speed from the speed sensor 34 and also acquires the angular velocity in the yaw direction from the gyro sensor 33 (step S102).
  • the vehicle equipment 1 calculates the moving distance of a vehicle and the azimuth
  • the vehicle-mounted device 1 adds the movement distance and the azimuth change calculated in step S103 to the estimated host vehicle position one time before, and calculates a predicted position (step S104). And the vehicle equipment 1 acquires the voxel data of the voxel which exists around the own vehicle position with reference to map DB10 based on the estimated position calculated by step S104 (step S105). Further, the in-vehicle device 1 divides the scan data obtained from the lidar 30 for each voxel based on the predicted position calculated in step S104 (step S106). And the vehicle equipment 1 calculates NDT scan matching using an evaluation function (step S107). In this case, the in-vehicle device 1 calculates the evaluation function E k and the comprehensive evaluation function E based on the equations (4) and (5), and calculates the estimation parameter P that maximizes the comprehensive evaluation function E.
  • step S108 when the in-vehicle device 1 specifies the estimation parameter P that maximizes the comprehensive evaluation function E (step S108; Yes), the in-vehicle device 1 determines whether or not the maximum comprehensive evaluation function E is equal to or greater than a predetermined value (step S109). ). And when the comprehensive evaluation function E is less than a predetermined value (step S109; No), the vehicle-mounted device 1 obtains change point information D1 including voxel IDs, date information, estimated position information, etc. of all voxels used for matching. It transmits to the server apparatus 2 (step S111).
  • step S109 when the comprehensive evaluation function E is greater than or equal to a predetermined value (step S109; Yes), the in-vehicle device 1 determines whether there is a voxel whose evaluation function E k is smaller than the predetermined value (step S110).
  • the in-vehicle device 1 receives the change point information D1 including the voxel ID, date information, estimated position information, and the like of the target voxel. And transmitted to the server device 2 (step S111).
  • the in-vehicle device 1 may determine whether or not the change point information D1 needs to be transmitted based on the size of the point cloud number Nk instead of or in addition to the determination in step S110.
  • step S110 when there is no voxel whose evaluation function E k is smaller than the predetermined value (step S110; No), the in-vehicle device 1 returns the process to step S102.
  • the in-vehicle device 1 calculates the estimated own vehicle position at the current time by applying the estimated parameter P that maximizes the comprehensive evaluation function E to the predicted position in step S104 after the determination in steps S109 and S110. .
  • the server apparatus 2 determines the measurement target voxel Btag based on the change point information D1 stored in the storage unit 22, and determines a path that passes through the position where the determined measurement target voxel Btag can be measured as a measurement path. Is transmitted to the measurement system 4.
  • FIG. 6 is a flowchart showing the procedure of the transmission process of the measurement path information D2.
  • the server device 2 repeatedly executes the processing of the flowchart shown in FIG.
  • the server device 2 receives the change point information D1 from the in-vehicle device 1 of each general vehicle, and stores the received change point information D1 in the storage unit 22 (step S201).
  • the server device 2 determines whether or not it is the measurement route setting timing (step S202). For example, when the server device 2 receives a route search request including the current position information of the measurement vehicle from the measurement system 4 of the measurement vehicle, the server device 2 determines that it is the measurement route setting timing. If it is not the measurement route setting timing (step S202; No), the server apparatus 2 returns the process to step S201 again.
  • the server device 2 determines the measurement target voxel Btag based on the change point information D1 stored in the storage unit 22 (step S203).
  • the server apparatus 2 determines the measurement object voxel Btag which a measurement vehicle should measure.
  • the server device 2 searches for a measurement route that includes the measurement target voxel Btag in the measurement range (step S204).
  • the server device 2 executes a route search process using the current position of the measurement vehicle as a departure point and a point or road where each measurement target voxel Btag can be measured as a transit point.
  • the server device 2 starts from the current position of the measurement vehicle and, for each road that uses the required time or distance as an index, among points that can measure each measurement target voxel Btag or a road that passes through the road.
  • the route with the minimum link cost is determined as the measurement route.
  • the server device 2 transmits the measurement route information D2 indicating the measurement route to the measurement system 4 of the measurement vehicle (step S205).
  • the server device 2 may include information specifying the lane or / and the vehicle speed that the measurement vehicle should travel in the measurement route information D2.
  • the server apparatus 2 can make a measurement vehicle drive
  • An example of specifying the lane or / and the vehicle speed will be described with reference to FIG.
  • the server device 2 receives measurement data from the measurement system 4 of the measurement vehicle that has traveled the measurement route specified by the measurement route information D2, and updates the distribution map DB 20 based on the received measurement data.
  • the server device 2 extracts the point cloud data included in the measurement target voxel Btag from the measurement data, calculates the average vector, the covariance matrix, and the like in each measurement target voxel Btag, and then calculates the calculated average vector and covariance.
  • the voxel data of the measurement target voxel Btag is updated by a dispersion matrix or the like.
  • FIG. 7 shows an overhead view around the measurement vehicle when the measurement vehicle travels based on the measurement route information D2.
  • An arrow L1 indicates a measurement path designated by the measurement path information D2.
  • a broken line frame 53 indicates the position of the measurement target voxel Btag.
  • the voxel in the broken line frame 53 is determined as the measurement target voxel Btag.
  • the server device 2 uses the road 51 in which the measurement target voxel Btag in the broken line frame 53 can be measured as a part of the measurement route, and the left lane that is the lane closest to the measurement target voxel Btag in the road 51
  • the measurement route information D2 designated as the lane to travel on is generated.
  • the server device 2 generates measurement route information D2 that designates the left lane as the travel lane within a range in which at least the measurement target voxel Btag in the broken line frame 53 can be measured by the lidar 46.
  • the stationary structure 52 in the measurement target voxel Btag can be measured with high accuracy.
  • the server device 2 designates the right lane as the travel lane at least within the range in which the measurement target voxel Btag can be measured by the rider 46.
  • the route information D2 may be generated.
  • the server device 2 uses the measurement route information to specify the vehicle speed of the measurement vehicle so that the measurement vehicle moves at a lower speed than the other travel positions at the travel position where the measurement target voxel Btag is the measurement range of the measurement vehicle. It may be included in D2.
  • the server device 2 includes the vehicle speed information indicating that the vehicle should travel at a predetermined speed or less in the measurement route information D2 in the broken line portion of the arrow L1. Accordingly, the server device 2 can cause the measurement vehicle to travel at a speed suitable for the measurement of the measurement target voxel Btag at the time of measurement of the measurement target voxel Btag, and generate measurement data necessary for updating the distribution map DB 20 with high accuracy. it can.
  • the server device 2 receives and accumulates the change point information D1 indicating the collation result between the output of the rider 30 and the voxel data of the map DB 10 from the in-vehicle device 1 of each general vehicle. Based on the change point information D1, a measurement target voxel Btag that is a voxel that needs to be measured is determined. Then, the server device 2 searches for a route that uses a position where the measurement target voxel Btag can be measured as a route for measurement, as a measurement route of the measurement vehicle, and measures measurement route information D2 including information on the measurement route. Send to system 4. Thereby, the server apparatus 2 can determine suitably the measurement path
  • the server apparatus 2 may determine the measurement target voxel Btag based on the information regarding the measurement conditions included in the change point information D1.
  • the server device 2 extracts change point information D1 (also referred to as “same condition change point information”) measured under conditions that match the measurement conditions of the measurement vehicle from the storage unit 22.
  • a voxel indicated by a predetermined number or more of the condition change point information may be determined as the measurement target voxel Btag.
  • the server apparatus 2 measures the measurement target voxel Btag under the measurement conditions common to the measurement conditions when the change point is detected by the general vehicle, and suitably confirms whether there is a change point in the measurement target voxel Btag. To do.
  • the server device 2 extracts change point information D1 including date and time information indicating a date and time that coincides with a time zone in which the measurement vehicle is driven, as the same condition change point information.
  • the server device 2 extracts change point information D1 including date and time information indicating the day of the week that matches the day of the week on which the measurement vehicle is run, as the condition change point information.
  • the change point information D1 includes weather information at the time of measurement, and the server device 2 matches the weather expected when the measurement vehicle is driven (for example, the weather at the departure place). Change point information D1 including weather information indicating the weather is extracted as the same condition change point information.
  • the server device 2 determines the measurement target voxel Btag based on the change point information D1 generated under the measurement condition common to the measurement condition of the measurement vehicle to be traveled, and thus the measurement target under the same condition as the general vehicle.
  • the voxel Btag is measured, and the presence or absence of a change point can be suitably confirmed by measurement with the measurement vehicle.
  • the measurement system 4 may execute a part of the process to be executed by the server device 2 instead of the server device 2.
  • the measurement system 4 may execute part of the flowchart of FIG. In this case, when the measurement system 4 determines in step S202 that it is the timing for setting the measurement route, the measurement system 4 receives the change point information D1 corresponding to the voxel within a predetermined distance from the current position of the measurement vehicle from the server device, and receives it. The measurement target voxel Btag is determined based on the changed point information D1 (see step S203). Then, based on step S204, the measurement system 4 searches for a measurement route, and performs driving support so that the measurement vehicle travels on the searched measurement route. Even in this case, the measurement system 4 can preferably determine the measurement path. In the present modification, the measurement system 4 is an example of the “route search device” in the present invention.
  • a function corresponding to the in-vehicle device 1 may be incorporated in a general vehicle.
  • an electronic control unit (ECU) of a general vehicle executes a process corresponding to the control unit 15 of the in-vehicle device 1 by executing a program stored in the memory of the general vehicle.
  • the index for evaluating the degree of matching for each voxel is not limited to the evaluation function E k shown in Expression (4).
  • the in-vehicle device 1 divides the point cloud data measured by the lidar 30 for each voxel, calculates an average vector and a covariance matrix for each voxel, and calculates the average included in the voxel data of the map DB 10. Direct comparison with vectors and covariance matrices is also possible.
  • the in-vehicle device 1 transmits, as the change point information D1, information about voxels in which the difference between the average vector to be compared and the covariance matrix is equal to or greater than a predetermined value to the server device 2.
  • the control unit 25 calculates the distance difference between the average vector of the point cloud data measured by the lidar 30 and the average vector of the voxel data of the map DB 20 as the first difference, and the point cloud measured by the lidar 30 A difference between the data covariance matrix and the covariance matrix of the voxel data in the map DB 20 (for example, a difference between eigenvalues) is calculated as a second difference.
  • the vehicle equipment 1 transmits the change point information D1 with respect to the target voxel to the server apparatus 2, when a 1st difference and a 2nd difference become more than the threshold value defined with respect to each.
  • the determination of the transmission necessity of transition data D1 for each voxel but are not limited to those using the evaluation function E k.
  • the voxel data is not limited to a data structure including an average vector and a covariance matrix as shown in FIG.
  • the voxel data may include point cloud data measured by a measurement vehicle used when calculating an average vector and a covariance matrix.
  • the point cloud data included in the voxel data is an example of “second point cloud information” in the present invention.
  • the present embodiment is not limited to scan matching by NDT, and other scan matching such as ICP (Iterative Closest Point) may be applied.
  • the vehicle-mounted device 1 specifies a voxel having a relatively low matching degree by calculating an evaluation function for each voxel for evaluating the matching degree, and changes with respect to the voxel.
  • the point information D1 is transmitted to the server device 2.
  • the scan matching method applicable to the present invention is not limited to NDT scan matching.
  • Map DB 20 Distribution map DB 11, 21, 41 Communication unit 12, 22, 42 Storage unit 15, 25, 45 Control unit 13, 43 Sensor unit 14 Input unit 16 Output unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

A server device 2 receives, from an in-vehicle machine 1 in each general vehicle, change point information D1 indicative of the result of matching between an output from a lidar 30 and voxel data in a map DB 10, and determines, on the basis of accumulated change point information D1, a voxel Btag to be measured that is a voxel needed to be measured. The server device 2 then searches for, as a measurement path for a measurement vehicle, a path including, as a via point, a position where the voxel Btag to be measured can be measured, and transmits, to a measurement system 4 of the measurement vehicle, measurement path information D2 including information about the measurement path.

Description

経路探索装置、制御方法、プログラム及び記憶媒体Route search apparatus, control method, program, and storage medium
 本発明は、経路探索技術に関する。 The present invention relates to route search technology.
 従来から、地図に反映すべき変化があった地点を経由するように調査用車両の経路を設定する技術が知られている。例えば、特許文献1には、複数のプローブカーからのプローブ情報に基づき、特定の基準日前後で通行量が顕著に変化している道路が検出された場合、当該道路を交通に影響を与える重要な道路網の変化があった変化関連道路とみなし、当該変化関連道路を通過する調査用経路を探索する道路網解析システムが開示されている。 Conventionally, a technique for setting a route of a survey vehicle so as to pass through a point where a change to be reflected on a map has been known. For example, in Patent Document 1, when a road whose traffic volume has changed significantly before and after a specific reference date is detected based on probe information from a plurality of probe cars, it is important to affect the road. A road network analysis system that searches for a survey route that passes through a change-related road that is regarded as a change-related road that has undergone a change in the road network is disclosed.
特開2012-150016号公報JP 2012-150016 A
 自動運転等に使用可能な高精度地図を生成及び更新する場合、通行量に変化が生じる変化点に限らず、道路周辺の静止構造物の変化についても的確に地図に反映する必要がある。そこで、本発明は、地図整備用の計測車両が走行すべき経路を好適に探索することが可能な経路探索装置を提供することを主な目的とする。 When generating and updating a high-accuracy map that can be used for autonomous driving, etc., it is necessary to accurately reflect changes in stationary structures around the road as well as changes in traffic volume. In view of the above, a main object of the present invention is to provide a route search device capable of preferably searching for a route on which a measurement vehicle for map maintenance should travel.
 請求項1に記載の発明は、経路探索装置であって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得部と、一又は複数の位置情報に基づく第2点群情報が領域毎に記録されている地図情報を取得する第2取得部と、前記第1点群情報及び前記第2点群情報の照合結果に基づき計測が必要な対象領域を決定し、当該対象領域を計測可能な位置を経由地とする経路を探索する探索部と、を備える。 The invention according to claim 1 is a route search device, and a first acquisition unit that acquires first point cloud information about each distance from a reference position to a plurality of positions measured by the measurement unit; Measurement is performed based on a second acquisition unit that acquires map information in which second point group information based on a plurality of position information is recorded for each region, and a comparison result of the first point group information and the second point group information. A search unit that determines a necessary target area and searches for a route that uses a position where the target area can be measured as a transit point.
 請求項9に記載の発明は、経路探索装置が実行する制御方法であって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報と、領域毎に地図情報に記録されている第2点群情報との照合結果に基づき、計測が必要な領域である対象領域を決定する決定工程と、前記対象領域を計測可能な位置を経由地とする経路を探索する探索工程と、を有する。 The invention according to claim 9 is a control method executed by the route search apparatus, wherein the first point cloud information about each distance from the reference position to a plurality of positions measured by the measurement unit, and a map for each region Based on the collation result with the second point cloud information recorded in the information, a determination step for determining the target area that is an area that needs to be measured, and a route that uses the target area as a route from the position where the target area can be measured are searched. And a search step.
 請求項10に記載の発明は、コンピュータが実行するプログラムであって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報と、領域毎に地図情報に記録されている第2点群情報との照合結果に基づき、計測が必要な領域である対象領域を決定する決定部と、前記対象領域を計測可能な位置を経由地とする経路を探索する探索部として前記コンピュータを機能させる。 The invention according to claim 10 is a program executed by a computer, and is recorded in map information for each area and first point cloud information about each distance from a reference position to a plurality of positions measured by a measurement unit. A determination unit that determines a target region that is a region that needs to be measured based on a collation result with the second point cloud information that has been performed, and a search unit that searches for a route that uses a position where the target region can be measured as a waypoint To make the computer function.
地図生成システムの概略構成である。1 is a schematic configuration of a map generation system. 車載機、サーバ装置及び計測システムのブロック構成を示す。The block configuration of a vehicle equipment, a server apparatus, and a measurement system is shown. ボクセルデータの概略的なデータ構造の一例を示す。An example of the schematic data structure of voxel data is shown. NDTスキャンマッチングの具体例を示す。A specific example of NDT scan matching will be described. 車載機が実行する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which an onboard equipment performs. サーバ装置が実行する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which a server apparatus performs. 計測車両が計測用経路に基づき走行する際の計測車両周辺の俯瞰図を示す。An overhead view around the measurement vehicle when the measurement vehicle travels based on the measurement route is shown.
 本発明の好適な実施形態によれば、経路探索装置であって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報と、領域毎に地図情報に記録されている第2点群情報との照合結果に基づき、計測が必要な領域である対象領域を決定する決定部と、前記対象領域を計測可能な位置を経由地とする経路を探索する探索部と、を備える。この態様により、経路探索装置は、計測部が計測した第1点群情報と地図情報の第2点群情報との照合結果に基づき計測が必要な対象領域を特定し、当該対象領域を計測可能な経路を好適に探索することができる。 According to a preferred embodiment of the present invention, there is provided a route search device, the first point group information relating to each distance from the reference position to a plurality of positions measured by the measurement unit, and recorded in the map information for each area. A determination unit that determines a target region that is a region that needs to be measured based on a collation result with the second point cloud information that has been performed, and a search unit that searches for a route that uses a position where the target region can be measured as a waypoint And comprising. According to this aspect, the route search device can identify a target area that needs to be measured based on a result of matching between the first point cloud information measured by the measurement unit and the second point cloud information of the map information, and can measure the target area. It is possible to search for a suitable route.
 上記経路探索装置の一態様では、前記探索部は、少なくとも前記対象領域を計測可能な範囲において計測車両が走行すべき車線を指定した前記経路に関する情報を出力する。この態様により、経路探索装置は、対象領域を計測するのに好適な車線を指定した計測車両の経路情報を出力することができる。 In one aspect of the route search device, the search unit outputs information on the route in which the lane on which the measurement vehicle should travel is specified at least within a range in which the target area can be measured. According to this aspect, the route search device can output route information of a measurement vehicle in which a lane suitable for measuring the target region is designated.
 上記経路探索装置の他の一態様では、前記探索部は、少なくとも前記対象領域を計測可能な範囲において計測車両が走行すべき速度を指定した前記経路に関する情報を出力する。この態様により、経路探索装置は、対象領域を計測するのに好適な速度を指定した計測車両の経路情報を出力することができる。 In another aspect of the route search device, the search unit outputs information related to the route that specifies a speed at which the measurement vehicle should travel at least within a range in which the target area can be measured. According to this aspect, the route search device can output route information of the measurement vehicle that specifies a speed suitable for measuring the target region.
 上記経路探索装置の他の一態様では、前記探索部は、計測車両の現在位置を取得し、当該現在位置を出発地とした前記経路を探索する。この態様により、経路探索装置は、特定の計測車両が走行すべき経路を好適に探索することができる。 In another aspect of the route search device, the search unit acquires the current position of the measurement vehicle, and searches for the route using the current position as a departure point. According to this aspect, the route search device can suitably search for a route on which a specific measurement vehicle should travel.
 上記経路探索装置の他の一態様では、前記第1取得部は、前記第1点群情報と共に、前記第1点群情報を計測したときの計測条件に関する情報を取得し、前記決定部は、前記照合結果と、前記計測条件に関する情報とに基づき、前記対象領域を決定する。この態様によれば、経路探索装置は、第1点群情報を計測した時の計測条件を勘案し、計測すべき対象領域を定めることができる。 In another aspect of the route search device, the first acquisition unit acquires information on measurement conditions when the first point group information is measured together with the first point group information, and the determination unit includes: The target region is determined based on the collation result and information on the measurement condition. According to this aspect, the route search device can determine the target region to be measured in consideration of the measurement conditions when the first point cloud information is measured.
 上記経路探索装置の他の一態様では、前記決定部は、前記計測条件として、前記第1点群情報を計測したときの時間帯、曜日、天候の少なくともいずれか一つに基づき、前記対象領域を決定する。この態様では、経路探索装置は、計測時の時間帯、曜日、又は天候を勘案し、計測すべき対象領域を定めることができる。 In another aspect of the route search device, the determination unit may use the target region based on at least one of a time zone, day of the week, and weather when the first point cloud information is measured as the measurement condition. To decide. In this aspect, the route search device can determine the target region to be measured in consideration of the time zone at the time of measurement, the day of the week, or the weather.
 上記経路探索装置の他の一態様では、前記第1取得部は、前記計測部を備える複数の車両から前記照合結果を受信し、前記探索部は、前記経路に関する情報を、計測車両の運転支援を行う制御装置に送信する。この態様によれば、経路探索装置は、複数の車両から受信した照合結果を収集するサーバ装置として機能し、収集した照合結果に基づき探索した経路に関する情報を計測車両の制御装置に送信することができる。 In another aspect of the route search apparatus, the first acquisition unit receives the verification result from a plurality of vehicles including the measurement unit, and the search unit provides information on the route as driving assistance for the measurement vehicle. Is transmitted to the control device. According to this aspect, the route search device functions as a server device that collects the matching results received from a plurality of vehicles, and transmits information on the route searched based on the collected matching results to the control device of the measurement vehicle. it can.
 上記経路探索装置の他の一態様では、経路探索装置は、計測車両に搭載され、前記探索部が探索した経路を前記計測車両が走行するように運転支援を行う運転支援部をさらに備える。このように、経路探索装置は、計測車両に搭載される態様では、計測車両が走行すべき経路を探索し、探索した経路を計測車両が走行するように運転支援を好適に行うことができる。 In another aspect of the route search device, the route search device further includes a drive support unit that is mounted on the measurement vehicle and performs drive support so that the measurement vehicle travels on the route searched by the search unit. Thus, in the aspect mounted on the measurement vehicle, the route search device can search for a route on which the measurement vehicle should travel, and suitably perform driving support so that the measurement vehicle travels on the searched route.
 本発明の他の好適な実施形態によれば、経路探索装置が実行する制御方法であって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報と、領域毎に地図情報に記録されている第2点群情報との照合結果に基づき、計測が必要な領域である対象領域を決定する決定工程と、前記対象領域を計測可能な位置を経由地とする経路を探索する探索工程と、を有する。経路探索装置は、この制御方法を実行することで、第1点群情報と第2点群情報との照合結果に基づき計測が必要な対象領域を特定し、当該対象領域を計測可能な経路を好適に探索することができる。 According to another preferred embodiment of the present invention, there is provided a control method executed by the route search apparatus, the first point cloud information about each distance from the reference position to a plurality of positions measured by the measurement unit, A determination step for determining a target region that is a region that needs to be measured based on a collation result with the second point cloud information recorded in the map information for each region, and a location where the target region can be measured And a search step for searching for a route to be performed. By executing this control method, the route search device identifies a target region that needs to be measured based on a result of matching between the first point cloud information and the second point cloud information, and creates a route that can measure the target region. It can search suitably.
 本発明のさらに別の実施形態によれば、コンピュータが実行するプログラムであって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報と、領域毎に地図情報に記録されている第2点群情報との照合結果に基づき、計測が必要な領域である対象領域を決定する決定部と、前記対象領域を計測可能な位置を経由地とする経路を探索する探索部として前記コンピュータを機能させる。コンピュータは、このプログラムを実行することで、第1点群情報と第2点群情報との照合結果に基づき計測が必要な対象領域を特定し、当該対象領域を計測可能な経路を好適に探索することができる。好適には、上記プログラムは、記憶媒体に記憶される。 According to still another embodiment of the present invention, a program executed by a computer, the first point cloud information regarding each distance from a reference position to a plurality of positions measured by a measurement unit, and a map for each region Based on the collation result with the second point cloud information recorded in the information, a determination unit that determines a target area that is an area that needs to be measured, and a route that uses the position where the target area can be measured as a route The computer is caused to function as a search unit. By executing this program, the computer specifies a target area that needs to be measured based on a result of collation between the first point cloud information and the second point cloud information, and suitably searches for a path that can measure the target area. can do. Preferably, the program is stored in a storage medium.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [地図生成システムの概要]
 (1)システム構成
 図1は、本実施例に係る地図生成システムの概略構成である。地図生成システムは、一般車両に搭載される車載機1と、地図情報の配信及び更新を行うサーバ装置2と、地図整備用の計測車両に搭載される計測システム4と、を備える。
[Overview of map generation system]
(1) System Configuration FIG. 1 is a schematic configuration of a map generation system according to this embodiment. The map generation system includes an in-vehicle device 1 mounted on a general vehicle, a server device 2 that distributes and updates map information, and a measurement system 4 mounted on a measurement vehicle for map maintenance.
 車載機1は、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)などの外界センサ、ジャイロセンサや車速センサなどの内界センサと電気的に接続し、これらの出力に基づき、車載機1が搭載される一般車両の位置(「自車位置」とも呼ぶ。)の推定を行う。車載機1は、ボクセルデータを含む地図データを記憶する。ボクセルデータは、3次元空間を複数の領域に分割した場合の各領域(「ボクセル」とも呼ぶ。)ごとに静止構造物の位置情報等を記録したデータである。ボクセルデータは、各ボクセル内の静止構造物の計測された点群データを正規分布により表したデータを含む。車載機1は、ライダが出力する点群データと、当該点群データが属するボクセルに対応するボクセルデータとに基づき、NDT(Normal Distributions Transform)に基づくスキャンマッチングを行う。そして、車載機1は、記憶するボクセルデータとのマッチングの度合いが閾値より低い場合、マッチングに用いた領域が大きく変化したと判断し、マッチングの度合いが閾値より低かった位置でマッチングに用いた全てのボクセルに関する情報を、変化点情報「D1」としてサーバ装置2に送信する。マッチングの度合いが閾値より大きい場合は、ボクセルごとのマッチングの度合いを計算する。ボクセルごとのマッチングの度合いが閾値より低いボクセルを検出した場合、当該ボクセルは地図データからの変化が生じた変化点を含む可能性があると判断し、検出したボクセルに関する情報を、変化点情報D1としてサーバ装置2へ送信する。なお、一般車両には、車載機1に相当する機能が内蔵されていてもよい。 The in-vehicle device 1 is electrically connected to an external sensor such as a lidar (Lidal: Light Detection and Ranging, or Laser Illuminated Detection And Ranging), an internal sensor such as a gyro sensor or a vehicle speed sensor, and based on these outputs. The position of a general vehicle on which the in-vehicle device 1 is mounted (also referred to as “own vehicle position”) is estimated. The in-vehicle device 1 stores map data including voxel data. The voxel data is data in which position information of a stationary structure is recorded for each area (also referred to as “voxel”) when the three-dimensional space is divided into a plurality of areas. The voxel data includes data representing the point cloud data measured for the stationary structure in each voxel by a normal distribution. The in-vehicle device 1 performs scan matching based on NDT (Normal Distributions Transform) based on the point cloud data output by the lidar and the voxel data corresponding to the voxel to which the point cloud data belongs. Then, when the degree of matching with the stored voxel data is lower than the threshold, the in-vehicle device 1 determines that the region used for matching has changed significantly, and all of the used in matching at positions where the degree of matching is lower than the threshold. Is transmitted to the server apparatus 2 as change point information “D1”. When the degree of matching is larger than the threshold, the degree of matching for each voxel is calculated. When a voxel whose degree of matching for each voxel is lower than a threshold value is detected, it is determined that the voxel may include a change point at which a change from the map data has occurred, and information regarding the detected voxel is changed point information D1. As shown in FIG. In addition, the function equivalent to the vehicle equipment 1 may be incorporated in the general vehicle.
 サーバ装置2は、複数の一般車両に対応する車載機1とデータ通信を行う。サーバ装置2は、複数の車両に対応する車載機1に配信するための配信地図DB20を記憶し、配信地図DB20には各ボクセルに対応するボクセルデータが含まれている。サーバ装置2は、車載機1から受信する変化点情報D1を蓄積し、蓄積した変化点情報D1に基づき計測車両による計測が必要となるボクセル(「計測対象ボクセルBtag」とも呼ぶ。)を特定する。そして、サーバ装置2は、計測対象ボクセルBtagを計測可能な位置を経由する経路(「計測用経路」とも呼ぶ。)を決定し、計測用経路を指定した計測経路情報「D2」を計測車両の計測システム4へ送信する。変化点情報D1は、本発明における「照合結果」の一例であり、計測対象ボクセルBtagは、本発明における「対象領域」の一例である。 The server device 2 performs data communication with the in-vehicle device 1 corresponding to a plurality of general vehicles. The server device 2 stores a distribution map DB 20 for distribution to the vehicle-mounted device 1 corresponding to a plurality of vehicles, and the distribution map DB 20 includes voxel data corresponding to each voxel. The server device 2 accumulates the change point information D1 received from the vehicle-mounted device 1, and specifies a voxel (also referred to as “measurement target voxel Btag”) that requires measurement by the measurement vehicle based on the accumulated change point information D1. . Then, the server device 2 determines a route (also referred to as “measurement route”) via a position where the measurement target voxel Btag can be measured, and obtains measurement route information “D2” specifying the measurement route. Transmit to the measurement system 4. The change point information D1 is an example of the “matching result” in the present invention, and the measurement target voxel Btag is an example of the “target region” in the present invention.
 計測システム4は、高精度な3D点群データを生成するシステムであり、サーバ装置2から受信する計測経路情報D2が示す計測用経路を計測車両が走行するように自動運転や経路案内などの運転支援を行う。計測システム4は、本発明における「制御装置」の一例である。 The measurement system 4 is a system that generates highly accurate 3D point cloud data, and performs driving such as automatic driving and route guidance so that the measurement vehicle travels along the measurement route indicated by the measurement route information D2 received from the server device 2. Provide support. The measurement system 4 is an example of the “control device” in the present invention.
 (2)車載機の構成
 図2(A)は、車載機1の機能的構成を表すブロック図を示す。図2(A)に示すように、車載機1は、主に、通信部11と、記憶部12と、センサ部13と、入力部14と、制御部15と、出力部16とを有する。通信部11、記憶部12、センサ部13、入力部14、制御部15及び出力部16は、バスラインを介して相互に接続されている。
(2) Configuration of the in-vehicle device FIG. 2A is a block diagram showing a functional configuration of the in-vehicle device 1. As shown in FIG. 2A, the in-vehicle device 1 mainly includes a communication unit 11, a storage unit 12, a sensor unit 13, an input unit 14, a control unit 15, and an output unit 16. The communication unit 11, the storage unit 12, the sensor unit 13, the input unit 14, the control unit 15, and the output unit 16 are connected to each other via a bus line.
 通信部11は、制御部15の制御に基づき、サーバ装置2から配信される地図情報を受信したり、制御部15が生成した変化点情報D1をサーバ装置2へ送信したりする。記憶部12は、制御部15が実行するプログラムや、制御部15が所定の処理を実行する為に必要な情報を記憶する。本実施例では、記憶部12は、ボクセルデータを含む地図DB10を記憶する。 The communication unit 11 receives the map information distributed from the server device 2 based on the control of the control unit 15 or transmits the change point information D1 generated by the control unit 15 to the server device 2. The storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process. In the present embodiment, the storage unit 12 stores a map DB 10 including voxel data.
 センサ部13は、ライダ30と、カメラ31と、GPS受信機32と、ジャイロセンサ33と、速度センサ34とを含む。ライダ30は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群データを生成する。この場合、ライダ30は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。ライダ30は、本発明における「計測部」の一例であり、ライダ30が出力する点群データは、本発明における「第1点群情報」の一例である。 The sensor unit 13 includes a rider 30, a camera 31, a GPS receiver 32, a gyro sensor 33, and a speed sensor 34. The lidar 30 emits a pulse laser in a predetermined angular range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group data. In this case, the lidar 30 scans data based on an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and a light reception signal output by the light receiving unit. Output unit. The scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal. The lidar 30 is an example of the “measurement unit” in the present invention, and the point cloud data output by the lidar 30 is an example of the “first point cloud information” in the present invention.
 入力部14は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等であり、経路探索のための目的地を指定する入力、自動運転のオン及びオフを指定する入力などを受け付け、生成した入力信号を制御部15へ供給する。出力部16は、例えば、制御部15の制御に基づき出力を行うディスプレイやスピーカ等である。 The input unit 14 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate, and accepts an input for specifying a destination for route search, an input for specifying on / off of automatic driving, and the like. The generated input signal is supplied to the control unit 15. The output unit 16 is, for example, a display or a speaker that performs output based on the control of the control unit 15.
 制御部15は、プログラムを実行するCPUなどを含み、車載機1の全体を制御する。例えば、制御部15は、ライダ30から出力される点群データと、当該点群データが属するボクセルに対応するボクセルデータとに基づき、NDTに基づくスキャンマッチングを行うことで、自車位置の推定を行う。また、制御部15は、NDTに基づくスキャンマッチングにより得られる評価値(後述する総合評価関数値)およびボクセルごとの評価値に基づき、マッチング精度が低いと推定されるボクセルを検出する。そして、制御部15は、検出したボクセルに対応する変化点情報D1を生成し、通信部11により変化点情報D1をサーバ装置2へ送信する。 The control unit 15 includes a CPU that executes a program and controls the entire vehicle-mounted device 1. For example, the control unit 15 estimates the host vehicle position by performing scan matching based on NDT based on the point cloud data output from the lidar 30 and the voxel data corresponding to the voxel to which the point cloud data belongs. Do. Further, the control unit 15 detects a voxel that is estimated to have low matching accuracy based on an evaluation value (a comprehensive evaluation function value described later) obtained by scan matching based on NDT and an evaluation value for each voxel. And the control part 15 produces | generates the change point information D1 corresponding to the detected voxel, and transmits the change point information D1 to the server apparatus 2 by the communication part 11. FIG.
 (3)サーバ装置の構成
 図2(B)は、サーバ装置2の概略構成を示す。図2(B)に示すように、サーバ装置2は、通信部21と、記憶部22と、制御部25とを有する。通信部21、記憶部22、及び制御部25は、バスラインを介して相互に接続されている。
(3) Configuration of Server Device FIG. 2B shows a schematic configuration of the server device 2. As illustrated in FIG. 2B, the server device 2 includes a communication unit 21, a storage unit 22, and a control unit 25. The communication unit 21, the storage unit 22, and the control unit 25 are connected to each other via a bus line.
 通信部21は、制御部25の制御に基づき、車載機1及び計測システム4と各種データの通信を行う。記憶部22は、サーバ装置2の動作を制御するためのプログラムを保存したり、サーバ装置2の動作に必要な情報を保持したりする。また、記憶部22は、配信地図DB20を記憶し、複数の車載機1から送信される変化点情報D1についても記憶する。 The communication unit 21 communicates various data with the in-vehicle device 1 and the measurement system 4 based on the control of the control unit 25. The storage unit 22 stores a program for controlling the operation of the server device 2 and holds information necessary for the operation of the server device 2. In addition, the storage unit 22 stores the distribution map DB 20 and also stores change point information D1 transmitted from the plurality of in-vehicle devices 1.
 制御部25は、図示しないCPU、ROM及びRAMなどを備え、サーバ装置2内の各構成要素に対して種々の制御を行う。本実施例では、制御部25は、車載機1から受信する変化点情報D1を記憶部22に蓄積し、蓄積した変化点情報D1に基づき計測対象ボクセルBtagを特定する。そして、制御部25は、計測対象ボクセルBtagを計測範囲に含む計測用経路を決定し、計測用経路の情報を含む計測経路情報D2を計測車両の計測システム4へ通信部21により送信する。制御部25は、本発明における「決定部」、「探索部」及び本発明におけるプログラムを実行する「コンピュータ」の一例である。 The control unit 25 includes a CPU, a ROM, a RAM, and the like (not shown), and performs various controls on each component in the server device 2. In the present embodiment, the control unit 25 accumulates the change point information D1 received from the in-vehicle device 1 in the storage unit 22, and specifies the measurement target voxel Btag based on the accumulated change point information D1. Then, the control unit 25 determines a measurement route including the measurement target voxel Btag in the measurement range, and transmits the measurement route information D2 including the measurement route information to the measurement system 4 of the measurement vehicle by the communication unit 21. The control unit 25 is an example of a “determination unit”, a “search unit” in the present invention, and a “computer” that executes a program in the present invention.
 (4)計測システムの構成
 図2(C)は、計測システム4の概略構成を示す。図2(C)に示すように、計測システム4は、機能的には、通信部41と、記憶部42と、センサ部43と、制御部45と、を有する。これらの各要素は、バスラインを介して相互に接続されている。
(4) Configuration of Measurement System FIG. 2C shows a schematic configuration of the measurement system 4. As shown in FIG. 2C, the measurement system 4 functionally includes a communication unit 41, a storage unit 42, a sensor unit 43, and a control unit 45. Each of these elements is connected to each other via a bus line.
 通信部41は、制御部45の制御に基づき、サーバ装置2と各種データの通信を行う。また、通信部41は、計測車両を制御するための信号を計測車両に送信したり、計測車両の状態に関する信号を計測車両から受信したりする。記憶部42は、制御部45が実行するプログラムを保存したり、センサ部43により計測された計測データを記憶したりする。 The communication unit 41 communicates various data with the server device 2 based on the control of the control unit 45. The communication unit 41 transmits a signal for controlling the measurement vehicle to the measurement vehicle, or receives a signal related to the state of the measurement vehicle from the measurement vehicle. The storage unit 42 stores a program executed by the control unit 45 and stores measurement data measured by the sensor unit 43.
 センサ部43は、ライダ46、RTK-GPS47、IMU(Inertial Measurement Unit)48などを含む。RTK-GPS3は、RTK測位方式(即ち干渉測位方式)に基づき計測車両の絶対的な位置(例えば緯度、経度、及び高度の3次元位置)を示す高精度な位置情報を生成する。IMU48は、3軸方向における計測車両の加速度及び角速度(又は角度)の情報を生成する。 The sensor unit 43 includes a lidar 46, an RTK-GPS 47, an IMU (Internal Measurement Unit) 48, and the like. The RTK-GPS 3 generates highly accurate position information indicating the absolute position (for example, the three-dimensional position of latitude, longitude, and altitude) of the measurement vehicle based on the RTK positioning method (that is, the interference positioning method). The IMU 48 generates information on the acceleration and angular velocity (or angle) of the measurement vehicle in the three-axis directions.
 制御部45は、記憶部42等に記憶されたプログラムなどを実行し、計測システム4の全体を制御する。本実施例では、制御部45は、サーバ装置2から送信される計測経路情報D2を受信し、受信した計測経路情報D2が示す経路を計測車両が走行するように、計測車両に対する自動運転制御、経路案内などの運転支援を行う。また、制御部45は、センサ部43が出力する計測データを記憶部42に記憶し、記憶した計測データをサーバ装置2へ送信する。 The control unit 45 executes a program or the like stored in the storage unit 42 or the like, and controls the entire measurement system 4. In the present embodiment, the control unit 45 receives the measurement route information D2 transmitted from the server device 2, and performs automatic driving control on the measurement vehicle so that the measurement vehicle travels on the route indicated by the received measurement route information D2. Provide driving assistance such as route guidance. Further, the control unit 45 stores the measurement data output from the sensor unit 43 in the storage unit 42 and transmits the stored measurement data to the server device 2.
 [NDTに基づくスキャンマッチング]
 次に、一般車両の車載機1が実行するNDTに基づくスキャンマッチングについて説明する。
[Scan matching based on NDT]
Next, scan matching based on NDT executed by the vehicle-mounted device 1 of a general vehicle will be described.
 (1)ボクセルデータのデータ構造
まず、NDTに基づくスキャンマッチングに用いるボクセルデータについて説明する。図3は、ボクセルデータの概略的なデータ構造の一例を示す。
(1) Data structure of voxel data First, voxel data used for scan matching based on NDT will be described. FIG. 3 shows an example of a schematic data structure of voxel data.
 ボクセルデータは、ボクセル内の点群を正規分布で表現する場合のパラメータの情報を含み、本実施例では、図3に示すように、ボクセルIDと、ボクセル座標と、平均ベクトルと、共分散行列と、点群数情報とを含む。ここで、「ボクセル座標」は、各ボクセルの中心位置などの基準となる位置の絶対的な3次元座標を示す。なお、各ボクセルは、空間を格子状に分割した立方体であり、予め形状及び大きさが定められているため、ボクセル座標により各ボクセルの空間を特定することが可能である。ボクセル座標は、ボクセルIDとして用いられてもよい。 The voxel data includes parameter information when the point group in the voxel is expressed by a normal distribution. In this embodiment, as shown in FIG. 3, the voxel ID, voxel coordinates, average vector, and covariance matrix are used. And point cloud number information. Here, “voxel coordinates” indicate absolute three-dimensional coordinates of a reference position such as the center position of each voxel. Each voxel is a cube obtained by dividing the space into a lattice shape, and since the shape and size are determined in advance, the space of each voxel can be specified by the voxel coordinates. The voxel coordinates may be used as a voxel ID.
 「平均ベクトル」及び「共分散行列」は、対象のボクセル内での点群を正規分布で表現する場合のパラメータに相当する平均ベクトル及び共分散行列を示し、任意のボクセル「k」内の任意の点「i」の座標を “Average vector” and “covariance matrix” indicate an average vector and a covariance matrix corresponding to parameters when a point group in the target voxel is expressed by a normal distribution, and an arbitrary vector in any voxel “k” The coordinates of the point "i"
Figure JPOXMLDOC01-appb-M000001
と定義し、ボクセルk内での点群数を「N」とすると、ボクセルkでの平均ベクトル「μ」及び共分散行列「V」は、それぞれ以下の式(1)及び式(2)により表される。
Figure JPOXMLDOC01-appb-M000001
Is defined as, when a point number set in the voxel k to "N k", mean vector "mu k" and the covariance matrix "V k" at the voxel k, respectively the following formulas (1) and ( 2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 なお、ボクセルデータに含まれる平均ベクトル及び共分散行列は、本発明における「第2点群情報」の一例である。
Figure JPOXMLDOC01-appb-M000003
The average vector and the covariance matrix included in the voxel data are an example of “second point group information” in the present invention.
 「点群数情報」は、対応する平均ベクトル及び共分散行列の算出に用いた点群の数を示す情報である。点群数情報は、具体的な点群の数を示す情報であってもよく、点群数のレベル(例えば、大、中、小など)を示す情報であってもよい。 “Point cloud number information” is information indicating the number of point clouds used to calculate the corresponding mean vector and covariance matrix. The point group number information may be information indicating the number of specific point groups, or information indicating the level of the number of point groups (for example, large, medium, small, etc.).
 (2)スキャンマッチングの概要
 次に、ボクセルデータを用いたNDTによるスキャンマッチングについて説明する。
(2) Outline of Scan Matching Next, scan matching by NDT using voxel data will be described.
 車両を想定したNDTによるスキャンマッチングは、道路平面(ここではxy座標とする)内の移動量及び車両の向きを要素とした以下の推定パラメータ「P」を推定することとなる。 Scan matching by NDT assuming a vehicle is to estimate the following estimated parameter “P” with the amount of movement in the road plane (here, xy coordinates) and the direction of the vehicle as elements.
Figure JPOXMLDOC01-appb-M000004
 「t」は、x方向の移動量を示し、「t」は、y方向の移動量を示し、「Ψ」は、xy平面内での回転角(即ちヨー角)を示す。なお、垂直方向移動量、ピッチ角、ロール角は、道路勾配や振動によって生じるものの、無視できる程度に小さい。
Figure JPOXMLDOC01-appb-M000004
“T x ” indicates the amount of movement in the x direction, “t y ” indicates the amount of movement in the y direction, and “Ψ” indicates the rotation angle (ie, yaw angle) in the xy plane. The vertical movement amount, pitch angle, and roll angle are small enough to be ignored, although they are caused by road gradients and vibrations.
 上述の推定パラメータPを用い、ライダ30により得られた点群データの任意の点の座標[x(i)、y(i)、z(i)]を座標変換すると、変換後の座標「X′(i)」は、以下の式(3)により表される。 When the coordinates [x k (i), y k (i), z k (i)] T of the arbitrary point of the point group data obtained by the lidar 30 are subjected to coordinate conversion using the above-described estimation parameter P, the converted value The coordinates “X ′ k (i)” are expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 そして、本実施例では、車載機1は、座標変換した点群と、ボクセルデータに含まれる平均ベクトルμと共分散行列Vとを用い、以下の式(4)により示されるボクセルkの評価関数「E」及び式(5)により示されるマッチングの対象となる全てのボクセルを対象とした総合的な評価関数「E」(「総合評価関数」とも呼ぶ。)を算出する。 In this embodiment, the in-vehicle device 1 uses the coordinate-converted point group, the average vector μ k and the covariance matrix V k included in the voxel data, and the voxel k represented by the following equation (4). A comprehensive evaluation function “E” (also referred to as “overall evaluation function”) for all voxels to be matched indicated by the evaluation function “E k ” and Expression (5) is calculated.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 「M」は、マッチングの対象となるボクセルの数を示す。なお、ライダ30により得られる点群データの座標は、自車位置に対する相対座標であり、ボクセルデータの平均ベクトルは絶対座標であることから、式(4)を算出する際には、例えば、ライダ30により得られる点群データの座標を、GPS受信機32の出力等から予測した自車位置に基づき座標変換する。
Figure JPOXMLDOC01-appb-M000007
“M” indicates the number of voxels to be matched. The coordinates of the point cloud data obtained by the lidar 30 are relative coordinates with respect to the vehicle position, and the average vector of the voxel data is an absolute coordinate. Therefore, when calculating the equation (4), for example, the lidar The coordinates of the point cloud data obtained by 30 are converted based on the vehicle position predicted from the output of the GPS receiver 32 or the like.
 一方、従来のNDTマッチングで用いられるボクセルkの評価関数Eは、以下の式(6)により示される。 On the other hand, the evaluation function E k of the voxel k used in the conventional NDT matching is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(4)及び式(6)を比較して明らかなように、本実施例では、車載機1は、点群数Nにより評価関数Eを正規化している。これにより、車載機1は、評価関数Eの値に基づき、マッチングの度合いが相対的に低いボクセルを特定する。 As is clear from the comparison between the equations (4) and (6), in the present embodiment, the in-vehicle device 1 normalizes the evaluation function E k by the number of point groups N k . Thus, the vehicle-mounted device 1 on the basis of the value of the evaluation function E k, the degree of matching to identify the relatively low voxel.
 その後、車載機1は、ニュートン法などの任意の求根アルゴリズムにより総合評価関数Eが最大となるとなる推定パラメータPを算出する。そして、車載機1は、GPS受信機32の出力等から予測した自車位置に対し、推定パラメータPを適用することで、高精度な自車位置を推定する。 Thereafter, the vehicle-mounted device 1 calculates an estimation parameter P that maximizes the comprehensive evaluation function E by an arbitrary root finding algorithm such as Newton's method. The in-vehicle device 1 estimates the own vehicle position with high accuracy by applying the estimation parameter P to the own vehicle position predicted from the output of the GPS receiver 32 or the like.
 (3)スキャンマッチングの具体例
 次に、NDTスキャンマッチングの具体例について説明する。以下では、説明便宜上、2次元平面の場合を例に説明する。
(3) Specific Example of Scan Matching Next, a specific example of NDT scan matching will be described. Hereinafter, for convenience of explanation, the case of a two-dimensional plane will be described as an example.
 図4(A)は、4つの隣接するボクセル「B1」~「B4」において、地図作成用の計測車両で走行したときにライダ等により計測した点群を丸印により示し、これらの点群に基づき式(1)と式(2)から作成した2次元正規分布をグラデーションにより示した図である。図4(A)に示す正規分布の平均、分散は、ボクセルデータにおける平均ベクトル、共分散行列にそれぞれ相当する。 In FIG. 4A, in four adjacent voxels “B1” to “B4”, point clouds measured by a rider or the like when traveling with a measurement vehicle for map creation are indicated by circles. It is the figure which showed the two-dimensional normal distribution created from Formula (1) and Formula (2) based on gradation based on. The average and variance of the normal distribution shown in FIG. 4A correspond to the average vector and covariance matrix in the voxel data, respectively.
 図4(B)は、図4(A)において、車載機1が走行中にライダ30により取得した点群を星印により示した図である。星印により示されるライダ30の点群の位置は、GPS受信機32等の出力による推定位置に基づき各ボクセルB1~B4との位置合わせが行われている。図4(B)の例では、計測車両が計測した点群(丸印)と、車載機1が取得した点群(星印)との間にずれが生じている。 FIG. 4B is a diagram showing the point cloud acquired by the lidar 30 while the vehicle-mounted device 1 is traveling in FIG. The position of the point cloud of the lidar 30 indicated by the asterisk is aligned with the voxels B1 to B4 based on the estimated position based on the output of the GPS receiver 32 or the like. In the example of FIG. 4B, there is a deviation between the point group (circle) measured by the measurement vehicle and the point group (star) acquired by the in-vehicle device 1.
 図4(C)は、NDTスキャンマッチングのマッチング結果に基づき車載機1が取得した点群(星印)を移動させた後の状態を示す図である。図4(C)では、図4(A)、(B)に示す正規分布の平均及び分散に基づき、式(4)および式(5)に示す評価関数Eが最大となるパラメータPを算出し、算出したパラメータPを図4(B)に示す星印の点群に適用している。この場合、計測車両が計測した点群(丸印)と、車載機1が取得した点群(星印)との間のずれが好適に低減されている。 FIG. 4C is a diagram illustrating a state after the point cloud (star) acquired by the vehicle-mounted device 1 is moved based on the matching result of the NDT scan matching. In FIG. 4C, a parameter P that maximizes the evaluation function E shown in the equations (4) and (5) is calculated based on the mean and variance of the normal distribution shown in FIGS. 4 (A) and 4 (B). The calculated parameter P is applied to the star point cloud shown in FIG. In this case, the deviation between the point cloud (circle) measured by the measurement vehicle and the point cloud (star) acquired by the in-vehicle device 1 is suitably reduced.
 ここで、ボクセルB1~B4に対応する評価関数「E1」~「E4」及び総合評価関数Eを、従来から用いられている一般式(6)により算出した場合、これらの値は以下のようになる。
       E1=1.3290
       E2=1.1365
       E3=1.1100
       E4=0.9686
       E =4.5441
Here, when the evaluation functions “E1” to “E4” and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are calculated by the general formula (6) conventionally used, these values are as follows: Become.
E1 = 1.3290
E2 = 1.1365
E3 = 1.1100
E4 = 0.9686
E = 4.5441
 この場合、ボクセル内の点群数が多いほど評価関数の値も大きくなるため、ボクセル間でのマッチングの度合いが比較しにくい。この例では、点群数の多いボクセルB1の評価関数E1が大きくなっている。 In this case, since the value of the evaluation function increases as the number of point groups in the voxel increases, it is difficult to compare the degree of matching between voxels. In this example, the evaluation function E1 of the voxel B1 having a large number of point groups is large.
 一方、ボクセルB1~B4に対応する評価関数E1~E4及び総合評価関数Eを本実施例に基づく式(4)により算出した場合、これらの値は以下のようになる。
       E1=0.1208
       E2=0.1136
       E3=0.1233
       E4=0.1211
       E =0.4789
On the other hand, when the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are calculated by the equation (4) based on the present embodiment, these values are as follows.
E1 = 0.1208
E2 = 0.136
E3 = 0.1233
E4 = 0.1211
E = 0.4789
 この場合、評価関数E1~E4及び総合評価関数Eは、ボクセル内の点群数に影響されにくい値となるため、ボクセル間でのマッチングの度合いが比較しやすい。以上を勘案し、本実施例では、車載機1は、式(4)に基づき算出した評価関数Eに基づき、変化点情報D1の送信要否を判定する。 In this case, the evaluation functions E1 to E4 and the comprehensive evaluation function E are values that are not easily affected by the number of point groups in the voxel, so that the degree of matching between voxels can be easily compared. Considering the above, in the present embodiment, the in-vehicle device 1 determines whether or not the change point information D1 needs to be transmitted based on the evaluation function E k calculated based on the equation (4).
 [変化点情報の送信処理]
 車載機1は、総合評価関数Eおよび評価関数Eに基づき、静的構造物の変化が生じた(即ち配信地図DB20の更新が必要な)可能性があるボクセルを特定し、当該ボクセルに関する情報を、変化点情報D1としてサーバ装置2に送信する。例えば、車載機1は、総合評価関数Eが所定値より低い場合、総合評価関数Eが所定値より低くなった位置でマッチングに用いた全てのボクセルに対応する周辺環境が大きく変化している可能性があると判断し、その位置でマッチングに用いた全てのボクセルに関する変化点情報D1をサーバ装置2へ送信する。また、車載機1は、総合評価関数Eが所定値より大きく、評価関数Eのうち、所定値より小さい評価関数Eが存在する場合、当該評価関数Eに対応するボクセルkには、静止構造物の変化が生じている可能性があると判断する。よって、車載機1は、そのようなボクセルkを検知した場合には、当該ボクセルkに関する変化点情報D1をサーバ装置2へ送信する。ここで、変化点情報D1には、例えば、ボクセルID、時刻情報、推定自車位置情報、総合評価関数E、評価関数Eなどが含まれる。
[Transmission processing of change point information]
The in-vehicle device 1 identifies a voxel in which a static structure change may occur (that is, the distribution map DB 20 needs to be updated) based on the comprehensive evaluation function E and the evaluation function E k , and information on the voxel Is transmitted to the server apparatus 2 as the change point information D1. For example, in the vehicle-mounted device 1, when the comprehensive evaluation function E is lower than a predetermined value, the surrounding environment corresponding to all the voxels used for matching at the position where the comprehensive evaluation function E is lower than the predetermined value may be greatly changed. The change point information D1 regarding all the voxels used for matching at that position is transmitted to the server apparatus 2. Further, the vehicle-mounted unit 1, the synthetic evaluation function E is greater than a predetermined value, among the evaluation function E k, if there is a predetermined value smaller than the evaluation function E k, the voxel k corresponding to the evaluation function E k, Judge that there is a possibility that the stationary structure has changed. Therefore, when the in-vehicle device 1 detects such a voxel k, the in-vehicle device 1 transmits the change point information D1 related to the voxel k to the server device 2. Here, the change point information D1 includes, for example, a voxel ID, time information, estimated vehicle position information, a comprehensive evaluation function E, an evaluation function Ek, and the like.
 また、車載機1は、他の評価関数Eと比べて小さい評価関数Eを検出した場合に加えて、またはこれに代えて、ボクセル内での点群数Nが少ないボクセルを検出した場合に、当該ボクセルに対する変化点情報D1をサーバ装置2へ送信してもよい。本実施例では、評価関数Eは点群数Nにより正規化されているため、静止構造物の変形や消滅等により点群数Nが少なくなったときでも、評価関数Eの値が所定値より小さくならない場合がある。以上を勘案し、車載機1は、点群数Nが所定の閾値より小さいボクセルを検出した場合、当該ボクセルに対する変化点情報D1をサーバ装置2へ送信する。この場合、例えば、車載機1は、ボクセルデータの点群数情報を参照し、点群数情報が示す点群数が小さいほど、上述の閾値を小さく設定するとよい。 In addition, in-vehicle device 1 detects a voxel with a small number of point groups N k in the voxel in addition to or instead of detecting an evaluation function E k that is smaller than other evaluation functions E k . In this case, the change point information D1 for the voxel may be transmitted to the server device 2. In this embodiment, evaluation for function E k is normalized by point group number N k, when the number of point group N k is low due to the deformation or disappearance or the like of the static structure also, the value of the evaluation function E k May not be smaller than a predetermined value. Considering the above, when the in-vehicle device 1 detects a voxel having a point cloud number Nk smaller than a predetermined threshold value, the in-vehicle device 1 transmits change point information D1 for the voxel to the server device 2. In this case, for example, the in-vehicle device 1 may refer to the point cloud number information of the voxel data and set the above threshold value smaller as the point cloud number indicated by the point cloud number information is smaller.
 図5は、各車載機1が実行する変化点情報D1の送信処理の手順を示すフローチャートの一例である。車載機1は、図5のフローチャートの処理を繰り返し実行する。 FIG. 5 is an example of a flowchart showing a procedure of transmission processing of the change point information D1 executed by each vehicle-mounted device 1. The in-vehicle device 1 repeatedly executes the process of the flowchart of FIG.
 まず、車載機1は、GPS受信機32等の出力に基づき、自車位置の初期値を設定する(ステップS101)。次に、車載機1は、速度センサ34から車体速度を取得すると共に、ジャイロセンサ33からヨー方向の角速度を取得する(ステップS102)。そして、車載機1は、ステップS102の取得結果に基づき、車両の移動距離と車両の方位変化を計算する(ステップS103)。 First, the in-vehicle device 1 sets an initial value of the vehicle position based on the output of the GPS receiver 32 or the like (step S101). Next, the vehicle-mounted device 1 acquires the vehicle body speed from the speed sensor 34 and also acquires the angular velocity in the yaw direction from the gyro sensor 33 (step S102). And the vehicle equipment 1 calculates the moving distance of a vehicle and the azimuth | direction change of a vehicle based on the acquisition result of step S102 (step S103).
 その後、車載機1は、1時刻前の推定自車位置に、ステップS103で計算した移動距離と方位変化を加算し、予測位置を算出する(ステップS104)。そして、車載機1は、ステップS104で算出した予測位置に基づき、地図DB10を参照して、自車位置周辺に存在するボクセルのボクセルデータを取得する(ステップS105)。さらに、車載機1は、ステップS104で算出した予測位置に基づき、ライダ30から得られたスキャンデータをボクセルごとに分割する(ステップS106)。そして、車載機1は、評価関数を用いてNDTスキャンマッチングの計算を行う(ステップS107)。この場合、車載機1は、式(4)及び式(5)に基づき、評価関数E及び総合評価関数Eを算出し、総合評価関数Eが最大となる推定パラメータPを算出する。 Thereafter, the vehicle-mounted device 1 adds the movement distance and the azimuth change calculated in step S103 to the estimated host vehicle position one time before, and calculates a predicted position (step S104). And the vehicle equipment 1 acquires the voxel data of the voxel which exists around the own vehicle position with reference to map DB10 based on the estimated position calculated by step S104 (step S105). Further, the in-vehicle device 1 divides the scan data obtained from the lidar 30 for each voxel based on the predicted position calculated in step S104 (step S106). And the vehicle equipment 1 calculates NDT scan matching using an evaluation function (step S107). In this case, the in-vehicle device 1 calculates the evaluation function E k and the comprehensive evaluation function E based on the equations (4) and (5), and calculates the estimation parameter P that maximizes the comprehensive evaluation function E.
 そして、車載機1は、総合評価関数Eが最大となる推定パラメータPを特定した場合(ステップS108;Yes)、最大となる総合評価関数Eが所定値以上であるか否か判定する(ステップS109)。そして、車載機1は、総合評価関数Eが所定値未満の場合(ステップS109;No)、マッチングに用いた全てのボクセルのボクセルID、日時情報、推定位置情報等を含む変化点情報D1を、サーバ装置2へ送信する(ステップS111)。一方、車載機1は、総合評価関数Eが所定値以上である場合(ステップS109;Yes)、評価関数Eが所定値より小さいボクセルが存在するか否か判定する(ステップS110)。 Then, when the in-vehicle device 1 specifies the estimation parameter P that maximizes the comprehensive evaluation function E (step S108; Yes), the in-vehicle device 1 determines whether or not the maximum comprehensive evaluation function E is equal to or greater than a predetermined value (step S109). ). And when the comprehensive evaluation function E is less than a predetermined value (step S109; No), the vehicle-mounted device 1 obtains change point information D1 including voxel IDs, date information, estimated position information, etc. of all voxels used for matching. It transmits to the server apparatus 2 (step S111). On the other hand, when the comprehensive evaluation function E is greater than or equal to a predetermined value (step S109; Yes), the in-vehicle device 1 determines whether there is a voxel whose evaluation function E k is smaller than the predetermined value (step S110).
 そして、車載機1は、評価関数Eが所定値よりも小さいボクセルが存在する場合(ステップS110;Yes)、対象のボクセルのボクセルID、日時情報、推定位置情報等を含む変化点情報D1を、サーバ装置2へ送信する(ステップS111)。なお、車載機1は、ステップS110での判定に代えて、又はこれに加えて、点群数Nの大小に基づき変化点情報D1の送信の要否を判定してもよい。 Then, when there is a voxel whose evaluation function E k is smaller than the predetermined value (step S110; Yes), the in-vehicle device 1 receives the change point information D1 including the voxel ID, date information, estimated position information, and the like of the target voxel. And transmitted to the server device 2 (step S111). The in-vehicle device 1 may determine whether or not the change point information D1 needs to be transmitted based on the size of the point cloud number Nk instead of or in addition to the determination in step S110.
 一方、車載機1は、評価関数Eが所定値よりも小さいボクセルが存在しない場合(ステップS110;No)、ステップS102へ処理を戻す。なお、車載機1は、ステップS109、ステップS110の判定後、総合評価関数Eが最大となる推定パラメータPを、ステップS104の予測位置に適用することで、現時刻における推定自車位置を算出する。 On the other hand, when there is no voxel whose evaluation function E k is smaller than the predetermined value (step S110; No), the in-vehicle device 1 returns the process to step S102. The in-vehicle device 1 calculates the estimated own vehicle position at the current time by applying the estimated parameter P that maximizes the comprehensive evaluation function E to the predicted position in step S104 after the determination in steps S109 and S110. .
 [計測経路情報の送信処理]
 次に、サーバ装置2による計測経路情報D2の送信処理について説明する。概略的には、サーバ装置2は、記憶部22に記憶した変化点情報D1に基づき計測対象ボクセルBtagを決定し、決定した計測対象ボクセルBtagを計測可能な位置を経由する経路を、計測用経路として指定する計測経路情報D2を計測システム4へ送信する。
[Measurement route information transmission processing]
Next, the transmission process of the measurement path information D2 by the server device 2 will be described. Schematically, the server apparatus 2 determines the measurement target voxel Btag based on the change point information D1 stored in the storage unit 22, and determines a path that passes through the position where the determined measurement target voxel Btag can be measured as a measurement path. Is transmitted to the measurement system 4.
 図6は、計測経路情報D2の送信処理の手順を示すフローチャートである。サーバ装置2は、図6に示すフローチャートの処理を、繰り返し実行する。 FIG. 6 is a flowchart showing the procedure of the transmission process of the measurement path information D2. The server device 2 repeatedly executes the processing of the flowchart shown in FIG.
 まず、サーバ装置2は、各一般車両の車載機1から変化点情報D1を受信し、受信した変化点情報D1を記憶部22に記憶する(ステップS201)。次に、サーバ装置2は、計測用経路の設定タイミングか否か判定する(ステップS202)。例えば、サーバ装置2は、計測車両の計測システム4から計測車両の現在位置情報を含む経路探索要求を受信した場合に、計測用経路の設定タイミングであると判断する。そして、サーバ装置2は、計測用経路の設定タイミングではない場合(ステップS202;No)、再びステップS201へ処理を戻す。 First, the server device 2 receives the change point information D1 from the in-vehicle device 1 of each general vehicle, and stores the received change point information D1 in the storage unit 22 (step S201). Next, the server device 2 determines whether or not it is the measurement route setting timing (step S202). For example, when the server device 2 receives a route search request including the current position information of the measurement vehicle from the measurement system 4 of the measurement vehicle, the server device 2 determines that it is the measurement route setting timing. If it is not the measurement route setting timing (step S202; No), the server apparatus 2 returns the process to step S201 again.
 サーバ装置2は、計測用経路の設定タイミングであると判断した場合(ステップS202;Yes)、記憶部22に記憶した変化点情報D1に基づき、計測対象ボクセルBtagを決定する(ステップS203)。この場合、サーバ装置2は、例えば、同一のボクセルIDを指定した変化点情報D1が所定個数以上存在する場合、当該ボクセルIDが示すボクセルには静止構造物の変化が生じている可能性が高く、計測車両による計測が必要と判断し、当該ボクセルを計測対象ボクセルBtagとして決定する。これにより、サーバ装置2は、計測車両が計測すべき計測対象ボクセルBtagを決定する。 If the server device 2 determines that it is the measurement route setting timing (step S202; Yes), the server device 2 determines the measurement target voxel Btag based on the change point information D1 stored in the storage unit 22 (step S203). In this case, for example, when there is a predetermined number or more of change point information D1 specifying the same voxel ID, the server apparatus 2 is highly likely to have a change in the stationary structure in the voxel indicated by the voxel ID. Then, it is determined that measurement by the measurement vehicle is necessary, and the voxel is determined as the measurement target voxel Btag. Thereby, the server apparatus 2 determines the measurement object voxel Btag which a measurement vehicle should measure.
 次に、サーバ装置2は、計測対象ボクセルBtagを計測範囲に含む計測用経路を探索する(ステップS204)。ここで、サーバ装置2は、計測車両の現在位置を出発地とし、各計測対象ボクセルBtagを計測可能な地点又は道路を経由地とする経路探索処理を実行する。この場合、例えば、サーバ装置2は、計測車両の現在位置から出発して各計測対象ボクセルBtagを計測可能な地点又は道路を経由する経路のうち、所要時間や距離などを指標とした道路ごとのリンクコストの総計が最小となる経路を、計測用経路として定める。そして、サーバ装置2は、計測車両の計測システム4に対し、計測用経路を示す計測経路情報D2を送信する(ステップS205)。このとき、好適には、サーバ装置2は、計測用経路に加えて、計測車両が走行すべき車線又は/及び車速を指定する情報を計測経路情報D2に含めてもよい。これにより、サーバ装置2は、計測対象ボクセルBtagを高精度に計測させるように計測車両を好適に走行させることができる。車線又は/及び車速を指定する例については図7を参照して説明する。 Next, the server device 2 searches for a measurement route that includes the measurement target voxel Btag in the measurement range (step S204). Here, the server device 2 executes a route search process using the current position of the measurement vehicle as a departure point and a point or road where each measurement target voxel Btag can be measured as a transit point. In this case, for example, the server device 2 starts from the current position of the measurement vehicle and, for each road that uses the required time or distance as an index, among points that can measure each measurement target voxel Btag or a road that passes through the road. The route with the minimum link cost is determined as the measurement route. Then, the server device 2 transmits the measurement route information D2 indicating the measurement route to the measurement system 4 of the measurement vehicle (step S205). At this time, preferably, in addition to the measurement route, the server device 2 may include information specifying the lane or / and the vehicle speed that the measurement vehicle should travel in the measurement route information D2. Thereby, the server apparatus 2 can make a measurement vehicle drive | work suitably so that the measurement object voxel Btag may be measured with high precision. An example of specifying the lane or / and the vehicle speed will be described with reference to FIG.
 その後、サーバ装置2は、計測経路情報D2により指定された計測用経路を走行した計測車両の計測システム4から計測データを受信し、受信した計測データに基づき配信地図DB20を更新する。この場合、例えば、サーバ装置2は、計測対象ボクセルBtagに含まれる点群データを計測データから抽出し、各計測対象ボクセルBtagにおける平均ベクトル、共分散行列等を算出後、算出した平均ベクトル、共分散行列等により計測対象ボクセルBtagのボクセルデータを更新する。 Thereafter, the server device 2 receives measurement data from the measurement system 4 of the measurement vehicle that has traveled the measurement route specified by the measurement route information D2, and updates the distribution map DB 20 based on the received measurement data. In this case, for example, the server device 2 extracts the point cloud data included in the measurement target voxel Btag from the measurement data, calculates the average vector, the covariance matrix, and the like in each measurement target voxel Btag, and then calculates the calculated average vector and covariance. The voxel data of the measurement target voxel Btag is updated by a dispersion matrix or the like.
 図7は、計測車両が計測経路情報D2に基づき走行する際の計測車両周辺の俯瞰図を示す。矢印L1は、計測経路情報D2により指定された計測用経路を示す。また、破線枠53は、計測対象ボクセルBtagの位置を示す。ここでは、破線枠53内に新規の静止構造物52が発生したことから、破線枠53内のボクセルが計測対象ボクセルBtagとして定められている。 FIG. 7 shows an overhead view around the measurement vehicle when the measurement vehicle travels based on the measurement route information D2. An arrow L1 indicates a measurement path designated by the measurement path information D2. A broken line frame 53 indicates the position of the measurement target voxel Btag. Here, since a new stationary structure 52 is generated in the broken line frame 53, the voxel in the broken line frame 53 is determined as the measurement target voxel Btag.
 この場合、サーバ装置2は、破線枠53内の計測対象ボクセルBtagを計測可能な道路51を計測用経路の一部とし、かつ、道路51内において計測対象ボクセルBtagに最も近い車線である左車線を走行すべき車線として指定した計測経路情報D2を生成する。一般的に、対象物までの距離が近いほどライダの距離計測値の精度は高く、距離が遠いほど精度は低い。よって、サーバ装置2は、少なくとも破線枠53内の計測対象ボクセルBtagをライダ46により計測可能な範囲内では、走行車線として左車線を指定する計測経路情報D2を生成する。これにより、計測対象ボクセルBtag内の静止構造物52を高精度に計測させることができる。同様に、サーバ装置2は、計測対象ボクセルBtagが走行道路の右側に存在する場合には、少なくとも当該計測対象ボクセルBtagをライダ46により計測可能な範囲内では、走行車線として右車線を指定する計測経路情報D2を生成するとよい。 In this case, the server device 2 uses the road 51 in which the measurement target voxel Btag in the broken line frame 53 can be measured as a part of the measurement route, and the left lane that is the lane closest to the measurement target voxel Btag in the road 51 The measurement route information D2 designated as the lane to travel on is generated. Generally, the accuracy of the distance measurement value of the lidar is higher as the distance to the object is shorter, and the accuracy is lower as the distance is longer. Therefore, the server device 2 generates measurement route information D2 that designates the left lane as the travel lane within a range in which at least the measurement target voxel Btag in the broken line frame 53 can be measured by the lidar 46. Thereby, the stationary structure 52 in the measurement target voxel Btag can be measured with high accuracy. Similarly, when the measurement target voxel Btag is present on the right side of the travel road, the server device 2 designates the right lane as the travel lane at least within the range in which the measurement target voxel Btag can be measured by the rider 46. The route information D2 may be generated.
 また、サーバ装置2は、計測対象ボクセルBtagが計測車両の計測範囲となる走行位置では、他の走行位置よりも計測車両を低速移動させるように、計測車両の車速を指定する情報を計測経路情報D2に含めるとよい。図7の例では、サーバ装置2は、矢印L1の破線部分において、所定速度以下で走行すべき旨の車速情報を計測経路情報D2に含める。これにより、サーバ装置2は、計測対象ボクセルBtagの計測時に計測対象ボクセルBtagの計測に好適な速度により計測車両を走行させ、配信地図DB20の更新に必要な計測データを高精度に生成させることができる。 In addition, the server device 2 uses the measurement route information to specify the vehicle speed of the measurement vehicle so that the measurement vehicle moves at a lower speed than the other travel positions at the travel position where the measurement target voxel Btag is the measurement range of the measurement vehicle. It may be included in D2. In the example of FIG. 7, the server device 2 includes the vehicle speed information indicating that the vehicle should travel at a predetermined speed or less in the measurement route information D2 in the broken line portion of the arrow L1. Accordingly, the server device 2 can cause the measurement vehicle to travel at a speed suitable for the measurement of the measurement target voxel Btag at the time of measurement of the measurement target voxel Btag, and generate measurement data necessary for updating the distribution map DB 20 with high accuracy. it can.
 以上説明したように、本実施例に係るサーバ装置2は、ライダ30の出力と地図DB10のボクセルデータとの照合結果を示す変化点情報D1を各一般車両の車載機1から受信し、蓄積した変化点情報D1に基づき、計測が必要なボクセルである計測対象ボクセルBtagを決定する。そして、サーバ装置2は、計測対象ボクセルBtagを計測可能な位置を経由地とする経路を、計測車両の計測用経路として探索し、計測用経路の情報を含む計測経路情報D2を計測車両の計測システム4へ送信する。これにより、サーバ装置2は、計測車両に走行させる計測用経路を好適に定めることができる。 As described above, the server device 2 according to the present embodiment receives and accumulates the change point information D1 indicating the collation result between the output of the rider 30 and the voxel data of the map DB 10 from the in-vehicle device 1 of each general vehicle. Based on the change point information D1, a measurement target voxel Btag that is a voxel that needs to be measured is determined. Then, the server device 2 searches for a route that uses a position where the measurement target voxel Btag can be measured as a route for measurement, as a measurement route of the measurement vehicle, and measures measurement route information D2 including information on the measurement route. Send to system 4. Thereby, the server apparatus 2 can determine suitably the measurement path | route which makes a measurement vehicle drive | work.
 [変形例]
 以下、実施例に好適な変形例について説明する。以下の変形例は、組み合わせて実施例に適用してもよい。
[Modification]
Hereinafter, modified examples suitable for the embodiments will be described. The following modifications may be applied to the embodiments in combination.
 (変形例1)
 サーバ装置2は、変化点情報D1に含まれる計測時の条件に関する情報に基づき、計測対象ボクセルBtagを決定してもよい。
(Modification 1)
The server apparatus 2 may determine the measurement target voxel Btag based on the information regarding the measurement conditions included in the change point information D1.
 例えば、サーバ装置2は、図6のステップS203において、計測車両の計測条件と一致する条件で計測された変化点情報D1(「同条件変化点情報」とも呼ぶ。)を記憶部22から抽出し、所定個数以上の同条件変化点情報が示すボクセルを計測対象ボクセルBtagとして決定してもよい。これにより、サーバ装置2は、一般車両により変化点が検出された時の計測条件と共通する計測条件により計測対象ボクセルBtagの計測を行い、計測対象ボクセルBtagでの変化点の有無を好適に確認する。 For example, in step S203 of FIG. 6, the server device 2 extracts change point information D1 (also referred to as “same condition change point information”) measured under conditions that match the measurement conditions of the measurement vehicle from the storage unit 22. A voxel indicated by a predetermined number or more of the condition change point information may be determined as the measurement target voxel Btag. Thereby, the server apparatus 2 measures the measurement target voxel Btag under the measurement conditions common to the measurement conditions when the change point is detected by the general vehicle, and suitably confirms whether there is a change point in the measurement target voxel Btag. To do.
 この場合の同条件変化点情報の抽出方法の具体例について説明する。例えば、サーバ装置2は、計測車両を走行させる時間帯と一致する日時を示す日時情報を含む変化点情報D1を、同条件変化点情報として抽出する。他の例では、サーバ装置2は、計測車両を走行させる曜日と一致する曜日を示す日時情報を含む変化点情報D1を、同条件変化点情報として抽出する。さらに別の例では、変化点情報D1には計測時の天候情報が含まれており、サーバ装置2は、計測車両を走行させるときに予想される天候(例えば出発地での天候)と一致する天候を示す天候情報を含む変化点情報D1を、同条件変化点情報として抽出する。このように、サーバ装置2は、これから走行させる計測車両の計測条件と共通する計測条件で生成された変化点情報D1に基づき計測対象ボクセルBtagを決定することで、一般車両と同条件で計測対象ボクセルBtagを計測し、計測車両での計測により変化点の有無を好適に確認することができる。 A specific example of the extraction method of the same condition change point information in this case will be described. For example, the server device 2 extracts change point information D1 including date and time information indicating a date and time that coincides with a time zone in which the measurement vehicle is driven, as the same condition change point information. In another example, the server device 2 extracts change point information D1 including date and time information indicating the day of the week that matches the day of the week on which the measurement vehicle is run, as the condition change point information. In yet another example, the change point information D1 includes weather information at the time of measurement, and the server device 2 matches the weather expected when the measurement vehicle is driven (for example, the weather at the departure place). Change point information D1 including weather information indicating the weather is extracted as the same condition change point information. As described above, the server device 2 determines the measurement target voxel Btag based on the change point information D1 generated under the measurement condition common to the measurement condition of the measurement vehicle to be traveled, and thus the measurement target under the same condition as the general vehicle. The voxel Btag is measured, and the presence or absence of a change point can be suitably confirmed by measurement with the measurement vehicle.
(変形例2)
 計測システム4は、サーバ装置2が実行すべき処理の一部をサーバ装置2の代わりに実行してもよい。
(Modification 2)
The measurement system 4 may execute a part of the process to be executed by the server device 2 instead of the server device 2.
 例えば、計測システム4は、図6のフローチャートの一部を実行してもよい。この場合、計測システム4は、計測用経路の設定タイミングであるとステップS202で判断した場合、計測車両の現在位置から所定距離以内のボクセルに対応する変化点情報D1をサーバ装置から受信し、受信した変化点情報D1に基づき計測対象ボクセルBtagを決定する(ステップS203参照)。そして、計測システム4は、ステップS204に基づき、計測用経路を探索し、探索した計測用経路を計測車両が走行するように運転支援を行う。この場合であっても、計測システム4は、好適に計測用経路を決定することができる。なお、本変形例では、計測システム4は、本発明における「経路探索装置」の一例である。 For example, the measurement system 4 may execute part of the flowchart of FIG. In this case, when the measurement system 4 determines in step S202 that it is the timing for setting the measurement route, the measurement system 4 receives the change point information D1 corresponding to the voxel within a predetermined distance from the current position of the measurement vehicle from the server device, and receives it. The measurement target voxel Btag is determined based on the changed point information D1 (see step S203). Then, based on step S204, the measurement system 4 searches for a measurement route, and performs driving support so that the measurement vehicle travels on the searched measurement route. Even in this case, the measurement system 4 can preferably determine the measurement path. In the present modification, the measurement system 4 is an example of the “route search device” in the present invention.
 (変形例3)
 車載機1に相当する機能が一般車両に内蔵されていてもよい。この場合、一般車両の電子制御装置(ECU:Electronic Control Unit)は、一般車両のメモリに記憶されたプログラムを実行することで、車載機1の制御部15に相当する処理を実行する。
(Modification 3)
A function corresponding to the in-vehicle device 1 may be incorporated in a general vehicle. In this case, an electronic control unit (ECU) of a general vehicle executes a process corresponding to the control unit 15 of the in-vehicle device 1 by executing a program stored in the memory of the general vehicle.
 (変形例4)
 ボクセルごとのマッチングの度合いを評価する指標は、式(4)に示す評価関数Eに限定されない。
(Modification 4)
The index for evaluating the degree of matching for each voxel is not limited to the evaluation function E k shown in Expression (4).
 これに代えて、例えば、車載機1は、ライダ30により計測した点群データをボクセルごとに分割した後、ボクセルごとに平均ベクトル及び共分散行列を算出し、地図DB10のボクセルデータに含まれる平均ベクトル、共分散行列と直接比較してもよい。この場合、例えば、車載機1は、比較する平均ベクトル、共分散行列の差分が所定値以上となるボクセルに関する情報を、変化点情報D1としてサーバ装置2へ送信する。この場合、制御部25は、例えば、ライダ30により計測した点群データの平均ベクトルと地図DB20のボクセルデータの平均ベクトルとの距離差を第1の差分として算出し、ライダ30により計測した点群データの共分散行列と地図DB20のボクセルデータの共分散行列との差分(例えば固有値の差)を第2の差分として算出する。そして、車載機1は、第1の差分と第2の差分とが、それぞれに対して定められた閾値以上となる場合に、対象のボクセルに対する変化点情報D1を、サーバ装置2へ送信する。このように、各ボクセルに対する変化点情報D1の送信要否の判定は、評価関数Eを用いるものに限定されない。 Instead, for example, the in-vehicle device 1 divides the point cloud data measured by the lidar 30 for each voxel, calculates an average vector and a covariance matrix for each voxel, and calculates the average included in the voxel data of the map DB 10. Direct comparison with vectors and covariance matrices is also possible. In this case, for example, the in-vehicle device 1 transmits, as the change point information D1, information about voxels in which the difference between the average vector to be compared and the covariance matrix is equal to or greater than a predetermined value to the server device 2. In this case, for example, the control unit 25 calculates the distance difference between the average vector of the point cloud data measured by the lidar 30 and the average vector of the voxel data of the map DB 20 as the first difference, and the point cloud measured by the lidar 30 A difference between the data covariance matrix and the covariance matrix of the voxel data in the map DB 20 (for example, a difference between eigenvalues) is calculated as a second difference. And the vehicle equipment 1 transmits the change point information D1 with respect to the target voxel to the server apparatus 2, when a 1st difference and a 2nd difference become more than the threshold value defined with respect to each. Thus, the determination of the transmission necessity of transition data D1 for each voxel, but are not limited to those using the evaluation function E k.
 (変形例5)
 ボクセルデータは、図3に示すように、平均ベクトルと共分散行列とを含むデータ構造に限定されない。例えば、ボクセルデータは、平均ベクトルと共分散行列を算出する際に用いられる計測車両が計測した点群データをそのまま含んでいてもよい。この場合、ボクセルデータに含まれる点群データは、本発明における「第2点群情報」の一例である。
(Modification 5)
The voxel data is not limited to a data structure including an average vector and a covariance matrix as shown in FIG. For example, the voxel data may include point cloud data measured by a measurement vehicle used when calculating an average vector and a covariance matrix. In this case, the point cloud data included in the voxel data is an example of “second point cloud information” in the present invention.
 また、本実施例は、NDTによるスキャンマッチングに限定されず、ICP(Iterative Closest Point)などの他のスキャンマッチングを適用してもよい。この場合であっても、実施例と同様、車載機1は、マッチングの度合いを評価するボクセルごとの評価関数を算出することで、マッチング度合いが相対的に低いボクセルを特定し、当該ボクセルに対する変化点情報D1をサーバ装置2へ送信する。このように、本発明に適用可能なスキャンマッチングの方法は、NDTスキャンマッチングに限定されない。 Further, the present embodiment is not limited to scan matching by NDT, and other scan matching such as ICP (Iterative Closest Point) may be applied. Even in this case, as in the embodiment, the vehicle-mounted device 1 specifies a voxel having a relatively low matching degree by calculating an evaluation function for each voxel for evaluating the matching degree, and changes with respect to the voxel. The point information D1 is transmitted to the server device 2. Thus, the scan matching method applicable to the present invention is not limited to NDT scan matching.
 1 車載機
 2 サーバ装置
 4 計測システム
 10 地図DB
 20 配信地図DB
 11、21、41 通信部
 12、22、42 記憶部
 15、25、45 制御部
 13、43 センサ部
 14 入力部
 16 出力部
1 In-vehicle device 2 Server device 4 Measurement system 10 Map DB
20 Distribution map DB
11, 21, 41 Communication unit 12, 22, 42 Storage unit 15, 25, 45 Control unit 13, 43 Sensor unit 14 Input unit 16 Output unit

Claims (11)

  1.  計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報と、領域毎に地図情報に記録されている第2点群情報との照合結果に基づき、計測が必要な領域である対象領域を決定する決定部と、
     前記対象領域を計測可能な位置を経由地とする経路を探索する探索部と、
    を備える経路探索装置。
    Measurement is required based on the result of collation between the first point cloud information measured by the measurement unit and each distance from the reference position to a plurality of positions, and the second point cloud information recorded in the map information for each region. A determination unit that determines a target area that is a complex area;
    A search unit that searches for a route that uses a position where the target region can be measured as a transit point; and
    A route search device comprising:
  2.  前記探索部は、少なくとも前記対象領域を計測可能な範囲において計測車両が走行すべき車線を指定した前記経路に関する情報を出力する請求項1に記載の経路探索装置。 The route search device according to claim 1, wherein the search unit outputs information on the route in which a lane on which the measurement vehicle should travel is at least within a range in which the target area can be measured.
  3.  前記探索部は、少なくとも前記対象領域を計測可能な範囲において計測車両が走行すべき速度を指定した前記経路に関する情報を出力する請求項1または2に記載の経路探索装置。 The route search device according to claim 1 or 2, wherein the search unit outputs information on the route that specifies a speed at which the measurement vehicle should travel at least within a range in which the target region can be measured.
  4.  前記探索部は、計測車両の現在位置を取得し、当該現在位置を出発地とした前記経路を探索する請求項1~3のいずれか一項に記載の経路探索装置。 The route search device according to any one of claims 1 to 3, wherein the search unit acquires a current position of the measurement vehicle and searches for the route from the current position as a departure point.
  5.  前記第1取得部は、前記第1点群情報と共に、前記第1点群情報を計測したときの計測条件に関する情報を取得し、
     前記決定部は、前記照合結果と、前記計測条件に関する情報とに基づき、前記対象領域を決定する請求項1~4のいずれか一項に記載の経路探索装置。
    The first acquisition unit acquires information on measurement conditions when measuring the first point cloud information together with the first point cloud information,
    The route search device according to any one of claims 1 to 4, wherein the determination unit determines the target region based on the collation result and information on the measurement condition.
  6.  前記決定部は、前記計測条件として、前記第1点群情報を計測したときの時間帯、曜日、天候の少なくともいずれか一つに基づき、前記対象領域を決定する請求項5に記載の経路探索装置。 The route search according to claim 5, wherein the determination unit determines the target region based on at least one of a time zone, day of the week, and weather when the first point cloud information is measured as the measurement condition. apparatus.
  7.  前記第1取得部は、前記計測部を備える複数の車両から前記照合結果を受信し、
     前記探索部は、前記経路に関する情報を、計測車両の運転支援を行う制御装置に送信する請求項1~6のいずれか一項に記載の経路探索装置。
    The first acquisition unit receives the verification result from a plurality of vehicles including the measurement unit,
    The route search device according to any one of claims 1 to 6, wherein the search unit transmits information on the route to a control device that supports driving of the measurement vehicle.
  8.  計測車両に搭載され、
     前記探索部が探索した経路を前記計測車両が走行するように運転支援を行う運転支援部をさらに備える請求項1~6のいずれか一項に記載の経路探索装置。
    Mounted on the measurement vehicle,
    The route search device according to any one of claims 1 to 6, further comprising a drive support unit that performs drive support so that the measurement vehicle travels on the route searched by the search unit.
  9.  経路探索装置が実行する制御方法であって、
     計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報と、領域毎に地図情報に記録されている第2点群情報との照合結果に基づき、計測が必要な領域である対象領域を決定する決定工程と、
     前記対象領域を計測可能な位置を経由地とする経路を探索する探索工程と、
    を有する制御方法。
    A control method executed by a route search device,
    Measurement is required based on the result of collation between the first point cloud information measured by the measurement unit and each distance from the reference position to a plurality of positions, and the second point cloud information recorded in the map information for each region. A determination step of determining a target area that is a critical area;
    A search step for searching for a route that uses a position where the target area can be measured as a transit point; and
    A control method.
  10.  コンピュータが実行するプログラムであって、
     計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報と、領域毎に地図情報に記録されている第2点群情報との照合結果に基づき、計測が必要な領域である対象領域を決定する決定部と、
     前記対象領域を計測可能な位置を経由地とする経路を探索する探索部
    として前記コンピュータを機能させるプログラム。
    A program executed by a computer,
    Measurement is required based on the result of collation between the first point cloud information measured by the measurement unit and each distance from the reference position to a plurality of positions, and the second point cloud information recorded in the map information for each region. A determination unit that determines a target area that is a complex area;
    A program that causes the computer to function as a search unit that searches for a route that uses a position where the target region can be measured as a transit point.
  11.  請求項10に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 10.
PCT/JP2018/020368 2017-05-31 2018-05-28 Route searching device, control method, program, and storage medium WO2018221456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017108671 2017-05-31
JP2017-108671 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221456A1 true WO2018221456A1 (en) 2018-12-06

Family

ID=64454689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020368 WO2018221456A1 (en) 2017-05-31 2018-05-28 Route searching device, control method, program, and storage medium

Country Status (1)

Country Link
WO (1) WO2018221456A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191239A (en) * 2010-03-16 2011-09-29 Mazda Motor Corp Mobile object position detecting device
JP2012150016A (en) * 2011-01-19 2012-08-09 Zenrin Co Ltd Road network analysis system
JP2014048205A (en) * 2012-08-31 2014-03-17 Toyota Motor Corp Driving support system and driving support method
JP2016156973A (en) * 2015-02-25 2016-09-01 パイオニア株式会社 Map data storage device, control method, program and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191239A (en) * 2010-03-16 2011-09-29 Mazda Motor Corp Mobile object position detecting device
JP2012150016A (en) * 2011-01-19 2012-08-09 Zenrin Co Ltd Road network analysis system
JP2014048205A (en) * 2012-08-31 2014-03-17 Toyota Motor Corp Driving support system and driving support method
JP2016156973A (en) * 2015-02-25 2016-09-01 パイオニア株式会社 Map data storage device, control method, program and recording medium

Similar Documents

Publication Publication Date Title
WO2018221453A1 (en) Output device, control method, program, and storage medium
WO2018181974A1 (en) Determination device, determination method, and program
JP6721784B2 (en) Information processing device, server device, control method, program, and storage medium
JP7059888B2 (en) Assistance control system
WO2018221455A1 (en) Update device, control method, program, and storage medium
WO2017199333A1 (en) Information output device, terminal device, control method, program, and storage medium
WO2018221454A1 (en) Map generation device, control method, program, and storage medium
CN110470309A (en) This truck position apparatus for predicting
US20220113139A1 (en) Object recognition device, object recognition method and program
JP2018116014A (en) Own vehicle position estimation device, control method, program and storage medium
EP3872454A1 (en) Measurement accuracy calculation device, host position estimation device, control method, program, and storage medium
WO2021112074A1 (en) Information processing device, control method, program, and storage medium
JP2023075184A (en) Output device, control method, program, and storage medium
JP2023095904A (en) Self-position estimation device
JP2023164553A (en) Position estimation device, estimation device, control method, program and storage medium
JP2024056032A (en) Data structure, storage medium and storage device
JP2021120683A (en) Output device, control method, program, and storage medium
JP2023164502A (en) Stationary object data generator, method for control, program, and storage medium
JP2023076673A (en) Information processing device, control method, program and storage medium
WO2019188886A1 (en) Terminal device, information processing method, and storage medium
JP2020046411A (en) Data structure, storage device, terminal device, server device, control method, program, and storage medium
JP2022136145A (en) Data structure, information processing device, and map data generator
WO2018221456A1 (en) Route searching device, control method, program, and storage medium
WO2018221458A1 (en) Updating device, control method, program, and storage medium
WO2019188877A1 (en) Information transmission device, data structure, control method, program, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP