WO2018212292A1 - Information processing device, control method, program and storage medium - Google Patents

Information processing device, control method, program and storage medium Download PDF

Info

Publication number
WO2018212292A1
WO2018212292A1 PCT/JP2018/019153 JP2018019153W WO2018212292A1 WO 2018212292 A1 WO2018212292 A1 WO 2018212292A1 JP 2018019153 W JP2018019153 W JP 2018019153W WO 2018212292 A1 WO2018212292 A1 WO 2018212292A1
Authority
WO
WIPO (PCT)
Prior art keywords
landmark
difference
measurement
vehicle
reliability
Prior art date
Application number
PCT/JP2018/019153
Other languages
French (fr)
Japanese (ja)
Inventor
岩井 智昭
多史 藤谷
加藤 正浩
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2019518874A priority Critical patent/JP6806891B2/en
Publication of WO2018212292A1 publication Critical patent/WO2018212292A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a technique for measuring a position.
  • Patent Document 1 discloses a technique for estimating a self-position by collating the output of a measurement sensor with the position information of a feature registered in advance on a map.
  • Patent Document 2 discloses a vehicle position estimation technique using a Kalman filter.
  • a feature that serves as a reference for position estimation from measurement data obtained by an external sensor such as a lidar
  • it is a landmark because it is occluded by other vehicles traveling around the vehicle or trees on the road edge.
  • an accurate landmark position cannot be measured. In this case, if position estimation is performed using an erroneous landmark measurement position as it is, an incorrect position estimation result is obtained.
  • the present invention has been made to solve the above-described problems, and provides an information processing apparatus capable of outputting information related to the measurement position of a landmark in consideration of the possibility of occlusion.
  • the main purpose is to solve the above-described problems, and provides an information processing apparatus capable of outputting information related to the measurement position of a landmark in consideration of the possibility of occlusion.
  • the invention according to claim 1 is an information processing apparatus, which is based on map information and a first acquisition unit that acquires a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features. Based on the second acquisition unit that acquires the predicted position of the feature, the difference between the predicted position and the measured position at the first time, and the difference between the predicted position and the measured position at the second time And an output unit for outputting information related to the reliability of the measurement position.
  • the invention according to claim 5 is a control method executed by the information processing apparatus, and a first acquisition step of acquiring a measurement position of the feature based on an output signal of a measurement unit that measures the surrounding feature; The second acquisition step of acquiring the predicted position of the feature based on the map information, the difference between the predicted position and the measured position at the first time, and the predicted position and the measured position at the second time And an output step of outputting information on the reliability of the measurement position based on the difference.
  • the invention according to claim 6 is a program executed by a computer, and a first acquisition unit that acquires a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features, and map information Based on the second acquisition unit for acquiring the predicted position of the feature, the difference between the predicted position at the first time and the measured position, and the difference between the predicted position at the second time and the measured position. Based on this, the computer is caused to function as an output unit that outputs information related to the reliability of the measurement position.
  • the functional block block diagram of a vehicle equipment is shown. Indicates the landmark measurement position according to the presence or absence of occlusion. It is the figure which showed roughly the landmark prediction position and landmark measurement position in a time series when no occlusion has occurred. It is the figure which showed roughly the landmark prediction position and landmark measurement position in a time series when occlusion generate
  • the information processing apparatus is based on map information and a first acquisition unit that acquires a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features. Based on the second acquisition unit that acquires the predicted position of the feature, the difference between the predicted position and the measured position at the first time, and the difference between the predicted position and the measured position at the second time And an output unit for outputting information related to the reliability of the measurement position.
  • the information processing apparatus can appropriately output information on reliability with respect to the measurement position of the feature in consideration of the possibility of occurrence of occlusion.
  • the output unit lowers the reliability as the change amount of the difference at the second time with respect to the difference at the first time is larger.
  • the degree of occlusion changes with time, so the difference between the predicted position of the feature and the measured position of the feature changes. Therefore, according to this aspect, the information processing apparatus can accurately determine the reliability of the measurement position of the feature.
  • the output unit is configured to perform the first based on the difference at the first time in the first direction and the difference at the second time in the first direction. Determining the reliability in the direction and based on the difference at the first time in the second direction intersecting the first direction and the difference at the second time in the second direction in the second direction. The reliability is determined. According to this aspect, the information processing apparatus can accurately determine and output the reliability regarding the measurement position of the feature in each of the first direction and the second direction.
  • the information processing apparatus includes a prediction unit that predicts a self position, and a correction unit that corrects the self position based on a difference between the predicted position and the measurement position at a current time.
  • the correction unit reduces the gain for correcting the self-position based on the difference as the reliability is lower.
  • the information processing apparatus suitably corrects the self-position according to the reliability of the measurement position of the feature serving as a reference for position estimation, and suitably suppresses a decrease in position estimation accuracy when the occlusion occurs. Can do.
  • a control method executed by the information processing apparatus wherein the measurement position of the feature is acquired based on the output signal of the measurement unit that measures the surrounding feature. 1 acquisition step, a second acquisition step of acquiring a predicted position of the feature based on map information, a difference between the predicted position and the measured position at a first time, the predicted position at a second time, and the And an output step of outputting information on the reliability of the measurement position based on the difference from the measurement position.
  • the information processing apparatus can suitably output reliability information for the measurement position of the feature.
  • a first acquisition unit that is a program executed by a computer and acquires a measurement position of the feature based on an output signal of a measurement unit that measures a surrounding feature.
  • a second acquisition unit that acquires a predicted position of the feature based on map information, a difference between the predicted position and the measured position at a first time, and the predicted position and the measured position at a second time
  • the computer is caused to function as an output unit that outputs information related to the reliability of the measurement position based on the difference between the two.
  • the computer can suitably output reliability information for the measurement position of the feature.
  • the program is stored in a storage medium.
  • FIG. 1 is a schematic configuration diagram of a driving support system according to the present embodiment.
  • the driving support system shown in FIG. 1 is mounted on a vehicle and controls an on-vehicle device 1 that performs control related to driving support of the vehicle, and an external sensor such as a lidar (Lider: Light Detection and Ranging or Laser Illuminated Detection And Ranging) 2.
  • an internal sensor such as a gyro sensor 3, a vehicle speed sensor 4, and a satellite positioning sensor 5.
  • the in-vehicle device 1 is electrically connected to an external sensor such as a lidar 2 and an internal sensor such as a gyro sensor 3, a vehicle speed sensor 4, and a satellite positioning sensor 5, and the in-vehicle device 1 is mounted based on these outputs.
  • the position of the vehicle also referred to as “own vehicle position” is estimated.
  • the vehicle equipment 1 performs automatic driving
  • the in-vehicle device 1 calculates the measurement position of the landmark Ltag based on the measurement data obtained by an external sensor such as the lidar 2 with respect to the feature (which is also referred to as “landmark Ltag”) used as a reference in position estimation. .
  • the in-vehicle device 1 generates information on the reliability of the measurement position of the landmark Ltag (also referred to as “reliability R”).
  • the landmark Ltag is, for example, a feature such as a kilometer post, a 100 m post, a delineator, a traffic infrastructure facility (for example, a sign, a direction signboard, a signal), a power pole, a streetlight, and the like periodically arranged along the road.
  • the lidar 2 emits a pulse laser in a predetermined angle range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group information.
  • the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit. Output unit.
  • the scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal.
  • the lidar 2 is an example of the “measurement unit” in the present invention.
  • the server device 7 stores an advanced map DB (Data Base) 10 for distribution to the vehicle-mounted device 1 or the like.
  • advanced map DB Data Base
  • landmark information that is information related to the feature serving as the landmark Ltag is stored in addition to the road data.
  • the landmark information is used for the vehicle position estimation process and the reliability R determination process performed by the in-vehicle device 1.
  • the configuration of the driving support system shown in FIG. 1 is an example, and the configuration of the driving support system to which the present invention can be applied is not limited to the configuration shown in FIG.
  • the electronic control device of the vehicle may execute the processing of the in-vehicle device 1.
  • the in-vehicle device 1 may store information corresponding to the advanced map DB 10 by itself instead of acquiring landmark information from the server device 7.
  • FIG. 2 is a diagram showing the position of the vehicle-mounted device 1 mounted on the vehicle on a two-dimensional coordinate.
  • the traveling direction of the vehicle is defined as “X v axis” in the vehicle coordinate system
  • the direction perpendicular thereto is defined as “Y v axis” in the vehicle coordinate system.
  • the position of the landmark Ltag in the map coordinate system (also referred to as “landmark map position”) is included as part of the landmark information registered in the advanced map DB 10.
  • the landmark map position is (mx m , my m )
  • the provisional vehicle position (“predicted vehicle position”) in the map coordinate system predicted based on the output of the internal sensor such as the gyro sensor 3 is used. Is also given by (x ⁇ m , y ⁇ m ), and the provisional vehicle azimuth (also called “predicted vehicle azimuth”) in the map coordinate system is given by “ ⁇ ⁇ m ”.
  • the in-vehicle device 1 uses the coordinates (L ⁇ x v , L ⁇ y v ) of the vehicle coordinate system of the provisional predicted position of the landmark (also referred to as “landmark predicted position”) as the landmark map position.
  • the landmark predicted position also referred to as “landmark predicted position”
  • the following calculation (1) is performed.
  • the in-vehicle device 1 determines a range where the landmark is predicted to exist (also referred to as “landmark predicted range WL”) based on the landmark predicted position.
  • the landmark prediction range WL is set to a range within a predetermined distance from the landmark prediction position, for example.
  • the in-vehicle device 1 may change the size of the landmark prediction range WL according to the size of the error indicated by the error information. In this case, the in-vehicle device 1 can prevent a detection failure of the landmark Ltag by increasing the landmark prediction range WL as the error in the predicted vehicle position increases, and the landmark as the error in the predicted vehicle position decreases.
  • the in-vehicle device 1 may change the size of the landmark prediction range WL according to the measurement accuracy of the external sensor (for example, the angular resolution of the lidar 2).
  • the vehicle-mounted device 1 extracts the scan data measured as the feature points within the set landmark prediction range WL as data obtained by measuring the landmarks (also referred to as “landmark measurement data WLD”). For example, when the vehicle-mounted device 1 uses the lidar 2 as a landmark Ltag to measure a sign or signboard having a higher retroreflectivity than other features as a landmark Ltag, the reflection intensity is more than a predetermined degree from the point cloud data of the measured measurement points. Data of measurement points to be extracted as landmark measurement data WLD.
  • the vehicle unit 1 calculates the center of gravity (average) in the vehicle coordinate system of a coordinate indicated by each measurement point landmarks measurement data WLD, as landmarks measurement position (Lx v, Ly v). In the example of FIG. 2, there is a difference between the predicted landmark position and the landmark measurement position due to an error in the predicted vehicle position.
  • the in-vehicle device 1 calculates a predicted own vehicle position, and a measurement update step that calculates the estimated own vehicle position by correcting the predicted own vehicle position calculated in the immediately preceding prediction step based on the equation (2).
  • the state estimation filter used in these steps can use various filters developed to perform Bayesian estimation, and is not limited to the extended Kalman filter, and may be, for example, an unscented Kalman filter, a particle filter, or the like. .
  • the in-vehicle device 1 determines the reliability R according to the degree of occlusion with respect to the landmark Ltag, and reflects the determined reliability R in the vehicle position estimation process, thereby reducing the position estimation accuracy. Suppress. The method for determining the reliability R will be described in the section [Determining the reliability].
  • FIG. 3 shows a functional block configuration diagram of the in-vehicle device 1.
  • the in-vehicle device 1 mainly includes a host vehicle position prediction unit 13, a communication unit 14, a landmark information acquisition unit 15, a landmark position prediction unit 16, a landmark feature detection / position measurement unit 17, and a reliability. It has the determination part 18 and the own vehicle position estimation part 19.
  • the vehicle position prediction unit 13, the landmark information acquisition unit 15, the landmark position prediction unit 16, the landmark feature detection / position measurement unit 17, the reliability determination unit 18, and the vehicle position estimation unit 19 are actually Is realized by a computer such as a CPU executing a program prepared in advance.
  • the own vehicle position prediction unit 13 is based on the output of the internal sensor 11 including the gyro sensor 3, the vehicle speed sensor 4, and the satellite positioning sensor 5, and uses the GNSS (Global Navigation Satellite System) / IMU (Inertia Measurement Unit) combined navigation. And the predicted vehicle position is supplied to the landmark position prediction unit 16.
  • the own vehicle position prediction unit 13 is an example of the “prediction unit” in the present invention.
  • the communication unit 14 is a communication unit for wirelessly communicating with the server device 7.
  • the landmark information acquisition unit 15 receives landmark information related to the landmark Ltag existing around the vehicle from the server device 7 via the communication unit 14.
  • the landmark information includes at least position information indicating the landmark map position for each feature that becomes the landmark Ltag.
  • the landmark position prediction unit 16 calculates the landmark position predicted by the above-described equation (1). Is supplied to the reliability determination unit 18. Further, the landmark position prediction unit 16 determines a landmark prediction range WL based on the landmark prediction position and supplies the landmark prediction range WL to the landmark feature detection / position measurement unit 17.
  • the landmark position prediction unit 16 is an example of the “second acquisition unit” in the present invention.
  • the landmark feature detection / position measurement unit 17 acquires measurement data from the external sensor 12.
  • the external sensor 12 is a sensor that detects an object around the vehicle, and includes the lidar 2 and the stereo camera 6. Then, the landmark feature detection / position measurement unit 17 performs landmark measurement from the measurement data based on the landmark prediction range WL supplied from the landmark position prediction unit 16 and the measurement data acquired from the external sensor 12. Data WLD is extracted.
  • the landmark feature detection / position measurement unit 17 calculates the landmark measurement position based on the landmark measurement data WLD. Then, the landmark feature detection / position measurement unit 17 supplies the calculated landmark measurement position information to the reliability determination unit 18.
  • the landmark feature detection / position measurement unit 17 is an example of the “first acquisition unit” in the present invention.
  • the reliability determination unit 18 determines the difference between the landmark prediction position supplied from the landmark position prediction unit 16 and the landmark measurement position supplied from the landmark feature detection / position measurement unit 17 at the current time t (“The difference D (t) "is also calculated for each of the Xv axis and Yv axis of the vehicle coordinate system.
  • the reliability determination unit 18, X v-axis of the vehicle coordinate system, in addition to Y v axes, may calculate the difference D (t) also Z v coordinates in the height direction. Then, the reliability determination unit 18 changes the above-described difference D (t) with respect to the difference D (t ⁇ 1) calculated at the previous time t ⁇ 1 (also referred to as “difference change amount dD (t)”).
  • the reliability determination unit 18 determines the reliability R based on the difference change amount dD (t). The determination of the reliability R based on the difference change amount dD (t) will be described later.
  • the reliability determination unit 18 is an example of the “output unit” in the present invention.
  • the own vehicle position estimation unit 19 calculates an estimated own vehicle position based on the predicted landmark position, the landmark measurement position, the reliability R, and the like. Note that a method of calculating the estimated vehicle position using the reliability R will be described later.
  • the own vehicle position estimation unit 19 is an example of the “correction unit” in the present invention.
  • the in-vehicle device 1 considers that the accuracy of the landmark measurement position is lower as the difference change amount dD (t) is larger, and sets the reliability R according to the difference change amount dD (t).
  • FIG. 4A shows the landmark measurement position (Lx v , Ly v ) when no occlusion has occurred in the landmark Ltag
  • FIG. 4B shows that the occlusion of the landmark Ltag is caused by another vehicle.
  • the landmark measurement position (Lx v , Ly v ) is shown.
  • the in-vehicle device 1 can suitably improve the position estimation accuracy by performing the vehicle position estimation using the landmark measurement position calculated in the case of FIG.
  • the landmark measurement position (Lx v , Ly v ) is biased to the right of the landmark Ltag where no occlusion has occurred, and is a position that matches the landmark map position (ie, the land in FIG. 4A). It will deviate from the mark measurement position. Therefore, when the vehicle-mounted device 1 performs its own vehicle position estimation using the landmark measurement position calculated in the case of FIG. 4B, the position estimation accuracy decreases.
  • the landmark measurement position changes depending on the presence or absence of occlusion.
  • the relative positional relationship between the vehicle of the vehicle-mounted device 1, the landmark Ltag, and the obstacle that generates occlusion changes with time. Therefore, in this case, the degree of occlusion, the presence / absence of occlusion, etc. change with the passage of time, and the landmark measurement position changes with the passage of time.
  • FIG. 5 is a diagram schematically showing a predicted landmark position and a landmark measurement position when no occlusion occurs at both time t-1 and time t.
  • FIG. 6 shows an occlusion at time t. It is the figure which showed schematically the landmark prediction position and landmark measurement position when this occurred.
  • the difference amount of change in Y v axis dD (t) is referred to as "ddY (t)”.
  • the in-vehicle device 1 shows a point cloud of similar measurement points at both time t-1 and time t.
  • a landmark measurement position is calculated based on the landmark measurement data WLD.
  • the landmark measurement position (Lx v (t ⁇ 1), Ly v (t ⁇ 1)) and the predicted landmark position (L ⁇ x v (t ⁇ 1), L ⁇ y v at time t ⁇ 1 are obtained.
  • occlusion occurs when the landmark Ltag is measured at time t, and the landmark measurement position (Lx v (t), Ly v (t) at time t is attributed to the occlusion. )) Is shifted from the landmark measurement position (Lx v (t ⁇ 1), Ly v (t ⁇ 1)) at time t ⁇ 1 by a predetermined distance in the Y v axis direction.
  • the difference Dx in X v-axis (t), Dx (t- 1) is substantially equal, but the differential variation DDX (t) becomes substantially zero, the difference in Y v axis Dy (t) , Dy (t ⁇ 1) are different, the difference change amount dDy (t) is a value for the predetermined distance described above.
  • the in-vehicle device 1 considers that the landmark measurement position cannot be measured correctly as the difference change amount dD (t) is larger, and sets the reliability R according to the difference change amount dD (t).
  • the vehicle-mounted device 1 calculates the difference change amounts dDx (t) and dDy (t) for each axis of the vehicle coordinate system. Based on 4), one difference change amount dD (t) may be calculated based on the straight line distance.
  • equations (3) and (4) only the two-dimensional coordinate system in the horizontal direction is considered, but the coordinates in the height direction are further taken into consideration, and for each axis of the vehicle coordinate system, as in equation (3), Alternatively, the difference change amount dD (t) may be calculated using the straight line distance as a reference, as in the equation (4).
  • the reliability R is a value from 0 to 1.
  • the in-vehicle device 1 determines that the reliability R is “1” when the difference change amount dD (t) is equal to or less than a predetermined threshold, and the difference change amount dD (t ) Is larger than a predetermined threshold, it is determined that the reliability R is “0”.
  • the above threshold value is set in advance based on an experiment or the like in consideration of the degree of deterioration in position estimation accuracy, for example.
  • the vehicle-mounted device 1 calculates the difference change amount dD (t) for each axis of the vehicle coordinate system, when any of the difference change amounts dD (t) for each axis of the vehicle coordinate system is larger than a predetermined threshold value.
  • the reliability R may be set to “0”.
  • the in-vehicle device 1 can preferably set the reliability R with respect to the landmark measurement value when the occlusion occurs to 0, and suppress a decrease in position estimation accuracy.
  • the vehicle equipment 1 may set the reliability R for every axis
  • the vehicle-mounted device 1 calculates the reliability R of X v-axis direction based on a difference variation DDX (t), based on the difference variation ddY (t) Y A reliability R in the v- axis direction is calculated.
  • the vehicle-mounted unit 1 it is possible to calculate the respective reliability R in the X v-axis and Y v axes, such as in vehicle position estimation processing, the direction of the correction amount reliability R is high, By relatively increasing the correction amount in the direction in which the reliability R is low, the position estimation accuracy can be suitably increased.
  • the reliability R may be set for each axis of the vehicle coordinate system.
  • the in-vehicle device 1 is set so that the reliability R approaches 0 as the difference change amount dD (t) increases.
  • the in-vehicle device 1 sets, for example, a value obtained by normalizing the difference change amount dD (t) to a value from 0 to 1 as the reliability R.
  • the in-vehicle device 1 determines the reliability R based on the combination of the first example and the second example. For example, the in-vehicle device 1 sets the reliability R to “0” when the difference change amount dD (t) is larger than a predetermined threshold, and the second change when the difference change amount dD (t) is less than or equal to the predetermined threshold. Based on the setting example, the reliability R is set according to the difference change amount dD (t).
  • the reliability R obtained in this way is output in association with the calculation result of the landmark measurement position, and is used for the vehicle position estimation. For example, in the vehicle position estimation, weighting is performed based on the reliability R when the vehicle position is estimated based on the landmark measurement position. Thereby, the landmark measurement position with low reliability is not used for the vehicle position estimation or is used with low weighting. Thus, it is possible to prevent the vehicle position estimation with low accuracy from being performed based on the landmark measurement position with low reliability.
  • FIG. 7 shows a flowchart executed by the vehicle-mounted device 1 in this embodiment.
  • the in-vehicle device 1 acquires a predicted host vehicle position based on the outputs of the internal sensors 11 such as the gyro sensor 3 and the vehicle speed sensor 4 (step S101). And the vehicle equipment 1 acquires the landmark information in which the positional information in the periphery of the prediction own vehicle position is included from the advanced map DB 10 (step S102).
  • the vehicle equipment 1 determines the landmark prediction range WL based on the landmark map position specified from the position information of the acquired landmark information and the predicted host vehicle position acquired in step S101 (step S103). . And the vehicle equipment 1 acquires measurement data from the external sensors 12 such as the lidar 2 (step S104). And the vehicle equipment 1 extracts the landmark measurement data WLD satisfying a predetermined condition from the measurement data within the landmark prediction range WL, and calculates the landmark measurement position from the landmark measurement data WLD (step S105).
  • the vehicle-mounted device 1 calculates a difference D (t) between the landmark measurement position calculated in step S105 and the landmark predicted position calculated based on the equation (1) (step S106). Then, the in-vehicle device 1 calculates the difference change amount dD (t) based on the difference D (t ⁇ 1) and the difference D (t) calculated at the previous time t ⁇ 1 (Step S107). In this case, the vehicle-mounted device 1 may calculate the difference change amount dD (t) for each axis of the vehicle coordinate system.
  • the in-vehicle device 1 determines the reliability R based on the difference change amount dD (t) (step S108). In this case, the in-vehicle device 1 determines the reliability R based on the determination method of the reliability R described in the section “Determining the reliability”. At this time, the in-vehicle device 1 may determine the reliability R for each coordinate axis of the vehicle coordinate system.
  • the vehicle equipment 1 performs the own vehicle position estimation based on the landmark measurement position, the landmark prediction position, the reliability R determined in step S108, and the like (step S109).
  • the in-vehicle device 1 sets the reliability R of the X v axis to “R X ” and the reliability R of the Y v axis to “R”. If " Y ", the Kalman gain K (t) is set as shown in the following equation (5).
  • the landmark feature detection / position measurement unit 17 of the vehicle-mounted device 1 is based on the output signal of the external sensor 12 such as the lidar 2 that measures the landmark Ltag that is a surrounding feature.
  • the landmark measurement position is calculated.
  • the landmark position prediction unit 16 calculates a predicted landmark position based on the landmark information stored in the advanced map DB 10.
  • the reliability determination unit 18 calculates the difference D (t ⁇ 1) between the landmark predicted position and the landmark measured position at the previous time t ⁇ 1, and the landmark predicted position and the landmark measured position at the current time t. Based on the difference change amount dD (t) from the difference D (t), the reliability R is determined, and information on the determined reliability R is output to the vehicle position estimation unit 19.
  • the vehicle equipment 1 can improve the position estimation accuracy suitably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

A landmark characteristic detection/location measurement unit 17 of an in-vehicle device 1 calculates a landmark measurement location on the basis of the output signal from an external sensor 12 such as a lidar 2 for measuring a landmark Ltag, which is a peripheral physical object. A landmark location estimation unit 16 calculates an estimated landmark location on the basis of the landmark information stored in a feature-enhanced map DB 10. In addition, a reliability determination unit 18 determines the reliability R, on the basis of the difference change amount dD(t) between the difference D(t-1) between the landmark measurement location and the landmark estimation location at a previous time t-1 and the difference D(t) between the landmark measurement location and the landmark estimation location at the current time t. The reliability determination unit 18 also outputs information about the determined reliability R to a vehicle location estimation unit 19.

Description

情報処理装置、制御方法、プログラム及び記憶媒体Information processing apparatus, control method, program, and storage medium
 本発明は、位置を計測する技術に関する。 The present invention relates to a technique for measuring a position.
 従来から、車両の周囲に設置される地物をレーダやカメラを用いて検出し、その検出結果に基づいて自車位置を校正する技術が知られている。例えば、特許文献1には、計測センサの出力と、予め地図上に登録された地物の位置情報とを照合させることで自己位置を推定する技術が開示されている。また、特許文献2には、カルマンフィルタを用いた自車位置推定技術が開示されている。 2. Description of the Related Art Conventionally, a technique for detecting features installed around a vehicle using a radar or a camera and calibrating the position of the vehicle based on the detection result is known. For example, Patent Document 1 discloses a technique for estimating a self-position by collating the output of a measurement sensor with the position information of a feature registered in advance on a map. Patent Document 2 discloses a vehicle position estimation technique using a Kalman filter.
特開2013-257742号公報JP 2013-257742 A 特開2017-72422号公報JP 2017-72422 A
 ライダなどの外界センサによる計測データから位置推定における基準となる地物(ランドマーク)の位置を計測する場合、自車周辺を走行する他車両や、道路端の樹木などによるオクルージョンのため、ランドマークの一部分のみしか計測できず正確なランドマーク位置が計測できない場合がある。この場合、そのまま誤ったランドマークの計測位置を利用して位置推定を行うと、誤った位置推定結果となってしまう。 When measuring the position of a feature (landmark) that serves as a reference for position estimation from measurement data obtained by an external sensor such as a lidar, it is a landmark because it is occluded by other vehicles traveling around the vehicle or trees on the road edge. In some cases, only a part of the area can be measured, and an accurate landmark position cannot be measured. In this case, if position estimation is performed using an erroneous landmark measurement position as it is, an incorrect position estimation result is obtained.
 本発明は、上記のような課題を解決するためになされたものであり、オクルージョンの可能性を好適に勘案してランドマークの計測位置に関する情報を出力することが可能な情報処理装置を提供することを主な目的とする。 The present invention has been made to solve the above-described problems, and provides an information processing apparatus capable of outputting information related to the measurement position of a landmark in consideration of the possibility of occlusion. The main purpose.
 請求項1に記載の発明は、情報処理装置であって、周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得部と、地図情報に基づき、前記地物の予測位置を取得する第2取得部と、第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力部と、を備える。 The invention according to claim 1 is an information processing apparatus, which is based on map information and a first acquisition unit that acquires a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features. Based on the second acquisition unit that acquires the predicted position of the feature, the difference between the predicted position and the measured position at the first time, and the difference between the predicted position and the measured position at the second time And an output unit for outputting information related to the reliability of the measurement position.
 請求項5に記載の発明は、情報処理装置が実行する制御方法であって、周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得工程と、地図情報に基づき、前記地物の予測位置を取得する第2取得工程と、第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力工程と、を有する。 The invention according to claim 5 is a control method executed by the information processing apparatus, and a first acquisition step of acquiring a measurement position of the feature based on an output signal of a measurement unit that measures the surrounding feature; The second acquisition step of acquiring the predicted position of the feature based on the map information, the difference between the predicted position and the measured position at the first time, and the predicted position and the measured position at the second time And an output step of outputting information on the reliability of the measurement position based on the difference.
 請求項6に記載の発明は、コンピュータが実行するプログラムであって、周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得部と、地図情報に基づき、前記地物の予測位置を取得する第2取得部と、第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力部として前記コンピュータを機能させる。 The invention according to claim 6 is a program executed by a computer, and a first acquisition unit that acquires a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features, and map information Based on the second acquisition unit for acquiring the predicted position of the feature, the difference between the predicted position at the first time and the measured position, and the difference between the predicted position at the second time and the measured position. Based on this, the computer is caused to function as an output unit that outputs information related to the reliability of the measurement position.
運転支援システムの概略構成図である。It is a schematic block diagram of a driving assistance system. 車両の位置を2次元座標上に示した図である。It is the figure which showed the position of the vehicle on the two-dimensional coordinate. 車載機の機能的なブロック構成図を示す。The functional block block diagram of a vehicle equipment is shown. オクルージョンの有無に応じたランドマーク計測位置を示す。Indicates the landmark measurement position according to the presence or absence of occlusion. オクルージョンが発生していないときの時系列でのランドマーク予測位置及びランドマーク計測位置を概略的に示した図である。It is the figure which showed roughly the landmark prediction position and landmark measurement position in a time series when no occlusion has occurred. オクルージョンが発生したときの時系列でのランドマーク予測位置及びランドマーク計測位置を概略的に示した図である。It is the figure which showed roughly the landmark prediction position and landmark measurement position in a time series when occlusion generate | occur | produces. 自車位置推定処理のフローチャートである。It is a flowchart of the own vehicle position estimation process.
 本発明の好適な実施形態によれば、情報処理装置は、周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得部と、地図情報に基づき、前記地物の予測位置を取得する第2取得部と、第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力部と、を備える。この態様により、情報処理装置は、オクルージョン発生の可能性を勘案し、地物の計測位置に対する信頼度の情報を好適に出力することができる。 According to a preferred embodiment of the present invention, the information processing apparatus is based on map information and a first acquisition unit that acquires a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features. Based on the second acquisition unit that acquires the predicted position of the feature, the difference between the predicted position and the measured position at the first time, and the difference between the predicted position and the measured position at the second time And an output unit for outputting information related to the reliability of the measurement position. According to this aspect, the information processing apparatus can appropriately output information on reliability with respect to the measurement position of the feature in consideration of the possibility of occurrence of occlusion.
 上記情報処理装置の一態様では、前記出力部は、前記第1時刻における前記差分に対する前記第2時刻における前記差分の変化量が大きいほど、前記信頼度を低くする。一般に、計測対象の地物にオクルージョンが発生している場合、時間経過に伴ってオクルージョンの程度が変化するため、地物の予測位置と地物の計測位置との差分が変化する。よって、この態様により、情報処理装置は、地物の計測位置に対する信頼度を的確に判定することができる。 In one aspect of the information processing apparatus, the output unit lowers the reliability as the change amount of the difference at the second time with respect to the difference at the first time is larger. In general, when occlusion occurs in a feature to be measured, the degree of occlusion changes with time, so the difference between the predicted position of the feature and the measured position of the feature changes. Therefore, according to this aspect, the information processing apparatus can accurately determine the reliability of the measurement position of the feature.
 上記情報処理装置の他の一態様では、前記出力部は、第1方向での前記第1時刻における前記差分と、前記第1方向での前記第2時刻における前記差分とに基づき、前記第1方向における前記信頼度を判定し、第1方向と交わる第2方向での前記第1時刻における前記差分と、前記第2方向での前記第2時刻における前記差分とに基づき、前記第2方向における前記信頼度を判定する。この態様により、情報処理装置は、第1方向と第2方向のそれぞれでの地物の計測位置に関する信頼度を的確に判定及び出力することができる。 In another aspect of the information processing apparatus, the output unit is configured to perform the first based on the difference at the first time in the first direction and the difference at the second time in the first direction. Determining the reliability in the direction and based on the difference at the first time in the second direction intersecting the first direction and the difference at the second time in the second direction in the second direction. The reliability is determined. According to this aspect, the information processing apparatus can accurately determine and output the reliability regarding the measurement position of the feature in each of the first direction and the second direction.
 上記情報処理装置の他の一態様では、情報処理装置は、自己位置を予測する予測部と、現時刻における前記予測位置と前記計測位置との差分に基づいて、前記自己位置を補正する補正部と、をさらに備え、前記補正部は、前記信頼度が低いほど、前記差分により前記自己位置を補正する利得を小さくする。この態様により、情報処理装置は、位置推定の基準となる地物の計測位置の信頼度に応じて自己位置を好適に補正し、オクルージョン発生時での位置推定精度の低下を好適に抑制することができる。 In another aspect of the information processing apparatus, the information processing apparatus includes a prediction unit that predicts a self position, and a correction unit that corrects the self position based on a difference between the predicted position and the measurement position at a current time. The correction unit reduces the gain for correcting the self-position based on the difference as the reliability is lower. According to this aspect, the information processing apparatus suitably corrects the self-position according to the reliability of the measurement position of the feature serving as a reference for position estimation, and suitably suppresses a decrease in position estimation accuracy when the occlusion occurs. Can do.
 本発明の他の好適な実施形態によれば、情報処理装置が実行する制御方法であって、周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得工程と、地図情報に基づき、前記地物の予測位置を取得する第2取得工程と、第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力工程と、を有する。情報処理装置は、この制御方法を実行することで、地物の計測位置に対する信頼度の情報を好適に出力することができる。 According to another preferred embodiment of the present invention, there is provided a control method executed by the information processing apparatus, wherein the measurement position of the feature is acquired based on the output signal of the measurement unit that measures the surrounding feature. 1 acquisition step, a second acquisition step of acquiring a predicted position of the feature based on map information, a difference between the predicted position and the measured position at a first time, the predicted position at a second time, and the And an output step of outputting information on the reliability of the measurement position based on the difference from the measurement position. By executing this control method, the information processing apparatus can suitably output reliability information for the measurement position of the feature.
 本発明の他の好適な実施形態によれば、コンピュータが実行するプログラムであって、周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得部と、地図情報に基づき、前記地物の予測位置を取得する第2取得部と、第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力部として前記コンピュータを機能させる。コンピュータは、このプログラムを実行することで、地物の計測位置に対する信頼度の情報を好適に出力することができる。好適には、上記プログラムは、記憶媒体に記憶される。 According to another preferred embodiment of the present invention, a first acquisition unit that is a program executed by a computer and acquires a measurement position of the feature based on an output signal of a measurement unit that measures a surrounding feature. A second acquisition unit that acquires a predicted position of the feature based on map information, a difference between the predicted position and the measured position at a first time, and the predicted position and the measured position at a second time The computer is caused to function as an output unit that outputs information related to the reliability of the measurement position based on the difference between the two. By executing this program, the computer can suitably output reliability information for the measurement position of the feature. Preferably, the program is stored in a storage medium.
 以下、図面を参照して本発明の好適な実施例について説明する。なお、任意の記号の上に「^」または「-」が付された文字を、本明細書では便宜上、「A」または「A」(「A」は任意の文字)と表す。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. For convenience, a character with “^” or “-” attached on an arbitrary symbol is represented as “A ^ ” or “A ” (“A” is an arbitrary character) in this specification.
 [概略構成]
 図1は、本実施例に係る運転支援システムの概略構成図である。図1に示す運転支援システムは、車両に搭載され、車両の運転支援に関する制御を行う車載機1と、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)2などの外界センサと、ジャイロセンサ3、車速センサ4、衛星測位センサ5などの内界センサとを有する。
[Schematic configuration]
FIG. 1 is a schematic configuration diagram of a driving support system according to the present embodiment. The driving support system shown in FIG. 1 is mounted on a vehicle and controls an on-vehicle device 1 that performs control related to driving support of the vehicle, and an external sensor such as a lidar (Lider: Light Detection and Ranging or Laser Illuminated Detection And Ranging) 2. And an internal sensor such as a gyro sensor 3, a vehicle speed sensor 4, and a satellite positioning sensor 5.
 車載機1は、ライダ2などの外界センサと、ジャイロセンサ3、車速センサ4、及び衛星測位センサ5などの内界センサと電気的に接続し、これらの出力に基づき、車載機1が搭載される車両の位置(「自車位置」とも呼ぶ。)の推定を行う。そして、車載機1は、自車位置の推定結果に基づき、車両の自動運転制御などを行う。本実施例では、車載機1は、位置推定において基準となる地物(「ランドマークLtag」とも呼ぶ。)に対するライダ2等の外界センサによる計測データに基づき、ランドマークLtagの計測位置を算出する。この場合、車載機1は、ランドマークLtagの計測位置の信頼度(「信頼度R」とも呼ぶ。)に関する情報を生成する。ランドマークLtagは、例えば、道路脇に周期的に並んでいるキロポスト、100mポスト、デリニエータ、交通インフラ設備(例えば標識、方面看板、信号)、電柱、街灯などの地物である。 The in-vehicle device 1 is electrically connected to an external sensor such as a lidar 2 and an internal sensor such as a gyro sensor 3, a vehicle speed sensor 4, and a satellite positioning sensor 5, and the in-vehicle device 1 is mounted based on these outputs. The position of the vehicle (also referred to as “own vehicle position”) is estimated. And the vehicle equipment 1 performs automatic driving | operation control etc. of a vehicle based on the estimation result of the own vehicle position. In the present embodiment, the in-vehicle device 1 calculates the measurement position of the landmark Ltag based on the measurement data obtained by an external sensor such as the lidar 2 with respect to the feature (which is also referred to as “landmark Ltag”) used as a reference in position estimation. . In this case, the in-vehicle device 1 generates information on the reliability of the measurement position of the landmark Ltag (also referred to as “reliability R”). The landmark Ltag is, for example, a feature such as a kilometer post, a 100 m post, a delineator, a traffic infrastructure facility (for example, a sign, a direction signboard, a signal), a power pole, a streetlight, and the like periodically arranged along the road.
 ライダ2は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群情報を生成する。この場合、ライダ2は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。ライダ2は、本発明における「計測部」の一例である。 The lidar 2 emits a pulse laser in a predetermined angle range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group information. In this case, the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit. Output unit. The scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal. The lidar 2 is an example of the “measurement unit” in the present invention.
 サーバ装置7は、車載機1等に配信するための高度化地図DB(Data Base)10を記憶する。高度化地図DB10には、道路データに加え、ランドマークLtagとなる地物に関する情報であるランドマーク情報が記憶されている。ランドマーク情報は、車載機1による自車位置推定処理及び信頼度Rの判定処理に用いられる。 The server device 7 stores an advanced map DB (Data Base) 10 for distribution to the vehicle-mounted device 1 or the like. In the advanced map DB 10, landmark information that is information related to the feature serving as the landmark Ltag is stored in addition to the road data. The landmark information is used for the vehicle position estimation process and the reliability R determination process performed by the in-vehicle device 1.
 なお、図1に示す運転支援システムの構成は一例であり、本発明が適用可能な運転支援システムの構成は図1に示す構成に限定されない。例えば、運転支援システムは、車載機1を有する代わりに、車両の電子制御装置が車載機1の処理を実行してもよい。他の例では、車載機1は、サーバ装置7からランドマーク情報を取得する代わりに、高度化地図DB10に相当する情報を自ら記憶してもよい。 The configuration of the driving support system shown in FIG. 1 is an example, and the configuration of the driving support system to which the present invention can be applied is not limited to the configuration shown in FIG. For example, instead of having the in-vehicle device 1 in the driving support system, the electronic control device of the vehicle may execute the processing of the in-vehicle device 1. In another example, the in-vehicle device 1 may store information corresponding to the advanced map DB 10 by itself instead of acquiring landmark information from the server device 7.
 [自車位置推定処理の概要]
 まず、本実施例における自車位置推定処理の概要について説明する。なお、信頼度Rを反映した自車位置推定については後述する。
[Outline of the vehicle position estimation process]
First, the outline | summary of the own vehicle position estimation process in a present Example is demonstrated. The vehicle position estimation reflecting the reliability R will be described later.
 図2は、車両に搭載された車載機1の位置を2次元座標上に示した図である。図示のように、地図座標系(X,Y)に車載機1を搭載した車両が存在し、車両の位置を基準として車両座標系(X,Y)が規定される。具体的に、車両の進行方向を車両座標系の「X軸」とし、それに垂直な方向を車両座標系の「Y軸」とする。 FIG. 2 is a diagram showing the position of the vehicle-mounted device 1 mounted on the vehicle on a two-dimensional coordinate. As shown in the figure, there is a vehicle equipped with the vehicle-mounted device 1 in the map coordinate system (X m , Y m ), and the vehicle coordinate system (X v , Y v ) is defined based on the position of the vehicle. Specifically, the traveling direction of the vehicle is defined as “X v axis” in the vehicle coordinate system, and the direction perpendicular thereto is defined as “Y v axis” in the vehicle coordinate system.
 図2では、車両の左側方にランドマークLtagとなる平板状の地物が存在する。ランドマークLtagの地図座標系における位置(「ランドマーク地図位置」とも呼ぶ。)は、高度化地図DB10に登録されたランドマーク情報の一部として含まれている。図2では、ランドマーク地図位置は(mx、my)であり、ジャイロセンサ3などの内界センサの出力に基づき予測した地図座標系における暫定的な自車位置(「予測自車位置」とも呼ぶ。)は(x ,y )で与えられ、地図座標系における暫定的な自車方位角(「予測自車方位角」とも呼ぶ。)は「Ψ 」で与えられる。 In FIG. 2, there is a flat feature that becomes the landmark Ltag on the left side of the vehicle. The position of the landmark Ltag in the map coordinate system (also referred to as “landmark map position”) is included as part of the landmark information registered in the advanced map DB 10. In FIG. 2, the landmark map position is (mx m , my m ), and the provisional vehicle position (“predicted vehicle position”) in the map coordinate system predicted based on the output of the internal sensor such as the gyro sensor 3 is used. Is also given by (x m , y m ), and the provisional vehicle azimuth (also called “predicted vehicle azimuth”) in the map coordinate system is given by “Ψ m ”. .
 ここで、車載機1は、ランドマークの暫定的な予測位置(「ランドマーク予測位置」とも呼ぶ。)の車両座標系の座標(L,L)を、ランドマーク地図位置(mx,my)と、予測自車位置(x ,y )と、予測自車方位角Ψ とを用いて、以下の式(1)により算出する。 Here, the in-vehicle device 1 uses the coordinates (L x v , L y v ) of the vehicle coordinate system of the provisional predicted position of the landmark (also referred to as “landmark predicted position”) as the landmark map position. Using (mx m , my m ), the predicted host vehicle position (x m , y m ), and the predicted host vehicle azimuth angle Ψ m , the following calculation (1) is performed.
Figure JPOXMLDOC01-appb-M000001
 また、車載機1は、ランドマーク予測位置に基づいて、ランドマークが存在すると予測される範囲(「ランドマーク予測範囲WL」とも呼ぶ。)を決定する。ランドマーク予測範囲WLは、例えば、ランドマーク予測位置から所定距離以内の範囲に設定される。なお、車載機1は、予測自車位置の誤差情報を取得可能な場合、当該誤差情報が示す誤差の大きさに応じて、ランドマーク予測範囲WLの大きさを変更してもよい。この場合、車載機1は、予測自車位置の誤差が大きいほどランドマーク予測範囲WLを大きくすることでランドマークLtagの検出漏れを防ぐことができ、予測自車位置の誤差が小さいほどランドマーク予測範囲WLを小さくすることでノイズの影響の低減及び処理量低減を実現することができる。同様に、車載機1は、外界センサの計測精度(例えばライダ2の角度分解能)に応じてランドマーク予測範囲WLの大きさを変更してもよい。
Figure JPOXMLDOC01-appb-M000001
Further, the in-vehicle device 1 determines a range where the landmark is predicted to exist (also referred to as “landmark predicted range WL”) based on the landmark predicted position. The landmark prediction range WL is set to a range within a predetermined distance from the landmark prediction position, for example. In addition, when the error information of the predicted vehicle position can be acquired, the in-vehicle device 1 may change the size of the landmark prediction range WL according to the size of the error indicated by the error information. In this case, the in-vehicle device 1 can prevent a detection failure of the landmark Ltag by increasing the landmark prediction range WL as the error in the predicted vehicle position increases, and the landmark as the error in the predicted vehicle position decreases. By reducing the prediction range WL, it is possible to reduce the influence of noise and reduce the processing amount. Similarly, the in-vehicle device 1 may change the size of the landmark prediction range WL according to the measurement accuracy of the external sensor (for example, the angular resolution of the lidar 2).
 次に、車載機1は、設定したランドマーク予測範囲WL内において特徴点として計測されたスキャンデータを、ランドマークを計測したデータ(「ランドマーク計測データWLD」とも呼ぶ。)として抽出する。例えば、車載機1は、他の地物よりも再帰反射性が高い標識や看板などをランドマークLtagとしてライダ2により計測する場合、計測された計測点の点群データから反射強度が所定度以上となる計測点のデータを、ランドマーク計測データWLDとして抽出する。そして、車載機1は、ランドマーク計測データWLDの各計測点が示す座標の車両座標系での重心(平均)を、ランドマーク計測位置(Lx,Ly)として算出する。なお、図2の例では、予測自車位置の誤差に起因して、ランドマーク予測位置とランドマーク計測位置とにずれが生じている。 Next, the vehicle-mounted device 1 extracts the scan data measured as the feature points within the set landmark prediction range WL as data obtained by measuring the landmarks (also referred to as “landmark measurement data WLD”). For example, when the vehicle-mounted device 1 uses the lidar 2 as a landmark Ltag to measure a sign or signboard having a higher retroreflectivity than other features as a landmark Ltag, the reflection intensity is more than a predetermined degree from the point cloud data of the measured measurement points. Data of measurement points to be extracted as landmark measurement data WLD. The vehicle unit 1 calculates the center of gravity (average) in the vehicle coordinate system of a coordinate indicated by each measurement point landmarks measurement data WLD, as landmarks measurement position (Lx v, Ly v). In the example of FIG. 2, there is a difference between the predicted landmark position and the landmark measurement position due to an error in the predicted vehicle position.
 そして、車載機1は、ランドマーク予測位置とランドマーク計測位置との差に基づき、予測自車位置を補正した自車位置(「推定自車位置」とも呼ぶ。)を算出する。例えば、車載機1は、拡張カルマンフィルタを用いた自車位置推定を行う場合、基準時刻(即ち現在時刻)を「t」とし、カルマンゲインを「K(t)」とすると、以下の式(2)に基づき、推定自車位置を示す状態変数ベクトル「X(t)=(x (t),y (t)、Ψ (t))」を算出する。 The in-vehicle device 1 calculates a vehicle position (also referred to as “estimated vehicle position”) obtained by correcting the predicted vehicle position based on the difference between the landmark predicted position and the landmark measurement position. For example, when the in-vehicle device 1 performs vehicle position estimation using the extended Kalman filter, if the reference time (that is, the current time) is “t” and the Kalman gain is “K (t)”, the following equation (2) ) To calculate the state variable vector “X ^ (t) = (x ^ m (t), y ^ m (t), Ψ ^ m (t)) T " indicating the estimated host vehicle position.
Figure JPOXMLDOC01-appb-M000002
 ここで、X(t)=(x (t),y (t)、Ψ (t))、Z(t)=(Lx,Ly、Z(t)=(L,Lとなる。そして、車載機1は、予測自車位置を算出する予測ステップと、直前の予測ステップで算出した予測自車位置を式(2)に基づき補正して推定自車位置を算出する計測更新ステップとを交互に実行する。なお、これらのステップで用いる状態推定フィルタは、ベイズ推定を行うように開発された様々のフィルタが利用可能であり、拡張カルマンフィルタに限定されず、例えばアンセンテッドカルマンフィルタ、パーティクルフィルタなどであってもよい。
Figure JPOXMLDOC01-appb-M000002
Here, X - (t) = ( x - m (t), y - m (t), Ψ - m (t)) T, Z (t) = (Lx v, Ly v) T, Z - ( t) = (L x v , L y v ) T. Then, the in-vehicle device 1 calculates a predicted own vehicle position, and a measurement update step that calculates the estimated own vehicle position by correcting the predicted own vehicle position calculated in the immediately preceding prediction step based on the equation (2). Execute alternately. The state estimation filter used in these steps can use various filters developed to perform Bayesian estimation, and is not limited to the extended Kalman filter, and may be, for example, an unscented Kalman filter, a particle filter, or the like. .
 ここで、自車周辺を走行する車両や道路端の樹木などによるオクルージョンが発生してランドマークLtagの一部分しか計測できない場合、ランドマーク計測位置を正確に計測できない。そして、誤ったランドマーク計測位置を利用して式(2)等に基づく位置推定を行うと、推定自車位置の精度が低下してしまう。以上を勘案し、車載機1は、ランドマークLtagに対するオクルージョンの度合いに応じた信頼度Rを判定し、判定した信頼度Rを自車位置推定処理に反映させることで、位置推定精度の低下を抑制する。信頼度Rの判定方法については、[信頼度の判定]のセクションで説明する。 Here, when occlusion occurs due to vehicles traveling around the vehicle or trees on the road edge, and only a part of the landmark Ltag can be measured, the landmark measurement position cannot be measured accurately. And if position estimation based on Formula (2) etc. is performed using an incorrect landmark measurement position, the accuracy of the estimated own vehicle position will be reduced. Considering the above, the in-vehicle device 1 determines the reliability R according to the degree of occlusion with respect to the landmark Ltag, and reflects the determined reliability R in the vehicle position estimation process, thereby reducing the position estimation accuracy. Suppress. The method for determining the reliability R will be described in the section [Determining the reliability].
 [ブロック構成]
 図3は、車載機1の機能的なブロック構成図を示す。車載機1は、主に、自車位置予測部13と、通信部14と、ランドマーク情報取得部15と、ランドマーク位置予測部16と、ランドマーク特徴検出・位置計測部17と、信頼度判定部18と、自車位置推定部19と、を有する。なお、自車位置予測部13、ランドマーク情報取得部15、ランドマーク位置予測部16、ランドマーク特徴検出・位置計測部17、信頼度判定部18、及び自車位置推定部19は、実際には、CPUなどのコンピュータが予め用意されたプログラムを実行することにより実現される。
[Block configuration]
FIG. 3 shows a functional block configuration diagram of the in-vehicle device 1. The in-vehicle device 1 mainly includes a host vehicle position prediction unit 13, a communication unit 14, a landmark information acquisition unit 15, a landmark position prediction unit 16, a landmark feature detection / position measurement unit 17, and a reliability. It has the determination part 18 and the own vehicle position estimation part 19. The vehicle position prediction unit 13, the landmark information acquisition unit 15, the landmark position prediction unit 16, the landmark feature detection / position measurement unit 17, the reliability determination unit 18, and the vehicle position estimation unit 19 are actually Is realized by a computer such as a CPU executing a program prepared in advance.
 自車位置予測部13は、ジャイロセンサ3、車速センサ4及び衛星測位センサ5を含む内界センサ11の出力に基づいて、GNSS(Global Navigation Satellite System)/IMU(Inertia Measurement Unit)複合航法により車両の自車位置を予測し、予測自車位置をランドマーク位置予測部16に供給する。自車位置予測部13は、本発明における「予測部」の一例である。 The own vehicle position prediction unit 13 is based on the output of the internal sensor 11 including the gyro sensor 3, the vehicle speed sensor 4, and the satellite positioning sensor 5, and uses the GNSS (Global Navigation Satellite System) / IMU (Inertia Measurement Unit) combined navigation. And the predicted vehicle position is supplied to the landmark position prediction unit 16. The own vehicle position prediction unit 13 is an example of the “prediction unit” in the present invention.
 通信部14は、サーバ装置7と無線通信するための通信ユニットである。ランドマーク情報取得部15は、車両の周辺に存在するランドマークLtagに関するランドマーク情報を、通信部14を介してサーバ装置7から受信する。ここで、図3に示すように、ランドマーク情報には、少なくとも、ランドマークLtagとなる地物ごとに、ランドマーク地図位置を示す位置情報が含まれる。 The communication unit 14 is a communication unit for wirelessly communicating with the server device 7. The landmark information acquisition unit 15 receives landmark information related to the landmark Ltag existing around the vehicle from the server device 7 via the communication unit 14. Here, as shown in FIG. 3, the landmark information includes at least position information indicating the landmark map position for each feature that becomes the landmark Ltag.
 ランドマーク位置予測部16は、ランドマーク情報の位置情報が示すランドマーク地図位置と自車位置予測部13から取得した予測自車位置とに基づいて、前述の式(1)によりランドマーク予測位置を算出し、信頼度判定部18へ供給する。また、ランドマーク位置予測部16は、ランドマーク予測位置に基づいて、ランドマーク予測範囲WLを決定し、ランドマーク特徴検出・位置計測部17へ供給する。ランドマーク位置予測部16は、本発明における「第2取得部」の一例である。 Based on the landmark map position indicated by the position information of the landmark information and the predicted vehicle position acquired from the vehicle position prediction unit 13, the landmark position prediction unit 16 calculates the landmark position predicted by the above-described equation (1). Is supplied to the reliability determination unit 18. Further, the landmark position prediction unit 16 determines a landmark prediction range WL based on the landmark prediction position and supplies the landmark prediction range WL to the landmark feature detection / position measurement unit 17. The landmark position prediction unit 16 is an example of the “second acquisition unit” in the present invention.
 ランドマーク特徴検出・位置計測部17は、外界センサ12から計測データを取得する。ここで、外界センサ12は、車両の周辺の物体を検出するセンサであり、ライダ2やステレオカメラ6などを含む。そして、ランドマーク特徴検出・位置計測部17は、ランドマーク位置予測部16から供給されたランドマーク予測範囲WLと、外界センサ12から取得した計測データとに基づいて、当該計測データからランドマーク計測データWLDを抽出する。また、ランドマーク特徴検出・位置計測部17は、ランドマーク計測データWLDに基づき、ランドマーク計測位置を算出する。そして、ランドマーク特徴検出・位置計測部17は、算出したランドマーク計測位置の情報を信頼度判定部18へ供給する。ランドマーク特徴検出・位置計測部17は、本発明における「第1取得部」の一例である。 The landmark feature detection / position measurement unit 17 acquires measurement data from the external sensor 12. Here, the external sensor 12 is a sensor that detects an object around the vehicle, and includes the lidar 2 and the stereo camera 6. Then, the landmark feature detection / position measurement unit 17 performs landmark measurement from the measurement data based on the landmark prediction range WL supplied from the landmark position prediction unit 16 and the measurement data acquired from the external sensor 12. Data WLD is extracted. The landmark feature detection / position measurement unit 17 calculates the landmark measurement position based on the landmark measurement data WLD. Then, the landmark feature detection / position measurement unit 17 supplies the calculated landmark measurement position information to the reliability determination unit 18. The landmark feature detection / position measurement unit 17 is an example of the “first acquisition unit” in the present invention.
 信頼度判定部18は、ランドマーク位置予測部16から供給されるランドマーク予測位置と、ランドマーク特徴検出・位置計測部17から供給されるランドマーク計測位置との現時刻tでの差分(「差分D(t)」とも呼ぶ。)を、車両座標系のX軸、Y軸のそれぞれについて算出する。なお、信頼度判定部18は、車両座標系のX軸、Y軸に加えて、高さ方向のZ座標についても差分D(t)を算出してもよい。そして、信頼度判定部18は、前時刻t-1に算出した差分D(t-1)に対する上述の差分D(t)の変化量(「差分変化量dD(t)」とも呼ぶ。)を、車両座標系の座標軸ごとに算出する。そして、信頼度判定部18は、差分変化量dD(t)に基づき、信頼度Rを判定する。差分変化量dD(t)に基づく信頼度Rの判定については後述する。信頼度判定部18は、本発明における「出力部」の一例である。 The reliability determination unit 18 determines the difference between the landmark prediction position supplied from the landmark position prediction unit 16 and the landmark measurement position supplied from the landmark feature detection / position measurement unit 17 at the current time t (“ The difference D (t) "is also calculated for each of the Xv axis and Yv axis of the vehicle coordinate system. Incidentally, the reliability determination unit 18, X v-axis of the vehicle coordinate system, in addition to Y v axes, may calculate the difference D (t) also Z v coordinates in the height direction. Then, the reliability determination unit 18 changes the above-described difference D (t) with respect to the difference D (t−1) calculated at the previous time t−1 (also referred to as “difference change amount dD (t)”). Calculate for each coordinate axis of the vehicle coordinate system. Then, the reliability determination unit 18 determines the reliability R based on the difference change amount dD (t). The determination of the reliability R based on the difference change amount dD (t) will be described later. The reliability determination unit 18 is an example of the “output unit” in the present invention.
 自車位置推定部19は、ランドマーク予測位置、ランドマーク計測位置、及び信頼度R等に基づき、推定自車位置を算出する。なお、信頼度Rを用いた推定自車位置の算出方法については後述する。自車位置推定部19は、本発明における「補正部」の一例である。 The own vehicle position estimation unit 19 calculates an estimated own vehicle position based on the predicted landmark position, the landmark measurement position, the reliability R, and the like. Note that a method of calculating the estimated vehicle position using the reliability R will be described later. The own vehicle position estimation unit 19 is an example of the “correction unit” in the present invention.
 [信頼度の判定]
 概略的には、車載機1は、差分変化量dD(t)が大きいほどランドマーク計測位置の精度が低いとみなし、差分変化量dD(t)に応じて信頼度Rを設定する。
[Judgment of reliability]
Schematically, the in-vehicle device 1 considers that the accuracy of the landmark measurement position is lower as the difference change amount dD (t) is larger, and sets the reliability R according to the difference change amount dD (t).
 まず、オクルージョンの有無に基づくランドマーク計測位置の変化について図4を参照して説明する。図4(A)は、ランドマークLtagにオクルージョンが発生していない場合のランドマーク計測位置(Lx,Ly)を示し、図4(B)は、他車両によるランドマークLtagのオクルージョンが発生している場合のランドマーク計測位置(Lx,Ly)を示す。 First, changes in landmark measurement positions based on the presence or absence of occlusion will be described with reference to FIG. FIG. 4A shows the landmark measurement position (Lx v , Ly v ) when no occlusion has occurred in the landmark Ltag, and FIG. 4B shows that the occlusion of the landmark Ltag is caused by another vehicle. The landmark measurement position (Lx v , Ly v ) is shown.
 図4(A)の例では、オクルージョンが発生していないため、ランドマークLtagの正面全体が計測対象となり、ランドマーク計測位置(Lx,Ly)は、ランドマーク情報が示すランドマーク地図位置と整合する。よって、車載機1は、図4(A)の場合に算出されるランドマーク計測位置を用いて自車位置推定を行うことで、好適に位置推定精度を高めることが可能である。 In the example of FIG. 4A, since no occlusion has occurred, the entire front face of the landmark Ltag is to be measured, and the landmark measurement position (Lx v , Ly v ) is the landmark map position indicated by the landmark information. Consistent with. Therefore, the in-vehicle device 1 can suitably improve the position estimation accuracy by performing the vehicle position estimation using the landmark measurement position calculated in the case of FIG.
 一方、図4(B)の例では、他車両によるオクルージョンが発生しており、ランドマークLtagの一部のみが計測対象となっている。その結果、ランドマーク計測位置(Lx,Ly)は、オクルージョンが発生していないランドマークLtagの右側に偏ることになり、ランドマーク地図位置と整合する位置(即ち図4(A)のランドマーク計測位置)からずれることになる。よって、車載機1は、図4(B)の場合に算出されるランドマーク計測位置を用いて自車位置推定を行った場合、位置推定精度が低下する。 On the other hand, in the example of FIG. 4B, occlusion by another vehicle has occurred, and only a part of the landmark Ltag is a measurement target. As a result, the landmark measurement position (Lx v , Ly v ) is biased to the right of the landmark Ltag where no occlusion has occurred, and is a position that matches the landmark map position (ie, the land in FIG. 4A). It will deviate from the mark measurement position. Therefore, when the vehicle-mounted device 1 performs its own vehicle position estimation using the landmark measurement position calculated in the case of FIG. 4B, the position estimation accuracy decreases.
 このように、同一のランドマークLtagを計測対象とする場合であっても、オクルージョンの有無によってランドマーク計測位置が変化する。一方、オクルージョンが発生している場合、車載機1の車両とランドマークLtagとオクルージョンを発生させる障害物との相対位置関係が経時変化する。よって、この場合、時間経過によりオクルージョンの度合いやオクルージョンの有無等が変化し、ランドマーク計測位置が時間経過と共に変化する。 Thus, even when the same landmark Ltag is a measurement target, the landmark measurement position changes depending on the presence or absence of occlusion. On the other hand, when occlusion has occurred, the relative positional relationship between the vehicle of the vehicle-mounted device 1, the landmark Ltag, and the obstacle that generates occlusion changes with time. Therefore, in this case, the degree of occlusion, the presence / absence of occlusion, etc. change with the passage of time, and the landmark measurement position changes with the passage of time.
 次に、時間経過に伴うランドマーク計測位置の変化と差分変化量dD(t)との関係について図5及び図6を参照して説明する。 Next, the relationship between the change in the landmark measurement position over time and the difference change amount dD (t) will be described with reference to FIGS.
 図5は、時刻t-1及び時刻tのいずれにおいてもオクルージョンが発生していないときのランドマーク予測位置及びランドマーク計測位置を概略的に示した図であり、図6は、時刻tにおいてオクルージョンが発生したときのランドマーク予測位置及びランドマーク計測位置を概略的に示した図である。以後において、X軸での差分D(t)を「Dx(t)」、Y軸での差分D(t)を「Dy(t)」、X軸での差分変化量dD(t)を「dDx(t)」、Y軸での差分変化量dD(t)を「dDy(t)」と表記する。なお、これらの値は、それぞれの定義に基づき以下の式(3)により算出される。 FIG. 5 is a diagram schematically showing a predicted landmark position and a landmark measurement position when no occlusion occurs at both time t-1 and time t. FIG. 6 shows an occlusion at time t. It is the figure which showed schematically the landmark prediction position and landmark measurement position when this occurred. In subsequent, the difference D (t) of at X v axis "Dx (t)", Y v in axis difference D (t) the "Dy (t)", X v difference variation in shaft dD (t ) to "DDX (t)", the difference amount of change in Y v axis dD (t) is referred to as "ddY (t)". These values are calculated by the following equation (3) based on the respective definitions.
Figure JPOXMLDOC01-appb-M000003
 図5の例では、時刻t-1と時刻tのいずれにおいてもオクルージョンが発生していないため、車載機1は、時刻t-1と時刻tのいずれにおいても類似した計測点の点群を示すランドマーク計測データWLDに基づきランドマーク計測位置を算出する。その結果、時刻t-1でのランドマーク計測位置(Lx(t-1),Ly(t-1))とランドマーク予測位置(L(t-1),L(t-1))の差分(Dx(t-1)、Dy(t-1))と、時刻tでのランドマーク計測位置(Lx(t),Ly(t))とランドマーク予測位置(L(t),L(t))の差分(Dx(t)、Dy(t))はほぼ等しくなる。以上のことから、図5の例では、差分変化量dDx(t)、dDy(t)は、それぞれ0に近い値となる。
Figure JPOXMLDOC01-appb-M000003
In the example of FIG. 5, since no occlusion occurs at both time t-1 and time t, the in-vehicle device 1 shows a point cloud of similar measurement points at both time t-1 and time t. A landmark measurement position is calculated based on the landmark measurement data WLD. As a result, the landmark measurement position (Lx v (t−1), Ly v (t−1)) and the predicted landmark position (L x v (t−1), L y v at time t−1 are obtained. (T-1)) difference (Dx (t-1), Dy (t-1)), landmark measurement position (Lx v (t), Ly v (t)) and landmark prediction at time t The difference (Dx (t), Dy (t)) between the positions (L x v (t), L y v (t)) is almost equal. From the above, in the example of FIG. 5, the difference change amounts dDx (t) and dDy (t) are values close to 0, respectively.
 一方、図6の例では、時刻tにおいてランドマークLtagを計測したときにオクルージョンが発生しており、当該オクルージョンに起因して時刻tにおけるランドマーク計測位置(Lx(t),Ly(t))が時刻t-1でのランドマーク計測位置(Lx(t-1),Ly(t-1))に対して、Y軸方向に所定距離だけずれている。この場合、X軸での差分Dx(t)、Dx(t-1)はほぼ等しく、差分変化量dDx(t)が実質的に0となるが、Y軸での差分Dy(t)、Dy(t-1)は異なることから、差分変化量dDy(t)は、上述の所定距離分の値となる。 On the other hand, in the example of FIG. 6, occlusion occurs when the landmark Ltag is measured at time t, and the landmark measurement position (Lx v (t), Ly v (t) at time t is attributed to the occlusion. )) Is shifted from the landmark measurement position (Lx v (t−1), Ly v (t−1)) at time t−1 by a predetermined distance in the Y v axis direction. In this case, the difference Dx in X v-axis (t), Dx (t- 1) is substantially equal, but the differential variation DDX (t) becomes substantially zero, the difference in Y v axis Dy (t) , Dy (t−1) are different, the difference change amount dDy (t) is a value for the predetermined distance described above.
 このように、オクルージョンに起因してランドマーク計測位置の精度が低くなる場合には、車両座標系のいずれかの軸に対応する差分変化量dD(t)が大きくなる。以上を勘案し、車載機1は、差分変化量dD(t)が大きいほどランドマーク計測位置を正しく計測できていないとみなし、差分変化量dD(t)に応じて信頼度Rを設定する。 Thus, when the accuracy of the landmark measurement position decreases due to occlusion, the difference change amount dD (t) corresponding to any axis of the vehicle coordinate system increases. Considering the above, the in-vehicle device 1 considers that the landmark measurement position cannot be measured correctly as the difference change amount dD (t) is larger, and sets the reliability R according to the difference change amount dD (t).
 なお、図5及び図6の例では、車載機1は、車両座標系の軸ごとに差分変化量dDx(t)、dDy(t)を算出したが、これに限らず、例えば以下の式(4)に基づき、直線距離を基準として1つの差分変化量dD(t)を算出してもよい。 In the example of FIGS. 5 and 6, the vehicle-mounted device 1 calculates the difference change amounts dDx (t) and dDy (t) for each axis of the vehicle coordinate system. Based on 4), one difference change amount dD (t) may be calculated based on the straight line distance.
Figure JPOXMLDOC01-appb-M000004
 また、式(3)、(4)では、水平方向の2次元座標系のみを考慮したが、高さ方向の座標をさらに勘案し、式(3)と同様に車両座標系の軸ごとに、又は、式(4)と同様に直線距離を基準として、差分変化量dD(t)を算出してもよい。
Figure JPOXMLDOC01-appb-M000004
Further, in equations (3) and (4), only the two-dimensional coordinate system in the horizontal direction is considered, but the coordinates in the height direction are further taken into consideration, and for each axis of the vehicle coordinate system, as in equation (3), Alternatively, the difference change amount dD (t) may be calculated using the straight line distance as a reference, as in the equation (4).
 次に、差分変化量dD(t)に応じた信頼度Rの設定例について説明する。以下では、信頼度Rは、0から1までの値とする。 Next, an example of setting the reliability R according to the difference change amount dD (t) will be described. Hereinafter, the reliability R is a value from 0 to 1.
 信頼度Rの第1の設定例では、車載機1は、差分変化量dD(t)が所定の閾値以下の場合、信頼度Rが「1」であると判定し、差分変化量dD(t)が所定の閾値より大きい場合、信頼度Rが「0」であると判定する。上述の閾値は、例えば、位置推定精度の悪化の度合いを勘案し、実験等に基づき予め設定される。なお、車載機1は、車両座標系の軸ごとに差分変化量dD(t)を算出した場合、車両座標系の軸ごとの差分変化量dD(t)のいずれかが所定の閾値より大きいとき、信頼度Rを「0」としてもよい。第1の設定例によれば、車載機1は、オクルージョンが発生したときのランドマーク計測値に対する信頼度Rを好適に0にし、位置推定精度の低下を抑制することができる。 In the first setting example of the reliability R, the in-vehicle device 1 determines that the reliability R is “1” when the difference change amount dD (t) is equal to or less than a predetermined threshold, and the difference change amount dD (t ) Is larger than a predetermined threshold, it is determined that the reliability R is “0”. The above threshold value is set in advance based on an experiment or the like in consideration of the degree of deterioration in position estimation accuracy, for example. In addition, when the vehicle-mounted device 1 calculates the difference change amount dD (t) for each axis of the vehicle coordinate system, when any of the difference change amounts dD (t) for each axis of the vehicle coordinate system is larger than a predetermined threshold value. The reliability R may be set to “0”. According to the first setting example, the in-vehicle device 1 can preferably set the reliability R with respect to the landmark measurement value when the occlusion occurs to 0, and suppress a decrease in position estimation accuracy.
 なお、車載機1は、車両座標系の軸ごとに差分変化量dD(t)を算出した場合、車両座標系の軸ごとに信頼度Rを設定してもよい。例えば、車両座標系を2次元座標とした場合、車載機1は、差分変化量dDx(t)に基づきX軸方向の信頼度Rを算出すると共に、差分変化量dDy(t)に基づきY軸方向の信頼度Rを算出する。この場合、車載機1は、X軸とY軸とでのそれぞれの信頼度Rを算出することができるため、自車位置推定処理などにおいて、信頼度Rが高い方向の補正量を、信頼度Rが低い方向の補正量よりも相対的に大きくし、位置推定精度を好適に高めることができる。以下の第2及び第3の設定例でも同様に、車両座標系の軸ごとに信頼度Rを設定してもよい。 In addition, the vehicle equipment 1 may set the reliability R for every axis | shaft of a vehicle coordinate system, when the difference variation | change_quantity dD (t) is calculated for every axis | shaft of a vehicle coordinate system. For example, when the vehicle coordinate system and the two-dimensional coordinates, the vehicle-mounted device 1 calculates the reliability R of X v-axis direction based on a difference variation DDX (t), based on the difference variation ddY (t) Y A reliability R in the v- axis direction is calculated. In this case, the vehicle-mounted unit 1, it is possible to calculate the respective reliability R in the X v-axis and Y v axes, such as in vehicle position estimation processing, the direction of the correction amount reliability R is high, By relatively increasing the correction amount in the direction in which the reliability R is low, the position estimation accuracy can be suitably increased. Similarly, in the following second and third setting examples, the reliability R may be set for each axis of the vehicle coordinate system.
 第2の設定例では、車載機1は、差分変化量dD(t)が大きいほど、信頼度Rが0に近づくように設定する。この場合、車載機1は、例えば、差分変化量dD(t)を0から1までの値に正規化した値を、信頼度Rとして設定する。第3の設定例では、車載機1は、第1の例と第2の例との組み合わせに基づき信頼度Rを判定する。例えば、車載機1は、差分変化量dD(t)が所定の閾値より大きい場合、信頼度Rを「0」に設定し、差分変化量dD(t)が所定の閾値以下の場合、第2の設定例に基づき差分変化量dD(t)に応じて信頼度Rを設定する。 In the second setting example, the in-vehicle device 1 is set so that the reliability R approaches 0 as the difference change amount dD (t) increases. In this case, the in-vehicle device 1 sets, for example, a value obtained by normalizing the difference change amount dD (t) to a value from 0 to 1 as the reliability R. In the third setting example, the in-vehicle device 1 determines the reliability R based on the combination of the first example and the second example. For example, the in-vehicle device 1 sets the reliability R to “0” when the difference change amount dD (t) is larger than a predetermined threshold, and the second change when the difference change amount dD (t) is less than or equal to the predetermined threshold. Based on the setting example, the reliability R is set according to the difference change amount dD (t).
 こうして得られた信頼度Rは、ランドマーク計測位置の計算結果と対応付けて出力され、自車位置推定に利用される。例えば、自車位置推定においては、ランドマーク計測位置に基づいて自車位置を推定する際に、信頼度Rに基づいて重み付けを行う。これにより、信頼度の低いランドマーク計測位置は、自車位置推定に使用されないか、低い重み付けで使用されるようになる。こうして、信頼度の低いランドマーク計測位置に基づいて精度の低い自車位置推定が行われることが防止される。 The reliability R obtained in this way is output in association with the calculation result of the landmark measurement position, and is used for the vehicle position estimation. For example, in the vehicle position estimation, weighting is performed based on the reliability R when the vehicle position is estimated based on the landmark measurement position. Thereby, the landmark measurement position with low reliability is not used for the vehicle position estimation or is used with low weighting. Thus, it is possible to prevent the vehicle position estimation with low accuracy from being performed based on the landmark measurement position with low reliability.
 [処理フロー]
 図7は、本実施例において車載機1が実行するフローチャートを示す。
[Processing flow]
FIG. 7 shows a flowchart executed by the vehicle-mounted device 1 in this embodiment.
 まず、車載機1は、ジャイロセンサ3や車速センサ4などの内界センサ11の出力に基づき、予測自車位置を取得する(ステップS101)。そして、車載機1は、高度化地図DB10から予測自車位置周辺にある位置情報が含まれるランドマーク情報を取得する(ステップS102)。 First, the in-vehicle device 1 acquires a predicted host vehicle position based on the outputs of the internal sensors 11 such as the gyro sensor 3 and the vehicle speed sensor 4 (step S101). And the vehicle equipment 1 acquires the landmark information in which the positional information in the periphery of the prediction own vehicle position is included from the advanced map DB 10 (step S102).
 そして、車載機1は、取得したランドマーク情報の位置情報から特定されるランドマーク地図位置と、ステップS101で取得した予測自車位置とに基づき、ランドマーク予測範囲WLを決定する(ステップS103)。そして、車載機1は、ライダ2等の外界センサ12から計測データを取得する(ステップS104)。そして、車載機1は、ランドマーク予測範囲WL内の計測データから所定の条件を満たすランドマーク計測データWLDを抽出し、ランドマーク計測データWLDからランドマーク計測位置を算出する(ステップS105)。 And the vehicle equipment 1 determines the landmark prediction range WL based on the landmark map position specified from the position information of the acquired landmark information and the predicted host vehicle position acquired in step S101 (step S103). . And the vehicle equipment 1 acquires measurement data from the external sensors 12 such as the lidar 2 (step S104). And the vehicle equipment 1 extracts the landmark measurement data WLD satisfying a predetermined condition from the measurement data within the landmark prediction range WL, and calculates the landmark measurement position from the landmark measurement data WLD (step S105).
 次に、車載機1は、ステップS105で算出したランドマーク計測位置と、式(1)に基づき算出されるランドマーク予測位置との差分D(t)を算出する(ステップS106)。そして、車載機1は、前時刻t-1で算出した差分D(t-1)と差分D(t)とに基づき、差分変化量dD(t)を算出する(ステップS107)。この場合、車載機1は、車両座標系の軸ごとに差分変化量dD(t)を算出してもよい。 Next, the vehicle-mounted device 1 calculates a difference D (t) between the landmark measurement position calculated in step S105 and the landmark predicted position calculated based on the equation (1) (step S106). Then, the in-vehicle device 1 calculates the difference change amount dD (t) based on the difference D (t−1) and the difference D (t) calculated at the previous time t−1 (Step S107). In this case, the vehicle-mounted device 1 may calculate the difference change amount dD (t) for each axis of the vehicle coordinate system.
 そして、車載機1は、差分変化量dD(t)に基づき、信頼度Rを判定する(ステップS108)。この場合、車載機1は、[信頼度の判定]のセクションで述べた信頼度Rの判定方法に基づき、信頼度Rを判定する。このとき、車載機1は、車両座標系の座標軸ごとに信頼度Rを判定してもよい。 The in-vehicle device 1 determines the reliability R based on the difference change amount dD (t) (step S108). In this case, the in-vehicle device 1 determines the reliability R based on the determination method of the reliability R described in the section “Determining the reliability”. At this time, the in-vehicle device 1 may determine the reliability R for each coordinate axis of the vehicle coordinate system.
 そして、車載機1は、ランドマーク計測位置、ランドマーク予測位置、及びステップS108で判定した信頼度R等に基づき自車位置推定を行う(ステップS109)。 And the vehicle equipment 1 performs the own vehicle position estimation based on the landmark measurement position, the landmark prediction position, the reliability R determined in step S108, and the like (step S109).
 例えば、式(2)に基づき、拡張カルマンフィルタを用いた自車位置推定を行う場合、車載機1は、X軸の信頼度Rを「R」、Y軸の信頼度Rを「R」とすると、以下の式(5)に示されるようにカルマンゲインK(t)を設定する。 For example, when performing vehicle position estimation using an extended Kalman filter based on Expression (2), the in-vehicle device 1 sets the reliability R of the X v axis to “R X ” and the reliability R of the Y v axis to “R”. If " Y ", the Kalman gain K (t) is set as shown in the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 なお、X軸とY軸とで特に区別せずに信頼度Rを算出する場合には、「R=R=R」として式(5)に基づきカルマンゲインK(t)を設定するとよい。このように、カルマンゲインK(t)を信頼度R(R、R)に基づき調整することで、車載機1は、信頼度Rの低いランドマーク計測位置を用いて精度の低い自車位置推定を行うのを好適に防止することができる。
Figure JPOXMLDOC01-appb-M000005
Incidentally, when calculating the reliability R without particular distinction between the X v-axis and Y v axes, sets the Kalman gain K (t) based on equation (5) as "R X = R Y = R" Good. In this way, by adjusting the Kalman gain K (t) based on the reliability R (R X , R Y ), the in-vehicle device 1 uses the landmark measurement position with the low reliability R and uses the low-accuracy vehicle. It is possible to suitably prevent the position estimation.
 以上説明したように、本実施例に係る車載機1のランドマーク特徴検出・位置計測部17は、周囲の地物であるランドマークLtagを計測するライダ2等の外界センサ12の出力信号に基づき、ランドマーク計測位置を算出する。また、ランドマーク位置予測部16は、高度化地図DB10に記憶されたランドマーク情報に基づき、ランドマーク予測位置を算出する。そして、信頼度判定部18は、前時刻t-1におけるランドマーク予測位置とランドマーク計測位置との差分D(t-1)と、現時刻tにおけるランドマーク予測位置とランドマーク計測位置との差分D(t)との差分変化量dD(t)に基づいて、信頼度Rを判定し、判定した信頼度Rに関する情報を自車位置推定部19に出力する。この態様により、車載機1は、位置推定精度を好適に高めることができる。 As described above, the landmark feature detection / position measurement unit 17 of the vehicle-mounted device 1 according to the present embodiment is based on the output signal of the external sensor 12 such as the lidar 2 that measures the landmark Ltag that is a surrounding feature. The landmark measurement position is calculated. Further, the landmark position prediction unit 16 calculates a predicted landmark position based on the landmark information stored in the advanced map DB 10. Then, the reliability determination unit 18 calculates the difference D (t−1) between the landmark predicted position and the landmark measured position at the previous time t−1, and the landmark predicted position and the landmark measured position at the current time t. Based on the difference change amount dD (t) from the difference D (t), the reliability R is determined, and information on the determined reliability R is output to the vehicle position estimation unit 19. By this aspect, the vehicle equipment 1 can improve the position estimation accuracy suitably.
 1 車載機
 2 ライダ
 3 ジャイロセンサ
 4 車速センサ
 5 衛星測位センサ
 7 サーバ装置
 10 高度化地図DB
DESCRIPTION OF SYMBOLS 1 In-vehicle apparatus 2 Lidar 3 Gyro sensor 4 Vehicle speed sensor 5 Satellite positioning sensor 7 Server apparatus 10 Sophisticated map DB

Claims (7)

  1.  周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得部と、
     地図情報に基づき、前記地物の予測位置を取得する第2取得部と、
     第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力部と、
    を備える情報処理装置。
    A first acquisition unit that acquires a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features;
    A second acquisition unit for acquiring a predicted position of the feature based on map information;
    An output unit that outputs information on the reliability of the measurement position based on the difference between the predicted position at the first time and the measurement position and the difference between the predicted position at the second time and the measurement position;
    An information processing apparatus comprising:
  2.  前記出力部は、前記第1時刻における前記差分に対する前記第2時刻における前記差分の変化量が大きいほど、前記信頼度を低くする請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the output unit lowers the reliability as the change amount of the difference at the second time with respect to the difference at the first time is larger.
  3.  前記出力部は、第1方向での前記第1時刻における前記差分と、前記第1方向での前記第2時刻における前記差分とに基づき、前記第1方向における前記信頼度を判定し、
     第1方向と交わる第2方向での前記第1時刻における前記差分と、前記第2方向での前記第2時刻における前記差分とに基づき、前記第2方向における前記信頼度を判定する請求項1または2に記載の情報処理装置。
    The output unit determines the reliability in the first direction based on the difference at the first time in the first direction and the difference at the second time in the first direction;
    The reliability in the second direction is determined based on the difference at the first time in the second direction intersecting the first direction and the difference at the second time in the second direction. Or the information processing apparatus according to 2;
  4.  自己位置を予測する予測部と、
     現時刻における前記予測位置と前記計測位置との差分に基づいて、前記自己位置を補正する補正部と、をさらに備え、
     前記補正部は、前記信頼度が低いほど、前記差分により前記自己位置を補正する利得を小さくする請求項1~3のいずれか一項に記載の情報処理装置。
    A prediction unit for predicting self-position;
    A correction unit that corrects the self-position based on the difference between the predicted position at the current time and the measurement position;
    The information processing apparatus according to any one of claims 1 to 3, wherein the correction unit reduces the gain for correcting the self-position based on the difference as the reliability is lower.
  5.  情報処理装置が実行する制御方法であって、
     周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得工程と、
     地図情報に基づき、前記地物の予測位置を取得する第2取得工程と、
     第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力工程と、
    を有する制御方法。
    A control method executed by the information processing apparatus,
    A first acquisition step of acquiring a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features;
    A second acquisition step of acquiring a predicted position of the feature based on map information;
    An output step of outputting information on the reliability of the measurement position based on the difference between the predicted position and the measurement position at a first time and the difference between the prediction position and the measurement position at a second time;
    A control method.
  6.  コンピュータが実行するプログラムであって、
     周囲の地物を計測する計測部の出力信号に基づき、前記地物の計測位置を取得する第1取得部と、
     地図情報に基づき、前記地物の予測位置を取得する第2取得部と、
     第1時刻における前記予測位置と前記計測位置との差分と、第2時刻における前記予測位置と前記計測位置との差分とに基づいて、前記計測位置の信頼度に関する情報を出力する出力部
    として前記コンピュータを機能させるプログラム。
    A program executed by a computer,
    A first acquisition unit that acquires a measurement position of the feature based on an output signal of a measurement unit that measures surrounding features;
    A second acquisition unit for acquiring a predicted position of the feature based on map information;
    Based on the difference between the predicted position and the measured position at the first time and the difference between the predicted position and the measured position at the second time, the output unit outputs information related to the reliability of the measured position. A program that causes a computer to function.
  7.  請求項6に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 6.
PCT/JP2018/019153 2017-05-19 2018-05-17 Information processing device, control method, program and storage medium WO2018212292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019518874A JP6806891B2 (en) 2017-05-19 2018-05-17 Information processing equipment, control methods, programs and storage media

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017100209 2017-05-19
JP2017-100209 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212292A1 true WO2018212292A1 (en) 2018-11-22

Family

ID=64273943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019153 WO2018212292A1 (en) 2017-05-19 2018-05-17 Information processing device, control method, program and storage medium

Country Status (2)

Country Link
JP (1) JP6806891B2 (en)
WO (1) WO2018212292A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137313A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Localization device
JP2020135619A (en) * 2019-02-22 2020-08-31 セイコーエプソン株式会社 Unmanned conveyance system and self-position estimation method for unmanned conveyance vehicle
WO2020203829A1 (en) * 2019-04-04 2020-10-08 株式会社デンソー Vehicle location determination device, vehicle location determination system, and vehicle location determination method
JP2021085880A (en) * 2019-11-27 2021-06-03 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH Analysis of localization error in mobile object
EP3926304A1 (en) * 2020-06-15 2021-12-22 Volkswagen Aktiengesellschaft Method for evaluating the accuracy of a position determination of a landmark and evaluation system
WO2022181129A1 (en) * 2021-02-24 2022-09-01 ソニーグループ株式会社 Light output control apparatus, light output control method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333385A (en) * 2006-06-11 2007-12-27 Toyota Central Res & Dev Lab Inc Immobile object position recording device
JP2008249639A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Own position locating device, own position locating method, and own position locating program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333385A (en) * 2006-06-11 2007-12-27 Toyota Central Res & Dev Lab Inc Immobile object position recording device
JP2008249639A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Own position locating device, own position locating method, and own position locating program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137313A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Localization device
JP2020135619A (en) * 2019-02-22 2020-08-31 セイコーエプソン株式会社 Unmanned conveyance system and self-position estimation method for unmanned conveyance vehicle
JP7275636B2 (en) 2019-02-22 2023-05-18 セイコーエプソン株式会社 Automated Guided Vehicle System and Self-Position Estimation Method for Automated Guided Vehicle
WO2020203829A1 (en) * 2019-04-04 2020-10-08 株式会社デンソー Vehicle location determination device, vehicle location determination system, and vehicle location determination method
JP2020169906A (en) * 2019-04-04 2020-10-15 株式会社デンソー Vehicle position determination device, vehicle position determination system, and vehicle position determination method
JP7120130B2 (en) 2019-04-04 2022-08-17 株式会社デンソー VEHICLE POSITIONING DEVICE AND VEHICLE POSITIONING METHOD
JP2021085880A (en) * 2019-11-27 2021-06-03 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH Analysis of localization error in mobile object
JP7203805B2 (en) 2019-11-27 2023-01-13 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハー Analysis of localization errors of moving objects
EP3926304A1 (en) * 2020-06-15 2021-12-22 Volkswagen Aktiengesellschaft Method for evaluating the accuracy of a position determination of a landmark and evaluation system
WO2022181129A1 (en) * 2021-02-24 2022-09-01 ソニーグループ株式会社 Light output control apparatus, light output control method, and program

Also Published As

Publication number Publication date
JP6806891B2 (en) 2021-01-06
JPWO2018212292A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2018212292A1 (en) Information processing device, control method, program and storage medium
US11525682B2 (en) Host vehicle position estimation device
JP2022113746A (en) Determination device
JPWO2018225198A1 (en) Map data correction method and apparatus
JP7155284B2 (en) Measurement accuracy calculation device, self-position estimation device, control method, program and storage medium
US20190346273A1 (en) Host vehicle position estimation device
JP6980010B2 (en) Self-position estimator, control method, program and storage medium
JP2022176322A (en) Self-position estimation device, control method, program, and storage medium
JP6740470B2 (en) Measuring device, measuring method and program
US11420632B2 (en) Output device, control method, program and storage medium
JP7418196B2 (en) Travel trajectory estimation method and travel trajectory estimation device
JP2023164553A (en) Position estimation device, estimation device, control method, program and storage medium
WO2018212302A1 (en) Self-position estimation device, control method, program, and storage medium
JP2023118759A (en) Measuring device, measuring method and program
WO2018212290A1 (en) Information processing device, control method, program and storage medium
WO2018180247A1 (en) Output device, control method, program, and storage medium
JP2022034051A (en) Measuring device, measuring method and program
JP7378591B2 (en) Travel route generation device
WO2019189098A1 (en) Self-position estimation device, self-position estimation method, program, and recording medium
JP2021170029A (en) Measurement device, measurement method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18803226

Country of ref document: EP

Kind code of ref document: A1