WO2018212210A1 - Breaker and switch gear - Google Patents

Breaker and switch gear Download PDF

Info

Publication number
WO2018212210A1
WO2018212210A1 PCT/JP2018/018847 JP2018018847W WO2018212210A1 WO 2018212210 A1 WO2018212210 A1 WO 2018212210A1 JP 2018018847 W JP2018018847 W JP 2018018847W WO 2018212210 A1 WO2018212210 A1 WO 2018212210A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
circuit
conductor
conductors
distance
Prior art date
Application number
PCT/JP2018/018847
Other languages
French (fr)
Japanese (ja)
Inventor
進 小鶴
堀之内 克彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112018002541.1T priority Critical patent/DE112018002541T5/en
Priority to JP2019518820A priority patent/JP6714948B2/en
Publication of WO2018212210A1 publication Critical patent/WO2018212210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B11/00Switchgear having carriage withdrawable for isolation
    • H02B11/28Earthing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B11/00Switchgear having carriage withdrawable for isolation
    • H02B11/02Details
    • H02B11/04Isolating-contacts, e.g. mountings or shieldings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B11/00Switchgear having carriage withdrawable for isolation
    • H02B11/12Switchgear having carriage withdrawable for isolation with isolation by horizontal withdrawal
    • H02B11/167Switchgear having carriage withdrawable for isolation with isolation by horizontal withdrawal truck type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Trip Switchboards (AREA)

Abstract

When a 3-phase AC current is passed through a breaker, the effects of radiation and convection from the conductor surface varies according to the conductor, increasing the cost of heat dissipation design. Therefore, the present invention is provided with: electrical path conductors (2a, 3a, 4a) of three phases; breaking units (100) provided to each of the electrical path conductors of three phases, the breaking units (100) cutting off a current flowing when a short circuit occurs; and a high-speed grounding device (102) connected in order to ground the breaking units (100) when a short circuit occurs. The electrical path conductors are disposed so that the distance therebetween varies.

Description

遮断器及びスイッチギヤCircuit breaker and switchgear
 本願は、遮断器及びスイッチギヤに関し、特に遮断器及びスイッチギヤに収納される導体の配置構造に関する。 The present application relates to a circuit breaker and a switch gear, and more particularly to an arrangement structure of conductors housed in the circuit breaker and the switch gear.
 低電圧または中電圧、あるいは高電圧の受配電設備は、ビル、又は工場など電力需給の社会的インフラとして欠くことのできない設備システムである。その安全性、信頼性は、製造メーカはもちろんのこと、据付工事、及び運転保守の全般に亘り十分に配慮されたものである。しかし、小動物、又は異物の侵入、経年使用による絶縁劣化、あるいは地震での機器損傷などで、電路の絶縁機能が損なわれることによって、地絡、短絡などの故障が発生する場合がある。特にスイッチギヤなど閉鎖装置の内部短絡では、大電流アークの発生で、アーク近傍は10,000度から20,000度程度のプラズマ状態になる。そのため、周辺の金属、及び絶縁物が一部蒸気化され、アーク周辺の空気などの絶縁気体は瞬時に膨張して装置内部は極めて高い圧力となる。このようなアークの発生を伴う内部短絡が発生したスイッチギヤは、大きな損傷を受けるため、近年、内部短絡発生後の数ミリ秒以内に3相回路を接地することで、アークを消去し、内部短絡の影響を抑制する、接地投入器付きの遮断器が開示されている(例えば特許文献1参照)。 ・ Low-voltage, medium-voltage, or high-voltage power distribution facilities are indispensable equipment systems such as buildings and factories as a social infrastructure for power supply and demand. The safety and reliability are fully considered not only for manufacturers but also for installation work and general operation and maintenance. However, a fault such as a ground fault or a short circuit may occur due to the insulation function of the electric circuit being impaired due to the invasion of small animals or foreign objects, insulation deterioration due to aging, or equipment damage due to earthquakes. Particularly in the case of an internal short circuit of a closing device such as a switchgear, a large current arc is generated, and the vicinity of the arc becomes a plasma state of about 10,000 to 20,000 degrees. Therefore, the surrounding metal and the insulator are partially vaporized, and the insulating gas such as air around the arc expands instantaneously and the inside of the apparatus becomes extremely high pressure. Since the switchgear in which an internal short-circuit accompanied by such an arc has occurred is severely damaged, in recent years, the arc is eliminated by grounding the three-phase circuit within a few milliseconds after the occurrence of the internal short-circuit. A circuit breaker with a grounding device that suppresses the influence of a short circuit is disclosed (see, for example, Patent Document 1).
国際公開第WO2015/178160号International Publication No. WO2015 / 178160
 特許文献1に示す遮断器では、通常、3相の電路である導体を等間隔に配置しており、配置上、真ん中に位置する導体は、3相交流電流を通電した際に、導体表面からの放射、及び対流の影響により、他の2相と比較して温度上昇が最も高くなる。そのため、この導体の温度上昇を抑制するような、放熱設計を行う必要がある。
 本願はこのような課題を解決するためのものであり、導体表面からの放射及び対流の影響を抑制できる遮断器を提供することを目的とする。
In the circuit breaker shown in Patent Document 1, the conductors that are three-phase electric paths are usually arranged at equal intervals, and the conductor located in the middle is arranged from the conductor surface when a three-phase alternating current is applied. The temperature rise is the highest compared to the other two phases due to the radiation and convection effects. Therefore, it is necessary to perform a heat dissipation design that suppresses the temperature rise of the conductor.
This application is for solving such a problem, and it aims at providing the circuit breaker which can suppress the influence from the radiation | emission from a conductor surface, and a convection.
 本願に開示される遮断器は、
3相の電路導体、この3相の電路導体のそれぞれに設けられ、短絡時に流れる電流を遮断する遮断部、短絡時に遮断部を接地するために接続される高速接地投入器を備え、
第1の相と第2の相の電路導体間の距離をLrs、
第2の相と第3の相の電路導体間の距離をLst、
第3の相と第1の相の電路導体間の距離をLtr、
第1の相の電路導体と接地金属までの距離をLre、
第2の相の電路導体と接地金属までの距離をLse、
第3の相の電路導体と接地金属までの距離をLte、
としたとき、
Lrs>Ltr
Lst>Ltr
Ltr>Lre
Ltr>Lse
Ltr>Lte
となるように3相の電路導体が配置されているとともに、高速接地投入器は、第1の相の電路導体と第3の相の電路導体に備えられていることを特徴とする。
The circuit breaker disclosed in this application is
Provided in each of the three-phase circuit conductors, each of the three-phase circuit conductors, and a high-speed grounding input device that is connected to ground the interrupting part in the case of a short circuit, the interrupting part that interrupts the current flowing in the event of a short circuit,
The distance between the first phase and second phase circuit conductors is Lrs,
The distance between the second and third phase circuit conductors is Lst,
The distance between the third phase and the first phase circuit conductor is Ltr,
The distance between the first phase circuit conductor and the ground metal is Lre,
The distance between the second phase circuit conductor and the ground metal is Lse,
The distance from the third phase circuit conductor to the ground metal is Lte,
When
Lrs> Ltr
Lst> Ltr
Ltr> Lre
Ltr> Lse
Ltr> Lte
The three-phase circuit conductors are disposed so that the high-speed grounding device is provided in the first-phase circuit conductor and the third-phase circuit conductor.
 本願に開示される遮断器によれば、導体が近接することにより発生する、電流を通電する際の対流、及び輻射による影響が抑制され、遮断器の放熱設計の費用を抑制することが可能となる。また、高速接地投入器を削減することができ、高速接地投入器を動作させる際の信頼性が向上する。 According to the circuit breaker disclosed in the present application, it is possible to suppress the influence of convection and radiation when energizing current generated by the proximity of the conductor, and the cost of heat dissipation design of the circuit breaker. Become. In addition, the number of high-speed ground input devices can be reduced, and the reliability when operating the high-speed ground input device is improved.
実施の形態1の遮断器の斜視図である。It is a perspective view of the circuit breaker of Embodiment 1. 実施の形態1の遮断器の構造概念図である。It is a structure conceptual diagram of the circuit breaker of Embodiment 1. 実施の形態1の遮断器を示す単線接続図である。It is a single line connection figure which shows the circuit breaker of Embodiment 1. FIG. 実施の形態1の遮断器内の3相の導体配置を説明する説明図である。It is explanatory drawing explaining the arrangement | positioning of the three-phase conductor in the circuit breaker of Embodiment 1. FIG. 実施の形態2のスイッチギヤの構造概念図である。FIG. 4 is a structural conceptual diagram of a switchgear according to a second embodiment.
 実施の形態1.
 図1は、実施の形態1の遮断器の斜視図、図2は、実施の形態1の遮断器(両側型)の構造概念図、図3は、実施の形態1の遮断器を示す単線接続図、図4は、実施の形態1の遮断器内の3相の導体配置を説明する説明図である。この実施の形態1の説明では、3相のそれぞれの呼称をR相、S相、及びT相とする。
 図1及び図2において、遮断器1の内部には、遮断部100、極間絶縁体101、高速接地投入器102、高速接地投入器の絶縁体103が配置される。絶縁体103は高速接地投入器102と一体で注型絶縁されるか、または絶縁体103を注型または成型で製作した絶縁ケース状部品として高速接地投入器をその内部に組み立てて着脱自在に構成してもよい。
Embodiment 1 FIG.
1 is a perspective view of the circuit breaker according to the first embodiment, FIG. 2 is a conceptual diagram of the structure of the circuit breaker (both sides) according to the first embodiment, and FIG. 3 is a single line connection showing the circuit breaker according to the first embodiment. 4 and 4 are explanatory diagrams for explaining the arrangement of the three-phase conductors in the circuit breaker according to the first embodiment. In the description of the first embodiment, the names of the three phases are R phase, S phase, and T phase.
1 and FIG. 2, a breaker 100, an interelectrode insulator 101, a high-speed ground input device 102, and an insulator 103 of a high-speed ground input device are disposed inside the circuit breaker 1. The insulator 103 is cast-insulated integrally with the high-speed grounding thrower 102, or a high-speed grounding thrower is assembled in its interior as an insulating case-like part produced by casting or molding, and is detachable. May be.
 高速接地投入器102は、差込接触部102cを備えた差込形の投入器であり、アーク発生時の動作後に取り換えが必要な部分を遮断器本体から装脱自在の構造となっている。高速接地投入器102の一方の端部102bは、遮断部100の片側の極100aにつながる、R相の電路導体2bの端部とボルトなどの締結部材で電気的及び機械的に締結している。R相の電路導体2bの他方の端部は差込接触子構造のコンタクト20bとなっている。高速接地投入器102の他方の端部102aは接地導体回路104で、遮断器1の本体接地接触子104aと接続されており、スイッチギヤの遮断器室に装備してある接地端子104bを介してスイッチギヤの接地導体104cから大地へ短絡電流を通電するよう構成している。接地導体回路104、本体接地接触子104a、接地端子104b、及び接地導体104cは、IEC(International Electrotechnical Commission)などのスイッチギヤ、及び遮断器の規格に応じた短時間通電電流及び通電時間の通電能力を持たせており、高速接地投入器102とは、ボルトなどの取付け、取り外し可能な締結手段で締結されている。但し、本体接地接触子104aと接地端子104bとは摺動接触している。 The high-speed ground thrower 102 is a plug-in thrower provided with a plug contact portion 102c, and has a structure in which a portion that needs to be replaced after the operation at the time of arc generation can be detached from the breaker body. One end portion 102b of the high-speed grounding input device 102 is electrically and mechanically fastened with a fastening member such as a bolt to the end portion of the R-phase circuit conductor 2b connected to the pole 100a on one side of the interrupting portion 100. . The other end of the R-phase circuit conductor 2b is a contact 20b having an insertion contact structure. The other end 102a of the high-speed earthing device 102 is a grounding conductor circuit 104 which is connected to the main body grounding contact 104a of the circuit breaker 1 and via a grounding terminal 104b provided in the circuit breaker chamber of the switchgear. A short-circuit current is applied from the ground conductor 104c of the switch gear to the ground. The grounding conductor circuit 104, the main body grounding contact 104a, the grounding terminal 104b, and the grounding conductor 104c have a short-time energization current and energization time according to switchgear standards such as IEC (International Electrotechnical Commission) and circuit breakers. The high-speed grounding input device 102 is fastened by fastening means such as bolts that can be attached and detached. However, the main body ground contact 104a and the ground terminal 104b are in sliding contact.
 また、高速接地投入器105の一方の端部105bは、遮断部100の他の片側の極100bに繋がる、R相の電路導体2aとボルトなどの締結部材で電気的及び機械的に締結されている。他方の端部105aは接地導体回路104で遮断器1の本体接地接触子104aに接続され、高速接地投入器102と同様に構成されている。遮断部100は真空中に配置されており、通常、真空バルブと呼ばれている。
 このように構成された高速接地投入器102、105は、遮断器1が繋がる電路にアークが発生したとき、投入してアーク電流を迂回させて接地導体回路104に流すことでアークを消滅させる。遮断器1は車輪106を備えており、スイッチギヤ内で運転位置から断路位置まで引き出しが可能である。
In addition, one end 105b of the high-speed earthing device 105 is electrically and mechanically fastened by a fastening member such as a bolt and an R-phase circuit conductor 2a that is connected to the pole 100b on the other side of the breaker 100. Yes. The other end portion 105 a is connected to the main body ground contact 104 a of the circuit breaker 1 by a ground conductor circuit 104 and is configured in the same manner as the high-speed ground input device 102. The blocking unit 100 is disposed in a vacuum and is usually called a vacuum valve.
When the arc is generated in the electric circuit to which the circuit breaker 1 is connected, the high-speed ground input devices 102 and 105 configured as described above are turned on to bypass the arc current and flow to the ground conductor circuit 104 to extinguish the arc. The circuit breaker 1 includes wheels 106 and can be pulled out from the operating position to the disconnect position within the switch gear.
 図3の遮断器の単線接続図で示す通り、上述したR相の電路導体2b、2aに高速接地投入器102が配置されているのと同様、T相の電路導体4a、4bにも高速接地投入器が配置されている。しかし、S相の電路導体3a、3bには、高速接地投入器を配置しない。次にR相、T相及びS相の電路導体の遮断器内の配置について図4を用いて説明する。
 図4において、
R相の電路導体2bとS相の電路導体3bとの電路導体間の距離をLrs、
S相の電路導体3bとT相の電路導体4bとの電路導体間の距離をLst、
T相の電路導体4bとR相の電路導体2bとの電路導体間の距離をLtr、
R相の電路導体2bと接地金属までの距離をLre、
S相の電路導体3bと接地金属までの距離をLse、
T相の電路導体4bと接地金属までの距離をLteとしたとき、
Lrs>Ltr
Lst>Ltr
Ltr>Lre
Ltr>Lse
Ltr>Lte
の関係となるように、R相の電路導体2b、S相の電路導体3b、及びT相の電路導体4bを配置する。即ち、R-S相間の絶縁強度、S-T相間の絶縁強度、T-R相間の絶縁強度の中で、T-R相間の絶縁強度を最も弱くし、相間の短絡が発生する場合には、T-R相間で2相短絡させる配置構造とするとともに、T-R相間短絡時に生じるアークが、S相まで到達して、R-S-T相の3相短絡となることを抑制できる。一般に2相短絡のエネルギーは3相短絡時の87%である。なお、ここでの接地金属とは、遮断器1の筐体をいうが、電路導体をシールドしているアースと接続された金属ケース、金属板、金属カバーなどでもよい。
As shown in the single-line connection diagram of the circuit breaker of FIG. 3, the high-speed grounding device 102 is disposed on the R- phase circuit conductors 2b and 2a, and the T- phase circuit conductors 4a and 4b are also grounded at high speed. A thrower is placed. However, a high-speed grounding device is not disposed on the S- phase circuit conductors 3a and 3b. Next, the arrangement of the R-phase, T-phase, and S-phase circuit conductors in the circuit breaker will be described with reference to FIG.
In FIG.
The distance between the circuit conductors of the R-phase circuit conductor 2b and the S-phase circuit conductor 3b is Lrs,
The distance between the circuit conductors of the S-phase circuit conductor 3b and the T-phase circuit conductor 4b is Lst,
The distance between the circuit conductors of the T-phase circuit conductor 4b and the R-phase circuit conductor 2b is Ltr,
The distance between the R-phase circuit conductor 2b and the ground metal is Lre,
The distance between the S-phase circuit conductor 3b and the ground metal is Lse,
When the distance between the T-phase circuit conductor 4b and the ground metal is Lte,
Lrs> Ltr
Lst> Ltr
Ltr> Lre
Ltr> Lse
Ltr> Lte
The R-phase circuit conductor 2b, the S-phase circuit conductor 3b, and the T-phase circuit conductor 4b are arranged so that That is, when the insulation strength between the TR phases is the weakest among the insulation strength between the RS phases, the insulation strength between the ST phases, and the insulation strength between the TR phases, and a short circuit occurs between the phases. In addition, it is possible to prevent the arc generated when the TR phase is short-circuited from reaching the S phase and causing a three-phase short circuit of the R-ST phase. In general, the energy of the two-phase short circuit is 87% of that of the three-phase short circuit. Here, the ground metal refers to the casing of the circuit breaker 1, but may be a metal case, a metal plate, a metal cover, or the like connected to the ground shielding the circuit conductor.
 3相交流電圧では、
Figure JPOXMLDOC01-appb-M000001
の関係のため、
Ltr>√3×Lre
Ltr>√3×Lse
Ltr>√3×Lte
とすると、R-S相間、S-T相間、またはT-R相間の電路導体の短絡よりも、R相の電路導体2bと接地金属との間、S相の電路導体3bと接地金属との間、またはT相の電路導体4bと接地金属との間で地絡が発生する可能性が高くなるため、短絡発生時の他機器への影響を小さくすることができる。一般に地絡のエネルギーは相間短絡のエネルギーよりも小さい。
In the three-phase AC voltage,
Figure JPOXMLDOC01-appb-M000001
Because of the relationship
Ltr> √3 × Lre
Ltr> √3 × Lse
Ltr> √3 × Lte
Then, the R-phase circuit conductor 2b and the ground metal, and the S-phase circuit conductor 3b and the ground metal, rather than the short circuit between the R-S phase, the S-T phase, or the T-R phase circuit conductor. Since there is a high possibility that a ground fault will occur between or between the T-phase circuit conductor 4b and the ground metal, it is possible to reduce the influence on other devices when a short circuit occurs. In general, the ground fault energy is smaller than the inter-phase short-circuit energy.
 また、T-R相間の絶縁強度の弱い電路導体の配置としているため、図3で説明した通り、R相の電路導体2bとT相の電路導体4bに高速接地投入器102、105を取付ける。これは電路導体間の短絡が生じても、T相-R相間の短絡のみとする電路導体の配置構成のため、3相分の高速接地投入器は不要となり、費用を抑えることができる。 In addition, since the electric conductors with low insulation strength between the TR phases are arranged, as described in FIG. 3, the high- speed grounding devices 102 and 105 are attached to the R-phase electric conductor 2b and the T-phase electric conductor 4b. Even if a short circuit between the circuit conductors occurs, the configuration of the circuit conductor is such that only the short circuit between the T-phase and the R-phase is required, so that a high-speed grounding input device for three phases is unnecessary, and the cost can be reduced.
 更に、1つの相に取付けた高速接地投入器の故障率をpとすると、3相全ての電路導体に高速接地投入器を取付けた際の故障率Pは、
=1-(1-p)
となるのに対し、2相の電路導体のみに取付けた高速接地投入器の故障率Pは、
=1-(1-p)
となる。これにより、高速接地投入器の故障率pが一定であれば、2相の電路導体のみに高速接地投入器を取付ける方が故障率は抑制でき、信頼性が向上する。
Furthermore, if the failure rate of the high speed grounding insertion unit mounted on one phase and p, failure rate P 3 when fitted with a high-speed ground insertion unit in all three phases of the path conductors,
P 3 = 1- (1-p) 3
Become whereas, failure rate P 2 of the high speed grounding insertion unit mounted only path conductors of two phases,
P 2 = 1- (1-p) 2
It becomes. As a result, if the failure rate p of the high-speed grounding device is constant, the failure rate can be suppressed and the reliability can be improved by attaching the high-speed grounding device only to the two-phase circuit conductor.
 なお、図4に示す電路導体の配置は、一例を示すものであり、図の配置構成に限定するものではない。また、図4では、両側型遮断器の一方の各相の電路導体2b、3b、4b間の配置について説明したが、他方の各相の電路導体2a、3a、4aについても同様の配置構成で設計してもよい。通常は前述の如く、S相の電路導体の温度上昇が最も高くなるため、S相の電路導体を、T相及びR相の電路導体から遠ざけて、Ltrを最小にした例を示しているが、S相の電路導体の温度上昇に余裕がある場合は、
(1)Lrsを最小にして、R相とS相の電路導体に高速接地投入器を設置する。
(2)Lstを最小にして、S相とT相の電路導体に高速接地投入器を設置する。
としても良い。
In addition, arrangement | positioning of the electrical path conductor shown in FIG. 4 shows an example, and is not limited to the arrangement configuration of a figure. In FIG. 4, the arrangement between the circuit conductors 2 b, 3 b, 4 b of one phase of the both-side circuit breaker has been described, but the same arrangement configuration is applied to the circuit conductors 2 a, 3 a, 4 a of the other phase. You may design. Normally, as described above, since the temperature rise of the S-phase circuit conductor is the highest, the S-phase circuit conductor is kept away from the T-phase and R-phase circuit conductors, and Ltr is minimized. If there is a margin in the temperature rise of the S-phase circuit conductor,
(1) Lrs is minimized and high-speed grounding devices are installed on the R-phase and S-phase circuit conductors.
(2) Lst is minimized and a high-speed grounding device is installed on the S-phase and T-phase circuit conductors.
It is also good.
実施の形態2.
 図5は、実施の形態2におけるスイッチギヤの構造概念図であり、(a)は正面図であり、(b)は側面断面図である。
 図5(b)によりスイッチギヤ1000の内部構成について説明する。接地金属製の筐体6の内部は複数のコンパートメントに区画されている。遮断器コンパートメント7には、実施の形態1で説明した遮断器1が収納され、この遮断器1は正面側から引き出し可能となっている。遮断器コンパートメント7の後壁には上下に所定の間隔を隔てて主回路の断路部8a、8bが固設している。遮断器コンパートメント7の左上部は制御器具(図示せず)が収納される制御機器コンパートメント9となっている。
Embodiment 2. FIG.
FIG. 5 is a conceptual diagram of the structure of the switchgear according to the second embodiment, where (a) is a front view and (b) is a side cross-sectional view.
The internal configuration of the switch gear 1000 will be described with reference to FIG. The interior of the ground metal casing 6 is partitioned into a plurality of compartments. The circuit breaker compartment 7 houses the circuit breaker 1 described in the first embodiment, and the circuit breaker 1 can be pulled out from the front side. On the rear wall of the circuit breaker compartment 7, disconnections 8a and 8b of the main circuit are fixedly provided at a predetermined interval in the vertical direction. The upper left part of the circuit breaker compartment 7 is a control device compartment 9 in which a control device (not shown) is accommodated.
 遮断器コンパートメント7の背面側には、3相の母線10が支持碍子11に支持されて配設された母線コンパートメント12となっており、遮断器の一端側に接続された断路部8aと母線10とが、それぞれR相分岐導体13R、S相分岐導体13S、及びT相分岐導体13T分岐導体からなる分岐導体13と接続され、収納されている。実施の形態1と同様に、
R相分岐導体13RとS相分岐導体13Sとの導体間の距離をLrs、
S相分岐導体13SとT相分岐導体13Tとの導体間の距離をLst、
T相分岐導体13TとR相分岐導体13Rとの導体間の距離をLtrとしたとき、
rs>Ltr
st>Ltr
となるように配置されており、R相及びT相の分岐導体は、母線コンパートメント12の上方に配置された、高速接地投入器14に接続されている。
On the back side of the circuit breaker compartment 7 is a bus compartment 12 in which a three-phase bus 10 is supported by a support insulator 11 and is provided with a disconnection portion 8a and a bus 10 connected to one end of the circuit breaker. Are connected to and stored in a branch conductor 13 made up of an R-phase branch conductor 13R, an S-phase branch conductor 13S, and a T-phase branch conductor 13T. As in the first embodiment,
L 1 rs is the distance between the conductors of the R-phase branch conductor 13R and the S-phase branch conductor 13S.
The distance between the conductors of the S-phase branch conductor 13S and the T-phase branch conductor 13T is L 1 st,
When the distance between the conductors of the T-phase branch conductor 13T and the R-phase branch conductor 13R is L 1 tr,
L 1 rs> L 1 tr
L 1 st> L 1 tr
The R-phase and T-phase branch conductors are connected to a high-speed ground input device 14 disposed above the bus compartment 12.
 母線コンパートメント12の後方には負荷側のケーブル15が収納されるケーブルコンパートメント18がある。負荷側導体16もケーブルコンパートメント18に収納される。負荷側導体16は、R相負荷側導体16R、S相負荷側導体16S、及びT相負荷側導体16Tから構成される。実施の形態1と同様に、
R相負荷側導体16RとS相負荷側導体16Sとの導体間の距離をLrs、
S相負荷側導体16SとT相負荷側導体16Tとの導体間の距離をLst、
T相負荷側導体16TとR相負荷側導体16Rとの導体間の距離をLtrとしたとき、
rs>Ltr
st>Ltr
となるように、配置されている。
Behind the bus compartment 12 is a cable compartment 18 in which the load-side cable 15 is accommodated. The load side conductor 16 is also accommodated in the cable compartment 18. The load side conductor 16 includes an R phase load side conductor 16R, an S phase load side conductor 16S, and a T phase load side conductor 16T. As in the first embodiment,
The distance between the conductors of the R-phase load-side conductor 16R and the S-phase load-side conductor 16S is L 2 rs,
The distance between the conductors of the S-phase load-side conductor 16S and the T-phase load-side conductor 16T is L 2 st,
When the distance between the conductors of the T-phase load side conductor 16T and the R-phase load side conductor 16R is L 2 tr,
L 2 rs> L 2 tr
L 2 st> L 2 tr
It is arranged so that.
 遮断器1の他端側に接続された断路部8bとケーブル15とはR相負荷側導体16R、T相負荷側導体16Tが途中に変流器17を介して設けられている。S相の負荷側導体16Sは、変流器17を介さずに直接、ケーブル15に繋がっている。ケーブル15はスイッチギヤ1000の外部へと引き出され、他の電力機器に接続される。
このように、実施の形態1と同様、各相の分岐導体、及び負荷導体の配置構成について、S相の導体と他相(R相、T相)の導体との距離を離して構成としているため、R相とS相の導体間及びS相とT相の導体間が近接することにより発生する、電流を通電する際の対流、及び輻射による影響が抑制され、スイッチギヤとしての放熱構造を安価にすることが可能となる。
The disconnecting portion 8b connected to the other end of the circuit breaker 1 and the cable 15 are provided with an R-phase load-side conductor 16R and a T-phase load-side conductor 16T via a current transformer 17 in the middle. The S-phase load-side conductor 16 </ b> S is directly connected to the cable 15 without going through the current transformer 17. The cable 15 is pulled out of the switchgear 1000 and connected to another power device.
Thus, as in the first embodiment, the arrangement of the branch conductors and load conductors of each phase is configured such that the distance between the S-phase conductor and the other-phase (R-phase, T-phase) conductor is increased. Therefore, the effects of convection and radiation when energizing current, which occur when the conductors of the R and S phases and between the conductors of the S and T phases are close to each other, are suppressed, and a heat dissipation structure as a switchgear is achieved. It becomes possible to make it cheaper.
 なお、図5に示すスイッチギヤ1000の内部構成は、一例を示すものであり、図の配置構成に限定するものではない。図5では、遮断器1を収納する遮断器コンパートメント7、母線コンパートメント12、ケーブルコンパートメント18及び制御機器コンパートメント9で構成されるが、ケーブルコンパートメント18が無い場合もあり、またこれら以外の構成でも良い。 Note that the internal configuration of the switchgear 1000 shown in FIG. 5 is an example, and is not limited to the arrangement shown in the figure. In FIG. 5, the circuit breaker compartment 7 that houses the circuit breaker 1, the bus compartment 12, the cable compartment 18, and the control equipment compartment 9 may be provided, but the cable compartment 18 may not be provided, and other configurations may be used.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may be applied to particular embodiments. The present invention is not limited to this, and can be applied to the embodiments alone or in various combinations.
Accordingly, countless variations that are not illustrated are envisaged within the scope of the technology disclosed herein. For example, the case where at least one component is deformed, the case where the component is added or omitted, the case where the at least one component is extracted and combined with the component of another embodiment are included.
 1:遮断器、2a、2b:R相の電路導体、3a、3b:S相の電路導体、4a、4b:T相の電路導体、6:筐体、7:遮断器コンパートメント、8a、8b:断路部、9:制御機器コンパートメント、10:母線、11:支持碍子、12:母線コンパートメント、13:分岐導体、14:高速接地投入器、15:ケーブル、16:負荷側導体、17:変流器、18:ケーブルコンパートメント、100:遮断部、101:極間絶縁体、102、105:高速接地投入器、103:絶縁体、104:接地導体回路、106:車輪、1000:スイッチギヤ 1: Circuit breaker, 2a, 2b: R-phase circuit conductor, 3a, 3b: S-phase circuit conductor, 4a, 4b: T-phase circuit conductor, 6: Housing, 7: Breaker compartment, 8a, 8b: Disconnection part, 9: Control equipment compartment, 10: Busbar, 11: Support insulator, 12: Busbar compartment, 13: Branch conductor, 14: High-speed grounding device, 15: Cable, 16: Load side conductor, 17: Current transformer , 18: cable compartment, 100: breaker, 101: interelectrode insulator, 102, 105: high-speed grounding device, 103: insulator, 104: ground conductor circuit, 106: wheel, 1000: switchgear

Claims (4)

  1.  3相の電路導体、前記3相の電路導体のそれぞれに設けられ、短絡時に流れる電流を遮断する遮断部、前記短絡時に前記遮断部を接地するために接続される高速接地投入器を備え、
    第1の相と第2の相の電路導体間の距離をLrs、
    第2の相と第3の相の電路導体間の距離をLst、
    第3の相と第1の相の電路導体間の距離をLtr、
    第1の相の電路導体と接地金属までの距離をLre、
    第2の相の電路導体と接地金属までの距離をLse、
    第3の相の電路導体と接地金属までの距離をLte、
    としたとき、
    Lrs>Ltr
    Lst>Ltr
    Ltr>Lre
    Ltr>Lse
    Ltr>Lte
    となるように前記3相の電路導体が配置されているとともに、前記高速接地投入器は、前記第1の相の電路導体と前記第3の相の電路導体に備えられていることを特徴とする遮断器。
    Provided in each of the three-phase electric circuit conductor, the three-phase electric circuit conductor, a blocking part that cuts off a current that flows during a short circuit, and a high-speed grounding input device that is connected to ground the blocking part during the short circuit,
    The distance between the first phase and second phase circuit conductors is Lrs,
    The distance between the second and third phase circuit conductors is Lst,
    The distance between the third phase and the first phase circuit conductor is Ltr,
    The distance between the first phase circuit conductor and the ground metal is Lre,
    The distance between the second phase circuit conductor and the ground metal is Lse,
    The distance from the third phase circuit conductor to the ground metal is Lte,
    When
    Lrs> Ltr
    Lst> Ltr
    Ltr> Lre
    Ltr> Lse
    Ltr> Lte
    The three-phase circuit conductors are arranged so that the high-speed grounding thrower is provided in the first-phase circuit conductor and the third-phase circuit conductor. Circuit breaker to do.
  2.  請求項1の遮断器において、
    Ltr>√3×Lre
    Ltr>√3×Lse
    Ltr>√3×Lte
    であることを特徴とする遮断器。
    The circuit breaker of claim 1,
    Ltr> √3 × Lre
    Ltr> √3 × Lse
    Ltr> √3 × Lte
    Circuit breaker characterized by being.
  3.  短絡時に流れる電流を遮断する遮断器、前記遮断器と母線を接続する3相の分岐導体、前記分岐導体に接続され、前記短絡時に前記分岐導体を接地するために接続される高速接地投入器を備え、
    第1の相と第2の相の分岐導体間の距離をLrs、
    第2の相と第3の相の分岐導体間の距離をLst、
    第3の相と第1の相の分岐導体間の距離をLtr、
    としたとき、
    rs>Ltr
    st>Ltr
    となるように前記3相の分岐導体が配置されているとともに、前記高速接地投入器は、前記第1の相の分岐導体と前記第3の相の分岐導体に備えられていることを特徴とするスイッチギヤ。
    A circuit breaker that cuts off a current that flows in the case of a short circuit, a three-phase branch conductor that connects the breaker and a bus, and a high-speed ground input device that is connected to the branch conductor and connected to ground the branch conductor in the case of a short circuit Prepared,
    Let L 1 rs be the distance between the branch conductors of the first phase and the second phase,
    Let L 1 st be the distance between the second and third phase branch conductors,
    Let L 1 tr be the distance between the branch conductors of the third phase and the first phase,
    When
    L 1 rs> L 1 tr
    L 1 st> L 1 tr
    The three-phase branch conductors are arranged so that the high-speed grounding thrower is provided in the first-phase branch conductor and the third-phase branch conductor. Switch gear to play.
  4.  短絡時に流れる電流を遮断する遮断器、前記遮断器と負荷を接続する3相の負荷側導体を備え、
    第1の相と第2の相の負荷側導体間の距離をLrs、
    第2の相と第3の相の負荷側導体間の距離をLst、
    第3の相と第1の相の負荷側導体間の距離をLtr、
    としたとき、
    rs>Ltr
    st>Ltr
    となるように、前記3相の負荷側導体が配置されているとともに、前記第1の相の負荷側導体と前記第3の相の負荷側導体は変流器と接続されていることを特徴とするスイッチギヤ。
    A circuit breaker that interrupts a current that flows during a short circuit, a load-side conductor of three phases that connects the circuit breaker and a load;
    The distance between the load-side conductors of the first phase and the second phase is L 2 rs,
    The distance between the load side conductors of the second phase and the third phase is L 2 st,
    The distance between the load-side conductors of the third phase and the first phase is L 2 tr,
    When
    L 2 rs> L 2 tr
    L 2 st> L 2 tr
    The three-phase load-side conductors are arranged so that the first-phase load-side conductors and the third-phase load-side conductors are connected to a current transformer. And switchgear.
PCT/JP2018/018847 2017-05-17 2018-05-16 Breaker and switch gear WO2018212210A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018002541.1T DE112018002541T5 (en) 2017-05-17 2018-05-16 Circuit breaker and switchgear
JP2019518820A JP6714948B2 (en) 2017-05-17 2018-05-16 Circuit breaker and switchgear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-097834 2017-05-17
JP2017097834 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018212210A1 true WO2018212210A1 (en) 2018-11-22

Family

ID=64273798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018847 WO2018212210A1 (en) 2017-05-17 2018-05-16 Breaker and switch gear

Country Status (3)

Country Link
JP (1) JP6714948B2 (en)
DE (1) DE112018002541T5 (en)
WO (1) WO2018212210A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154993A (en) * 1977-09-26 1979-05-15 Mcgraw-Edison Company Cable connected drawout switchgear
JPS54122031U (en) * 1978-02-15 1979-08-27
JPS55156507U (en) * 1979-04-23 1980-11-11
JPH04261311A (en) * 1991-01-07 1992-09-17 Mitsubishi Electric Corp Front maintenance type enclosed switchboard
JP2005137147A (en) * 2003-10-31 2005-05-26 Toshiba Corp Switchgear
JP2007252147A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Switchgear
WO2015178160A1 (en) * 2014-05-21 2015-11-26 三菱電機株式会社 Circuit breaker with arc eliminator and power receiving/distributing equipment using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154993A (en) * 1977-09-26 1979-05-15 Mcgraw-Edison Company Cable connected drawout switchgear
JPS54122031U (en) * 1978-02-15 1979-08-27
JPS55156507U (en) * 1979-04-23 1980-11-11
JPH04261311A (en) * 1991-01-07 1992-09-17 Mitsubishi Electric Corp Front maintenance type enclosed switchboard
JP2005137147A (en) * 2003-10-31 2005-05-26 Toshiba Corp Switchgear
JP2007252147A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Switchgear
WO2015178160A1 (en) * 2014-05-21 2015-11-26 三菱電機株式会社 Circuit breaker with arc eliminator and power receiving/distributing equipment using same

Also Published As

Publication number Publication date
DE112018002541T5 (en) 2020-02-20
JP6714948B2 (en) 2020-07-01
JPWO2018212210A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US8908335B2 (en) Arc extinguishing stab housing and method
CA2725925C (en) Method and apparatus to move an arcing fault to a different location in an electrical enclosure
EP2947733B1 (en) Gas-insulated switch gear
CA2725941C (en) Method and apparatus to reduce internal pressure caused by an arcing fault in an electrical enclosure
KR20120124020A (en) Electrical power switch and control panel comprising power switch
TWI445268B (en) Switchgear
WO2018212210A1 (en) Breaker and switch gear
US20220013997A1 (en) Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors
EP2834892B1 (en) Circuit breaker adaptor for plug-in circuit breaker panel
JP2005137147A (en) Switchgear
CN211266245U (en) Medium-voltage switch cabinet using main loop for phase change
JP6667744B1 (en) Switchgear
KR101467607B1 (en) Gas insulated switchgear
KR100475073B1 (en) bushing structure for extending Gas Insulated Switchgear
WO2020084885A1 (en) Switchgear
JPH1080018A (en) Drawer type high-voltage switchgear
JP2007202233A (en) Gas-insulated switchgear
JPH0638315A (en) Switchboard
JP6331612B2 (en) Distribution system protection device and substation equipment
US10297987B2 (en) Gas insulated switchgear
KR20230147821A (en) Module type arc quenching unit for circuit breaker
WO2023101652A1 (en) Solution preventing permanent deformation in an arc fault event or short circuit event
JP2005005277A (en) Vacuum switch
KR20130054519A (en) Structure for separating auxiliary contact from driving unit in gas insulated switchgear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518820

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18801409

Country of ref document: EP

Kind code of ref document: A1