WO2018216428A1 - Control system and device provided with same - Google Patents

Control system and device provided with same Download PDF

Info

Publication number
WO2018216428A1
WO2018216428A1 PCT/JP2018/016901 JP2018016901W WO2018216428A1 WO 2018216428 A1 WO2018216428 A1 WO 2018216428A1 JP 2018016901 W JP2018016901 W JP 2018016901W WO 2018216428 A1 WO2018216428 A1 WO 2018216428A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
voltage
control system
control
Prior art date
Application number
PCT/JP2018/016901
Other languages
French (fr)
Japanese (ja)
Inventor
勝村 英則
恵大 小西
田中 隆
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018216428A1 publication Critical patent/WO2018216428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B23/00Uppers; Boot legs; Stiffeners; Other single parts of footwear
    • A43B23/24Ornamental buckles; Other ornaments for shoes without fastening function

Definitions

  • the present invention relates to a control system used for an electronic device and an apparatus including the control system.
  • the conventional control system has a power supply unit, a load unit, and a control unit.
  • the power supply unit outputs power.
  • the load unit and the control unit are driven by electric power from the power supply unit.
  • the control unit controls the operation of the load unit.
  • Patent Document 1 A conventional control system similar to the above control system is disclosed in, for example, Patent Document 1.
  • the control system outputs a power supply unit that outputs the first power, a load unit that is driven by the first power, a power generation unit that generates and outputs the second power using an external force, and the second power is output. And a control unit that supplies the first power to the load unit.
  • This control system can reduce power consumption.
  • FIG. 1 is a circuit diagram of an apparatus including a control system according to an embodiment.
  • FIG. 2 is a block diagram of the apparatus according to the embodiment.
  • FIG. 3A is a flowchart showing the operation of the control system in the embodiment.
  • FIG. 3B is a flowchart showing the operation of the control system in the embodiment.
  • FIG. 4 is a diagram illustrating the operation of the control system in the embodiment.
  • FIG. 5 is a schematic side view of the apparatus according to the embodiment.
  • FIG. 6 is a schematic bottom view of the apparatus according to the embodiment.
  • FIG. 1 is a circuit diagram of an apparatus 200 including a control system 100 according to an embodiment. The configuration of the control system 100 will be described.
  • the control system 100 includes a power supply unit 1, a load unit 2, a power generation unit 3, and a control unit 20.
  • the power supply unit 1 outputs electric power P1.
  • the load unit 2 is driven by electric power P1.
  • the power generation unit 3 generates power P3 with external force.
  • the controller 20 supplies the power P1 to the load unit 2 when the power P3 is output.
  • the power generation unit 3 converts the external force into the power P3 to generate and output the power P3.
  • the control unit 20 detects that the power P3 is output.
  • the control unit 20 outputs the power P1 from the power supply unit 1 to the load unit 2.
  • the load unit 2 is supplied with electric power P1 from the power supply unit 1 and starts to be driven.
  • the control unit controls the driving of the load unit. Therefore, power must be constantly supplied from the power supply unit to the control unit and the load unit while the conventional control system is driven. Therefore, the power consumption of the conventional control system becomes large.
  • the power generation unit 3 functions as a switch for driving the load unit 2. Therefore, the control system 100 does not always have to supply the power P1 from the power supply unit 1 to the load unit 2. Therefore, the control system 100 can suppress power consumption.
  • FIG. 2 is a block diagram of the control system 100.
  • the expressions “electrically connected” and “signal” are used to help understand the description.
  • “Electrically connected” means connected so that electrical signals can be exchanged.
  • “electrically connected” configurations include, for example, a configuration in which a plurality of electronic components are connected by a conducting wire, a configuration in which an electrical current is exchanged by generating an induced current using a transformer, an insulating converter The structure etc. which exchange an electric signal through these etc. are included.
  • signal used in expressions such as electrical signals is power that changes current and voltage, power that has a constant current and voltage, power that changes the direction of current and voltage, and constant direction of current and voltage. It is the electric power of. That is, the “signal” includes, for example, a signal used for transmission / reception of information and instructions, and electric power for driving an electronic component.
  • the control system 100 includes a power supply unit 1, a load unit 2, a power generation unit 3, a control unit 20, and a switching unit 4.
  • the power generation unit 3 includes a transmission unit 10, a rectification output unit 40, a rectification smoothing output unit 50, a voltage drop unit 60, a voltage drop unit 70, filter circuits 801 and 802, and a drive unit 90.
  • the control unit 20 includes a measurement terminal 21, a voltage measurement unit 22, a control element 24, a power supply terminal 25, and an activation unit 30.
  • the measurement terminal 21 is electrically connected to the voltage measurement unit 22.
  • the voltage measuring unit 22 is, for example, an analog / digital converter.
  • the control element 24 includes, for example, a micro control unit (MCU) and a central processing unit (CPU).
  • the power terminal 25 is electrically connected to a power source.
  • the power source is, for example, a primary battery, a secondary battery, or a power generator.
  • the control unit 20 is supplied with driving power for driving the control unit 20 from the power supply terminal 25.
  • the starting unit 30 has terminals 31 and 32.
  • the terminal 31 is electrically connected to the transmitter 10.
  • the terminal 32 is electrically connected to the transmitter 10.
  • the circuit from the transmission unit 10 to the terminal 31 and the circuit from the transmission unit 10 to the terminal 32 are configured so that, for example, impedance, inductance, resistance value, capacitance value, and the like are different. Therefore, even if connected to one transmitter 10, a difference is generated between the voltage V 31 applied to the terminal 31 and the voltage V 32 applied to the terminal 32.
  • the starting unit 30 compares the voltage V31 applied to the terminal 31 with the voltage V32 applied to the terminal 32.
  • the control unit 20 is electrically connected to the activation unit 30.
  • the starting unit 30 outputs the voltage V31 input to the terminal 31 to the control element 24 when the voltage V31 applied to the terminal 31 is equal to or higher than the voltage V32 applied to the terminal 32.
  • the starting unit 30 outputs nothing to the control element 24 when the voltage V31 is lower than the voltage V32.
  • the control unit 20 may output the voltage V31 input to the terminal 31 when the voltage V31 applied to the terminal 31 exceeds the voltage V32 applied to the terminal 32. With this configuration, the reliability of the control system 100 can be improved.
  • the activation unit 30 may be integrated with the control unit 20 such that, for example, the control unit 20 has a function as the activation unit 30.
  • the transmission unit 10 is electrically connected to the control unit 20.
  • the transmitter 10 includes, for example, a piezoelectric element, a magnetostrictive element, a coil and a magnet. Then, the transmitter 10 outputs an AC signal Sac corresponding to the strength of the force that has worked from outside the control system 100.
  • the external force is, for example, vibration or impact. However, energy may be used instead of external force. The energy is, for example, heat, magnetic force or the like.
  • the rectification output unit 40 is electrically connected between the terminal 31 and the transmission unit 10.
  • the rectification output unit 40 includes a rectification circuit 41.
  • the rectifier circuit 41 is electrically connected to the transmitter 10 and converts the AC signal Sac from the transmitter 10 into a signal S1 that is a pulsating flow.
  • the rectifier circuit 41 includes a plurality of diodes D1, D2, D3, and D4 that are bridge-connected, and includes a bridge circuit that uses the diodes D1 to D4.
  • the rectifier circuit 41 may be a half-wave rectifier circuit or a full-wave rectifier circuit.
  • the rectifier circuit 41 may use other rectifier elements such as a thyristor or a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) instead of the diodes D1 to D4.
  • MOS-FET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the rectifying and smoothing output unit 50 is electrically connected between the terminal 32 and the transmission unit 10.
  • the rectifying / smoothing output unit 50 includes a rectifying circuit 51 and a charging unit 52.
  • the rectifier circuit 51 is electrically connected between the transmitter 10 and the terminal 32.
  • the rectifier circuit 51 includes a plurality of diodes D3, D4, D5, and D6 that are bridge-connected, and includes a bridge circuit that uses the diodes D3 to D6.
  • the rectifier circuit 51 converts the AC signal from the transmission unit 10 into a pulsating flow and outputs the pulsating flow toward the charging unit 52.
  • the rectifier circuit 51 may be a half-wave rectifier circuit or a full-wave rectifier circuit.
  • the rectifier circuit 51 may use other rectifier elements such as a thyristor or a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) instead of the diodes D3 to D6.
  • MOS-FET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the charging unit 52 is electrically connected between the rectifier circuit 51 and the terminal 32.
  • the charging unit 52 has a charging element 52C.
  • One end of the charging element 52 ⁇ / b> C is electrically connected between the rectifier circuit 51 and the terminal 32.
  • the other end of the charging element 52C is connected to the ground.
  • Charging unit 52 smoothes the pulsating flow from rectifier circuit 51 and converts it into signal S2. Then, the charging unit 52 outputs a signal S ⁇ b> 1 toward the terminal 32.
  • Charging element 52C may be, for example, a coil or a transistor.
  • the charging element 52C is connected to function as a delay circuit.
  • the diode D3 and the diode D4 are incorporated in both the rectifier circuits 41 and 51.
  • the rectifier circuits 41 and 51 share the diode D3 and the diode D4. Since the rectifier circuits 41 and 51 share the diodes D3 and D4, the circuit size can be reduced.
  • the voltage drop unit 60 is electrically connected between the rectifying and smoothing output unit 50 and the terminal 32.
  • the voltage drop unit 60 includes a resistor R1 and a resistor R2. One end of the resistor R1 is electrically connected to the rectifying and smoothing output unit 50. The other end of the resistor R1 is electrically connected to one end of the resistor R2 at a connection point 60P. The other end of the resistor R2 is electrically connected to the ground.
  • a connection point 60 ⁇ / b> P of the voltage drop unit 60 is electrically connected to the terminal 32. That is, the voltage drop unit 60 is a resistance voltage dividing circuit that outputs the signal S2 input to the voltage drop unit 60, that is, the signal S4 having a voltage obtained by dropping the voltage VS2 of the charging unit 52 toward the terminal 32. is there.
  • the voltage drop part 60 demonstrated using two resistors R1 and R2, the number of resistors may be three or more, and may be one.
  • the resistors R1 and R2 may be fixed resistors or variable resistors.
  • the voltage drop part 60 may be comprised using the capacitor
  • the voltage drop unit 70 is electrically connected between the rectification output unit 40 and the terminal 31.
  • the voltage drop unit 70 includes a resistor R3 and a resistor R4. One end of the resistor R3 is electrically connected to the rectification output unit 40. The other end of the resistor R3 is electrically connected to one end of the resistor R4 at a connection point 70P. The other end of the resistor R4 is electrically connected to the ground.
  • a connection point 70 ⁇ / b> P of the voltage drop unit 70 is electrically connected to the terminal 31. That is, the voltage drop unit 70 is a resistance voltage dividing circuit that outputs a signal S4 having a voltage obtained by dropping the voltage of the signal S1 input to the voltage drop unit 70 toward the terminal 31.
  • the voltage drop unit 70 includes two resistors R3 and R4, but the number of resistors may be three or more, or may be one. Further, the resistors R3 and R4 may be fixed resistors or variable resistors. Moreover, the voltage drop part 70 may be comprised using a capacitor
  • the relationship between the voltage drop unit 60 and the voltage drop unit 70 will be described.
  • the voltage drop rate F60 of the voltage drop unit 60 is configured to be larger than the voltage drop rate F70 of the voltage drop unit 70.
  • the voltage drop rate F70 of the voltage drop unit 70 is given by the following equation by the voltage V1 of the signal S1 input to the resistor R3 and the voltage V3 of the connection point 70P output from the resistor R3.
  • F70 (V1-V3) / V1
  • the voltage V4 output from the voltage drop unit 60 is smaller than the voltage V3 output from the voltage drop unit.
  • the voltage drop parts 60 and 70 are comprised.
  • the filter circuit 801 is electrically connected between the voltage drop unit 60 and the terminal 32. Further, the filter circuit 802 is electrically connected between the voltage drop unit 70 and the terminal 31.
  • the filter circuit 801 removes noise from the signal S4 output from the voltage drop unit 60, and outputs the signal S4 from which noise has been removed to the terminal 32.
  • the filter circuit 802 removes noise from the signal S3 output from the voltage drop unit 70, and outputs the signal S3 from which noise has been removed to the terminal 31. By comprising in this way, it can suppress that a noise is mixed with the signal input into the terminals 31 and 32.
  • the filter circuit 801 is electrically connected between the voltage drop unit 60 and the terminal 32, and the filter circuit 802 is electrically connected between the voltage drop unit 70 and the terminal 31.
  • the filter circuit 801 is electrically connected between the voltage drop unit 60 and the terminal 32, and the filter circuit 802 is not electrically connected between the voltage drop unit 70 and the terminal 31. Also good.
  • the filter circuit 802 is electrically connected between the voltage drop unit 70 and the terminal 31, and the filter circuit 801 is not electrically connected between the voltage drop unit 60 and the terminal 32. Good.
  • the filter circuit (801, 802) may be electrically connected between the voltage drop unit 60 and the terminal 32 and between at least one of the voltage drop unit 70 and the terminal 31. .
  • the drive unit 90 is electrically connected between the rectifying and smoothing output unit 50 and the voltage drop unit 60, and is also electrically connected to the power supply terminal 25.
  • the drive unit 90 is, for example, a DC / DC (Direct Current / Direct Current) converter.
  • the drive unit 90 converts the voltage V2 output from the rectifying and smoothing output unit 50 into a voltage that can drive the control unit 20, and outputs the voltage.
  • the drive unit 90 converts the signal S2 into drive power P90 for driving the control unit 20.
  • the control system 100 uses the signal S2 as power for driving the control unit 20.
  • the power supply unit 1 is, for example, a primary battery or a secondary battery.
  • the power supply unit 1 generates power P1 that is DC power.
  • the power supply unit 1 is electrically connected to the switching unit 4 and the load unit 2.
  • the switching unit 4 is electrically connected between the drive unit 90 and the power supply terminal 25, that is, between the power supply unit 1 and the control unit 20. That is, the switching unit 4 can also receive the power P90 from the drive unit 90 and can also receive the power P1 from the power supply unit 1.
  • the switching unit 4 supplies the power P90 from the driving unit 90 to the power supply terminal 25 when the driving unit 90 outputs the power P90.
  • the switching unit 4 supplies the power from the power source unit 1. Power P1 is supplied to the terminal 25.
  • the switching unit 4 is connected to the power supply terminal 25 between the power supply terminal 25 and the drive unit 90, and the diode D42 connected so that the power P1 can flow to the power supply terminal 25 between the power supply terminal 25 and the power supply unit 1. It is a circuit (refer FIG. 1) which has the diode D41 connected so that the electric power P90 could be sent.
  • the switching unit 4 may be a switch or a digital circuit that is digitally controlled.
  • the load unit 2 includes a load 2A and a load control circuit 2B.
  • the load 2 ⁇ / b> A is an electronic component that is operated by electric power P ⁇ b> 1 output from the power supply unit 1 such as a motor, a display, and a light emitting element.
  • the load control circuit 2B switches on (drive) and off (stop) the load 2A according to a load control signal from the control unit 20.
  • the threshold value can be set with the variable voltage V32 using the starting unit 30, but a threshold value fixed to a predetermined value may be set.
  • FIG. 3A and 3B are flowcharts showing the operation of the control system 100.
  • FIG. FIG. 4 shows the AC signal Sac of the control system 100, the voltage VS2 input to the drive unit, and the voltage output by the switching unit 4, and also shows the states of the control system 100 and the apparatus 200.
  • 5 and 6 are a schematic side view and a schematic bottom view of the apparatus 200, respectively.
  • the load 2 ⁇ / b> A is a light emitting element such as a light emitting diode (LED) that emits light by the electric power P ⁇ b> 1 supplied from the power source 1.
  • LED light emitting diode
  • the control system 100 is used by being housed in a shoe 201 ⁇ / b> A in which a system housing 201 capable of housing the control system 100 is formed. Further, the control unit 20 is configured to light the light emitting element only for a predetermined time Tth.
  • the detection unit 5 is an illuminance sensor that senses an external environment such as illuminance of light around the control system 100 and outputs a detection signal.
  • the control unit 20 is activated by being supplied with the electric power P1 from the power supply unit 1 (step S1), and enters a deep sleep state that is a standby state (step S2).
  • the transmitter 10 generates an AC signal Sac when a force is applied from the outside.
  • the AC signal Sac is output to a circuit that reaches the terminal 31 via the rectification output unit 40 and a circuit that reaches the terminal 32 via the rectification smoothing output unit 50.
  • the starting unit 30 compares the voltage V31 applied to the terminal 31 with the voltage V32 applied to the terminal 32 (step S3). If the voltage V31 is not greater than the voltage V32 in step S3 (“No” in step S3), the activation unit 30 continues to compare the voltages V31 and V32 in step S3. When the voltage V31 applied to the terminal 31 in step S3 is larger than the voltage V32 applied to the terminal 32 (“Yes” in step S3), the activation unit 30 transmits the signal S1 to the control element 24 of the control unit 20. Output to.
  • the control element 24 of the control unit 20 is activated when the signal S1 is output from the activation unit 30, detects landing of shoes, and starts measuring the charging voltage VS2 stored in the charging element 52C (step S4).
  • the control unit 20 uses the detection unit 5 that is an illuminance sensor connected to the control element 24 of the control unit 20 on the basis of at least one of the charging voltage VS2 and the voltage output from the activation unit 30.
  • the illuminance of the ambient light is sensed (step S5).
  • the control element 24 of the control unit 20 compares the illuminance value 5S sensed by the detection unit 5 with the threshold value Lth set in the control unit 20 (step S6). When the illuminance value 5S sensed by the detection unit 5 in step S6 is not less than the threshold value Lth (“No” in step S6), the control element 24 enters a deep sleep state in step S2.
  • step S6 When the illuminance value 5S sensed by the detection unit 5 in step S6 is less than the threshold value Lth (“Yes” in step S6), the control element 24 instructs the load control circuit 2B to energize the load 2A. To do. Thereby, the control system 100 starts the lighting of the light emitting element, that is, the operation of the load 2A (step S7).
  • the control unit 20 measures the time elapsed since the light emitting element was turned on (step S7), and compares the measured time with the threshold value of the control unit 20 (step S8). When the time measured in step S8 does not exceed the threshold value of the control unit 20 (“No” in step S8), the control unit 20 continues to light the step light emitting element. The control unit 20 turns off the light emitting element. When the measured time exceeds the threshold of the control unit 20 ( ⁇ Yes ⁇ in step S8), the control unit 20 turns off the light emitting element (step S9). That is, the control unit 20 measures the time that has elapsed since the load 2A started to operate. When the measured time exceeds the threshold value of the control unit 20, the control unit 20 stops the operation of the load 2A.
  • control unit 20 is configured to receive the power P1 supplied from the power supply unit 1 and the power P3 supplied from the power generation unit 3 using the drive unit 90.
  • a configuration in which the control unit 20 switches the electric power P3 supplied from the power generation unit 3 from the electric power P1 supplied from the power supply unit 1 will be further described with reference to FIG. 3B.
  • the drive unit 90 is set with a reference voltage Ph90 for starting a conversion operation to a voltage supplied to the control unit 20.
  • the control unit 20 is activated in step S1 shown in FIG. 3A and is in the deep sleep state in step S2, power P1 is supplied from the power supply unit 1 to the control unit 20 (steps S101 and S102).
  • the switching unit 4 supplies the control unit 20 with a difference voltage obtained by subtracting the forward voltage VF of the diode D42 from the voltage of the power P1.
  • the drive unit 90 compares the input charging voltage VS2 with the threshold voltage Ph90 (step S103).
  • step S103 When the charging voltage VS2 input from the power generation unit 3 to the drive unit 90 in step S103 does not exceed the reference voltage Ph90 (“No” in step S103), the switching unit 4 determines that the power of the power supply unit 1 is in step S102. P1 is supplied to the control unit 20.
  • the driving unit 90 converts the charging voltage VS2 to convert the driving voltage V90. Is output (step S104). Specifically, in step S104, the switching unit 4 supplies the control unit 20 with a difference voltage obtained by subtracting the forward voltage VF of the diode D41 from the voltage of the power P90.
  • the drive voltage V90 output by the drive unit 90 is higher than the voltage V11 that the power supply unit 1 supplies to the control unit 20. Therefore, when the drive unit 90 outputs power P90 to the control unit 20, the switching unit 4 supplies the power P90 from the drive unit 90 to the control unit 20, and the power P1 from the power supply unit 1 to the control unit 20 is supplied. Supply stops in a pseudo manner.
  • the driving unit 90 compares the input charging voltage VS2 with the threshold voltage Ph90 (step S105).
  • the switching unit 4 receives power from the drive unit 90 in step S104. P90 continues to be supplied to the control unit 20.
  • the drive unit 90 stops operating and does not output the power P90. . Therefore, the switching unit 4 artificially starts supplying the power P1 from the power supply unit 1 to the control unit 20 in step S102.
  • the control system 100 operates. Therefore, the control system 100 can realize a power saving operation as compared with the case where the electric power P1 is constantly supplied.
  • the shoe which is the device 200 using the control system 100 and the light emitting element as the load 2A, can illuminate from the feet in a dark place and can inform the existence of others. , Improve safety.
  • the light emitting element as the load 2A can be attached to the outsole, the shoe sole 203, the upper sole 202, or the like.
  • the load unit 2 is connected to the control system 100 by a wiring 204.
  • the light emitting diode was used for the light emitting element, a light bulb may be used.
  • the light emitting element may be fixed to the shoe with an adhesive or the like.
  • the control system 100 may use the detection unit 5 such as an illuminance sensor, a pressure sensor, or a gas sensor.
  • the load 2A may perform a predetermined operation determined according to the detection result of the detection unit 5. For example, when the detection unit 5 that is a gas sensor detects a gas having a concentration equal to or higher than a predetermined value, the load 2A may notify the user by heat, sound, light, or the like. Further, for example, when the detection unit 5 that is a pressure sensor detects a pressure equal to or higher than a predetermined value, the load 2A may notify the user by heat, sound, light, or the like.
  • the detection unit 5 may be configured by combining a plurality of sensors. Thereby, the apparatus 200 can improve safety
  • control system 100 outputs the power supply unit 1 that outputs the power P1, the load unit 2 that is driven by the power P1, the power generation unit 3 that generates and outputs the power P3 by external force, and the power P3.
  • the control part 20 which supplies electric power P1 to the load part 2 is provided.
  • Control unit 20 is driven by electric power P1.
  • the control unit 20 is driven by the electric power P3 when the power generation unit 3 outputs the electric power P3.
  • the switching unit 4 is configured to drive the control unit 20 by outputting the power P3 to the control unit 20 when the power generation unit 3 is outputting the power P3.
  • the switching unit 4 is configured to drive the control unit 20 by outputting power P1 to the control unit 20 when the power generation unit 3 does not output the power P3.
  • Control unit 20 is driven by electric power P3.
  • Detecting unit 5 detects the external environment and outputs a detection signal.
  • the control unit 20 supplies power P1 to the load unit 2 based on the detection signal.
  • the apparatus 200 includes a control system 100 and a shoe 201A having a system storage unit 201 in which the control system 100 is stored.
  • the load unit 2 is a light emitting element. The light emitting element is turned on for a predetermined time from the time when the power P3 is output.
  • the control system according to the present invention can suppress power consumption and is useful for various electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This control system is provided with: a power source unit that outputs a first power; a load unit that is driven by the first power; a power generation unit that generates a second power by means of an external force and outputs the second power; and a control unit that supplies the first power to the load unit due to the second power having been output. This control system can suppress power consumption.

Description

制御システムおよびそれを備えた装置Control system and apparatus equipped with the same
 本発明は、電子機器に用いられる制御システムおよびそれを備えた装置に関する。 The present invention relates to a control system used for an electronic device and an apparatus including the control system.
 従来の制御システムは、電源部と、負荷部と、制御部とを有する。電源部は、電力を出力する。負荷部と制御部とは、電源部からの電力によって駆動する。制御部は、負荷部の動作を制御する。 The conventional control system has a power supply unit, a load unit, and a control unit. The power supply unit outputs power. The load unit and the control unit are driven by electric power from the power supply unit. The control unit controls the operation of the load unit.
 上記の制御システムに類似の従来の制御システムは、例えば、特許文献1に開示されている。 A conventional control system similar to the above control system is disclosed in, for example, Patent Document 1.
特開2005-27876号公報JP 2005-27876 A
 制御システムは、第1の電力を出力する電源部と、第1の電力によって駆動する負荷部と、外力によって第2の電力を発電して出力する発電部と、第2の電力が出力されたことにより負荷部へ第1の電力を供給する制御部とを備える。 The control system outputs a power supply unit that outputs the first power, a load unit that is driven by the first power, a power generation unit that generates and outputs the second power using an external force, and the second power is output. And a control unit that supplies the first power to the load unit.
 この制御システムは消費電力を抑制できる。 This control system can reduce power consumption.
図1は実施の形態における制御システムを備えた装置の回路図である。FIG. 1 is a circuit diagram of an apparatus including a control system according to an embodiment. 図2は実施の形態における装置のブロック図である。FIG. 2 is a block diagram of the apparatus according to the embodiment. 図3Aは実施の形態における制御システムの動作を示すフローチャートである。FIG. 3A is a flowchart showing the operation of the control system in the embodiment. 図3Bは実施の形態における制御システムの動作を示すフローチャートである。FIG. 3B is a flowchart showing the operation of the control system in the embodiment. 図4は実施の形態における制御システムの動作を示す図である。FIG. 4 is a diagram illustrating the operation of the control system in the embodiment. 図5は実施の形態における装置の模式側面図である。FIG. 5 is a schematic side view of the apparatus according to the embodiment. 図6は実施の形態における装置の模式下面図である。FIG. 6 is a schematic bottom view of the apparatus according to the embodiment.
 (制御システム100)
 図1は、実施の形態における制御システム100を備えた装置200の回路図である。制御システム100の構成について説明する。制御システム100は、電源部1と、負荷部2と、発電部3と、制御部20とを有する。電源部1は電力P1を出力する。負荷部2は電力P1によって駆動される。発電部3は、電力P3を外力によって発電する。制御部20は、電力P3が出力されたことにより、負荷部2へ電力P1を供給する。
(Control system 100)
FIG. 1 is a circuit diagram of an apparatus 200 including a control system 100 according to an embodiment. The configuration of the control system 100 will be described. The control system 100 includes a power supply unit 1, a load unit 2, a power generation unit 3, and a control unit 20. The power supply unit 1 outputs electric power P1. The load unit 2 is driven by electric power P1. The power generation unit 3 generates power P3 with external force. The controller 20 supplies the power P1 to the load unit 2 when the power P3 is output.
 次に、制御システム100の動作について説明する。発電部3は、外力を受けた場合にその外力を電力P3に変換することで電力P3を発電して出力する。制御部20は、電力P3が出力されたことを検出する。電力P3が出力されたことを検出すると、制御部20は、電源部1から負荷部2へ電力P1を出力する。負荷部2は、電源部1から電力P1を供給されて駆動され始める。 Next, the operation of the control system 100 will be described. When receiving the external force, the power generation unit 3 converts the external force into the power P3 to generate and output the power P3. The control unit 20 detects that the power P3 is output. When detecting that the power P3 is output, the control unit 20 outputs the power P1 from the power supply unit 1 to the load unit 2. The load unit 2 is supplied with electric power P1 from the power supply unit 1 and starts to be driven.
 前述の従来の制御システムでは、制御部が負荷部の駆動を制御している。したがって、従来の制御システムが駆動されている間、電源部から制御部や負荷部へ電力を常時供給しなければならない。したがって、従来の制御システムの消費電力は大きくなってしまう。 In the above-described conventional control system, the control unit controls the driving of the load unit. Therefore, power must be constantly supplied from the power supply unit to the control unit and the load unit while the conventional control system is driven. Therefore, the power consumption of the conventional control system becomes large.
 実施の形態における制御システム100では、発電部3は、負荷部2を駆動するためのスイッチとして機能している。そのため、制御システム100は、電源部1からの電力P1を負荷部2へ常時は供給しなくてよい。よって、制御システム100は、消費電力を抑制できる。 In the control system 100 in the embodiment, the power generation unit 3 functions as a switch for driving the load unit 2. Therefore, the control system 100 does not always have to supply the power P1 from the power supply unit 1 to the load unit 2. Therefore, the control system 100 can suppress power consumption.
 図2は制御システム100のブロック図である。以下、説明の理解を助けるために「電気的に接続」や「信号」という表現を用いる。 FIG. 2 is a block diagram of the control system 100. Hereinafter, the expressions “electrically connected” and “signal” are used to help understand the description.
 「電気的に接続」とは、電気信号をやりとりできるように繋がっていることを意味している。つまり、「電気的に接続」されている構成とは、たとえば、導線によって複数の電子部品が繋がっていている構成や、トランスによって誘導電流を発生させて電気信号のやりとりを行う構成や、絶縁コンバータなどを介して電気信号をやりとりする構成などを含む。 “Electrically connected” means connected so that electrical signals can be exchanged. In other words, “electrically connected” configurations include, for example, a configuration in which a plurality of electronic components are connected by a conducting wire, a configuration in which an electrical current is exchanged by generating an induced current using a transformer, an insulating converter The structure etc. which exchange an electric signal through these etc. are included.
 また、電気信号などの表現で用いる「信号」とは、電流や電圧が変化する電力や、電流や電圧が一定の電力、電流や電圧の向きが変化する電力や、電流や電圧の向きが一定の電力のことである。つまり、「信号」は、たとえば、情報や指示などの送受信等に用いる信号や、電子部品を駆動するための電力を含む。 In addition, “signal” used in expressions such as electrical signals is power that changes current and voltage, power that has a constant current and voltage, power that changes the direction of current and voltage, and constant direction of current and voltage. It is the electric power of. That is, the “signal” includes, for example, a signal used for transmission / reception of information and instructions, and electric power for driving an electronic component.
 制御システム100は、電源部1と、負荷部2と、発電部3と、制御部20と、切替部4とを有する。 The control system 100 includes a power supply unit 1, a load unit 2, a power generation unit 3, a control unit 20, and a switching unit 4.
 発電部3は、発信部10と、整流出力部40と、整流平滑出力部50と、電圧降下部60と、電圧降下部70と、フィルタ回路801、802と、駆動部90とを有する。制御部20は、計測端子21と、電圧計測部22と、制御素子24と、電源端子25と、起動部30とを有する。 The power generation unit 3 includes a transmission unit 10, a rectification output unit 40, a rectification smoothing output unit 50, a voltage drop unit 60, a voltage drop unit 70, filter circuits 801 and 802, and a drive unit 90. The control unit 20 includes a measurement terminal 21, a voltage measurement unit 22, a control element 24, a power supply terminal 25, and an activation unit 30.
 計測端子21は、電圧計測部22と電気的に接続されている。電圧計測部22は、たとえばアナログ/デジタル変換器である。制御素子24は、たとえばマイクロコントロールユニット(MCU)やセントラルプロセシングユニット(CPU)を含む。電源端子25は、電源と電気的に接続されている。電源は、たとえば一次電池や二次電池や発電体などである。そして、制御部20は、電源端子25から制御部20を駆動するための駆動電力を供給される。 The measurement terminal 21 is electrically connected to the voltage measurement unit 22. The voltage measuring unit 22 is, for example, an analog / digital converter. The control element 24 includes, for example, a micro control unit (MCU) and a central processing unit (CPU). The power terminal 25 is electrically connected to a power source. The power source is, for example, a primary battery, a secondary battery, or a power generator. The control unit 20 is supplied with driving power for driving the control unit 20 from the power supply terminal 25.
 起動部30は、端子31、32を有する。端子31は、発信部10と電気的に接続されている。端子32は、発信部10と電気的に接続されている。発信部10から端子31までの回路と発信部10から端子32までの回路とは、たとえばインピーダンス、インダクタンス、抵抗値、電気容量値などが異なるように構成されている。そのため、1つの発信部10に接続されていても、端子31に印加される電圧V31と端子32に印加される電圧V32との間には差を生じさせられる。 The starting unit 30 has terminals 31 and 32. The terminal 31 is electrically connected to the transmitter 10. The terminal 32 is electrically connected to the transmitter 10. The circuit from the transmission unit 10 to the terminal 31 and the circuit from the transmission unit 10 to the terminal 32 are configured so that, for example, impedance, inductance, resistance value, capacitance value, and the like are different. Therefore, even if connected to one transmitter 10, a difference is generated between the voltage V 31 applied to the terminal 31 and the voltage V 32 applied to the terminal 32.
 起動部30は、端子31に印加された電圧V31と端子32に印加された電圧V32とを比較する。制御部20は、起動部30と電気的に接続されている。起動部30は、端子31に印加された電圧V31が端子32に印加された電圧V32以上である場合に、端子31に入力された電圧V31を制御素子24へ出力する。起動部30は、電圧V31が電圧V32より低い場合に、制御素子24へ何も出力しない。 The starting unit 30 compares the voltage V31 applied to the terminal 31 with the voltage V32 applied to the terminal 32. The control unit 20 is electrically connected to the activation unit 30. The starting unit 30 outputs the voltage V31 input to the terminal 31 to the control element 24 when the voltage V31 applied to the terminal 31 is equal to or higher than the voltage V32 applied to the terminal 32. The starting unit 30 outputs nothing to the control element 24 when the voltage V31 is lower than the voltage V32.
 なお、制御部20は、端子31に印加された電圧V31が端子32に印加された電圧V32を上回った場合に端子31に入力された電圧V31を出力してもよい。このように構成することにより制御システム100の信頼性を向上できる。また、起動部30は、たとえば制御部20内に起動部30としての機能を有しているなどのように制御部20と一体になっている構成でもよい。 The control unit 20 may output the voltage V31 input to the terminal 31 when the voltage V31 applied to the terminal 31 exceeds the voltage V32 applied to the terminal 32. With this configuration, the reliability of the control system 100 can be improved. In addition, the activation unit 30 may be integrated with the control unit 20 such that, for example, the control unit 20 has a function as the activation unit 30.
 発信部10は、制御部20と電気的に接続されている。発信部10は、たとえば圧電素子、磁気歪素子、コイルと磁石などを有する。そして、発信部10は、制御システム100の外から働いた力の強さに応じた交流信号Sacを出力する。外力は、たとえば振動、衝撃などである。しかし、外力の代わりにエネルギーを用いても良い。エネルギーは、たとえば、熱、磁力などである。 The transmission unit 10 is electrically connected to the control unit 20. The transmitter 10 includes, for example, a piezoelectric element, a magnetostrictive element, a coil and a magnet. Then, the transmitter 10 outputs an AC signal Sac corresponding to the strength of the force that has worked from outside the control system 100. The external force is, for example, vibration or impact. However, energy may be used instead of external force. The energy is, for example, heat, magnetic force or the like.
 整流出力部40は、端子31と発信部10との間で電気的に接続されている。整流出力部40は整流回路41を有している。整流回路41は発信部10と電気的に接続されており、発信部10からの交流信号Sacを脈流である信号S1に変換する。 The rectification output unit 40 is electrically connected between the terminal 31 and the transmission unit 10. The rectification output unit 40 includes a rectification circuit 41. The rectifier circuit 41 is electrically connected to the transmitter 10 and converts the AC signal Sac from the transmitter 10 into a signal S1 that is a pulsating flow.
 整流回路41は、ブリッジ接続された複数のダイオードD1、D2、D3、D4を有し、ダイオードD1~D4を用いたブリッジ回路で構成されている。 The rectifier circuit 41 includes a plurality of diodes D1, D2, D3, and D4 that are bridge-connected, and includes a bridge circuit that uses the diodes D1 to D4.
 なお、整流回路41は半波整流回路であっても全波整流回路であってもよい。また、整流回路41はダイオードD1~D4の代わりにサイリスタやMOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)など他の整流素子を用いてもよい。 The rectifier circuit 41 may be a half-wave rectifier circuit or a full-wave rectifier circuit. The rectifier circuit 41 may use other rectifier elements such as a thyristor or a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) instead of the diodes D1 to D4.
 整流平滑出力部50は、端子32と発信部10との間で電気的に接続されている。整流平滑出力部50は、整流回路51と充電部52とを有している。整流回路51は、発信部10と端子32との間で電気的に接続されている。整流回路51は、ブリッジ接続された複数のダイオードD3、D4、D5、D6を有してダイオードD3~D6を用いたブリッジ回路で構成されている。整流回路51は、発信部10からの交流信号を脈流に変換して充電部52に向かって出力する。 The rectifying and smoothing output unit 50 is electrically connected between the terminal 32 and the transmission unit 10. The rectifying / smoothing output unit 50 includes a rectifying circuit 51 and a charging unit 52. The rectifier circuit 51 is electrically connected between the transmitter 10 and the terminal 32. The rectifier circuit 51 includes a plurality of diodes D3, D4, D5, and D6 that are bridge-connected, and includes a bridge circuit that uses the diodes D3 to D6. The rectifier circuit 51 converts the AC signal from the transmission unit 10 into a pulsating flow and outputs the pulsating flow toward the charging unit 52.
 なお、整流回路51は半波整流回路であっても全波整流回路であってもよい。整流回路51は、ダイオードD3~D6の代わりにサイリスタやMOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)など他の整流素子を用いてもよい。 The rectifier circuit 51 may be a half-wave rectifier circuit or a full-wave rectifier circuit. The rectifier circuit 51 may use other rectifier elements such as a thyristor or a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor) instead of the diodes D3 to D6.
 充電部52は、整流回路51と端子32との間で電気的に接続されている。充電部52は充電素子52Cを有している。充電素子52Cの一端は、整流回路51と端子32との間に電気的に接続している。また、充電素子52Cの他端はグランドに接続されている。充電部52は、整流回路51からの脈流を平滑して信号S2へ変換する。そして、充電部52は、端子32に向かって信号S1を出力する。 The charging unit 52 is electrically connected between the rectifier circuit 51 and the terminal 32. The charging unit 52 has a charging element 52C. One end of the charging element 52 </ b> C is electrically connected between the rectifier circuit 51 and the terminal 32. The other end of the charging element 52C is connected to the ground. Charging unit 52 smoothes the pulsating flow from rectifier circuit 51 and converts it into signal S2. Then, the charging unit 52 outputs a signal S <b> 1 toward the terminal 32.
 たとえばコンデンサを充電素子52Cとして用いることができる。充電素子52Cは、たとえばコイル、トランジスタなどであってもよい。そして、充電素子52Cが、遅延回路として機能するよう接続されている。 For example, a capacitor can be used as the charging element 52C. Charging element 52C may be, for example, a coil or a transistor. The charging element 52C is connected to function as a delay circuit.
 ダイオードD3およびダイオードD4は、整流回路41、51の双方に組み入れられている。言い換えれば、整流回路41、51は、ダイオードD3およびダイオードD4を共有している。整流回路41、51が、ダイオードD3、D4を共有することにより回路の小型化を行える。 The diode D3 and the diode D4 are incorporated in both the rectifier circuits 41 and 51. In other words, the rectifier circuits 41 and 51 share the diode D3 and the diode D4. Since the rectifier circuits 41 and 51 share the diodes D3 and D4, the circuit size can be reduced.
 電圧降下部60は、整流平滑出力部50と端子32との間で電気的に接続されている。電圧降下部60は、抵抗器R1と抵抗器R2を有している。抵抗器R1の一端は、整流平滑出力部50と電気的に接続されている。抵抗器R1の他端は接続点60Pで抵抗器R2の一端と電気的に接続されている。抵抗器R2の他端は、グランドと電気的に接続されている。電圧降下部60の接続点60Pは端子32と電気的に接続されている。すなわち、電圧降下部60は、電圧降下部60に入力された信号S2すなわち充電部52の電圧VS2を降下させて得られた電圧を有する信号S4を端子32に向かって出力する抵抗分圧回路である。 The voltage drop unit 60 is electrically connected between the rectifying and smoothing output unit 50 and the terminal 32. The voltage drop unit 60 includes a resistor R1 and a resistor R2. One end of the resistor R1 is electrically connected to the rectifying and smoothing output unit 50. The other end of the resistor R1 is electrically connected to one end of the resistor R2 at a connection point 60P. The other end of the resistor R2 is electrically connected to the ground. A connection point 60 </ b> P of the voltage drop unit 60 is electrically connected to the terminal 32. That is, the voltage drop unit 60 is a resistance voltage dividing circuit that outputs the signal S2 input to the voltage drop unit 60, that is, the signal S4 having a voltage obtained by dropping the voltage VS2 of the charging unit 52 toward the terminal 32. is there.
 なお、電圧降下部60は、2つの抵抗器R1、R2を用いて説明したが、抵抗器の数は3つ以上であってもよく、ひとつであってもよい。また、抵抗器R1、R2は、固定抵抗器であってもよく可変抵抗器であってもよい。また、電圧降下部60は、抵抗器R2の変わりにたとえばコンデンサやコイルなどを用いて構成されていてもよい。 In addition, although the voltage drop part 60 demonstrated using two resistors R1 and R2, the number of resistors may be three or more, and may be one. The resistors R1 and R2 may be fixed resistors or variable resistors. Moreover, the voltage drop part 60 may be comprised using the capacitor | condenser, the coil, etc. instead of the resistor R2.
 電圧降下部70は、整流出力部40と端子31との間で電気的に接続されている。電圧降下部70は、抵抗器R3と抵抗器R4を有している。抵抗器R3の一端は、整流出力部40と電気的に接続されている。抵抗器R3の他端は接続点70Pで抵抗器R4の一端と電気的に接続されている。抵抗器R4の他端はグランドと電気的に接続されている。電圧降下部70の接続点70Pは端子31と電気的に接続されている。すなわち、電圧降下部70は、電圧降下部70に入力された信号S1の電圧を降下させて得られた電圧を有する信号S4を端子31に向かって出力する抵抗分圧回路である。 The voltage drop unit 70 is electrically connected between the rectification output unit 40 and the terminal 31. The voltage drop unit 70 includes a resistor R3 and a resistor R4. One end of the resistor R3 is electrically connected to the rectification output unit 40. The other end of the resistor R3 is electrically connected to one end of the resistor R4 at a connection point 70P. The other end of the resistor R4 is electrically connected to the ground. A connection point 70 </ b> P of the voltage drop unit 70 is electrically connected to the terminal 31. That is, the voltage drop unit 70 is a resistance voltage dividing circuit that outputs a signal S4 having a voltage obtained by dropping the voltage of the signal S1 input to the voltage drop unit 70 toward the terminal 31.
 なお、電圧降下部70は、2つの抵抗器R3と抵抗器R4とを有するが、抵抗器の数は3つ以上であってもよく、ひとつであってもよい。また、抵抗器R3、R4は、固定抵抗器であってもよく可変抵抗器であってもよい。また、電圧降下部70は、抵抗器R4の変わりにたとえばコンデンサやコイルなどを用いて構成されていてもよい。 The voltage drop unit 70 includes two resistors R3 and R4, but the number of resistors may be three or more, or may be one. Further, the resistors R3 and R4 may be fixed resistors or variable resistors. Moreover, the voltage drop part 70 may be comprised using a capacitor | condenser, a coil, etc. instead of the resistor R4.
 電圧降下部60と電圧降下部70との関係について述べる。電圧降下部60の電圧降下率F60は、電圧降下部70の電圧降下率F70よりも大きくなるように構成されている。電圧降下部60と電圧降下部70とをこのように構成することにより、起動部30は、より正確に電圧を比較できる。 The relationship between the voltage drop unit 60 and the voltage drop unit 70 will be described. The voltage drop rate F60 of the voltage drop unit 60 is configured to be larger than the voltage drop rate F70 of the voltage drop unit 70. By configuring the voltage drop unit 60 and the voltage drop unit 70 in this way, the activation unit 30 can compare voltages more accurately.
 実施の形態において、電圧降下部60の電圧降下率F60は、抵抗器R1に入力された信号S2の電圧V2と、抵抗器R1から出力された接続点60Pの電圧V4を用いて以下の式で与えられる。
F60=(V2―V4)/V2
 電圧降下部70の電圧降下率F70は、抵抗器R3に入力された信号S1の電圧V1と、抵抗器R3から出力された接続点70Pの電圧V3により以下の式で与えられる。
F70=(V1―V3)/V1
 言い換えると、同じ値の電圧が、電圧降下部60、70に印加された場合、電圧降下部60から出力される電圧V4は、電圧降下部から出力される電圧V3よりも小さくなる。このように、電圧降下部60、70は構成されている。
In the embodiment, the voltage drop rate F60 of the voltage drop unit 60 is expressed by the following equation using the voltage V2 of the signal S2 input to the resistor R1 and the voltage V4 of the connection point 60P output from the resistor R1. Given.
F60 = (V2-V4) / V2
The voltage drop rate F70 of the voltage drop unit 70 is given by the following equation by the voltage V1 of the signal S1 input to the resistor R3 and the voltage V3 of the connection point 70P output from the resistor R3.
F70 = (V1-V3) / V1
In other words, when the voltage having the same value is applied to the voltage drop units 60 and 70, the voltage V4 output from the voltage drop unit 60 is smaller than the voltage V3 output from the voltage drop unit. Thus, the voltage drop parts 60 and 70 are comprised.
 フィルタ回路801は、電圧降下部60と端子32との間で電気的に接続されている。また、フィルタ回路802は、電圧降下部70と端子31との間で電気的に接続されている。フィルタ回路801は電圧降下部60から出力された信号S4のノイズを除去して、ノイズを除去した信号S4を端子32に出力する。フィルタ回路802は電圧降下部70から出力された信号S3のノイズを除去して、ノイズを除去した信号S3を端子31に出力する。このように構成することにより、端子31、32に入力される信号にノイズが混ざることを抑制できる。 The filter circuit 801 is electrically connected between the voltage drop unit 60 and the terminal 32. Further, the filter circuit 802 is electrically connected between the voltage drop unit 70 and the terminal 31. The filter circuit 801 removes noise from the signal S4 output from the voltage drop unit 60, and outputs the signal S4 from which noise has been removed to the terminal 32. The filter circuit 802 removes noise from the signal S3 output from the voltage drop unit 70, and outputs the signal S3 from which noise has been removed to the terminal 31. By comprising in this way, it can suppress that a noise is mixed with the signal input into the terminals 31 and 32. FIG.
 フィルタ回路801が、電圧降下部60と端子32との間で電気的に接続され、フィルタ回路802が、電圧降下部70と端子31との間で電気的に接続されていると好ましい。しかし、フィルタ回路801が電圧降下部60と端子32との間で電気的に接続されており、かつフィルタ回路802が、電圧降下部70と端子31との間で電気的に接続されていなくてもよい。また、フィルタ回路802が電圧降下部70と端子31との間で電気的に接続されており、かつフィルタ回路801が電圧降下部60と端子32との間で電気的に接続されていなくてもよい。このように、フィルタ回路(801、802)は、電圧降下部60と端子32との間と、電圧降下部70と端子31との少なくともいずれか一方の間に電気的に接続されていてもよい。 It is preferable that the filter circuit 801 is electrically connected between the voltage drop unit 60 and the terminal 32, and the filter circuit 802 is electrically connected between the voltage drop unit 70 and the terminal 31. However, the filter circuit 801 is electrically connected between the voltage drop unit 60 and the terminal 32, and the filter circuit 802 is not electrically connected between the voltage drop unit 70 and the terminal 31. Also good. Further, the filter circuit 802 is electrically connected between the voltage drop unit 70 and the terminal 31, and the filter circuit 801 is not electrically connected between the voltage drop unit 60 and the terminal 32. Good. Thus, the filter circuit (801, 802) may be electrically connected between the voltage drop unit 60 and the terminal 32 and between at least one of the voltage drop unit 70 and the terminal 31. .
 駆動部90は、整流平滑出力部50と電圧降下部60との間と電気的に接続されており、電源端子25とも電気的に接続されている。駆動部90は、たとえばDC/DC(Direct Current/Direct Current)コンバータである。駆動部90は、整流平滑出力部50の出力する電圧V2を制御部20を駆動できる電圧に変換して出力する。言い換えれば、駆動部90は、制御部20を駆動するための駆動電力P90に信号S2を変換する。これにより、制御システム100は、制御部20を駆動するための電力として信号S2を用いる。 The drive unit 90 is electrically connected between the rectifying and smoothing output unit 50 and the voltage drop unit 60, and is also electrically connected to the power supply terminal 25. The drive unit 90 is, for example, a DC / DC (Direct Current / Direct Current) converter. The drive unit 90 converts the voltage V2 output from the rectifying and smoothing output unit 50 into a voltage that can drive the control unit 20, and outputs the voltage. In other words, the drive unit 90 converts the signal S2 into drive power P90 for driving the control unit 20. Thereby, the control system 100 uses the signal S2 as power for driving the control unit 20.
 電源部1は、たとえば一次電池や二次電池である。電源部1は、直流電力である電力P1を発生させる。電源部1は、切替部4と負荷部2と電気的に接続されている。 The power supply unit 1 is, for example, a primary battery or a secondary battery. The power supply unit 1 generates power P1 that is DC power. The power supply unit 1 is electrically connected to the switching unit 4 and the load unit 2.
 切替部4は、駆動部90と電源端子25との間すなわち電源部1と制御部20との間で電気的に接続されている。つまり、切替部4は、駆動部90からも電力P90の供給を受けることができ、電源部1からも電力P1の供給を受けることができる。そして、切替部4は、駆動部90が電力P90を出力した場合に駆動部90から電源端子25へ電力P90を供給し、駆動部90が電力P90を出力していない場合は電源部1から電源端子25へ電力P1を供給する。切替部4は、たとえば、電源端子25と電源部1との間で電源端子25へ電力P1を流せるように接続されたダイオードD42と、電源端子25と駆動部90との間で電源端子25へ電力P90を流せるように接続されたダイオードD41とを有する回路(図1参照)である。切替部4は、スイッチや、デジタル制御されるデジタル回路であってもよい。 The switching unit 4 is electrically connected between the drive unit 90 and the power supply terminal 25, that is, between the power supply unit 1 and the control unit 20. That is, the switching unit 4 can also receive the power P90 from the drive unit 90 and can also receive the power P1 from the power supply unit 1. The switching unit 4 supplies the power P90 from the driving unit 90 to the power supply terminal 25 when the driving unit 90 outputs the power P90. When the driving unit 90 does not output the power P90, the switching unit 4 supplies the power from the power source unit 1. Power P1 is supplied to the terminal 25. For example, the switching unit 4 is connected to the power supply terminal 25 between the power supply terminal 25 and the drive unit 90, and the diode D42 connected so that the power P1 can flow to the power supply terminal 25 between the power supply terminal 25 and the power supply unit 1. It is a circuit (refer FIG. 1) which has the diode D41 connected so that the electric power P90 could be sent. The switching unit 4 may be a switch or a digital circuit that is digitally controlled.
 負荷部2は、負荷2Aと負荷制御回路2Bとを有している。負荷2Aは、たとえば、モータ・ディスプレイ・発光素子などの電源部1の出力する電力P1によって動作する電子部品である。負荷制御回路2Bは、制御部20からの負荷制御信号によって、負荷2Aのオン(駆動)とオフ(停止)とを切り替える。 The load unit 2 includes a load 2A and a load control circuit 2B. The load 2 </ b> A is an electronic component that is operated by electric power P <b> 1 output from the power supply unit 1 such as a motor, a display, and a light emitting element. The load control circuit 2B switches on (drive) and off (stop) the load 2A according to a load control signal from the control unit 20.
 なお、実施の形態における制御システム100では、起動部30を用いて可変の電圧V32で閾値を設定できるが、所定の値に固定された閾値が設定されていてよい。 In the control system 100 according to the embodiment, the threshold value can be set with the variable voltage V32 using the starting unit 30, but a threshold value fixed to a predetermined value may be set.
 このように構成された制御システム100の動作について説明する。図3Aと図3Bは制御システム100の動作を示すフローチャートである。図4は制御システム100の交流信号Sacと駆動部に入力される電圧VS2と、切替部4の出力する電圧とを示し、制御システム100と装置200の状態も併せて示す。図5と図6はそれぞれ装置200の模式側面図と模式下面図である。実施の形態における制御システム100では、負荷2Aは電源1から供給された電力P1により光を発する発光ダイオード(LED;light emitting diode)等の発光素子である。制御システム100は、制御システム100を収納可能なシステム収納部201を形成された靴201Aの中に収納されて用いられる。また、制御部20は、所定の時間Tthのみ発光素子を点灯するように構成されている。実施の形態では、検出部5は制御システム100の周囲の光の照度等の外部環境をセンシングして検出信号を出力する照度センサである。 The operation of the control system 100 configured as described above will be described. 3A and 3B are flowcharts showing the operation of the control system 100. FIG. FIG. 4 shows the AC signal Sac of the control system 100, the voltage VS2 input to the drive unit, and the voltage output by the switching unit 4, and also shows the states of the control system 100 and the apparatus 200. 5 and 6 are a schematic side view and a schematic bottom view of the apparatus 200, respectively. In the control system 100 in the embodiment, the load 2 </ b> A is a light emitting element such as a light emitting diode (LED) that emits light by the electric power P <b> 1 supplied from the power source 1. The control system 100 is used by being housed in a shoe 201 </ b> A in which a system housing 201 capable of housing the control system 100 is formed. Further, the control unit 20 is configured to light the light emitting element only for a predetermined time Tth. In the embodiment, the detection unit 5 is an illuminance sensor that senses an external environment such as illuminance of light around the control system 100 and outputs a detection signal.
 まず図3Aに示す動作を説明する。制御部20は、電源部1からの電力P1を供給されて起動し(ステップS1)、待機状態であるディープスリープ状態となる(ステップS2)。発信部10は、外側から力を加えられることにより交流信号Sacを発生させる。交流信号Sacは、整流出力部40を介して端子31へと至る回路と、整流平滑出力部50を介して端子32へと至る回路とに出力される。 First, the operation shown in FIG. 3A will be described. The control unit 20 is activated by being supplied with the electric power P1 from the power supply unit 1 (step S1), and enters a deep sleep state that is a standby state (step S2). The transmitter 10 generates an AC signal Sac when a force is applied from the outside. The AC signal Sac is output to a circuit that reaches the terminal 31 via the rectification output unit 40 and a circuit that reaches the terminal 32 via the rectification smoothing output unit 50.
 起動部30は端子31に印加された電圧V31と端子32に印加された電圧V32を比較する(ステップS3)。ステップS3にて電圧V31が電圧V32よりも大きくない場合には(ステップS3の「No」)、起動部30はステップS3にて電圧V31、V32を比較し続ける。ステップS3にて端子31に印加された電圧V31が端子32に印加された電圧V32よりも大きい場合に(ステップS3の「Yes」)、起動部30は、信号S1を制御部20の制御素子24へ出力する。制御部20の制御素子24は、起動部30から信号S1が出力されたことにより起動して靴の着地を検出し、充電素子52Cに蓄えられた充電電圧VS2を計測し始める(ステップS4)。 The starting unit 30 compares the voltage V31 applied to the terminal 31 with the voltage V32 applied to the terminal 32 (step S3). If the voltage V31 is not greater than the voltage V32 in step S3 (“No” in step S3), the activation unit 30 continues to compare the voltages V31 and V32 in step S3. When the voltage V31 applied to the terminal 31 in step S3 is larger than the voltage V32 applied to the terminal 32 (“Yes” in step S3), the activation unit 30 transmits the signal S1 to the control element 24 of the control unit 20. Output to. The control element 24 of the control unit 20 is activated when the signal S1 is output from the activation unit 30, detects landing of shoes, and starts measuring the charging voltage VS2 stored in the charging element 52C (step S4).
 制御部20は、充電電圧VS2または起動部30から出力された電圧の少なくともいずれか一方を基準に、制御部20の制御素子24と接続された照度センサである検出部5を用いて検出部5の周囲の光の照度をセンシングする(ステップS5)。制御部20の制御素子24は検出部5でセンシングされた照度の値5Sを制御部20に設定された閾値Lthと比較する(ステップS6)。ステップS6にて検出部5でセンシングされた照度の値5Sが閾値Lth未満でない場合には(ステップS6の「No」)、制御素子24はステップS2にてディープスリープ状態となる。ステップS6にて検出部5でセンシングされた照度の値5Sが閾値Lth未満である場合には(ステップS6の「Yes」)、制御素子24は、負荷制御回路2Bに負荷2Aへの通電を指示する。これにより、制御システム100は、発光素子の点灯をすなわち負荷2Aの動作を開始する(ステップS7)。 The control unit 20 uses the detection unit 5 that is an illuminance sensor connected to the control element 24 of the control unit 20 on the basis of at least one of the charging voltage VS2 and the voltage output from the activation unit 30. The illuminance of the ambient light is sensed (step S5). The control element 24 of the control unit 20 compares the illuminance value 5S sensed by the detection unit 5 with the threshold value Lth set in the control unit 20 (step S6). When the illuminance value 5S sensed by the detection unit 5 in step S6 is not less than the threshold value Lth (“No” in step S6), the control element 24 enters a deep sleep state in step S2. When the illuminance value 5S sensed by the detection unit 5 in step S6 is less than the threshold value Lth (“Yes” in step S6), the control element 24 instructs the load control circuit 2B to energize the load 2A. To do. Thereby, the control system 100 starts the lighting of the light emitting element, that is, the operation of the load 2A (step S7).
 制御部20は、発光素子を点灯させてから経過した時間を計測し(ステップS7)、計測された時間を制御部20の閾値と比較する(ステップS8)。ステップS8にて計測された時間が制御部20の閾値を超えていない場合に(ステップS8の「No」)、制御部20はステップ発光素子を点灯し続ける。制御部20は発光素子を消灯する。そして、計測された時間が制御部20の閾値を超えた場合に(ステップS8の{Yes})、制御部20は発光素子を消灯する(ステップS9)。すなわち、制御部20は、負荷2Aを動作させ始めてから経過した時間を計測する。そして、計測された時間が制御部20の閾値を超えた場合に、制御部20は負荷2Aの動作を停止させる。 The control unit 20 measures the time elapsed since the light emitting element was turned on (step S7), and compares the measured time with the threshold value of the control unit 20 (step S8). When the time measured in step S8 does not exceed the threshold value of the control unit 20 (“No” in step S8), the control unit 20 continues to light the step light emitting element. The control unit 20 turns off the light emitting element. When the measured time exceeds the threshold of the control unit 20 ({Yes} in step S8), the control unit 20 turns off the light emitting element (step S9). That is, the control unit 20 measures the time that has elapsed since the load 2A started to operate. When the measured time exceeds the threshold value of the control unit 20, the control unit 20 stops the operation of the load 2A.
 図1および図2の構成においては、制御部20は電源部1から供給された電力P1と駆動部90を用いて発電部3から供給された電力P3とを受けられるように構成されている。制御部20が、電源部1から供給された電力P1から発電部3から供給された電力P3を切り替える構成について、図3Bを参照してさらに説明する。 1 and 2, the control unit 20 is configured to receive the power P1 supplied from the power supply unit 1 and the power P3 supplied from the power generation unit 3 using the drive unit 90. A configuration in which the control unit 20 switches the electric power P3 supplied from the power generation unit 3 from the electric power P1 supplied from the power supply unit 1 will be further described with reference to FIG. 3B.
 駆動部90は、制御部20へ供給する電圧へ変換動作を開始するための基準電圧Ph90を設定されている。図3Aに示すステップS1において制御部20が起動し、ステップS2においてディープスリープ状態であるときには、制御部20には電源部1から電力P1が供給されている(ステップS101、S102)。具体的には、ステップS101、S102において、切替部4は電力P1の電圧からダイオードD42の順方向電圧VFを引いた差の電圧を制御部20に供給する。駆動部90は、入力された充電電圧VS2を閾値電圧Ph90と比較する(ステップS103)。ステップS103にて発電部3から駆動部90へ入力された充電電圧VS2が基準電圧Ph90を上回っていない場合に(ステップS103の「No」)、ステップS102にて切替部4は電源部1の電力P1を制御部20に供給する。ステップS103にて発電部3から駆動部90へ入力された充電電圧VS2が基準電圧Ph90を上回った場合に(ステップS103の「Yes」)、駆動部90は充電電圧VS2を変換して駆動電圧V90を有する電力P90を出力する(ステップS104)。具体的には、ステップS104において、切替部4は電力P90の電圧からダイオードD41の順方向電圧VFを引いた差の電圧を制御部20に供給する。 The drive unit 90 is set with a reference voltage Ph90 for starting a conversion operation to a voltage supplied to the control unit 20. When the control unit 20 is activated in step S1 shown in FIG. 3A and is in the deep sleep state in step S2, power P1 is supplied from the power supply unit 1 to the control unit 20 (steps S101 and S102). Specifically, in steps S101 and S102, the switching unit 4 supplies the control unit 20 with a difference voltage obtained by subtracting the forward voltage VF of the diode D42 from the voltage of the power P1. The drive unit 90 compares the input charging voltage VS2 with the threshold voltage Ph90 (step S103). When the charging voltage VS2 input from the power generation unit 3 to the drive unit 90 in step S103 does not exceed the reference voltage Ph90 (“No” in step S103), the switching unit 4 determines that the power of the power supply unit 1 is in step S102. P1 is supplied to the control unit 20. When the charging voltage VS2 input from the power generation unit 3 to the driving unit 90 in step S103 exceeds the reference voltage Ph90 (“Yes” in step S103), the driving unit 90 converts the charging voltage VS2 to convert the driving voltage V90. Is output (step S104). Specifically, in step S104, the switching unit 4 supplies the control unit 20 with a difference voltage obtained by subtracting the forward voltage VF of the diode D41 from the voltage of the power P90.
 駆動部90が出力する駆動電圧V90は、電源部1が制御部20へ供給する電圧V11よりも大きい。そのため、駆動部90が制御部20へ電力P90を出力している場合、切替部4は駆動部90からの電力P90を制御部20に供給し、電源部1から制御部20への電力P1の供給は擬似的に停止する。 The drive voltage V90 output by the drive unit 90 is higher than the voltage V11 that the power supply unit 1 supplies to the control unit 20. Therefore, when the drive unit 90 outputs power P90 to the control unit 20, the switching unit 4 supplies the power P90 from the drive unit 90 to the control unit 20, and the power P1 from the power supply unit 1 to the control unit 20 is supplied. Supply stops in a pseudo manner.
 駆動部90は、入力された充電電圧VS2を閾値電圧Ph90と比較する(ステップS105)。ステップS105にて発電部3から駆動部90へ入力された電圧VS2が基準電圧Ph90を上回っている場合に(ステップS105の「Yes」)、ステップS104にて切替部4は駆動部90からの電力P90を制御部20に供給し続ける。ステップS105にて発電部3から駆動部90へ入力された電圧VS2が基準電圧Ph90を上回っていない場合に(ステップS105の「No」)、駆動部90は動作を停止して電力P90を出力しない。そのため、切替部4はステップS102にて電源部1から制御部20への電力P1の供給を擬似的に開始する。 The driving unit 90 compares the input charging voltage VS2 with the threshold voltage Ph90 (step S105). When the voltage VS2 input from the power generation unit 3 to the drive unit 90 in step S105 is higher than the reference voltage Ph90 (“Yes” in step S105), the switching unit 4 receives power from the drive unit 90 in step S104. P90 continues to be supplied to the control unit 20. When the voltage VS2 input from the power generation unit 3 to the drive unit 90 in step S105 does not exceed the reference voltage Ph90 (“No” in step S105), the drive unit 90 stops operating and does not output the power P90. . Therefore, the switching unit 4 artificially starts supplying the power P1 from the power supply unit 1 to the control unit 20 in step S102.
 以上のように制御システム100は、動作する。そのため、制御システム100は、常時電力P1を供給されている場合に比べて省電力な動作を実現できる。また、このような制御システム100と、負荷2Aとしての発光素子とを用いた装置200である靴は、暗い場所で足元から照らすことができたり、他人に存在を知らせることができたりでき、そのため、安全性が向上する。 As described above, the control system 100 operates. Therefore, the control system 100 can realize a power saving operation as compared with the case where the electric power P1 is constantly supplied. In addition, the shoe, which is the device 200 using the control system 100 and the light emitting element as the load 2A, can illuminate from the feet in a dark place and can inform the existence of others. , Improve safety.
 負荷2Aである発光素子は、アウトソールや、靴底203、アッパーソール202などにつけることができる。負荷部2は配線204で制御システム100に接続されている。また、発光素子は、発光ダイオードを用いたが、電球でも良い。発光素子は、接着剤などで靴に固定しても良い。 The light emitting element as the load 2A can be attached to the outsole, the shoe sole 203, the upper sole 202, or the like. The load unit 2 is connected to the control system 100 by a wiring 204. Moreover, although the light emitting diode was used for the light emitting element, a light bulb may be used. The light emitting element may be fixed to the shoe with an adhesive or the like.
 制御システム100は、たとえば照度センサや圧力センサ、ガスセンサなどである検出部5を用いても良い。負荷2Aは、検出部5の検出結果に応じて決められた所定の動作をしても良い。たとえば、ガスセンサである検出部5が所定値以上の濃度のガスを検出した場合に、負荷2Aが熱や音や光などによって使用者に知らせるように構成してもよい。また、たとえば、圧力センサである検出部5が所定値以上の圧力を検出した場合に、負荷2Aが熱や音や光などによって使用者に知らせるように構成してもよい。また、検出部5は複数のセンサを組合せて構成してもよい。これにより、装置200は、より安全性を向上できる。 The control system 100 may use the detection unit 5 such as an illuminance sensor, a pressure sensor, or a gas sensor. The load 2A may perform a predetermined operation determined according to the detection result of the detection unit 5. For example, when the detection unit 5 that is a gas sensor detects a gas having a concentration equal to or higher than a predetermined value, the load 2A may notify the user by heat, sound, light, or the like. Further, for example, when the detection unit 5 that is a pressure sensor detects a pressure equal to or higher than a predetermined value, the load 2A may notify the user by heat, sound, light, or the like. The detection unit 5 may be configured by combining a plurality of sensors. Thereby, the apparatus 200 can improve safety | security more.
 上述のように、制御システム100は、電力P1を出力する電源部1と、電力P1によって駆動する負荷部2と、外力によって電力P3を発電して出力する発電部3と、電力P3が出力されたことにより負荷部2へ電力P1を供給する制御部20とを備える。 As described above, the control system 100 outputs the power supply unit 1 that outputs the power P1, the load unit 2 that is driven by the power P1, the power generation unit 3 that generates and outputs the power P3 by external force, and the power P3. The control part 20 which supplies electric power P1 to the load part 2 is provided.
 制御部20は電力P1で駆動される。 Control unit 20 is driven by electric power P1.
 制御部20は、発電部3が電力P3を出力している場合に電力P3により駆動される。 The control unit 20 is driven by the electric power P3 when the power generation unit 3 outputs the electric power P3.
 切替部4は、発電部3が電力P3を出力している場合に制御部20へ電力P3を出力して制御部20を駆動するように構成されている。切替部4は、発電部3が電力P3を出力していない場合に制御部20へ電力P1を出力して制御部20を駆動するように構成されている。 The switching unit 4 is configured to drive the control unit 20 by outputting the power P3 to the control unit 20 when the power generation unit 3 is outputting the power P3. The switching unit 4 is configured to drive the control unit 20 by outputting power P1 to the control unit 20 when the power generation unit 3 does not output the power P3.
 制御部20は電力P3で駆動される。 Control unit 20 is driven by electric power P3.
 検出部5は外的環境を検出して検出信号を出力する。制御部20は、検出信号に基づいて負荷部2へ電力P1を供給する。 Detecting unit 5 detects the external environment and outputs a detection signal. The control unit 20 supplies power P1 to the load unit 2 based on the detection signal.
 装置200は、制御システム100と、制御システム100を収納しているシステム収納部201を有する靴201Aとを備える。負荷部2は発光素子である。発光素子は電力P3を出力された時点から所定の時間だけ点灯される。 The apparatus 200 includes a control system 100 and a shoe 201A having a system storage unit 201 in which the control system 100 is stored. The load unit 2 is a light emitting element. The light emitting element is turned on for a predetermined time from the time when the power P3 is output.
 本発明にかかる制御システムは消費電力を抑制でき、各種電子機器に有用である。 The control system according to the present invention can suppress power consumption and is useful for various electronic devices.
1  電源部
2  負荷部
2A  負荷
2B  負荷制御回路
3  発電部
4  切替部
5  検出部
20  制御部
10  発信部
21  計測端子
22  電圧計測部
23  入力端子
24  制御素子
25  電源端子
30  起動部
31,32  端子
40  整流出力部
50  整流平滑出力部
52C  充電素子
60  電圧降下部
70  電圧降下部
90  駆動部
100  制御システム
200  装置
201  システム収納部
201A  靴
202  アッパーソール
203  靴底
204  配線
801,802  フィルタ回路
D1~D4  ダイオード
D41,D42  ダイオード
R1~R4  抵抗器
DESCRIPTION OF SYMBOLS 1 Power supply part 2 Load part 2A Load 2B Load control circuit 3 Power generation part 4 Switching part 5 Detection part 20 Control part 10 Transmission part 21 Measurement terminal 22 Voltage measurement part 23 Input terminal 24 Control element 25 Power supply terminal 30 Start-up part 31, 32 terminal 40 rectification output unit 50 rectification smoothing output unit 52C charging element 60 voltage drop unit 70 voltage drop unit 90 drive unit 100 control system 200 device 201 system storage unit 201A shoe 202 upper sole 203 shoe sole 204 wiring 801, 802 filter circuits D1-D4 Diode D41, D42 Diode R1-R4 Resistor

Claims (7)

  1. 第1の電力を出力する電源部と、
    前記第1の電力によって駆動する負荷部と、
    外力によって第2の電力を発電して出力する発電部と、
    前記第2の電力が出力されたことにより、前記負荷部へ前記第1の電力を供給する制御部と、
    を備えた制御システム。
    A power supply unit that outputs first power;
    A load unit driven by the first power;
    A power generation unit that generates and outputs second power by external force;
    A control unit for supplying the first power to the load unit by outputting the second power;
    Control system with.
  2. 前記制御部は前記第1の電力で駆動される、請求項1に記載の制御システム。 The control system according to claim 1, wherein the control unit is driven by the first electric power.
  3. 前記制御部は、前記発電部が前記第2の電力を出力している場合に前記第2の電力により駆動される、請求項2に記載の制御システム。 The control system according to claim 2, wherein the control unit is driven by the second power when the power generation unit outputs the second power.
  4.    前記発電部が前記第2の電力を出力している場合に前記制御部へ前記第2の電力を出力して前記制御部を駆動し、
       前記発電部が前記第2の電力を出力していない場合に前記制御部へ前記第1の電力を出力して前記制御部を駆動する、
    ように構成された切替部をさらに備えた、請求項3に記載の制御システム。
    When the power generation unit is outputting the second power, the second power is output to the control unit to drive the control unit,
    Driving the control unit by outputting the first power to the control unit when the power generation unit is not outputting the second power;
    The control system according to claim 3, further comprising a switching unit configured as described above.
  5. 前記制御部は前記第2の電力で駆動される、請求項1に記載の制御システム。 The control system according to claim 1, wherein the control unit is driven by the second electric power.
  6. 外的環境を検出して検出信号を出力する検出部をさらに備え、
    前記制御部は、前記検出信号に基づいて前記負荷部へ前記第1の電力を供給する、請求項1に記載の制御システム。
    A detection unit that detects the external environment and outputs a detection signal;
    The control system according to claim 1, wherein the control unit supplies the first power to the load unit based on the detection signal.
  7. 請求項1から6のいずれか一項に記載の制御システムと、
    前記制御システムを収納しているシステム収納部を有する靴と、
    を備え、
    前記負荷部は発光素子であり、
    前記発光素子は前記第2の電力を出力された時点から所定の時間だけ点灯される、装置。
    A control system according to any one of claims 1 to 6;
    Shoes having a system storage section storing the control system;
    With
    The load portion is a light emitting element,
    The light emitting element is lit for a predetermined time from the time when the second power is output.
PCT/JP2018/016901 2017-05-23 2018-04-26 Control system and device provided with same WO2018216428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-101362 2017-05-23
JP2017101362 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018216428A1 true WO2018216428A1 (en) 2018-11-29

Family

ID=64396765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016901 WO2018216428A1 (en) 2017-05-23 2018-04-26 Control system and device provided with same

Country Status (1)

Country Link
WO (1) WO2018216428A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652508U (en) * 1992-12-25 1994-07-19 アキレス株式会社 Light wearing shoes
JP2015097453A (en) * 2013-11-15 2015-05-21 凸版印刷株式会社 Electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652508U (en) * 1992-12-25 1994-07-19 アキレス株式会社 Light wearing shoes
JP2015097453A (en) * 2013-11-15 2015-05-21 凸版印刷株式会社 Electronic apparatus

Similar Documents

Publication Publication Date Title
JP6433652B2 (en) Power supply device and electrical equipment
JP6421047B2 (en) Switching power supply
JP5132749B2 (en) Light source lighting device and lighting fixture
US9369053B2 (en) Power supply device and lighting apparatus using the same
WO2010023817A1 (en) Power supply device and lighting device
JP5043176B2 (en) Light source lighting device and lighting fixture
JP5980107B2 (en) Power supply device and lighting device
JP2008306927A (en) Power supply system
JP2006280138A (en) Dc-dc converter
US9754740B2 (en) Switching control circuit and switching power-supply device
TW200617633A (en) Highly efficient driving of photoflash diodes using low and fixed voltage drop-out current sink
JP5383872B2 (en) Light source lighting device and lighting fixture
WO2012057369A1 (en) Led lighting circuit, led illuminating device, and socket for led illuminating unit
JP2013225476A (en) Lighting apparatus enabling adjustment of luminous intensity, and luminous intensity adjustment method
JP2009189183A (en) Power supply device and luminaire
JP2008225574A (en) Two-wire switching device
US9763294B2 (en) Lighting device and lighting fixture using same
JP3425403B2 (en) Semiconductor device and switching power supply device using this semiconductor device
WO2018216428A1 (en) Control system and device provided with same
JP6514910B2 (en) Isolated synchronous rectification type DC / DC converter, synchronous rectification controller, power supply using the same, power adapter and electronic equipment
JP6256755B2 (en) Lighting device and lighting device
JP2014143017A (en) Lighting device, and illuminating fixture and illumination system using the same
WO2018207561A1 (en) Power supply device and sensor device using same
JP2004072878A (en) Switching power supply device
JP2003333747A (en) Power source device for electronic apparatus and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP