WO2018212051A1 - Anti-glare anti-reflection film, anti-glare anti-reflection film production method, polarization plate, image display device, and self-luminous display device - Google Patents

Anti-glare anti-reflection film, anti-glare anti-reflection film production method, polarization plate, image display device, and self-luminous display device Download PDF

Info

Publication number
WO2018212051A1
WO2018212051A1 PCT/JP2018/018042 JP2018018042W WO2018212051A1 WO 2018212051 A1 WO2018212051 A1 WO 2018212051A1 JP 2018018042 W JP2018018042 W JP 2018018042W WO 2018212051 A1 WO2018212051 A1 WO 2018212051A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antiglare
group
antireflection
film
Prior art date
Application number
PCT/JP2018/018042
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 福島
伊吹 俊太郎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019519201A priority Critical patent/JP6825095B2/en
Publication of WO2018212051A1 publication Critical patent/WO2018212051A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to an antiglare antireflection film, a method for producing an antiglare antireflection film, a polarizing plate, an image display device, and a self-luminous display device.
  • an antiglare antireflection film may be disposed on the outermost surface of the display.
  • antiglare antireflection in which an antiglare layer having an uneven shape is provided on a transparent film support, and a low refractive index layer containing hollow silica particles is further provided on the antiglare layer.
  • a film is described.
  • Such an antiglare antireflection film is provided with a low refractive index layer which is a thin film layer having a layer thickness of 200 nm or less on at least the outermost surface, and performs antireflection by optical interference of the low refractive index layer.
  • an antireflection film having a fine uneven shape whose period is not more than the wavelength of visible light on the surface of the substrate that is, an antireflection film having a so-called moth eye structure is known. Yes. With the moth-eye structure, it is possible to create a refractive index gradient layer in which the refractive index continuously changes from air to the bulk material inside the substrate, thereby preventing light reflection.
  • Patent Document 3 discloses an antireflection layer forming composition containing fine particles and a binder resin forming compound as a base film and an antiglare layer having an uneven shape.
  • An antiglare antireflection film is described in which a moth-eye structure is prepared by coating on an antiglare layer of a glare film and allowing a binder resin-forming compound to penetrate into the antiglare layer.
  • Patent Document 4 describes an antiglare antireflection film by a so-called nanoimprint method in which a moth-eye structure is produced by molding a curable resin into a mold shape.
  • the antiglare antireflection film described in Patent Documents 1 and 2 requires further antireflection performance.
  • a coating solution antireflection layer formation
  • the leveling of the composition causes unevenness in the coating amount between the convex and concave portions of the antiglare layer, and the density of fine particles occurs, which indicates that an antiglare antireflection film with low reflectance may not be produced. It was.
  • the moth-eye structure produced by the nanoimprint method of Patent Document 4 has a problem that it is inferior in scratch resistance.
  • an object of the present invention is to provide an antiglare antireflection film having sufficient antireflection performance.
  • Another object of the present invention is to provide a method for producing the antiglare antireflection film, a polarizing plate having the antiglare antireflection film, an image display device, and a self-luminous display device.
  • the present inventors diligently studied to solve the above-mentioned problems, and formed an antireflection layer on the antiglare layer of the antiglare film having the base film and the antiglare layer by transfer, thereby forming a recess in the antiglare layer. It was found that an antireflection layer having a uniform thickness can be formed at the convex portions, and an antiglare antireflection film having a low reflectance can be produced.
  • An antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order,
  • the integrated reflectance of the antiglare antireflection film is 1.0% or less
  • the specular reflectance of the antiglare antireflection film is 0.4% or less
  • the uneven shape of the antiglare antireflection film surface has an arithmetic average roughness Ra of 0.03 ⁇ m ⁇ Ra ⁇ 0.4 ⁇ m, and an average interval Sm of unevenness of 20 ⁇ m ⁇ Sm ⁇ 700 ⁇ m
  • An antiglare antireflection film, wherein the ratio of the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film to the average thickness of the antireflection layer at the concave portion is 1.0 to 0.7.
  • the uneven shape on the surface of the antiglare antireflection film is the antiglare antireflection film according to ⁇ 1>, wherein the arithmetic average roughness Ra is 0.1 ⁇ m ⁇ Ra ⁇ 0.4 ⁇ m.
  • the antireflection layer contains particles having an average primary particle diameter of 100 nm to 250 nm and a binder resin, and has a moth-eye structure of the particles on the surface opposite to the interface with the antiglare layer.
  • a method for producing an antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order On the base film, a composition for forming an antiglare layer containing a binder resin forming compound for an antiglare layer and particles for the antiglare layer is applied, and the composition for forming an antiglare layer is irradiated with ionizing radiation or heated.
  • a step of curing the antiglare layer Applying a composition for forming an antireflection layer on a temporary support, and semi-curing it at a surface curing rate of 10 to 70% by irradiation with ionizing radiation or heating to form an antireflection layer; Transferring the antireflection layer from the temporary support onto the antiglare layer; The manufacturing method of the anti-glare antireflection film which has this.
  • a step (1) of providing the thickness to be buried A step (2) of obtaining a layer (ca) by curing a part of the layer (a); A step (3) of bonding the layer (b) of the pressure-sensitive adhesive film having a support and a layer (b) containing a pressure-sensitive adhesive on the support to the layer (ca); The layer (ca) is embedded such that the particles (a2) are embedded in the layer including the layer (ca) and the layer (b) and protrude from the interface of the layer (ca) on the support side.
  • Step (8) The method for producing an antiglare and antireflection film according to any one of ⁇ 7> to ⁇ 9>, wherein: ⁇ 11> A polarizing plate having the antiglare antireflection film according to any one of ⁇ 1> to ⁇ 6> as a polarizing plate protective film. ⁇ 12> An image display device comprising the antiglare antireflection film according to any one of ⁇ 1> to ⁇ 6>, or the polarizing plate according to ⁇ 11>. ⁇ 13> A self-luminous display device comprising the antiglare and antireflection film according to any one of ⁇ 1> to ⁇ 6> on a surface thereof.
  • an antiglare antireflection film having sufficient antireflection performance can be provided.
  • the manufacturing method of the said anti-glare antireflection film, the polarizing plate which has the said anti-glare antireflection film, an image display apparatus, and a self-light-emitting display apparatus can be provided.
  • FIG. 1A is an example of a surface scanning electron microscope (SEM) image of an antiglare antireflection film when an antireflection layer is formed by coating
  • FIG. 2A is an example of a surface SEM image of the antiglare antireflection film when the antireflection layer is formed by transfer
  • FIG. 2B is an enlargement of FIG. 2A.
  • It is a schematic diagram which shows an example of the manufacturing method of the anti-glare antireflection film of this invention.
  • It is a schematic diagram which shows an example of the manufacturing method of the anti-glare antireflection film of this invention.
  • It is a schematic diagram which shows an example of the anti-glare antireflection film of this invention.
  • It is a schematic diagram which shows an example of the anti-glare antireflection film of this invention.
  • It is a schematic diagram which shows an example of the anti-glare
  • (meth) acrylate”, “(meth) acrylic acid”, and “(meth) acryloyl” are “acrylate or methacrylate”, “acrylic acid or methacrylic acid”, and “acryloyl or methacryloyl”, respectively.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a film in which an antiglare layer is formed on a base film is expressed as an antiglare film.
  • the antiglare antireflection film of the present invention is an antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order,
  • the integrated reflectance of the antiglare antireflection film is 1.0% or less
  • the specular reflectance of the antiglare antireflection film is 0.4% or less
  • the uneven shape of the antiglare antireflection film surface has an arithmetic average roughness Ra of 0.03 ⁇ m ⁇ Ra ⁇ 0.4 ⁇ m, and an average interval Sm of unevenness of 20 ⁇ m ⁇ Sm ⁇ 700 ⁇ m
  • the antiglare antireflection film has a ratio of the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film to the average thickness of the antireflection layer at the concave portion of 1.0 to 0.7.
  • FIG. 5 is a schematic view showing an example of the antiglare antireflection film of the present invention.
  • An antiglare antireflection film 20 in FIG. 5 includes a base film 11, an antiglare layer 12, and an antireflection layer 10.
  • the antiglare layer 12 includes antiglare layer particles 13.
  • the antireflection layer 10 is a moth-eye layer.
  • FIG. 6 is a schematic view showing another example of the antiglare antireflection film of the present invention.
  • the antiglare antireflection film 20 in FIG. 6 further includes an adhesive layer 15 between the antiglare layer 12 and the antireflection layer 10 in FIG.
  • FIG. 7 is a schematic view showing another example of the antiglare antireflection film of the present invention.
  • FIG. 7 has an antireflection layer 16 having a low refractive index layer Ln and a high refractive index layer Hn in place of the antireflection layer 10 which is a moth-eye layer in FIG. 3 to 7 are schematic diagrams, and the size of each particle, the thickness of the base material and each layer, and the like may not be drawn in actual dimensional ratios.
  • the antiglare layer of the antiglare antireflection film of the present invention will be described.
  • the antiglare layer preferably has a concavo-convex shape on the surface, which can impart antiglare properties to the film by surface scattering.
  • what can provide the hard-coat property for improving the abrasion resistance of a film preferably is preferable.
  • a method of laminating and forming a mat-shaped shaping film having fine irregularities on the surface as described in JP-A-6-16851, described in JP-A-2000-206317 A method of forming by curing shrinkage of an ionizing radiation curable resin due to a difference in ionizing radiation dose, as described in JP 2000-338310 A, and a mass ratio of a good solvent to a translucent resin is reduced by drying.
  • a method of forming have been known such as, can use these known methods.
  • the antiglare layer preferably contains particles for the antiglare layer.
  • particles for the antiglare layer translucent particles or metal oxide fine particles are preferable.
  • the antiglare layer includes a binder resin for an antiglare layer capable of imparting hard coat properties, and translucent particles for imparting antiglare properties. A layer in which irregularities are formed on the surface by projections formed by an aggregate of particles is preferable.
  • an anti-glare layer is formed using the composition for anti-glare layer containing the compound for binder resin formation, translucent particle
  • the antiglare layer formed using the composition for forming an antiglare layer includes a binder resin for the antiglare layer and translucent particles dispersed in the binder resin for the antiglare layer, and has an antiglare property and a hard coat. It is preferable to combine the properties.
  • Translucent particle 1 in order to impart antiglare properties, it is preferable to contain at least one kind of translucent particles in the antiglare layer.
  • the translucent particles 1 in which the average particle diameter of the translucent particles is larger than the average film thickness of the antiglare layer are used, and the average particle diameter of the translucent particles 1 is set to the antiglare layer.
  • the average film thickness 0.01 to 4.0 ⁇ m larger than the average film thickness, good antiglare property can be imparted.
  • the average particle diameter of the translucent particles 1 is that of the antiglare layer.
  • the average film thickness is more preferably 0.1 to 3.0 ⁇ m, and most preferably 0.5 to 2.5 ⁇ m.
  • the average particle diameter of the translucent particles 1 is 4 ⁇ m or less, the average particle diameter of the translucent particles 1 is preferably 0.1 to 2.5 ⁇ m larger than the average film thickness of the antiglare layer. Most preferably, it is larger by 1 to 2.0 ⁇ m.
  • the average film thickness of the antiglare layer is calculated from an average value obtained by observing a cross section of the antiglare antireflection film with an electron microscope and measuring 30 film thicknesses randomly.
  • one convex portion of the antiglare layer is substantially formed by 5 or less translucent particles 1, and that the convex portion is substantially formed by one translucent particle. More preferred.
  • substantially means that 90% or more of the convex portions satisfy a preferable mode.
  • one convex part of the anti-glare layer is formed substantially by one translucent particle 1, it is preferable to select a particle with good dispersibility.
  • the translucent particles 1 include, for example, crosslinked polymethyl methacrylate particles, crosslinked methyl methacrylate-styrene copolymer particles, crosslinked polystyrene particles, crosslinked methyl methacrylate-methyl acrylate copolymer particles, crosslinked alkyl acrylate-styrene.
  • resin particles such as copolymer particles, crosslinked alkyl methacrylate-styrene copolymer particles, melamine / formaldehyde resin particles, and benzoguanamine / formaldehyde resin particles.
  • crosslinked styrene particles crosslinked polymethyl methacrylate particles, and crosslinked methyl methacrylate-styrene copolymer particles are preferred.
  • surface modified particles obtained by chemically bonding a compound containing fluorine atom, silicon atom, carboxyl group, hydroxyl group, amino group, sulfonic acid group, phosphoric acid group, etc. on the surface of these resin particles, nano-sized such as silica or zirconia
  • the particles include inorganic fine particles bonded to the surface.
  • crosslinked methyl methacrylate-styrene copolymer particles in order to adjust the absolute value of the refractive index difference with the binder component in the antiglare layer, crosslinked methyl methacrylate-styrene copolymer particles, crosslinked alkyl acrylate-styrene copolymer particles, crosslinked alkyl methacrylate- Styrene copolymer particles are preferred.
  • the translucent particles 1 When the translucent particles 1 are used, visible light scattering of silica or the like does not occur for the dispersion stability of the particles in the binder resin for the antiglare layer or the antiglare layer forming composition and for preventing sedimentation.
  • dispersing agents such as a size inorganic filler and an organic compound (a monomer or a polymer may be sufficient).
  • an inorganic filler when adding an inorganic filler, it is effective for the sedimentation prevention of translucent particle
  • the dispersant such as an organic compound is preferably added in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the translucent particles. More preferred is 0.1 to 15 parts by mass, and particularly preferred is 0.5 to 10 parts by mass. If it is 0.1 part by mass or more, the effect of addition to the dispersion stability appears, and if it is 20 parts by mass or less, the components that do not contribute to the dispersion stability increase and problems such as bleeding out do not occur.
  • the surface of the translucent particles may be surface-treated for dispersion stability and prevention of settling in the binder resin for the antiglare layer or the composition for forming the antiglare layer.
  • the type of the surface treatment agent is appropriately selected depending on the binder resin for the antiglare layer to be used and the solvent.
  • the amount of the surface treatment agent is preferably added in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass of the translucent particles. More preferred is 1 to 25 parts by mass, and particularly preferred is 3 to 20 parts by mass. If it is 0.1 parts by mass or more, the surface treatment amount for dispersion stability will not be insufficient, and if it is 30 parts by mass or less, components that do not contribute to the surface treatment increase and problems such as bleeding out may occur. It is preferable because it is not present.
  • the particle size distribution of the translucent particles is preferably monodisperse particles, that is, particles having a uniform particle diameter, from the viewpoints of control of haze value and diffusibility, and uniformity of the coated surface.
  • the CV value representing the uniformity of the particle diameter is preferably 0 to 10%, more preferably 0 to 8%, still more preferably 0 to 5%.
  • the proportion of the coarse particle is preferably 1% or less of the total number of particles, more preferably 0.1% or less. Yes, more preferably 0.01% or less.
  • the translucent particles having such a particle size distribution are also effective means of classification after the preparation or synthesis reaction.
  • the average particle diameter of the translucent particles is calculated from an average value of 100 observed particle diameters obtained by observing the translucent particles with an optical microscope.
  • the addition amount of the translucent particles 1 having an average particle diameter larger than the average film thickness of the antiglare layer is 0.01 to 1.2% by mass with respect to the total solid content of the antiglare layer. It is preferable in that the density of the unevenness is made sparse so that the ratio of the flat portion on the film surface is increased and the antireflection layer is uniformly laminated.
  • the addition amount of the translucent particles 1 is more preferably 0.1 to 1.0% by mass, and preferably 0.1 to 0.7% by mass with respect to the total solid content of the antiglare layer. Further preferred.
  • the translucent particles preferably project at least 0.01 to 4.0 ⁇ m from the binder resin film of the antiglare layer to exhibit antiglare properties.
  • Translucent particle 2 As another preferred embodiment of the antiglare layer, for example, another translucent particle 2 having an average particle diameter different from that of the translucent particle 1 in order to obtain a necessary antiglare property is used alone. Alternatively, they may be used in combination, and it is also possible to achieve both antiglare properties and further optical properties by using the light transmitting particles 1 and the light transmitting particles 2 in combination.
  • grains 2 When using the translucent particle
  • the average particle diameter of the translucent particles 2 is preferably 10% to 90%, more preferably 20% to 80% of the average film thickness of the antiglare layer.
  • the translucent particles 2 preferably have good dispersibility.
  • translucent organic resin particles such as polymethyl methacrylate particles and polymethyl methacrylate / polystyrene copolymer particles are preferable.
  • the polymethyl methacrylate ratio in the copolymer particles is preferably 40% by mass to 100% by mass from the viewpoint of dispersibility, more preferably 50% by mass to 100% by mass, and 75% by mass to Most preferably, it is 100 mass%.
  • the translucent particle 2 is a core-shell type particle in which the core has a refractive index difference from the binder for the antiglare layer and exhibits light scattering properties, and the shell has an affinity for the binder for the antiglare layer.
  • Particles made of a material having high dispersibility can also be preferably used.
  • the material that exhibits light scattering properties include polymethyl methacrylate, crosslinked poly (acryl-styrene) copolymer, melamine resin, polycarbonate, polystyrene, crosslinked polystyrene, polyvinyl chloride, benzoguanamine-melamine formaldehyde, and the like.
  • Examples of the material having excellent dispersibility include polymethyl methacrylate.
  • the translucent particles 2 are preferably 0.1% by mass to 30% by mass with respect to the total solid content of the antiglare layer, from the viewpoint of imparting antiglare properties and internal scattering properties, and are 1 to 15% by mass. More preferably. In the case where a plurality of kinds of translucent particles 2 are used in combination, it is preferable from the viewpoint of easy antiglare control that particles having different particle diameters are used without changing the components constituting the particles.
  • organically treated layered inorganic compounds such as hectorite, bentonite, smectite and vermiculite can be used. These layered inorganic compounds segregate between the translucent particles 2, prevent the translucent particles 2 from aggregating more than necessary in the antiglare layer, and gather the translucent particles appropriately. Dazzle control is possible.
  • Metal oxide fine particles As still another embodiment of the present invention, at least one kind of fine particles are contained in the antiglare layer, and the fine particles are cohesive metal oxide fine particles.
  • the agglomerated metal oxide fine particles are used for the purpose of [1] imparting surface irregularities, [2] adjusting the refractive index, [3] improving the hardness, [4] improving the brittleness, and curling of the antiglare layer.
  • the metal oxide fine particles are preferably agglomerated silica particles and agglomerated alumina particles from the viewpoint of transparency and inexpensiveness.
  • Agglomerated silica particles in which particles having a particle size of several tens of nanometers form aggregates are preferable in that they can stably impart appropriate surface irregularities.
  • the cohesive silica particles can be obtained, for example, by a so-called wet method, which is synthesized by a neutralization reaction between sodium silicate and sulfuric acid, but is not limited thereto. The wet method is further roughly classified into a sedimentation method and a gelation method, but the present invention may be any method.
  • the secondary particle diameter of the cohesive silica particles is preferably in the range of 0.1 to 10.0 ⁇ m, but is selected in combination with the layer thickness of the antiglare layer containing the particles.
  • the adjustment of the secondary particle diameter is performed by the degree of particle dispersion (control by mechanical dispersion using a sand mill or the like, or chemical dispersion using a dispersant or the like).
  • the value obtained by dividing the secondary particle diameter of the cohesive silica particles by the thickness of the antiglare layer containing the same is preferably 0.1 to 1.5, and preferably 0.3 to 1.0. Is more preferable.
  • the secondary particle diameter of the agglomerated silica particles preferably used as the metal oxide fine particles is measured by a Coulter counter method.
  • the addition amount of the metal oxide fine particles is preferably 0.01% by mass to 5% by mass, more preferably 0.1% by mass to 5% by mass in the total solid content of the antiglare layer, and 0.1 to 3%. % By mass is more preferable, and 0.1% by mass to 2% by mass is most preferable.
  • the aggregating metal oxide fine particles preferably the aggregating silica particles
  • the translucent resin fine particles the above-described (translucent particles 2) can be preferably used.
  • the binder resin for the antiglare layer is preferably formed from a compound for forming the binder resin for the antiglare layer. It is preferable that the compound for forming a binder resin for an antiglare layer contains one or both of a thermosetting compound and an ionizing radiation curable compound, which are cured to form a binder resin for an antiglare layer.
  • the binder resin for the antiglare layer is preferably formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound. That is, a composition for forming an antiglare layer containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer as a binder resin forming compound for an antiglare layer is applied onto a substrate film, and the polyfunctional monomer or polyfunctional oligomer is applied to the base film.
  • the antiglare layer is preferably formed by a crosslinking reaction or a polymerization reaction.
  • the functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably a light (ultraviolet ray), electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
  • the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
  • a compound having a polymerizable unsaturated bond can be preferably used as a specific example of the binder resin forming compound for the antiglare layer.
  • Compound having a polymerizable unsaturated bond examples include compounds having a polymerizable functional group such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group, and among them, a compound having a (meth) acryloyl group. preferable. Particularly preferably, a compound containing two or more (meth) acryloyl groups in one molecule described below can be used.
  • the compound having a polymerizable unsaturated bond include (meth) acrylic acid of alkylene glycol such as neopentyl glycol diacrylate, 1,6-hexanediol di (meth) acrylate, propylene glycol di (meth) acrylate and the like. Diesters; (meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, etc.
  • (Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate; 2,2-bis ⁇ 4- (acryloxydiethoxy) phenyl ⁇ propane, 2-2bis ⁇ 4 (Meth) acrylic acid diester such (acryloxy-polypropoxy) phenyl ⁇ ethylene oxide or propylene oxide adducts such as propane; and the like.
  • epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable polyfunctional monomer.
  • esters of polyhydric alcohol and (meth) acrylic acid are preferred. More preferably, a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable.
  • a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable.
  • polyfunctional acrylate compounds having a (meth) acryloyl group include KAYARAADDPHA, DPHA-2C, PET-30, TMPTA, TPA-320, and TPA-330 manufactured by Nippon Kayaku Co., Ltd. RP-1040, T-1420, D-310, DPCA-20, DPCA-30, DPCA-60, GPO-303, V # 3PA, V # manufactured by Osaka Organic Chemical Industry Co., Ltd. 400, V # 36095D, V # 1000, V # 1080 and the like, and (meth) acrylic acid esterified products.
  • UV-1400B Purple light UV-1400B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7630B, UV-7640B UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3310EA, UV-3310EA, UV-3310B, UV-3500BA UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA, UV-2250EA (manufactured by Nippon Synthetic Chemical Co., Ltd.), UL-503LN (manufactured by Kyoeisha Chemical Co., Ltd.), Unidic 17-80 17-813, V-4030, V-4000BA (Dainippon Ink Chemical Co., Ltd.), EB-1290K, EB-220, EB-5129,
  • resins having three or more (meth) acryloyl groups such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins And oligomers or prepolymers such as polyfunctional compounds such as polyhydric alcohols.
  • bifunctional (meth) acrylate compound examples include compounds represented by the following formula, but are not limited thereto.
  • dendrimers described in JP-A-2005-76005 and JP-A-2005-36105, or norbornene ring-containing monomers as described in JP-A-2005-60425 can be used.
  • a fluorine-containing polyfunctional (meth) acrylate represented by the chemical formula (2) described in JP-A No. 2002-105141 can also be used.
  • Two or more polyfunctional monomers may be used in combination.
  • Polymerization of the monomer having an ethylenically unsaturated group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator. It is preferable to use a photopolymerization initiator for the polymerization reaction of the photopolymerizable polyfunctional monomer.
  • a photopolymerization initiator a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is particularly preferable.
  • the support 5 described later is a polyethylene terephthalate (PET) film
  • PET polyethylene terephthalate
  • a polymerization initiator that absorbs light having a transmission wavelength of 320 nm or longer of the PET film for example, Irgacure 819 manufactured by BASF Japan Ltd.
  • Irgacure 819 manufactured by BASF Japan Ltd. is used. Is preferred.
  • the compound for forming a binder resin for the antiglare layer includes, for the purpose of controlling the refractive index of the antiglare layer, a high refractive index monomer, or inorganic particles such as ZrO 2 , TiO 2 , and SiO 2 that do not cause visible light scattering. That is, inorganic particles having an average particle diameter of 100 nm or less, or both of them can be added. In addition to the effect of controlling the refractive index, the inorganic particles also have the effect of suppressing cure shrinkage due to the crosslinking reaction.
  • a polymer formed by polymerization of a compound having a polymerizable unsaturated bond, such as a polyfunctional monomer and / or a high refractive index monomer, and an inorganic dispersed in the polymer The particles including the particles are called a binder.
  • the content of the binder resin for the antiglare layer in the antiglare layer is 50 to 99 parts by mass with respect to 100 parts by mass of the total solid content of the antiglare layer. Even in this case, it is preferable for maintaining the ratio of the flat portion on the film surface, and more preferably 70 to 99 parts by mass.
  • the strength of the antiglare layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test.
  • Leveling agent In the composition for forming an antiglare layer for forming the antiglare layer in the present invention, in order to ensure surface uniformity such as coating unevenness, drying unevenness, point defects, etc., either fluorine-based or silicone-based It is preferable to contain a so-called leveling agent containing one or both of these surfactants.
  • a fluorine-based surfactant can be preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects appears at a smaller addition amount.
  • Productivity can be improved by giving high-speed coating suitability while improving surface uniformity.
  • fluorosurfactant examples include a fluoroaliphatic group-containing copolymer (hereinafter sometimes abbreviated as “fluorine polymer”), and the fluoropolymer includes the following (i): An acrylic resin, a methacrylic resin, or a copolymerizable copolymer containing a repeating unit corresponding to the monomer or a repeating unit corresponding to the monomer (i) and a repeating unit corresponding to the monomer (ii) below. Copolymers with various vinyl monomers are useful.
  • R 11 represents a hydrogen atom or a methyl group
  • X represents an oxygen atom, a sulfur atom or —N (R 12 ) —
  • m represents an integer of 1 to 6
  • n represents an integer of 2 to 4.
  • R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically a methyl group, an ethyl group, a propyl group or a butyl group, preferably a hydrogen atom or a methyl group.
  • X is preferably an oxygen atom.
  • E 11 represents a hydrogen atom or a fluorine atom, and preferably represents a hydrogen atom.
  • R 13 represents a hydrogen atom or a methyl group
  • Y represents an oxygen atom, a sulfur atom or —N (R 15 ) —
  • R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically Specifically, it represents a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group.
  • Y is preferably an oxygen atom, —N (H) —, and —N (CH 3 ) —.
  • R 14 represents a linear, branched or cyclic alkyl group having 4 to 20 carbon atoms which may have a substituent.
  • Examples of the substituent for the alkyl group represented by R 14 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group, an alkyl ether group, an aryl ether group, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom, a nitro group, and a cyano group. , Amino groups and the like, but not limited thereto.
  • linear, branched or cyclic alkyl group having 4 to 20 carbon atoms examples include a butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group which may be linear or branched.
  • a polycyclic cycloalkyl group such as a tetracyclododecyl group, an adamantyl group, a norbornyl group, a tetracyclodecyl group, or the like is preferably used.
  • the amount of the fluoroaliphatic group-containing monomer represented by the general formula (a) used in the fluoropolymer used in the present invention is 10 mol% or more based on each monomer of the fluoropolymer, preferably It is 15 to 70 mol%, more preferably in the range of 20 to 60 mol%.
  • the preferred weight average molecular weight of the fluoropolymer used in the present invention is preferably 3,000 to 100,000, more preferably 5,000 to 80,000. Furthermore, the preferable addition amount of the fluoropolymer used in the present invention is in the range of 0.001 to 5 parts by mass, more preferably 0.001 to 100 parts by mass with respect to 100 parts by mass of the coating liquid (antiglare layer forming composition). The range is 005 to 3 parts by mass, and more preferably 0.01 to 1 part by mass. If the addition amount of the fluorine-based polymer is 0.001 part by mass or more, the effect of adding the fluorine-based polymer is sufficiently obtained, and if the addition amount is 5 parts by mass or less, the coating film cannot be sufficiently dried or applied. There is no problem of adversely affecting the performance as a film (for example, reflectance, scratch resistance).
  • the average film thickness of the antiglare layer is preferably 2 to 20 ⁇ m, from the viewpoint of achieving both hardness and curl suppression, more preferably 2 to 15 ⁇ m, and even more preferably 3 to 12 ⁇ m. Therefore, when the translucent particle 1 is used as the translucent particle, the average particle diameter of the translucent particle 1 is preferably 2.01 to 24 ⁇ m, and more preferably 2.01 to 19 ⁇ m. The thickness is preferably 3.01 to 16 ⁇ m, more preferably 3.01 to 12 ⁇ m. When the translucent particle 2 is used as the translucent particle, the average particle diameter of the translucent particle 2 is preferably 2.01 to 16 ⁇ m, and more preferably 2.01 to 10 ⁇ m.
  • the refractive index of the antiglare layer at a wavelength of 550 nm is preferably 1.48 to 1.70, and more preferably 1.48 to 1.60.
  • the refractive index values specifically shown hereinafter all show values at a wavelength of 550 nm.
  • the antiglare layer-forming composition of the present invention has a (meth) acryloyl group capable of forming a chemical bond with the antireflection layer (component contained in the antireflection layer) in order to ensure adhesion with the antireflection layer. It is preferable to contain the component which has functional groups other than.
  • the scratch resistance can be improved by improving the adhesion between the antiglare layer and the antireflection layer.
  • the above component has a functional group other than the (meth) acryloyl group, and when used in combination with a compound having a (meth) acryloyl group, it has a stronger interlayer adhesion than when the (meth) acryloyl group is used alone. Can be expressed.
  • the chemical bond between the antireflection layer and the antiglare layer is not particularly limited. For example, ionic bond between boric acid and hydroxyl group, reaction between epoxy group and acid, base, or hydroxyl group, urethanization reaction of isocyanate group, etc. Is mentioned.
  • the component contained in the antireflection layer is preferably a binder resin forming compound described below.
  • the functional group other than the (meth) acryloyl group capable of forming a covalent bond with the component contained in the antireflection layer is not particularly limited, but is an unsaturated hydrocarbon group, boronic acid group, alkoxysilyl group, isocyanate group, epoxy. Group, hydroxyl group, amino group, thiol group, carboxyl group and the like. Since the above components act at the interface between the antiglare layer and the antireflection layer, it is preferable to use a component that is highly unevenly distributed at the interface.
  • boronic acid monomer In the present invention, a boronic acid monomer can be preferably used.
  • the boronic acid monomer is a compound having a boronic acid group represented by Formula 1 and a polymerizable group.
  • R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • the aliphatic hydrocarbon group include a substituted or unsubstituted linear or branched alkyl group having 1 to 20 carbon atoms (for example, a methyl group, an ethyl group, an iso-propyl group, etc.), a C 3 to 20 carbon group, and the like.
  • Examples thereof include a substituted or unsubstituted cyclic alkyl group (for example, cyclohexyl group) and an alkenyl group having 2 to 20 carbon atoms (for example, vinyl group).
  • Examples of the aryl group include a substituted or unsubstituted phenyl group having 6 to 20 carbon atoms (for example, a phenyl group and a tolyl group), a substituted or unsubstituted naphthyl group having 10 to 20 carbon atoms, and the like.
  • the heterocyclic group is, for example, a substituted or unsubstituted 5-membered or 6-membered group containing at least one heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, etc.), such as a pyridyl group, Examples include imidazolyl group, furyl group, piperidyl group, morpholino group and the like.
  • R 1 and R 2 may be linked to each other to form a ring.
  • the isopropyl groups of R 1 and R 2 are linked to form 4,4,5,5-tetramethyl-1,3,2- A dioxaborolane ring may be formed.
  • R 1 and R 2 are preferably a hydrogen atom, a linear or branched alkyl group having 1 to 3 carbon atoms, and a case where R 1 and R 2 are connected to form a ring, Preferably, it is a hydrogen atom.
  • * indicates a bonding position to the boronic acid monomer residue.
  • the number of boronic acid groups represented by formula (1) is not particularly limited, and may be one or plural (two or more).
  • one or more hydrocarbon groups contained in these aliphatic hydrocarbon groups, aryl groups, and heterocyclic groups may be substituted with any substituent.
  • substituents include the substituents described in paragraph [0046] of JP2013-05201A.
  • the type of the polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group and a cationic polymerizable group.
  • examples of the radical polymerizable group include (meth) acryloyl group, (meth) acrylamide group, vinyl group, styryl group, and allyl group.
  • examples of the cationic polymerizable group include a vinyl ether group, an oxiranyl group, and an oxetanyl group.
  • a (meth) acryloyl group, a styryl group, a vinyl group, an oxiranyl group or an oxetanyl group is preferable, a (meth) acryloyl group or a styryl group is more preferable, and a (meth) acryloyl group is particularly preferable.
  • the (meth) acryloyl group is a concept including both an acryloyl group and a methacryloyl group
  • the (meth) acrylamide group is a concept including both an acrylamide group and a methacrylamide group.
  • the number of the polymerizable groups is not particularly limited, and may be one or plural (two or more).
  • the molecular weight of the boronic acid monomer is not particularly limited, but is preferably 120 to 1200, and preferably 180 to 800 in terms of excellent compatibility with the antiglare layer binder resin forming compound used in the antiglare layer forming composition. More preferred.
  • a preferred embodiment of the boronic acid monomer is a boronic acid monomer represented by Formula 2 in that the adhesion between the antiglare layer and the antireflection layer is more excellent.
  • R 1 and R 2 in the formula (2) are as described above.
  • Z represents a polymerizable group.
  • the definition of the polymerizable group is as described above.
  • X 1 represents a single bond or a divalent linking group. Examples of the divalent linking group include —O—, —CO—, —NH—, —CO—NH—, —COO—, —O—COO—, an alkylene group, an arylene group, and a divalent heterocyclic group. (Heteroarylene group) and divalent linking groups selected from combinations thereof. Examples of the combination include -arylene group-COO-arylene group-O-alkylene group-, -arylene group-COO-alkylene group- and the like.
  • a copolymer having a boronic acid group introduced can be preferably used.
  • a copolymer into which a boronic acid group has been introduced (hereinafter also abbreviated as “the polymer compound of the present invention” formally in the present specification) is represented by a repeating unit represented by the following formula (I) (hereinafter referred to as “I And a repeating unit represented by the following formula (II) (hereinafter also abbreviated as “II part”).
  • the polymer compound of the present invention preferably has a repeating unit represented by the following formula (III) (hereinafter also abbreviated as “III part”).
  • the polymer compound of the present invention preferably has a repeating unit represented by the following formula (V) (hereinafter also abbreviated as “V part”).
  • the I part possessed by the polymer compound of the present invention is a repeating unit represented by the following formula (I).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms is preferable, and a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable. Are more preferable, and a hydrogen atom or a methyl group is still more preferable.
  • X 1 represents a single bond, or —O—, —S—, —COO—, —OCO—, —CONR 2 —, —NR 2 COO—, —CR 2 N—
  • R 2 represents hydrogen.
  • An atom, an alkyl group having 1 to 20 carbon atoms, or —X 1 —P 1 is represented.
  • R 2 is —X 1 —P 1
  • P 1 represents a polymerizable group in the same manner as P 1 in the above formula (I). It will be described later P 1.
  • —COO— represents that carbon bonded to R 1 is bonded to C ⁇ O
  • P 1 and O are bonded.
  • —OCO— represents carbon bonded to R 1.
  • —CONR 2 — represents a bond between R 1 bonded carbon and C ⁇ O
  • P 1 and NR 2 represents that R 1 is bonded to NR 2 and P 1 is bonded to O
  • —CR 2 N— is bonded to R 1 and carbon 2 And P 1 and N are bonded to each other.
  • the substituted or unsubstituted divalent aliphatic group represented by X 1 may be, for example, an alkylene group having 1 to 20 carbon atoms which may have a substituent or a substituent.
  • Preferred examples thereof include cycloalkylene groups having 3 to 20 carbon atoms (eg, cyclohexylene group).
  • alkylene groups having 1 to 15 carbon atoms are preferable, alkylene groups having 1 to 8 carbon atoms are more preferable, and methylene group More preferred are an ethylene group, a propylene group, and a butylene group.
  • X 1 a substituted or the divalent aromatic group unsubstituted divalent aromatic which may have a substituent hydrocarbon group or may have a substituent divalent
  • the aromatic heterocyclic group of these is mentioned.
  • the divalent aromatic hydrocarbon group include a hydrogen atom from two carbon atoms constituting the ring structure of an aromatic hydrocarbon ring such as a benzene ring, naphthalene ring, anthracene ring, triphenylene ring, fluorene ring, etc.
  • the divalent aromatic heterocyclic group includes an aromatic heterocyclic ring such as a furan ring, a pyrrole ring, a thiophene ring, a pyridine ring, a thiazole ring, a benzothiazole ring, an oxadiazole ring, a thiazolothiazole ring, and a phenanthroline ring. And a group obtained by removing one hydrogen atom from each of two carbon atoms constituting the ring structure.
  • Examples of the substituent that the divalent aliphatic group or divalent aromatic group may have include, for example, a halogen atom, a hydroxyl group, an amino group, an acryloyloxy group, a methacryloyloxy group, and an alkyl group having 1 to 20 carbon atoms.
  • a halogen atom for example, a halogen atom, a hydroxyl group, an amino group, an acryloyloxy group, a methacryloyloxy group, and an alkyl group having 1 to 20 carbon atoms.
  • a group in which one or more of CH— and —CR 2 N— are combined.
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or —X 1 —P 1 .
  • P 1 represents a polymerizable group in the same manner as P 1 in the above formula (I).
  • the alkyl group having 1 to 20 carbon atoms represented by R 2 described above is preferably an alkyl group having 1 to 6 carbon atoms, specifically, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, n-butyl. Group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and the like.
  • P 1 represents a polymerizable group.
  • the polymerizable group represented by P 1 in the above formula (I) is any one selected from the group consisting of groups represented by the following formulas (P-1) to (P-7) Among these, a polymerizable group selected from the group consisting of groups represented by the following formulas (P-1) to (P-3) is more preferable. A polymerizable group represented by the following formula (P-1) or (P-2) is more preferable.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and two R 3 s may be the same or different, and may be linked to each other to form a ring structure.
  • Specific examples of the alkyl group having 1 to 5 carbon atoms represented by R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, and an n-butyl group.
  • the repeating unit represented by the formula (I) is such that R 1 in the formula (I) is a hydrogen atom or a methyl group.
  • X 1 in the above formula (I) is —O—, —COO—, —OCO—, or a substituted or unsubstituted divalent aliphatic group (preferably an alkylene group having 2 to 8 carbon atoms).
  • repeating unit represented by the above formula (I) examples include a repeating unit represented by the following formula.
  • the content of the repeating unit represented by the above formula (I) is preferably 5 to 80% by mass, more preferably 7 to 70% by mass, based on all the repeating units. More preferably, it is 10 to 50% by mass.
  • the II part of the polymer compound of the present invention is a repeating unit represented by the following formula (II).
  • R 10 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms is preferable, and a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable. Are more preferable, and a hydrogen atom or a methyl group is still more preferable.
  • X 10 is a single bond, or, -O -, - S -, - COO -, - OCO -, - CONR 13 -, - NR 13 COO -, - CR 13 N-
  • R 13 represents a hydrogen atom. Or an alkyl group having 1 to 20 carbon atoms.
  • —COO— represents that carbon bonded to R 10 is bonded to C ⁇ O, and B and O are bonded.
  • —OCO— represents carbon bonded to R 10 O represents a bond
  • B represents C ⁇ O
  • —CONR 13 — represents a bond between R 10 and C ⁇ O
  • B represents a bond with NR 13
  • —NR 13 COO— represents that R 10 is bonded to NR 13 and B is bonded to O
  • —CR 13 N— is a bond of R 10 to carbon 13 and CR 13 ; N represents bonding.
  • examples of the divalent aliphatic group and divalent aromatic group represented by X 10 include the same as those described for X 1 in the above formula (I), and R Examples of the alkyl group having 1 to 20 carbon atoms represented by 13 include those similar to R 2 described in relation to the above formula (I).
  • R 11 and R 12 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted hetero group.
  • R 11 and R 12 may be linked to each other to form a ring
  • R 11 and R 12 form a linking group consisting of an alkylene linking group, an arylene linking group, or a combination thereof. May be.
  • Examples of the substituted or unsubstituted aliphatic hydrocarbon group represented by R 11 and R 12 include an alkyl group, an alkenyl group or an alkynyl group which may have a substituent.
  • Specific examples of the alkyl group include, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl.
  • alkenyl group examples include linear groups such as a vinyl group, 1-propenyl group, 1-butenyl group, 1-methyl-1-propenyl group, 1-cyclopentenyl group, 1-cyclohexenyl group, and the like. , Branched, or cyclic alkenyl groups.
  • alkynyl group examples include ethynyl group, 1-propynyl group, 1-butynyl group, 1-octynyl group and the like.
  • Examples of the substituted or unsubstituted aryl group represented by R 11 and R 12 include those in which 1 to 4 benzene rings form a condensed ring, and a benzene ring and an unsaturated five-membered ring form a condensed ring. Specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, an acenabutenyl group, a fluorenyl group, a pyrenyl group, and the like.
  • Examples of the substituted or unsubstituted heteroaryl group represented by R 11 and R 12 include a hydrogen atom on a heteroaromatic ring containing one or more heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom. One may be removed to give a heteroaryl group.
  • Specific examples of the heteroaromatic ring containing one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom include pyrrole, furan, thiophene, pyrazole, imidazole, triazole, oxazole and isoxazole.
  • R 11 and R 12 may have include a monovalent non-metallic atomic group excluding hydrogen.
  • the substituent is selected from the following substituent group Y.
  • Halogen atom (—F, —Br, —Cl, —I), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group, N-alkylamino group N, N-dialkylamino group, N-arylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarbamoyloxy group, N-ary Rucarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarb
  • R 11 and R 12 in the above formula (II) are preferably hydrogen atoms or bonded to each other to form an alkylene linking group.
  • monomers that forms the repeating unit represented by the above formula (II) include monomers represented by the following formulas II-1 to II-12.
  • the content of the repeating unit represented by the above formula (II) is preferably 3 to 80% by mass, more preferably 4 to 70% by mass, based on all the repeating units. More preferably, it is 5 to 50% by mass.
  • the polymer compound of the present invention has a repeating unit (Part III) represented by the following formula (III) because the adhesion between the antiglare layer to be formed and the antireflection layer becomes better. It is preferable.
  • the reason why the adhesiveness becomes better is that the copolymer is unevenly distributed on the air interface side (adhesive surface side with the antireflection layer) of the antiglare layer formed by having the III part. This is considered to be because the III part of the copolymer easily interacts with the surface component of the antireflection layer.
  • R 20 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 20 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • a hydrogen atom or a methyl group is still more preferable.
  • L 20 represents a divalent linking group selected from the group consisting of —O—, —COO—, —OCO—, a divalent aliphatic group, and combinations thereof.
  • —COO— represents that carbon bonded to R 20 is bonded to C ⁇ O, and R 21 and O are bonded.
  • —OCO— is bonded to carbon bonded to R 20 and O; 21 and C ⁇ O are bonded to each other.
  • Examples of the divalent aliphatic group represented by L 20 include a divalent aliphatic chain group or an aliphatic cyclic group.
  • an alkylene group having 1 to 20 carbon atoms is preferable, and an alkylene group having 1 to 10 carbon atoms is more preferable.
  • a divalent aliphatic cyclic group a cycloalkylene group having 3 to 20 carbon atoms is preferable, and a cycloalkylene group having 3 to 15 carbon atoms is more preferable.
  • L 20 is preferably —COO— or —OCO—, more preferably —COO—.
  • R 21 represents an alkyl group having 4 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom (hereinafter referred to as “fluoroalkyl group”). Or a monovalent organic group containing —Si (R a3 ) (R a4 ) O—, and each of R a3 and R a4 independently represents an alkyl group, a haloalkyl group or an aryl group.
  • fluoroalkyl group an alkyl group having 4 to 20 carbon atoms
  • R a4 an alkyl group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom
  • R a3 and R a4 independently represents an alkyl group, a haloalkyl group or an aryl group.
  • R 21 in the above formula (III) is a fluoroalkyl group having 1 to 20 carbon atoms because the adhesion of the antiglare layer to be formed to the antireflection layer is further improved.
  • R 21 in the above formula (III) is a fluoroalkyl group having 1 to 20 carbon atoms because the adhesion of the antiglare layer to be formed to the antireflection layer is further improved.
  • Are preferred more preferably a fluoroalkyl group having 1 to 18 carbon atoms, and even more preferably a fluoroalkyl group having 2 to 15 carbon atoms.
  • the number of fluorine atoms is preferably 1 to 25, more preferably 3 to 21, and most preferably 5 to 21.
  • the repeating unit represented by the above formula (III) is represented by the following formula (IV) from the viewpoint of adhesion between the antiglare layer to be formed and the antireflection layer, and radical polymerizability. It is preferably a repeating unit.
  • R 20 is same as R 20 in the formula (III), represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, a preferred embodiment also the same.
  • ma and na each independently represents an integer of 0 to 19.
  • ma is preferably an integer of 1 to 8, and more preferably an integer of 1 to 5.
  • Na is preferably an integer of 1 to 15, more preferably an integer of 1 to 12, further preferably an integer of 2 to 10, and most preferably an integer of 5 to 7. .
  • ma and na represent an integer of 0 to 19 in total.
  • X 21 represents a hydrogen atom or a fluorine atom is preferably a fluorine.
  • the monomer that forms the repeating unit represented by the above formula (III) or (IV) include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3, and the like. , 3,3-pentafluoropropyl (meth) acrylate, 2- (perfluorobutyl) ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) Acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, 2- (perfluoro-3-methylbutyl) ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (Perfluoro-7-methyloctyl) ethyl (meth) acrylate, 1H, 1H
  • the monovalent organic group containing —Si (R a3 ) (R a4 ) O— represented by R 21 in the above formula (III) is an organic group derived from a siloxane bond, and is represented by the following formula (VII It is more preferable that the structure is obtained by polymerizing a compound represented by
  • R a1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R a5 represents an alkyl group having 1 to 12 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. Is more preferable.
  • R a3 and R a4 each independently represent an alkyl group, a haloalkyl group, or an aryl group.
  • the alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, and examples thereof include a methyl group, an ethyl group, and a hexyl group.
  • the haloalkyl group is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, and examples thereof include a trifluoromethyl group and a pentafluoroethyl group.
  • the aryl group preferably has 6 to 20 carbon atoms, and examples thereof include a phenyl group and a naphthyl group.
  • R a3 and R a4 are preferably a methyl group, a trifluoromethyl group or a phenyl group, and particularly preferably a methyl group.
  • m represents an integer of 10 to 1000, preferably an integer of 20 to 500, more preferably an integer of 30 to 200.
  • Examples of the compound represented by the formula (VII) include polysiloxane macromers containing one terminal (meth) acryloyl group (for example, Silaplane 0721, 0725 (above, trade name, manufactured by JNC Corporation), AK-5, AK-30, AK-32 (trade name, manufactured by Toagosei Co., Ltd.), KF-100T, X-22-169AS, KF-102, X-22-3701IE, X-22-164B, X- 22-164C, X-22-5002, X-22-173B, X-22-174D, X-22-167B, X-22-161AS (above, trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) be able to.
  • polysiloxane macromers containing one terminal (meth) acryloyl group for example, Silaplane 0721, 0725 (above, trade name, manufactured by JNC Corporation), AK-5, AK-30, AK-32 (
  • the content of the repeating unit represented by the above formula (III) is preferably 2 to 80% by mass, and preferably 5 to 70% by mass with respect to all the repeating units. More preferably, it is 10 to 60% by mass.
  • the repeating unit represented by the said Formula (III) when it has the repeating unit represented by the said Formula (III) from the reason which the adhesiveness of the glare-proof layer and antireflection layer to be formed becomes favorable, when the said formula (I)
  • the content of the repeating unit represented by the formula (II) is 10 to 50% by mass with respect to all the repeating units, and the content of the repeating unit represented by the above formula (II) is 5 to 50% by mass with respect to all the repeating units.
  • the content of the repeating unit represented by the above formula (III) is preferably 10 to 60% by mass with respect to all the repeating units.
  • the polymer compound of the present invention may have a repeating unit (V part) represented by the following formula (V) from the viewpoint of good adhesion when an epoxy adhesive layer is provided. preferable.
  • R 30 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms is preferable, and a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable. Are more preferable, and a hydrogen atom or a methyl group is still more preferable.
  • Specific examples of the monomer that forms the repeating unit represented by the above formula (V) include acrylic acid and methacrylic acid.
  • the content of the repeating unit represented by the formula (V) is preferably 1 to 60% by mass, and preferably 2 to 40% by mass with respect to all the repeating units. More preferably, it is 4 to 20% by mass.
  • the polymer compound of the present invention may have a repeating unit other than the repeating units represented by the above formulas (I), (II), (III), and (V) as necessary.
  • acrylic esters include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, trimethylolpropane monoacrylate, benzyl acrylate, methoxybenzyl acrylate, phenoxy Examples include ethyl acrylate, furfuryl acrylate, and tetrahydrofurfuryl acrylate.
  • methacrylic acid esters Specific examples of the methacrylic acid esters include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, chloroethyl methacrylate, 2-hydroxyethyl methacrylate, trimethylolpropane monomethacrylate, benzyl methacrylate, methoxybenzyl methacrylate, and phenoxy. Examples include ethyl methacrylate, furfuryl methacrylate, tetrahydrofurfuryl methacrylate, and ethylene glycol monoacetoacetate monomethacrylate.
  • acrylamides include, for example, acrylamide, N-alkyl acrylamide (alkyl groups having 1 to 3 carbon atoms, such as methyl, ethyl, propyl), N, N-dialkyl acrylamide (alkyl Examples of the group include those having 1 to 6 carbon atoms), N-hydroxyethyl-N-methylacrylamide, N-2-acetamidoethyl-N-acetylacrylamide, and the like.
  • methacrylamides include, for example, methacrylamide, N-alkyl methacrylamide (alkyl groups having 1 to 3 carbon atoms, such as methyl, ethyl, propyl), N, N-dialkyl. Examples thereof include methacrylamide (alkyl group having 1 to 6 carbon atoms), N-hydroxyethyl-N-methylmethacrylamide, N-2-acetamidoethyl-N-acetylmethacrylamide and the like.
  • allyl compound Specific examples of the allyl compound include allyl esters (for example, allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, allyl lactate). And allyloxyethanol.
  • allyl esters for example, allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, allyl lactate.
  • allyloxyethanol for example, allyl esters (for example, allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, allyl lactate).
  • vinyl ethers include alkyl vinyl ethers (eg, hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethyl hexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether, 1-methyl-2,2-dimethylpropyl).
  • alkyl vinyl ethers eg, hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethyl hexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether, 1-methyl-2,2-dimethylpropyl.
  • Examples thereof include vinyl ether, 2-ethylbutyl vinyl ether, hydroxyethyl vinyl ether, diethylene glycol vinyl ether, dimethylaminoethyl vinyl ether, diethylaminoethyl vinyl ether, butylaminoethyl vinyl ether, benzyl vinyl ether, and tetrahydrofurfuryl vinyl ether.
  • vinyl esters include, for example, vinyl acetate, vinyl butyrate, vinyl isobutyrate, vinyl trimethyl acetate, vinyl diethyl acetate, vinyl valate, vinyl caproate, vinyl chloroacetate, vinyl dichloroacetate, Examples thereof include vinyl methoxyacetate, vinyl butoxyacetate, vinyl lactate, vinyl- ⁇ -phenylbutyrate, vinylcyclohexylcarboxylate and the like.
  • dialkyl itaconates examples include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.
  • the content in the case of having other repeating units is preferably 1 to 50% by mass, more preferably 1 to 30% by mass, more preferably 1 to 20% by mass with respect to all repeating units. % Is more preferable.
  • the weight average molecular weight (Mw) of the polymer compound of the present invention is preferably 1,000 to 200,000, more preferably 1500 to 100,000, and still more preferably 3000 to 60,000.
  • the number average molecular weight (Mn) of the polymer compound of the present invention is preferably 500 to 40000, more preferably 600 to 35000, and still more preferably 600 to 30000.
  • the dispersity (Mw / Mn) of the polymer compound of the present invention is preferably 1.00 to 12.00, more preferably 1.00 to 11.00, and even more preferably 1.00 to 10.00.
  • a weight average molecular weight and a number average molecular weight are the values measured on condition of the following by gel permeation chromatography (GPC).
  • polymer compound of the present invention having each repeating unit described above include compounds represented by the following formulas (A-1) to (A-22).
  • the compounds represented by the following formulas (A-1) to (A-22) include, for example, a compound having a hydroxyl group in the antireflection layer (a hydroxyl group appearing after ring opening of a compound having an epoxy group, a silane coupling site) And a covalent bond can be formed with a hydroxyl group or the like appearing after hydrolysis of a compound having a hydrogen atom.
  • the formation of covalent bonds is confirmed by obliquely cutting the antiglare antireflection film, measuring the micro Raman spectrum near the interface between the antiglare layer and the antireflection layer, and analyzing the Raman band of the covalent boric acid. be able to.
  • the content of the polymer compound of the present invention is 0.0001 to 40% by mass when the total solid content (all components excluding the solvent) of the composition for forming an antiglare layer of the present invention is 100% by mass.
  • the content is 0.001 to 20% by mass, and more preferably 0.1 to 5% by mass.
  • the antiglare layer of the present invention may contain other polymer compounds. By adding a polymer compound, curing shrinkage can be reduced, or the viscosity of the coating liquid (antiglare layer forming composition) can be adjusted.
  • the polymer compound has already formed a polymer when added to the coating solution.
  • the polymer compound include cellulose esters (for example, cellulose triacetate, cellulose diacetate, cellulose propionate, cellulose acetate Pionate, cellulose acetate butyrate, cellulose nitrate, etc.), urethane acrylates, polyester acrylates, (meth) acrylic acid esters (for example, methyl methacrylate / (meth) methyl acrylate copolymer, methyl methacrylate / (Meth) ethyl acrylate copolymer, methyl methacrylate / (meth) butyl acrylate copolymer, methyl methacrylate / styrene copolymer, methyl methacrylate / (meth) acrylic acid copolymer, polymethyl methacrylate etc), Resins such as polystyrene are preferably used.
  • the polymer compound is preferably 1 to 50% by mass, more preferably 5 to 40%, based on the total binder contained in the layer containing the polymer compound, from the viewpoint of the effect on curing shrinkage and the effect of increasing the viscosity of the coating solution. It is preferable to contain in the range of mass%.
  • the molecular weight of the polymer compound is preferably from 30,000 to 400,000 in terms of mass average, more preferably from 50,000 to 300,000, and even more preferably from 50,000 to 200,000.
  • the antireflection layer of the antiglare antireflection film of the present invention will be described.
  • the antiglare antireflection film of the present invention has an integral reflectance of 1.0% or less, a specular reflectance of 0.4% or less, and the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film.
  • the average thickness of the antireflection layer in the recess (ratio of the average thickness of the antireflection layer in the protrusion to the average thickness of the antireflection layer in the recess) is 1.0 to 0.7.
  • the antireflection layer is not particularly limited as long as it satisfies the above conditions. In the present invention, when the antireflection layer is a multilayer, the above relationship is established for each layer.
  • the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film and the average thickness of the antireflection layer at the concave portion of the antiglare antireflection film will be described.
  • the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film is as follows. The antireflection layer in the concave portion of the antiglare antireflection film is obtained.
  • the antireflection layer is a moth-eye layer
  • the surface of the antiglare antireflection film should be observed because it may be difficult to obtain in the same manner as described below in ⁇ When the antireflection layer is not a motheye layer>.
  • the convex and concave portions of the antiglare layer are formed by leveling the coating liquid (antireflection layer forming composition).
  • the coating amount becomes uneven and the number of particles is sparse and dense (that is, the number of particles in the convex portion decreases (becomes a sparse portion) and the number of particles increases in the concave portion (becomes a dense portion)).
  • the sparse part can be considered as a convex part
  • the dense part can be considered as a concave part
  • (the number of particles in the sparse part / the number of particles in the dense part) is (reflective part of the convex part).
  • the thickness of the anti-reflection layer / the thickness of the anti-reflection layer in the concave portion).
  • the antireflection layer is formed on the antiglare layer by transfer, the density of the particles hardly occurs in the antireflection layer.
  • the randomly selected portions are regarded as convex portions and concave portions, and the number of each particle is counted, and can be considered as (film thickness of the antireflection layer of the convex portion / film thickness of the antireflection layer of the concave portion).
  • the measurement value calculated from the following method can be used as the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film and the average thickness of the antireflection layer at the concave portion.
  • the surface SEM observation at low magnification determines the dense and sparse parts of the particles, the sparse part is a convex part, the dense part is a concave part, and the number of particles existing in a 10 ⁇ m ⁇ 10 ⁇ m square is expanded. Count. If there is no dense part and sparse part in the above method (the dense part and the sparse part are indistinguishable and are uniform throughout), the randomly selected field of view is the same as the convex part and concave part. Measurements shall be conducted.
  • the average value of the antireflective layer in the convex part of the antiglare antireflection film / the average thickness of the antireflective layer in the concave part can be obtained by averaging the measured values of 10 times and taking the ratio. Determining dense and sparse parts of particles by surface SEM observation at low magnification will be described in more detail with reference to the drawings.
  • Fig.1 (a) is an example of the surface SEM image of the glare-proof antireflection film at the time of forming an antireflection layer by application
  • FIG. 1B is an enlarged view of FIG.
  • the size of the sparse part is smaller than 10 ⁇ m ⁇ 10 ⁇ m square, an area smaller than the size of the sparse part can be designated and the number of particles in the area can be counted.
  • FIG. 2A is an example of a surface SEM image of the antiglare antireflection film when the antireflection layer is formed by transfer
  • FIG. 2B is an enlargement of FIG. 2A.
  • the dense and sparse parts of the particles cannot be distinguished and are uniform throughout. Accordingly, the number of particles is counted in the same manner as described above, with the randomly selected portions as convex portions and concave portions.
  • the average thickness of the antireflection layer at the convex portion and the average thickness of the antireflection layer at the concave portion of the antiglare antireflection film can be calculated by the following methods. That is, by observing with an optical microscope or the like, the convex part of the antiglare layer is marked with a scribing pen or the like, and the cross section cut to include the marked part (marking part) is an optical microscope or a scanning electron microscope (SEM). ) Etc., the film thickness of the antireflection layer is calculated.
  • the convex portion is the thickness of the thinnest portion of the antireflection layer near the marking portion, and the concave portion is the thickest portion of the antireflection layer in the cross section, and the average thickness is 10 times. Use the average value of the measurement.
  • the average thickness of the antireflection layer at the convex portions of the antiglare antireflection film / the average thickness of the antireflection layer at the concave portions is preferably 1.0 to 0.7, and preferably 1.0 to 0.9. Preferably, 1.0 is most preferable. As the ratio is closer to 1.0, an antiglare antireflection film having better reflectance and haze characteristics can be obtained.
  • Moth eye layer As a specific example of a preferred antireflection layer of the present invention, it contains particles having an average primary particle size of 100 nm or more and 250 nm or less and a binder resin, and has a moth-eye structure of the particles on the surface opposite to the interface with the antiglare layer.
  • An antireflection layer may be mentioned.
  • the moth-eye structure is a processed surface of a substance (material) for suppressing light reflection, and refers to a structure having a periodic fine structure pattern. In particular, for the purpose of suppressing the reflection of visible light, it refers to a structure having a fine structure pattern with a period of less than 780 nm.
  • the period of the fine structure pattern is less than 380 nm because the color of the reflected light is eliminated.
  • a period of 100 nm or more is preferable because light with a wavelength of 380 nm can recognize a fine structure pattern and is excellent in antireflection properties.
  • the presence or absence of the moth-eye structure can be confirmed by observing the surface shape with a scanning electron microscope (SEM), an atomic force microscope (AFM), or the like, and examining whether the fine structure pattern is formed.
  • SEM scanning electron microscope
  • AFM atomic force microscope
  • the antireflection layer of the antiglare antireflection film of the present invention may be an antireflection layer (also referred to as “other antireflection layer”) that is not a moth-eye layer.
  • the other antireflection layer include an antireflection layer including a low refractive index layer.
  • a low refractive index layer is a layer whose refractive index (refractive index of wavelength 500nm) is lower than a base film.
  • the low refractive index layer is preferably a fluorine-containing compound that is cured by heat or ionizing radiation.
  • curable fluorine-containing polymer compounds include perfluoroalkyl group-containing silane compounds (for example, (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane) and the like, as well as addition of fluorine-containing monomers and crosslinkable groups. And a fluorine-containing copolymer having a monomer as a constituent unit.
  • fluorine-containing monomer unit examples include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.
  • fluoroolefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.
  • (Meth) acrylic acid partial or fully fluorinated alkyl ester derivatives for example, Biscoat 6FM (manufactured by Osaka Organic Chemical Co., Ltd.), M-2020 (manufactured by Daikin)), fully or partially fluorinated vinyl ether
  • Biscoat 6FM manufactured by Osaka Organic Chemical Co., Ltd.
  • M-2020 manufactured by Daikin
  • hexafluoropropylene is particularly preferable from the viewpoint of low refractive index and ease of handling of the monomer.
  • a monomer for imparting a crosslinkable group in addition to a (meth) acrylate monomer having a crosslinkable functional group in the molecule in advance such as glycidyl methacrylate, it has a carboxyl group, a hydroxyl group, an amino group, a sulfonic acid group, etc. ) Acrylate monomers (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, etc.).
  • olefins ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.
  • acrylic esters methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid 2) -Ethylhexyl
  • methacrylates methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.
  • styrene derivatives styrene, divinylbenzene, vinyl toluene, ⁇ -methylstyrene, etc.
  • vinyl ethers methyl) Vinyl ethers
  • vinyl esters vinyl acetate, vinyl propionate, vinyl cinnamate, etc.
  • acrylamides N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.
  • methacrylamides Krilo can be exemplified nitrile derivatives, disclosed by Japanese Patent Laid
  • the antireflection layer preferably further has a high refractive index layer in addition to the low refractive index layer.
  • the low refractive index layer is a layer having a higher refractive index (refractive index at a wavelength of 500 nm) than the base film.
  • the high refractive index layer is formed by applying a coating composition containing inorganic fine particles having a high refractive index, a thermal or ionizing radiation curable monomer, an initiator and a solvent, drying the solvent, curing by heat and / or ionizing radiation.
  • the inorganic fine particles are preferably made of at least one metal oxide selected from oxides of Ti, Zr, In, Zn, Sn, and Sb.
  • the thus formed high refractive index layer is superior in scratch resistance and adhesion as compared with a layer obtained by applying and drying a polymer solution having a high refractive index.
  • it contains a polyfunctional (meth) acrylate monomer and an anionic group as described in JP-A No. 11-153703 and Patent No. US6210858 B1 It is preferable that a (meth) acrylate dispersant is contained in the coating composition.
  • the average particle diameter of the inorganic fine particles is preferably 1 to 100 nm as an average particle diameter measured by a Coulter counter method.
  • the haze of the high refractive index layer is preferably 3% or less, more preferably 1% or less, and still more preferably 0.5% or less.
  • the antireflection layer may further have a medium refractive index layer in addition to the low refractive index layer and the high refractive index layer.
  • l is 1
  • n1 is the refractive index of the medium refractive index layer
  • d1 is the layer thickness (nm) of the medium refractive index layer
  • m is 2
  • n2 is highly refractive.
  • the refractive index of the refractive index layer, and d2 is the layer thickness (nm) of the high refractive index layer, n is 1, n3 is the refractive index of the low refractive index layer, and d3 is the low refractive index.
  • n1 is relative to the base film having a refractive index of 1.45 to 1.55. It is preferable that the refractive index is 1.60 to 1.65, n2 is 1.85 to 1.95, and n3 is 1.35 to 1.45.
  • n2 is 1.85 to 1.5 with respect to the base film having a refractive index of 1.45 to 1.55.
  • 95 and n3 preferably have a refractive index of 1.35 to 1.45.
  • the base film in the antiglare antireflection film of the present invention can be variously used, but is preferably a plastic base film, for example, a cellulose resin; cellulose acylate (triacetate cellulose, diacetyl cellulose, acetate (Butyrate cellulose) and the like, polyester resins; polyethylene terephthalate and the like, (meth) acrylic resins, polyurethane resins, polycarbonates, polystyrenes, olefinic resins and the like, and cellulose acylate, polyethylene terephthalate, A base material containing a (meth) acrylic resin is preferred, and a base material containing cellulose acylate is more preferred.
  • a plastic base film for example, a cellulose resin; cellulose acylate (triacetate cellulose, diacetyl cellulose, acetate (Butyrate cellulose) and the like, polyester resins; polyethylene terephthalate and the like, (meth) acrylic resins, polyurethane resins
  • the base material described in JP 2012-093723 A can be preferably used.
  • the thickness of the base film is usually about 10 ⁇ m to 1000 ⁇ m, but is preferably 20 ⁇ m to 200 ⁇ m, more preferably 25 ⁇ m to 100 ⁇ m from the viewpoint of good handleability, high transparency, and sufficient strength. preferable.
  • As the transparency of the base film those having a transmittance of 90% or more are preferable.
  • the antiglare antireflection film of the present invention preferably has an adhesive layer between the antiglare layer and the antireflection layer.
  • an adhesive layer between the antiglare layer and the antireflection layer.
  • it does not specifically limit as an adhesive agent which forms a contact bonding layer, In addition to a polyvinyl alcohol-type adhesive agent, an epoxy-type active energy ray hardening-type adhesive agent, an acrylate type ultraviolet curing adhesive agent, etc. can be used.
  • an adhesive that contains an epoxy compound that does not contain an aromatic ring in the molecule and is cured by heating or irradiation with active energy rays as disclosed in JP-A-2004-245925, disclosed in JP-A-2008-174667
  • active energy ray-curable adhesive containing a (meth) acrylic compound having only one ionic double bond and (c) phenolethylene oxide-modified acrylate or nonylphenolethylene oxide-modified acrylate.
  • the antireflection layer is the moth-eye layer
  • a (meth) acrylate-based UV curable adhesive from the viewpoint of adhesion between the antiglare layer and the moth-eye layer, and moreover, a polyfunctional (meth) acrylate is used.
  • the acrylate ultraviolet rays contained can be preferably used.
  • the thickness of the adhesive layer is preferably 0.01 to 3.0 ⁇ m, more preferably 0.01 to 1.0 ⁇ m, and still more preferably 0.01 to 0.6 ⁇ m.
  • a thinner adhesive layer is preferable because an antiglare antireflection film having excellent antiglare properties can be obtained without impairing the antiglare properties of the antiglare film.
  • the antiglare antireflection film of the present invention has an uneven shape on the surface on the antireflection layer side, the uneven shape has an arithmetic average roughness (Ra) of 0.03 ⁇ m ⁇ Ra ⁇ 0.4 ⁇ m, and The average interval (Sm) of the irregularities is 20 ⁇ m ⁇ Sm ⁇ 700 ⁇ m.
  • the arithmetic average roughness (Ra) and the average interval (Sm) of the unevenness are measured based on JIS B-0601 (1994).
  • Arithmetic average roughness (Ra) and average interval (Sm) of surface irregularities are measured using a measuring instrument according to JIS B-0601 (1994), for example, a surf coder MODEL SE-3F manufactured by Kosaka Laboratory. can do.
  • corrugated shaped Ra and Sm measured by the said measurement are uneven
  • the arithmetic average roughness (Ra) is 0.03 ⁇ m ⁇ Ra ⁇ 0.4 ⁇ m, and preferably 0.1 ⁇ m ⁇ Ra ⁇ 0.4 ⁇ m.
  • the Ra value is 0.03 ⁇ m or more, it is easy to obtain a sufficient surface uneven structure capable of obtaining good antiglare properties, and when it is 0.4 ⁇ m or less, an uneven structure having an appropriate haze value is easily obtained. Therefore, it is preferable.
  • the thickness is 0.1 ⁇ m or more, an antiglare antireflection film having high antiglare properties is obtained, which is preferable.
  • the thickness is 0.1 ⁇ m or more, the reflectance when the antireflection layer is formed by coating is likely to increase, so that the merit of the method of forming the antireflection layer by the transfer of the present invention can be greatly obtained.
  • the antireflection layer easily follows the unevenness of the antiglare layer when the antireflection layer is transferred, and is preferably 700 ⁇ m or less from the viewpoint of securing the antiglare performance.
  • the production method of the antiglare antireflection film of the present invention is as follows: A method for producing an antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order, On the base film, a composition for forming an antiglare layer containing a binder resin forming compound for an antiglare layer and particles for the antiglare layer is applied, and the composition for forming an antiglare layer is formed by irradiation with ionizing radiation or heating.
  • step I A step of curing and forming an antiglare layer (step I); A step of applying an antireflection-forming composition on a temporary support and semi-curing it at a surface curing rate of 10 to 70% by irradiation with ionizing radiation or heating to form an antireflection layer (step II); A step of transferring the antireflection layer from the temporary support onto the surface of the antiglare layer opposite to the side having the base film (step III); It is a manufacturing method of the anti-glare antireflection film which has this.
  • the method for producing an antiglare antireflection film of the present invention comprises applying a composition for forming an antiglare layer containing a binder resin forming compound for an antiglare layer and particles for the antiglare layer on a base film, and ionizing radiation. It has the process of hardening the said composition for glare-proof layer formation by irradiation or a heating, and forming the glare-proof layer, ie, the process of forming the glare-proof film which has the said base film and the said glare-proof layer.
  • the base film is as described above.
  • the composition for forming an antiglare layer contains a binder resin forming compound for an antiglare layer and particles for the antiglare layer.
  • the binder resin-forming compound for the antiglare layer and the particles for the antiglare layer are as described above. It is preferable that the composition for forming an antiglare layer further contains a solvent.
  • the solvent varies depending on the components constituting the substrate film, but in the case of a cellulose acylate substrate, for example, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), dimethyl carbonate, methyl acetate, acetone, methylene chloride and the like are preferable.
  • Methyl ethyl ketone (MEK), dimethyl carbonate, and methyl acetate are more preferable.
  • dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, acetone, methyl ethyl ketone (MEK), cyclopentanone, cyclohexanone methyl acetate, ethyl acetate and the like are preferable.
  • the solvent used for these anti-glare layer forming compositions may be used alone or in combination of two or more.
  • the composition for forming an antiglare layer may contain a polymerization initiator.
  • the binder resin forming compound for an antiglare layer contained in the composition for forming an antiglare layer is a photopolymerizable compound, it is preferable to include a photopolymerization initiator.
  • photopolymerization initiators acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds
  • examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
  • the content of the photopolymerization initiator in the antiglare layer forming composition is sufficiently large to polymerize the binder resin forming compound for the antiglare layer contained in the antiglare layer forming composition, and the starting point is excessively increased.
  • the amount is preferably set to a sufficiently small amount so that it is preferably 0.5 to 8% by mass, more preferably 1 to 5% by mass with respect to the total solid content in the composition for forming an antiglare layer.
  • the application method of the composition for forming an antiglare layer is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.
  • step I the antiglare layer-forming composition applied on the base film is cured by irradiation with ionizing radiation or heating to form an antiglare layer.
  • the solvent is preferably dried.
  • the ionizing radiation species in the formation of the antiglare layer of the present invention are not particularly limited, and depending on the type of the binder resin forming compound for the antiglare layer, ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays and the like can be selected as appropriate, but ultraviolet rays and electron beams are preferred, and ultraviolet rays are particularly preferred because they are easy to handle and high energy can be easily obtained.
  • any light source that generates ultraviolet light can be used.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be preferably used.
  • Irradiation conditions vary depending on each lamp, but the amount of irradiation light is preferably 1 mJ / cm 2 or more, more preferably 1 to 2000 mJ / cm 2 .
  • the surface hardening rate of the antiglare layer before lamination of the antireflection layer can be adjusted, preferably 10% or less, more preferably 5% or less, most preferably Is cured by irradiation with ionizing radiation in an oxygen concentration atmosphere of 2% or less.
  • the heating may be combined with the heating at the time of solvent drying in the above-described composition for forming an antiglare layer, or may be heated separately from the heating at the time of solvent drying.
  • suitable heating conditions vary depending on the type of substrate film to be used, the heating conditions are preferably 60 ° C. or higher, more preferably 60 to 150 ° C., and particularly preferably 60 to 130 ° C.
  • the heating time is preferably 10 seconds to 3 minutes from the viewpoint of ease of production.
  • the surface hardening rate of the antiglare layer before the step of forming the antireflection layer is preferably 80% or less. It is more preferably 10% to 70%, and further preferably 20% to 60%.
  • the surface curing rate of the antiglare layer before lamination of the antireflection layer is 60% or less, the adhesion between the antireflection layer and the antiglare layer becomes good, and when it is 20% or more, pressure is applied to the antiglare layer. This is preferable because deformation and layer breakage when added can be prevented.
  • the surface cure rate was determined by measuring the peak (1660-1800 cm ⁇ 1 ) area of the carbonyl group and the peak height (808 cm ⁇ 1 ) of the double bond for each of the uncured product and the cured product by IR measurement. It can be calculated by dividing the normalized peak height of the bond by the normalized peak height of the double bond of the uncured product.
  • the surface of the antiglare layer may be subjected to surface treatment, and then the antireflection layer may be formed.
  • the surface treatment in this case include a method of modifying the film surface by corona discharge treatment, glow discharge treatment, ultraviolet irradiation treatment, flame treatment, ozone treatment, acid treatment, alkali treatment or the like.
  • the glow discharge treatment here may be low-temperature plasma that occurs under a low pressure gas of 10 ⁇ 3 to 20 Torr, and plasma treatment under atmospheric pressure is also preferred.
  • a plasma-excitable gas is a gas that is plasma-excited under the above conditions, and includes chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, tetrafluoromethane, and mixtures thereof. It is done. Details of these are described in detail in pages 30 to 32 of the Invention Association Public Technical Bulletin No. 2001-1745 (issued March 15, 2001, Invention Association), and are preferably used in the present invention. be able to. Of these treatments, plasma treatment and corona treatment are preferred.
  • plasma treatment examples include vacuum glow discharge and atmospheric pressure glow discharge, and other methods include flame plasma treatment and the like.
  • methods described in JP-A-6-123062, JP-A-11-293011, JP-A-11-5857 and the like can be used.
  • Corona discharge treatment can be performed by any conventionally known method, for example, Japanese Patent Publication Nos. 48-5043, 47-51905, Japanese Patent Publication Nos. 47-28067, 49-83767, and 51-41770. This can be achieved by the methods disclosed in JP-A-51-131576, JP-A-2001-272503, and the like.
  • the method for producing an antiglare antireflection film of the present invention comprises applying an antireflection forming composition on a temporary support, and semi-curing it at a surface curing rate of 10 to 70% by irradiation with ionizing radiation or heating. Forming a step.
  • the temporary support will be described later in the moth-eye layer forming method.
  • the composition for forming an antireflection layer contains a compound for forming a binder resin and a solvent.
  • a compound having a polymerizable functional group preferably an ionizing radiation curable compound
  • the compound having a polymerizable functional group various monomers, oligomers, or polymers can be used, and the polymerizable functional group (polymerizable group) is preferably a light, electron beam, or radiation-polymerizable one, and particularly, photopolymerization.
  • a functional group is preferred.
  • photopolymerizable functional group examples include polymerizable unsaturated groups (carbon-carbon unsaturated double bond groups) such as (meth) acryloyl group, vinyl group, styryl group, and allyl group. ) An acryloyl group is preferred. Specific examples are the same as those described for the moth-eye layer described later.
  • methyl ethyl ketone MK
  • dimethyl carbonate methyl ethyl carbonate
  • diethyl carbonate diethyl carbonate
  • acetone cyclopentanone
  • cyclohexanone methyl acetate
  • ethyl acetate butyl acetate
  • ethanol methanol
  • Isopropyl alcohol is preferred, and each solvent may be used alone or in combination of two or more.
  • the composition for forming an antireflection layer may contain a polymerization initiator, and specific examples and preferred examples of the polymerization initiator are the same as those for the composition for forming an antiglare layer.
  • the solid content concentration of the composition for forming an antireflection layer is preferably 1% by mass or more and 90% by mass or less.
  • the content of the compound for forming a binder resin is preferably 10% by mass or more and 97% by mass or less based on the total solid content of the composition for forming an antireflection layer.
  • the composition for forming an antireflection layer may contain a polymerization initiator.
  • the binder resin forming compound is a photopolymerizable compound, it is preferable to include a photopolymerization initiator.
  • the photopolymerization initiator is the same as that described in the moth-eye layer described later.
  • the method for applying the composition for forming an antireflection layer is the same as the method for applying the composition for forming an antiglare layer.
  • the preferable conditions of ionizing radiation irradiation or heating are preferably an ionizing radiation dose of 1 mJ / cm 2 or more, more preferably 2 to 2000 mJ / cm 2 , and the oxygen concentration during ionizing radiation irradiation is preferably 0.1% or less. More preferably, it is 0.01% or less, and most preferably 0.005% or less.
  • the heating condition is preferably 60 ° C. or higher, more preferably 60 to 150 ° C., particularly preferably 80 to 130 ° C., and the heating time is preferably 10 seconds to 10 minutes, more preferably 30 seconds to 5 minutes. .
  • the surface hardening rate of the antireflection layer before transferring to the antiglare layer is 10 to 70%, 20 to 60%. It is more preferable that When the surface hardening rate is 10% or more, it is possible to prevent a part of the antireflection layer from being deformed during transfer and to prevent the antireflection ability from being lowered, and the surface hardening rate is 70% or less. Thereby, the adhesiveness of an anti-glare layer and an antireflection layer can be kept favorable. When the surface curing rate is 20 to 60%, the adhesion between the antiglare layer and the antireflection layer can be kept better, and the effect of improving the scratch resistance is great.
  • the surface curing rate can be calculated by the same measurement method as the surface curing rate of the antiglare layer. If the film thickness of the antireflection layer is thin and it is difficult to obtain measurement data of only the antireflection layer, an antireflection layer with an increased film thickness for surface hardening rate measurement is prepared and the same measurement is performed. The calculated surface hardening rate can be used as the surface hardening rate for convenience.
  • the manufacturing method of the anti-glare antireflection film of the present invention includes a step of transferring the anti-reflection layer from the temporary support to the surface opposite to the side having the base film of the anti-glare layer.
  • the temporary support After attaching the antireflection layer and the surface of the antiglare layer on the side opposite to the side having the base film with a nip roller, etc., after passing through the process of adhering both together, the temporary support is removed to prevent reflection.
  • the layer is transferred to the surface opposite to the side having the base film of the antiglare layer.
  • a compound having a polymerizable functional group contained in both is made of light, an electron beam, or Polymerization with radiation or the like or heat is preferred, and photopolymerization is most preferred.
  • the adhesive layer is as described above.
  • the irradiation dose when curing the adhesive layer with the ionizing radiation dose is preferably 50 mJ / cm 2 or more, more preferably 100 to 2000 mJ / cm 2.
  • the oxygen concentration at the time of ionizing radiation irradiation is preferably 0.00. 1% or less, more preferably 0.01% or less, and most preferably 0.005% or less.
  • the heating conditions at the time of adhesion can be appropriately adjusted according to the adhesion and permeability of the antireflection layer or the antiglare layer.
  • the method for producing an antiglare and antireflection film of the present invention preferably includes a step of heating in a state where the antireflection layer and the antiglare layer are bonded together.
  • the adhesion between the antireflection layer and the antiglare layer can be improved.
  • the temperature and time of a heating it can adjust suitably according to an antireflection layer or a glare-proof layer.
  • a moth-eye layer can be mentioned as a preferred antireflection layer of the present invention.
  • the method for producing an antiglare antireflection film in which the antireflection layer of the present invention is a moth-eye layer On the temporary support, particles (a2) having an average primary particle size of 100 nm or more and 250 nm or less and the curable compound (a1) are mixed with the particles (a2) in the layer (a) containing the curable compound (a1).
  • a step (1) of providing the thickness to be buried A step (2) of obtaining a layer (ca) by curing a part of the layer (a); A step (3) of bonding the layer (b) of the pressure-sensitive adhesive film having a support and a layer (b) containing a pressure-sensitive adhesive on the support to the layer (ca); The layer (ca) is embedded such that the particles (a2) are embedded in the layer including the layer (ca) and the layer (b) and protrude from the interface of the layer (ca) on the support side.
  • the particles (a2) are embedded in a layer combining the layer (ca) and the layer (b). It is preferable to have a step (4-2) of partially curing.
  • the particles (a2) are separated from the interface on the side opposite to the base film side of the layer (ca).
  • a step (9) of curing the layer (ca) in a protruding state; Cleaning with solvent (10) are more preferable in this order.
  • the thickness at which the particles (a2) are buried in the layer (a) means that the thickness of the layer (a) is 0.8 times or more the average primary particle diameter of the particles (a2).
  • the particle (a2) is buried in the layer including the layer (ca) and the layer (b) means that the thickness of the layer including the layer (ca) and the layer (b) is combined. Represents 0.8 times or more the average primary particle size of the particles (a2).
  • step (1) the layer (a) is formed with a thickness at which the particles (a2) are buried. Therefore, in step (4) and subsequent steps, the surface protruding from the layer (ca) of the particles (a2) is the layer.
  • a thin layer of (ca) may cover.
  • the particles (a2) covered with the thin layer are also referred to as particles (a2) for convenience.
  • FIG. 3 shows a schematic diagram of an example of steps (1) to (5).
  • FIG. 4 shows a schematic diagram of an example of steps (6) to (10).
  • Step (1) the curable compound (a1) and the particles (a2) having an average primary particle size of 100 nm to 250 nm are placed on the temporary support in the layer (a) containing the curable compound (a1).
  • the particles (a2) are provided in such a thickness that they are buried.
  • the “thickness in which the particles (a2) are buried in the layer (a)” represents a thickness that is 0.8 times or more the average primary particle diameter of the particles (a2). .
  • the method for providing the layer (a) on the temporary support is not particularly limited, but it is preferable to provide the layer (a) on the temporary support.
  • the layer (a) is a layer formed by applying a composition for forming a layer (a) containing the curable compound (a1) and particles (a2) having an average primary particle size of 100 nm to 250 nm. . That is, the composition for forming a layer (a) corresponds to the above-described composition for forming an antireflection layer.
  • a coating method is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.
  • a plurality of particles (a2) do not exist in a direction perpendicular to the surface of the layer (a).
  • the fact that a plurality of particles (a2) do not exist in the direction perpendicular to the surface of the layer (a) is that 10 ⁇ m ⁇ 10 ⁇ m in the plane of the layer (a) was observed with three fields of view with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the ratio of the number of particles (a2) that are not overlapped in the direction orthogonal to the surface is 80% or more, preferably 95% or more.
  • the temporary support is not particularly limited as long as the support has a smooth surface.
  • the temporary support preferably has a surface flatness with a surface roughness of about 30 nm or less, and does not interfere with the application of the composition for forming the layer (a).
  • Temporary supports made of various materials are used. For example, a polyethylene terephthalate (PET) film or a cycloolefin-based resin film is preferably used.
  • PET polyethylene terephthalate
  • a cycloolefin-based resin film is preferably used.
  • the surface roughness of the temporary support is measured using SPA-400 (manufactured by Hitachi High-Technology) under the measurement conditions of measurement range 5 ⁇ m ⁇ 5 ⁇ m, measurement mode: DFM, measurement frequency: 2 Hz.
  • the layer (a) is a layer containing a curable compound (a1) and particles (a2) having an average primary particle size of 100 nm to 250 nm.
  • the curable compound (a1) contained in the layer (a) can be a resin (binder resin) in the antireflection layer by being cured. That is, the curable compound (a1) is a kind of binder compound.
  • the curable compound (a1) corresponds to the above-described binder resin forming compound.
  • the particles (a2) having an average primary particle size of 100 nm or more and 250 nm or less contained in the layer (a) protrude from the surface of the film (layer (ca)) made of a binder resin in the finished antiglare antireflection film.
  • the film thickness of the layer (a) in the step (1) is preferably 0.8 times or more and 2.0 times or less, and 0.8 times or more and 1.5 times or less the average primary particle diameter of the particles (a2). It is more preferable that it is 0.9 times or more and 1.2 times or less.
  • a compound having a polymerizable functional group (preferably an ionizing radiation curable compound) is preferable.
  • the compound having a polymerizable functional group various monomers, oligomers, or polymers can be used, and the polymerizable functional group (polymerizable group) is preferably a light, electron beam, or radiation-polymerizable one, and particularly, photopolymerization.
  • a functional group is preferred.
  • the photopolymerizable functional group include polymerizable unsaturated groups (carbon-carbon unsaturated double bond groups) such as (meth) acryloyl group, vinyl group, styryl group, and allyl group. ) An acryloyl group is preferred.
  • the compound having a polymerizable unsaturated group include (meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate; (Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate; (Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate; (Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis ⁇ 4- (acryloxydiethoxy) phenyl ⁇ propane, 2-2bis ⁇ 4- (acryloxypolypropoxy) pheny
  • epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the compound having a photopolymerizable functional group.
  • esters of polyhydric alcohol and (meth) acrylic acid are preferable. More preferably, at least one polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferably contained.
  • polyfunctional acrylate compounds having a (meth) acryloyl group include KAYARAD DPHA, DPHA-2C, PET-30, TMPTA, TPA-320, and TPA- manufactured by Nippon Kayaku Co., Ltd. 330, RP-1040, T-1420, D-310, DPCA-20, DPCA-30, DPCA-60, GPO-303, V # 3PA, V from Osaka Organic Chemical Industry Co., Ltd.
  • esterified products of polyols such as # 400, V # 36095D, V # 1000, V # 1080, and (meth) acrylic acid.
  • UV-1400B Purple light UV-1400B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7630B, UV-7640B UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3310EA, UV-3310EA, UV-3310B, UV-3500BA UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA, UV-2250EA (manufactured by Nippon Synthetic Chemical Co., Ltd.), UA-306H, UA-306I, UA-306T, UL-503L (Kyoeisha Chemical Co., Ltd.), Unidic 17-806, 17-813, V-4030, V-4000BA (Dainippon Ink Chemical Co., Ltd.), EB-1290
  • resins having three or more polymerizable functional groups such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, Also included are oligomers or prepolymers such as polyfunctional compounds such as polyhydric alcohols.
  • JP-A-2005-76005 and JP-A-2005-36105 dendrimers such as SIRIUS-501 and SUBARU-501 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), JP-A-2005-60425 Norbornene ring-containing monomers as described in Japanese Patent Publication No. Gazette can also be used.
  • the curable compound (a1) an oligomer or prepolymer having a Si—O bond as a main skeleton and having a polymerizable functional group.
  • the general formula R 1 x An oligomer composed of a compound having one or more Si atoms and one or more C atoms in the molecule and having a polymerizable group, represented by —Si (OR 2 ) 4-x .
  • a compound having a Si—O bond as a main skeleton has little absorption of visible light to UV light, and is particularly excellent in blue light resistance.
  • Specific examples include a cage silsesquioxane compound containing a polymerizable group described in JP 2011-84672 A, or JP 2017-8148 A and JP 6219250 A. Examples thereof include polyorganosilsesquioxane compounds containing an epoxy group.
  • the curable compound (a1) when a compound having a polymerizable functional group is used as the curable compound (a1), the curable compound (a1) is used to bond the particles (a2) and the curable compound (a1) to form a strong film.
  • a silane coupling agent having a polymerizable functional group may be used.
  • Specific examples of the silane coupling agent having a polymerizable functional group include, for example, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, and 3- (meth) acryloxypropyl.
  • a silane coupling agent having a polymerizable functional group other than a radical reactive group may be used as a compound that functions to suppress aggregation of the particles (a2).
  • Specific examples of the silane coupling agent having a polymerizable functional group other than the radical reactive group include KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-4803 (and above, Shin-Etsu Chemical). Kogyo Co., Ltd.).
  • the use of the silane coupling agent having the polymerizable functional group described above may cause a binder component ratio having a Si—O bond. It is also preferable from the point of increasing.
  • Two or more kinds of compounds having a polymerizable functional group may be used in combination.
  • the polymerization of the compound having a polymerizable functional group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
  • the layer (a) can further contain a binder compound other than the curable compound (a1) as the binder compound.
  • the binder compound other than the curable compound (a1) include compounds having no polymerizable functional group.
  • a compound having 2 or less polymerizable functional groups in one molecule may be used as the curable compound (a1), and in particular, it has 3 or more polymerizable functional groups in one molecule. It is preferable to use a compound and a compound having no polymerizable functional group as a compound other than the compound having two or less polymerizable functional groups in one molecule or the curable compound (a1).
  • the weight average molecular weight Mwa is preferably 40 ⁇ Mwa ⁇ 500. Since the above compound has two or less polymerizable functional groups or does not contain a polymerizable functional group, the shrinkage during curing is small, and stress concentration on the temporary support can be avoided.
  • the compound having two or less polymerizable functional groups in one molecule is preferably a compound having one polymerizable functional group in one molecule.
  • a compound having 2 or less polymerizable functional groups in one molecule or a compound having no polymerizable functional group preferably has a viscosity at 25 ° C. of 100 mPas or less, more preferably 1 to 50 mPas.
  • a compound having such a viscosity range is preferable because it easily penetrates into the layer containing the pressure-sensitive adhesive, functions to suppress aggregation of the particles (a2), and can suppress haze and cloudiness.
  • the compound having 2 or less polymerizable functional groups in one molecule preferably has a (meth) acryloyl group, an epoxy group, an alkoxy group, a vinyl group, a styryl group, an allyl group or the like as the polymerizable functional group.
  • an ester compound As the compound having no polymerizable functional group, an ester compound, an amine compound, an ether compound, an aliphatic alcohol compound, a hydrocarbon compound, or the like can be preferably used, and an ester compound is particularly preferable. More specifically, dimethyl succinate (viscosity 2.6 mPas), diethyl succinate (viscosity 2.6 mPas), dimethyl adipate (viscosity 2.8 mPas), dibutyl succinate (viscosity 3.9 mPas), bis (adipate) ( 2-butoxyethyl) (viscosity 10.8 mPas), dimethyl suberate (viscosity 3.7 mPas), diethyl phthalate (viscosity 9.8 mPas), dibutyl phthalate (viscosity 13.7 mPas), triethyl citrate (viscosity 22.6 mPas) ), Acetyltri
  • the weight average molecular weight and number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC) under the following conditions.
  • Cold] TOSOH TSKgel Super HZM-H Three (4.6 mm x 15 cm) are connected and used.
  • Sample concentration 0.1% by mass
  • Flow rate 0.35 ml / min
  • the coating amount of the curable compound (a1) contained in the layer (a) is preferably 100 mg / m 2 to 800 mg / m 2, more preferably 100 mg / m 2 to 600 mg / m 2 , and 100 mg / m 2 to 400 mg. / M 2 is most preferred. Moreover, when using together the sclerosing
  • particles (a2) having an average primary particle size of 100 nm to 250 nm are also referred to as “particles (a2)”.
  • the particles (a2) include metal oxide particles, resin particles, organic-inorganic hybrid particles having a metal oxide particle core and a resin shell, and metal oxide particles are preferable from the viewpoint of excellent film strength.
  • the metal oxide particles include silica particles, titania particles, zirconia particles, antimony pentoxide particles, and the like. Silica particles are preferred.
  • the resin particles include polymethyl methacrylate particles, polystyrene particles, and melamine particles.
  • the average primary particle size of the particles (a2) is from 100 nm to 250 nm, more preferably from 140 nm to 200 nm, and even more preferably from 150 nm to 180 nm from the viewpoint that the moth-eye structure can be formed side by side. .
  • the particles (a2) only one type may be used, or two or more types of particles having different average primary particle sizes may be used.
  • the average primary particle diameter of the particles (a2) refers to a cumulative 50% particle diameter of the volume average particle diameter.
  • a scanning electron microscope (SEM) can be used to measure the particle size.
  • the powder particles in the case of a dispersion liquid, the solvent is volatilized and dried) are observed by SEM observation at an appropriate magnification (about 5000 times), and the diameter of each of the 100 primary particles is measured to determine the volume.
  • the cumulative 50% particle size can be used as the average primary particle size. When the particles are not spherical, the average value of the major and minor diameters is regarded as the diameter of the primary particles.
  • the antiglare antireflection film When measuring particles contained in the antiglare antireflection film, the antiglare antireflection film is observed and calculated from the surface side by SEM in the same manner as described above. At this time, for easy observation, the sample may be appropriately subjected to carbon deposition, etching, or the like.
  • the shape of the particle (a2) is most preferably spherical, but there is no problem even if it is other than a spherical shape such as an indefinite shape.
  • the particles (a2) may be solid particles or hollow particles, but are preferably solid particles.
  • the silica particles may be either crystalline or amorphous.
  • the particles (a2) it is preferable to use inorganic fine particles which have been surface-treated for improving dispersibility in the coating liquid, improving film strength, and preventing aggregation.
  • Specific examples of the surface treatment method and preferred examples thereof are the same as those described in ⁇ 0119> to ⁇ 0147> of JP-A-2007-298974.
  • the compound having a functional group having reactivity with the unsaturated double bond and the particle surface on the particle surface It is preferable to modify the surface with, so as to impart an unsaturated double bond to the particle surface.
  • the silane coupling agent having a polymerizable functional group described above as the curable compound (a1) can be suitably used.
  • particles having an average primary particle size of 100 nm or more and 250 nm or less include Seahoster KE-P10 (average primary particle size 100 nm, amorphous silica manufactured by Nippon Shokubai Co., Ltd.), Eposter S (average primary particle size 200 nm, Japan (Melamine / formaldehyde condensate manufactured by Catalyst Co., Ltd.), Eposta MA-MX100W (average primary particle size 175 nm, polymethyl methacrylate (PMMA) cross-linked product manufactured by Nippon Shokubai Co., Ltd.), Staphyroid (manufactured by Aika Industries Co., Ltd.) Multilayer structured organic fine particles), Ganzpearl (polymethyl methacrylate, polystyrene particles manufactured by Aika Industry Co., Ltd.) and the like can be preferably used.
  • Seahoster KE-P10 average primary particle size 100 nm, amorphous silica manufactured by Nippon Shokubai Co
  • the particle (a2) is particularly preferably a calcined silica particle because the surface has a moderately large amount of hydroxyl groups and is a hard particle.
  • the calcined silica particles are manufactured by a known technique in which silica particles are obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water and a catalyst, and then the silica particles are calcined.
  • Japanese Patent Application Laid-Open Nos. 2003-176121 and 2008-137854 can be referred to.
  • Chlorosilanes such as tetrachlorosilane, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, methylvinyldichlorosilane, trimethylchlorosilane, methyldiphenylchlorosilane Compound: Tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, trimethoxyvinylsilane, triethoxyvinylsilane, 3-glycidoxypropyltrimethoxysilane, 3-chloro Propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane
  • the alkoxysilane compound is particularly preferred because it is more easily available and the resulting fired silica particles do not contain halogen atoms as impurities.
  • the halogen atom content is substantially 0% and no halogen atoms are detected.
  • the firing temperature is not particularly limited, but is preferably 800 ° C to 1300 ° C, more preferably 1000 ° C to 1200 ° C.
  • the coating amount of the particles (a2) is preferably from 50mg / m 2 ⁇ 200mg / m 2, more preferably 100mg / m 2 ⁇ 180mg / m 2, 130mg / m 2 ⁇ 170mg / m 2 is most preferred. Above the lower limit, a large number of convex parts of the moth-eye structure can be formed, so that the antireflection property is more likely to be improved.
  • the unevenness of the moth-eye structure uniform by containing only one type of monodispersed silica fine particles having an average primary particle diameter of 100 nm or more and 250 nm or less and a degree of dispersion (CV value) of less than 5%. This is preferable because the reflectance is further lowered.
  • the CV value is usually measured using a laser diffraction particle size measuring device, but other particle size measurement methods may be used, and image analysis is performed from the surface SEM image of the antireflection layer of the antiglare antireflection film of the present invention. Thus, the particle size distribution can be obtained and calculated. More preferably, the CV value is less than 4%.
  • the layer (a) may contain components other than the curable compound (a1) and the particles (a2).
  • a solvent having a polarity similar to that of the particles (a2) is preferably selected from the viewpoint of improving dispersibility.
  • an alcohol solvent is preferable, and examples thereof include methanol, ethanol, 2-propanol, 1-propanol, and butanol.
  • solvents such as ketones, esters, carbonates, alkanes and aromatics are preferred, such as methyl ethyl ketone (MEK) and dimethyl carbonate. , Methyl acetate, acetone, methylene chloride, cyclohexanone and the like. These solvents may be used in a mixture of a plurality of types as long as the dispersibility is not significantly deteriorated.
  • the dispersant for the particles (a2) can facilitate the uniform arrangement of the particles (a2) by reducing the cohesive force between the particles.
  • the dispersant is not particularly limited, but is preferably an anionic compound such as a sulfate or phosphate, a cationic compound such as an aliphatic amine salt or a quaternary ammonium salt, a nonionic compound or a polymer compound. And a steric repulsion group are more preferred because they have a high degree of freedom in selection.
  • a commercial item can also be used as a dispersing agent.
  • BYK Japan made of (stock) DISPERBYK160, DISPERBYK161, DISPERBYK162, DISPERBYK163, DISPERBYK164, DISPERBYK166, DISPERBYK167, DISPERBYK171, DISPERBYK180, DISPERBYK182, DISPERBYK2000, DISPERBYK2001, DISPERBYK2164, Bykumen, BYK-2009, BYK-P104, BYK-P104S, BYK-220S, Anti-Terra 203, Anti-Terra 204, Anti-Terra 205 (trade name) and the like.
  • a leveling agent can make the liquid after application
  • the compounds described in JP-A-2004-331812 and JP-A-2004-163610 can be used.
  • the leveling agent is preferably contained in an amount of 0.01 to 5.0% by mass, more preferably 0.01 to 3.0% by mass in the total solid content of the composition for forming the layer (a). Preferably, the content is 0.01 to 2.0% by mass.
  • the antifouling agent can suppress adhesion of dirt or fingerprints by imparting water and oil repellency to the moth-eye structure.
  • compounds described in JP 2012-88699 A can be used.
  • the antifouling agent is preferably contained in an amount of 0.01 to 5.0% by mass, more preferably 0.01 to 3.0% by mass, based on the total solid content in the layer (a).
  • the content is most preferably 0.01 to 2.0% by mass.
  • the layer (a) may contain a polymerization initiator.
  • the curable compound (a1) is a photopolymerizable compound, it preferably contains a photopolymerization initiator.
  • photopolymerization initiators acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
  • the content of the polymerization initiator in the layer (a) is an amount sufficient to polymerize the polymerizable compound contained in the layer (a), and is set so as not to increase the starting point too much.
  • the solid content in the layer (a) is preferably 0.1 to 8% by mass, and more preferably 0.5 to 5% by mass.
  • the layer (a) includes a compound that generates an acid or a base by light or heat in order to react with the silane coupling agent having a polymerizable functional group described above (hereinafter, photoacid generator, photobase generator, thermal acid. May be referred to as a generator or a thermal base generator).
  • Photoacid generator examples include diazonium salts, ammonium salts, phosphonium salts, iodonium salts, sulfonium salts, selenonium salts, onium salts such as arsonium salts, organic halogen compounds, organic metal / organic halides, and o-nitrobenzyl type.
  • photoacid generators having a protecting group compounds such as iminosulfonate, which generate photosulfonic acid by photolysis, disulfone compounds, diazoketosulfone, and diazodisulfone compounds.
  • triazines for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine
  • quaternary ammonium salts for example, 2- (4-methoxyphenyl) -4
  • thermo acid generator examples include salts composed of an acid and an organic base.
  • examples of the acid include organic acids such as sulfonic acid, phosphonic acid, and carboxylic acid, and inorganic acids such as sulfuric acid and phosphoric acid. From the viewpoint of compatibility with the curable compound (a1), organic acids are more preferable, sulfonic acids and phosphonic acids are more preferable, and sulfonic acids are most preferable.
  • Preferred sulfonic acids include p-toluenesulfonic acid (PTS), benzenesulfonic acid (BS), p-dodecylbenzenesulfonic acid (DBS), p-chlorobenzenesulfonic acid (CBS), 1,4-naphthalenedisulfonic acid (NDS). ), Methanesulfonic acid (MsOH), nonafluorobutane-1-sulfonic acid (NFBS), and the like.
  • PTS p-toluenesulfonic acid
  • BS benzenesulfonic acid
  • DBS p-dodecylbenzenesulfonic acid
  • CBS p-chlorobenzenesulfonic acid
  • NDS 1,4-naphthalenedisulfonic acid
  • Methanesulfonic acid MsOH
  • NFBS nonafluorobutane-1-sulfonic acid
  • Photobase generator examples include substances that generate a base by the action of active energy rays. More specifically, (1) a salt of an organic acid and a base that is decomposed by decarboxylation upon irradiation with ultraviolet light, visible light, or infrared light, and (2) an amine that is decomposed by an intramolecular nucleophilic substitution reaction or rearrangement reaction. A compound that releases a base, or (3) a compound that causes a chemical reaction upon irradiation with ultraviolet rays, visible light, or infrared rays to release a base can be used.
  • the photobase generator used in the present invention is not particularly limited as long as it is a substance that generates a base by the action of active energy rays such as ultraviolet rays, electron beams, X-rays, infrared rays and visible rays. Specifically, those described in JP 2010-243773 A can be suitably used.
  • the content of the compound that generates acid or base by light or heat in the layer (a) is sufficient to polymerize the polymerizable compound contained in the layer (a), and the starting point increases. For the reason that it is set so that it is not too much, it is preferably 0.1 to 8% by mass, more preferably 0.1 to 5% by mass, based on the total solid content in the layer (a).
  • the step (2) is a step of obtaining a layer (ca) by curing a part of the layer (a) in the step (1). Specifically, the curability in the layer (a) in the step (1). In this step, a part of the compound (a1) is cured to obtain a layer (ca) containing the cured compound (a1c). By hardening a part of the curable compound (a1) in the step (2), the particles (a2) can be made difficult to move and aggregation of the particles (a2) can be suppressed. Curing a part of the curable compound (a1) means that only a part of the curable compound (a1) is cured, not the whole.
  • the layer (ca) may be thinned by the method of allowing it to penetrate into the functional layer) or the method of penetrating into the layer (b), etc., and the particles (a2) are separated from the layer (ca) on the support side.
  • Curing can be performed by irradiating with ionizing radiation.
  • the type of ionizing radiation is not particularly limited, and examples thereof include X-rays, electron beams, ultraviolet rays, visible light, and infrared rays.
  • the curable compound (a1) is a photocurable compound, and the step (2) It is preferable to cure a part of the curable compound (a1) by irradiating with light (preferably ultraviolet rays).
  • the condition for curing a part of the curable compound (a1) in the step (2) is to apply a composition obtained by removing the particles (a2) from the composition for forming the layer (a) on the temporary support in a thickness of 2 ⁇ m.
  • the curing rate is preferably 2 to 20%, more preferably the curing rate is 3 to 15%, and the curing rate is 5 to 12%. More preferably, the conditions are satisfied.
  • the cure rate is (1 ⁇ number of remaining polymerizable functional groups after curing / number of polymerizable functional groups before curing) ⁇ 100%, measured by the following method.
  • the polymerizable functional group is a group having a polymerizable carbon-carbon unsaturated double bond.
  • the curable compound itself before curing was subjected to KBr-IR measurement using NICOLET6700 FT-IR (Fourier Transform Infrared Spectrophotometer) of Thermo electron corporation, and the peak of the carbonyl group (1660-1800 cm ⁇ 1 )
  • the area and the peak height (808 cm ⁇ 1 ) of a polymerizable carbon-carbon unsaturated double bond were determined, and the polymerizability with respect to the carbonyl group peak area was similarly determined from IR (infrared spectroscopy) measurement after single reflection after curing.
  • the carbon-carbon unsaturated double bond peak was determined, and the curing rate was calculated by comparing before and after ultraviolet irradiation.
  • hardening rate here is normalized measurement depth at 808cm -1 821nm, a depth of 1660-1800Cm -1 as 384 nm.
  • the step (2) it is preferable to irradiate ultraviolet rays at a dose of 1 to 90 mJ / cm 2 , more preferably at a dose of 1.2 to 40 mJ / cm 2 , and more preferably 1.5 to 10 mJ / cm 2. It is more preferable to irradiate with a dose of 2 . Since the optimum value of the dose varies depending on the composition of the layer (a) forming composition, it can be appropriately adjusted.
  • step (2) it is preferable for manufacturing suitability to irradiate ultraviolet rays from the side opposite to the temporary support side of the layer (a) to cure a part of the curable compound (a1).
  • the step (2) is preferably performed in an environment with an oxygen concentration of 0.1 to 5.0% by volume, and the step (2) is more preferably performed in an environment with an oxygen concentration of 0.5 to 1.0% by volume. .
  • oxygen concentration By making oxygen concentration into the said range, the area
  • the compound (a1c) is a cured product of the curable compound (a1).
  • the molecular weight of the compound (a1c) is not particularly limited. Moreover, the compound (a1c) may have an unreacted polymerizable functional group.
  • the layer (ca) obtained in the step (2) is a layer containing a curable compound (a1) and a compound (a1c) in the layer. In the present invention, the layer (ca) can be further cured in the steps (4-2), (7), and (9) after the step (2).
  • the components contained in each layer after curing and the composition thereof are different, but in the present invention, the layer ( It shall be called ca).
  • Step (3) is a step of bonding a layer (b) of an adhesive film having a support and a layer (b) containing an adhesive on the support to the layer (ca).
  • a method for bonding the layer (ca) and the layer (b) of the pressure-sensitive adhesive film is not particularly limited, and a known method can be used, for example, a laminating method.
  • the adhesive film is preferably bonded so that the layer (ca) and the layer (b) are in contact with each other. You may have the process of drying a layer (ca) before a process (3).
  • the drying temperature of the layer (ca) is preferably 20 to 60 ° C, more preferably 20 to 40 ° C.
  • the drying time is preferably from 0.1 to 120 seconds, more preferably from 1 to 30 seconds.
  • the layer (b) and the layer (ca) of the pressure-sensitive adhesive film are bonded together in the step (3), the particles (a2) are combined in the step (4) described later, and the layers (ca) and (b) are combined.
  • the particles (a2) are preferably embedded in the layer (ca) and the layer (b) by being embedded in the layer and protruding from the support side interface of the layer (ca).
  • the pressure-sensitive adhesive film has a support and a layer (b) containing a pressure-sensitive adhesive.
  • the layer (b) is a layer containing an adhesive, and the adhesive is preferably an adhesive having a gel fraction of 95.0% or more.
  • the adhesive component is applied to the antiglare antireflection film surface when the adhesive film is peeled off. It is difficult to remain, and the effect of suppressing an increase in reflectance caused by the pressure-sensitive adhesive component filling between the irregularities of the particles is high.
  • the gel fraction of the pressure-sensitive adhesive is preferably 95.0% or more and 99.9% or less, more preferably 97.0% or more and 99.9% or less, and 98.0% or more and 99.9%. More preferably, it is as follows.
  • the weight average molecular weight of the sol component in the pressure-sensitive adhesive is preferably 10,000 or less, more preferably 7000 or less, and most preferably 5000 or less. By making the weight average molecular weight of the sol component within the above range, in the production of the antiglare antireflection film of the present invention, the adhesive component is less likely to remain on the antiglare antireflection film surface when peeling the adhesive film. be able to.
  • the sol component of the pressure-sensitive adhesive represents the amount dissolved in THF after the pressure-sensitive adhesive is immersed in tetrahydrofuran (THF) at 25 ° C. for 12 hours.
  • THF tetrahydrofuran
  • the weight average molecular weight can be analyzed by gel permeation chromatography (GPC).
  • the storage elastic modulus (G ′) at 30 ° C. and 1 Hz of the pressure-sensitive adhesive is 1.3 GPa or less, and the weight average molecular weight of the sol component in the pressure-sensitive adhesive is 10,000 or less. It is also preferable that the storage elastic modulus (G ′) at 30 ° C. and 1 Hz of the pressure-sensitive adhesive is 1.3 ⁇ 10 5 Pa or less, and the weight average molecular weight of the sol component in the pressure-sensitive adhesive is 10,000 or less. 30 ° C.
  • the storage elastic modulus at 1 Hz (G ') is more preferably 0.1 ⁇ 10 5 Pa or more 1.3 ⁇ 10 5 Pa or less, 0.1 ⁇ 10 5 Pa or more 1.2 ⁇ 10 5 Pa or less is more preferable.
  • the storage elastic modulus is 0.1 ⁇ 10 5 Pa or more, cohesive failure of the pressure-sensitive adhesive hardly occurs and handling is easy.
  • the storage elastic modulus is 1.3 ⁇ 10 5 Pa or less, the pressure-sensitive adhesive easily enters the gaps between the particles, so that the effect of suppressing the aggregation of the particles is easily obtained, and is 1.2 ⁇ 10 5 Pa or less.
  • the anti-glare antireflection film which has a particularly favorable reflectance will be obtained.
  • the preferred range of the weight average molecular weight of the sol component in the pressure-sensitive adhesive is the same as described above.
  • the film thickness of the layer (b) is preferably from 0.1 ⁇ m to 50 ⁇ m, more preferably from 1 ⁇ m to 30 ⁇ m, and still more preferably from 1 ⁇ m to 20 ⁇ m.
  • the pressure-sensitive adhesive preferably contains a polymer, and more preferably contains a (meth) acrylic polymer.
  • a polymer of at least one monomer of a (meth) acrylic acid alkyl ester monomer having 1 to 18 carbon atoms in the alkyl group (a copolymer in the case of two or more monomers) is preferable.
  • the weight average molecular weight of the (meth) acrylic polymer is preferably 200,000 to 2,000,000.
  • Examples of (meth) acrylic acid alkyl ester monomers having 1 to 18 carbon atoms in the alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • the (meth) acrylate monomer having an aliphatic ring include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, isobornyl (meth) acrylate and the like. Of these, cyclohexyl (meth) acrylate is particularly preferable.
  • the (meth) acrylic polymer is a copolymer composed of at least one (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 18 carbon atoms and at least one other copolymerizable monomer. May be.
  • the other copolymerizable monomers include a copolymerizable vinyl monomer containing at least one group selected from a hydroxyl group, a carboxyl group, and an amino group, a copolymerizable vinyl monomer having a vinyl group, and an aromatic group. And monomers.
  • Examples of the copolymerizable vinyl monomer containing a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6- Hydroxyl-containing (meth) acrylic esters such as hydroxyhexyl (meth) acrylate and 8-hydroxyoctyl (meth) acrylate, and N-hydroxy (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl Examples include hydroxyl group-containing (meth) acrylamides such as (meth) acrylamide, and preferably at least one selected from these compound groups.
  • Examples of the copolymerizable vinyl monomer containing a carboxyl group include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, and the like. Preferably, at least one selected from these compound groups is used.
  • copolymerizable vinyl monomers containing amino groups include monoalkylaminoethyl (meth) acrylate, monoethylaminoethyl (meth) acrylate, monomethylaminopropyl (meth) acrylate, monoalkylaminopropyl (meth) acrylate, and other monoalkyl An aminoalkyl (meth) acrylate etc. are mentioned.
  • aromatic monomers examples include styrene in addition to aromatic group-containing (meth) acrylic esters such as benzyl (meth) acrylate and phenoxyethyl (meth) acrylate.
  • copolymerizable vinyl monomers other than the above include various vinyl monomers such as acrylamide, acrylonitrile, methyl vinyl ether, ethyl vinyl ether, vinyl acetate, and vinyl chloride.
  • the pressure-sensitive adhesive may include a cured product of a composition for forming the pressure-sensitive adhesive (also referred to as a pressure-sensitive adhesive composition).
  • the pressure-sensitive adhesive composition preferably contains the polymer and a cross-linking agent, and may be cross-linked using heat, ultraviolet light (UV) or the like.
  • the crosslinking agent one or more kinds of crosslinking agents selected from the group consisting of a bifunctional or higher functional isocyanate crosslinking agent, a bifunctional or higher epoxy crosslinking agent, and an aluminum chelate crosslinking agent are preferable.
  • a crosslinking agent when used, in the production of the antiglare antireflection film of the present invention, when peeling the adhesive film, from the viewpoint of making the adhesive component less likely to remain on the antireflection film surface, 100 parts by mass of the polymer. Is preferably contained in an amount of 0.1 to 15 parts by mass, more preferably 3.5 to 15 parts by mass, even more preferably more than 3.5 parts by mass and less than 15 parts by mass. It is particularly preferable to contain part by mass.
  • the bifunctional or higher isocyanate compound may be a polyisocyanate compound having at least two isocyanate (NCO) groups in one molecule, such as hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diene.
  • NCO isocyanate
  • Burette modified products of diisocyanates such as isocyanate (compounds having two NCO groups in one molecule) and trivalent or higher polyols such as isocyanurate modified products, trimethylolpropane or glycerin (at least 3 in one molecule)
  • adduct bodies polyol-modified bodies with the above-mentioned compounds having an OH group.
  • the trifunctional or higher functional isocyanate compound is a polyisocyanate compound having at least three isocyanate (NCO) groups in one molecule, in particular, an isocyanurate body of a hexamethylene diisocyanate compound, an isocyanurate body of an isophorone diisocyanate compound, At least one selected from the group consisting of adducts of hexamethylene diisocyanate compounds, adducts of isophorone diisocyanate compounds, burettes of hexamethylene diisocyanate compounds, and burettes of isophorone diisocyanate compounds is preferred.
  • the bifunctional or higher functional isocyanate-based crosslinking agent is preferably contained in an amount of 0.01 to 5.0 parts by mass, more preferably 0.02 to 3.0 parts by mass with respect to 100 parts by mass of the polymer.
  • the pressure-sensitive adhesive composition may contain an antistatic agent in order to impart antistatic performance.
  • the antistatic agent is preferably an ionic compound, more preferably a quaternary onium salt.
  • antistatic agent that is a quaternary onium salt
  • examples of the antistatic agent that is a quaternary onium salt include alkyldimethylbenzylammonium salts having an alkyl group having 8 to 18 carbon atoms, dialkylmethylbenzylammonium salts having an alkyl group having 8 to 18 carbon atoms, and 8 to 8 carbon atoms.
  • antistatic agents include nonionic, cationic, anionic and amphoteric surfactants, ionic liquids, alkali metal salts, metal oxides, fine metal particles, conductive polymers, carbon, carbon nanotubes, etc. be able to.
  • alkali metal salts examples include metal salts composed of lithium, sodium, and potassium, and a compound containing a polyoxyalkylene structure may be added to stabilize the ionic substance.
  • the antistatic agent is preferably contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer.
  • the pressure-sensitive adhesive composition may further contain a polyether-modified siloxane compound having an HLB of 7 to 15 as an antistatic aid.
  • HLB is a hydrophilic / lipophilic balance (hydrophilic / lipophilic ratio) defined by, for example, JIS (Japanese Industrial Standards) K3211 (surfactant term).
  • the pressure-sensitive adhesive composition can further contain a crosslinking accelerator.
  • the crosslinking accelerator may be any substance that functions as a catalyst for the reaction between the polymer and the crosslinking agent (crosslinking reaction) when a polyisocyanate compound is used as the crosslinking agent, and is an amine compound such as a tertiary amine.
  • organic metal compounds such as metal chelate compounds, organic tin compounds, organic lead compounds, and organic zinc compounds.
  • a metal chelate compound or an organic tin compound is preferable as the crosslinking accelerator.
  • the crosslinking accelerator is preferably contained in an amount of 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the copolymer.
  • the layered product after step (3) is completed has 3 or more cross-linking groups in one molecule on the surface of layer (ca) side of layer (b), the cross-linking group equivalent is 450 or less, and fluorine or silicone. It is preferable that a slipping agent having a low friction site (hereinafter also referred to as “slippery a”) is present.
  • a slipping agent having a low friction site hereinafter also referred to as “slippery a”
  • the support in an adhesive film is demonstrated.
  • a plastic film made of a resin having transparency and flexibility is preferably used.
  • the plastic film for the support is preferably a polyester film such as polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, (meth) acrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin.
  • the (meth) acrylic resin includes a polymer having a lactone ring structure, a polymer having a glutaric anhydride ring structure, and a polymer having a glutarimide ring structure.
  • other plastic films can be used as long as they have necessary strength and optical suitability.
  • the support may be an unstretched film, may be uniaxially or biaxially stretched, and may be a plastic film in which the stretching ratio or the angle of the axial method formed with crystallization of stretching is controlled.
  • the support those having ultraviolet transparency are preferable. Having ultraviolet ray permeability is preferable from the viewpoint of production suitability because ultraviolet rays can be irradiated from the support side when the layer (ca) is cured in the steps (4-2) and (7).
  • the maximum transmittance of the support at a wavelength of 250 nm to 300 nm is preferably 20% or more, more preferably 40% or more, and most preferably 60% or more. It is preferable that the maximum transmittance at a wavelength of 250 nm to 300 nm is 20% or more because the layer (ca) is easily cured by irradiating ultraviolet rays from the support side.
  • the maximum transmittance at a wavelength of 250 nm to 300 nm of the pressure-sensitive adhesive film having the layer (b) formed on the support is preferably 20% or more, more preferably 40% or more, and 60% or more. Is most preferred.
  • the film thickness of the support is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less, and further preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • a commercially available protective film can be suitably used as the adhesive film having the layer (b) formed on the support.
  • the layer (ca) is cured while maintaining the state in which the particles (a2) are buried in the combined layer of the layer (ca) and the layer (b).
  • the layer (a2) protrude from the interface on the support side of the layer (ca).
  • the layer (b) is peeled off in the step (8).
  • an antiglare antireflection film having a moth-eye structure formed by projecting the particles (a2) from the surface opposite to the interface) can be obtained.
  • the curable compound (a1) It is preferred to partially penetrate the layer (b).
  • Step (4) the layer (ca) is formed so that the particles (a2) are buried in the layer including the layer (ca) and the layer (b) and protrude from the interface on the support side of the layer (ca).
  • ) Is a step of bringing the position of the interface on the support side (interface between the layer (ca) and the layer (b)) closer to the temporary support side.
  • the particles (a2) are buried in the combined layer (ca) and layer (b) and project from the interface on the support side of the layer (ca)”.
  • the particles (a2) are not exposed from the combined layer (ca) and layer (b), and are present across both layers (ca) and (b) ( It can also be said that the particles (a2) exist across the interface between the layer (ca) and the layer (b)).
  • the step (4) is preferably performed by allowing a part of the curable compound (a1) to penetrate into the layer (b).
  • a part of the curable compound (a1) when a part of the curable compound (a1) is allowed to penetrate into the layer (b), it is preferable to keep the laminate after the completion of the step (3) at less than 60 ° C. It is more preferable to keep. By keeping the temperature at 40 ° C.
  • the viscosity of the curable compound (a1), the compound (a1c), and the pressure-sensitive adhesive can be kept high, and the thermal motion of the particles (a2) can be suppressed.
  • the effect of preventing a decrease in antireflection ability due to aggregation of the particles (a2) and an increase in haze or cloudiness is great.
  • the lower limit of the temperature at which the laminate is maintained is not particularly limited, and may be room temperature (25 ° C.) or lower than room temperature.
  • the step (4-2) is a step of curing a part of the layer (ca) in a state where the particles (a2) are buried in the combined layer of the layer (ca) and the layer (b).
  • a part of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (ca) is cured.
  • Curing a part of the layer (ca) represents curing only a part of the curable compound (a1) and the compound (a1c) in the layer (ca).
  • the binder resin in the antireflection layer of the antiglare antireflection film can be formed.
  • the layer (ca) By maintaining the state in which the particles (a2) are buried in the layer (ca) and the layer (b) in the step (4-2), the aggregation of the particles (a2) is suppressed and a moth-eye structure is formed. can do.
  • an operation such as thickening the layer (b) in advance can be performed.
  • the particle (a2) is cured before the layer (ca) is cured.
  • a large attractive force derived from surface tension called lateral capillary force works, and the particles (a2) are buried in the layer combining the layers (ca) and (b). It is presumed that the attractive force can be reduced by letting it be kept.
  • Curing in the step (4-2) can be performed by irradiating with ionizing radiation.
  • ionizing radiation There is no restriction
  • the coating film is UV curable, to cure a portion of an irradiation dose of 10mJ / cm 2 ⁇ 1000mJ / cm 2 by an ultraviolet lamps layer (ca) curable compound in (a1) Is preferred.
  • the adhesion between the layer (b) and the part containing the particles (a2) and the layer (ca) is moderately strengthened, and the temporary support is removed (5 ),
  • the particles (a2) and the layer (ca) hardly remain on the temporary support, and defects (regions in which the reflectance does not decrease) hardly occur in the resulting antiglare antireflection film.
  • the irradiation amount of ultraviolet rays is 1000 mJ / cm 2 or less, the residual amount of the curable compound (a1) in the layer (ca) after the completion of the step (4-2) does not decrease excessively, and the step (6 ), An appropriate adhesive force between the layer (ca) and the antiglare layer in the antiglare film can be obtained.
  • the amount of irradiation in the step (4-2) is not particularly limited, and the adhesion between the layer (b) to be used and the part containing the particles (a2) and the layer (ca), and the layer (ca) and the antiglare layer It can adjust suitably in consideration of adhesive force.
  • the above-mentioned energy may be applied at once, or irradiation may be performed in divided portions.
  • the ultraviolet lamp type a metal halide lamp or a high-pressure mercury lamp is preferably used.
  • the oxygen concentration at the time of curing in step (4-2) is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and 0 to 0.05% by volume. Is most preferred. By making the oxygen concentration at the time of curing smaller than 1.0% by volume, it becomes difficult to be affected by the inhibition of curing by oxygen and becomes a strong film.
  • the layer (ca) side of the support when a part of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (ca) is cured, the layer (ca) side of the support and May be irradiated with ultraviolet rays from the opposite side, or may be irradiated with ultraviolet rays from the temporary support side.
  • Step (5) is a step of peeling the temporary support from the laminate after completion of step (4) or (4-2).
  • an appropriate adhesive force is applied between the layer (ca) and the temporary support.
  • the portion including the layer (ca) and the particles (a2) can be transferred to the adhesive film.
  • the layer containing the layer (ca) and the particles (a2) is not detached from the temporary support by bending or conveying tension of the laminate during the manufacturing process, but when contacting the layer (b) or the layer (b
  • the portion including the layer (ca) and the particles (a2) is detached when being irradiated with ultraviolet rays.
  • a plurality of particles (a2) do not exist in the direction perpendicular to the surface of the layer (ca).
  • the fact that a plurality of particles (a2) do not exist in the direction orthogonal to the surface of the layer (ca) is that 10 ⁇ m ⁇ 10 ⁇ m in the plane of the layer (ca) was observed with three fields of view with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the ratio of the number of particles (a2) that are not overlapped in the direction orthogonal to the surface is 80% or more, preferably 95% or more.
  • the total thickness of the layer (ca) and the layer (b) is larger than the average primary particle size of the particles (a2). It is preferable.
  • the particles (a2) This is preferable because it can be buried in the combined layers.
  • the thickness of the layer (ca) is preferably 5 to 70% of the average primary particle diameter of the particles (a2), and 20 to 40 % Is more preferable.
  • the film thickness of the layer (ca) is 5% or more of the average primary particle diameter of the particles (a2), the pressure-sensitive adhesive film is peeled off in the step (8) described later, and the layer (ca) and the particles (a2) are included.
  • the particles (a2) are less likely to fall off from the antiglare antireflection film obtained after the portion is transferred to the antiglare layer in the antiglare film, which is preferable.
  • the film thickness of the layer (ca) is 70% or less of the average primary particle diameter of the particles (a2), the refractive index is sufficiently inclined, and sufficient antireflection performance is obtained. It is preferable that the film thickness of the layer (ca) is 20 to 40% of the average primary particle diameter of the particles (a2) since sufficient scratch resistance and antireflection ability can be achieved at the same time. The same applies to steps (6) to (10) described later.
  • the film thickness of the layer (ca) after completion of the step (5) is obtained by observing the film cross section of the layer (ca) with a scanning electron microscope (SEM), arbitrarily measuring the film thickness at 100 locations, and averaging When the value is obtained, it is preferably adjusted to be 10 nm to 100 nm (more preferably 20 nm to 90 nm, still more preferably 30 nm to 70 nm).
  • the particles (a2) do not protrude from the surface opposite to the layer (b) side of the layer (ca) in the laminate obtained by completing the step (5).
  • 30 nm or less is preferable and, as for the surface roughness of the surface on the opposite side to the layer (b) side of the layer (ca) in the laminated body obtained by completing a process (5), 10 nm or less is more preferable.
  • the surface roughness of the surface of the layer (ca) opposite to the layer (b) side is 30 nm or less, the particles (a2) protrude from the surface of the layer (ca) opposite to the layer (b) side.
  • the adhesive film is peeled off in the step (8) to be described later and the portion (antireflection layer) containing the layer (ca) and the particles (a2) is transferred to the antiglare layer in the antiglare film. It is easy to cause defects in the antireflection layer after transfer. Moreover, when the surface roughness of the surface of the layer (ca) opposite to the layer (b) side is 10 nm or less, it is favorable when the layer (ca) and the antiglare layer are bonded together in the step (6).
  • Adhesion can be ensured, and the generation of voids between the transfer layer (part containing particles (a2) and layer (ca)) and the antiglare layer that causes an increase in haze of the antiglare antireflection film can be suppressed. Therefore, it is preferable.
  • the surface roughness was measured using SPA-400 (manufactured by Hitachi High-Technology) under the measurement conditions of measurement range 5 ⁇ m ⁇ 5 ⁇ m, measurement mode: DFM, measurement frequency: 2 Hz.
  • the part containing the particles (a2) and the layer (ca) in the laminate obtained by completing the step (5) can be peeled from the layer (b) of the adhesive film. That the part containing the particles (a2) and the layer (ca) can be separated from the layer (b) of the adhesive film means that the part containing the particles (a2) and the layer (ca) and the layer (b) of the adhesive film In the anti-glare film, the portion including the particles (a2) and the layer (ca) is detached from the surface of the layer (b) in the transfer step (step (8)) to be described later by applying an appropriate adhesive force. It shows that it can be transferred to the surface of the antiglare layer.
  • the portion including the particles (a2) and the layer (ca) (antireflection layer) can be transferred to the surface of the antiglare layer, that is, has transferability, the transfer surface (antireflection layer) of the antiglare antireflection film after transfer.
  • the black polyethylene terephthalate sheet with adhesive manufactured by Yodogawa Paper; “Kikkiri Mieru”
  • the reflectance is higher than before the antireflection layer is transferred. It represents that the area ratio of the region where is lowered is 80% or more with respect to the area to be transferred.
  • the adhesive force between the layer (b) and the part including the particle (a2) and the layer (ca) is not particularly limited.
  • particles of a transfer member having a width of 25 mm (a laminate obtained by completing the step (5))
  • the part including (a2) and the layer (ca) is fixed to a glass substrate having a thickness of 1.1 mm using an adhesive, and the part including the particle (a2) and the layer (ca) and the layer (b) are oriented in a 90 ° direction.
  • the peel force measured by the above method is preferably 0.2 N / 25 mm to 4.0 N / 25 mm, more preferably 0.6 N / 25 mm to 4.0 N / 25 mm.
  • the peeling force is 0.6 N / 25 mm or more, part of the particles (a2) and the layer (ca) hardly remain on the temporary support when the temporary support is peeled off in the step (5).
  • the reflectance and haze of the antiglare antireflection film finally obtained are lowered.
  • the peeling force is 4.0 N / 25 mm or less, in the step (8), when the adhesive film is peeled off, a part of the particles (a2) hardly remains in the layer (b). The reflectance and haze of the antiglare antireflection film are reduced.
  • the layered product obtained by completing step (5) is a value obtained by subtracting the haze of the part obtained by removing the part containing particles (a2) and layer (ca) from the layered product from the total haze of the layered product ( ⁇ haze).
  • ⁇ haze Is preferably 1.00% or less.
  • the haze can be measured according to JIS-K7136 (2000) with a haze meter NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd. at 25 ° C. and 60% relative humidity at a film sample of 40 mm ⁇ 80 mm.
  • ⁇ haze may be a negative value.
  • the ⁇ haze is preferably 1.00% or less, more preferably 0.80% or less, and further preferably 0.40% or less.
  • the ⁇ haze By setting the ⁇ haze to 1.00% or less, the haze of the antiglare antireflection film obtained using the laminate obtained by completing the step (5) is lowered, and good antireflection performance is obtained. Is possible. Especially when ⁇ haze is 0.40% or less, black polyethylene with pressure-sensitive adhesive is provided on the side opposite to the transfer surface of the antiglare antireflection film obtained by using the laminate obtained by completing step (5). Even when bonded to a terephthalate sheet (manufactured by Yodogawa Paper Mill; “Kikkiri Mieru”) and visually observed, there is no cloudiness due to haze, and an excellent antiglare antireflection film can be obtained.
  • the surface hardening rate of the layer (ca) in the laminate obtained by completing the step (5) is 10 to 70%.
  • the surface curing rate is 10% or more, a part of the antireflection layer (that is, the portion including the layer (ca) and the particles (a2)) is deformed at the time of transfer, and the antireflection ability is reduced. It is possible to prevent this, and when the surface curing rate is 70% or less, the adhesion between the antiglare layer and the antireflection layer can be kept good.
  • Step (6) is a step of bonding the layer (ca) in the laminate obtained by completing step (5) and the antiglare layer of the antiglare film.
  • the method for laminating the layer (ca) and the antiglare layer is not particularly limited, and a known method can be used, for example, a roll laminating method.
  • the antiglare film is preferably bonded so that the layer (ca) and the antiglare layer are in contact with each other.
  • the step (6) preferably includes a step of providing an adhesive layer between the layer (ca) in the laminate obtained by completing the step (5) and the antiglare layer of the antiglare film.
  • the adhesive layer is as described above.
  • step (6) it is also preferable to provide a heating step after laminating the layer (ca) in the laminate obtained by completing step (5) and the antiglare layer of the antiglare film. .
  • a heating step By performing the heating step, the adhesion between the antiglare layer and the antireflection layer can be improved, and the scratch resistance of the antiglare and antireflection film can be improved.
  • the step (7) is a step of curing the layer (ca) in a state where the particles (a2) are buried in the combined layer of the layer (b) and the layer (ca). Specifically, the step (7) ) In which a part or all of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) is cured. It should be noted that the curing of all of the compounds selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (ca) could not be cured when cured by a normal method. This includes the case where the compound remains.
  • a hardening rate is 60% or more, and it is more preferable that it is 80% or more.
  • the curing in the step (7) is preferably performed under the same conditions as described in the above step (4-2).
  • Step (8) is a step of peeling the adhesive film from the laminate obtained in step (7).
  • an index of the adhesive force between the layer (b) and the part containing the particles (a2) and the layer (ca) in the laminate obtained by completing the step (5) is 0.2 N / 25 mm or more and 4.0 N / 25 mm or less.
  • an antiglare antireflection film having a moth-eye structure having a concavo-convex shape formed by particles (a2) on the surface of the layer (ca) is obtained.
  • ) And (10) may be performed.
  • Step (9) is a step of curing the layer (ca) in a state where the particles (a2) protrude from the interface on the side opposite to the base film side interface of the layer (ca). Specifically, In this step, the curable compound (a1) and the compound (a1c) in the layer (ca) are all cured. In the case where the curable compound (a1) and the compound (a1c) in the layer (ca) are all cured in the step (7), the step (9) may not be performed.
  • the curing in the step (9) is preferably performed under the same conditions as described in the above step (4-2).
  • it is suitable for manufacturing to cure the curable compound (a1) and the compound (a1c) in the layer (ca) by irradiating ultraviolet rays from the side opposite to the base film side of the layer (ca). preferable.
  • the layer (ca) after completion of the step (9) is a layer containing the compound (a1c) in the layer.
  • a compound that could not be cured may remain.
  • Step (10) is a step of washing the laminate after completion of step (9) with a solvent.
  • the adhesive is unlikely to remain on the layer (ca) side even when the support and the layer (b) are peeled off. You may wash
  • the antiglare antireflection film of the present invention can be used as a surface protective film (polarizing plate protective film) of a polarizing film.
  • the antiglare antireflection film of the present invention can be saponified.
  • the saponification treatment is a treatment in which an antiglare antireflection film is immersed in a heated alkaline aqueous solution for a certain time, washed with water, and then washed with acid for neutralization.
  • any treatment conditions may be used as long as the surface of the substrate film to be bonded to the polarizing film is hydrophilized, so the concentration of the treatment agent, the temperature of the treatment solution, the treatment Although the time is appropriately determined, the processing conditions are determined so that processing can be performed within 3 minutes from the need to ensure normal productivity.
  • the alkali concentration is 3% by mass to 25% by mass
  • the treatment temperature is 30 ° C. to 70 ° C.
  • the treatment time is 15 seconds to 5 minutes.
  • Sodium hydroxide and potassium hydroxide are preferable as the alkali species used for the alkali treatment
  • sulfuric acid is preferable as the acid used for the acid cleaning
  • ion-exchanged water or pure water is preferable as the water used for the water cleaning.
  • the surface of the base film opposite to the side on which the antireflection layer is provided is saponified and bonded to a polarizer using a polyvinyl alcohol aqueous solution.
  • an ultraviolet curable adhesive may be used for bonding the antiglare antireflection film of the present invention and the polarizer. It is preferable to provide an ultraviolet curable adhesive layer on the surface of the base film opposite to the antireflection layer of the present invention, and a specific ultraviolet curable resin is preferably used for the purpose of improving productivity by drying for a short time. It is preferable to use and attach to a polarizer.
  • Japanese Patent Application Laid-Open No. 2012-144690 discloses that each homopolymer has a Tg of 60 ° C.
  • a radically polymerizable compound (SP) having a SP (Solubility Parameter) value of 29 to 32, and an SP value of 18 to Adhesive properties are bonded to a polarizer through an adhesive layer containing 10 to 30% by mass of a 21 radical polymerizable compound and 20 to 60% by mass of a radical polymerizable compound having an SP value of 21 to 23. Improves durability and water resistance.
  • the antiglare antireflection film of the present invention may or may not be saponified before being bonded to the polarizer.
  • the polarizing plate of the present invention is a polarizing plate having a polarizer and at least one protective film for protecting the polarizer, and at least one of the protective films is the antiglare antireflection film of the present invention.
  • the polarizer may be sandwiched between films other than the protective film (the antiglare antireflection film of the present invention) and the antiglare antireflection film of the present invention, or may be a combination of a protective film and a polarizer.
  • the film other than the antiglare antireflection film of the present invention is preferably an optical compensation film having an optical compensation layer comprising an optically anisotropic layer.
  • the optical compensation film (retardation film) can improve the viewing angle characteristics of the liquid crystal display screen.
  • the optical compensation film known ones can be used, but the optical compensation film described in JP-A-2001-100042 is preferable from the viewpoint of widening the viewing angle.
  • Polarizers include iodine-based polarizing films, dye-based polarizing films using dichroic dyes, and polyene-based polarizing films.
  • the iodine-based polarizing film and the dye-based polarizing film can be generally produced using a polyvinyl alcohol film.
  • the image display device of the present invention has the antiglare antireflection film or polarizing plate of the present invention.
  • the antiglare antireflection film and polarizing plate of the present invention are suitable for image display devices such as liquid crystal display devices (LCD), plasma display panels (PDP), electroluminescence displays (ELD), and cathode ray tube display devices (CRT).
  • a liquid crystal display device is particularly preferable.
  • a liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof, and the liquid crystal cell carries a liquid crystal between two electrode substrates.
  • one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or two optically anisotropic layers may be disposed between the liquid crystal cell and both polarizing plates.
  • the liquid crystal cell is preferably a TN mode, a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane Switching) mode, or an ECB (Electrically Controlled Birefringence) mode.
  • the anti-glare antireflection film and polarizing plate of the present invention are high-contrast self-luminous displays, specifically organic electroluminescence (OLED) displays, LED array displays, fields, which are next-generation image display devices. It can also be used for an emission display.
  • OLED organic electroluminescence
  • the antiglare antireflection film of the present invention or the polarizing plate having the antiglare antireflection film of the present invention on the surface of a self-luminous display reflection of external light can be suppressed. Helps improve contrast in the room.
  • the distance to the light emitting element is shorter than the liquid crystal display device, and the number of optical films existing up to the outermost surface tends to be small. Durability is essential. In particular, high durability against high-energy blue light is required.
  • the binder resin forming the antireflection layer is used.
  • content rate Si / C represents the molar ratio of the silicon and carbon in binder resin, for example by measuring a silicon content rate (Si) and a carbon atom content rate (C) using an XPS surface analyzer. Can be sought.
  • PET-30 A mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate [manufactured by Nippon Kayaku Co., Ltd.]
  • M-321 trimethylolpropane PO-modified (n ⁇ 2) triacrylate [manufactured by Toagosei Co., Ltd.]
  • Irgacure 127 Polymerization initiator [manufactured by BASF Japan Ltd.]
  • Irgacure 819 polymerization initiator [manufactured by BASF Japan Ltd.]
  • SSX-108 Average particle size 8 ⁇ m PMMA particles [manufactured by Sekisui Plastics Co., Ltd.]
  • CAB cellulose acetate butyrate, CAB531-1 [Eastman Chemical Co., Ltd.]
  • SP-13 Fluorine-based surface modifier having the following structure (the content ratio of repeating units is a molar ratio)
  • the copolymer (A-7) had a weight average molecular weight (Mw) of 60,300 (gel permeation chromatography (EcoSECHLC-8320GPC (manufactured by Tosoh Corp.))), eluent NMP, flow rate 0.50 ml / min. Calculated in terms of polystyrene under the measurement conditions of a temperature of 40 ° C., and the column used was TSKgel SuperAWM-H ⁇ 3 (manufactured by Tosoh Corporation). Further, the acid value of the obtained copolymer (A-7) was 7.3 mgKOH / g, and the residual ratio of carboxylic acid was 5 mol%. The content ratio of the repeating unit in the following formula is a molar ratio.
  • a copolymer (A-16) having the following structure was synthesized in the same manner as the copolymer (A-7) except that 2- (perfluorohexyl) ethyl acrylate was changed.
  • the copolymer (A-16) had a weight average molecular weight (Mw) of 60,300. Further, the acid value of the obtained copolymer (A-16) was 7.3 mgKOH / g, and the residual ratio of carboxylic acid was 5 mol%.
  • the content ratio of the repeating unit in the following formula is a molar ratio.
  • Preparation of antiglare film AG-1 A cellulose triacetate film (TDP60UL, manufactured by FUJIFILM Corporation) was unwound in a roll form, and coating solution BO-1 for forming an antiglare layer was applied using a coater having a slot die. After coating at a transfer speed of 20 m / min, drying at 40 ° C. for 15 seconds and 90 ° C.
  • the coating layer is cured by irradiating with an irradiation amount of 10 mJ / cm 2 and 1 mW / cm 2 to form an antiglare layer having an average film thickness of 12.0 ⁇ m, AG-1 was produced.
  • AG-2 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
  • AG-3 was produced in the same manner as AG-2, except for the above. Specifically, AG-2 was subjected to corona discharge treatment at 20 m / min using a trade name Solid State Corona Treatment Machine 6KVA model (manufactured by Pillar). At this time, from the current / voltage readings, the processing conditions were 0.375 KV ⁇ A ⁇ min / m 2 , the discharge frequency during processing was 9.6 KHz, and the gap clearance between the electrode and the dielectric roll was 1.6 mm.
  • AG-4 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
  • AG-7 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
  • AG-10 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
  • a dispersion containing a silica particle precursor Hydrolysis and condensation of methoxysilane was performed to obtain a dispersion containing a silica particle precursor.
  • This dispersion liquid was air-dried under the conditions of a heating tube temperature of 175 ° C. and a reduced pressure of 200 torr (27 kPa) using an instantaneous vacuum evaporation apparatus (Crax System CVX-8B type manufactured by Hosokawa Micron Corporation), thereby producing silica.
  • Particles P1 were obtained.
  • Silica particles P1 had an average primary particle size of 170 nm, a particle size dispersity (CV value) of 3.3%, and an indentation hardness of 340 MPa.
  • IDS-2 type manufactured by Nippon Puma Co., Ltd.
  • silane coupling agent-treated silica particles P3 The average primary particle size of the silane coupling agent-treated silica particles P3 was 171 nm, the particle size dispersion (CV value) was 3.3%, and the indentation hardness was 470 MPa.
  • silane coupling agent-treated silica particles P3 50 g
  • MEK 200 g
  • 0.05 mm diameter zirconia beads 600 g
  • a silica particle dispersion PA-1 solid content concentration 20% by mass
  • the average primary particle size, CV value, and indentation hardness of the silica particles contained in the silica particle dispersion PA-1 are the same as those in the silane coupling agent-treated silica particles P3.
  • silica Particle Dispersion PA-2 50 g of sintered silica particles P2, 200 g of ethanol, and 600 g of zirconia beads having a diameter of 0.05 mm were placed in a 1 L bottle container having a diameter of 12 cm, set in a ball mill V-2M (Irie Shokai), and dispersed at 250 rpm for 10 hours. In this way, a silica particle dispersion PA-2 (solid content concentration 20% by mass) was produced.
  • composition for forming layer (a) Each component was put into a mixing tank so as to have the following composition, stirred for 60 minutes, and dispersed with an ultrasonic disperser for 30 minutes to obtain a coating solution.
  • composition (A-1) U-15HA 1.4 parts by weight Compound C3 1.5 parts by weight A-TMPT 1.7 parts by weight KBM-4803 4.1 parts by weight Irgacure 127 0.2 parts by weight Compound P 0.1 parts by weight FP-2 1 part by weight Silica particle dispersion PA-1 32.3 parts by weight Ethanol 12.7 parts by weight Methyl ethyl ketone 33.2 parts by weight Acetone 12.7 parts by weight
  • composition (A-2) SIRIUS-501 2.8 parts by mass X-12-1049 1.5 parts by mass A-TMPT 1.7 parts by mass Acetyltriethyl citrate 4.1 parts by mass Irgacure 127 0.2 parts by mass Compound P 0.1 parts by mass FP -2 0.1 parts by weight Silica particle dispersion PA-1 32.3 parts by weight Ethanol 12.7 parts by weight Methyl ethyl ketone 31.8 parts by weight Acetone 12.7 parts by weight
  • SIRIUS-501, X-12-1049, and A-TMPT are curable compounds (a1).
  • Composition (B-1) Compound I-30 1.4 parts by mass X-12-1049 1.5 parts by mass KR-513 1.7 parts by mass Acetyltriethyl citrate 4.1 parts by mass Irgacure 127 0.2 parts by mass Compound P 0.1 parts by mass FP-2 0.1 parts by weight Silica particle dispersion PA-1 32.3 parts by weight Ethanol 12.7 parts by weight Methyl ethyl ketone 33.2 parts by weight Acetone 12.7 parts by weight
  • Composition (B-2) Curable resin C 1.4 parts by mass KR-516 1.5 parts by mass KBM-4803 1.7 parts by mass Acetyltriethyl citrate 4.1 parts by mass Irgacure 127 0.2 parts by mass Compound P 0.1 parts by mass FP- 2 0.1 parts by mass Silica particle dispersion PA-2 32.3 parts by mass Methyl ethyl ketone 45.9 parts by mass Acetone 12.7 parts by mass
  • Curable resin C, KR-516, and KBM-4803 are curable compounds (a1).
  • Step (2) Pre-exposure of layer (a)
  • a high pressure mercury lamp Model: 33351N manufactured by Dr. Honle AG, part number: LAMP-HOZ 200 D24 U 450 E
  • Side was irradiated with light at an irradiation amount of 5.0 mJ / cm 2 and an illuminance of 0.60 mW to cure a part of the curable compound (a1) to obtain a layer (ca).
  • the irradiation amount was measured by attaching a HEAD SENSER PD-365 to an eye ultraviolet integrated illuminometer UV METER UVPF-A1 manufactured by Eye Graphic Co., Ltd. and measuring range 0.00.
  • an adhesive film obtained by peeling a release film from a protective film (Mastak TFB AS3-304) manufactured by Fujimori Industry Co., Ltd. is used. It was bonded together so as to be on the ca) side. Lamination was performed using a commercial laminator Bio330 (manufactured by DAE-EL Co.) at a speed of 1.
  • the protective film here refers to the laminated body comprised from a support body / adhesive layer / release film, and the laminated body comprised from the support body / adhesive layer which peeled the release film from the protective film. It is an adhesive film.
  • the protective film used is shown below.
  • ⁇ Mastak TFB AS3-304 (Fujimori Kogyo Co., Ltd. optical protective film with antistatic function) (hereinafter also referred to as “AS3-304”)
  • Support Polyester film (thickness 38 ⁇ m)
  • the transmittance was measured using an ultraviolet-visible near-infrared spectrophotometer UV3150 manufactured by Shimadzu Corporation.
  • Step (4) penetration of curable compound (a1) into layer (b) After pasting the adhesive film, it was allowed to stand for 5 minutes in an environment of 25 ° C. to allow the curable compound (a1) to penetrate into the layer (b).
  • Step (4-2) Partial curing of layer (ca) Subsequently, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less, the support layer (ca) side A part of the layer (ca) was cured by irradiating ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the opposite side.
  • a 160 W / cm air-cooled metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • Step (5) Peeling of temporary support Production of laminate From the laminate, the temporary support FD100M was peeled off at a speed of 30 m / min in a direction where the peeling angle was 180 °.
  • Step (7) Partial curing of layer (ca)
  • a 160 W / cm air-cooled metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less
  • the support layer (ca) side A part of the layer (ca) was cured by irradiating ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the opposite side.
  • Step (9) Curing of layer (ca) Subsequently, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less, the base film of the layer (ca)
  • the layer (ca) was cured by irradiating ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the opposite side.
  • the antiglare film is changed to AG-2, and in step (6), the layer 1 of the laminate 1 from which the antiglare layer side and the temporary support are removed in step (5) Except for injecting UV curable adhesive UV1 on the (ca) side, bonding at speed 1 of commercial laminator Bio330 (manufactured by DAE-EL Co.), and proceeding to step (7) without heating.
  • an antiglare antireflection film 11 was produced.
  • the antiglare antireflection film 11 has an adhesive layer between the antiglare layer and the antireflection layer.
  • UV curable adhesive UV1 was prepared by adding each component with the composition described below, and putting the obtained composition into a mixing tank and stirring.
  • an antiglare antireflection film 12 was produced in the same manner except that the ultraviolet curable adhesive was changed to UV2.
  • the antiglare antireflection film 12 has an adhesive layer between the antiglare layer and the antireflection layer.
  • UV curable adhesive UV2 was prepared by adding each component with the composition described below, and putting the obtained composition into a mixing tank and stirring.
  • UV curable adhesive UV2 Aronix M-220 20.0 parts by mass 4-hydroxybutyl acrylate 78.0 parts by mass Irgacure 907 1.5 parts by mass DETX-S 0.5 part by mass
  • Aronix M220 Tripropylene glycol (n ⁇ 3) diacrylate (manufactured by Toa Gosei Co., Ltd.)
  • the composition (A-1) was applied at 2.8 ml / m 2 using a die coater, dried at 30 ° C. for 90 seconds, and then the oxygen concentration was 1.4% by volume. While purging with nitrogen so as to obtain an atmosphere, a high pressure mercury lamp (Model: 33351N manufactured by Dr. Honle AG Co., Ltd., part number: LAMP-HOZ 200 D24 U 450 E) was used to emit 5.0 mJ from the layer (a) side.
  • a high pressure mercury lamp Model: 33351N manufactured by Dr. Honle AG Co., Ltd., part number: LAMP-HOZ 200 D24 U 450 E
  • a part of the curable compound (a1) was cured to obtain a layer (ca).
  • the irradiation amount was measured by attaching a HEAD SENSER PD-365 to an eye ultraviolet integrated illuminometer UV METER UVPF-A1 manufactured by Eye Graphic Co., Ltd. and measuring range 0.00.
  • an adhesive film obtained by peeling a release film from a protective film (Mastak TFB AS3-304) manufactured by Fujimori Industry Co., Ltd. is used. It was bonded together so as to be on the ca) side.
  • Lamination was performed using a commercial laminator Bio330 (manufactured by DAE-EL Co.) at a speed of 1. After bonding the adhesive film, it was allowed to stand for 5 minutes in an environment of 25 ° C., and the curable compound (a1) was permeated into the layer (b).
  • the support layer (ca) side A part of the layer (ca) was cured by irradiating ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the opposite side.
  • the pressure-sensitive adhesive film (from which the peeling film was peeled off from the MASTACK TFB AS3-304) was peeled off from the produced laminate, and then 160 W / W while purging with nitrogen so that the atmosphere had an oxygen concentration of 0.01% by volume or less.
  • the layer (ca) was irradiated with ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the side opposite to the base film of the layer (ca).
  • (Ca) was cured.
  • methyl isobutyl ketone was poured over the surface to which the adhesive film had been bonded to wash away the residue of the adhesive layer, and dried at 25 ° C. for 10 minutes to obtain an antiglare antireflection film 13.
  • An antiglare antireflection film 14 was prepared in the same manner as the antiglare antireflection film 13 except that the antiglare film was changed to AG-2.
  • ⁇ Preparation of antiglare antireflection film 22> (Preparation of coating solution for high refractive index layer) 54 parts by mass of cyclohexanone and 18 parts by mass of methyl ethyl ketone, 0.13 parts by mass of a photopolymerization initiator (Irgacure 907, manufactured by BASF Japan Ltd.) and photosensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 04 parts by mass were dissolved.
  • a photopolymerization initiator Irgacure 907, manufactured by BASF Japan Ltd.
  • photosensitizer Keracure DETX, manufactured by Nippon Kayaku Co., Ltd.
  • titanium dioxide dispersion 26.4 parts by mass of titanium dioxide dispersion and 1.6 parts by mass of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) were added and stirred at room temperature for 30 minutes. Thereafter, the mixture was filtered through a polypropylene filter (PPE-03) having a pore diameter of 3 ⁇ m to prepare a coating solution HN1 for a high refractive index layer.
  • PPE-03 polypropylene filter
  • the coating solution HN1 for the high refractive index layer was used instead of the composition (A-1), and the coating amount was 1.8 ml / m.
  • a laminate 1 for high refractive index transfer was obtained by carrying out the same method except that 2 .
  • the coating solution LN1 for the low refractive index layer is used instead of the composition (A-1), and the coating amount is 0.8 ml / m.
  • a laminate 1 for low refractive index transfer was obtained by carrying out the same method except that 2 .
  • the same method is used except that the laminate 1 for high refractive index transfer is used in place of the laminate 1, whereby an antiglare film is formed.
  • An anti-glare film A with a high refractive index layer in which a high refractive index layer was formed by transfer was prepared.
  • the antiglare film A with a high refractive index layer is used instead of the antiglare film AG-1, and the low refractive index is used instead of the laminate 1.
  • An antiglare antireflection film 22 in which a high refractive index layer and a low refractive index layer were formed by transfer on an antiglare film was produced by performing the same method except that the transfer laminate 1 was used.
  • the antiglare film B with a high refractive index layer was produced by irradiating light at an illuminance of 20 mW and forming a high refractive index layer on the antiglare film by coating.
  • 0.8 ml / m 2 of the low refractive index layer coating solution LN1 is applied using a die coater and dried at 30 ° C. for 90 seconds.
  • Irradiation dose from the side coated with a high-pressure mercury lamp (Model: 33351N manufactured by Dr.
  • Honle AG part number: LAMP-HOZ 200 D24 U 450 E
  • the antiglare antireflection film 23 was formed by irradiating light at 300 mJ / cm 2 and an illuminance of 60 mW to form a high refractive index layer and a low refractive index layer on the antiglare film by coating.
  • Adhesive layer thickness For anti-glare antireflection films 11 and 12 provided with an adhesive layer, a cross-section of the film was prepared with a microtome, and the cross-section was observed using a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation). When the thickness of the layer was determined, the adhesive layer thickness was 0.4 ⁇ m.
  • the surface curing rate of the moth eye layer before being bonded to the antiglare layer of the antiglare film was measured by the following measuring method. That is, in the preparation method of the antireflection layer described in the preparation of the antiglare antireflection film 1, the composition (A-1) was not changed except that the composition (A-1) was applied on the temporary support so as to have a thickness of 3 ⁇ m. The sample which went to the process (5) was produced, and surface IR measurement was performed before transferring to the glare-proof layer of an anti-glare film.
  • the carbonyl group peak (1660-1800 cm ⁇ 1 ) area and double bond peak height (808 cm ⁇ 1 ) were determined, and the double bond peak height was divided by the carbonyl group peak area ( (Hereinafter referred to as P101).
  • P101 carbonyl group peak area
  • the same IR measurement was performed on the same sample prepared under the condition not irradiated with ultraviolet rays, and a value (denoted as Q101) obtained by dividing the peak height of the double bond by the carbonyl group peak area was obtained. Used to calculate the surface cure rate.
  • the surface shape of the produced antiglare antireflection film is based on JIS B-0601 (1994), and the arithmetic average roughness (Ra) and the average interval (Sm) of the surface irregularities are calculated by Surfcorder MODEL manufactured by Kosaka Laboratory. Evaluated by SE-3F. Regarding Sm, the measurement length was 8 mm, and the cut-off value was 0.8 mm.
  • Ra and Sm of the concavo-convex shape measured by the above measurement are concavo-convex shapes resulting from the antiglare layer, and even when the antiglare antireflection film has a motheye layer on the antiglare layer, The fine uneven shape does not affect the measurement.
  • the surface of the obtained antiglare antireflection film was observed using a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation).
  • S-3400N scanning electron microscope
  • the dense and sparse parts of the particles are determined from low-magnification observation, and the number of 10 ⁇ m ⁇ 10 ⁇ m square particles is expanded and counted. did.
  • the field of view was randomly selected and the same observation was performed.
  • the number of particles in the sparse part / the number of particles in the dense part was calculated, and the average ratio of the 10 measurements was taken for each, and the average thickness unevenness of the antireflection layer (the average thickness of the antireflection layer at the protrusions) / Average thickness of the antireflection layer in the recess).
  • the average thickness of the antireflection layer at the convex portion and the average thickness of the antireflection layer at the concave portion of the antiglare antireflection film are calculated by the following methods. did.
  • the convex portion of the antiglare layer is marked with a scribing pen, and the cross section cut to include the marked portion (marking portion) is an optical microscope or a scanning electron microscope (SEM).
  • the film thickness of the antireflection layer is calculated by observing in FIG.
  • the convex portion is the thickness of the thinnest portion of the antireflection layer near the marking portion
  • the concave portion is the thickest portion of the antireflection layer in the cross section
  • the average thickness is 10 times. The average value of the measurement was used.
  • the back side of the anti-glare anti-reflection film (the surface opposite to the anti-glare layer side interface of the base film) is roughened with sandpaper and then treated with black ink to eliminate the back reflection.
  • Attach adapter ARV-474 to V-550 (manufactured by JASCO Corporation), measure the integral reflectance at an incident angle of 5 ° in the wavelength range of 380 to 780 nm, calculate the mean reflectance, and integrate the reflectance Rate.
  • the specular reflectance was measured at a light receiving angle of 5 ° with respect to an incident angle of 5 ° in the wavelength region of 380 nm to 780 nm, and the average reflection was measured. The rate was calculated as the specular reflectance.
  • the uniformity of the surface was evaluated by the haze value.
  • the total haze value (%) of the obtained antiglare antireflection film was measured according to JIS-K7136 (2000). Nippon Denshoku Industries Co., Ltd. haze meter NDH4000 was used for the apparatus.
  • the reflectance difference before and after the scratch resistance test was evaluated according to the following criteria.
  • a to D are preferable
  • a to C are more preferable
  • a to B are more preferable.
  • the antiglare antireflection films 1 to 12, 15 to 20 and 22 of Examples 1 to 19 have a uniform structure with no unevenness in the average thickness of the concave and convex antireflection layers in the antiglare antireflection film.
  • the integrated reflectance was 1.0% or less and the specular reflectance was 0.4% or less.
  • the antiglare antireflection films 13 and 14 of Comparative Examples 1 and 2 have large average thickness unevenness of the antireflection layers of the concave and convex portions in the antiglare antireflection film, and the integrated reflectance is 1. It exceeded 0%, and the specular reflectance exceeded 0.4%.
  • the antiglare antireflection film 21 of Comparative Example 3 was not sufficiently antiglare because the uneven shape of the antiglare layer was not in the desired range. Further, the antiglare antireflection film 23 of Comparative Example 4 has a large average thickness unevenness of the antireflection layer of the concave and convex portions in the antiglare antireflection film, the integrated reflectance exceeds 1.0%, and the specular reflection. The rate exceeded 0.4%. It has been shown that the method for producing an antiglare antireflection film of the present invention is an effective technique for imparting antireflection performance to a substrate having an uneven shape such as an antiglare layer.
  • compositions (A-2), (B-1) and (B-2) were used instead of the composition (A-1), respectively.
  • the antiglare antireflection films of Examples 24, 25, and 26 were prepared in the same manner except for the above.
  • the anti-glare anti-reflection film is placed on a commercially available blue light source (OPSM-H150X142B manufactured by OPTEX-FA) in a room maintained at a temperature of 25 ° C. and a relative humidity of 60%, and blue light is applied to the anti-reflection film. Irradiated continuously for 200 hours. Measurement was performed in the same manner as the above-described integrated reflectance measurement, and the integrated reflectance after the blue durability test was calculated. The reflectance difference before and after the durability test was evaluated according to the following criteria.
  • the Si / C ratio of the binder resin is 0.05 or more, the binder is not damaged even when irradiated with blue light for a long time. It was found that durability was improved as a dazzling antireflection film, and low reflectance could be maintained.
  • the surface shape (Ra and Sm) of the antiglare antireflection film and the average thickness unevenness of the antireflection layer were the same as those of Example 10.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Provided are: an anti-glare anti-reflection film having sufficient anti-reflection performance; a production method for such an anti-glare anti-reflection film; a polarization plate having such an anti-glare anti-reflection film; an image display device; and a self-luminous display device. This anti-glare anti-reflection film includes a base film, an anti-glare layer, and an anti-reflection layer in this order, has an integrated reflection of at most 1.0% and a mirror reflectivity of at most 0.4%, satisfies conditions 0.03 μm≤Ra≤0.4 μm and 20 μm≤Sm≤700 μm, and has a ratio of 1.0-0.7 in terms of the average thickness in a convex portion of the anti-reflection layer with respect to the average thickness in a concave portion of the anti-reflection layer.

Description

防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板、画像表示装置、及び自発光型ディスプレイ装置Antiglare antireflection film, method for producing antiglare antireflection film, polarizing plate, image display device, and self-luminous display device
 本発明は、防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板、画像表示装置、及び自発光型ディスプレイ装置に関する。 The present invention relates to an antiglare antireflection film, a method for producing an antiglare antireflection film, a polarizing plate, an image display device, and a self-luminous display device.
 陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、及び液晶表示装置(LCD)のような画像表示装置において、外光の反射によるコントラスト低下及び像の映り込みを防止するために、ディスプレイの最表面に防眩性反射防止フィルムが配置されることがある。 In image display devices such as cathode ray tube display (CRT), plasma display (PDP), electroluminescence display (ELD), and liquid crystal display (LCD), it prevents contrast degradation and image reflection due to reflection of external light. Therefore, an antiglare antireflection film may be disposed on the outermost surface of the display.
 たとえば、特許文献1及び2には、透明フィルム支持体上に、凹凸形状を有する防眩層を設け、防眩層上に更に中空シリカ粒子を含む低屈折率層を設けた防眩性反射防止フィルムが記載されている。このような防眩性反射防止フィルムは、少なくとも最表面に層厚200nm以下の薄膜層である低屈折率層を設け、その低屈折率層の光学干渉によって反射防止を行うものである。 For example, in Patent Documents 1 and 2, antiglare antireflection, in which an antiglare layer having an uneven shape is provided on a transparent film support, and a low refractive index layer containing hollow silica particles is further provided on the antiglare layer. A film is described. Such an antiglare antireflection film is provided with a low refractive index layer which is a thin film layer having a layer thickness of 200 nm or less on at least the outermost surface, and performs antireflection by optical interference of the low refractive index layer.
 また、高い反射防止性能を付与できる技術として、基材表面に周期が可視光の波長以下の微細な凹凸形状を有する反射防止フィルム、いわゆるモスアイ(moth eye)構造を有する反射防止フィルムが知られている。モスアイ構造により、擬似的に空気から基材の内部のバルク材料に向かって屈折率が連続的に変化する屈折率傾斜層を作り出し、光の反射を防止することができる。 In addition, as a technique capable of imparting high antireflection performance, an antireflection film having a fine uneven shape whose period is not more than the wavelength of visible light on the surface of the substrate, that is, an antireflection film having a so-called moth eye structure is known. Yes. With the moth-eye structure, it is possible to create a refractive index gradient layer in which the refractive index continuously changes from air to the bulk material inside the substrate, thereby preventing light reflection.
 モスアイ構造を有する防眩性反射防止フィルムとして、特許文献3には、微粒子とバインダー樹脂形成用化合物を含有する反射防止層形成用組成物を基材フィルムと凹凸形状を有する防眩層を有する防眩フィルムの防眩層上に塗布し、バインダー樹脂形成用化合物を防眩層中に浸透させることでモスアイ構造を作製した防眩性反射防止フィルムが記載されている。また、特許文献4には、硬化型樹脂を金型腑形してモスアイ構造を作製する、所謂ナノインプリント方式による防眩性反射防止フィルムが記載されている。 As an antiglare antireflection film having a moth-eye structure, Patent Document 3 discloses an antireflection layer forming composition containing fine particles and a binder resin forming compound as a base film and an antiglare layer having an uneven shape. An antiglare antireflection film is described in which a moth-eye structure is prepared by coating on an antiglare layer of a glare film and allowing a binder resin-forming compound to penetrate into the antiglare layer. Patent Document 4 describes an antiglare antireflection film by a so-called nanoimprint method in which a moth-eye structure is produced by molding a curable resin into a mold shape.
特開2006-146027号公報JP 2006-146027 A 特開2006-145736号公報JP 2006-145736 A 特開2016-53601号公報Japanese Unexamined Patent Publication No. 2016-53601 特許第6089402号公報Japanese Patent No. 6089402
 しかしながら、特許文献1及び2に記載の防眩性反射防止フィルムについては、更なる反射防止性能が求められる。
 特許文献3の技術では、基材フィルムと防眩層を有する防眩フィルムの防眩層上に反射防止層形成組成物を塗布して反射防止層を形成する際、塗布液(反射防止層形成組成物)のレベリングによって防眩層の凸部と凹部で塗布量のムラが生じ、微粒子数の疎密が発生するため、低反射率の防眩性反射防止フィルムが作製できない場合があることがわかった。
 特許文献4のナノインプリント方式で作製されたモスアイ構造は耐擦傷性に劣るという問題があった。
However, the antiglare antireflection film described in Patent Documents 1 and 2 requires further antireflection performance.
In the technique of Patent Document 3, when an antireflection layer is formed by applying an antireflection layer forming composition on an antiglare layer of an antiglare film having a base film and an antiglare layer, a coating solution (antireflection layer formation) is used. The leveling of the composition) causes unevenness in the coating amount between the convex and concave portions of the antiglare layer, and the density of fine particles occurs, which indicates that an antiglare antireflection film with low reflectance may not be produced. It was.
The moth-eye structure produced by the nanoimprint method of Patent Document 4 has a problem that it is inferior in scratch resistance.
 すなわち、本発明の課題は、十分な反射防止性能を有する防眩性反射防止フィルムを提供することにある。また、本発明の別の課題は、上記防眩性反射防止フィルムの製造方法、上記防眩性反射防止フィルムを有する偏光板、画像表示装置、及び自発光型ディスプレイ装置を提供することにある。 That is, an object of the present invention is to provide an antiglare antireflection film having sufficient antireflection performance. Another object of the present invention is to provide a method for producing the antiglare antireflection film, a polarizing plate having the antiglare antireflection film, an image display device, and a self-luminous display device.
 本発明者らは上記課題を解決するために鋭意検討し、基材フィルムと防眩層を有する防眩フィルムの防眩層上に反射防止層を転写で形成することで、防眩層の凹部と凸部で均一な厚みの反射防止層を形成することが可能となり、低反射率の防眩性反射防止フィルムを作製できることを見出した。 The present inventors diligently studied to solve the above-mentioned problems, and formed an antireflection layer on the antiglare layer of the antiglare film having the base film and the antiglare layer by transfer, thereby forming a recess in the antiglare layer. It was found that an antireflection layer having a uniform thickness can be formed at the convex portions, and an antiglare antireflection film having a low reflectance can be produced.
 すなわち、上記課題は、以下の構成によって解決される。 That is, the above problem is solved by the following configuration.
<1>
 基材フィルムと、防眩層と、反射防止層とをこの順に有する防眩性反射防止フィルムであって、
 上記防眩性反射防止フィルムの積分反射率が1.0%以下であり、
 上記防眩性反射防止フィルムの鏡面反射率が0.4%以下であり、
 上記防眩性反射防止フィルム表面の凹凸形状は、算術平均粗さRaが0.03μm≦Ra≦0.4μmであり、かつ凹凸の平均間隔Smが20μm≦Sm≦700μmであり、
 上記防眩性反射防止フィルムの凸部における反射防止層の平均厚み/凹部における反射防止層の平均厚みの比が1.0~0.7である、防眩性反射防止フィルム。
<2>
 上記防眩性反射防止フィルム表面の凹凸形状は、算術平均粗さRaが0.1μm≦Ra≦0.4μmである、<1>に記載の防眩性反射防止フィルム。
<3>
 上記防眩層と上記反射防止層の間に接着層を有する、<1>または<2>に記載の防眩性反射防止フィルム。
<4>
 上記防眩層中に、上記反射防止層と共有結合を形成可能な(メタ)アクリロイル基以外の官能基を有する成分を含有する、<1>~<3>のいずれか1つに記載の防眩性反射防止フィルム。
<5>
 上記反射防止層が、平均一次粒子径100nm以上250nm以下の粒子及びバインダー樹脂を含み、かつ上記防眩層との界面とは反対側の表面に上記粒子によるモスアイ構造を有する、<1>~<4>のいずれか1つに記載の防眩性反射防止フィルム。
<6>
 上記バインダー樹脂がSi-O結合を有し、上記バインダー樹脂の平均ケイ素含有率Si/Cが0.01以上である<5>に記載の防眩性反射防止フィルム。
<7>
 基材フィルムと、防眩層と、反射防止層とをこの順に有する防眩性反射防止フィルムの製造方法であって、
 上記基材フィルム上に、防眩層用バインダー樹脂形成用化合物と防眩層用粒子を含有する防眩層形成用組成物を塗布し、電離放射線照射又は加熱により上記防眩層形成用組成物を硬化させて防眩層を形成する工程と、
 仮支持体上に、反射防止層形成用組成物を塗布し、電離放射線照射又は加熱により10~70%の表面硬化率で半硬化し反射防止層を形成する工程と、
 上記反射防止層を上記仮支持体上から上記防眩層上に転写する工程と、
を有する防眩性反射防止フィルムの製造方法。
<8>
 上記反射防止層を上記仮支持体上から上記防眩層上に転写する前に、上記防眩層上又は上記反射防止層上に接着層を設ける工程を有する、<7>に記載の防眩性反射防止フィルムの製造方法。
<9>
 上記反射防止層と上記防眩層を貼り合わせた状態で加熱する工程を有する、<7>または<8>に記載の防眩性反射防止フィルムの製造方法。
<10>
 仮支持体上に、平均一次粒子径が100nm以上250nm以下の粒子(a2)と硬化性化合物(a1)とを、上記硬化性化合物(a1)を含む層(a)中に上記粒子(a2)が埋没する厚みで設ける工程(1)、
 上記層(a)の一部を硬化させて層(ca)を得る工程(2)、
 支持体及び上記支持体上に粘着剤を含む層(b)を有する粘着フィルムの上記層(b)を、上記層(ca)と貼り合わせる工程(3)、
 上記粒子(a2)が、上記層(ca)及び上記層(b)を合わせた層中に埋没し、かつ、上記層(ca)の上記支持体側の界面から突出するように、上記層(ca)の上記支持体側の界面の位置を上記仮支持体側に近づける工程(4)、
 上記仮支持体を剥離する工程(5)、
 基材フィルムと防眩層を有する防眩フィルムの防眩層と、上記工程(5)で得られた上記層(ca)を含む積層体の上記層(ca)とを貼り合せる工程(6)、
 上記粒子(a2)が、上記層(ca)と、上記層(b)とを合わせた層中に埋没した状態で上記層(ca)を硬化させる工程(7)、ならびに
 上記粘着フィルムを剥離する工程(8)、
をこの順に有する<7>~<9>のいずれか1つに記載の防眩性反射防止フィルムの製造方法。
<11>
 <1>~<6>のいずれか1つに記載の防眩性反射防止フィルムを偏光板保護フィルムとして有する偏光板。
<12>
 <1>~<6>のいずれか1つに記載の防眩性反射防止フィルム、又は<11>に記載の偏光板を有する画像表示装置。
<13>
 <1>~<6>のいずれか1つに記載の防眩性反射防止フィルムを表面に備えた、自発光型ディスプレイ装置。
<1>
An antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order,
The integrated reflectance of the antiglare antireflection film is 1.0% or less,
The specular reflectance of the antiglare antireflection film is 0.4% or less,
The uneven shape of the antiglare antireflection film surface has an arithmetic average roughness Ra of 0.03 μm ≦ Ra ≦ 0.4 μm, and an average interval Sm of unevenness of 20 μm ≦ Sm ≦ 700 μm,
An antiglare antireflection film, wherein the ratio of the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film to the average thickness of the antireflection layer at the concave portion is 1.0 to 0.7.
<2>
The uneven shape on the surface of the antiglare antireflection film is the antiglare antireflection film according to <1>, wherein the arithmetic average roughness Ra is 0.1 μm ≦ Ra ≦ 0.4 μm.
<3>
The antiglare antireflection film according to <1> or <2>, which has an adhesive layer between the antiglare layer and the antireflection layer.
<4>
The antiglare layer according to any one of <1> to <3>, wherein the antiglare layer contains a component having a functional group other than a (meth) acryloyl group capable of forming a covalent bond with the antireflection layer. Dazzling antireflection film.
<5>
The antireflection layer contains particles having an average primary particle diameter of 100 nm to 250 nm and a binder resin, and has a moth-eye structure of the particles on the surface opposite to the interface with the antiglare layer. 4> The anti-glare antireflection film according to any one of 4>.
<6>
The antiglare antireflection film according to <5>, wherein the binder resin has a Si—O bond, and the binder resin has an average silicon content Si / C of 0.01 or more.
<7>
A method for producing an antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order,
On the base film, a composition for forming an antiglare layer containing a binder resin forming compound for an antiglare layer and particles for the antiglare layer is applied, and the composition for forming an antiglare layer is irradiated with ionizing radiation or heated. A step of curing the antiglare layer,
Applying a composition for forming an antireflection layer on a temporary support, and semi-curing it at a surface curing rate of 10 to 70% by irradiation with ionizing radiation or heating to form an antireflection layer;
Transferring the antireflection layer from the temporary support onto the antiglare layer;
The manufacturing method of the anti-glare antireflection film which has this.
<8>
The antiglare layer according to <7>, further comprising a step of providing an adhesive layer on the antiglare layer or on the antireflection layer before transferring the antireflection layer from the temporary support onto the antiglare layer. For producing antireflective film.
<9>
<7> or <8> The method for producing an antiglare antireflection film according to <7>, comprising a step of heating the antireflection layer and the antiglare layer in a bonded state.
<10>
On the temporary support, particles (a2) having an average primary particle diameter of 100 nm or more and 250 nm or less and the curable compound (a1) are contained in the layer (a) containing the curable compound (a1). A step (1) of providing the thickness to be buried
A step (2) of obtaining a layer (ca) by curing a part of the layer (a);
A step (3) of bonding the layer (b) of the pressure-sensitive adhesive film having a support and a layer (b) containing a pressure-sensitive adhesive on the support to the layer (ca);
The layer (ca) is embedded such that the particles (a2) are embedded in the layer including the layer (ca) and the layer (b) and protrude from the interface of the layer (ca) on the support side. Step (4) of bringing the position of the interface on the support side closer to the temporary support side,
A step (5) of peeling the temporary support,
A step (6) of laminating the antiglare layer of the antiglare film having the base film and the antiglare layer and the layer (ca) of the laminate including the layer (ca) obtained in the step (5). ,
Step (7) of curing the layer (ca) in a state where the particle (a2) is embedded in a layer combining the layer (ca) and the layer (b), and the adhesive film is peeled off. Step (8),
The method for producing an antiglare and antireflection film according to any one of <7> to <9>, wherein:
<11>
A polarizing plate having the antiglare antireflection film according to any one of <1> to <6> as a polarizing plate protective film.
<12>
An image display device comprising the antiglare antireflection film according to any one of <1> to <6>, or the polarizing plate according to <11>.
<13>
A self-luminous display device comprising the antiglare and antireflection film according to any one of <1> to <6> on a surface thereof.
 本発明によれば、十分な反射防止性能を有する防眩性反射防止フィルムを提供することができる。また、本発明によれば、上記防眩性反射防止フィルムの製造方法、上記防眩性反射防止フィルムを有する偏光板、画像表示装置、及び自発光型ディスプレイ装置を提供することができる。 According to the present invention, an antiglare antireflection film having sufficient antireflection performance can be provided. Moreover, according to this invention, the manufacturing method of the said anti-glare antireflection film, the polarizing plate which has the said anti-glare antireflection film, an image display apparatus, and a self-light-emitting display apparatus can be provided.
図1(a)は、反射防止層を塗布で形成した場合の防眩性反射防止フィルムの表面走査型電子顕微鏡(SEM)画像の一例であり、図1(b)は図1(a)をより拡大したものである。FIG. 1A is an example of a surface scanning electron microscope (SEM) image of an antiglare antireflection film when an antireflection layer is formed by coating, and FIG. It is a larger one. 図2(a)は、反射防止層を転写で形成した場合の防眩性反射防止フィルムの表面SEM画像の一例であり、図2(b)は図2(a)をより拡大したものである。FIG. 2A is an example of a surface SEM image of the antiglare antireflection film when the antireflection layer is formed by transfer, and FIG. 2B is an enlargement of FIG. 2A. . 本発明の防眩性反射防止フィルムの製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the anti-glare antireflection film of this invention. 本発明の防眩性反射防止フィルムの製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the anti-glare antireflection film of this invention. 本発明の防眩性反射防止フィルムの一例を示す模式図である。It is a schematic diagram which shows an example of the anti-glare antireflection film of this invention. 本発明の防眩性反射防止フィルムの一例を示す模式図である。It is a schematic diagram which shows an example of the anti-glare antireflection film of this invention. 本発明の防眩性反射防止フィルムの一例を示す模式図である。It is a schematic diagram which shows an example of the anti-glare antireflection film of this invention.
 以下、本発明について詳細に説明する。
 なお、本明細書において、「(メタ)アクリレート」、「(メタ)アクリル酸」、「(メタ)アクリロイル」は、それぞれ「アクリレートまたはメタクリレート」、「アクリル酸またはメタクリル酸」、「アクリロイルまたはメタクリロイル」を表す。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
In the present specification, “(meth) acrylate”, “(meth) acrylic acid”, and “(meth) acryloyl” are “acrylate or methacrylate”, “acrylic acid or methacrylic acid”, and “acryloyl or methacryloyl”, respectively. Represents.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 また、本明細書において、基材フィルム上に防眩層を形成したフィルムのことを防眩フィルムと表現する。 In the present specification, a film in which an antiglare layer is formed on a base film is expressed as an antiglare film.
<防眩性反射防止フィルム>
 本発明の防眩性反射防止フィルムは、基材フィルムと、防眩層と、反射防止層とをこの順に有する防眩性反射防止フィルムであって、
 上記防眩性反射防止フィルムの積分反射率が1.0%以下であり、
 上記防眩性反射防止フィルムの鏡面反射率が0.4%以下であり、
 上記防眩性反射防止フィルム表面の凹凸形状は、算術平均粗さRaが0.03μm≦Ra≦0.4μmであり、かつ凹凸の平均間隔Smが20μm≦Sm≦700μmであり、
 上記防眩性反射防止フィルムの凸部における反射防止層の平均厚み/凹部における反射防止層の平均厚みの比が1.0~0.7である、防眩性反射防止フィルムである。
<Anti-glare anti-reflection film>
The antiglare antireflection film of the present invention is an antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order,
The integrated reflectance of the antiglare antireflection film is 1.0% or less,
The specular reflectance of the antiglare antireflection film is 0.4% or less,
The uneven shape of the antiglare antireflection film surface has an arithmetic average roughness Ra of 0.03 μm ≦ Ra ≦ 0.4 μm, and an average interval Sm of unevenness of 20 μm ≦ Sm ≦ 700 μm,
The antiglare antireflection film has a ratio of the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film to the average thickness of the antireflection layer at the concave portion of 1.0 to 0.7.
 図5は本発明の防眩性反射防止フィルムの一例を示す模式図である。図5の防眩性反射防止フィルム20は、基材フィルム11と防眩層12と反射防止層10とを有する。防眩層12は防眩層用粒子13を含む。反射防止層10はモスアイ層である。
 図6は本発明の防眩性反射防止フィルムの別の一例を示す模式図である。図6の防眩性反射防止フィルム20は、図5において、更に防眩層12と反射防止層10の間に接着層15を有する。
 図7は本発明の防眩性反射防止フィルムの別の一例を示す模式図である。図7の防眩性反射防止フィルム20は、図5において、モスアイ層である反射防止層10に代えて、低屈折率層Lnと高屈折率層Hnとを有する反射防止層16を有する。
 なお、図3~図7は模式図であり、各粒子のサイズ、基材及び各層の厚み等は実際の寸法の比率では描かれていない場合がある。
FIG. 5 is a schematic view showing an example of the antiglare antireflection film of the present invention. An antiglare antireflection film 20 in FIG. 5 includes a base film 11, an antiglare layer 12, and an antireflection layer 10. The antiglare layer 12 includes antiglare layer particles 13. The antireflection layer 10 is a moth-eye layer.
FIG. 6 is a schematic view showing another example of the antiglare antireflection film of the present invention. The antiglare antireflection film 20 in FIG. 6 further includes an adhesive layer 15 between the antiglare layer 12 and the antireflection layer 10 in FIG.
FIG. 7 is a schematic view showing another example of the antiglare antireflection film of the present invention. The antiglare antireflection film 20 in FIG. 7 has an antireflection layer 16 having a low refractive index layer Ln and a high refractive index layer Hn in place of the antireflection layer 10 which is a moth-eye layer in FIG.
3 to 7 are schematic diagrams, and the size of each particle, the thickness of the base material and each layer, and the like may not be drawn in actual dimensional ratios.
[防眩層]
 本発明の防眩性反射防止フィルムが有する防眩層について説明する。
 防眩層は、表面に凹凸形状を有することが好ましく、これによりフィルムに表面散乱による防眩性を付与することができる。また、好ましくはフィルムの耐擦傷性を向上するためのハードコート性を付与できるものが好ましい。
[Anti-glare layer]
The antiglare layer of the antiglare antireflection film of the present invention will be described.
The antiglare layer preferably has a concavo-convex shape on the surface, which can impart antiglare properties to the film by surface scattering. Moreover, what can provide the hard-coat property for improving the abrasion resistance of a film preferably is preferable.
 防眩性を付与する方法としては、特開平6-16851号公報記載のような表面に微細な凹凸を有するマット状の賦型フィルムをラミネートして形成する方法、特開2000-206317号公報記載のように電離放射線照射量の差による電離放射線硬化型樹脂の硬化収縮により形成する方法、特開2000-338310号公報記載のように乾燥にて透光性樹脂に対する良溶媒の質量比が減少することにより透光性微粒子および透光性樹脂をゲル化させつつ固化させて塗膜表面に凹凸を形成する方法、特開2000-275404号公報記載のように外部からの圧力により表面凹凸を付与する方法、特開2005-195819号公報記載のように複数のポリマーの混合溶液から溶媒が蒸発する過程で相分離することを利用して表面凹凸を形成する方法、などが知られており、これら公知の方法を利用することができる。 As a method of imparting anti-glare properties, a method of laminating and forming a mat-shaped shaping film having fine irregularities on the surface as described in JP-A-6-16851, described in JP-A-2000-206317 A method of forming by curing shrinkage of an ionizing radiation curable resin due to a difference in ionizing radiation dose, as described in JP 2000-338310 A, and a mass ratio of a good solvent to a translucent resin is reduced by drying. A method of forming unevenness on the coating film surface by solidifying the light-transmitting fine particles and the light-transmitting resin by gelation, and providing surface unevenness by external pressure as described in JP-A-2000-275404 Surface unevenness by utilizing phase separation in the process of evaporation of a solvent from a mixed solution of a plurality of polymers as described in JP-A-2005-195819 A method of forming, have been known such as, can use these known methods.
 防眩層は、防眩層用粒子を含有することが好ましい。防眩層用粒子としては、透光性粒子、又は金属酸化物微粒子が好ましい。
 防眩層は、より好ましくはハードコート性を付与することのできる防眩層用バインダー樹脂、及び防眩性を付与するための透光性粒子を含み、透光性粒子自体の突起あるいは複数の粒子の集合体で形成される突起によって表面に凹凸が形成された層であることが好ましい。
 また、防眩層は、バインダー樹脂形成用化合物、透光性粒子及び溶媒を含有する防眩層形成用組成物を用いて形成されることが好ましい。
 防眩層形成用組成物を用いて形成される防眩層は、防眩層用バインダー樹脂と防眩層用バインダー樹脂中に分散された透光性粒子とを含み、防眩性とハードコート性とを兼ね備えることが好ましい。
The antiglare layer preferably contains particles for the antiglare layer. As the particles for the antiglare layer, translucent particles or metal oxide fine particles are preferable.
More preferably, the antiglare layer includes a binder resin for an antiglare layer capable of imparting hard coat properties, and translucent particles for imparting antiglare properties. A layer in which irregularities are formed on the surface by projections formed by an aggregate of particles is preferable.
Moreover, it is preferable that an anti-glare layer is formed using the composition for anti-glare layer containing the compound for binder resin formation, translucent particle | grains, and a solvent.
The antiglare layer formed using the composition for forming an antiglare layer includes a binder resin for the antiglare layer and translucent particles dispersed in the binder resin for the antiglare layer, and has an antiglare property and a hard coat. It is preferable to combine the properties.
(透光性粒子1)
 本発明においては、防眩性を付与するために、防眩層中に少なくとも1種の透光性粒子を含有することが好ましい。好ましい態様の1つとしては、例えば、透光性粒子の平均粒子径が防眩層の平均膜厚よりも大きい透光性粒子1を用い、透光性粒子1の平均粒子径を防眩層の平均膜厚よりも0.01~4.0μm大きくすることで、良好な防眩性を付与できる。この場合、防眩性と、膜表面の平坦部の割合を多くし、反射防止層を均一に積層することとを両立するためには、透光性粒子1の平均粒子径が防眩層の平均膜厚よりも0.1~3.0μm大きいことがさらに好ましく、0.5~2.5μm大きいことが最も好ましい。また、透光性粒子1の平均粒子径が4μm以下の場合は、透光性粒子1の平均粒子径が防眩層の平均膜厚よりも0.1~2.5μm大きいことが好ましく、0.1~2.0μm大きいことが最も好ましい。
 防眩層の平均膜厚は防眩性反射防止フィルムの断面を電子顕微鏡で観察し、膜厚をランダムに30ヶ所測定した平均値から算出される。
(Translucent particle 1)
In the present invention, in order to impart antiglare properties, it is preferable to contain at least one kind of translucent particles in the antiglare layer. As one of the preferable embodiments, for example, the translucent particles 1 in which the average particle diameter of the translucent particles is larger than the average film thickness of the antiglare layer are used, and the average particle diameter of the translucent particles 1 is set to the antiglare layer. By making the average film thickness 0.01 to 4.0 μm larger than the average film thickness, good antiglare property can be imparted. In this case, in order to achieve both the antiglare property and the ratio of the flat portion on the film surface and to uniformly laminate the antireflection layer, the average particle diameter of the translucent particles 1 is that of the antiglare layer. The average film thickness is more preferably 0.1 to 3.0 μm, and most preferably 0.5 to 2.5 μm. When the average particle diameter of the translucent particles 1 is 4 μm or less, the average particle diameter of the translucent particles 1 is preferably 0.1 to 2.5 μm larger than the average film thickness of the antiglare layer. Most preferably, it is larger by 1 to 2.0 μm.
The average film thickness of the antiglare layer is calculated from an average value obtained by observing a cross section of the antiglare antireflection film with an electron microscope and measuring 30 film thicknesses randomly.
 防眩層の1つの凸部は実質的に5個以下の透光性粒子1によって形成されていることが好ましく、実質的に1個の透光性粒子によって凸部が形成されていることがより好ましい。ここで「実質的に」とは、凸部のうち、90%以上が好ましい態様を満たしていることを意味する。
 防眩層の1つの凸部が実質的に1個の透光性粒子1によって形成されている場合は、分散性の良好な粒子を選定することが好ましい。
It is preferable that one convex portion of the antiglare layer is substantially formed by 5 or less translucent particles 1, and that the convex portion is substantially formed by one translucent particle. More preferred. Here, “substantially” means that 90% or more of the convex portions satisfy a preferable mode.
When one convex part of the anti-glare layer is formed substantially by one translucent particle 1, it is preferable to select a particle with good dispersibility.
 透光性粒子1の具体例としては、例えば架橋ポリメチルメタアクリレート粒子、架橋メチルメタアクリレート-スチレン共重合体粒子、架橋ポリスチレン粒子、架橋メチルメタアクリレート-メチルアクリレート共重合粒子、架橋アルキルアクリレート-スチレン共重合粒子、架橋アルキルメタアクリレート-スチレン共重合粒子、メラミン・ホルムアルデヒド樹脂粒子、ベンゾグアナミン・ホルムアルデヒド樹脂粒子等の樹脂粒子が挙げられる。なかでも架橋スチレン粒子、架橋ポリメチルメタアクリレート粒子、架橋メチルメタアクリレート-スチレン共重合体粒子等が好ましい。さらにはこれらの樹脂粒子の表面にフッ素原子、シリコン原子、カルボキシル基、水酸基、アミノ基、スルホン酸基、燐酸基等を含む化合物を化学結合させた表面修飾粒子、シリカ又はジルコニアなどのナノサイズの無機微粒子を表面に結合した粒子も例に挙げられる。
 なかでも、防眩層中でのバインダー成分との屈折率差の絶対値を調節するために、架橋メチルメタアクリレート-スチレン共重合体粒子、架橋アルキルアクリレート-スチレン共重合粒子、架橋アルキルメタアクリレート-スチレン共重合粒子が好ましい。
Specific examples of the translucent particles 1 include, for example, crosslinked polymethyl methacrylate particles, crosslinked methyl methacrylate-styrene copolymer particles, crosslinked polystyrene particles, crosslinked methyl methacrylate-methyl acrylate copolymer particles, crosslinked alkyl acrylate-styrene. Examples thereof include resin particles such as copolymer particles, crosslinked alkyl methacrylate-styrene copolymer particles, melamine / formaldehyde resin particles, and benzoguanamine / formaldehyde resin particles. Of these, crosslinked styrene particles, crosslinked polymethyl methacrylate particles, and crosslinked methyl methacrylate-styrene copolymer particles are preferred. Furthermore, surface modified particles obtained by chemically bonding a compound containing fluorine atom, silicon atom, carboxyl group, hydroxyl group, amino group, sulfonic acid group, phosphoric acid group, etc. on the surface of these resin particles, nano-sized such as silica or zirconia Examples of the particles include inorganic fine particles bonded to the surface.
Among them, in order to adjust the absolute value of the refractive index difference with the binder component in the antiglare layer, crosslinked methyl methacrylate-styrene copolymer particles, crosslinked alkyl acrylate-styrene copolymer particles, crosslinked alkyl methacrylate- Styrene copolymer particles are preferred.
 透光性粒子1を用いる場合には、防眩層用バインダー樹脂中又は防眩層形成用組成物中での粒子の分散安定性及び沈降防止のために、シリカ等の可視光散乱を起こさない大きさの無機フィラーや、有機化合物(モノマーでもポリマーであってもよい)等の分散剤を添加してもよい。 When the translucent particles 1 are used, visible light scattering of silica or the like does not occur for the dispersion stability of the particles in the binder resin for the antiglare layer or the antiglare layer forming composition and for preventing sedimentation. You may add dispersing agents, such as a size inorganic filler and an organic compound (a monomer or a polymer may be sufficient).
 なお、無機フィラーを添加するときには、その添加量が増す程、透光性粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与えない範囲内で用いることが好ましい。従って、好ましくは、粒子径0.5μm以下の無機フィラーを、防眩層用バインダー樹脂100質量部に対して塗膜の透明性を損なわない程度に、0.1質量部程度含有させるとよい。有機化合物等の分散剤は、透光性粒子100質量部に対して0.1~20質量部添加するのが好ましい。更に好ましくは0.1~15質量部、特に好ましくは0.5~10質量部である。0.1質量部以上であれば、分散安定性に対する添加効果が現れ、20質量部以下であれば、分散安定性に寄与しない成分が増えてブリードアウト等の問題が生じることがないので好ましい。 In addition, when adding an inorganic filler, it is effective for the sedimentation prevention of translucent particle | grains, so that the addition amount increases, However, It is preferable to use in the range which does not have a bad influence on the transparency of a coating film. Therefore, it is preferable to add about 0.1 parts by mass of an inorganic filler having a particle size of 0.5 μm or less to the extent that the transparency of the coating film is not impaired with respect to 100 parts by mass of the binder resin for the antiglare layer. The dispersant such as an organic compound is preferably added in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the translucent particles. More preferred is 0.1 to 15 parts by mass, and particularly preferred is 0.5 to 10 parts by mass. If it is 0.1 part by mass or more, the effect of addition to the dispersion stability appears, and if it is 20 parts by mass or less, the components that do not contribute to the dispersion stability increase and problems such as bleeding out do not occur.
 上記のように、防眩層用バインダー樹脂中又は防眩層形成用組成物中での分散安定性及び沈降防止のためには、透光性粒子の表面を表面処理してもよい。表面処理剤の種類としては、使用する防眩層用バインダー樹脂、溶媒により適宜選択される。表面処理剤量としては、透光性粒子100質量部に対して0.1~30質量部添加するのが好ましい。更に好ましくは1~25質量部、特に好ましくは3~20質量部である。0.1質量部以上であれば、分散安定性に対する表面処理量が不足することがなく、30質量部以下であれば、表面処理に寄与しない成分が増えてブリードアウト等の問題が生じることがないので好ましい。 As described above, the surface of the translucent particles may be surface-treated for dispersion stability and prevention of settling in the binder resin for the antiglare layer or the composition for forming the antiglare layer. The type of the surface treatment agent is appropriately selected depending on the binder resin for the antiglare layer to be used and the solvent. The amount of the surface treatment agent is preferably added in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass of the translucent particles. More preferred is 1 to 25 parts by mass, and particularly preferred is 3 to 20 parts by mass. If it is 0.1 parts by mass or more, the surface treatment amount for dispersion stability will not be insufficient, and if it is 30 parts by mass or less, components that do not contribute to the surface treatment increase and problems such as bleeding out may occur. It is preferable because it is not present.
 透光性粒子の粒度分布は、ヘイズ値と拡散性の制御、塗布面状の均質性の観点から、単分散性の粒子であること、すなわち粒子径が均一な粒子であることが好ましい。粒子径の均一さを表すCV値は0~10%が好ましく、より好ましくは0~8%、更に好ましくは0~5%である。さらに平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒度分布を持つ透光性粒子は、調製又は合成反応後に、分級することも有力な手段であり、分級の回数を上げることやその程度を強くすることで、望ましい分布の粒子を得ることができる。分級には風力分級法、遠心分級法、沈降分級法、濾過分級法、静電分級法等の方法を用いることが好ましい。透光性粒子の平均粒子径は、透光性粒子を光学顕微鏡により観察し、観察された100個の粒子直径の平均値から算出する。 The particle size distribution of the translucent particles is preferably monodisperse particles, that is, particles having a uniform particle diameter, from the viewpoints of control of haze value and diffusibility, and uniformity of the coated surface. The CV value representing the uniformity of the particle diameter is preferably 0 to 10%, more preferably 0 to 8%, still more preferably 0 to 5%. Further, when a particle having a particle size of 20% or more than the average particle size is defined as a coarse particle, the proportion of the coarse particle is preferably 1% or less of the total number of particles, more preferably 0.1% or less. Yes, more preferably 0.01% or less. The translucent particles having such a particle size distribution are also effective means of classification after the preparation or synthesis reaction. By increasing the number of times of classification or increasing the degree thereof, particles having a desired distribution can be obtained. be able to. It is preferable to use a method such as an air classification method, a centrifugal classification method, a sedimentation classification method, a filtration classification method, or an electrostatic classification method for classification. The average particle diameter of the translucent particles is calculated from an average value of 100 observed particle diameters obtained by observing the translucent particles with an optical microscope.
 防眩層の平均膜厚よりも大きい平均粒子径を有する上記透光性粒子1の添加量は、防眩層の全固形分に対して0.01~1.2質量%であることが、凹凸の密度を疎にすることで膜表面の平坦部の割合を多くし、反射防止層を均一に積層する点で好ましい。上記透光性粒子1の添加量は、防眩層の全固形分に対して0.1~1.0質量%であることがより好ましく、0.1~0.7質量%であることがさらに好ましい。
 透光性粒子は防眩層のバインダー樹脂膜よりも少なくとも0.01~4.0μm突出して防眩性を発現することが好ましい。
The addition amount of the translucent particles 1 having an average particle diameter larger than the average film thickness of the antiglare layer is 0.01 to 1.2% by mass with respect to the total solid content of the antiglare layer. It is preferable in that the density of the unevenness is made sparse so that the ratio of the flat portion on the film surface is increased and the antireflection layer is uniformly laminated. The addition amount of the translucent particles 1 is more preferably 0.1 to 1.0% by mass, and preferably 0.1 to 0.7% by mass with respect to the total solid content of the antiglare layer. Further preferred.
The translucent particles preferably project at least 0.01 to 4.0 μm from the binder resin film of the antiglare layer to exhibit antiglare properties.
(透光性粒子2)
 また、防眩層の別の好ましい態様の1つとしては、例えば、必要な防眩性を得るために上記透光性粒子1とは平均粒子径の異なる別の透光性粒子2を、単独もしくは併用して用いてもよく、更には、上記透光性粒子1と透光性粒子2を併用して、防眩性と更なる光学特性を両立することも可能である。
(Translucent particle 2)
Further, as another preferred embodiment of the antiglare layer, for example, another translucent particle 2 having an average particle diameter different from that of the translucent particle 1 in order to obtain a necessary antiglare property is used alone. Alternatively, they may be used in combination, and it is also possible to achieve both antiglare properties and further optical properties by using the light transmitting particles 1 and the light transmitting particles 2 in combination.
 本発明において透光性粒子2を使用する場合、透光性粒子2は防眩層の平均膜厚よりも小さい平均粒子径を有することが好ましい。具体的には、透光性粒子2の平均粒子径は、防眩層の平均膜厚の10%~90%が好ましく、20%~80%がさらに好ましい。
 透光性粒子2は分散性が良好なものが好ましい。分散性の良好な粒子としては、ポリメチルメタクリレート粒子及び、ポリメチルメタクリレートとポリスチレンの共重合体粒子など透光性の有機樹脂粒子が好ましい。上記共重合体粒子中のポリメチルメタクリレート比率は、40質量%~100質量%であることが、分散性の観点から好ましく、50質量%~100質量%であることがさらに好ましく、75質量%~100質量%であることが最も好ましい。
When using the translucent particle | grains 2 in this invention, it is preferable that the translucent particle | grains 2 have an average particle diameter smaller than the average film thickness of a glare-proof layer. Specifically, the average particle diameter of the translucent particles 2 is preferably 10% to 90%, more preferably 20% to 80% of the average film thickness of the antiglare layer.
The translucent particles 2 preferably have good dispersibility. As the particles having good dispersibility, translucent organic resin particles such as polymethyl methacrylate particles and polymethyl methacrylate / polystyrene copolymer particles are preferable. The polymethyl methacrylate ratio in the copolymer particles is preferably 40% by mass to 100% by mass from the viewpoint of dispersibility, more preferably 50% by mass to 100% by mass, and 75% by mass to Most preferably, it is 100 mass%.
 透光性粒子2としてコア-シェル型の粒子であって、コアが防眩層用バインダーと屈折率差を有し光散乱性を発現させる材料で、シェルが防眩層用バインダーと親和性が高く分散性に優れる材料からなる粒子も好ましく用いることができる。
 光散乱性を発現させる材料としては、ポリメチルメタクリレート、架橋ポリ(アクリル-スチレン)共重合体、メラミン樹脂、ポリカーボネート、ポリスチレン、架橋ポリスチレン、ポリ塩化ビニル、ベンゾグアナミン-メラミンホルムアルデヒド等が挙げられる。
 分散性に優れる材料としては、ポリメチルメタクリレート等が挙げられる。
The translucent particle 2 is a core-shell type particle in which the core has a refractive index difference from the binder for the antiglare layer and exhibits light scattering properties, and the shell has an affinity for the binder for the antiglare layer. Particles made of a material having high dispersibility can also be preferably used.
Examples of the material that exhibits light scattering properties include polymethyl methacrylate, crosslinked poly (acryl-styrene) copolymer, melamine resin, polycarbonate, polystyrene, crosslinked polystyrene, polyvinyl chloride, benzoguanamine-melamine formaldehyde, and the like.
Examples of the material having excellent dispersibility include polymethyl methacrylate.
 透光性粒子2は、防眩層の全固形分に対して0.1質量%~30質量%とするのが、防眩性及び内部散乱性付与という点で好ましく、1~15質量%とするのがさらに好ましい。
 透光性粒子2を複数種併用する場合には、粒子を構成する成分を変えずに、粒子径のみ異なるものを用いることが、防眩性制御の容易さの観点で好ましい。
The translucent particles 2 are preferably 0.1% by mass to 30% by mass with respect to the total solid content of the antiglare layer, from the viewpoint of imparting antiglare properties and internal scattering properties, and are 1 to 15% by mass. More preferably.
In the case where a plurality of kinds of translucent particles 2 are used in combination, it is preferable from the viewpoint of easy antiglare control that particles having different particle diameters are used without changing the components constituting the particles.
 また、防眩性やその他光学特性を調整する目的で、有機化処理したヘクトライト、ベントナイト、スメクタイト、バーミキュライトなどの層状無機化合物を用いることもできる。これら層状無機化合物は、透光性粒子2の間に偏析し、防眩層内で透光性粒子2が必要以上に凝集するのを防ぎ、かつ適度に透光性粒子同士を集めるため、防眩性制御が可能となる。 Also, for the purpose of adjusting the antiglare property and other optical properties, organically treated layered inorganic compounds such as hectorite, bentonite, smectite and vermiculite can be used. These layered inorganic compounds segregate between the translucent particles 2, prevent the translucent particles 2 from aggregating more than necessary in the antiglare layer, and gather the translucent particles appropriately. Dazzle control is possible.
(金属酸化物微粒子)
 本発明の更に別の1つの態様としては、防眩層中に少なくとも1種の微粒子を含有し、微粒子が凝集性の金属酸化物微粒子であることが挙げられる。
 凝集性の金属酸化物微粒子は、防眩層の〔1〕表面凹凸付与、〔2〕屈折率調整、〔3〕硬度向上、〔4〕脆性、カール改良、等を目的に使用される。本発明における防眩層の表面凹凸付与に対し、透明性と安価である点から、上記金属酸化物微粒子としては、凝集性のシリカ粒子と凝集性のアルミナ粒子が好適であり、なかでも、一次粒子径が数十nmの粒子が凝集体を形成した凝集性のシリカ粒子が、適度な表面凹凸を安定に付与できる点で好ましい。凝集性のシリカ粒子は、例えば、珪酸ナトリウムと硫酸の中和反応により合成する、いわゆる湿式法により得ることができるがこれに限らない。湿式法はさらに沈降法、ゲル化法に大別されるが、本発明はどちらの方法であってもよい。凝集性シリカ粒子の二次粒子径は、0.1~10.0μmの範囲が好ましいが、粒子を含有する防眩層の層厚と組合わせて選択される。二次粒子径の調整は、粒子の分散度(サンドミル等を用いた機械的な分散、分散剤等を用いた化学的な分散、による制御を行う)で行う。特に凝集性シリカ粒子の二次粒子径を、これを含有する防眩層の層厚で除した値が0.1~1.5であることが好ましく、0.3~1.0であることがより好ましい。
(Metal oxide fine particles)
As still another embodiment of the present invention, at least one kind of fine particles are contained in the antiglare layer, and the fine particles are cohesive metal oxide fine particles.
The agglomerated metal oxide fine particles are used for the purpose of [1] imparting surface irregularities, [2] adjusting the refractive index, [3] improving the hardness, [4] improving the brittleness, and curling of the antiglare layer. In terms of imparting surface irregularities to the antiglare layer in the present invention, the metal oxide fine particles are preferably agglomerated silica particles and agglomerated alumina particles from the viewpoint of transparency and inexpensiveness. Agglomerated silica particles in which particles having a particle size of several tens of nanometers form aggregates are preferable in that they can stably impart appropriate surface irregularities. The cohesive silica particles can be obtained, for example, by a so-called wet method, which is synthesized by a neutralization reaction between sodium silicate and sulfuric acid, but is not limited thereto. The wet method is further roughly classified into a sedimentation method and a gelation method, but the present invention may be any method. The secondary particle diameter of the cohesive silica particles is preferably in the range of 0.1 to 10.0 μm, but is selected in combination with the layer thickness of the antiglare layer containing the particles. The adjustment of the secondary particle diameter is performed by the degree of particle dispersion (control by mechanical dispersion using a sand mill or the like, or chemical dispersion using a dispersant or the like). In particular, the value obtained by dividing the secondary particle diameter of the cohesive silica particles by the thickness of the antiglare layer containing the same is preferably 0.1 to 1.5, and preferably 0.3 to 1.0. Is more preferable.
 上記金属酸化物微粒子として好ましく用いられる凝集性シリカ粒子等の二次粒子径は、コールターカウンター法により測定される。
 金属酸化物微粒子の添加量は、防眩層の全固形分中0.01質量%~5質量%とすることが好ましく、0.1質量%~5質量%がより好ましく、0.1~3質量%がさらに好ましく、0.1質量%~2質量%が最も好ましい。
The secondary particle diameter of the agglomerated silica particles preferably used as the metal oxide fine particles is measured by a Coulter counter method.
The addition amount of the metal oxide fine particles is preferably 0.01% by mass to 5% by mass, more preferably 0.1% by mass to 5% by mass in the total solid content of the antiglare layer, and 0.1 to 3%. % By mass is more preferable, and 0.1% by mass to 2% by mass is most preferable.
 凝集性の金属酸化物微粒子、好ましくは凝集性シリカ粒子に加えて内部散乱性の付与を目的として透光性の樹脂微粒子を併用することも好ましい。透光性の樹脂微粒子としては前述した(透光性粒子2)を好ましく用いることができる。 In addition to the aggregating metal oxide fine particles, preferably the aggregating silica particles, it is also preferable to use light-transmitting resin fine particles in combination for the purpose of imparting internal scattering properties. As the translucent resin fine particles, the above-described (translucent particles 2) can be preferably used.
(防眩層用バインダー樹脂)
 防眩層用バインダー樹脂は、防眩層用バインダー樹脂形成用化合物より形成されることが好ましい。防眩層用バインダー樹脂形成用化合物は、熱硬化性化合物又は電離放射線硬化性化合物の一方又は両者を含み、これを硬化して防眩層用バインダー樹脂を形成することが好ましい。
(Binder resin for anti-glare layer)
The binder resin for the antiglare layer is preferably formed from a compound for forming the binder resin for the antiglare layer. It is preferable that the compound for forming a binder resin for an antiglare layer contains one or both of a thermosetting compound and an ionizing radiation curable compound, which are cured to form a binder resin for an antiglare layer.
 防眩層用バインダー樹脂は、電離放射線硬化性化合物の架橋反応、重合反応により形成されるものであるのが好ましい。すなわち、防眩層用バインダー樹脂形成用化合物として電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む防眩層形成用組成物を基材フィルム上に塗布し、多官能モノマーや多官能オリゴマーを、架橋反応又は重合反応させることにより防眩層を形成するのが好ましい。電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光(紫外線)、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
 防眩層用バインダー樹脂形成用化合物の具体例としては、重合性の不飽和結合を有する化合物を好適に使用することができる。
The binder resin for the antiglare layer is preferably formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound. That is, a composition for forming an antiglare layer containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer as a binder resin forming compound for an antiglare layer is applied onto a substrate film, and the polyfunctional monomer or polyfunctional oligomer is applied to the base film. The antiglare layer is preferably formed by a crosslinking reaction or a polymerization reaction. The functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably a light (ultraviolet ray), electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable. Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
As a specific example of the binder resin forming compound for the antiglare layer, a compound having a polymerizable unsaturated bond can be preferably used.
(重合性の不飽和結合を有する化合物)
 重合性の不飽和結合を有する化合物としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性官能基を有する化合物が挙げられ、中でも、(メタ)アクリロイル基を有する化合物が好ましい。特に好ましくは下記の1分子内に2つ以上の(メタ)アクリロイル基を含有する化合物を用いることができる。
(Compound having a polymerizable unsaturated bond)
Examples of the compound having a polymerizable unsaturated bond include compounds having a polymerizable functional group such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group, and among them, a compound having a (meth) acryloyl group. preferable. Particularly preferably, a compound containing two or more (meth) acryloyl groups in one molecule described below can be used.
 重合性の不飽和結合を有する化合物の具体例としては、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;2,2-ビス{4-(アクリロキシ・ジエトキシ)フェニル}プロパン、2-2-ビス{4-(アクリロキシ・ポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;等を挙げることができる。 Specific examples of the compound having a polymerizable unsaturated bond include (meth) acrylic acid of alkylene glycol such as neopentyl glycol diacrylate, 1,6-hexanediol di (meth) acrylate, propylene glycol di (meth) acrylate and the like. Diesters; (meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, etc. ; (Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate; 2,2-bis {4- (acryloxydiethoxy) phenyl} propane, 2-2bis {4 (Meth) acrylic acid diester such (acryloxy-polypropoxy) phenyl} ethylene oxide or propylene oxide adducts such as propane; and the like.
 さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性多官能モノマーとして、好ましく用いられる。 Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the photopolymerizable polyfunctional monomer.
 中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーが好ましい。例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO(エチレンオキサイド)変性トリメチロールプロパントリ(メタ)アクリレート、PO(プロピレンオキサイド)変性トリメチロールプロパントリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-クロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。 Of these, esters of polyhydric alcohol and (meth) acrylic acid are preferred. More preferably, a polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferable. For example, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO (ethylene oxide) modified trimethylolpropane tri (meth) acrylate, PO (propylene oxide) modified trimethylol Propane tri (meth) acrylate, EO-modified phosphate tri (meth) acrylate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-chlorohexa Tetramethacrylate, polyurethane polyacrylate, polyester polyacrylate and caprolactone-modified tris (acryloyloxyethyl) isocyanurate.
 (メタ)アクリロイル基を有する多官能アクリレート系化合物類の具体化合物としては、日本化薬(株)製KAYARADDPHA、同DPHA-2C、同PET-30、同TMPTA、同TPA-320、同TPA-330、同RP-1040、同T-1420、同D-310、同DPCA-20、同DPCA-30、同DPCA-60、同GPO-303、大阪有機化学工業(株)製V#3PA、V#400、V#36095D、V#1000、V#1080等のポリオールと(メタ)アクリル酸のエステル化物を挙げることができる。また紫光UV-1400B、同UV-1700B、同UV-6300B、同UV-7550B、同UV-7600B、同UV-7605B、同UV-7610B、同UV-7620EA、同UV-7630B、同UV-7640B、同UV-6630B、同UV-7000B、同UV-7510B、同UV-7461TE、同UV-3000B、同UV-3200B、同UV-3210EA、同UV-3310EA、同UV-3310B、同UV-3500BA、同UV-3520TL、同UV-3700B、同UV-6100B、同UV-6640B、同UV-2000B、同UV-2010B、同UV-2250EA、同UV-2750B(日本合成化学(株)製)、UL-503LN(共栄社化学(株)製)、ユニディック17-806、同17-813、同V-4030、同V-4000BA(大日本インキ化学工業(株)製)、EB-1290K、EB-220、EB-5129、EB-1830,EB-4858(ダイセルUCB(株)製)、ハイコープAU-2010、同AU-2020((株)トクシキ製)、アロニックスM-1960(東亜合成(株)製)、アートレジンUN-3320HA,UN-3320HC,UN-3320HS、UN-904,HDP-4Tなどの3官能以上のウレタンアクリレート化合物、アロニックスM-8100,M-8030,M-9050(東亞合成(株)製)、KRM-8307(ダイセルサイテック(株)製)などの3官能以上のポリエステル化合物なども好適に使用することができる。 Specific examples of the polyfunctional acrylate compounds having a (meth) acryloyl group include KAYARAADDPHA, DPHA-2C, PET-30, TMPTA, TPA-320, and TPA-330 manufactured by Nippon Kayaku Co., Ltd. RP-1040, T-1420, D-310, DPCA-20, DPCA-30, DPCA-60, GPO-303, V # 3PA, V # manufactured by Osaka Organic Chemical Industry Co., Ltd. 400, V # 36095D, V # 1000, V # 1080 and the like, and (meth) acrylic acid esterified products. Purple light UV-1400B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7630B, UV-7640B UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3310EA, UV-3310EA, UV-3310B, UV-3500BA UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA, UV-2250EA (manufactured by Nippon Synthetic Chemical Co., Ltd.), UL-503LN (manufactured by Kyoeisha Chemical Co., Ltd.), Unidic 17-80 17-813, V-4030, V-4000BA (Dainippon Ink Chemical Co., Ltd.), EB-1290K, EB-220, EB-5129, EB-1830, EB-4858 (Daicel UCB ( Ltd.), High Corp AU-2010, AU-2020 (manufactured by Tokushi Co., Ltd.), Aronix M-1960 (manufactured by Toagosei Co., Ltd.), Art Resin UN-3320HA, UN-3320HC, UN-3320HS, UN -904, HDP-4T and other trifunctional or more urethane acrylate compounds, Aronix M-8100, M-8030, M-9050 (manufactured by Toagosei Co., Ltd.), KRM-8307 (manufactured by Daicel Cytec Co., Ltd.), etc. A trifunctional or higher functional polyester compound can also be suitably used.
 さらに、3個以上の(メタ)アクリロイル基を有する樹脂、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物などのオリゴマー又はプレポリマー等も挙げられる。 Furthermore, resins having three or more (meth) acryloyl groups, such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins And oligomers or prepolymers such as polyfunctional compounds such as polyhydric alcohols.
 さらに、2官能(メタ)アクリレート化合物としては具体的に下式で示される化合物を挙げることができるが、これらに限定されるものではない。 Furthermore, specific examples of the bifunctional (meth) acrylate compound include compounds represented by the following formula, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、例えば特開2005-76005号、特開2005-36105号公報に記載されたデンドリマー、または、例えば特開2005-60425号公報記載のようなノルボルネン環含有モノマーを用いることもできる。また、特開平2002-105141号公報に記載の化学式(2)で表される含フッ素多官能(メタ)アクリレートを用いることもできる。 Further, for example, dendrimers described in JP-A-2005-76005 and JP-A-2005-36105, or norbornene ring-containing monomers as described in JP-A-2005-60425 can be used. Further, a fluorine-containing polyfunctional (meth) acrylate represented by the chemical formula (2) described in JP-A No. 2002-105141 can also be used.
 多官能モノマーは、二種類以上を併用してもよい。
 これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。光重合性多官能モノマーの重合反応には、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。
 なお、後述する支持体5がポリエチレンテレフタレート(PET)フィルムである場合、PETフィルムの透過波長320nm以上にの光を吸収する重合開始剤(例えばBASFジャパン(株)製のイルガキュア819等)を用いることが好ましい。
Two or more polyfunctional monomers may be used in combination.
Polymerization of the monomer having an ethylenically unsaturated group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator. It is preferable to use a photopolymerization initiator for the polymerization reaction of the photopolymerizable polyfunctional monomer. As the photopolymerization initiator, a photoradical polymerization initiator and a photocationic polymerization initiator are preferable, and a photoradical polymerization initiator is particularly preferable.
When the support 5 described later is a polyethylene terephthalate (PET) film, a polymerization initiator that absorbs light having a transmission wavelength of 320 nm or longer of the PET film (for example, Irgacure 819 manufactured by BASF Japan Ltd.) is used. Is preferred.
 また上記防眩層用バインダー樹脂形成用化合物には、防眩層の屈折率を制御する目的で、高屈折率モノマー、又はZrO、TiO、SiOなどの可視光散乱を生じない無機粒子、すなわち平均粒子径が100nm以下の無機粒子、又はそれらの両者を加えることができる。無機粒子には屈折率を制御する効果に加えて、架橋反応による硬化収縮を抑える効果もある。本発明では、防眩層形成後において、多官能モノマー及び/又は高屈折率モノマー等の重合性の不飽和結合を有する化合物が重合して生成した重合体、並びに重合体中に分散された無機粒子を含めてバインダーと称する。 In addition, the compound for forming a binder resin for the antiglare layer includes, for the purpose of controlling the refractive index of the antiglare layer, a high refractive index monomer, or inorganic particles such as ZrO 2 , TiO 2 , and SiO 2 that do not cause visible light scattering. That is, inorganic particles having an average particle diameter of 100 nm or less, or both of them can be added. In addition to the effect of controlling the refractive index, the inorganic particles also have the effect of suppressing cure shrinkage due to the crosslinking reaction. In the present invention, after formation of the antiglare layer, a polymer formed by polymerization of a compound having a polymerizable unsaturated bond, such as a polyfunctional monomer and / or a high refractive index monomer, and an inorganic dispersed in the polymer The particles including the particles are called a binder.
 防眩層における防眩層用バインダー樹脂の含有量は、防眩層の全固形分100質量部に対して50~99質量部であるのが内部散乱性付与のための透光性粒子を併用した場合でも膜表面の平坦部の割合を保つ上で好ましく、70~99質量部であるのがさらに好ましい。
 防眩層の強度は、鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
The content of the binder resin for the antiglare layer in the antiglare layer is 50 to 99 parts by mass with respect to 100 parts by mass of the total solid content of the antiglare layer. Even in this case, it is preferable for maintaining the ratio of the flat portion on the film surface, and more preferably 70 to 99 parts by mass.
The strength of the antiglare layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test.
(レベリング剤)
 本発明における防眩層を形成するための防眩層形成用組成物には、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を含む、所謂レベリング剤を含有することが好ましい。特にフッ素系の界面活性剤は、より少ない添加量において、塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いることができる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることができる。
(Leveling agent)
In the composition for forming an antiglare layer for forming the antiglare layer in the present invention, in order to ensure surface uniformity such as coating unevenness, drying unevenness, point defects, etc., either fluorine-based or silicone-based It is preferable to contain a so-called leveling agent containing one or both of these surfactants. In particular, a fluorine-based surfactant can be preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects appears at a smaller addition amount. Productivity can be improved by giving high-speed coating suitability while improving surface uniformity.
 フッ素系の界面活性剤の好ましい例としては、フルオロ脂肪族基含有共重合体(以下、「フッ素系ポリマー」と略記することもある)が挙げられ、上記フッ素系ポリマーは、下記(i)のモノマーに相当する繰り返し単位を含む、あるいは(i)のモノマーに相当する繰り返し単位とさらに下記(ii)のモノマーに相当する繰り返し単位とを含む、アクリル樹脂、メタアクリル樹脂、及びこれらに共重合可能なビニル系モノマーとの共重合体が有用である。 Preferable examples of the fluorosurfactant include a fluoroaliphatic group-containing copolymer (hereinafter sometimes abbreviated as “fluorine polymer”), and the fluoropolymer includes the following (i): An acrylic resin, a methacrylic resin, or a copolymerizable copolymer containing a repeating unit corresponding to the monomer or a repeating unit corresponding to the monomer (i) and a repeating unit corresponding to the monomer (ii) below. Copolymers with various vinyl monomers are useful.
(i)下記一般式イで表されるフルオロ脂肪族基含有モノマー
 一般式イ
(I) Fluoroaliphatic group-containing monomer represented by the following general formula A
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式イにおいてR11は水素原子またはメチル基を表し、Xは酸素原子、イオウ原子または-N(R12)-を表し、mは1以上6以下の整数、nは2~4の整数を表す。R12は水素原子または炭素数1~4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Xは酸素原子が好ましい。
 E11は水素原子又はフッ素原子を表し、水素原子を表すことが好ましい。
In the general formula A, R 11 represents a hydrogen atom or a methyl group, X represents an oxygen atom, a sulfur atom or —N (R 12 ) —, m represents an integer of 1 to 6, and n represents an integer of 2 to 4. To express. R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically a methyl group, an ethyl group, a propyl group or a butyl group, preferably a hydrogen atom or a methyl group. X is preferably an oxygen atom.
E 11 represents a hydrogen atom or a fluorine atom, and preferably represents a hydrogen atom.
(ii)上記(i)と共重合可能な下記一般式ロで示されるモノマー
 一般式ロ
(Ii) Monomer represented by the following general formula (b) copolymerizable with the above (i)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式ロにおいて、R13は水素原子またはメチル基を表し、Yは酸素原子、イオウ原子または-N(R15)-を表し、R15は水素原子または炭素数1~4のアルキル基、具体的にはメチル基、エチル基、プロピル基、ブチル基を表し、好ましくは水素原子またはメチル基である。Yは酸素原子、-N(H)-、および-N(CH)-が好ましい。
 R14は置換基を有しても良い炭素数4以上20以下の直鎖、分岐または環状のアルキル基を表す。R14のアルキル基の置換基としては、水酸基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルキルエーテル基、アリールエーテル基、フッ素原子、塩素原子、臭素原子などのハロゲン原子、ニトロ基、シアノ基、アミノ基等があげられるがこの限りではない。炭素数4以上20以下の直鎖、分岐または環状のアルキル基としては、直鎖及び分岐してもよいブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、エイコサニル基等、また、シクロヘキシル基、シクロヘプチル基等の単環シクロアルキル基及びビシクロヘプチル基、ビシクロデシル基、トリシクロウンデシル基、テトラシクロドデシル基、アダマンチル基、ノルボルニル基、テトラシクロデシル基、等の多環シクロアルキル基が好適に用いられる。
In the general formula (b), R 13 represents a hydrogen atom or a methyl group, Y represents an oxygen atom, a sulfur atom or —N (R 15 ) —, R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, specifically Specifically, it represents a methyl group, an ethyl group, a propyl group, or a butyl group, preferably a hydrogen atom or a methyl group. Y is preferably an oxygen atom, —N (H) —, and —N (CH 3 ) —.
R 14 represents a linear, branched or cyclic alkyl group having 4 to 20 carbon atoms which may have a substituent. Examples of the substituent for the alkyl group represented by R 14 include a hydroxyl group, an alkylcarbonyl group, an arylcarbonyl group, a carboxyl group, an alkyl ether group, an aryl ether group, a halogen atom such as a fluorine atom, a chlorine atom, and a bromine atom, a nitro group, and a cyano group. , Amino groups and the like, but not limited thereto. Examples of the linear, branched or cyclic alkyl group having 4 to 20 carbon atoms include a butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and undecyl group which may be linear or branched. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group, eicosanyl group, etc., and monocyclic cycloalkyl groups such as cyclohexyl group, cycloheptyl group and bicycloheptyl group, bicyclodecyl group, tricycloundecyl group, A polycyclic cycloalkyl group such as a tetracyclododecyl group, an adamantyl group, a norbornyl group, a tetracyclodecyl group, or the like is preferably used.
 本発明で用いられるフッ素系ポリマーに用いられるこれらの一般式イで示されるフルオロ脂肪族基含有モノマーの量は、上記フッ素系ポリマーの各単量体に基づいて10モル%以上であり、好ましくは15~70モル%であり、より好ましくは20~60モル%の範囲である。 The amount of the fluoroaliphatic group-containing monomer represented by the general formula (a) used in the fluoropolymer used in the present invention is 10 mol% or more based on each monomer of the fluoropolymer, preferably It is 15 to 70 mol%, more preferably in the range of 20 to 60 mol%.
 本発明で用いられるフッ素系ポリマーの好ましい重量平均分子量は、3,000~100,000が好ましく、5,000~80,000がより好ましい。更に、本発明で用いられるフッ素系ポリマーの好ましい添加量は、塗布液(防眩層形成用組成物)100質量部に対して0.001~5質量部の範囲であり、さらに好ましくは0.005~3質量部の範囲であり、より好ましくは0.01~1質量部の範囲である。フッ素系ポリマーの添加量が0.001質量部以上であればフッ素系ポリマーを添加した効果が充分得られ、また5質量部以下であれば、塗膜の乾燥が十分に行われなくなったり、塗膜としての性能(例えば反射率、耐擦傷性)に悪影響を及ぼしたり、といった問題が生じない。 The preferred weight average molecular weight of the fluoropolymer used in the present invention is preferably 3,000 to 100,000, more preferably 5,000 to 80,000. Furthermore, the preferable addition amount of the fluoropolymer used in the present invention is in the range of 0.001 to 5 parts by mass, more preferably 0.001 to 100 parts by mass with respect to 100 parts by mass of the coating liquid (antiglare layer forming composition). The range is 005 to 3 parts by mass, and more preferably 0.01 to 1 part by mass. If the addition amount of the fluorine-based polymer is 0.001 part by mass or more, the effect of adding the fluorine-based polymer is sufficiently obtained, and if the addition amount is 5 parts by mass or less, the coating film cannot be sufficiently dried or applied. There is no problem of adversely affecting the performance as a film (for example, reflectance, scratch resistance).
 防眩層の平均膜厚は、2~20μmとするのが、硬度とカール抑制の両立の点で好ましく、2~15μmとするのがより好ましく、3~12μmとするのがさらに好ましい。
 したがって、透光性粒子として上記透光性粒子1を用いた場合、透光性粒子1の平均粒径は、2.01~24μmであるのが好ましく、2.01~19μmであるのがより好ましく、3.01~16μmであるのがさらに好ましく、3.01~12μmであるのが最も好ましい。
 透光性粒子として上記透光性粒子2を用いた場合、透光性粒子2の平均粒径は、2.01~16μmであるのが好ましく、2.01~10μmであるのがより好ましい。
 防眩層の波長550nmにおける屈折率は、1.48~1.70とするのが好ましく、1.48~1.60とするのが更に好ましい。本発明において、これ以降具体的に示す屈折率の値は全て波長550nmの値を示す。
The average film thickness of the antiglare layer is preferably 2 to 20 μm, from the viewpoint of achieving both hardness and curl suppression, more preferably 2 to 15 μm, and even more preferably 3 to 12 μm.
Therefore, when the translucent particle 1 is used as the translucent particle, the average particle diameter of the translucent particle 1 is preferably 2.01 to 24 μm, and more preferably 2.01 to 19 μm. The thickness is preferably 3.01 to 16 μm, more preferably 3.01 to 12 μm.
When the translucent particle 2 is used as the translucent particle, the average particle diameter of the translucent particle 2 is preferably 2.01 to 16 μm, and more preferably 2.01 to 10 μm.
The refractive index of the antiglare layer at a wavelength of 550 nm is preferably 1.48 to 1.70, and more preferably 1.48 to 1.60. In the present invention, the refractive index values specifically shown hereinafter all show values at a wavelength of 550 nm.
(反射防止層と化学結合を形成可能な(メタ)アクリロイル基以外の官能基を有する成分)
 本発の防眩層形成用組成物には、反射防止層との密着を確保するために、反射防止層(反射防止層中に含まれる成分)と化学結合を形成可能な(メタ)アクリロイル基以外の官能基を有する成分を含有することが好ましい。防眩層形成用組成物に上記成分を含有することで、形成した防眩層と反射防止層との間に化学結合を形成し、層間の密着を確保するために有効に作用する。
 特に、転写法で反射防止層を付与する際に、防眩層と反射防止層間の密着性を向上させることで耐擦傷性を向上させることができる。
 また、上記成分は、(メタ)アクリロイル基以外の官能基を有することで、(メタ)アクリロイル基を有する化合物と併用した際に、(メタ)アクリロイル基単独使用の場合よりも強い層間密着力を発現させることができる。反射防止層と防眩層との化学結合については特に限定されないが、例えばホウ酸とヒドロキシル基とのイオン結合、エポキシ基と酸、塩基、又はヒドロキシル基との反応、イソシアネート基のウレタン化反応等が挙げられる。
 なお、上記反射防止層中に含まれる成分とは、後述のバインダー樹脂形成用化合物が好ましく挙げられる。
(A component having a functional group other than a (meth) acryloyl group capable of forming a chemical bond with the antireflection layer)
The antiglare layer-forming composition of the present invention has a (meth) acryloyl group capable of forming a chemical bond with the antireflection layer (component contained in the antireflection layer) in order to ensure adhesion with the antireflection layer. It is preferable to contain the component which has functional groups other than. By containing the said component in the composition for anti-glare layer formation, it forms a chemical bond between the formed anti-glare layer and an antireflection layer, and acts effectively in order to secure adhesion between layers.
In particular, when the antireflection layer is applied by a transfer method, the scratch resistance can be improved by improving the adhesion between the antiglare layer and the antireflection layer.
In addition, the above component has a functional group other than the (meth) acryloyl group, and when used in combination with a compound having a (meth) acryloyl group, it has a stronger interlayer adhesion than when the (meth) acryloyl group is used alone. Can be expressed. The chemical bond between the antireflection layer and the antiglare layer is not particularly limited. For example, ionic bond between boric acid and hydroxyl group, reaction between epoxy group and acid, base, or hydroxyl group, urethanization reaction of isocyanate group, etc. Is mentioned.
The component contained in the antireflection layer is preferably a binder resin forming compound described below.
 反射防止層中に含まれる成分と共有結合を形成可能な(メタ)アクリロイル基以外の官能基としては、特に制限されないが、不飽和炭化水素基、ボロン酸基、アルコキシシリル基、イソシアネート基、エポキシ基、ヒドロキシル基、アミノ基、チオール基、カルボキシル基等が挙げられる。
 上記成分は防眩層と反射防止層との界面で作用するため、界面への偏在性が高い成分を用いることが好ましい。
The functional group other than the (meth) acryloyl group capable of forming a covalent bond with the component contained in the antireflection layer is not particularly limited, but is an unsaturated hydrocarbon group, boronic acid group, alkoxysilyl group, isocyanate group, epoxy. Group, hydroxyl group, amino group, thiol group, carboxyl group and the like.
Since the above components act at the interface between the antiglare layer and the antireflection layer, it is preferable to use a component that is highly unevenly distributed at the interface.
 以下に上記成分がボロン酸基を有する場合の成分の具体例を記載する。
(ボロン酸モノマー)
 本発明において、ボロン酸モノマーを好ましく用いることができる。ボロン酸モノマーは、式1で表されるボロン酸基および重合性基を有する化合物である。
Specific examples of the component when the above component has a boronic acid group are described below.
(Boronic acid monomer)
In the present invention, a boronic acid monomer can be preferably used. The boronic acid monomer is a compound having a boronic acid group represented by Formula 1 and a polymerizable group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)中、RおよびRは、それぞれ独立に、水素原子、置換若しくは無置換の脂肪族炭化水素基、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロ環基を表す。
 脂肪族炭化水素基としては、例えば、炭素数1~20の置換若しくは無置換の直鎖若しくは分岐のアルキル基(例えば、メチル基、エチル基、iso-プロピル基等)、炭素数3~20の置換若しくは無置換の環状アルキル基(例えば、シクロヘキシル基等)、炭素数2~20のアルケニル基(例えば、ビニル基等)が挙げられる。
 アリール基としては、例えば、炭素数6~20の置換若しくは無置換のフェニル基(例えば、フェニル基、トリル基など)、炭素数10~20の置換若しくは無置換のナフチル基等が挙げられる。
 ヘテロ環基としては、例えば、少なくとも一つのヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子等)を含む、置換若しくは無置換の5員若しくは6員環の基であり、例えば、ピリジル基、イミダゾリル基、フリル基、ピペリジル基、モルホリノ基等が挙げられる。
 RおよびRは互いに連結して環を形成してもよく、例えば、RおよびRのイソプロピル基が連結して、4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン環を形成してもよい。
 式(1)中、RおよびRとして好ましくは、水素原子、炭素数1~3の直鎖若しくは分岐のアルキル基、RおよびRが連結して環を形成した場合であり、最も好ましくは、水素原子である。
 式(1)中、*はボロン酸モノマー残基への結合位置を示す。
 なお、式(1)で表されるボロン酸基の数は特に制限されず、1つでも、複数(2つ以上)であってもよい。
In formula (1), R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. .
Examples of the aliphatic hydrocarbon group include a substituted or unsubstituted linear or branched alkyl group having 1 to 20 carbon atoms (for example, a methyl group, an ethyl group, an iso-propyl group, etc.), a C 3 to 20 carbon group, and the like. Examples thereof include a substituted or unsubstituted cyclic alkyl group (for example, cyclohexyl group) and an alkenyl group having 2 to 20 carbon atoms (for example, vinyl group).
Examples of the aryl group include a substituted or unsubstituted phenyl group having 6 to 20 carbon atoms (for example, a phenyl group and a tolyl group), a substituted or unsubstituted naphthyl group having 10 to 20 carbon atoms, and the like.
The heterocyclic group is, for example, a substituted or unsubstituted 5-membered or 6-membered group containing at least one heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, etc.), such as a pyridyl group, Examples include imidazolyl group, furyl group, piperidyl group, morpholino group and the like.
R 1 and R 2 may be linked to each other to form a ring. For example, the isopropyl groups of R 1 and R 2 are linked to form 4,4,5,5-tetramethyl-1,3,2- A dioxaborolane ring may be formed.
In the formula (1), R 1 and R 2 are preferably a hydrogen atom, a linear or branched alkyl group having 1 to 3 carbon atoms, and a case where R 1 and R 2 are connected to form a ring, Preferably, it is a hydrogen atom.
In the formula (1), * indicates a bonding position to the boronic acid monomer residue.
The number of boronic acid groups represented by formula (1) is not particularly limited, and may be one or plural (two or more).
 なお、これらの脂肪族炭化水素基、アリール基、およびヘテロ環基に含まれる炭化水素基は任意の置換基によって1個以上置換されていてもよい。置換基の種類は、例えば、特開2013-054201号公報の段落〔0046〕に記載の置換基が挙げられる。 In addition, one or more hydrocarbon groups contained in these aliphatic hydrocarbon groups, aryl groups, and heterocyclic groups may be substituted with any substituent. Examples of the substituent include the substituents described in paragraph [0046] of JP2013-05201A.
 重合性基の種類は特に制限されず、例えば、ラジカル重合性基、カチオン重合性基などが挙げられる。ラジカル重合性基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニル基、スチリル基、アリル基などが挙げられる。カチオン重合性基としては、ビニルエーテル基、オキシラニル基、オキセタニル基などが挙げられる。なかでも、(メタ)アクリロイル基、スチリル基、ビニル基、オキシラニル基またはオキセタニル基が好ましく、(メタ)アクリロイル基またスチリル基がさらに好ましく、(メタ)アクリロイル基が特に好ましい。
 なお、(メタ)アクリロイル基とは、アクリロイル基およびメタアクリロイル基の両方を含む概念であり、(メタ)アクリルアミド基とは、アクリルアミド基及びメタアクリルアミド基の両方を含む概念である。
 重合性基の数は特に制限されず、1つでも、複数(2つ以上)であってもよい。
The type of the polymerizable group is not particularly limited, and examples thereof include a radical polymerizable group and a cationic polymerizable group. Examples of the radical polymerizable group include (meth) acryloyl group, (meth) acrylamide group, vinyl group, styryl group, and allyl group. Examples of the cationic polymerizable group include a vinyl ether group, an oxiranyl group, and an oxetanyl group. Among them, a (meth) acryloyl group, a styryl group, a vinyl group, an oxiranyl group or an oxetanyl group is preferable, a (meth) acryloyl group or a styryl group is more preferable, and a (meth) acryloyl group is particularly preferable.
The (meth) acryloyl group is a concept including both an acryloyl group and a methacryloyl group, and the (meth) acrylamide group is a concept including both an acrylamide group and a methacrylamide group.
The number of the polymerizable groups is not particularly limited, and may be one or plural (two or more).
 ボロン酸モノマーの分子量は特に制限されないが、防眩層形成用組成物中に使用する防眩層用バインダー樹脂形成用化合物との相溶性に優れる点で、120~1200が好ましく、180~800がより好ましい。 The molecular weight of the boronic acid monomer is not particularly limited, but is preferably 120 to 1200, and preferably 180 to 800 in terms of excellent compatibility with the antiglare layer binder resin forming compound used in the antiglare layer forming composition. More preferred.
 ボロン酸モノマーの好適態様としては、防眩層と反射防止層との密着性がより優れる点で、式2で表されるボロン酸モノマーが挙げられる。 A preferred embodiment of the boronic acid monomer is a boronic acid monomer represented by Formula 2 in that the adhesion between the antiglare layer and the antireflection layer is more excellent.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(2)中のRおよびRの定義は、上述の通りである。
 Zは、重合性基を表す。重合性基の定義は、上述の通りである。
 Xは、単結合または2価の連結基を表す。2価の連結基としては、例えば、-O-、-CO-、-NH-、-CO-NH-、-COO-、-O-COO-、アルキレン基、アリーレン基、2価のヘテロ環基(ヘテロアリーレン基)、および、それらの組み合わせから選ばれる2価の連結基が挙げられる。
 なお、組み合わせとしては、例えば、-アリーレン基-COO-アリーレン基-O-アルキレン基-、-アリーレン基-COO-アルキレン基-などが挙げられる。
The definitions of R 1 and R 2 in the formula (2) are as described above.
Z represents a polymerizable group. The definition of the polymerizable group is as described above.
X 1 represents a single bond or a divalent linking group. Examples of the divalent linking group include —O—, —CO—, —NH—, —CO—NH—, —COO—, —O—COO—, an alkylene group, an arylene group, and a divalent heterocyclic group. (Heteroarylene group) and divalent linking groups selected from combinations thereof.
Examples of the combination include -arylene group-COO-arylene group-O-alkylene group-, -arylene group-COO-alkylene group- and the like.
 以下に、ボロン酸モノマーの具体例を示すが、本発明はこれに限定されるものではない。 Specific examples of the boronic acid monomer are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(ボロン酸基を導入した共重合体)
 本発明において、ボロン酸基を導入した共重合体を好ましく用いることができる。ボロン酸基を導入した共重合体(以下、本明細書においては形式的に「本発明の高分子化合物」とも略す。)は、下記式(I)で表される繰返し単位(以下、「Iパート」とも略す。)と、下記式(II)で表される繰り返し単位(以下、「IIパート」とも略す。)と、を有する共重合体である。
 また、本発明の高分子化合物は、下記式(III)で表される繰り返し単位(以下、「IIIパート」とも略す。)を有していることが好ましい。
 更に、本発明の高分子化合物は、下記式(V)で表される繰り返し単位(以下、「Vパート」とも略す。)を有していることが好ましい。
(Copolymer introduced with boronic acid group)
In the present invention, a copolymer having a boronic acid group introduced can be preferably used. A copolymer into which a boronic acid group has been introduced (hereinafter also abbreviated as “the polymer compound of the present invention” formally in the present specification) is represented by a repeating unit represented by the following formula (I) (hereinafter referred to as “I And a repeating unit represented by the following formula (II) (hereinafter also abbreviated as “II part”).
The polymer compound of the present invention preferably has a repeating unit represented by the following formula (III) (hereinafter also abbreviated as “III part”).
Furthermore, the polymer compound of the present invention preferably has a repeating unit represented by the following formula (V) (hereinafter also abbreviated as “V part”).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 <Iパート>
 本発明の高分子化合物が有するIパートは、下記式(I)で表される繰返し単位である。
<Part I>
The I part possessed by the polymer compound of the present invention is a repeating unit represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(I)中、Rは、水素原子または炭素数1~20のアルキル基を表し、なかでも、水素原子または炭素数1~10のアルキル基が好ましく、水素原子または炭素数1~4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。 In the above formula (I), R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms is preferable, and a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable. Are more preferable, and a hydrogen atom or a methyl group is still more preferable.
 また、上記式(I)中、Xは、単結合、または、-O-、-S-、-COO-、-OCO-、-CONR-、-NRCOO-、-CRN-、置換もしくは無置換の2価の脂肪族基、置換もしくは無置換の2価の芳香族基、および、これらの組み合わせからなる群から選択される2価の連結基を表し、Rは、水素原子、炭素数1~20のアルキル基、または、-X-Pを表す。なお、Rが-X-Pである場合のPは、上記式(I)中のPと同様、重合性基を表す。Pについては後述する。
 なお、上記Xに関する記載において、-COO-は、Rが結合した炭素とC=Oが結合し、PとOが結合することを表し、-OCO-は、Rと結合した炭素とOが結合し、PとC=Oが結合することを表し、-CONR-は、Rが結合した炭素とC=Oが結合し、PとNRが結合することを表し、-NRCOO-は、Rが結合した炭素とNRが結合し、PとOが結合することを表し、-CRN-は、Rが結合した炭素とCRが結合し、PとNが結合することを表す。
In the above formula (I), X 1 represents a single bond, or —O—, —S—, —COO—, —OCO—, —CONR 2 —, —NR 2 COO—, —CR 2 N— Represents a divalent linking group selected from the group consisting of a substituted or unsubstituted divalent aliphatic group, a substituted or unsubstituted divalent aromatic group, and combinations thereof, and R 2 represents hydrogen. An atom, an alkyl group having 1 to 20 carbon atoms, or —X 1 —P 1 is represented. In the case where R 2 is —X 1 —P 1 , P 1 represents a polymerizable group in the same manner as P 1 in the above formula (I). It will be described later P 1.
In the above description of X 1 , —COO— represents that carbon bonded to R 1 is bonded to C═O, and P 1 and O are bonded. —OCO— represents carbon bonded to R 1. Represents a bond between P 1 and C═O, and —CONR 2 — represents a bond between R 1 bonded carbon and C═O, and a bond between P 1 and NR 2. , —NR 2 COO— represents that R 1 is bonded to NR 2 and P 1 is bonded to O, —CR 2 N— is bonded to R 1 and carbon 2 And P 1 and N are bonded to each other.
 ここで、Xが示す、置換もしくは無置換の2価の脂肪族基としては、例えば、置換基を有していてもよい炭素数1~20のアルキレン基または置換基を有していてもよい炭素数3~20のシクロアルキレン基(例えば、シクロヘキシレン基)などが挙げられ、なかでも、炭素数1~15のアルキレン基が好ましく、炭素数1~8のアルキレン基がより好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基が更に好ましい。
 また、Xが示す、置換もしくは無置換の2価の芳香族基としては、置換基を有していてもよい2価の芳香族炭化水素基または置換基を有していてもよい2価の芳香族複素環基が挙げられる。2価の芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、トリフェニレン環、フルオレン環などの芳香族炭化水素環の環構造を構成する2個の炭素原子から水素原子をそれぞれ1個ずつ除いて得られる基が挙げられ、なかでも、ベンゼン環またはナフタレン環の環構造を構成する2個の炭素原子から水素原子をそれぞれ1個ずつ除いて得られるフェニレン基またはナフチレン基が好ましい。一方、2価の芳香族複素環基としては、フラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、ベンゾチアゾール環、オキサジアゾール環、チアゾロチアゾール環、フェナントロリン環などの芳香族複素環の環構造を構成する2個の炭素原子から水素原子をそれぞれ1個ずつ除いて得られる基が挙げられる。
Here, the substituted or unsubstituted divalent aliphatic group represented by X 1 may be, for example, an alkylene group having 1 to 20 carbon atoms which may have a substituent or a substituent. Preferred examples thereof include cycloalkylene groups having 3 to 20 carbon atoms (eg, cyclohexylene group). Among them, alkylene groups having 1 to 15 carbon atoms are preferable, alkylene groups having 1 to 8 carbon atoms are more preferable, and methylene group More preferred are an ethylene group, a propylene group, and a butylene group.
Also shown is X 1, a substituted or the divalent aromatic group unsubstituted divalent aromatic which may have a substituent hydrocarbon group or may have a substituent divalent The aromatic heterocyclic group of these is mentioned. Examples of the divalent aromatic hydrocarbon group include a hydrogen atom from two carbon atoms constituting the ring structure of an aromatic hydrocarbon ring such as a benzene ring, naphthalene ring, anthracene ring, triphenylene ring, fluorene ring, etc. A group obtained by removing one by one is mentioned, and among them, a phenylene group or a naphthylene group obtained by removing one hydrogen atom from each of two carbon atoms constituting the ring structure of a benzene ring or naphthalene ring is preferable. . On the other hand, the divalent aromatic heterocyclic group includes an aromatic heterocyclic ring such as a furan ring, a pyrrole ring, a thiophene ring, a pyridine ring, a thiazole ring, a benzothiazole ring, an oxadiazole ring, a thiazolothiazole ring, and a phenanthroline ring. And a group obtained by removing one hydrogen atom from each of two carbon atoms constituting the ring structure.
 2価の脂肪族基または2価の芳香族基が有していてもよい置換基としては、例えば、ハロゲン原子、水酸基、アミノ基、アクリロイルオキシ基、メタクリロイルオキシ基、炭素数1~20のアルキル基、カルボキシル基、シアノ基、-X-P、または、これらと、-O-、-S-、-COO-、-OCO-、-CONR-、-NRCOO-、-HC=CH-および-CRN-のいずれか1つ以上を組み合わせた基などが挙げられる。Rは、水素原子、炭素数1~20のアルキル基、または、-X-Pを表す。なお、Rが-X-Pである場合のPは、上記式(I)中のPと同様、重合性基を表す。 Examples of the substituent that the divalent aliphatic group or divalent aromatic group may have include, for example, a halogen atom, a hydroxyl group, an amino group, an acryloyloxy group, a methacryloyloxy group, and an alkyl group having 1 to 20 carbon atoms. Group, carboxyl group, cyano group, —X 1 —P 1 , or these, and —O—, —S—, —COO—, —OCO—, —CONR 2 —, —NR 2 COO—, —HC═ And a group in which one or more of CH— and —CR 2 N— are combined. R 2 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or —X 1 —P 1 . In the case where R 2 is —X 1 —P 1 , P 1 represents a polymerizable group in the same manner as P 1 in the above formula (I).
 上述したRが示す、炭素数1~20のアルキル基は、炭素数1~6のアルキル基が好ましく、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、および、n-ヘキシル基などが挙げられる。 The alkyl group having 1 to 20 carbon atoms represented by R 2 described above is preferably an alkyl group having 1 to 6 carbon atoms, specifically, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, n-butyl. Group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and the like.
 また、上記式(I)中、Pは、重合性基を表す。
 本発明においては、上記式(I)中のPで表される重合性基が、下記式(P-1)~(P-7)で表される基からなる群から選択されるいずれかの重合性基であることが好ましく、なかでも、下記式(P-1)~(P-3)で表される基からなる群から選択されるいずれかの重合性基であることがより好ましく、下記式(P-1)または(P-2)で表される重合性基が更に好ましい。
Further, in the above formula (I), P 1 represents a polymerizable group.
In the present invention, the polymerizable group represented by P 1 in the above formula (I) is any one selected from the group consisting of groups represented by the following formulas (P-1) to (P-7) Among these, a polymerizable group selected from the group consisting of groups represented by the following formulas (P-1) to (P-3) is more preferable. A polymerizable group represented by the following formula (P-1) or (P-2) is more preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(P-1)~(P-7)中、*は、Xとの結合位置を表す。Rは、水素原子または炭素数1~5のアルキル基を表し、2つのRは、同一であっても異なっていてもよく、互いに連結して環構造を形成していてもよい。
 また、Rが示す、炭素数1~5のアルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基などが挙げられる。
In the above formulas (P-1) to (P-7), * represents a bonding position with X 1 . R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and two R 3 s may be the same or different, and may be linked to each other to form a ring structure.
Specific examples of the alkyl group having 1 to 5 carbon atoms represented by R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, and an n-butyl group.
 本発明においては、製造の容易性、経済性およびラジカル重合性の観点から、上記式(I)で表される繰り返し単位は、上記式(I)中のRが、水素原子またはメチル基であり、上記式(I)中のXが、-O-、-COO-、-OCO-、および、置換もしくは無置換の2価の脂肪族基(好ましくは、炭素数2~8のアルキレン基)からなる群から選択されるいずれか1種又はいずれか2種以上を組み合わせてなる2価の連結基である繰り返し単位が好ましい。 In the present invention, from the viewpoint of ease of production, economy, and radical polymerizability, the repeating unit represented by the formula (I) is such that R 1 in the formula (I) is a hydrogen atom or a methyl group. X 1 in the above formula (I) is —O—, —COO—, —OCO—, or a substituted or unsubstituted divalent aliphatic group (preferably an alkylene group having 2 to 8 carbon atoms). The repeating unit which is a divalent linking group formed by combining any one or two or more selected from the group consisting of:
 上記式(I)で表される繰返し単位としては、具体的には、例えば、下記式で表される繰り返し単位が挙げられる。 Specific examples of the repeating unit represented by the above formula (I) include a repeating unit represented by the following formula.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明においては、上記式(I)で表される繰り返し単位の含有量は、全繰り返し単位に対して5~80質量%であることが好ましく、7~70質量%であることがより好ましく、10~50質量%であることが更に好ましい。 In the present invention, the content of the repeating unit represented by the above formula (I) is preferably 5 to 80% by mass, more preferably 7 to 70% by mass, based on all the repeating units. More preferably, it is 10 to 50% by mass.
 <IIパート>
 本発明の高分子化合物が有するIIパートは、下記式(II)で表される繰返し単位である。
<Part II>
The II part of the polymer compound of the present invention is a repeating unit represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(II)中、R10は、水素原子または炭素数1~20のアルキル基を表し、なかでも、水素原子または炭素数1~10のアルキル基が好ましく、水素原子または炭素数1~4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。 In the above formula (II), R 10 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms is preferable, and a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable. Are more preferable, and a hydrogen atom or a methyl group is still more preferable.
 また、上記式(II)中、X10は、単結合、または、-O-、-S-、-COO-、-OCO-、-CONR13-、-NR13COO-、-CR13N-、置換もしくは無置換の2価の脂肪族基、置換もしくは無置換の2価の芳香族基、および、これらの組み合わせからなる群より選ばれる2価の連結基を表し、R13は、水素原子または炭素数1~20のアルキル基を表す。
 なお、上記X10に関する記載において、-COO-は、R10が結合した炭素とC=Oが結合し、BとOが結合することを表し、-OCO-は、R10と結合した炭素とOが結合し、BとC=Oが結合することを表し、-CONR13-は、R10が結合した炭素とC=Oが結合し、BとNR13が結合することを表し、-NR13COO-は、R10が結合した炭素とNR13が結合し、BとOが結合することを表し、-CR13N-は、R10が結合した炭素とCR13が結合し、BとNが結合することを表す。
 ここで、X10が示す、2価の脂肪族基および2価の芳香族基としては、それぞれ、上記式(I)中のXにおいて説明したものと同様のものが挙げられ、また、R13が示す、炭素数1~20のアルキル基は、上記式(I)に関連して説明したRと同様のものが挙げられる。
Further, in the above formula (II), X 10 is a single bond, or, -O -, - S -, - COO -, - OCO -, - CONR 13 -, - NR 13 COO -, - CR 13 N- Represents a divalent linking group selected from the group consisting of a substituted or unsubstituted divalent aliphatic group, a substituted or unsubstituted divalent aromatic group, and combinations thereof, and R 13 represents a hydrogen atom. Or an alkyl group having 1 to 20 carbon atoms.
Note that in the above description of X 10 , —COO— represents that carbon bonded to R 10 is bonded to C═O, and B and O are bonded. —OCO— represents carbon bonded to R 10 O represents a bond, B represents C═O, and —CONR 13 — represents a bond between R 10 and C═O, B represents a bond with NR 13 , and —NR 13 COO— represents that R 10 is bonded to NR 13 and B is bonded to O; —CR 13 N— is a bond of R 10 to carbon 13 and CR 13 ; N represents bonding.
Here, examples of the divalent aliphatic group and divalent aromatic group represented by X 10 include the same as those described for X 1 in the above formula (I), and R Examples of the alkyl group having 1 to 20 carbon atoms represented by 13 include those similar to R 2 described in relation to the above formula (I).
 また、上記式(II)中、R11およびR12は、それぞれ独立に、水素原子、置換もしくは無置換の脂肪族炭化水素基、置換もしくは無置換のアリール基、または、置換もしくは無置換のヘテロアリール基を表し、R11およびR12は、互いに連結して環を形成してもよく、R11およびR12が、アルキレン連結基、アリーレン連結基、または、これらの組み合わせからなる連結基を形成してもよい。 In the above formula (II), R 11 and R 12 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted hetero group. Represents an aryl group, and R 11 and R 12 may be linked to each other to form a ring, and R 11 and R 12 form a linking group consisting of an alkylene linking group, an arylene linking group, or a combination thereof. May be.
 R11およびR12が示す、置換もしくは無置換の脂肪族炭化水素基としては、置換基を有していてもよい、アルキル基、アルケニル基またはアルキニル基が挙げられる。
 アルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-メチルヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-ノルボルニル基等の直鎖状、分枝状、又は環状のアルキル基が挙げられる。
 アルケニル基としては、具体的には、例えば、ビニル基、1-プロペニル基、1-ブテニル基、1-メチル-1-プロペニル基、1-シクロペンテニル基、1-シクロヘキセニル基等の直鎖状、分枝状、又は環状のアルケニル基が挙げられる。
 アルキニル基としては、具体的には、例えば、エチニル基、1-プロピニル基、1-ブチニル基、1-オクチニル基等が挙げられる。
Examples of the substituted or unsubstituted aliphatic hydrocarbon group represented by R 11 and R 12 include an alkyl group, an alkenyl group or an alkynyl group which may have a substituent.
Specific examples of the alkyl group include, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl. , Hexadecyl group, octadecyl group, eicosyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-methylhexyl group, cyclopentyl group, cyclohexyl And linear, branched or cyclic alkyl groups such as 1-adamantyl group and 2-norbornyl group.
Specific examples of the alkenyl group include linear groups such as a vinyl group, 1-propenyl group, 1-butenyl group, 1-methyl-1-propenyl group, 1-cyclopentenyl group, 1-cyclohexenyl group, and the like. , Branched, or cyclic alkenyl groups.
Specific examples of the alkynyl group include ethynyl group, 1-propynyl group, 1-butynyl group, 1-octynyl group and the like.
 R11およびR12が示す、置換もしくは無置換のアリール基としては、例えば、1個から4個のベンゼン環が縮合環を形成したもの、ベンゼン環と不飽和五員環とが縮合環を形成したものを挙げることができ、具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、アセナブテニル基、フルオレニル基、ピレニル基等が挙げられる。 Examples of the substituted or unsubstituted aryl group represented by R 11 and R 12 include those in which 1 to 4 benzene rings form a condensed ring, and a benzene ring and an unsaturated five-membered ring form a condensed ring. Specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, an acenabutenyl group, a fluorenyl group, a pyrenyl group, and the like.
 R11およびR12が示す、置換もしくは無置換のヘテロアリール基としては、例えば、窒素原子、酸素原子および硫黄原子からなる群から選ばれるヘテロ原子を1個以上含む複素芳香環上の水素原子を1個除し、ヘテロアリール基としたものが挙げられる。
 窒素原子、酸素原子および硫黄原子からなる群から選ばれるヘテロ原子を1個以上含む複素芳香環としては、具体的には、例えば、ピロール、フラン、チオフェン、ピラゾール、イミダゾール、トリアゾール、オキサゾール、イソオキサゾール、オキサジアゾール、チアゾール、チアジアゾール、インドール、カルバゾール、ベンゾフラン、ジベンゾフラン、チアナフテン、ジベンゾチオフェン、インダゾールベンズイミダゾール、アントラニル、ベンズイソオキサゾール、ベンズオキサゾール、ベンゾチアゾール、プリン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、キノリン、アクリジン、イソキノリン、フタラジン、キナゾリン、キノキザリン、ナフチリジン、フェナントロリン、プテリジン等が挙げられる。
Examples of the substituted or unsubstituted heteroaryl group represented by R 11 and R 12 include a hydrogen atom on a heteroaromatic ring containing one or more heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom. One may be removed to give a heteroaryl group.
Specific examples of the heteroaromatic ring containing one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom include pyrrole, furan, thiophene, pyrazole, imidazole, triazole, oxazole and isoxazole. , Oxadiazole, thiazole, thiadiazole, indole, carbazole, benzofuran, dibenzofuran, thianaphthene, dibenzothiophene, indazolebenzimidazole, anthranyl, benzisoxazole, benzoxazole, benzothiazole, purine, pyridine, pyridazine, pyrimidine, pyrazine, triazine, Examples include quinoline, acridine, isoquinoline, phthalazine, quinazoline, quinoxaline, naphthyridine, phenanthroline, and pteridine.
 R11およびR12が有していてもよい置換基としては、水素を除く1価の非金属原子団を挙げることができ、例えば、以下の置換基群Yから選ばれる。
 (置換基群Y)
 ハロゲン原子(-F、-Br、-Cl、-I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、N-アリールアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N'-アルキルウレイド基、N',N'-ジアルキルウレイド基、N'-アリールウレイド基、N',N'-ジアリールウレイド基、N'-アルキル-N'-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N'-アルキル-N-アルキルウレイド基、N'-アルキル-N-アリールウレイド基、N',N'-ジアルキル-N-アルキルウレイド基、N',N'-ジアルキル-N-アリールウレイド基、N'-アリール-N-アルキルウレイド基、N'-アリール-N-アリールウレイド基、N',N'-ジアリール-N-アルキルウレイド基、N',N'-ジアリール-N-アリールウレイド基、N'-アルキル-N'-アリール-N-アルキルウレイド基、N'-アルキル-N'-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基及びその共役塩基基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SOH)及びその共役塩基基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、N-アシルスルファモイル基及びその共役塩基基、N-アルキルスルホニルスルファモイル基(-SONHSO(alkyl))及びその共役塩基基、N-アリールスルホニルスルファモイル基(-SONHSO(aryl))及びその共役塩基基、N-アルキルスルホニルカルバモイル基(-CONHSO(alkyl))及びその共役塩基基、N-アリールスルホニルカルバモイル基(-CONHSO(aryl))及びその共役塩基基、アルコキシシリル基(-Si(Oalkyl))、アリーロキシシリル基(-Si(Oaryl))、ヒドロキシシリル基(-Si(OH))及びその共役塩基基、ホスホノ基(-PO)及びその共役塩基基、ジアルキルホスホノ基(-PO(alkyl))、ジアリールホスホノ基(-PO(aryl))、アルキルアリールホスホノ基(-PO(alkyl)(aryl))、モノアルキルホスホノ基(-POH(alkyl))及びその共役塩基基、モノアリールホスホノ基(-POH(aryl))及びその共役塩基基、ホスホノオキシ基(-OPO)及びその共役塩基基、ジアルキルホスホノオキシ基(-OPO(alkyl))、ジアリールホスホノオキシ基(-OPO(aryl))、アルキルアリールホスホノオキシ基(-OPO(alkyl)(aryl))、モノアルキルホスホノオキシ基(-OPOH(alkyl))及びその共役塩基基、モノアリールホスホノオキシ基(-OPOH(aryl))及びその共役塩基基、シアノ基、ニトロ基、アリール基、アルケニル基及びアルキニル基、また、これらの置換基は、可能であるならば置換基同士、又は置換している炭化水素基と結合して環を形成してもよい。
Examples of the substituent that R 11 and R 12 may have include a monovalent non-metallic atomic group excluding hydrogen. For example, the substituent is selected from the following substituent group Y.
(Substituent group Y)
Halogen atom (—F, —Br, —Cl, —I), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group, N-alkylamino group N, N-dialkylamino group, N-arylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarbamoyloxy group, N-ary Rucarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-arylcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, acylthio group, acylamino group, N -Alkylacylamino group, N-aryl Silamino group, ureido group, N'-alkylureido group, N ', N'-dialkylureido group, N'-arylureido group, N', N'-diarylureido group, N'-alkyl-N'-arylureido Group, N-alkylureido group, N-arylureido group, N′-alkyl-N-alkylureido group, N′-alkyl-N-arylureido group, N ′, N′-dialkyl-N-alkylureido group, N ′, N′-dialkyl-N-arylureido group, N′-aryl-N-alkylureido group, N′-aryl-N-arylureido group, N ′, N′-diaryl-N-alkylureido group, N ′, N′-diaryl-N-arylureido group, N′-alkyl-N′-aryl-N-alkylureido group, N′-alkyl-N′-aryl-N-arylureido , Alkoxycarbonylamino group, aryloxycarbonylamino group, N-alkyl-N-alkoxycarbonylamino group, N-alkyl-N-aryloxycarbonylamino group, N-aryl-N-alkoxycarbonylamino group, N-aryl- N-aryloxycarbonylamino group, formyl group, acyl group, carboxyl group and its conjugate base group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkylcarbamoyl group, N- arylcarbamoyl group, N, N- di arylcarbamoyl group, N- alkyl -N- arylcarbamoyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, a sulfo group (-SO 3 H)及Its conjugate base group, alkoxysulfonyl group, aryloxysulfonyl group, sulfinamoyl group, N-alkylsulfinamoyl group, N, N-dialkylsulfinamoyl group, N-arylsulfinamoyl group, N, N-diarylsulfina Moyl group, N-alkyl-N-arylsulfinamoyl group, sulfamoyl group, N-alkylsulfamoyl group, N, N-dialkylsulfamoyl group, N-arylsulfamoyl group, N, N-diarylsulfur Famoyl group, N-alkyl-N-arylsulfamoyl group, N-acylsulfamoyl group and its conjugate base group, N-alkylsulfonylsulfamoyl group (—SO 2 NHSO 2 (alkyl)) and its conjugate base group, N- aryl sulfonylsulfamoyl group (-SO 2 NHS 2 (aryl)) and its conjugated base group, N- alkylsulfonylcarbamoyl group (-CONHSO 2 (alkyl)) and its conjugated base group, N- aryl sulfonyl carbamoyl group (-CONHSO 2 (aryl)) and its conjugated base group , Alkoxysilyl groups (—Si (Oalkyl) 3 ), aryloxysilyl groups (—Si (Oaryl) 3 ), hydroxysilyl groups (—Si (OH) 3 ) and their conjugate base groups, phosphono groups (—PO 3 H) 2 ) and its conjugate base group, dialkylphosphono group (—PO 3 (alkyl) 2 ), diarylphosphono group (—PO 3 (aryl) 2 ), alkylarylphosphono group (—PO 3 (alkyl) (aryl) )), monoalkyl phosphono group (-PO 3 H (alkyl)) and its conjugated base group Monoarylphosphono group (-PO 3 H (aryl)) and its conjugated base group, a phosphonooxy group (-OPO 3 H 2) and its conjugated base group, a dialkyl phosphono group (-OPO 3 (alkyl) 2) , Diarylphosphonooxy group (—OPO 3 (aryl) 2 ), alkylarylphosphonooxy group (—OPO 3 (alkyl) (aryl)), monoalkylphosphonooxy group (—OPO 3 H (alkyl)) and its Conjugated base groups, monoarylphosphonooxy groups (—OPO 3 H (aryl)) and their conjugated base groups, cyano groups, nitro groups, aryl groups, alkenyl groups and alkynyl groups, and these substituents are possible. If present, they may be bonded to each other or with a substituted hydrocarbon group to form a ring.
 上記式(II)中のR11およびR12は、水素原子であるか、または、互いに結合して、アルキレン連結基を形成していることが好ましい。 R 11 and R 12 in the above formula (II) are preferably hydrogen atoms or bonded to each other to form an alkylene linking group.
 上記式(II)で表される繰返し単位を形成する単量体としては、具体的には、例えば、下記式II-1~II-12で表される単量体が挙げられる。 Specific examples of the monomer that forms the repeating unit represented by the above formula (II) include monomers represented by the following formulas II-1 to II-12.
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-I000016
 本発明においては、上記式(II)で表される繰り返し単位の含有量は、全繰り返し単位に対して3~80質量%であることが好ましく、4~70質量%であることがより好ましく、5~50質量%であることが更に好ましい。 In the present invention, the content of the repeating unit represented by the above formula (II) is preferably 3 to 80% by mass, more preferably 4 to 70% by mass, based on all the repeating units. More preferably, it is 5 to 50% by mass.
 <IIIパート>
 本発明の高分子化合物は、形成される防眩層の反射防止層との密着性がより良好となる理由から、下記式(III)で表される繰り返し単位(IIIパート)を有していることが好ましい。
 ここで、接着性がより良好となる理由は、IIIパートを有していることにより、形成される防眩層の空気界面側(反射防止層との接着面側)に共重合体が偏在することにより、共重合体が有するIIIパートが反射防止層の表面成分と相互作用しやすくなったためと考えられる。
<Part III>
The polymer compound of the present invention has a repeating unit (Part III) represented by the following formula (III) because the adhesion between the antiglare layer to be formed and the antireflection layer becomes better. It is preferable.
Here, the reason why the adhesiveness becomes better is that the copolymer is unevenly distributed on the air interface side (adhesive surface side with the antireflection layer) of the antiglare layer formed by having the III part. This is considered to be because the III part of the copolymer easily interacts with the surface component of the antireflection layer.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(III)中、R20は、水素原子または炭素数1~20のアルキル基を表し、なかでも、水素原子または炭素数1~10のアルキル基が好ましく、水素原子または炭素数1~4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。 In the above formula (III), R 20 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Are more preferable, and a hydrogen atom or a methyl group is still more preferable.
 また、上記式(III)中、L20は、-O-、-COO-、-OCO-、2価の脂肪族基、および、これらの組み合わせからなる群から選択される2価の連結基を表す。なお、-COO-は、R20が結合した炭素とC=Oが結合し、R21とOが結合することを表し、-OCO-は、R20と結合した炭素とOが結合し、R21とC=Oが結合することを表す。
 L20が示す、2価の脂肪族基としては、2価の脂肪族鎖状基または脂肪族環状基が挙げられる。2価の脂肪族鎖状基としては、炭素数1~20のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましい。2価の脂肪族環状基としては、炭素数3~20のシクロアルキレン基が好ましく、炭素数3~15のシクロアルキレン基がより好ましい。
 これらのうち、L20としては、-COO-、または、-OCO-が好ましく、-COO-がより好ましい。
In the formula (III), L 20 represents a divalent linking group selected from the group consisting of —O—, —COO—, —OCO—, a divalent aliphatic group, and combinations thereof. To express. In addition, —COO— represents that carbon bonded to R 20 is bonded to C═O, and R 21 and O are bonded. —OCO— is bonded to carbon bonded to R 20 and O; 21 and C═O are bonded to each other.
Examples of the divalent aliphatic group represented by L 20 include a divalent aliphatic chain group or an aliphatic cyclic group. As the divalent aliphatic chain group, an alkylene group having 1 to 20 carbon atoms is preferable, and an alkylene group having 1 to 10 carbon atoms is more preferable. As the divalent aliphatic cyclic group, a cycloalkylene group having 3 to 20 carbon atoms is preferable, and a cycloalkylene group having 3 to 15 carbon atoms is more preferable.
Of these, L 20 is preferably —COO— or —OCO—, more preferably —COO—.
 また、上記式(III)中、R21は、炭素数4~20のアルキル基、少なくとも1個の水素原子がフッ素原子で置換された炭素数1~20のアルキル基(以下、「フルオロアルキル基」ともいう。)、または、-Si(Ra3)(Ra4)O-を含む1価の有機基を表し、Ra3およびRa4は、それぞれ独立に、アルキル基、ハロアルキル基またはアリール基を表す。 In the formula (III), R 21 represents an alkyl group having 4 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom (hereinafter referred to as “fluoroalkyl group”). Or a monovalent organic group containing —Si (R a3 ) (R a4 ) O—, and each of R a3 and R a4 independently represents an alkyl group, a haloalkyl group or an aryl group. To express.
 本発明においては、形成される防眩層の反射防止層との密着性が更に良好となる理由から、上記式(III)中のR21が、炭素数1~20のフルオロアルキル基であることが好ましく、炭素数1~18のフルオロアルキル基であることがより好ましく、炭素数2~15のフルオロアルキル基であることが更に好ましい。
 また、フッ素原子数は、1~25であることが好ましく、3~21であることがより好ましく、5~21であることが最も好ましい。
In the present invention, R 21 in the above formula (III) is a fluoroalkyl group having 1 to 20 carbon atoms because the adhesion of the antiglare layer to be formed to the antireflection layer is further improved. Are preferred, more preferably a fluoroalkyl group having 1 to 18 carbon atoms, and even more preferably a fluoroalkyl group having 2 to 15 carbon atoms.
The number of fluorine atoms is preferably 1 to 25, more preferably 3 to 21, and most preferably 5 to 21.
 本発明においては、形成される防眩層の反射防止層との密着性、および、ラジカル重合性の観点から、上記式(III)で表される繰り返し単位が、下記式(IV)で表される繰り返し単位であることが好ましい。 In the present invention, the repeating unit represented by the above formula (III) is represented by the following formula (IV) from the viewpoint of adhesion between the antiglare layer to be formed and the antireflection layer, and radical polymerizability. It is preferably a repeating unit.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(IV)中、R20は、上記式(III)中のR20と同様、水素原子または炭素数1~20のアルキル基を表し、好適態様も同様である。
 また、上記式(IV)中、maおよびnaは、それぞれ独立に0~19の整数を表す。なかでも、密着性向上および原料入手などの観点から、maは1~8の整数であることが好ましく、1~5の整数であることがより好ましい。また、naは1~15の整数であることが好ましく、1~12の整数であることがより好ましく、2~10の整数であることがさらに好ましく、5~7の整数であることが最も好ましい。ただし、maおよびnaは、合計して0~19の整数を表す。
 また、上記式(IV)中、X21は、水素原子またはフッ素原子を表し、フッ素であることが好ましい。
In the formula (IV), R 20 is same as R 20 in the formula (III), represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, a preferred embodiment also the same.
In the formula (IV), ma and na each independently represents an integer of 0 to 19. Among these, from the viewpoints of improving adhesion and obtaining raw materials, ma is preferably an integer of 1 to 8, and more preferably an integer of 1 to 5. Na is preferably an integer of 1 to 15, more preferably an integer of 1 to 12, further preferably an integer of 2 to 10, and most preferably an integer of 5 to 7. . However, ma and na represent an integer of 0 to 19 in total.
Further, in the above formula (IV), X 21 represents a hydrogen atom or a fluorine atom is preferably a fluorine.
 上記式(III)または(IV)で表される繰返し単位を形成する単量体としては、具体的には、例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、2-(パーフルオロ-3-メチルブチル)エチル(メタ)アクリレート、2-(パーフルオロ-5-メチルヘキシル)エチル(メタ)アクリレート、2-(パーフルオロ-7-メチルオクチル)エチル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H,1H,9H-ヘキサデカフルオロノニル(メタ)アクリレート、1H-1-(トリフオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、3-パーフルオロブチル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-5-メチルヘキシル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-7-メチルオクチル)-2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。 Specific examples of the monomer that forms the repeating unit represented by the above formula (III) or (IV) include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3, and the like. , 3,3-pentafluoropropyl (meth) acrylate, 2- (perfluorobutyl) ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) Acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, 2- (perfluoro-3-methylbutyl) ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (Perfluoro-7-methyloctyl) ethyl (meth) acrylate, 1H, 1H, 3H-tetrafluor Propyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 1H, 1H, 7H-dodecafluoroheptyl (meth) acrylate, 1H, 1H, 9H-hexadecafluorononyl (meth) acrylate, 1H -1- (trifluoromethyl) trifluoroethyl (meth) acrylate, 1H, 1H, 3H-hexafluorobutyl (meth) acrylate, 3-perfluorobutyl-2-hydroxypropyl (meth) acrylate, 3-perfluorohexyl -2-hydroxypropyl (meth) acrylate, 3-perfluorooctyl-2-hydroxypropyl (meth) acrylate, 3- (perfluoro-3-methylbutyl) -2-hydroxypropyl (meth) acrylate, 3- (perfluoro -5 Ethylhexyl) -2-hydroxypropyl (meth) acrylate, 3- (perfluoro-7-methyl-octyl) -2-hydroxypropyl (meth) acrylate.
 一方、上記式(III)中のR21が示す、-Si(Ra3)(Ra4)O-を含む1価の有機基としては、シロキサン結合に由来する有機基であり、下記式(VII)で表される化合物を重合させて得られる構造であることがより好ましい。 On the other hand, the monovalent organic group containing —Si (R a3 ) (R a4 ) O— represented by R 21 in the above formula (III) is an organic group derived from a siloxane bond, and is represented by the following formula (VII It is more preferable that the structure is obtained by polymerizing a compound represented by
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(VII)中、Ra1は、水素原子または炭素数1~20のアルキル基を表し、また、Ra5は、炭素数1~12のアルキル基を表し、炭素数1~4のアルキル基がより好ましい。 In the above formula (VII), R a1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R a5 represents an alkyl group having 1 to 12 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. Is more preferable.
 上記式(VII)中、Ra3およびRa4は、それぞれ独立に、アルキル基、ハロアルキル基またはアリール基を表す。
 アルキル基としては、炭素数1~10のアルキル基が好ましく、例えば、メチル基、エチル基、ヘキシル基などを挙げることができる。
 ハロアルキル基としては、炭素数1~10のフッ素化アルキル基が好ましく、例えば、トリフルオロメチル基、ペンタフルオロエチル基などを挙げることができる。
 アリール基としては、炭素数6~20が好ましく、例えば、フェニル基、ナフチル基などを挙げることができる。
 これらのうち、Ra3およびRa4は、メチル基、トリフルオロメチル基またはフェニル基が好ましく、メチル基が特に好ましい。
In the formula (VII), R a3 and R a4 each independently represent an alkyl group, a haloalkyl group, or an aryl group.
As the alkyl group, an alkyl group having 1 to 10 carbon atoms is preferable, and examples thereof include a methyl group, an ethyl group, and a hexyl group.
The haloalkyl group is preferably a fluorinated alkyl group having 1 to 10 carbon atoms, and examples thereof include a trifluoromethyl group and a pentafluoroethyl group.
The aryl group preferably has 6 to 20 carbon atoms, and examples thereof include a phenyl group and a naphthyl group.
Among these, R a3 and R a4 are preferably a methyl group, a trifluoromethyl group or a phenyl group, and particularly preferably a methyl group.
 上記式(VII)中、mは、10~1000の整数を表し、20~500の整数が好ましく、30~200の整数がより好ましい。 In the above formula (VII), m represents an integer of 10 to 1000, preferably an integer of 20 to 500, more preferably an integer of 30 to 200.
 上記式(VII)で表される化合物としては、片末端(メタ)アクリロイル基含有ポリシロキサンマクロマー(例えば、サイラプレーン0721、同0725(以上、商品名、JNC(株)製)、AK-5、AK-30、AK-32(以上、商品名、東亜合成(株)社製)、KF-100T、X-22-169AS、KF-102、X-22-3701IE、X-22-164B、X-22-164C、X-22―5002、X-22-173B、X-22-174D、X-22-167B、X-22-161AS(以上、商品名、信越化学工業(株)製)等を挙げることができる。 Examples of the compound represented by the formula (VII) include polysiloxane macromers containing one terminal (meth) acryloyl group (for example, Silaplane 0721, 0725 (above, trade name, manufactured by JNC Corporation), AK-5, AK-30, AK-32 (trade name, manufactured by Toagosei Co., Ltd.), KF-100T, X-22-169AS, KF-102, X-22-3701IE, X-22-164B, X- 22-164C, X-22-5002, X-22-173B, X-22-174D, X-22-167B, X-22-161AS (above, trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) be able to.
 本発明においては、上記式(III)で表される繰り返し単位を有する場合の含有量は、全繰り返し単位に対して2~80質量%であることが好ましく、5~70質量%であることがより好ましく、10~60質量%であることが更に好ましい。 In the present invention, the content of the repeating unit represented by the above formula (III) is preferably 2 to 80% by mass, and preferably 5 to 70% by mass with respect to all the repeating units. More preferably, it is 10 to 60% by mass.
 また、本発明においては、形成される防眩層と反射防止層の密着性がより良好となる理由から、上記式(III)で表される繰り返し単位を有している場合、上記式(I)で表される繰り返し単位の含有量が全繰り返し単位に対して10~50質量%であり、上記式(II)で表される繰り返し単位の含有量が全繰り返し単位に対して5~50質量%であり、上記式(III)で表される繰り返し単位の含有量が全繰り返し単位に対して10~60質量%であることが好ましい。 Moreover, in this invention, when it has the repeating unit represented by the said Formula (III) from the reason which the adhesiveness of the glare-proof layer and antireflection layer to be formed becomes favorable, when the said formula (I) The content of the repeating unit represented by the formula (II) is 10 to 50% by mass with respect to all the repeating units, and the content of the repeating unit represented by the above formula (II) is 5 to 50% by mass with respect to all the repeating units. The content of the repeating unit represented by the above formula (III) is preferably 10 to 60% by mass with respect to all the repeating units.
 <Vパート>
 本発明の高分子化合物は、エポキシ系の接着層を設けた場合の密着性が良好になるという観点から、下記式(V)で表される繰り返し単位(Vパート)を有していることが好ましい。
<V part>
The polymer compound of the present invention may have a repeating unit (V part) represented by the following formula (V) from the viewpoint of good adhesion when an epoxy adhesive layer is provided. preferable.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(V)中、R30は、水素原子または炭素数1~20のアルキル基を表し、なかでも、水素原子または炭素数1~10のアルキル基が好ましく、水素原子または炭素数1~4のアルキル基がより好ましく、水素原子またはメチル基が更に好ましい。 In the above formula (V), R 30 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. Among them, a hydrogen atom or an alkyl group having 1 to 10 carbon atoms is preferable, and a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable. Are more preferable, and a hydrogen atom or a methyl group is still more preferable.
 上記式(V)で表される繰返し単位を形成する単量体としては、具体的には、例えば、アクリル酸、メタクリル酸などが挙げられる。 Specific examples of the monomer that forms the repeating unit represented by the above formula (V) include acrylic acid and methacrylic acid.
 本発明においては、上記式(V)で表される繰り返し単位を有する場合の含有量は、全繰り返し単位に対して1~60質量%であることが好ましく、2~40質量%であることがより好ましく、4~20質量%であることが更に好ましい。 In the present invention, the content of the repeating unit represented by the formula (V) is preferably 1 to 60% by mass, and preferably 2 to 40% by mass with respect to all the repeating units. More preferably, it is 4 to 20% by mass.
 <その他のパート>
 本発明の高分子化合物は、必要に応じて、上述した式(I)(II)(III)および(V)で表される繰り返し単位以外の他の繰り返し単位を有していてもよい。
<Other parts>
The polymer compound of the present invention may have a repeating unit other than the repeating units represented by the above formulas (I), (II), (III), and (V) as necessary.
 他の繰り返し単位を形成する単量体としては、PolymerHandbook 2nd ed.,J.Brandrup,Wiley lnterscience(1975)Chapter 2 Page 1~483記載のものを用いることができる。
 例えば、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、アリル化合物、ビニルエーテル類、ビニルエステル類等から選ばれる付加重合性不飽和結合を1個有する化合物等を挙げることができる。
 具体的には、以下の単量体を挙げることができる。
As other monomers forming the repeating unit, Polymer Handbook 2nd ed. , J .; Brandrup, Wiley lnterscience (1975) Chapter 2 Page 1-483 can be used.
Examples thereof include compounds having one addition polymerizable unsaturated bond selected from acrylic acid esters, methacrylic acid esters, acrylamides, methacrylamides, allyl compounds, vinyl ethers, vinyl esters and the like.
Specifically, the following monomers can be mentioned.
 (アクリル酸エステル類)
 アクリル酸エステル類としては、具体的には、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、クロルエチルアクリレート、2-ヒドロキシエチルアクリレート、トリメチロールプロパンモノアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、フェノキシエチルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレートなどが挙げられる。
(Acrylic acid esters)
Specific examples of acrylic esters include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, trimethylolpropane monoacrylate, benzyl acrylate, methoxybenzyl acrylate, phenoxy Examples include ethyl acrylate, furfuryl acrylate, and tetrahydrofurfuryl acrylate.
 (メタクリル酸エステル類)
 メタクリル酸エステル類としては、具体的には、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、クロルエチルメタクリレート、2-ヒドロキシエチルメタクリレート、トリメチロールプロパンモノメタクリレート、ベンジルメタクリレート、メトキシベンジルメタクリレート、フェノキシエチルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、エチレングリコールモノアセトアセタートモノメタクリレートなどが挙げられる。
(Methacrylic acid esters)
Specific examples of the methacrylic acid esters include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, chloroethyl methacrylate, 2-hydroxyethyl methacrylate, trimethylolpropane monomethacrylate, benzyl methacrylate, methoxybenzyl methacrylate, and phenoxy. Examples include ethyl methacrylate, furfuryl methacrylate, tetrahydrofurfuryl methacrylate, and ethylene glycol monoacetoacetate monomethacrylate.
 (アクリルアミド類)
 アクリルアミド類としては、具体的には、例えば、アクリルアミド、N-アルキルアクリルアミド(アルキル基としては炭素数1~3のもの、例えばメチル基、エチル基、プロピル基)、N,N-ジアルキルアクリルアミド(アルキル基としては炭素数1~6のもの)、N-ヒドロキシエチル-N-メチルアクリルアミド、N-2-アセトアミドエチル-N-アセチルアクリルアミドなどが挙げられる。
(Acrylamides)
Specific examples of acrylamides include, for example, acrylamide, N-alkyl acrylamide (alkyl groups having 1 to 3 carbon atoms, such as methyl, ethyl, propyl), N, N-dialkyl acrylamide (alkyl Examples of the group include those having 1 to 6 carbon atoms), N-hydroxyethyl-N-methylacrylamide, N-2-acetamidoethyl-N-acetylacrylamide, and the like.
 (メタクリルアミド類)
 メタクリルアミド類としては、具体的には、例えば、メタクリルアミド、N-アルキルメタクリルアミド(アルキル基としては炭素数1~3のもの、例えばメチル基、エチル基、プロピル基)、N,N-ジアルキルメタクリルアミド(アルキル基としては炭素数1~6のもの)、N-ヒドロキシエチル-N-メチルメタクリルアミド、N-2-アセトアミドエチル-N-アセチルメタクリルアミドなどが挙げられる。
(Methacrylamide)
Specific examples of methacrylamides include, for example, methacrylamide, N-alkyl methacrylamide (alkyl groups having 1 to 3 carbon atoms, such as methyl, ethyl, propyl), N, N-dialkyl. Examples thereof include methacrylamide (alkyl group having 1 to 6 carbon atoms), N-hydroxyethyl-N-methylmethacrylamide, N-2-acetamidoethyl-N-acetylmethacrylamide and the like.
 (アリル化合物)
 アリル化合物としては、具体的には、例えば、アリルエステル類(例えば酢酸アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリルなど)、アリルオキシエタノールなどが挙げられる。
(Allyl compound)
Specific examples of the allyl compound include allyl esters (for example, allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, allyl lactate). And allyloxyethanol.
 (ビニルエーテル類)
 ビニルエーテル類としては、具体的には、例えば、アルキルビニルエーテル(例えばヘキシルビニルエーテル、オクチルビニルエーテル、デシルビニルエーテル、エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、クロルエチルビニルエーテル、1-メチル-2,2-ジメチルプロピルビニルエーテル、2-エチルブチルビニルエーテル、ヒドロキシエチルビニルエーテル、ジエチレングリコールビニルエーテル、ジメチルアミノエチルビニルエーテル、ジエチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ベンジルビニルエーテル、テトラヒドロフルフリルビニルエーテルなどが挙げられる。
(Vinyl ethers)
Specific examples of vinyl ethers include alkyl vinyl ethers (eg, hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethyl hexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether, 1-methyl-2,2-dimethylpropyl). Examples thereof include vinyl ether, 2-ethylbutyl vinyl ether, hydroxyethyl vinyl ether, diethylene glycol vinyl ether, dimethylaminoethyl vinyl ether, diethylaminoethyl vinyl ether, butylaminoethyl vinyl ether, benzyl vinyl ether, and tetrahydrofurfuryl vinyl ether.
 (ビニルエステル類)
 ビニルエステル類としては、具体的には、例えば、ビニルアセテート、ビニルブチレート、ビニルイソブチレート、ビニルトリメチルアセテート、ビニルジエチルアセテート、ビニルバレート、ビニルカプロエート、ビニルクロルアセテート、ビニルジクロルアセテート、ビニルメトキシアセテート、ビニルブトキシアセテート、ビニルラクテート、ビニル-β―フェニルブチレート、ビニルシクロヘキシルカルボキシレートなどが挙げられる。
(Vinyl esters)
Specific examples of vinyl esters include, for example, vinyl acetate, vinyl butyrate, vinyl isobutyrate, vinyl trimethyl acetate, vinyl diethyl acetate, vinyl valate, vinyl caproate, vinyl chloroacetate, vinyl dichloroacetate, Examples thereof include vinyl methoxyacetate, vinyl butoxyacetate, vinyl lactate, vinyl-β-phenylbutyrate, vinylcyclohexylcarboxylate and the like.
 (イタコン酸ジアルキル類)
 イタコン酸ジアルキル類としては、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。
(Dialkyl itaconates)
Examples of the dialkyl itaconates include dimethyl itaconate, diethyl itaconate, and dibutyl itaconate.
 (その他)
 その他、フマール酸のジアルキルエステル類またはルキルエステル類;ジブチルフマレート;クロトン酸、イタコン酸、アクリロニトリル、メタクリロニトリル、マレイロニトリル、スチレン、スチレンマクロマー(東亜合成社製AS-6S)、メチルメタクリレートマクロマー(東亜合成社製AA-6)などが挙げられる。
(Other)
Other dialkyl esters or alkyl esters of fumaric acid; dibutyl fumarate; crotonic acid, itaconic acid, acrylonitrile, methacrylonitrile, maleilonitrile, styrene, styrene macromer (AS-6S manufactured by Toa Gosei Co., Ltd.), methyl methacrylate macromer (Toa Gosei Co., Ltd. AA-6).
 本発明においては、他の繰り返し単位を有する場合の含有量は、全繰り返し単位に対して1~50質量%であることが好ましく、1~30質量%であることがより好ましく、1~20質量%であることが更に好ましい。 In the present invention, the content in the case of having other repeating units is preferably 1 to 50% by mass, more preferably 1 to 30% by mass, more preferably 1 to 20% by mass with respect to all repeating units. % Is more preferable.
 本発明の高分子化合物の重量平均分子量(Mw)は、1000~200000が好ましく、1500~100000がより好ましく、3000~60000が更に好ましい。
 本発明の高分子化合物の数平均分子量(Mn)は、500~40000が好ましく、600~35000がより好ましく、600~30000が更に好ましい。
 本発明の高分子化合物の分散度(Mw/Mn)は、1.00~12.00が好ましく、1.00~11.00がより好ましく、1.00~10.00が更に好ましい。
 なお、重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により下記の条件で測定された値である。
 <測定条件>
 [溶離液] N-メチル-2-ピロリドン(NMP)
 [装置名] EcoSEC HLC-8320GPC(東ソー社製)
 [カラム] TSKgel SuperAWM-H(東ソー社製))
 [カラム温度] 40℃
 [流速] 0.50ml/min
The weight average molecular weight (Mw) of the polymer compound of the present invention is preferably 1,000 to 200,000, more preferably 1500 to 100,000, and still more preferably 3000 to 60,000.
The number average molecular weight (Mn) of the polymer compound of the present invention is preferably 500 to 40000, more preferably 600 to 35000, and still more preferably 600 to 30000.
The dispersity (Mw / Mn) of the polymer compound of the present invention is preferably 1.00 to 12.00, more preferably 1.00 to 11.00, and even more preferably 1.00 to 10.00.
In addition, a weight average molecular weight and a number average molecular weight are the values measured on condition of the following by gel permeation chromatography (GPC).
<Measurement conditions>
[Eluent] N-methyl-2-pyrrolidone (NMP)
[Device Name] EcoSEC HLC-8320GPC (manufactured by Tosoh Corporation)
[Column] TSKgel SuperAWM-H (manufactured by Tosoh Corporation))
[Column temperature] 40 ° C
[Flow rate] 0.50 ml / min
 上述した各繰り返し単位を有する本発明の高分子化合物としては、具体的には、例えば、下記式(A-1)~(A-22)で表される化合物が挙げられる。下記式(A-1)~(A-22)で表される化合物は、たとえば、反射防止層中のヒドロキシル基を有する化合物(エポキシ基を有する化合物の開環後に現れるヒドロキシル基、シランカップリング部位を有する化合物の加水分解後に現れるヒドロキシル基等)と共有結合を形成することができる。共有結合の形成は、防眩性反射防止フィルムを斜め切削し、防眩層と反射防止層の界面付近の顕微ラマンスペクトルを測定し、共有結合性ホウ酸のラマンバンドを解析することで確認することができる。 Specific examples of the polymer compound of the present invention having each repeating unit described above include compounds represented by the following formulas (A-1) to (A-22). The compounds represented by the following formulas (A-1) to (A-22) include, for example, a compound having a hydroxyl group in the antireflection layer (a hydroxyl group appearing after ring opening of a compound having an epoxy group, a silane coupling site) And a covalent bond can be formed with a hydroxyl group or the like appearing after hydrolysis of a compound having a hydrogen atom. The formation of covalent bonds is confirmed by obliquely cutting the antiglare antireflection film, measuring the micro Raman spectrum near the interface between the antiglare layer and the antireflection layer, and analyzing the Raman band of the covalent boric acid. be able to.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明の高分子化合物の含有量は、本発明の防眩層形成用組成物の全固形分(溶剤を除いた全成分)を100質量%とした場合に、0.0001~40質量%であることが好ましく、0.001~20質量%であることがより好ましく、0.1~5質量%であることが更に好ましい。 The content of the polymer compound of the present invention is 0.0001 to 40% by mass when the total solid content (all components excluding the solvent) of the composition for forming an antiglare layer of the present invention is 100% by mass. Preferably, the content is 0.001 to 20% by mass, and more preferably 0.1 to 5% by mass.
 (その他の高分子化合物)
 本発明の防眩層は、その他の高分子化合物を含有してもよい。高分子化合物を添加することで、硬化収縮を小さくしたり、塗布液(防眩層形成用組成物)の粘度調整を行うことができる。
(Other polymer compounds)
The antiglare layer of the present invention may contain other polymer compounds. By adding a polymer compound, curing shrinkage can be reduced, or the viscosity of the coating liquid (antiglare layer forming composition) can be adjusted.
 高分子化合物は、塗布液に添加する時点で既に重合体を形成しており、上記高分子化合物としては、例えばセルロースエステル類(例えば、セルローストリアセテート、セルロースジアセテート、セルロースプロピオネート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースナイトレート等)、ウレタンアクリレート類、ポリエステルアクリレート類、(メタ)アクリル酸エステル類(例えば、メタクリル酸メチル/(メタ)アクリル酸メチル共重合体、メタクリル酸メチル/(メタ)アクリル酸エチル共重合体、メタクリル酸メチル/(メタ)アクリル酸ブチル共重合体、メタクリル酸メチル/スチレン共重合体、メタクリル酸メチル/(メタ)アクリル酸共重合体、ポリメタクリル酸メチル等)、ポリスチレン等の樹脂が好ましく用いられる。 The polymer compound has already formed a polymer when added to the coating solution. Examples of the polymer compound include cellulose esters (for example, cellulose triacetate, cellulose diacetate, cellulose propionate, cellulose acetate Pionate, cellulose acetate butyrate, cellulose nitrate, etc.), urethane acrylates, polyester acrylates, (meth) acrylic acid esters (for example, methyl methacrylate / (meth) methyl acrylate copolymer, methyl methacrylate / (Meth) ethyl acrylate copolymer, methyl methacrylate / (meth) butyl acrylate copolymer, methyl methacrylate / styrene copolymer, methyl methacrylate / (meth) acrylic acid copolymer, polymethyl methacrylate etc), Resins such as polystyrene are preferably used.
 高分子化合物は、硬化収縮への効果や塗布液の粘度増加効果の観点から、高分子化合物を含有する層に含む全バインダーに対して、好ましくは1~50質量%、より好ましくは5~40質量%の範囲で含有することが好ましい。また、高分子化合物の分子量は質量平均で0.3万~40万が好ましく、0.5万~30万がより好ましく、0.5万~20万がさらに好ましい。 The polymer compound is preferably 1 to 50% by mass, more preferably 5 to 40%, based on the total binder contained in the layer containing the polymer compound, from the viewpoint of the effect on curing shrinkage and the effect of increasing the viscosity of the coating solution. It is preferable to contain in the range of mass%. The molecular weight of the polymer compound is preferably from 30,000 to 400,000 in terms of mass average, more preferably from 50,000 to 300,000, and even more preferably from 50,000 to 200,000.
[反射防止層]
 本発明の防眩性反射防止フィルムが有する反射防止層について説明する。本発明の防眩性反射防止フィルムは積分反射率が1.0%以下であり、鏡面反射率が0.4%以下であり、防眩性反射防止フィルムの凸部における反射防止層の平均厚み/凹部における反射防止層の平均厚み(凹部における反射防止層の平均厚みに対する凸部における反射防止層の平均厚みの比)が1.0~0.7である。反射防止層としては、上記条件を満たすものであれば特に限定されない。また、本発明において、反射防止層が多層である場合には、各層に関して上記関係が成り立つこととする。
[Antireflection layer]
The antireflection layer of the antiglare antireflection film of the present invention will be described. The antiglare antireflection film of the present invention has an integral reflectance of 1.0% or less, a specular reflectance of 0.4% or less, and the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film. The average thickness of the antireflection layer in the recess (ratio of the average thickness of the antireflection layer in the protrusion to the average thickness of the antireflection layer in the recess) is 1.0 to 0.7. The antireflection layer is not particularly limited as long as it satisfies the above conditions. In the present invention, when the antireflection layer is a multilayer, the above relationship is established for each layer.
 防眩性反射防止フィルムの凸部における反射防止層の平均厚みと、防眩性反射防止フィルムの凹部における反射防止層の平均厚みの求め方について説明する。
 本発明では、反射防止層がモスアイ層である場合と、反射防止層がモスアイ層ではない場合とで、それぞれ以下のようにして防眩性反射防止フィルムの凸部における反射防止層の平均厚みと、防眩性反射防止フィルムの凹部における反射防止層とを求める。
The method for obtaining the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film and the average thickness of the antireflection layer at the concave portion of the antiglare antireflection film will be described.
In the present invention, when the antireflection layer is a moth-eye layer and when the antireflection layer is not a moth-eye layer, the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film is as follows. The antireflection layer in the concave portion of the antiglare antireflection film is obtained.
<反射防止層がモスアイ層である場合>
 反射防止層がモスアイ層である場合には、後述の<反射防止層がモスアイ層ではない場合>と同様の方法で求めることが難しい場合もあるため、防眩性反射防止フィルムの表面を観察し、一定の大きさの領域における反射防止層中の粒子の数を数えることで、凸部における反射防止層の平均厚みと、凹部における反射防止層とを求める。この方法は、粒子の数と反射防止層の膜厚とが相関するという考え方に基づいている。
 例えば、防眩層上に、粒子を含む反射防止層形成組成物を塗布して反射防止層を形成した場合、塗布液(反射防止層形成組成物)のレベリングによって防眩層の凸部と凹部で塗布量のムラが生じ、粒子数の疎密が発生する(すなわち、凸部では粒子数が少なくなり(疎な部分となり)、凹部では粒子数が多くなる(密な部分となる))。したがって、この場合は、粒子が疎な部分を凸部と、粒子が密な部分を凹部と考えることができ、(疎な部分の粒子数/密な部分の粒子数)を(凸部の反射防止層の膜厚/凹部の反射防止層の膜厚)と考えることができる。
 また、反射防止層を転写により防眩層上に形成した場合、反射防止層において粒子の疎密は発生しにくい。したがって、この場合はランダムに選んだ部分を凸部及び凹部とみなし、それぞれの粒子数を数え、(凸部の反射防止層の膜厚/凹部の反射防止層の膜厚)と考えることができる。
 具体的には、下記方法から算出した測定値を防眩性反射防止フィルムの凸部における反射防止層の平均厚みと凹部における反射防止層の平均厚みとして用いることができる。すなわち、低倍における表面SEM観察にて粒子の密な部分と疎な部分を決定し、疎な部分を凸部、密な部分を凹部とし、拡大して10μm×10μm角に存在する粒子数をカウントする。上記方法で密な部分と疎な部分が存在しない(密な部分と疎な部分との区別がつかず、全体に均一である)場合には、ランダムに選んだ視野を凸部、凹部として同様の測定を実施することとする。それぞれ10回の測定値を平均し、比をとることで防眩性反射防止フィルムの凸部における反射防止層の平均厚み/凹部における反射防止層の平均厚みとすることができる。
 低倍における表面SEM観察にて粒子の密な部分と疎な部分を決定することについて、図を用いてより詳細に説明する。
 図1(a)は、反射防止層を塗布で形成した場合の防眩性反射防止フィルムの表面SEM画像の一例である。この場合、図1(a)に示したように、粒子の密な部分と疎な部分は一見して明らかである。このようにして決定した粒子の密な部分と疎な部分について、10μm×10μm角の領域に存在する粒子数をカウントする。図1(b)は図1(a)をより拡大したものである。なお、疎な部分の大きさが10μm×10μm角よりも小さい場合は、疎な部分の大きさよりも小さい領域を指定して、その領域における粒子数をカウントすることができる。
 図2(a)は、反射防止層を転写で形成した場合の防眩性反射防止フィルムの表面SEM画像の一例であり、図2(b)は図2(a)をより拡大したものである。この場合、粒子の密な部分と疎な部分との区別がつかず、全体に均一である。したがって、ランダムに選んだ部分を凸部と凹部として上記と同様にそれぞれの粒子数をカウントする。
<When the antireflection layer is a moth-eye layer>
When the antireflection layer is a moth-eye layer, the surface of the antiglare antireflection film should be observed because it may be difficult to obtain in the same manner as described below in <When the antireflection layer is not a motheye layer>. By counting the number of particles in the antireflection layer in a region having a certain size, the average thickness of the antireflection layer in the convex portion and the antireflection layer in the concave portion are obtained. This method is based on the idea that the number of particles correlates with the thickness of the antireflection layer.
For example, when an antireflection layer is formed by applying an antireflection layer-forming composition containing particles on the antiglare layer, the convex and concave portions of the antiglare layer are formed by leveling the coating liquid (antireflection layer forming composition). As a result, the coating amount becomes uneven and the number of particles is sparse and dense (that is, the number of particles in the convex portion decreases (becomes a sparse portion) and the number of particles increases in the concave portion (becomes a dense portion)). Therefore, in this case, the sparse part can be considered as a convex part, and the dense part can be considered as a concave part, and (the number of particles in the sparse part / the number of particles in the dense part) is (reflective part of the convex part). The thickness of the anti-reflection layer / the thickness of the anti-reflection layer in the concave portion).
In addition, when the antireflection layer is formed on the antiglare layer by transfer, the density of the particles hardly occurs in the antireflection layer. Therefore, in this case, the randomly selected portions are regarded as convex portions and concave portions, and the number of each particle is counted, and can be considered as (film thickness of the antireflection layer of the convex portion / film thickness of the antireflection layer of the concave portion). .
Specifically, the measurement value calculated from the following method can be used as the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film and the average thickness of the antireflection layer at the concave portion. That is, the surface SEM observation at low magnification determines the dense and sparse parts of the particles, the sparse part is a convex part, the dense part is a concave part, and the number of particles existing in a 10 μm × 10 μm square is expanded. Count. If there is no dense part and sparse part in the above method (the dense part and the sparse part are indistinguishable and are uniform throughout), the randomly selected field of view is the same as the convex part and concave part. Measurements shall be conducted. The average value of the antireflective layer in the convex part of the antiglare antireflection film / the average thickness of the antireflective layer in the concave part can be obtained by averaging the measured values of 10 times and taking the ratio.
Determining dense and sparse parts of particles by surface SEM observation at low magnification will be described in more detail with reference to the drawings.
Fig.1 (a) is an example of the surface SEM image of the glare-proof antireflection film at the time of forming an antireflection layer by application | coating. In this case, as shown in FIG. 1A, the dense and sparse parts of the particles are apparent at a glance. The number of particles present in a 10 μm × 10 μm square area is counted for the dense and sparse parts of the particles thus determined. FIG. 1B is an enlarged view of FIG. When the size of the sparse part is smaller than 10 μm × 10 μm square, an area smaller than the size of the sparse part can be designated and the number of particles in the area can be counted.
FIG. 2A is an example of a surface SEM image of the antiglare antireflection film when the antireflection layer is formed by transfer, and FIG. 2B is an enlargement of FIG. 2A. . In this case, the dense and sparse parts of the particles cannot be distinguished and are uniform throughout. Accordingly, the number of particles is counted in the same manner as described above, with the randomly selected portions as convex portions and concave portions.
<反射防止層がモスアイ層ではない場合>
 反射防止層がモスアイ層ではない場合、防眩性反射防止フィルムの凸部における反射防止層の平均厚みと凹部における反射防止層の平均厚みは下記方法で算出することができる。すなわち、光学顕微鏡等で観察して、防眩層の凸部をけがきペンなどによりマーキングし、そのマーキングした部分(マーキング部)を含むように切削した断面を光学顕微鏡又は走査型電子顕微鏡(SEM)等で観察することで反射防止層の膜厚を算出する。ここで、凸部とは上記マーキング部付近で最も反射防止層の膜厚が薄い部分の膜厚とし、凹部とは上記断面において最も反射防止層の厚みが厚い部分とし、平均厚みは10回の測定の平均値とする。
<When the antireflection layer is not a moth-eye layer>
When the antireflection layer is not a moth-eye layer, the average thickness of the antireflection layer at the convex portion and the average thickness of the antireflection layer at the concave portion of the antiglare antireflection film can be calculated by the following methods. That is, by observing with an optical microscope or the like, the convex part of the antiglare layer is marked with a scribing pen or the like, and the cross section cut to include the marked part (marking part) is an optical microscope or a scanning electron microscope (SEM). ) Etc., the film thickness of the antireflection layer is calculated. Here, the convex portion is the thickness of the thinnest portion of the antireflection layer near the marking portion, and the concave portion is the thickest portion of the antireflection layer in the cross section, and the average thickness is 10 times. Use the average value of the measurement.
 上記防眩性反射防止フィルムの凸部における反射防止層の平均厚み/凹部における反射防止層の平均厚みは、1.0~0.7であることが好ましく、1.0~0.9であることが好ましく、1.0であることが最も好ましい。上記比が1.0に近いほど、良好な反射率、ヘイズ特性を有する防眩性反射防止フィルムが得られる。 The average thickness of the antireflection layer at the convex portions of the antiglare antireflection film / the average thickness of the antireflection layer at the concave portions is preferably 1.0 to 0.7, and preferably 1.0 to 0.9. Preferably, 1.0 is most preferable. As the ratio is closer to 1.0, an antiglare antireflection film having better reflectance and haze characteristics can be obtained.
(モスアイ層)
 本発明の好ましい反射防止層の具体例として、平均一次粒径100nm以上250nm以下の粒子及びバインダー樹脂を含み、かつ上記防眩層との界面とは反対側の表面に上記粒子によるモスアイ構造を有する反射防止層(モスアイ層)が挙げられる。
 ここで、モスアイ構造とは、光の反射を抑制するための物質(材料)の加工された表面であって、周期的な微細構造パターンをもった構造のことを指す。特に、可視光の反射を抑制する目的の場合には、780nm未満の周期の微細構造パターンをもった構造のことを指す。微細構造パターンの周期が380nm未満であると、反射光の色味がなくなり好ましい。また、周期が100nm以上であると波長380nmの光が微細構造パターンを認識出来、反射防止性に優れるため好ましい。モスアイ構造の有無は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)等により表面形状を観察し、上記微細構造パターンが出来ているかどうか調べることによって確認することができる。
 モスアイ層に使用する材料や作製条件は、工程と関連付けながら、製造方法の部分で後述する。
(Moth eye layer)
As a specific example of a preferred antireflection layer of the present invention, it contains particles having an average primary particle size of 100 nm or more and 250 nm or less and a binder resin, and has a moth-eye structure of the particles on the surface opposite to the interface with the antiglare layer. An antireflection layer (moth eye layer) may be mentioned.
Here, the moth-eye structure is a processed surface of a substance (material) for suppressing light reflection, and refers to a structure having a periodic fine structure pattern. In particular, for the purpose of suppressing the reflection of visible light, it refers to a structure having a fine structure pattern with a period of less than 780 nm. It is preferable that the period of the fine structure pattern is less than 380 nm because the color of the reflected light is eliminated. A period of 100 nm or more is preferable because light with a wavelength of 380 nm can recognize a fine structure pattern and is excellent in antireflection properties. The presence or absence of the moth-eye structure can be confirmed by observing the surface shape with a scanning electron microscope (SEM), an atomic force microscope (AFM), or the like, and examining whether the fine structure pattern is formed.
The material used for the moth-eye layer and the production conditions will be described later in the manufacturing method section in association with the process.
(その他の反射防止層)
 本発明の防眩性反射防止フィルムの反射防止層は、モスアイ層ではない反射防止層(「その他の反射防止層」とも呼ぶ。)であってもよい。
 その他の反射防止層としては、例えば、低屈折率層を含む反射防止層が挙げられる。低屈折率層とは、基材フィルムよりも屈折率(波長500nmの屈折率)が低い層である。
(Other antireflection layers)
The antireflection layer of the antiglare antireflection film of the present invention may be an antireflection layer (also referred to as “other antireflection layer”) that is not a moth-eye layer.
Examples of the other antireflection layer include an antireflection layer including a low refractive index layer. A low refractive index layer is a layer whose refractive index (refractive index of wavelength 500nm) is lower than a base film.
 低屈折率層には、熱または電離放射線により硬化する含フッ素化合物が用いられることが好ましい。硬化性の含フッ素高分子化合物としてはパーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ-1,1,2,2-テトラデシル)トリエトキシシラン)等の他、含フッ素モノマーと架橋性基付与のためのモノマーを構成単位とする含フッ素共重合体が挙げられる。
 含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学(株)製)、M-2020(ダイキン(株)製)等)、完全または部分フッ素化ビニルエーテル類等であり、これらのなかでも低屈折率、モノマーの扱いやすさの観点で特にヘキサフルオロプロピレンが好ましい。
 架橋性基付与のためのモノマーとしてはグリシジルメタクリレートのように分子内にあらかじめ架橋性官能基を有する(メタ)アクリレートモノマーの他、カルボキシル基、ヒドロキシル基、アミノ基、スルホン酸基等を有する(メタ)アクリレートモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート等)が挙げられる。
The low refractive index layer is preferably a fluorine-containing compound that is cured by heat or ionizing radiation. Examples of curable fluorine-containing polymer compounds include perfluoroalkyl group-containing silane compounds (for example, (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane) and the like, as well as addition of fluorine-containing monomers and crosslinkable groups. And a fluorine-containing copolymer having a monomer as a constituent unit.
Specific examples of the fluorine-containing monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc. ), (Meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (manufactured by Osaka Organic Chemical Co., Ltd.), M-2020 (manufactured by Daikin)), fully or partially fluorinated vinyl ether Among these, hexafluoropropylene is particularly preferable from the viewpoint of low refractive index and ease of handling of the monomer.
As a monomer for imparting a crosslinkable group, in addition to a (meth) acrylate monomer having a crosslinkable functional group in the molecule in advance such as glycidyl methacrylate, it has a carboxyl group, a hydroxyl group, an amino group, a sulfonic acid group, etc. ) Acrylate monomers (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, etc.).
 また上記含フッ素モノマーを構成単位とするポリマーだけでなく、フッ素原子を含有しないモノマーとの共重合体を用いてもよい。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α-メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N-tertブチルアクリルアミド、N-シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができ、特開平10-25388号公報および特開平10-147739号公報により開示されている。 Further, not only a polymer having the above-mentioned fluorine-containing monomer as a structural unit but also a copolymer with a monomer not containing a fluorine atom may be used. There are no particular limitations on the monomer units that can be used in combination. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid 2) -Ethylhexyl), methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers (methyl) Vinyl ethers), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamides (N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides, Krilo can be exemplified nitrile derivatives, disclosed by Japanese Patent Laid-Open 10-25388 and JP-10-147739 JP.
 反射防止層は、低屈折率層に加えて、さらに高屈折率層を有することが好ましい。低屈折率層とは、基材フィルムよりも屈折率(波長500nmの屈折率)が高い層である。高屈折率層は、屈折率の高い無機微粒子、熱または電離放射線硬化性のモノマー、開始剤および溶媒を含有する塗布組成物の塗布、溶媒の乾燥、熱および/または電離放射線による硬化によって形成される。無機微粒子としては、 Ti、Zr、In、Zn、Sn、Sbの酸化物から選ばれた少なくとも1種の金属酸化物からなるものが好ましい。このようにして形成された高屈折率層は、高屈折率を有するポリマー溶液を塗布、乾燥したものと比較して、耐傷性や密着性に優れる。分散液安定性、硬化後の膜強度等を確保するために、特開平11-153703号公報や特許番号US6210858 B1等に記載されているような、多官能(メタ)アクリレートモノマーとアニオン性基含有(メタ)アクリレート分散剤とが塗布組成物中に含まれることが好ましい。 The antireflection layer preferably further has a high refractive index layer in addition to the low refractive index layer. The low refractive index layer is a layer having a higher refractive index (refractive index at a wavelength of 500 nm) than the base film. The high refractive index layer is formed by applying a coating composition containing inorganic fine particles having a high refractive index, a thermal or ionizing radiation curable monomer, an initiator and a solvent, drying the solvent, curing by heat and / or ionizing radiation. The The inorganic fine particles are preferably made of at least one metal oxide selected from oxides of Ti, Zr, In, Zn, Sn, and Sb. The thus formed high refractive index layer is superior in scratch resistance and adhesion as compared with a layer obtained by applying and drying a polymer solution having a high refractive index. In order to ensure dispersion stability, film strength after curing, etc., it contains a polyfunctional (meth) acrylate monomer and an anionic group as described in JP-A No. 11-153703 and Patent No. US6210858 B1 It is preferable that a (meth) acrylate dispersant is contained in the coating composition.
 無機微粒子の平均粒径は、コールターカウンター法で測定したときの平均粒径で1から100nmであることが好ましい。高屈折率層のヘイズは、3%以下であることが好ましく、1%以下であることがより好ましく、0.5%以下であることが更に好ましい。 The average particle diameter of the inorganic fine particles is preferably 1 to 100 nm as an average particle diameter measured by a Coulter counter method. The haze of the high refractive index layer is preferably 3% or less, more preferably 1% or less, and still more preferably 0.5% or less.
 また、反射防止層は、低屈折率層及び高屈折率層に加えて、さらに中屈折率層を有していてもよい。
 防眩性反射防止フィルムが、中屈折率層、高屈折率層、及び低屈折率層をこの順に有する場合において、設計波長λ(=500nm)に対して中屈折率層が下式(I)を、高屈折率層が下式(II)を、低屈折率層が下式(III)をそれぞれ満足することが好ましい。
 また、防眩性反射防止フィルムが、高屈折率層及び低屈折率層をこの順に有する場合において、設計波長λ(=500nm)に対して、高屈折率層が下式(II)を、低屈折率層が下式(III)をそれぞれ満足することが好ましい。
 lλ/4×0.80<n1d1<lλ/4×1.00     (I)
 mλ/4×0.75<n2d2<mλ/4×0.95     (II)
 nλ/4×0.95<n3d3<nλ/4×1.05     (III)
 但し、式中、lは1であり、n1は中屈折率層の屈折率であり、そして、d1は中屈折率層の層厚(nm)であり、mは2であり、n2は高屈折率層の屈折率であり、そして、d2は高屈折率層の層厚(nm)であり、nは1であり、n3は低屈折率層の屈折率であり、そして、d3は低屈折率層の層厚(nm)である。
 防眩性反射防止フィルムが、中屈折率層、高屈折率層、及び低屈折率層をこの順に有する場合において、屈折率が1.45~1.55である基材フィルムに対してn1が1.60~1.65、n2が1.85~1.95、n3が1.35~1.45の屈折率であることが好ましい。
 防眩性反射防止フィルムが、高屈折率層及び低屈折率層をこの順に有する場合において、屈折率が1.45~1.55である基材フィルムに対してn2が1.85~1.95、n3が1.35~1.45の屈折率であることが好ましい。
The antireflection layer may further have a medium refractive index layer in addition to the low refractive index layer and the high refractive index layer.
In the case where the antiglare antireflection film has a middle refractive index layer, a high refractive index layer, and a low refractive index layer in this order, the middle refractive index layer has the following formula (I) with respect to the design wavelength λ (= 500 nm). It is preferable that the high refractive index layer satisfies the following formula (II) and the low refractive index layer satisfies the following formula (III).
In the case where the antiglare antireflection film has a high refractive index layer and a low refractive index layer in this order, the high refractive index layer has the following formula (II) with respect to the design wavelength λ (= 500 nm). It is preferable that the refractive index layer satisfies the following formula (III).
lλ / 4 × 0.80 <n1d1 <lλ / 4 × 1.00 (I)
mλ / 4 × 0.75 <n2d2 <mλ / 4 × 0.95 (II)
nλ / 4 × 0.95 <n3d3 <nλ / 4 × 1.05 (III)
In the formula, l is 1, n1 is the refractive index of the medium refractive index layer, d1 is the layer thickness (nm) of the medium refractive index layer, m is 2, and n2 is highly refractive. The refractive index of the refractive index layer, and d2 is the layer thickness (nm) of the high refractive index layer, n is 1, n3 is the refractive index of the low refractive index layer, and d3 is the low refractive index. The layer thickness (nm) of the layer.
In the case where the antiglare antireflection film has a middle refractive index layer, a high refractive index layer, and a low refractive index layer in this order, n1 is relative to the base film having a refractive index of 1.45 to 1.55. It is preferable that the refractive index is 1.60 to 1.65, n2 is 1.85 to 1.95, and n3 is 1.35 to 1.45.
When the antiglare antireflection film has a high refractive index layer and a low refractive index layer in this order, n2 is 1.85 to 1.5 with respect to the base film having a refractive index of 1.45 to 1.55. 95 and n3 preferably have a refractive index of 1.35 to 1.45.
[基材フィルム]
 本発明の防眩性反射防止フィルムにおける基材フィルムとしては、種々用いることができるが、プラスチック基材フィルムであることが好ましく、例えば、セルロース系樹脂;セルロースアシレート(トリアセテートセルロース、ジアセチルセルロース、アセテートブチレートセルロース)等、ポリエステル樹脂;ポリエチレンテレフタレート等、(メタ)アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート、ポリスチレン、オレフィン系樹脂等を含有する基材が挙げられ、セルロースアシレート、ポリエチレンテレフタレート、又は(メタ)アクリル系樹脂を含有する基材が好ましく、セルロースアシレートを含有する基材がより好ましい。セルロースアシレートとしては、特開2012-093723号公報に記載の基材等を好ましく用いることが出来る。
 基材フィルムの厚さは、通常、10μm~1000μm程度であるが、取り扱い性が良好で、透明性が高く、かつ十分な強度が得られるという観点から20μm~200μmが好ましく、25μm~100μmがより好ましい。基材フィルムの透明性としては、透過率90%以上のものが好ましい。
[Base film]
The base film in the antiglare antireflection film of the present invention can be variously used, but is preferably a plastic base film, for example, a cellulose resin; cellulose acylate (triacetate cellulose, diacetyl cellulose, acetate (Butyrate cellulose) and the like, polyester resins; polyethylene terephthalate and the like, (meth) acrylic resins, polyurethane resins, polycarbonates, polystyrenes, olefinic resins and the like, and cellulose acylate, polyethylene terephthalate, A base material containing a (meth) acrylic resin is preferred, and a base material containing cellulose acylate is more preferred. As the cellulose acylate, the base material described in JP 2012-093723 A can be preferably used.
The thickness of the base film is usually about 10 μm to 1000 μm, but is preferably 20 μm to 200 μm, more preferably 25 μm to 100 μm from the viewpoint of good handleability, high transparency, and sufficient strength. preferable. As the transparency of the base film, those having a transmittance of 90% or more are preferable.
[接着層]
 本発明の防眩性反射防止フィルムは、防眩層と反射防止層の間に接着層を有することも好ましい。
 特に、転写法で反射防止層を付与する際に、防眩層と反射防止層間に接着層を設けることで耐擦傷性を向上させることができることが分かった。
 接着層を形成する接着剤としては特に限定されないが、ポリビニルアルコール系接着剤のほか、エポキシ系の活性エネルギー線硬化型接着剤、アクリレート系紫外線硬化型接着剤等を用いることができる。例えば特開2004-245925号公報に示されるような、分子内に芳香環を含まないエポキシ化合物を含有し、加熱又は活性エネルギー線の照射により硬化する接着剤、特開2008-174667号公報記載の(メタ)アクリル系化合物の合計量100質量部中に、(a)分子中に(メタ)アクリロイル基を2以上有する(メタ)アクリル系化合物と、(b)分子中に水酸基を有し、重合性二重結合をただ1個有する(メタ)アクリル系化合物と、(c)フェノールエチレンオキサイド変性アクリレートまたはノニルフェノールエチレンオキサイド変性アクリレートとを含有する活性エネルギー線硬化型接着剤などが挙げられる。反射防止層が上記モスアイ層である場合には、防眩層とモスアイ層の密着性の観点から、(メタ)アクリレート系紫外線硬化型接着剤を用いることが好ましく、さらに多官能(メタ)アクリレートを含有するアクリレート系紫外線を好ましく用いることができる。
[Adhesive layer]
The antiglare antireflection film of the present invention preferably has an adhesive layer between the antiglare layer and the antireflection layer.
In particular, it has been found that when the antireflection layer is applied by the transfer method, the scratch resistance can be improved by providing an adhesive layer between the antiglare layer and the antireflection layer.
Although it does not specifically limit as an adhesive agent which forms a contact bonding layer, In addition to a polyvinyl alcohol-type adhesive agent, an epoxy-type active energy ray hardening-type adhesive agent, an acrylate type ultraviolet curing adhesive agent, etc. can be used. For example, an adhesive that contains an epoxy compound that does not contain an aromatic ring in the molecule and is cured by heating or irradiation with active energy rays, as disclosed in JP-A-2004-245925, disclosed in JP-A-2008-174667 In a total amount of 100 parts by weight of the (meth) acrylic compound, (a) a (meth) acrylic compound having two or more (meth) acryloyl groups in the molecule, and (b) a hydroxyl group in the molecule, polymerization And an active energy ray-curable adhesive containing a (meth) acrylic compound having only one ionic double bond and (c) phenolethylene oxide-modified acrylate or nonylphenolethylene oxide-modified acrylate. When the antireflection layer is the moth-eye layer, it is preferable to use a (meth) acrylate-based UV curable adhesive from the viewpoint of adhesion between the antiglare layer and the moth-eye layer, and moreover, a polyfunctional (meth) acrylate is used. The acrylate ultraviolet rays contained can be preferably used.
 接着剤層の厚みとしては、0.01~3.0μm好ましく、0.01~1.0μmがより好ましく、0.01~0.6μmがさらに好ましい。接着剤層の厚みが薄いほど、防眩フィルムの防眩性を損なわず、優れた防眩性を有する防眩性反射防止フィルムが得られるため好ましい。 The thickness of the adhesive layer is preferably 0.01 to 3.0 μm, more preferably 0.01 to 1.0 μm, and still more preferably 0.01 to 0.6 μm. A thinner adhesive layer is preferable because an antiglare antireflection film having excellent antiglare properties can be obtained without impairing the antiglare properties of the antiglare film.
(防眩性反射防止フィルムの表面形状)
 本発明の防眩性反射防止フィルムは反射防止層側の表面に凹凸形状を有し、上記凹凸形状は、算術平均粗さ(Ra)が0.03μm≦Ra≦0.4μmであり、かつ、凹凸の平均間隔(Sm)が20μm≦Sm≦700μmである。
 ここで、算術平均粗さ(Ra)及び凹凸の平均間隔(Sm)は、JIS B-0601(1994)に基づいて、測定される。
 表面凹凸の算術平均粗さ(Ra)、平均間隔(Sm)は、JIS B-0601(1994)に準じた測定器、例えば小坂研究所(株)製サーフコーダーMODEL SE-3Fなどを用いて測定することができる。
 なお、上記測定により測定される凹凸形状のRa及びSmは、防眩層に起因する凹凸形状である。防眩性反射防止フィルムが、防眩層上にモスアイ層を有する場合でも、モスアイ層の微細な凹凸形状は上記測定に影響を及ぼさない。
(Surface shape of antiglare antireflection film)
The antiglare antireflection film of the present invention has an uneven shape on the surface on the antireflection layer side, the uneven shape has an arithmetic average roughness (Ra) of 0.03 μm ≦ Ra ≦ 0.4 μm, and The average interval (Sm) of the irregularities is 20 μm ≦ Sm ≦ 700 μm.
Here, the arithmetic average roughness (Ra) and the average interval (Sm) of the unevenness are measured based on JIS B-0601 (1994).
Arithmetic average roughness (Ra) and average interval (Sm) of surface irregularities are measured using a measuring instrument according to JIS B-0601 (1994), for example, a surf coder MODEL SE-3F manufactured by Kosaka Laboratory. can do.
In addition, uneven | corrugated shaped Ra and Sm measured by the said measurement are uneven | corrugated shapes resulting from an anti-glare layer. Even when the antiglare antireflection film has a moth-eye layer on the antiglare layer, the fine uneven shape of the moth-eye layer does not affect the measurement.
 算術平均粗さ(Ra)は、0.03μm≦Ra≦0.4μmであり、0.1μm≦Ra≦0.4μmが好ましい。 The arithmetic average roughness (Ra) is 0.03 μm ≦ Ra ≦ 0.4 μm, and preferably 0.1 μm ≦ Ra ≦ 0.4 μm.
 Raの値が0.03μm以上であると、良好な防眩性が得られる十分な表面凹凸構造が得られ易く、0.4μm以下であるとヘイズ値が適切な範囲の凹凸構造が得られやすいため好ましい。0.1μm以上であると、高い防眩性を有した防眩性反射防止フィルムが得られるため好ましい。さらに、0.1μm以上であると、反射防止層を塗布で形成した場合の反射率が上昇しやすいため、本発明の転写で反射防止層を形成する手法のメリットが大きく得られるため好ましい。また、Smの値が20μm以上であると反射防止層を転写する際に反射防止層が防眩層の凹凸に追従しやすいため好ましく、防眩性能確保の観点から700μm以下であることが好ましい。 When the Ra value is 0.03 μm or more, it is easy to obtain a sufficient surface uneven structure capable of obtaining good antiglare properties, and when it is 0.4 μm or less, an uneven structure having an appropriate haze value is easily obtained. Therefore, it is preferable. When the thickness is 0.1 μm or more, an antiglare antireflection film having high antiglare properties is obtained, which is preferable. Furthermore, when the thickness is 0.1 μm or more, the reflectance when the antireflection layer is formed by coating is likely to increase, so that the merit of the method of forming the antireflection layer by the transfer of the present invention can be greatly obtained. Further, when the value of Sm is 20 μm or more, the antireflection layer easily follows the unevenness of the antiglare layer when the antireflection layer is transferred, and is preferably 700 μm or less from the viewpoint of securing the antiglare performance.
[防眩性反射防止フィルムの製造方法]
 本発明の防眩性反射防止フィルムの製造方法は、
 基材フィルムと、防眩層と、反射防止層とをこの順に有する防眩性反射防止フィルムの製造方法であって、
 上記基材フィルム上に、防眩層用バインダー樹脂形成化合物と防眩層用粒子を含有する防眩層形成用組成物を塗布し、電離放射線照射又は加熱により上記防眩層形成用組成物を硬化させて防眩層を形成する工程(工程I)と、
 仮支持体上に、反射防止形成用組成物を塗布し、電離放射線照射又は加熱により10~70%の表面硬化率で半硬化し反射防止層を形成する工程(工程II)と、
 上記反射防止層を上記仮支持体上から上記防眩層の上記基材フィルムを有する側とは反対側の面上に転写する工程(工程III)と、
を有する防眩性反射防止フィルムの製造方法である。
[Production method of antiglare antireflection film]
The production method of the antiglare antireflection film of the present invention is as follows:
A method for producing an antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order,
On the base film, a composition for forming an antiglare layer containing a binder resin forming compound for an antiglare layer and particles for the antiglare layer is applied, and the composition for forming an antiglare layer is formed by irradiation with ionizing radiation or heating. A step of curing and forming an antiglare layer (step I);
A step of applying an antireflection-forming composition on a temporary support and semi-curing it at a surface curing rate of 10 to 70% by irradiation with ionizing radiation or heating to form an antireflection layer (step II);
A step of transferring the antireflection layer from the temporary support onto the surface of the antiglare layer opposite to the side having the base film (step III);
It is a manufacturing method of the anti-glare antireflection film which has this.
<工程I>
 本発明の防眩性反射防止フィルムの製造方法は、基材フィルム上に、防眩層用バインダー樹脂形成化合物と防眩層用粒子を含有する防眩層形成用組成物を塗布し、電離放射線照射又は加熱により上記防眩層形成用組成物を硬化させて防眩層を形成する工程、すなわち上記基材フィルムと上記防眩層を有する防眩フィルムを形成する工程を有する。
<Process I>
The method for producing an antiglare antireflection film of the present invention comprises applying a composition for forming an antiglare layer containing a binder resin forming compound for an antiglare layer and particles for the antiglare layer on a base film, and ionizing radiation. It has the process of hardening the said composition for glare-proof layer formation by irradiation or a heating, and forming the glare-proof layer, ie, the process of forming the glare-proof film which has the said base film and the said glare-proof layer.
 基材フィルムについては前述のとおりである。 The base film is as described above.
(防眩層形成用組成物)
 防眩層形成用組成物は、防眩層用バインダー樹脂形成化合物と防眩層用粒子を含有する。防眩層用バインダー樹脂形成化合物と防眩層用粒子については前述のとおりである。
 防眩層形成用組成物は更に、溶媒を含有することが好ましい。溶媒としては、基材フィルムを構成する成分によって異なるが、セルロースアシレート基材の場合は、例えばメチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、炭酸ジメチル、酢酸メチル、アセトン、メチレンクロライド等を好ましく用いることができ、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチルがより好ましい。
 アクリル基材の場合は、炭酸ジメチル、炭酸メチルエチル、炭酸ジエチル、アセトン、メチルエチルケトン(MEK)、シクロペンタノン、シクロヘキサノン酢酸メチル、酢酸エチル等が好ましい。
 これら防眩層形成用組成物に用いられる溶媒は、単独で用いても、複数種を併用しても良い。
(Anti-glare layer forming composition)
The composition for forming an antiglare layer contains a binder resin forming compound for an antiglare layer and particles for the antiglare layer. The binder resin-forming compound for the antiglare layer and the particles for the antiglare layer are as described above.
It is preferable that the composition for forming an antiglare layer further contains a solvent. The solvent varies depending on the components constituting the substrate film, but in the case of a cellulose acylate substrate, for example, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), dimethyl carbonate, methyl acetate, acetone, methylene chloride and the like are preferable. Methyl ethyl ketone (MEK), dimethyl carbonate, and methyl acetate are more preferable.
In the case of an acrylic substrate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, acetone, methyl ethyl ketone (MEK), cyclopentanone, cyclohexanone methyl acetate, ethyl acetate and the like are preferable.
The solvent used for these anti-glare layer forming compositions may be used alone or in combination of two or more.
-重合開始剤-
 防眩層形成用組成物には、重合開始剤を含んでいてもよい。
 防眩層形成用組成物に含まれる防眩層用バインダー樹脂形成化合物が光重合性化合物である場合は、光重合開始剤を含むことが好ましい。
 光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009-098658号公報の段落<0133>~<0151>に記載されており、本発明においても同様に好適に用いることができる。
-Polymerization initiator-
The composition for forming an antiglare layer may contain a polymerization initiator.
When the binder resin forming compound for an antiglare layer contained in the composition for forming an antiglare layer is a photopolymerizable compound, it is preferable to include a photopolymerization initiator.
As photopolymerization initiators, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins. Specific examples, preferred embodiments, commercially available products, and the like of the photopolymerization initiator are described in paragraphs <0133> to <0151> of JP-A-2009-098658, and can be suitably used in the present invention as well. it can.
 「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65~148にも種々の例が記載されており本発明に有用である。 “Latest UV Curing Technology” {Technical Information Association, Inc.} (1991), p. 159, and “UV Curing System” written by Kiyomi Kato (published by the General Technology Center in 1989), p. Various examples are also described in 65 to 148 and are useful in the present invention.
 防眩層形成用組成物中の光重合開始剤の含有量は、防眩層形成用組成物に含まれる防眩層用バインダー樹脂形成化合物を重合させるのに十分多く、かつ開始点が増えすぎないよう十分少ない量に設定するという理由から、防眩層形成用組成物中の全固形分に対して、0.5~8質量%が好ましく、1~5質量%がより好ましい。 The content of the photopolymerization initiator in the antiglare layer forming composition is sufficiently large to polymerize the binder resin forming compound for the antiglare layer contained in the antiglare layer forming composition, and the starting point is excessively increased. The amount is preferably set to a sufficiently small amount so that it is preferably 0.5 to 8% by mass, more preferably 1 to 5% by mass with respect to the total solid content in the composition for forming an antiglare layer.
 防眩層形成用組成物の塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。 The application method of the composition for forming an antiglare layer is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.
 工程Iにおいては、基材フィルム上に塗布した防眩層形成用組成物を、電離放射線照射又は加熱により硬化させて防眩層を形成する。防眩層の形成において溶媒は乾燥させることが好ましい。 In step I, the antiglare layer-forming composition applied on the base film is cured by irradiation with ionizing radiation or heating to form an antiglare layer. In forming the antiglare layer, the solvent is preferably dried.
 本発明の防眩層形成における電離放射線種は特に制限されるものではなく、防眩層用バインダー樹脂形成化合物の種類に応じて、紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができるが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。 The ionizing radiation species in the formation of the antiglare layer of the present invention are not particularly limited, and depending on the type of the binder resin forming compound for the antiglare layer, ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays and the like can be selected as appropriate, but ultraviolet rays and electron beams are preferred, and ultraviolet rays are particularly preferred because they are easy to handle and high energy can be easily obtained.
 紫外線硬化性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプ又はシンクロトロン放射光等も用いることができる。このうち、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプを好ましく利用できる。 As the ultraviolet light source for photopolymerizing the ultraviolet curable compound, any light source that generates ultraviolet light can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, and a metal halide lamp can be preferably used.
 照射条件はそれぞれのランプによって異なるが、照射光量は1mJ/cm以上が好ましく、更に好ましくは、1~2000mJ/cmである。
 加えて、紫外線照射条件と共に酸素濃度を変化させることで、反射防止層積層前の防眩層の表面硬化率を調整することができ、好ましくは10%以下、より好ましくは5%以下、最も好ましくは2%以下の酸素濃度雰囲気で電離放射線を照射して硬化する。
Irradiation conditions vary depending on each lamp, but the amount of irradiation light is preferably 1 mJ / cm 2 or more, more preferably 1 to 2000 mJ / cm 2 .
In addition, by changing the oxygen concentration together with the ultraviolet irradiation conditions, the surface hardening rate of the antiglare layer before lamination of the antireflection layer can be adjusted, preferably 10% or less, more preferably 5% or less, most preferably Is cured by irradiation with ionizing radiation in an oxygen concentration atmosphere of 2% or less.
 加熱については前出の防眩層形成用組成物中の溶剤乾燥時加熱と兼ねても良く、溶剤乾燥時の加熱とは別に加熱しても良い。使用する基材フィルム種類により適当な加熱条件も異なるが、加熱条件は60℃以上が好ましく、更に好ましくは60~150℃であり、特に好ましくは、60~130℃である。加熱時間は、10秒~3分が製造の容易さの観点で好ましい。電離放射線照射条件と共に酸素濃度を適宜組み合わせることにより、防眩層の硬さを確保し、かつ表面硬化率を調整することができる。 The heating may be combined with the heating at the time of solvent drying in the above-described composition for forming an antiglare layer, or may be heated separately from the heating at the time of solvent drying. Although suitable heating conditions vary depending on the type of substrate film to be used, the heating conditions are preferably 60 ° C. or higher, more preferably 60 to 150 ° C., and particularly preferably 60 to 130 ° C. The heating time is preferably 10 seconds to 3 minutes from the viewpoint of ease of production. By appropriately combining the oxygen concentration with the ionizing radiation irradiation conditions, the hardness of the antiglare layer can be ensured and the surface hardening rate can be adjusted.
 反射防止層を形成する工程の前の防眩層の表面硬化率(防眩層の上記基材フィルムを有する側とは反対側の表面の表面硬化率)は、80%以下であることが好ましく、10%~70%であることがより好ましく、20%~60%であることが更に好ましい。
 防眩層の反射防止層積層前の表面硬化率が60%以下であることにより、反射防止層と防眩層の密着性が良好となり、20%以上であることで、防眩層に圧力が加わった際の変形や層の破壊を防止できるため好ましい。
 なお、防眩層は、後述する反射防止層を転写した後完全に硬化することで、耐擦傷性等の物理性能を高めることが好適である。
The surface hardening rate of the antiglare layer before the step of forming the antireflection layer (the surface hardening rate of the surface of the antiglare layer opposite to the side having the base film) is preferably 80% or less. It is more preferably 10% to 70%, and further preferably 20% to 60%.
When the surface curing rate of the antiglare layer before lamination of the antireflection layer is 60% or less, the adhesion between the antireflection layer and the antiglare layer becomes good, and when it is 20% or more, pressure is applied to the antiglare layer. This is preferable because deformation and layer breakage when added can be prevented.
In addition, it is suitable for an anti-glare layer to improve physical performances, such as abrasion resistance, by hardening | curing completely after transferring the antireflection layer mentioned later.
 表面硬化率は、IR測定によりカルボニル基のピーク(1660-1800cm-1)面積と二重結合のピーク高さ(808cm-1)を未硬化品、硬化品についてそれぞれ測定し、硬化品の二重結合の規格化ピーク高さを未硬化品の二重結合の規格化ピーク高さで除すことにより算出できる。 The surface cure rate was determined by measuring the peak (1660-1800 cm −1 ) area of the carbonyl group and the peak height (808 cm −1 ) of the double bond for each of the uncured product and the cured product by IR measurement. It can be calculated by dividing the normalized peak height of the bond by the normalized peak height of the double bond of the uncured product.
 防眩層形成後、反射防止層形成前に、防眩層の表面に表面処理を行い、その後、反射防止層を形成させてもよい。
 この場合の表面処理としては、コロナ放電処理、グロー放電処理、紫外線照射処理、火炎処理、オゾン処理、酸処理、アルカリ処理等でフィルム表面を改質する方法が挙げられる。ここでいうグロー放電処理とは、10-3~20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報公技番号2001-1745号(2001年3月15日発行、発明協会)にて30頁~32頁に詳細に記載されており、本発明において好ましく用いることができる。
 これらの処理のうち、プラズマ処理、コロナ処理が好ましい。
After the antiglare layer is formed and before the antireflection layer is formed, the surface of the antiglare layer may be subjected to surface treatment, and then the antireflection layer may be formed.
Examples of the surface treatment in this case include a method of modifying the film surface by corona discharge treatment, glow discharge treatment, ultraviolet irradiation treatment, flame treatment, ozone treatment, acid treatment, alkali treatment or the like. The glow discharge treatment here may be low-temperature plasma that occurs under a low pressure gas of 10 −3 to 20 Torr, and plasma treatment under atmospheric pressure is also preferred. A plasma-excitable gas is a gas that is plasma-excited under the above conditions, and includes chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, tetrafluoromethane, and mixtures thereof. It is done. Details of these are described in detail in pages 30 to 32 of the Invention Association Public Technical Bulletin No. 2001-1745 (issued March 15, 2001, Invention Association), and are preferably used in the present invention. be able to.
Of these treatments, plasma treatment and corona treatment are preferred.
[プラズマ処理]
 プラズマ処理としては、真空グロー放電、大気圧グロー放電等によるものがあり、その他の方法としてフレームプラズマ処理等の方法があげられる。これらは、例えば特開平6-123062号公報、特開平11-293011号公報、同11-5857号公報等に記載された方法を用いることが出来る。
[Plasma treatment]
Examples of plasma treatment include vacuum glow discharge and atmospheric pressure glow discharge, and other methods include flame plasma treatment and the like. For example, methods described in JP-A-6-123062, JP-A-11-293011, JP-A-11-5857 and the like can be used.
[コロナ放電処理]
 コロナ放電処理は、従来公知のいずれの方法、例えば特公昭48-5043号公報、同47-51905号公報、特開昭47-28067号公報、同49-83767号公報、同51-41770号公報、同51-131576号公報、特開2001-272503号公報等に開示された方法により達成することができる。
[Corona discharge treatment]
Corona discharge treatment can be performed by any conventionally known method, for example, Japanese Patent Publication Nos. 48-5043, 47-51905, Japanese Patent Publication Nos. 47-28067, 49-83767, and 51-41770. This can be achieved by the methods disclosed in JP-A-51-131576, JP-A-2001-272503, and the like.
<工程II>
 本発明の防眩性反射防止フィルムの製造方法は、仮支持体上に反射防止形成用組成物を塗布し、電離放射線照射又は加熱により10~70%の表面硬化率で半硬化し反射防止層を形成する工程を有する。
<Step II>
The method for producing an antiglare antireflection film of the present invention comprises applying an antireflection forming composition on a temporary support, and semi-curing it at a surface curing rate of 10 to 70% by irradiation with ionizing radiation or heating. Forming a step.
 仮支持体については、モスアイ層の形成方法にて後述する。 The temporary support will be described later in the moth-eye layer forming method.
(反射防止層形成用組成物)
 反射防止層形成用組成物は、バインダー樹脂形成用化合物、及び溶媒を含む。
 バインダー樹脂形成用化合物としては、重合性官能基を有する化合物(好ましくは電離放射線硬化性化合物)が好ましい。重合性官能基を有する化合物としては、各種モノマー、オリゴマー又はポリマーを用いる事ができ、重合性官能基(重合性基)としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
 光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性不飽和基(炭素-炭素不飽和二重結合性基)等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。具体例については後述するモスアイ層について記載したものと同様である。
 反射防止層形成用組成物に含有される溶媒としては、メチルエチルケトン(MEK)、炭酸ジメチル、炭酸メチルエチル、炭酸ジエチル、アセトン、シクロペンタノン、シクロヘキサノン酢酸メチル、酢酸エチル、酢酸ブチル、エタノール、メタノール、イソプロピルアルコールが好ましく、各々の溶剤を単独で用いても、複数種を併用しても良い。
 反射防止層形成用組成物には、重合開始剤を含んでいてもよく、重合開始剤の具体例及び好ましい例は前述の防眩層形成用組成物の重合開始剤と同様である。
(Antireflection layer forming composition)
The composition for forming an antireflection layer contains a compound for forming a binder resin and a solvent.
As the binder resin forming compound, a compound having a polymerizable functional group (preferably an ionizing radiation curable compound) is preferable. As the compound having a polymerizable functional group, various monomers, oligomers, or polymers can be used, and the polymerizable functional group (polymerizable group) is preferably a light, electron beam, or radiation-polymerizable one, and particularly, photopolymerization. A functional group is preferred.
Examples of the photopolymerizable functional group include polymerizable unsaturated groups (carbon-carbon unsaturated double bond groups) such as (meth) acryloyl group, vinyl group, styryl group, and allyl group. ) An acryloyl group is preferred. Specific examples are the same as those described for the moth-eye layer described later.
As the solvent contained in the composition for forming an antireflection layer, methyl ethyl ketone (MEK), dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, acetone, cyclopentanone, cyclohexanone methyl acetate, ethyl acetate, butyl acetate, ethanol, methanol, Isopropyl alcohol is preferred, and each solvent may be used alone or in combination of two or more.
The composition for forming an antireflection layer may contain a polymerization initiator, and specific examples and preferred examples of the polymerization initiator are the same as those for the composition for forming an antiglare layer.
 反射防止層形成用組成物の固形分濃度は、1質量%以上90質量%以下であることが好ましい。 The solid content concentration of the composition for forming an antireflection layer is preferably 1% by mass or more and 90% by mass or less.
 反射防止層形成用組成物において、バインダー樹脂形成用化合物の含有量は、反射防止層形成用組成物の全固形分の質量に対して、10質量%以上97質量%以下であることが好ましい。
 反射防止層形成用組成物には、重合開始剤を含んでいてもよい。
 バインダー樹脂形成用化合物が光重合性化合物である場合は、光重合開始剤を含むことが好ましい。光重合開始剤としては、後述するモスアイ層において記載したものと同様である。
In the composition for forming an antireflection layer, the content of the compound for forming a binder resin is preferably 10% by mass or more and 97% by mass or less based on the total solid content of the composition for forming an antireflection layer.
The composition for forming an antireflection layer may contain a polymerization initiator.
When the binder resin forming compound is a photopolymerizable compound, it is preferable to include a photopolymerization initiator. The photopolymerization initiator is the same as that described in the moth-eye layer described later.
 反射防止層形成用組成物の塗布方法としては、前述の防眩層形成用組成物の塗布方法と同様である。 The method for applying the composition for forming an antireflection layer is the same as the method for applying the composition for forming an antiglare layer.
 電離放射線照射又は加熱の好ましい条件は、電離放射線照射量1mJ/cm以上が好ましく、更に好ましくは2~2000mJ/cmであり、電離放射線照射時の酸素濃度は、好ましくは0.1%以下、より好ましくは0.01%以下、最も好ましくは0.005%以下である。
 加熱条件は、60℃以上が好ましく、更に好ましくは60~150℃であり、特に好ましくは、80~130℃であり、加熱時間は10秒~10分が好ましく、30秒~5分がより好ましい。
The preferable conditions of ionizing radiation irradiation or heating are preferably an ionizing radiation dose of 1 mJ / cm 2 or more, more preferably 2 to 2000 mJ / cm 2 , and the oxygen concentration during ionizing radiation irradiation is preferably 0.1% or less. More preferably, it is 0.01% or less, and most preferably 0.005% or less.
The heating condition is preferably 60 ° C. or higher, more preferably 60 to 150 ° C., particularly preferably 80 to 130 ° C., and the heating time is preferably 10 seconds to 10 minutes, more preferably 30 seconds to 5 minutes. .
 防眩層に転写する前の反射防止層の表面硬化率(反射防止層の上記仮支持体を有する側とは反対側の表面の表面硬化率)は10~70%であり、20~60%であることがより好ましい。表面硬化率が10%以上であることで、転写の際に反射防止層の一部が変形し、反射防止能が低下することを防ぐことが可能であり、表面硬化率が70%以下であることで、防眩層と反射防止層との密着性を良好に保つことができる。表面硬化率が20~60%であることで、防眩層と反射防止層との密着性をさらに良好に保つことができ、耐擦傷性を良化させる効果が大きい。 The surface hardening rate of the antireflection layer before transferring to the antiglare layer (surface hardening rate of the surface of the antireflection layer opposite to the side having the temporary support) is 10 to 70%, 20 to 60%. It is more preferable that When the surface hardening rate is 10% or more, it is possible to prevent a part of the antireflection layer from being deformed during transfer and to prevent the antireflection ability from being lowered, and the surface hardening rate is 70% or less. Thereby, the adhesiveness of an anti-glare layer and an antireflection layer can be kept favorable. When the surface curing rate is 20 to 60%, the adhesion between the antiglare layer and the antireflection layer can be kept better, and the effect of improving the scratch resistance is great.
 表面硬化率は、防眩層の表面硬化率と同様の測定方法で算出することができる。なお、反射防止層の膜厚が薄く、反射防止層のみの測定データを取得することが難しい場合は、表面硬化率測定用に膜厚を上げた反射防止層を作製して同様の測定を行い、算出した表面硬化率を便宜上表面硬化率とすることができる。 The surface curing rate can be calculated by the same measurement method as the surface curing rate of the antiglare layer. If the film thickness of the antireflection layer is thin and it is difficult to obtain measurement data of only the antireflection layer, an antireflection layer with an increased film thickness for surface hardening rate measurement is prepared and the same measurement is performed. The calculated surface hardening rate can be used as the surface hardening rate for convenience.
<工程III>
 本発明の防眩性反射防止フィルムの製造方法は、反射防止層を仮支持体上から、防眩層の基材フィルムを有する側とは反対側の面上に転写する工程を有する。
<Step III>
The manufacturing method of the anti-glare antireflection film of the present invention includes a step of transferring the anti-reflection layer from the temporary support to the surface opposite to the side having the base film of the anti-glare layer.
 反射防止層と、防眩層の基材フィルムを有する側とは反対側の面とをニップローラー等で貼り合わせた後、両者を密着させる工程を経て、仮支持体を取り除くことで、反射防止層が防眩層の基材フィルムを有する側とは反対側の面に転写される。反射防止層と、防眩層の基材フィルムを有する側とは反対側の面とを密着させる方法としては、両者に含有されている重合性官能基を有する化合物を、光、電子線、若しくは放射線等、又は熱で重合させることが好ましく、中でも光重合させることが最も好ましい。 After attaching the antireflection layer and the surface of the antiglare layer on the side opposite to the side having the base film with a nip roller, etc., after passing through the process of adhering both together, the temporary support is removed to prevent reflection. The layer is transferred to the surface opposite to the side having the base film of the antiglare layer. As a method for bringing the antireflection layer and the surface of the antiglare layer opposite to the side having the base film into close contact, a compound having a polymerizable functional group contained in both is made of light, an electron beam, or Polymerization with radiation or the like or heat is preferred, and photopolymerization is most preferred.
<その他の工程>
 本発明の防眩性反射防止フィルムの製造方法において、反射防止層を仮支持体上から防眩層上に転写する前に、防眩層上、又は反射防止層上に接着層を設ける工程を有することも好ましい。接着層については前述の通りである。接着層を電離放射線照射量にて硬化する際の照射量は、50mJ/cm以上が好ましく、更に好ましくは100~2000mJ/cmである、電離放射線照射時の酸素濃度は、好ましくは0.1%以下、より好ましくは0.01%以下、最も好ましくは0.005%以下である。接着の際の加熱条件は、反射防止層や防眩層の接着性や浸透性に応じて適宜調整することができる。
<Other processes>
In the method for producing an antiglare antireflection film of the present invention, before transferring the antireflection layer from the temporary support onto the antiglare layer, a step of providing an adhesive layer on the antiglare layer or on the antireflection layer. It is also preferable to have it. The adhesive layer is as described above. The irradiation dose when curing the adhesive layer with the ionizing radiation dose is preferably 50 mJ / cm 2 or more, more preferably 100 to 2000 mJ / cm 2. The oxygen concentration at the time of ionizing radiation irradiation is preferably 0.00. 1% or less, more preferably 0.01% or less, and most preferably 0.005% or less. The heating conditions at the time of adhesion can be appropriately adjusted according to the adhesion and permeability of the antireflection layer or the antiglare layer.
 別の態様として、本発明の防眩反射防止フィルムの製造方法において、反射防止層と防眩層を貼り合わせた状態で加熱する工程を有することが好ましい。このような工程を設けることで、反射防止層と防眩層間の密着性を向上させることができる。加熱の温度や時間については反射防止層や防眩層に応じて適宜調整することができる。 As another aspect, the method for producing an antiglare and antireflection film of the present invention preferably includes a step of heating in a state where the antireflection layer and the antiglare layer are bonded together. By providing such a process, the adhesion between the antireflection layer and the antiglare layer can be improved. About the temperature and time of a heating, it can adjust suitably according to an antireflection layer or a glare-proof layer.
(反射防止層がモスアイ層である防眩性反射防止フィルムの製造方法)
 本発明の好ましい反射防止層としてモスアイ層が挙げられる。
 本発明の反射防止層がモスアイ層である防眩性反射防止フィルムの製造方法は、
 仮支持体上に、平均一次粒径が100nm以上250nm以下の粒子(a2)と硬化性化合物(a1)とを、上記硬化性化合物(a1)を含む層(a)中に上記粒子(a2)が埋没する厚みで設ける工程(1)、
 上記層(a)の一部を硬化させて層(ca)を得る工程(2)、
 支持体及び上記支持体上に粘着剤を含む層(b)を有する粘着フィルムの上記層(b)を、上記層(ca)と貼り合わせる工程(3)、
 上記粒子(a2)が、上記層(ca)及び上記層(b)を合わせた層中に埋没し、かつ、上記層(ca)の上記支持体側の界面から突出するように、上記層(ca)の上記支持体側の界面の位置を上記仮支持体側に近づける工程(4)、
 上記仮支持体を剥離する工程(5)、
 基材フィルムと防眩層を有する防眩フィルムの防眩層と、上記工程(5)で得られた上記層(ca)を含む積層体の上記層(ca)とを貼り合せる工程(6)、
 上記粒子(a2)が、上記層(ca)と、上記層(b)とを合わせた層中に埋没した状態で上記層(ca)を硬化させる工程(7)、
 上記粘着フィルムを剥離する工程(8)、
をこの順に有する防眩性反射防止フィルムの製造方法である。
(Production method of antiglare antireflection film in which the antireflection layer is a moth-eye layer)
A moth-eye layer can be mentioned as a preferred antireflection layer of the present invention.
The method for producing an antiglare antireflection film in which the antireflection layer of the present invention is a moth-eye layer,
On the temporary support, particles (a2) having an average primary particle size of 100 nm or more and 250 nm or less and the curable compound (a1) are mixed with the particles (a2) in the layer (a) containing the curable compound (a1). A step (1) of providing the thickness to be buried
A step (2) of obtaining a layer (ca) by curing a part of the layer (a);
A step (3) of bonding the layer (b) of the pressure-sensitive adhesive film having a support and a layer (b) containing a pressure-sensitive adhesive on the support to the layer (ca);
The layer (ca) is embedded such that the particles (a2) are embedded in the layer including the layer (ca) and the layer (b) and protrude from the interface of the layer (ca) on the support side. Step (4) of bringing the position of the interface on the support side closer to the temporary support side,
A step (5) of peeling the temporary support,
A step (6) of laminating the antiglare layer of the antiglare film having the base film and the antiglare layer and the layer (ca) of the laminate including the layer (ca) obtained in the step (5). ,
A step (7) of curing the layer (ca) in a state where the particles (a2) are buried in a layer formed by combining the layer (ca) and the layer (b);
Step (8) of peeling the adhesive film;
In this order.
 上記工程(4)と上記工程(5)との間に、上記粒子(a2)が、上記層(ca)及び上記層(b)を合わせた層中に埋没した状態で上記層(ca)の一部を硬化させる工程(4-2)を有することが好ましい。 Between the step (4) and the step (5), the particles (a2) are embedded in a layer combining the layer (ca) and the layer (b). It is preferable to have a step (4-2) of partially curing.
 本発明の防眩性反射防止フィルムの製造方法は、更に、工程(8)の後に、上記粒子(a2)が、上記層(ca)の上記基材フィルム側の界面とは反対側の界面から突出した状態で、上記層(ca)を硬化させる工程(9)、
 溶剤で洗浄する工程(10)
をこの順に有することがより好ましい。
In the method for producing an antiglare and antireflection film of the present invention, after the step (8), the particles (a2) are separated from the interface on the side opposite to the base film side of the layer (ca). A step (9) of curing the layer (ca) in a protruding state;
Cleaning with solvent (10)
Are more preferable in this order.
 本発明において、「層(a)中に粒子(a2)が埋没する厚み」とは、層(a)の厚みが粒子(a2)の平均一次粒径の0.8倍以上の厚みであることを表すものとする。
 また、本発明において、「粒子(a2)が、層(ca)及び層(b)を合わせた層中に埋没」するということは、層(ca)及び層(b)を合わせた層の厚みが粒子(a2)の平均一次粒径の0.8倍以上であることを表すものである。
In the present invention, “the thickness at which the particles (a2) are buried in the layer (a)” means that the thickness of the layer (a) is 0.8 times or more the average primary particle diameter of the particles (a2). .
In the present invention, “the particle (a2) is buried in the layer including the layer (ca) and the layer (b)” means that the thickness of the layer including the layer (ca) and the layer (b) is combined. Represents 0.8 times or more the average primary particle size of the particles (a2).
 本発明では、工程(1)において、粒子(a2)が埋没する厚みで層(a)を形成するため、工程(4)以降において、粒子(a2)の層(ca)から突出した表面を層(ca)の薄層が被覆する場合がある。上記薄層が被覆した粒子(a2)のことも、便宜上粒子(a2)と呼ぶものとする。 In the present invention, in step (1), the layer (a) is formed with a thickness at which the particles (a2) are buried. Therefore, in step (4) and subsequent steps, the surface protruding from the layer (ca) of the particles (a2) is the layer. A thin layer of (ca) may cover. The particles (a2) covered with the thin layer are also referred to as particles (a2) for convenience.
 工程(1)~(5)までの一例の模式図を図3に示す。
 工程(6)~(10)までの一例の模式図を図4に示す。
FIG. 3 shows a schematic diagram of an example of steps (1) to (5).
FIG. 4 shows a schematic diagram of an example of steps (6) to (10).
[工程(1)]
 工程(1)は、仮支持体上に、硬化性化合物(a1)と平均一次粒径が100nm以上250nm以下の粒子(a2)とを、硬化性化合物(a1)を含む層(a)中に粒子(a2)が埋没する厚みで設ける工程である。
 前述のように、本発明において、「層(a)中に粒子(a2)が埋没する厚み」とは、粒子(a2)の平均一次粒径の0.8倍以上の厚みを表すものとする。
[Step (1)]
In the step (1), the curable compound (a1) and the particles (a2) having an average primary particle size of 100 nm to 250 nm are placed on the temporary support in the layer (a) containing the curable compound (a1). In this step, the particles (a2) are provided in such a thickness that they are buried.
As described above, in the present invention, the “thickness in which the particles (a2) are buried in the layer (a)” represents a thickness that is 0.8 times or more the average primary particle diameter of the particles (a2). .
 工程(1)において、仮支持体上に層(a)を設ける方法は特に限定されないが、仮支持体上に層(a)を塗布することにより設けることが好ましい。この場合、層(a)は、硬化性化合物(a1)と、平均一次粒径が100nm以上250nm以下の粒子(a2)とを含む層(a)形成用組成物を塗布してなる層である。すなわち、層(a)形成用組成物は、上述の反射防止層形成用組成物に相当する。塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。 In step (1), the method for providing the layer (a) on the temporary support is not particularly limited, but it is preferable to provide the layer (a) on the temporary support. In this case, the layer (a) is a layer formed by applying a composition for forming a layer (a) containing the curable compound (a1) and particles (a2) having an average primary particle size of 100 nm to 250 nm. . That is, the composition for forming a layer (a) corresponds to the above-described composition for forming an antireflection layer. A coating method is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.
 工程(1)で仮支持体上に設けられた層(a)において、層(a)の表面に直交する方向には粒子(a2)が複数存在しないことが好ましい。ここで、層(a)の表面に直交する方向には粒子(a2)が複数存在しないとは、層(a)の面内の10μm×10μmを走査型電子顕微鏡(SEM)で3視野観察した際に、表面に直交する方向に複数重なって存在していない状態の粒子(a2)の個数の割合が、80%以上であることを表し、好ましくは95%以上である。 In the layer (a) provided on the temporary support in the step (1), it is preferable that a plurality of particles (a2) do not exist in a direction perpendicular to the surface of the layer (a). Here, the fact that a plurality of particles (a2) do not exist in the direction perpendicular to the surface of the layer (a) is that 10 μm × 10 μm in the plane of the layer (a) was observed with three fields of view with a scanning electron microscope (SEM). In this case, the ratio of the number of particles (a2) that are not overlapped in the direction orthogonal to the surface is 80% or more, preferably 95% or more.
 (仮支持体)
 仮支持体としては表面が平滑な支持体であれば特に限定されない。仮支持体は、表面粗さが30nm以下程度の表面平坦性を有し、上記層(a)形成用組成物の塗布を妨げないものであることが好ましく、種々の材質からなる仮支持体を用いることができるが、例えばポリエチレンテレフタレート(PET)フィルム又はシクロオレフィン系樹脂フィルムが好ましく用いられる。
 本発明において、上記仮支持体の表面粗さはSPA-400(日立ハイテクノサイエンス製)を使用し、測定範囲5μm×5μm、測定モード:DFM,測定周波数:2Hzの測定条件で測定する。
(Temporary support)
The temporary support is not particularly limited as long as the support has a smooth surface. The temporary support preferably has a surface flatness with a surface roughness of about 30 nm or less, and does not interfere with the application of the composition for forming the layer (a). Temporary supports made of various materials are used. For example, a polyethylene terephthalate (PET) film or a cycloolefin-based resin film is preferably used.
In the present invention, the surface roughness of the temporary support is measured using SPA-400 (manufactured by Hitachi High-Technology) under the measurement conditions of measurement range 5 μm × 5 μm, measurement mode: DFM, measurement frequency: 2 Hz.
(層(a))
 層(a)は、硬化性化合物(a1)と、平均一次粒径が100nm以上250nm以下の粒子(a2)とを含む層である。
 層(a)に含まれる硬化性化合物(a1)は、硬化されることで、反射防止層中の樹脂(バインダー樹脂)となり得るものである。すなわち、硬化性化合物(a1)はバインダー用化合物の一種である。また、硬化性化合物(a1)は上述のバインダー樹脂形成用化合物に相当する。
 層(a)に含まれる平均一次粒径が100nm以上250nm以下の粒子(a2)は、出来上がりの防眩性反射防止フィルムにおいて、バインダー樹脂からなる膜(層(ca))の表面から突出し、粒子(a2)による微細な凹凸形状(モスアイ構造)を形成する粒子である。
 工程(1)における層(a)の膜厚は、粒子(a2)の平均一次粒径の0.8倍以上2.0倍以下であることが好ましく、0.8倍以上1.5倍以下であることがより好ましく、0.9倍以上1.2倍以下であることが更に好ましい。
(Layer (a))
The layer (a) is a layer containing a curable compound (a1) and particles (a2) having an average primary particle size of 100 nm to 250 nm.
The curable compound (a1) contained in the layer (a) can be a resin (binder resin) in the antireflection layer by being cured. That is, the curable compound (a1) is a kind of binder compound. The curable compound (a1) corresponds to the above-described binder resin forming compound.
The particles (a2) having an average primary particle size of 100 nm or more and 250 nm or less contained in the layer (a) protrude from the surface of the film (layer (ca)) made of a binder resin in the finished antiglare antireflection film. It is a particle that forms a fine uneven shape (moth eye structure) according to (a2).
The film thickness of the layer (a) in the step (1) is preferably 0.8 times or more and 2.0 times or less, and 0.8 times or more and 1.5 times or less the average primary particle diameter of the particles (a2). It is more preferable that it is 0.9 times or more and 1.2 times or less.
<硬化性化合物(a1)>
 硬化性化合物(a1)としては、重合性官能基を有する化合物(好ましくは電離放射線硬化性化合物)が好ましい。重合性官能基を有する化合物としては、各種モノマー、オリゴマー又はポリマーを用いる事ができ、重合性官能基(重合性基)としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
 光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性不飽和基(炭素-炭素不飽和二重結合性基)等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
<Curable compound (a1)>
As the curable compound (a1), a compound having a polymerizable functional group (preferably an ionizing radiation curable compound) is preferable. As the compound having a polymerizable functional group, various monomers, oligomers, or polymers can be used, and the polymerizable functional group (polymerizable group) is preferably a light, electron beam, or radiation-polymerizable one, and particularly, photopolymerization. A functional group is preferred.
Examples of the photopolymerizable functional group include polymerizable unsaturated groups (carbon-carbon unsaturated double bond groups) such as (meth) acryloyl group, vinyl group, styryl group, and allyl group. ) An acryloyl group is preferred.
 重合性不飽和基を有する化合物の具体例としては、ネオペンチルグリコールアクリレート、1,6-ヘキサンジオール(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等のアルキレングリコールの(メタ)アクリル酸ジエステル類;
 トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類;
 ペンタエリスリトールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリル酸ジエステル類;
 2,2-ビス{4-(アクリロキシジエトキシ)フェニル}プロパン、2-2-ビス{4-(アクリロキシポリプロポキシ)フェニル}プロパン等のエチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類;等を挙げることができる。
Specific examples of the compound having a polymerizable unsaturated group include (meth) acrylic acid diesters of alkylene glycol such as neopentyl glycol acrylate, 1,6-hexanediol (meth) acrylate, propylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyoxyalkylene glycols such as triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate;
(Meth) acrylic acid diesters of polyhydric alcohols such as pentaerythritol di (meth) acrylate;
(Meth) acrylic acid diesters of ethylene oxide or propylene oxide adducts such as 2,2-bis {4- (acryloxydiethoxy) phenyl} propane, 2-2bis {4- (acryloxypolypropoxy) phenyl} propane And the like.
 さらにはエポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類も、光重合性官能基を有する化合物として、好ましく用いられる。 Furthermore, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates are also preferably used as the compound having a photopolymerizable functional group.
 中でも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。さらに好ましくは、1分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマーを少なくとも1種含有することが好ましい。
 例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO(エチレンオキサイド)変性トリメチロールプロパントリ(メタ)アクリレート、PO(プロピレンオキサイド)変性トリメチロールプロパントリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-クロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等が挙げられる。
Among these, esters of polyhydric alcohol and (meth) acrylic acid are preferable. More preferably, at least one polyfunctional monomer having 3 or more (meth) acryloyl groups in one molecule is preferably contained.
For example, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO (ethylene oxide) modified trimethylolpropane tri (meth) acrylate, PO (propylene oxide) modified trimethylol Propane tri (meth) acrylate, EO-modified phosphate tri (meth) acrylate, trimethylolethane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-chlorohexa Tetramethacrylate, polyurethane polyacrylate, polyester polyacrylate and caprolactone-modified tris (acryloyloxyethyl) isocyanurate.
 (メタ)アクリロイル基を有する多官能アクリレート系化合物類の具体化合物としては、日本化薬(株)製KAYARAD DPHA、同DPHA-2C、同PET-30、同TMPTA、同TPA-320、同TPA-330、同RP-1040、同T-1420、同D-310、同DPCA-20、同DPCA-30、同DPCA-60、同GPO-303、大阪有機化学工業(株)製V#3PA、V#400、V#36095D、V#1000、V#1080等のポリオールと(メタ)アクリル酸のエステル化物を挙げることができる。また紫光UV-1400B、同UV-1700B、同UV-6300B、同UV-7550B、同UV-7600B、同UV-7605B、同UV-7610B、同UV-7620EA、同UV-7630B、同UV-7640B、同UV-6630B、同UV-7000B、同UV-7510B、同UV-7461TE、同UV-3000B、同UV-3200B、同UV-3210EA、同UV-3310EA、同UV-3310B、同UV-3500BA、同UV-3520TL、同UV-3700B、同UV-6100B、同UV-6640B、同UV-2000B、同UV-2010B、同UV-2250EA、同UV-2750B(日本合成化学(株)製)、UA-306H、UA-306I、UA-306T、UL-503LN(共栄社化学(株)製)、ユニディック17-806、同17-813、同V-4030、同V-4000BA(大日本インキ化学工業(株)製)、EB-1290K、EB-220、EB-5129、EB-1830,EB-4858(ダイセルUCB(株)製)、U-4HA、U-6HA、U-10HA、U-15HA(新中村化学工業(株)製)、ハイコープAU-2010、同AU-2020((株)トクシキ製)、アロニックスM-1960(東亜合成(株)製)、アートレジンUN-3320HA,UN-3320HC,UN-3320HS、UN-904,HDP-4Tなどの3官能以上のウレタンアクリレート化合物、アロニックスM-8100,M-8030,M-9050(東亞合成(株)製、KRM-8307(ダイセルサイテック(株)製)などの3官能以上のポリエステル化合物なども好適に使用することができる。 Specific examples of the polyfunctional acrylate compounds having a (meth) acryloyl group include KAYARAD DPHA, DPHA-2C, PET-30, TMPTA, TPA-320, and TPA- manufactured by Nippon Kayaku Co., Ltd. 330, RP-1040, T-1420, D-310, DPCA-20, DPCA-30, DPCA-60, GPO-303, V # 3PA, V from Osaka Organic Chemical Industry Co., Ltd. Examples include esterified products of polyols such as # 400, V # 36095D, V # 1000, V # 1080, and (meth) acrylic acid. Purple light UV-1400B, UV-1700B, UV-6300B, UV-7550B, UV-7600B, UV-7605B, UV-7610B, UV-7620EA, UV-7630B, UV-7630B, UV-7640B UV-6630B, UV-7000B, UV-7510B, UV-7461TE, UV-3000B, UV-3200B, UV-3210EA, UV-3310EA, UV-3310EA, UV-3310B, UV-3500BA UV-3520TL, UV-3700B, UV-6100B, UV-6640B, UV-2000B, UV-2010B, UV-2250EA, UV-2250EA (manufactured by Nippon Synthetic Chemical Co., Ltd.), UA-306H, UA-306I, UA-306T, UL-503L (Kyoeisha Chemical Co., Ltd.), Unidic 17-806, 17-813, V-4030, V-4000BA (Dainippon Ink Chemical Co., Ltd.), EB-1290K, EB-220, EB -5129, EB-1830, EB-4858 (manufactured by Daicel UCB Co., Ltd.), U-4HA, U-6HA, U-10HA, U-15HA (manufactured by Shin-Nakamura Chemical Co., Ltd.), Hicorp AU-2010, AU-2020 (manufactured by Tokushi Co., Ltd.), Aronix M-1960 (manufactured by Toa Gosei Co., Ltd.), Art Resin UN-3320HA, UN-3320HC, UN-3320HS, UN-904, HDP-4T, etc. The above urethane acrylate compounds, Aronix M-8100, M-8030, M-9050 (manufactured by Toagosei Co., Ltd., KRM-8307 (Da Such as a cell-Cytec Co., Ltd.) three or more functional groups of the polyester compound, such as may also be suitably used.
 さらに、3個以上の重合性官能基を有する樹脂、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物などのオリゴマー又はプレポリマー等も挙げられる。 Furthermore, resins having three or more polymerizable functional groups, such as relatively low molecular weight polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, Also included are oligomers or prepolymers such as polyfunctional compounds such as polyhydric alcohols.
 また、特開2005-76005号公報、特開2005-36105号公報に記載された化合物、SIRIUS-501、SUBARU-501(大阪有機化学工業(株)製)のようなデンドリマー、特開2005-60425号公報に記載のようなノルボルネン環含有モノマーを用いることもできる。 Further, compounds described in JP-A-2005-76005 and JP-A-2005-36105, dendrimers such as SIRIUS-501 and SUBARU-501 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), JP-A-2005-60425 Norbornene ring-containing monomers as described in Japanese Patent Publication No. Gazette can also be used.
 また、耐光性を付与する観点から、硬化性化合物(a1)として、Si-O結合を主骨格とし、かつ重合性官能基を有するオリゴマー、プレポリマーを使用することも好ましく、一般式R -Si(OR4-xで表される、分子中に1つ以上のSi原子および1つ以上のC原子を有し、かつ重合性基を持つ化合物からなるオリゴマーであることが好ましい。Si-O結合を主骨格に持つ化合物は、可視光~UV光の吸収が少なく、特に青色耐光性に優れる。具体的な例としては、特開2011-84672号公報に記載された重合性基を含有するかご状シルセスキオキサン化合物、または特開2017-8148号公報や、特許第6219250号に記載されたエポキシ基を含有するポリオルガノシルセスキオキサン化合物が挙げられる。 From the viewpoint of imparting light resistance, it is also preferable to use, as the curable compound (a1), an oligomer or prepolymer having a Si—O bond as a main skeleton and having a polymerizable functional group. The general formula R 1 x An oligomer composed of a compound having one or more Si atoms and one or more C atoms in the molecule and having a polymerizable group, represented by —Si (OR 2 ) 4-x . A compound having a Si—O bond as a main skeleton has little absorption of visible light to UV light, and is particularly excellent in blue light resistance. Specific examples include a cage silsesquioxane compound containing a polymerizable group described in JP 2011-84672 A, or JP 2017-8148 A and JP 6219250 A. Examples thereof include polyorganosilsesquioxane compounds containing an epoxy group.
 さらに、硬化性化合物(a1)として重合性官能基を有する化合物を使用する場合、粒子(a2)と硬化性化合物(a1)を結合させて強固な膜にするために、硬化性化合物(a1)として、重合性官能基を有するシランカップリング剤を用いてもよい。
 重合性官能基を有するシランカップリング剤の具体例としては、例えば、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルジメチルメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、4-(メタ)アクリロキシブチルトリメトキシシラン、4-(メタ)アクリロキシブチルトリエトキシシラン等が挙げられる。具体的には、KBM-503、KBM-5103(信越化学工業(株)製)、特開2014-123091号公報記載のシランカップリング剤X-12-1048、X-12-1049、X-12-1050(信越化学工業(株)製)、及び下記構造式で表される化合物C3等が挙げられる。
Further, when a compound having a polymerizable functional group is used as the curable compound (a1), the curable compound (a1) is used to bond the particles (a2) and the curable compound (a1) to form a strong film. A silane coupling agent having a polymerizable functional group may be used.
Specific examples of the silane coupling agent having a polymerizable functional group include, for example, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldimethoxysilane, and 3- (meth) acryloxypropyl. Dimethylmethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 2- (meth) acryloxyethyltrimethoxysilane, 2- (meth) acryloxyethyltri Examples include ethoxysilane, 4- (meth) acryloxybutyltrimethoxysilane, 4- (meth) acryloxybutyltriethoxysilane, and the like. Specifically, silane coupling agents X-12-1048, X-12-1049, X-12 described in KBM-503, KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.), and JP-A-2014-123091. -1050 (manufactured by Shin-Etsu Chemical Co., Ltd.), and compound C3 represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 さらに、粒子(a2)の凝集を抑制するように働く化合物として、ラジカル反応性基以外の重合性官能基を有するシランカップリング剤を用いても良い。ラジカル反応性基以外の重合性官能基を有するシランカップリング剤の具体例としては、KBM-303、KBM-402、KBM-403、KBE-402、KBE-403、KBM-4803(以上、信越化学工業(株)製)が挙げられる。 Furthermore, a silane coupling agent having a polymerizable functional group other than a radical reactive group may be used as a compound that functions to suppress aggregation of the particles (a2). Specific examples of the silane coupling agent having a polymerizable functional group other than the radical reactive group include KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-4803 (and above, Shin-Etsu Chemical). Kogyo Co., Ltd.).
 また前述のように、反射防止層がモスアイ構造を持ち、優れた耐光性を付与する場合は、上記重合性官能基を有するシランカップリング剤を用いることは、Si-O結合を持つバインダー成分比率が高まる点でも好ましい。 In addition, as described above, when the antireflection layer has a moth-eye structure and imparts excellent light resistance, the use of the silane coupling agent having the polymerizable functional group described above may cause a binder component ratio having a Si—O bond. It is also preferable from the point of increasing.
 重合性官能基を有する化合物は、二種類以上を併用してもよい。これら重合性官能基を有する化合物の重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。 Two or more kinds of compounds having a polymerizable functional group may be used in combination. The polymerization of the compound having a polymerizable functional group can be performed by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
 層(a)はバインダー用化合物として、硬化性化合物(a1)以外のバインダー用化合物を更に含むことができる。硬化性化合物(a1)以外のバインダー用化合物としては、重合性官能基を有さない化合物を挙げることができる。
 本発明では、硬化性化合物(a1)として、1分子中に2個以下の重合性官能基を有する化合物を用いてもよいが、特に、1分子中に3個以上の重合性官能基を有する化合物と、1分子中に2個以下の重合性官能基を有する化合物、または硬化性化合物(a1)以外の化合物として重合性官能基を有さない化合物を併用することが好ましい。
 1分子中に2個以下の重合性官能基を有する化合物、または重合性官能基を有さない化合物としては、重量平均分子量Mwaが40<Mwa<500であることが好ましい。上記化合物は、重合性官能基数が2個以下である、あるいは重合性官能基を含有しないため、硬化時の収縮が小さく、仮支持体への応力集中を回避できる。
 1分子中に2個以下の重合性官能基を有する化合物は、1分子中に1個の重合性官能基を有する化合物であることが好ましい。
The layer (a) can further contain a binder compound other than the curable compound (a1) as the binder compound. Examples of the binder compound other than the curable compound (a1) include compounds having no polymerizable functional group.
In the present invention, a compound having 2 or less polymerizable functional groups in one molecule may be used as the curable compound (a1), and in particular, it has 3 or more polymerizable functional groups in one molecule. It is preferable to use a compound and a compound having no polymerizable functional group as a compound other than the compound having two or less polymerizable functional groups in one molecule or the curable compound (a1).
As a compound having 2 or less polymerizable functional groups in one molecule, or a compound having no polymerizable functional group, the weight average molecular weight Mwa is preferably 40 <Mwa <500. Since the above compound has two or less polymerizable functional groups or does not contain a polymerizable functional group, the shrinkage during curing is small, and stress concentration on the temporary support can be avoided.
The compound having two or less polymerizable functional groups in one molecule is preferably a compound having one polymerizable functional group in one molecule.
 さらに、1分子中に2個以下の重合性官能基を有する化合物、または重合性官能基を有さない化合物は、25℃における粘度が100mPas以下であることが好ましく、1~50mPasがより好ましい。このような粘度範囲にある化合物は、粘着剤を含む層へ浸透しやすい上に、粒子(a2)の凝集を抑制するように働き、ヘイズ、白濁感を抑制できるため好ましい。 Further, a compound having 2 or less polymerizable functional groups in one molecule or a compound having no polymerizable functional group preferably has a viscosity at 25 ° C. of 100 mPas or less, more preferably 1 to 50 mPas. A compound having such a viscosity range is preferable because it easily penetrates into the layer containing the pressure-sensitive adhesive, functions to suppress aggregation of the particles (a2), and can suppress haze and cloudiness.
 1分子中に2個以下の重合性官能基を有する化合物は、重合性官能基として、(メタ)アクリロイル基、エポキシ基、アルコキシ基、ビニル基、スチリル基、アリル基等を持つものが好ましい。 The compound having 2 or less polymerizable functional groups in one molecule preferably has a (meth) acryloyl group, an epoxy group, an alkoxy group, a vinyl group, a styryl group, an allyl group or the like as the polymerizable functional group.
 重合性官能基を有さない化合物としては、エステル系化合物、アミン系化合物、エーテル系化合物、脂肪族アルコール系化合物、炭化水素系化合物などを好ましく用いることができ、エステル系化合物が特に好ましい。より具体的には、コハク酸ジメチル(粘度2.6mPas)、コハク酸ジエチル(粘度2.6mPas)、アジピン酸ジメチル(粘度2.8mPas)、コハク酸ジブチル(粘度3.9mPas)、アジピン酸ビス(2-ブトキシエチル)(粘度10.8mPas)、スベリン酸ジメチル(粘度3.7mPas)、フタル酸ジエチル(粘度9.8mPas)、フタル酸ジブチル(粘度13.7mPas)、クエン酸トリエチル(粘度22.6mPas)、クエン酸アセチルトリエチル(粘度29.7mPas)、ジフェニルエーテル(粘度3.8mPas)などが挙げられる。 As the compound having no polymerizable functional group, an ester compound, an amine compound, an ether compound, an aliphatic alcohol compound, a hydrocarbon compound, or the like can be preferably used, and an ester compound is particularly preferable. More specifically, dimethyl succinate (viscosity 2.6 mPas), diethyl succinate (viscosity 2.6 mPas), dimethyl adipate (viscosity 2.8 mPas), dibutyl succinate (viscosity 3.9 mPas), bis (adipate) ( 2-butoxyethyl) (viscosity 10.8 mPas), dimethyl suberate (viscosity 3.7 mPas), diethyl phthalate (viscosity 9.8 mPas), dibutyl phthalate (viscosity 13.7 mPas), triethyl citrate (viscosity 22.6 mPas) ), Acetyltriethyl citrate (viscosity 29.7 mPas), diphenyl ether (viscosity 3.8 mPas) and the like.
 本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により下記の条件で測定された値である。
[溶媒] テトラヒドロフラン
[装置名] TOSOH HLC-8220GPC
[カラム] TOSOH TSKgel Super HZM-H
    (4.6mm×15cm)を3本接続して使用。
[カラム温度] 25℃
[試料濃度] 0.1質量%
[流速] 0.35ml/min
[校正曲線] TOSOH製TSK標準ポリスチレン Mw=2800000~1050までの7サンプルによる校正曲線を使用。
The weight average molecular weight and number average molecular weight in the present invention are values measured by gel permeation chromatography (GPC) under the following conditions.
[Solvent] Tetrahydrofuran [Device name] TOSOH HLC-8220GPC
[Column] TOSOH TSKgel Super HZM-H
Three (4.6 mm x 15 cm) are connected and used.
[Column temperature] 25 ° C
[Sample concentration] 0.1% by mass
[Flow rate] 0.35 ml / min
[Calibration curve] TSK standard polystyrene manufactured by TOSOH Mw = 2800000-1050 calibration curves with 7 samples are used.
 層(a)に含まれる硬化性化合物(a1)の塗設量は、100mg/m~800mg/mが好ましく、100mg/m~600mg/mがさらに好ましく、100mg/m~400mg/mが最も好ましい。
 また、硬化性化合物(a1)と重合性官能基を有さない化合物とを併用する場合は、これらの合計の塗設量が上記範囲であることが好ましい。
The coating amount of the curable compound (a1) contained in the layer (a) is preferably 100 mg / m 2 to 800 mg / m 2, more preferably 100 mg / m 2 to 600 mg / m 2 , and 100 mg / m 2 to 400 mg. / M 2 is most preferred.
Moreover, when using together the sclerosing | hardenable compound (a1) and the compound which does not have a polymerizable functional group, it is preferable that these total coating amounts are the said range.
<平均一次粒径が100nm以上250nm以下の粒子(a2)>
 平均一次粒径が100nm以上250nm以下の粒子(a2)を、「粒子(a2)」ともいう。
 粒子(a2)としては、金属酸化物粒子、樹脂粒子、金属酸化物粒子のコアと樹脂のシェルを有する有機無機ハイブリッド粒子などが挙げられるが、膜強度に優れる観点から金属酸化物粒子が好ましい。
 金属酸化物粒子としては、シリカ粒子、チタニア粒子、ジルコニア粒子、五酸化アンチモン粒子などが挙げられるが、多くのバインダーと屈折率が近いためヘイズを発生しにくく、かつモスアイ構造が形成し易い観点からシリカ粒子が好ましい。
 樹脂粒子としては、ポリメタクリル酸メチル粒子、ポリスチレン粒子、メラミン粒子などが挙げられる。
<Particles (a2) having an average primary particle size of 100 nm to 250 nm>
The particles (a2) having an average primary particle size of 100 nm to 250 nm are also referred to as “particles (a2)”.
Examples of the particles (a2) include metal oxide particles, resin particles, organic-inorganic hybrid particles having a metal oxide particle core and a resin shell, and metal oxide particles are preferable from the viewpoint of excellent film strength.
Examples of the metal oxide particles include silica particles, titania particles, zirconia particles, antimony pentoxide particles, and the like. Silica particles are preferred.
Examples of the resin particles include polymethyl methacrylate particles, polystyrene particles, and melamine particles.
 粒子(a2)の平均一次粒径は、粒子が並んでモスアイ構造を形成できる観点から100nm以上250nm以下であり、140nm以上200nm以下であることがより好ましく、150nm以上180nm以下であることがさらに好ましい。
 粒子(a2)として、1種のみ使用してもよいし、平均一次粒径の異なる2種以上の粒子を用いてもよい。
The average primary particle size of the particles (a2) is from 100 nm to 250 nm, more preferably from 140 nm to 200 nm, and even more preferably from 150 nm to 180 nm from the viewpoint that the moth-eye structure can be formed side by side. .
As the particles (a2), only one type may be used, or two or more types of particles having different average primary particle sizes may be used.
 粒子(a2)の平均一次粒径は、体積平均粒径の累積の50%粒径を指す。粒径の測定には走査型電子顕微鏡(SEM)を用いる事ができる。粉体粒子(分散液の場合は乾燥させて溶剤を揮発させたもの)をSEM観察により適切な倍率(5000倍程度)で観察し、一次粒子100個のそれぞれの直径を測長してその体積を算出し、累積の50%粒径を平均一次粒径とすることができる。粒子が球形でない場合には、長径と短径の平均値をその一次粒子の直径とみなす。防眩性反射防止フィルム中に含まれる粒子を測定する場合は、防眩性反射防止フィルムを表面側から上記同様SEMで観察して算出する。この際、観察し易いように、試料にはカーボン蒸着、エッチング処理などを適宜施してよい。 The average primary particle diameter of the particles (a2) refers to a cumulative 50% particle diameter of the volume average particle diameter. A scanning electron microscope (SEM) can be used to measure the particle size. The powder particles (in the case of a dispersion liquid, the solvent is volatilized and dried) are observed by SEM observation at an appropriate magnification (about 5000 times), and the diameter of each of the 100 primary particles is measured to determine the volume. The cumulative 50% particle size can be used as the average primary particle size. When the particles are not spherical, the average value of the major and minor diameters is regarded as the diameter of the primary particles. When measuring particles contained in the antiglare antireflection film, the antiglare antireflection film is observed and calculated from the surface side by SEM in the same manner as described above. At this time, for easy observation, the sample may be appropriately subjected to carbon deposition, etching, or the like.
 粒子(a2)の形状は、球形が最も好ましいが、不定形等の球形以外であっても問題無い。
 粒子(a2)は、中実粒子であっても、中空粒子であってもよいが、中実粒子であることが好ましい。
 また、シリカ粒子については、結晶質でも、アモルファスのいずれでもよい。
The shape of the particle (a2) is most preferably spherical, but there is no problem even if it is other than a spherical shape such as an indefinite shape.
The particles (a2) may be solid particles or hollow particles, but are preferably solid particles.
The silica particles may be either crystalline or amorphous.
 粒子(a2)は塗布液中での分散性向上、膜強度向上、凝集防止のために表面処理された無機微粒子を使用することが好ましい。表面処理方法の具体例及びその好ましい例は、特開2007-298974号公報の<0119>~<0147>に記載のものと同様である。
 特に、バインダー成分である硬化性化合物(a1)との結着性を付与し、膜強度を向上させる観点から、粒子表面を不飽和二重結合および粒子表面と反応性を有する官能基を有する化合物で表面修飾し、粒子表面に不飽和二重結合を付与することが好ましい。表面修飾に用いる化合物としては、硬化性化合物(a1)として上述した、重合性官能基を有するシランカップリング剤を好適に用いることができる。
As the particles (a2), it is preferable to use inorganic fine particles which have been surface-treated for improving dispersibility in the coating liquid, improving film strength, and preventing aggregation. Specific examples of the surface treatment method and preferred examples thereof are the same as those described in <0119> to <0147> of JP-A-2007-298974.
In particular, from the viewpoint of imparting binding properties with the curable compound (a1) as the binder component and improving the film strength, the compound having a functional group having reactivity with the unsaturated double bond and the particle surface on the particle surface It is preferable to modify the surface with, so as to impart an unsaturated double bond to the particle surface. As the compound used for the surface modification, the silane coupling agent having a polymerizable functional group described above as the curable compound (a1) can be suitably used.
 平均一次粒径が100nm以上250nm以下の粒子の具体的な例としては、シーホスターKE-P10(平均一次粒径100nm、日本触媒(株)製アモルファスシリカ)、エポスターS(平均一次粒径200nm、日本触媒(株)製メラミン・ホルムアルデヒド縮合物)、エポスターMA―MX100W(平均一次粒径175nm、日本触媒(株)製ポリメタクリル酸メチル(PMMA)系架橋物)、スタフィロイド(アイカ工業(株)製多層構造有機微粒子)、ガンツパール(アイカ工業(株)製ポリメチルメタクリレ-ト、ポリスチレン粒子)などを好ましく用いることができる。 Specific examples of particles having an average primary particle size of 100 nm or more and 250 nm or less include Seahoster KE-P10 (average primary particle size 100 nm, amorphous silica manufactured by Nippon Shokubai Co., Ltd.), Eposter S (average primary particle size 200 nm, Japan (Melamine / formaldehyde condensate manufactured by Catalyst Co., Ltd.), Eposta MA-MX100W (average primary particle size 175 nm, polymethyl methacrylate (PMMA) cross-linked product manufactured by Nippon Shokubai Co., Ltd.), Staphyroid (manufactured by Aika Industries Co., Ltd.) Multilayer structured organic fine particles), Ganzpearl (polymethyl methacrylate, polystyrene particles manufactured by Aika Industry Co., Ltd.) and the like can be preferably used.
 粒子(a2)としては、表面のヒドロキシル基量が適度に多く、かつ硬い粒子であるという理由から、焼成シリカ粒子であることが特に好ましい。
 焼成シリカ粒子は、加水分解が可能なシリコン化合物を水と触媒とを含む有機溶媒中で加水分解、縮合させることによってシリカ粒子を得た後、シリカ粒子を焼成するという公知の技術により製造することができ、たとえば特開2003-176121号公報、特開2008-137854号公報などを参照することができる。
 焼成シリカ粒子を製造する原料のシリコン化合物としては特に限定されないが、テトラクロロシラン、メチルトリクロロシラン、フェニルトリクロロシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルビニルジクロロシラン、トリメチルクロロシラン、メチルジフェニルクロロシラン等のクロロシラン化合物;テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、3-グリシドキシプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-クロロプロピルメチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジメトキシジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のアルコキシシラン化合物;テトラアセトキシシラン、メチルトリアセトキシシラン、フェニルトリアセトキシシラン、ジメチルジアセトキシシラン、ジフェニルジアセトキシシラン、トリメチルアセトキシシラン等のアシロキシシラン化合物;ジメチルシランジオール、ジフェニルシランジオール、トリメチルシラノール等のシラノール化合物;等が挙げられる。上記例示のシラン化合物のうち、アルコキシシラン化合物が、より入手し易く、かつ、得られる焼成シリカ粒子に不純物としてハロゲン原子が含まれることが無いので特に好ましい。本発明にかかる焼成シリカ粒子の好ましい形態としては、ハロゲン原子の含有量が実質的に0%であり、ハロゲン原子が検出されないことが好ましい。
 焼成温度は特に限定されないが、800℃~1300℃が好ましく、1000℃~1200℃がより好ましい。
The particle (a2) is particularly preferably a calcined silica particle because the surface has a moderately large amount of hydroxyl groups and is a hard particle.
The calcined silica particles are manufactured by a known technique in which silica particles are obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water and a catalyst, and then the silica particles are calcined. For example, Japanese Patent Application Laid-Open Nos. 2003-176121 and 2008-137854 can be referred to.
Although it does not specifically limit as a raw material silicon compound which manufactures a burning silica particle, Chlorosilanes, such as tetrachlorosilane, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, methylvinyldichlorosilane, trimethylchlorosilane, methyldiphenylchlorosilane Compound: Tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, trimethoxyvinylsilane, triethoxyvinylsilane, 3-glycidoxypropyltrimethoxysilane, 3-chloro Propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxy Silane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-chloropropylmethyldimethoxysilane, Alkoxysilane compounds such as diphenyldimethoxysilane, diphenyldiethoxysilane, dimethoxydiethoxysilane, trimethylmethoxysilane, trimethylethoxysilane; tetraacetoxysilane, methyltriacetoxysilane, phenyltriacetoxysilane, dimethyldiacetoxysilane, diphenyldiacetoxysilane Acyloxysilane compounds such as trimethylacetoxysilane; dimethylsilanediol, diphenylsilanediol, tri Silanol compounds such as chill silanol; and the like. Of the above-exemplified silane compounds, the alkoxysilane compound is particularly preferred because it is more easily available and the resulting fired silica particles do not contain halogen atoms as impurities. As a preferred form of the calcined silica particles according to the present invention, it is preferred that the halogen atom content is substantially 0% and no halogen atoms are detected.
The firing temperature is not particularly limited, but is preferably 800 ° C to 1300 ° C, more preferably 1000 ° C to 1200 ° C.
 粒子(a2)の塗設量は、50mg/m~200mg/mが好ましく、100mg/m~180mg/mがさらに好ましく、130mg/m~170mg/mが最も好ましい。下限以上では、モスアイ構造の凸部が数多く形成できるため反射防止性がより向上しやすく、上限以下であると、液中での凝集が生じにくく、良好なモスアイ構造を形成しやすい。 The coating amount of the particles (a2) is preferably from 50mg / m 2 ~ 200mg / m 2, more preferably 100mg / m 2 ~ 180mg / m 2, 130mg / m 2 ~ 170mg / m 2 is most preferred. Above the lower limit, a large number of convex parts of the moth-eye structure can be formed, so that the antireflection property is more likely to be improved.
 粒子の平均一次粒径が100nm以上250nm以下で、かつ粒径の分散度(CV値)が5%未満の単分散シリカ微粒子を一種類のみ含有することがモスアイ構造の凹凸の高さが均一になり、反射率がより低下するため好ましい。CV値は通常レーザー回折型粒径測定装置を用いて測定されるが、他の粒径測定方式でも良いし、本発明の防眩性反射防止フィルムの反射防止層の表面SEM像から、画像解析によって粒径分布を求め算出することもできる。CV値は4%未満であることがより好ましい。 It is possible to make the unevenness of the moth-eye structure uniform by containing only one type of monodispersed silica fine particles having an average primary particle diameter of 100 nm or more and 250 nm or less and a degree of dispersion (CV value) of less than 5%. This is preferable because the reflectance is further lowered. The CV value is usually measured using a laser diffraction particle size measuring device, but other particle size measurement methods may be used, and image analysis is performed from the surface SEM image of the antireflection layer of the antiglare antireflection film of the present invention. Thus, the particle size distribution can be obtained and calculated. More preferably, the CV value is less than 4%.
 層(a)は、硬化性化合物(a1)及び粒子(a2)以外の成分を含有していてもよく、たとえば、前述の重合性官能基を有さない化合物、溶剤、重合開始剤、粒子(a2)の分散剤、レベリング剤、防汚剤等を含有していてもよい。 The layer (a) may contain components other than the curable compound (a1) and the particles (a2). For example, the compound having no polymerizable functional group, a solvent, a polymerization initiator, particles ( It may contain a dispersing agent, leveling agent, antifouling agent and the like of a2).
<溶剤>
 溶媒としては、粒子(a2)と極性が近いものを選ぶのが分散性を向上させる観点で好ましい。具体的には、例えば粒子(a2)が金属酸化物粒子の場合にはアルコール系の溶剤が好ましく、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノールなどが挙げられる。また、例えば粒子(a2)が疎水化表面修飾がされた金属樹脂粒子の場合には、ケトン系、エステル系、カーボネート系、アルカン、芳香族系等の溶剤が好ましく、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチル、アセトン、メチレンクロライド、シクロヘキサノンなどが挙げられる。これらの溶剤は、分散性を著しく悪化させない範囲で複数種混ぜて用いてもかまわない。
<Solvent>
A solvent having a polarity similar to that of the particles (a2) is preferably selected from the viewpoint of improving dispersibility. Specifically, for example, when the particles (a2) are metal oxide particles, an alcohol solvent is preferable, and examples thereof include methanol, ethanol, 2-propanol, 1-propanol, and butanol. For example, when the particles (a2) are metal resin particles having a hydrophobic surface modified, solvents such as ketones, esters, carbonates, alkanes and aromatics are preferred, such as methyl ethyl ketone (MEK) and dimethyl carbonate. , Methyl acetate, acetone, methylene chloride, cyclohexanone and the like. These solvents may be used in a mixture of a plurality of types as long as the dispersibility is not significantly deteriorated.
<粒子(a2)の分散剤>
 粒子(a2)の分散剤は、粒子同士の凝集力を低下させることにより、粒子(a2)を均一に配置させ易くすることができる。分散剤としては、特に限定されないが、硫酸塩、リン酸塩などのアニオン性化合物、脂肪族アミン塩、四級アンモニウム塩などのカチオン性化合物、非イオン性化合物、高分子化合物が好ましく、吸着基と立体反発基それぞれの選択の自由度が高いため高分子化合物がより好ましい。分散剤としては市販品を用いることもできる。例えば、ビックケミー・ジャパン(株)製のDISPERBYK160、DISPERBYK161、DISPERBYK162、DISPERBYK163、DISPERBYK164、DISPERBYK166、DISPERBYK167、DISPERBYK171、DISPERBYK180、DISPERBYK182、DISPERBYK2000、DISPERBYK2001、DISPERBYK2164、Bykumen、BYK-2009、BYK-P104、BYK-P104S、BYK-220S、Anti-Terra203、Anti-Terra204、Anti-Terra205(以上商品名)などが挙げられる。
<Dispersant of particle (a2)>
The dispersant for the particles (a2) can facilitate the uniform arrangement of the particles (a2) by reducing the cohesive force between the particles. The dispersant is not particularly limited, but is preferably an anionic compound such as a sulfate or phosphate, a cationic compound such as an aliphatic amine salt or a quaternary ammonium salt, a nonionic compound or a polymer compound. And a steric repulsion group are more preferred because they have a high degree of freedom in selection. A commercial item can also be used as a dispersing agent. For example, BYK Japan made of (stock) DISPERBYK160, DISPERBYK161, DISPERBYK162, DISPERBYK163, DISPERBYK164, DISPERBYK166, DISPERBYK167, DISPERBYK171, DISPERBYK180, DISPERBYK182, DISPERBYK2000, DISPERBYK2001, DISPERBYK2164, Bykumen, BYK-2009, BYK-P104, BYK-P104S, BYK-220S, Anti-Terra 203, Anti-Terra 204, Anti-Terra 205 (trade name) and the like.
<レベリング剤>
 レベリング剤は、層(a)形成用組成物の表面張力を低下させることにより、塗布後の液を安定させ硬化性化合物(a1)及び粒子(a2)を均一に配置させ易くすることができる。例えば、特開2004-331812号公報、特開2004-163610号公報に記載の化合物等を用いることができる。
<Leveling agent>
A leveling agent can make the liquid after application | coating stable by making the surface tension of the composition for layer (a) formation fall, and can make it easy to arrange | position a sclerosing | hardenable compound (a1) and particle | grains (a2) uniformly. For example, the compounds described in JP-A-2004-331812 and JP-A-2004-163610 can be used.
 上記レベリング剤は、層(a)形成用組成物の全固形分中に0.01~5.0質量%含有されることが好ましく、0.01~3.0質量%含有されることがより好ましく、0.01~2.0質量%含有されることが最も好ましい。 The leveling agent is preferably contained in an amount of 0.01 to 5.0% by mass, more preferably 0.01 to 3.0% by mass in the total solid content of the composition for forming the layer (a). Preferably, the content is 0.01 to 2.0% by mass.
<防汚剤>
 防汚剤は、モスアイ構造に撥水撥油性を付与することにより、汚れ又は指紋の付着を抑制することができる。例えば、特開2012-88699号公報に記載の化合物等を用いることができる。
<Anti-fouling agent>
The antifouling agent can suppress adhesion of dirt or fingerprints by imparting water and oil repellency to the moth-eye structure. For example, compounds described in JP 2012-88699 A can be used.
 防汚剤は層(a)中の全固形分に対して0.01~5.0質量%含有されることが好ましく、0.01~3.0質量%含有されることがより好ましく、0.01~2.0質量%含有されることが最も好ましい。 The antifouling agent is preferably contained in an amount of 0.01 to 5.0% by mass, more preferably 0.01 to 3.0% by mass, based on the total solid content in the layer (a). The content is most preferably 0.01 to 2.0% by mass.
<重合開始剤>
 層(a)には、重合開始剤を含んでいてもよい。
 硬化性化合物(a1)が光重合性化合物である場合は、光重合開始剤を含むことが好ましい。
 光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009-098658号公報の段落<0133>~<0151>に記載されており、本発明においても同様に好適に用いることができる。
<Polymerization initiator>
The layer (a) may contain a polymerization initiator.
When the curable compound (a1) is a photopolymerizable compound, it preferably contains a photopolymerization initiator.
As photopolymerization initiators, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins. Specific examples, preferred embodiments, commercially available products, and the like of the photopolymerization initiator are described in paragraphs <0133> to <0151> of JP-A-2009-098658, and can be suitably used in the present invention as well. it can.
 「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65~148にも種々の例が記載されており本発明に有用である。 “Latest UV Curing Technology” {Technical Information Association, Inc.} (1991), p. 159, and “UV Curing System” written by Kiyomi Kato (published by the General Technology Center in 1989), p. Various examples are also described in 65 to 148 and are useful in the present invention.
 層(a)中の重合開始剤の含有量は、層(a)に含まれる重合可能な化合物を重合させるのに十分な量であり、かつ開始点が増えすぎないように設定するという理由から、層(a)中の全固形分に対して、0.1~8質量%が好ましく、0.5~5質量%がより好ましい。 The content of the polymerization initiator in the layer (a) is an amount sufficient to polymerize the polymerizable compound contained in the layer (a), and is set so as not to increase the starting point too much. The solid content in the layer (a) is preferably 0.1 to 8% by mass, and more preferably 0.5 to 5% by mass.
 層(a)には、上述した重合性官能基を有するシランカップリング剤を反応させるために光あるいは熱により酸又は塩基を発生する化合物(以下、光酸発生剤、光塩基発生剤、熱酸発生剤、熱塩基発生剤と称する場合がある。)を含んでいてもよい。 The layer (a) includes a compound that generates an acid or a base by light or heat in order to react with the silane coupling agent having a polymerizable functional group described above (hereinafter, photoacid generator, photobase generator, thermal acid. May be referred to as a generator or a thermal base generator).
<光酸発生剤>
 光酸発生剤としては、例えば、ジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等のオニウム塩、有機ハロゲン化合物、有機金属/有機ハロゲン化物、o-ニトロベンジル型保護基を有する光酸発生剤、イミノスルフォネ-ト等に代表される光分解してスルホン酸を発生する化合物、ジスルホン化合物、ジアゾケトスルホン、ジアゾジスルホン化合物等を挙げることができる。また、トリアジン類(例えば、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジンなど)、第四級アンモニウム塩類、ジアゾメタン化合物、イミドスルホネート化合物、オキシムスルホネート化合物を挙げることもできる。
 また、光により酸を発生する基、または化合物をポリマーの主鎖もしくは側鎖に導入した化合物を用いることができる。
 さらに、V.N.R.Pillai,Synthesis,(1),1(1980)、A.Abad et al.,Tetrahedron Lett.,(47)4555(1971)、D.H.R.Barton et al.,J.Chem.Soc.,(C),329(1970)、米国特許第3,779,778号、欧州特許第126,712号等に記載の光により酸を発生する化合物も使用することができる。
<Photo acid generator>
Examples of the photoacid generator include diazonium salts, ammonium salts, phosphonium salts, iodonium salts, sulfonium salts, selenonium salts, onium salts such as arsonium salts, organic halogen compounds, organic metal / organic halides, and o-nitrobenzyl type. Examples thereof include photoacid generators having a protecting group, compounds such as iminosulfonate, which generate photosulfonic acid by photolysis, disulfone compounds, diazoketosulfone, and diazodisulfone compounds. Further, triazines (for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine), quaternary ammonium salts, diazomethane compounds, imidosulfonate compounds, oximes Mention may also be made of sulfonate compounds.
Further, a group that generates an acid by light, or a compound in which a compound is introduced into the main chain or side chain of a polymer can be used.
Furthermore, V. N. R. Pillai, Synthesis, (1), 1 (1980), A.M. Abad et al. Tetrahedron Lett. , (47) 4555 (1971), D.M. H. R. Barton et al. , J .; Chem. Soc. , (C), 329 (1970), U.S. Pat. No. 3,779,778, European Patent No. 126,712, and the like, compounds that generate an acid by light can also be used.
<熱酸発生剤>
 熱酸発生剤としては、酸と有機塩基からなる塩を挙げることができる。
 上記の酸としては、スルホン酸、ホスホン酸、カルボン酸など有機酸や硫酸、リン酸のような無機酸が挙げられる。硬化性化合物(a1)に対する相溶性の観点からは、有機酸がより好ましく、スルホン酸、ホスホン酸が更に好ましく、スルホン酸が最も好ましい。好ましいスルホン酸としては、p-トルエンスルホン酸(PTS)、ベンゼンスルホン酸(BS)、p-ドデシルベンゼンスルホン酸(DBS)、p-クロロベンゼンスルホン酸(CBS)、1,4-ナフタレンジスルホン酸(NDS)、メタンスルホン酸(MsOH)、ノナフルオロブタン-1-スルホン酸(NFBS)などが挙げられる。
<Heat acid generator>
Examples of the thermal acid generator include salts composed of an acid and an organic base.
Examples of the acid include organic acids such as sulfonic acid, phosphonic acid, and carboxylic acid, and inorganic acids such as sulfuric acid and phosphoric acid. From the viewpoint of compatibility with the curable compound (a1), organic acids are more preferable, sulfonic acids and phosphonic acids are more preferable, and sulfonic acids are most preferable. Preferred sulfonic acids include p-toluenesulfonic acid (PTS), benzenesulfonic acid (BS), p-dodecylbenzenesulfonic acid (DBS), p-chlorobenzenesulfonic acid (CBS), 1,4-naphthalenedisulfonic acid (NDS). ), Methanesulfonic acid (MsOH), nonafluorobutane-1-sulfonic acid (NFBS), and the like.
 酸発生剤の具体例としては特開2016-803号に記載のものを好適に用いることができる。 As specific examples of the acid generator, those described in JP-A-2016-803 can be preferably used.
<光塩基発生剤>
 光塩基発生剤としては、活性エネルギー線の作用により塩基を発生する物質を挙げることができる。より具体的には、(1)紫外線、可視光、又は赤外線の照射により脱炭酸して分解する有機酸と塩基の塩、(2)分子内求核置換反応や転位反応などにより分解してアミン類を放出する化合物、あるいは(3)紫外線、可視光、又は赤外線の照射により何らかの化学反応を起こして塩基を放出するものを使用できる。
 本発明に用いられる光塩基発生剤は、紫外線、電子線、X線、赤外線および可視光線などの活性エネルギー線の作用により塩基を発生する物質であれば特に限定されない。
 具体的には特開2010-243773号公報に記載のものを好適に用いる事ができる。
<Photobase generator>
Examples of the photobase generator include substances that generate a base by the action of active energy rays. More specifically, (1) a salt of an organic acid and a base that is decomposed by decarboxylation upon irradiation with ultraviolet light, visible light, or infrared light, and (2) an amine that is decomposed by an intramolecular nucleophilic substitution reaction or rearrangement reaction. A compound that releases a base, or (3) a compound that causes a chemical reaction upon irradiation with ultraviolet rays, visible light, or infrared rays to release a base can be used.
The photobase generator used in the present invention is not particularly limited as long as it is a substance that generates a base by the action of active energy rays such as ultraviolet rays, electron beams, X-rays, infrared rays and visible rays.
Specifically, those described in JP 2010-243773 A can be suitably used.
 層(a)中の、光又は熱により酸又は塩基を発生する化合物の含有量は、層(a)に含まれる重合可能な化合物を重合させるのに十分な量であり、かつ開始点が増えすぎないように設定するという理由から、層(a)中の全固形分に対して、0.1~8質量%が好ましく、0.1~5質量%がより好ましい。 The content of the compound that generates acid or base by light or heat in the layer (a) is sufficient to polymerize the polymerizable compound contained in the layer (a), and the starting point increases. For the reason that it is set so that it is not too much, it is preferably 0.1 to 8% by mass, more preferably 0.1 to 5% by mass, based on the total solid content in the layer (a).
[工程(2)]
 工程(2)は、工程(1)の層(a)の一部を硬化させて層(ca)を得る工程であり、具体的には、工程(1)の層(a)中の硬化性化合物(a1)の一部を硬化させて、硬化された化合物(a1c)を含む層(ca)を得る工程である。
 工程(2)で硬化性化合物(a1)の一部を硬化させることにより、粒子(a2)を動きにくくして、粒子(a2)が凝集することを抑制することができる。
 硬化性化合物(a1)の一部を硬化させるとは、硬化性化合物(a1)のすべてではなく、一部のみを硬化させることを表す。工程(2)で硬化性化合物(a1)の一部のみを硬化させ、未硬化の硬化性化合物(a1)の一部を工程(4)で仮支持体に浸透(仮支持体が機能層を有する場合は機能層に浸透してもよい)させる方法、又は層(b)へ浸透させる方法などにより、層(ca)の厚みを薄くして、粒子(a2)を層(ca)の支持体側の界面から突出させて、良好な凹凸形状(モスアイ構造)を形成することができる。
[Step (2)]
The step (2) is a step of obtaining a layer (ca) by curing a part of the layer (a) in the step (1). Specifically, the curability in the layer (a) in the step (1). In this step, a part of the compound (a1) is cured to obtain a layer (ca) containing the cured compound (a1c).
By hardening a part of the curable compound (a1) in the step (2), the particles (a2) can be made difficult to move and aggregation of the particles (a2) can be suppressed.
Curing a part of the curable compound (a1) means that only a part of the curable compound (a1) is cured, not the whole. Only a part of the curable compound (a1) is cured in the step (2), and a part of the uncured curable compound (a1) is penetrated into the temporary support in the step (4) (the temporary support has a functional layer). If it has, the layer (ca) may be thinned by the method of allowing it to penetrate into the functional layer) or the method of penetrating into the layer (b), etc., and the particles (a2) are separated from the layer (ca) on the support side. By projecting from the interface, a favorable uneven shape (moth eye structure) can be formed.
 硬化は電離放射線を照射することで行うことができる。電離放射線の種類については、特に制限はなく、X線、電子線、紫外線、可視光、赤外線などが挙げられるが、硬化性化合物(a1)が光硬化性の化合物であって、工程(2)において光(好ましくは紫外線)を照射することにより、硬化性化合物(a1)の一部を硬化させることが好ましい。
 工程(2)の硬化性化合物(a1)の一部を硬化させる条件が、層(a)形成用組成物から粒子(a2)を除いた組成物を仮支持体上に2μmの厚さで塗布し、硬化させた場合に、硬化率が2~20%となる条件であることが好ましく、硬化率が3~15%となる条件であることがより好ましく、硬化率が5~12%となる条件であることが更に好ましい。
Curing can be performed by irradiating with ionizing radiation. The type of ionizing radiation is not particularly limited, and examples thereof include X-rays, electron beams, ultraviolet rays, visible light, and infrared rays. The curable compound (a1) is a photocurable compound, and the step (2) It is preferable to cure a part of the curable compound (a1) by irradiating with light (preferably ultraviolet rays).
The condition for curing a part of the curable compound (a1) in the step (2) is to apply a composition obtained by removing the particles (a2) from the composition for forming the layer (a) on the temporary support in a thickness of 2 μm. When cured, the curing rate is preferably 2 to 20%, more preferably the curing rate is 3 to 15%, and the curing rate is 5 to 12%. More preferably, the conditions are satisfied.
 硬化率は、
 (1-硬化後の残存重合性官能基数/硬化前の重合性官能基数)×100%であり、以下の方法で測定される。
 なお、重合性官能基は、重合性の炭素-炭素不飽和二重結合を有する基である。
 より具体的には、Thermo electron corporationのNICOLET6700 FT-IR(フーリエ変換赤外分光光度計)を使用して硬化前の硬化性化合物そのものをKBr-IR測定し、カルボニル基のピーク(1660-1800cm-1)面積と重合性の炭素-炭素不飽和二重結合のピーク高さ(808cm-1)を求め、硬化後の一回反射のIR(infrared spectroscopy)測定から同様にカルボニル基ピーク面積に対する重合性の炭素-炭素不飽和二重結合のピークを求め、紫外線照射前後で比較することにより硬化率を算出した。ここで硬化率の計算に際し、808cm-1における測定深度を821nm、1660-1800cm-1における深度を384nmとして規格化している。
The cure rate is
(1−number of remaining polymerizable functional groups after curing / number of polymerizable functional groups before curing) × 100%, measured by the following method.
The polymerizable functional group is a group having a polymerizable carbon-carbon unsaturated double bond.
More specifically, the curable compound itself before curing was subjected to KBr-IR measurement using NICOLET6700 FT-IR (Fourier Transform Infrared Spectrophotometer) of Thermo electron corporation, and the peak of the carbonyl group (1660-1800 cm − 1 ) The area and the peak height (808 cm −1 ) of a polymerizable carbon-carbon unsaturated double bond were determined, and the polymerizability with respect to the carbonyl group peak area was similarly determined from IR (infrared spectroscopy) measurement after single reflection after curing. The carbon-carbon unsaturated double bond peak was determined, and the curing rate was calculated by comparing before and after ultraviolet irradiation. When calculating hardening rate here is normalized measurement depth at 808cm -1 821nm, a depth of 1660-1800Cm -1 as 384 nm.
 工程(2)において、紫外線を1~90mJ/cmの照射量で照射することが好ましく、1.2~40mJ/cmの照射量で照射することがより好ましく、1.5~10mJ/cmの照射量で照射することが更に好ましい。照射量の最適値は層(a)形成用組成物の組成によって異なるため、適宜調整することができる。 In the step (2), it is preferable to irradiate ultraviolet rays at a dose of 1 to 90 mJ / cm 2 , more preferably at a dose of 1.2 to 40 mJ / cm 2 , and more preferably 1.5 to 10 mJ / cm 2. It is more preferable to irradiate with a dose of 2 . Since the optimum value of the dose varies depending on the composition of the layer (a) forming composition, it can be appropriately adjusted.
 工程(2)において、層(a)の仮支持体側とは反対側から紫外線を照射して硬化性化合物(a1)の一部を硬化させることが製造適正上好ましい。 In the step (2), it is preferable for manufacturing suitability to irradiate ultraviolet rays from the side opposite to the temporary support side of the layer (a) to cure a part of the curable compound (a1).
 酸素濃度0.1~5.0体積%の環境下で工程(2)を行うことが好ましく、酸素濃度0.5~1.0体積%の環境下で工程(2)を行うことがより好ましい。酸素濃度を上記範囲とすることで、特に層(a)の仮支持体側の領域を硬化させることができる。 The step (2) is preferably performed in an environment with an oxygen concentration of 0.1 to 5.0% by volume, and the step (2) is more preferably performed in an environment with an oxygen concentration of 0.5 to 1.0% by volume. . By making oxygen concentration into the said range, the area | region by the side of the temporary support body of a layer (a) can be hardened especially.
 化合物(a1c)は、硬化性化合物(a1)の硬化物である。
 化合物(a1c)の分子量は特に限定されない。また、化合物(a1c)は、未反応の重合性官能基を有していてもよい。
 工程(2)で得られる層(ca)は、層中に硬化性化合物(a1)と化合物(a1c)とを含む層である。
 なお、本発明では、工程(2)の後、工程(4-2)、(7)、及び(9)において、層(ca)を更に硬化させうるものであり、それぞれの工程における硬化前と硬化後で各層が含有する成分及びその組成(硬化性化合物(a1)とその硬化物である化合物(a1c)の組成比など)は異なるが、本発明では便宜的にいずれの段階においても層(ca)と呼ぶものとする。
The compound (a1c) is a cured product of the curable compound (a1).
The molecular weight of the compound (a1c) is not particularly limited. Moreover, the compound (a1c) may have an unreacted polymerizable functional group.
The layer (ca) obtained in the step (2) is a layer containing a curable compound (a1) and a compound (a1c) in the layer.
In the present invention, the layer (ca) can be further cured in the steps (4-2), (7), and (9) after the step (2). The components contained in each layer after curing and the composition thereof (such as the composition ratio of the curable compound (a1) and the cured compound (a1c)) are different, but in the present invention, the layer ( It shall be called ca).
[工程(3)]
 工程(3)は、支持体及び上記支持体上に粘着剤を含む層(b)を有する粘着フィルムの層(b)を、上記層(ca)と貼り合わせる工程である。
 層(ca)と粘着フィルムの層(b)とを貼り合わせる方法としては特に限定されず公知の方法を用いることができ、たとえばラミネート法が挙げられる。
 層(ca)と層(b)とが接するように粘着フィルムを貼り合わせることが好ましい。
 工程(3)の前に、層(ca)を乾燥する工程を有していてもよい。層(ca)を乾燥する工程を有する場合は、層(ca)の乾燥温度は20~60℃が好ましく、20~40℃がより好ましい。乾燥時間は0.1~120秒が好ましく、1~30秒がより好ましい。
[Step (3)]
Step (3) is a step of bonding a layer (b) of an adhesive film having a support and a layer (b) containing an adhesive on the support to the layer (ca).
A method for bonding the layer (ca) and the layer (b) of the pressure-sensitive adhesive film is not particularly limited, and a known method can be used, for example, a laminating method.
The adhesive film is preferably bonded so that the layer (ca) and the layer (b) are in contact with each other.
You may have the process of drying a layer (ca) before a process (3). In the case of having a step of drying the layer (ca), the drying temperature of the layer (ca) is preferably 20 to 60 ° C, more preferably 20 to 40 ° C. The drying time is preferably from 0.1 to 120 seconds, more preferably from 1 to 30 seconds.
 本発明では、工程(3)において粘着フィルムの層(b)と層(ca)とを貼り合わせ、後述する工程(4)において粒子(a2)を、層(ca)及び層(b)を合わせた層中に埋没し、かつ、層(ca)の支持体側の界面から突出させることで、また、より好ましくは工程(4-2)において粒子(a2)が層(ca)及び層(b)を合わせた層中に埋没した状態で層(ca)の一部をさらに硬化することで、粒子(a2)が層(ca)の硬化前に空気界面に露出しないようにして、凝集を抑制し、粒子(a2)によって形成された良好な凹凸形状を作製できる。 In the present invention, the layer (b) and the layer (ca) of the pressure-sensitive adhesive film are bonded together in the step (3), the particles (a2) are combined in the step (4) described later, and the layers (ca) and (b) are combined. In the step (4-2), the particles (a2) are preferably embedded in the layer (ca) and the layer (b) by being embedded in the layer and protruding from the support side interface of the layer (ca). By further curing a part of the layer (ca) in a state of being embedded in the combined layer, the particles (a2) are prevented from being exposed to the air interface before the layer (ca) is cured, thereby suppressing aggregation. A favorable uneven shape formed by the particles (a2) can be produced.
(粘着フィルム)
 粘着フィルムは、支持体と粘着剤を含む層(b)とを有する。
(Adhesive film)
The pressure-sensitive adhesive film has a support and a layer (b) containing a pressure-sensitive adhesive.
<層(b)>
 層(b)は、粘着剤を含む層であり、粘着剤は、ゲル分率が95.0%以上の粘着剤であることが好ましい。
 粘着剤のゲル分率が95.0%以上であることで、本発明の防眩性反射防止フィルムの製造において、粘着フィルムを剥離する際に、粘着剤成分が防眩性反射防止フィルム表面に残りにくくなり、粘着剤成分が粒子の凹凸間を埋めることで生じる反射率の上昇を抑制する効果が高い。
 粘着剤のゲル分率は、95.0%以上99.9%以下であることが好ましく、97.0%以上99.9%以下であることがより好ましく、98.0%以上99.9%以下であることが更に好ましい。
 粘着剤のゲル分率は、粘着剤を、25℃で、テトラヒドロフラン(THF)に12時間浸漬した後の不溶解分の比率であり、下記式から求められる。
 ゲル分率=(粘着剤のTHFへの不溶解分の質量)/(粘着剤の総質量)×100(%)
<Layer (b)>
The layer (b) is a layer containing an adhesive, and the adhesive is preferably an adhesive having a gel fraction of 95.0% or more.
When the pressure-sensitive adhesive has a gel fraction of 95.0% or more, in the production of the antiglare antireflection film of the present invention, the adhesive component is applied to the antiglare antireflection film surface when the adhesive film is peeled off. It is difficult to remain, and the effect of suppressing an increase in reflectance caused by the pressure-sensitive adhesive component filling between the irregularities of the particles is high.
The gel fraction of the pressure-sensitive adhesive is preferably 95.0% or more and 99.9% or less, more preferably 97.0% or more and 99.9% or less, and 98.0% or more and 99.9%. More preferably, it is as follows.
The gel fraction of the pressure-sensitive adhesive is a ratio of insoluble matter after the pressure-sensitive adhesive is immersed in tetrahydrofuran (THF) at 25 ° C. for 12 hours, and is obtained from the following formula.
Gel fraction = (mass of insoluble matter in adhesive in THF) / (total mass of adhesive) × 100 (%)
 粘着剤におけるゾル成分の重量平均分子量が10000以下であることが好ましく、7000以下であることがより好ましく、5000以下であることが最も好ましい。ゾル成分の重量平均分子量を上記範囲にすることによって、本発明の防眩性反射防止フィルムの製造において、粘着フィルムを剥離する際に、粘着剤成分が防眩性反射防止フィルム表面に残りにくくすることができる。
 粘着剤のゾル成分は、粘着剤を、25℃で、テトラヒドロフラン(THF)に12時間浸漬した後のTHFへの溶解分を表す。重量平均分子量はゲル浸透クロマトグラフィー(GPC)で分析することができる。
The weight average molecular weight of the sol component in the pressure-sensitive adhesive is preferably 10,000 or less, more preferably 7000 or less, and most preferably 5000 or less. By making the weight average molecular weight of the sol component within the above range, in the production of the antiglare antireflection film of the present invention, the adhesive component is less likely to remain on the antiglare antireflection film surface when peeling the adhesive film. be able to.
The sol component of the pressure-sensitive adhesive represents the amount dissolved in THF after the pressure-sensitive adhesive is immersed in tetrahydrofuran (THF) at 25 ° C. for 12 hours. The weight average molecular weight can be analyzed by gel permeation chromatography (GPC).
 粘着剤の30℃、1Hzでの貯蔵弾性率(G‘)が1.3GPa以下であり、かつ粘着剤におけるゾル成分の重量平均分子量が10000以下であることも好ましい。
 粘着剤の30℃、1Hzでの貯蔵弾性率(G‘)が1.3×10Pa以下であり、かつ粘着剤におけるゾル成分の重量平均分子量が10000以下であることも好ましい。
 粘着剤の30℃、1Hzでの貯蔵弾性率(G‘)は0.1×10Pa以上1.3×10Pa以下がより好ましく、0.1×10Pa以上1.2×10Pa以下が更に好ましい。貯蔵弾性率が0.1×10Pa以上であると、粘着剤の凝集破壊が起こりにくく、取り扱いが容易である。貯蔵弾性率が1.3×10Pa以下であると、粒子の隙間に粘着剤が入り込みやすくなるため、粒子の凝集を抑制する効果が得られやすくなり、1.2×10Pa以下であると特に良好な反射率を有する防眩性反射防止フィルムが得られる。
 また、この場合の粘着剤におけるゾル成分の重量平均分子量の好ましい範囲も前述したものと同様である。
It is also preferable that the storage elastic modulus (G ′) at 30 ° C. and 1 Hz of the pressure-sensitive adhesive is 1.3 GPa or less, and the weight average molecular weight of the sol component in the pressure-sensitive adhesive is 10,000 or less.
It is also preferable that the storage elastic modulus (G ′) at 30 ° C. and 1 Hz of the pressure-sensitive adhesive is 1.3 × 10 5 Pa or less, and the weight average molecular weight of the sol component in the pressure-sensitive adhesive is 10,000 or less.
30 ° C. of the adhesive, the storage elastic modulus at 1 Hz (G ') is more preferably 0.1 × 10 5 Pa or more 1.3 × 10 5 Pa or less, 0.1 × 10 5 Pa or more 1.2 × 10 5 Pa or less is more preferable. When the storage elastic modulus is 0.1 × 10 5 Pa or more, cohesive failure of the pressure-sensitive adhesive hardly occurs and handling is easy. When the storage elastic modulus is 1.3 × 10 5 Pa or less, the pressure-sensitive adhesive easily enters the gaps between the particles, so that the effect of suppressing the aggregation of the particles is easily obtained, and is 1.2 × 10 5 Pa or less. When it exists, the anti-glare antireflection film which has a particularly favorable reflectance will be obtained.
In this case, the preferred range of the weight average molecular weight of the sol component in the pressure-sensitive adhesive is the same as described above.
 層(b)の膜厚は0.1μm以上50μm以下であることが好ましく、1μm以上30μm以下であることがより好ましく、1μm以上20μm以下であることが更に好ましい。 The film thickness of the layer (b) is preferably from 0.1 μm to 50 μm, more preferably from 1 μm to 30 μm, and still more preferably from 1 μm to 20 μm.
 粘着剤としては、重合体を含むことが好ましく、(メタ)アクリル系重合体を含むことがより好ましい。特に、アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルモノマーの少なくとも1種のモノマーの重合体(2種以上のモノマーの場合は共重合体)が好ましい。(メタ)アクリル系重合体の重量平均分子量は、20万~200万であることが好ましい。 The pressure-sensitive adhesive preferably contains a polymer, and more preferably contains a (meth) acrylic polymer. In particular, a polymer of at least one monomer of a (meth) acrylic acid alkyl ester monomer having 1 to 18 carbon atoms in the alkyl group (a copolymer in the case of two or more monomers) is preferable. The weight average molecular weight of the (meth) acrylic polymer is preferably 200,000 to 2,000,000.
 アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソセチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート等のアルキル(メタ)アクリレートモノマーが挙げられる。アルキル(メタ)アクリレートモノマーのアルキル基は、直鎖、分枝状、環状のいずれでもよい。上記モノマーは2種以上併用されてもよい。 Examples of (meth) acrylic acid alkyl ester monomers having 1 to 18 carbon atoms in the alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth) acrylate. , Pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate , Decyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, isomyristyl (meth) acrylate, isocetyl (meth) acrylate, isostearyl (Meth) acrylate, myristyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) Examples include alkyl (meth) acrylate monomers such as acrylate. The alkyl group of the alkyl (meth) acrylate monomer may be linear, branched or cyclic. Two or more of the above monomers may be used in combination.
 脂肪族環を有する(メタ)アクリレートモノマーの好適な例としては、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。中でもシクロヘキシル(メタ)アクリレートであることが特に好ましい。 Preferable examples of the (meth) acrylate monomer having an aliphatic ring include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cycloheptyl (meth) acrylate, isobornyl (meth) acrylate and the like. Of these, cyclohexyl (meth) acrylate is particularly preferable.
 (メタ)アクリル系重合体は、アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルモノマーの少なくとも1種と、他の共重合性モノマーの少なくとも1種とからなる共重体であってもよい。この場合、他の共重合性モノマーとしては、水酸基、カルボキシル基、及びアミノ基から選ばれる少なくとも1種の基を含有する共重合性ビニルモノマー、ビニル基を有する共重合性ビニルモノマー、芳香族系モノマー等が挙げられる。 The (meth) acrylic polymer is a copolymer composed of at least one (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 18 carbon atoms and at least one other copolymerizable monomer. May be. In this case, the other copolymerizable monomers include a copolymerizable vinyl monomer containing at least one group selected from a hydroxyl group, a carboxyl group, and an amino group, a copolymerizable vinyl monomer having a vinyl group, and an aromatic group. And monomers.
 水酸基を含有する共重合性ビニルモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル類、及び、N-ヒドロキシ(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド等の水酸基含有(メタ)アクリルアミド類などが挙げられ、これらの化合物群の中から選択された、少なくとも1種であることが好ましい。 Examples of the copolymerizable vinyl monomer containing a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6- Hydroxyl-containing (meth) acrylic esters such as hydroxyhexyl (meth) acrylate and 8-hydroxyoctyl (meth) acrylate, and N-hydroxy (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, N-hydroxyethyl Examples include hydroxyl group-containing (meth) acrylamides such as (meth) acrylamide, and preferably at least one selected from these compound groups.
 (メタ)アクリル系重合体の100質量部に対して、水酸基を含有する共重合性ビニルモノマーを0.1~15質量部含有することが好ましい。 It is preferable to contain 0.1 to 15 parts by mass of a copolymerizable vinyl monomer containing a hydroxyl group with respect to 100 parts by mass of the (meth) acrylic polymer.
 カルボキシル基を含有する共重合性ビニルモノマーとしては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレートからなどが挙げられ、これらの化合物群の中から選択された、少なくとも1種であることが好ましい。 Examples of the copolymerizable vinyl monomer containing a carboxyl group include (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, and the like. Preferably, at least one selected from these compound groups is used.
 (メタ)アクリル共重合体の100質量部に対して、カルボキシル基を含有する共重合性ビニルモノマーを0.1~2質量部含有することが好ましい。 It is preferable to contain 0.1 to 2 parts by mass of a copolymerizable vinyl monomer containing a carboxyl group with respect to 100 parts by mass of the (meth) acrylic copolymer.
 アミノ基を含有する共重合性ビニルモノマーとしては、モノメチルアミノエチル(メタ)アクリレート、モノエチルアミノエチル(メタ)アクリレート、モノメチルアミノプロピル(メタ)アクリレート、モノエチルアミノプロピル(メタ)アクリレート等のモノアルキルアミノアルキル(メタ)アクリレート等が挙げられる。 Examples of copolymerizable vinyl monomers containing amino groups include monoalkylaminoethyl (meth) acrylate, monoethylaminoethyl (meth) acrylate, monomethylaminopropyl (meth) acrylate, monoalkylaminopropyl (meth) acrylate, and other monoalkyl An aminoalkyl (meth) acrylate etc. are mentioned.
 芳香族系モノマーとしては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族基含有(メタ)アクリル酸エステル類のほか、スチレン等が挙げられる。 Examples of aromatic monomers include styrene in addition to aromatic group-containing (meth) acrylic esters such as benzyl (meth) acrylate and phenoxyethyl (meth) acrylate.
 上記以外の共重合性ビニルモノマーとしては、アクリルアミド、アクリロニトリル、メチルビニルエーテル、エチルビニルエーテル、酢酸ビニル、塩化ビニルなどの各種ビニルモノマーが挙げられる。 Examples of copolymerizable vinyl monomers other than the above include various vinyl monomers such as acrylamide, acrylonitrile, methyl vinyl ether, ethyl vinyl ether, vinyl acetate, and vinyl chloride.
 粘着剤は、粘着剤を形成するための組成物(粘着剤組成物ともいう)の硬化物を含むものであってもよい。
 粘着剤組成物は、上記重合体と架橋剤とを含むことが好ましく、熱又は紫外線(UV)などを用いて架橋しても良い。架橋剤としては、2官能以上のイソシアネート系架橋剤、2官能以上のエポキシ系架橋剤、アルミニウムキレート系架橋剤からなる化合物群のうちから選択される1種以上の架橋剤が好ましい。架橋剤を用いる場合は、本発明の防眩性反射防止フィルムの製造において、粘着フィルムを剥離する際に、粘着剤成分を反射防止フィルム表面に残りにくくする観点から、上記重合体の100質量部に対して、0.1~15質量部含有することが好ましく、3.5~15質量部含有することがより好ましく、3.5質量部超15質量部未満が更に好ましく、5.1~10質量部含有することが特に好ましい。
The pressure-sensitive adhesive may include a cured product of a composition for forming the pressure-sensitive adhesive (also referred to as a pressure-sensitive adhesive composition).
The pressure-sensitive adhesive composition preferably contains the polymer and a cross-linking agent, and may be cross-linked using heat, ultraviolet light (UV) or the like. As the crosslinking agent, one or more kinds of crosslinking agents selected from the group consisting of a bifunctional or higher functional isocyanate crosslinking agent, a bifunctional or higher epoxy crosslinking agent, and an aluminum chelate crosslinking agent are preferable. When a crosslinking agent is used, in the production of the antiglare antireflection film of the present invention, when peeling the adhesive film, from the viewpoint of making the adhesive component less likely to remain on the antireflection film surface, 100 parts by mass of the polymer. Is preferably contained in an amount of 0.1 to 15 parts by mass, more preferably 3.5 to 15 parts by mass, even more preferably more than 3.5 parts by mass and less than 15 parts by mass. It is particularly preferable to contain part by mass.
 2官能以上のイソシアネート系化合物としては、1分子中に少なくとも2個以上のイソシアネート(NCO)基を有するポリイソシアネート化合物であればよく、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート等のジイソシアネート類(1分子中に2個のNCO基を有する化合物)のビュレット変性体、及びイソシアヌレート変性体、トリメチロールプロパン又はグリセリン等の3価以上のポリオール(1分子中に少なくとも3個以上のOH基を有する化合物)とのアダクト体(ポリオール変性体)などが挙げられる。
 また、3官能以上のイソシアネート化合物が、1分子中に少なくとも3個以上のイソシアネート(NCO)基を有するポリイソシアネート化合物であり、特にヘキサメチレンジイソシアネート化合物のイソシアヌレート体、イソホロンジイソシアネート化合物のイソシアヌレート体、ヘキサメチレンジイソシアネート化合物のアダクト体、イソホロンジイソシアネート化合物のアダクト体、ヘキサメチレンジイソシアネート化合物のビュレット体、イソホロンジイソシアネート化合物のビュレット体からなる化合物群の中から選択された、少なくとも一種以上であることが好ましい。
 2官能以上のイソシアネート系架橋剤は、重合体100質量部に対して、0.01~5.0質量部含まれることが好ましく、0.02~3.0質量部含まれることがより好ましい。
The bifunctional or higher isocyanate compound may be a polyisocyanate compound having at least two isocyanate (NCO) groups in one molecule, such as hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diene. Burette modified products of diisocyanates such as isocyanate (compounds having two NCO groups in one molecule) and trivalent or higher polyols such as isocyanurate modified products, trimethylolpropane or glycerin (at least 3 in one molecule) And adduct bodies (polyol-modified bodies) with the above-mentioned compounds having an OH group.
Further, the trifunctional or higher functional isocyanate compound is a polyisocyanate compound having at least three isocyanate (NCO) groups in one molecule, in particular, an isocyanurate body of a hexamethylene diisocyanate compound, an isocyanurate body of an isophorone diisocyanate compound, At least one selected from the group consisting of adducts of hexamethylene diisocyanate compounds, adducts of isophorone diisocyanate compounds, burettes of hexamethylene diisocyanate compounds, and burettes of isophorone diisocyanate compounds is preferred.
The bifunctional or higher functional isocyanate-based crosslinking agent is preferably contained in an amount of 0.01 to 5.0 parts by mass, more preferably 0.02 to 3.0 parts by mass with respect to 100 parts by mass of the polymer.
 粘着剤組成物は、帯電防止性能を付与するため、帯電防止剤を含有してもよい。帯電防止剤はイオン化合物であることが好ましく4級オニウム塩であることがさらに好ましい。 The pressure-sensitive adhesive composition may contain an antistatic agent in order to impart antistatic performance. The antistatic agent is preferably an ionic compound, more preferably a quaternary onium salt.
 4級オニウム塩である帯電防止剤としては、例えば、炭素数8~18のアルキル基を有するアルキルジメチルベンジルアンモニウム塩、炭素数8~18のアルキル基を有するジアルキルメチルベンジルアンモニウム塩、炭素数8~18のアルキル基を有するトリアルキルベンジルアンモニウム塩、炭素数8~18のアルキル基を有するテトラアルキルアンモニウム塩、炭素数8~18のアルキル基を有するアルキルジメチルベンジルホスホニウム塩、炭素数8~18のアルキル基を有するジアルキルメチルベンジルホスホニウム塩、炭素数8~18のアルキル基を有するトリアルキルベンジルホスホニウム塩、炭素数8~18のアルキル基を有するテトラアルキルホスホニウム塩、炭素数14~20のアルキル基を有するアルキルトリメチルアンモニウム塩、炭素数14~20のアルキル基を有するアルキルジメチルエチルアンモニウム塩などを用いることができる。これらのアルキル基は、不飽和結合を有するアルケニル基であってもよい。 Examples of the antistatic agent that is a quaternary onium salt include alkyldimethylbenzylammonium salts having an alkyl group having 8 to 18 carbon atoms, dialkylmethylbenzylammonium salts having an alkyl group having 8 to 18 carbon atoms, and 8 to 8 carbon atoms. Trialkylbenzylammonium salt having 18 alkyl groups, tetraalkylammonium salt having an alkyl group having 8 to 18 carbon atoms, alkyldimethylbenzylphosphonium salt having an alkyl group having 8 to 18 carbon atoms, alkyl having 8 to 18 carbon atoms Having a dialkylmethylbenzylphosphonium salt having a group, a trialkylbenzylphosphonium salt having an alkyl group having 8 to 18 carbon atoms, a tetraalkylphosphonium salt having an alkyl group having 8 to 18 carbon atoms, and an alkyl group having 14 to 20 carbon atoms Alkyl trimethyl Ammonium salts, alkyl dimethyl ethyl ammonium salt having an alkyl group having 14 to 20 carbon atoms can be used. These alkyl groups may be alkenyl groups having an unsaturated bond.
 帯電防止剤としては、他にノニオン系、カチオン系、アニオン系、両性系の界面活性剤、イオン性液体、アルカリ金属塩、金属酸化物、金属微粒子、導電性ポリマー、カーボン、カーボンナノチューブなども用いることができる。 Other antistatic agents include nonionic, cationic, anionic and amphoteric surfactants, ionic liquids, alkali metal salts, metal oxides, fine metal particles, conductive polymers, carbon, carbon nanotubes, etc. be able to.
 アルカリ金属塩としては、リチウム、ナトリウム、カリウムからなる金属塩などが挙げられ、イオン性物質の安定化のため、ポリオキシアルキレン構造を含有する化合物を添加しても良い。 Examples of the alkali metal salt include metal salts composed of lithium, sodium, and potassium, and a compound containing a polyoxyalkylene structure may be added to stabilize the ionic substance.
 帯電防止剤は、重合体100質量部に対して、0.1~10質量部含有することが好ましい。 The antistatic agent is preferably contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer.
 粘着剤組成物は、さらに帯電防止補助剤としてHLBが7~15のポリエーテル変性シロキサン化合物を含有することもできる。
 HLBとは、例えばJIS(日本工業規格) K3211(界面活性剤用語)等で規定する親水親油バランス(親水性親油性比)である。
The pressure-sensitive adhesive composition may further contain a polyether-modified siloxane compound having an HLB of 7 to 15 as an antistatic aid.
HLB is a hydrophilic / lipophilic balance (hydrophilic / lipophilic ratio) defined by, for example, JIS (Japanese Industrial Standards) K3211 (surfactant term).
 粘着剤組成物は、さらに架橋促進剤を含有することもできる。架橋促進剤は、ポリイソシアネート化合物を架橋剤とする場合に、重合体と架橋剤との反応(架橋反応)に対して触媒として機能する物質であればよく、第三級アミン等のアミン系化合物、金属キレート化合物、有機錫化合物、有機鉛化合物、有機亜鉛化合物等の有機金属化合物等が挙げられる。本発明では、架橋促進剤として、金属キレート化合物又は有機錫化合物が好ましい。 The pressure-sensitive adhesive composition can further contain a crosslinking accelerator. The crosslinking accelerator may be any substance that functions as a catalyst for the reaction between the polymer and the crosslinking agent (crosslinking reaction) when a polyisocyanate compound is used as the crosslinking agent, and is an amine compound such as a tertiary amine. And organic metal compounds such as metal chelate compounds, organic tin compounds, organic lead compounds, and organic zinc compounds. In the present invention, a metal chelate compound or an organic tin compound is preferable as the crosslinking accelerator.
 架橋促進剤は、共重合体の100質量部に対して、0.001~0.5質量部含まれることが好ましい。 The crosslinking accelerator is preferably contained in an amount of 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the copolymer.
 工程(3)が完了した後の積層体は、層(b)の層(ca)側の表面に1分子中に架橋基を3つ以上持ち、架橋基当量が450以下であり、フッ素ないしシリコーンからなる低摩擦部位を有する滑り剤(以下、「滑り剤a」とも呼ぶ。)が存在することが好ましい。
 層(b)の層(ca)側の表面に滑り剤aが存在することで、本発明の防眩性反射防止フィルムの製造において、工程(8)で粘着フィルムを剥離する際に、層(b)中の粘着剤が防眩性反射防止フィルムの表面に残る(転写される)ことを効果的に防ぐことができる。
The layered product after step (3) is completed has 3 or more cross-linking groups in one molecule on the surface of layer (ca) side of layer (b), the cross-linking group equivalent is 450 or less, and fluorine or silicone. It is preferable that a slipping agent having a low friction site (hereinafter also referred to as “slippery a”) is present.
When the adhesive (a) is present on the surface of the layer (b) on the layer (ca) side, in the production of the antiglare antireflection film of the present invention, the layer ( It is possible to effectively prevent the pressure sensitive adhesive in (b) from remaining (transferred) on the surface of the antiglare antireflection film.
<支持体>
 粘着フィルムにおける支持体について説明する。
 支持体としては、透明性及び可撓性を有する樹脂からなるプラスチックフィルムが好ましく用いられる。支持体用のプラスチックフィルムとしては、好適には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレートのようなポリエステルフィルム、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、環状ポリオレフィン系樹脂、セルロースアシレート等のセルロース系樹脂等からなるフィルムが挙げられる。ただし、上記(メタ)アクリル系樹脂は、ラクトン環構造を有する重合体、無水グルタル酸環構造を有する重合体、グルタルイミド環構造を有する重合体を含む。
 このほか、必要な強度を有しかつ光学適性を有するものであれば、他のプラスチックフィルムも使用可能である。支持体は、無延伸フィルムであっても、一軸または二軸延伸されていてもよく、また、延伸倍率又は延伸の結晶化に伴い形成される軸方法の角度を制御したプラスチックフィルムでもよい。
<Support>
The support in an adhesive film is demonstrated.
As the support, a plastic film made of a resin having transparency and flexibility is preferably used. The plastic film for the support is preferably a polyester film such as polyethylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, (meth) acrylic resin, polycarbonate resin, polystyrene resin, polyolefin resin. Examples thereof include films made of a resin, a cyclic polyolefin resin, a cellulose resin such as cellulose acylate, and the like. However, the (meth) acrylic resin includes a polymer having a lactone ring structure, a polymer having a glutaric anhydride ring structure, and a polymer having a glutarimide ring structure.
In addition, other plastic films can be used as long as they have necessary strength and optical suitability. The support may be an unstretched film, may be uniaxially or biaxially stretched, and may be a plastic film in which the stretching ratio or the angle of the axial method formed with crystallization of stretching is controlled.
 支持体としては、紫外線透過性を有するものが好ましい。紫外線透過性を有することで、工程(4-2)及び(7)において層(ca)を硬化する際、支持体側から紫外線照射が可能になるため、製造適性上好ましい。
 具体的には、支持体の波長250nm~300nmにおける最大透過率が20%以上であることが好ましく、40%以上であることがさらに好ましく、60%以上であることが最も好ましい。波長250nm~300nmにおける最大透過率が20%以上であると支持体側から紫外線を照射して層(ca)を硬化させやすく好ましい。
 また、支持体上に層(b)を形成した粘着フィルムの波長250nm~300nmにおける最大透過率が20%以上であることが好ましく、40%以上であることがさらに好ましく、60%以上であることが最も好ましい。
As the support, those having ultraviolet transparency are preferable. Having ultraviolet ray permeability is preferable from the viewpoint of production suitability because ultraviolet rays can be irradiated from the support side when the layer (ca) is cured in the steps (4-2) and (7).
Specifically, the maximum transmittance of the support at a wavelength of 250 nm to 300 nm is preferably 20% or more, more preferably 40% or more, and most preferably 60% or more. It is preferable that the maximum transmittance at a wavelength of 250 nm to 300 nm is 20% or more because the layer (ca) is easily cured by irradiating ultraviolet rays from the support side.
Further, the maximum transmittance at a wavelength of 250 nm to 300 nm of the pressure-sensitive adhesive film having the layer (b) formed on the support is preferably 20% or more, more preferably 40% or more, and 60% or more. Is most preferred.
 支持体の膜厚は特に限定されないが、10μm以上100μm以下であることが好ましく、10μm以上50μm以下であることがより好ましく、10μm以上40μm以下であることが更に好ましい。 The film thickness of the support is not particularly limited, but is preferably 10 μm or more and 100 μm or less, more preferably 10 μm or more and 50 μm or less, and further preferably 10 μm or more and 40 μm or less.
 支持体上に層(b)を形成した粘着フィルムとしては、市販の保護フィルムを好適に用いることができる。具体的には、藤森工業(株)製のAS3-304、AS3-305、AS3-306、AS3-307、AS3-310、AS3-0421、AS3-0520、AS3-0620、LBO-307、NBO-0424、ZBO-0421、S-362、TFB-4T3-367AS等が挙げられる。 A commercially available protective film can be suitably used as the adhesive film having the layer (b) formed on the support. Specifically, AS3-304, AS3-305, AS3-306, AS3-307, AS3-310, AS3-0421, AS3-0520, AS3-0620, LBO-307, NBO- manufactured by Fujimori Industry Co., Ltd. 0424, ZBO-0421, S-362, TFB-4T3-367AS and the like.
 工程(4-2)及び(7)では、粒子(a2)が層(ca)及び層(b)を合わせた層中に埋没した状態を維持しながら層(ca)を硬化するが、工程(4-2)の前の段階(すなわち工程(4)の完了後)において、粒子(a2)が層(ca)の支持体側の界面から突出していることが好ましい。こうすることで、工程(7)で層(ca)を硬化した後、工程(8)で層(b)を剥離すると、層(ca)の表面(工程(8)完了後における防眩層との界面とは反対側の表面)から粒子(a2)が突出しして形成されるモスアイ構造を有する防眩性反射防止フィルムを得ることができる。
 工程(4-2)の前の段階で、粒子(a2)が層(ca)の支持体側の界面から突出しているようにするためには、工程(4)で、硬化性化合物(a1)の一部を層(b)に浸透させることが好ましい。
In the steps (4-2) and (7), the layer (ca) is cured while maintaining the state in which the particles (a2) are buried in the combined layer of the layer (ca) and the layer (b). In the stage before 4-2) (that is, after completion of step (4)), it is preferable that the particles (a2) protrude from the interface on the support side of the layer (ca). In this way, after the layer (ca) is cured in the step (7), the layer (b) is peeled off in the step (8). Thus, an antiglare antireflection film having a moth-eye structure formed by projecting the particles (a2) from the surface opposite to the interface) can be obtained.
In order to make the particles (a2) protrude from the interface on the support side of the layer (ca) in the step before the step (4-2), in the step (4), the curable compound (a1) It is preferred to partially penetrate the layer (b).
[工程(4)]
 工程(4)は、粒子(a2)が、層(ca)及び層(b)を合わせた層中に埋没し、かつ、層(ca)の支持体側の界面から突出するように、層(ca)の支持体側の界面(層(ca)と層(b)の界面)の位置を仮支持体側に近づける工程である。
 なお、「粒子(a2)が、層(ca)及び層(b)を合わせた層中に埋没し、かつ、層(ca)の支持体側の界面から突出する」とは、別の言い方をすると、「粒子(a2)が、層(ca)及び層(b)を合わせた層から表出しておらず、かつ、層(ca)及び層(b)の両層にまたがって存在している(粒子(a2)が層(ca)と層(b)との界面を横切って存在している)」とも言える。
 工程(4)は、硬化性化合物(a1)の一部を層(b)に浸透させることにより行われることが好ましい。
 工程(4)において、硬化性化合物(a1)の一部を層(b)に浸透させる場合、工程(3)が完了した後の積層体を60℃未満に保つことが好ましく、40℃以下に保つことがより好ましい。温度を40℃以下に保つことで、硬化性化合物(a1)、化合物(a1c)、及び粘着剤の粘度を高く保つことができるとともに、粒子(a2)の熱運動を抑制することができるため、粒子(a2)の凝集による反射防止能の低下及びヘイズ又は白濁感の上昇を防ぐ効果が大きい。上記積層体を保つ温度の下限は特に限定されるものではなく、室温(25℃)であっても、室温より低い温度であってもよい。
[Step (4)]
In the step (4), the layer (ca) is formed so that the particles (a2) are buried in the layer including the layer (ca) and the layer (b) and protrude from the interface on the support side of the layer (ca). ) Is a step of bringing the position of the interface on the support side (interface between the layer (ca) and the layer (b)) closer to the temporary support side.
In other words, “the particles (a2) are buried in the combined layer (ca) and layer (b) and project from the interface on the support side of the layer (ca)”. "The particles (a2) are not exposed from the combined layer (ca) and layer (b), and are present across both layers (ca) and (b) ( It can also be said that the particles (a2) exist across the interface between the layer (ca) and the layer (b)).
The step (4) is preferably performed by allowing a part of the curable compound (a1) to penetrate into the layer (b).
In the step (4), when a part of the curable compound (a1) is allowed to penetrate into the layer (b), it is preferable to keep the laminate after the completion of the step (3) at less than 60 ° C. It is more preferable to keep. By keeping the temperature at 40 ° C. or lower, the viscosity of the curable compound (a1), the compound (a1c), and the pressure-sensitive adhesive can be kept high, and the thermal motion of the particles (a2) can be suppressed. The effect of preventing a decrease in antireflection ability due to aggregation of the particles (a2) and an increase in haze or cloudiness is great. The lower limit of the temperature at which the laminate is maintained is not particularly limited, and may be room temperature (25 ° C.) or lower than room temperature.
[工程(4-2)]
 工程(4-2)は、粒子(a2)が層(ca)及び層(b)を合わせた層中に埋没した状態で層(ca)の一部を硬化させる工程であり、具体的には、層(ca)中の硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部を硬化させる工程である。
 層(ca)の一部を硬化するとは、層(ca)中の硬化性化合物(a1)及び化合物(a1c)のすべてではなく、一部のみを硬化させることを表す。これにより、防眩性反射防止フィルムの反射防止層におけるバインダー樹脂を形成することができる。また、工程(4-2)の完了後の層(ca)中に未硬化の硬化性化合物(a1)を残存させることで、後述する工程(6)において、層(ca)と基材フィルムと防眩層を有する防眩フィルムの上記防眩層との貼合又は接着が可能となる。
 工程(4-2)で粒子(a2)が層(ca)及び層(b)を合わせた層中に埋没した状態を維持することで、粒子(a2)の凝集を抑制し、モスアイ構造を形成することができる。
 なお、層(b)を設けた後に層(b)又は層(ca)の成分の揮発などにより、粒子(a2)が層(ca)及び層(b)を合わせた層中に埋没した状態を維持できないと考えられる場合は、層(b)をあらかじめ厚くしておく等の操作を行うことができる。
 粒子(a2)が層(ca)及び層(b)を合わせた層中に埋没した状態を維持することで粒子凝集が抑制されるメカニズムとしては、層(ca)が硬化するまでに粒子(a2)が空気界面に露出すると、横毛管力と言われる表面張力由来の大きな引力が働く事が知られており、層(ca)及び層(b)を合わせた層中に粒子(a2)を埋没させておくことで上記引力を小さくできるためと推定している。
[Step (4-2)]
The step (4-2) is a step of curing a part of the layer (ca) in a state where the particles (a2) are buried in the combined layer of the layer (ca) and the layer (b). In this step, a part of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (ca) is cured.
Curing a part of the layer (ca) represents curing only a part of the curable compound (a1) and the compound (a1c) in the layer (ca). Thereby, the binder resin in the antireflection layer of the antiglare antireflection film can be formed. Further, by leaving the uncured curable compound (a1) in the layer (ca) after completion of the step (4-2), in the step (6) described later, the layer (ca), the base film, The antiglare film having the antiglare layer can be bonded or adhered to the antiglare layer.
By maintaining the state in which the particles (a2) are buried in the layer (ca) and the layer (b) in the step (4-2), the aggregation of the particles (a2) is suppressed and a moth-eye structure is formed. can do.
In addition, after providing the layer (b), the state in which the particles (a2) are buried in the combined layer (ca) and the layer (b) by volatilization of the components of the layer (b) or the layer (ca). If it cannot be maintained, an operation such as thickening the layer (b) in advance can be performed.
As a mechanism in which particle aggregation is suppressed by maintaining the state in which the particle (a2) is embedded in the layer (ca) and the layer (b), the particle (a2) is cured before the layer (ca) is cured. ) Is exposed to the air interface, it is known that a large attractive force derived from surface tension called lateral capillary force works, and the particles (a2) are buried in the layer combining the layers (ca) and (b). It is presumed that the attractive force can be reduced by letting it be kept.
 工程(4-2)における硬化は電離放射線を照射することで行うことができる。電離放射線の種類については、特に制限はなく、X線、電子線、紫外線、可視光、赤外線などが挙げられるが、紫外線が広く用いられる。例えば塗膜が紫外線硬化性であれば、紫外線ランプにより10mJ/cm~1000mJ/cmの照射量の紫外線を照射して層(ca)中の硬化性化合物(a1)の一部を硬化するのが好ましい。紫外線の照射量が10mJ/cm以上であれば、層(b)と粒子(a2)及び層(ca)を含む部分との密着力が適度に強くなり、仮支持体を剥離する工程(5)において仮支持体上に粒子(a2)及び層(ca)が残存しにくく、得られる防眩性反射防止フィルムに欠陥(反射率が下がらない領域)が生じにくい。また、紫外線の照射量が1000mJ/cm以下であれば、工程(4-2)の完了後の層(ca)中の硬化性化合物(a1)の残存量が減少しすぎず、工程(6)において層(ca)と防眩フィルムにおける防眩層との適度な接着力が得られる。工程(4-2)における照射量は特に限定されず、使用する層(b)と粒子(a2)及び層(ca)を含む部分との密着力、及び層(ca)と防眩層との密着力を考慮して適宜調整することができる。照射の際には、上記エネルギーを一度に当ててもよいし、分割して照射することもできる。紫外線ランプ種としては、メタルハライドランプ又は高圧水銀ランプ等が好適に用いられる。 Curing in the step (4-2) can be performed by irradiating with ionizing radiation. There is no restriction | limiting in particular about the kind of ionizing radiation, Although an X-ray, an electron beam, an ultraviolet-ray, visible light, infrared rays etc. are mentioned, an ultraviolet-ray is used widely. For example, if the coating film is UV curable, to cure a portion of an irradiation dose of 10mJ / cm 2 ~ 1000mJ / cm 2 by an ultraviolet lamps layer (ca) curable compound in (a1) Is preferred. When the irradiation amount of ultraviolet rays is 10 mJ / cm 2 or more, the adhesion between the layer (b) and the part containing the particles (a2) and the layer (ca) is moderately strengthened, and the temporary support is removed (5 ), The particles (a2) and the layer (ca) hardly remain on the temporary support, and defects (regions in which the reflectance does not decrease) hardly occur in the resulting antiglare antireflection film. In addition, when the irradiation amount of ultraviolet rays is 1000 mJ / cm 2 or less, the residual amount of the curable compound (a1) in the layer (ca) after the completion of the step (4-2) does not decrease excessively, and the step (6 ), An appropriate adhesive force between the layer (ca) and the antiglare layer in the antiglare film can be obtained. The amount of irradiation in the step (4-2) is not particularly limited, and the adhesion between the layer (b) to be used and the part containing the particles (a2) and the layer (ca), and the layer (ca) and the antiglare layer It can adjust suitably in consideration of adhesive force. At the time of irradiation, the above-mentioned energy may be applied at once, or irradiation may be performed in divided portions. As the ultraviolet lamp type, a metal halide lamp or a high-pressure mercury lamp is preferably used.
 工程(4-2)における硬化時の酸素濃度は0~1.0体積%であることが好ましく、0~0.1体積%であることがさらに好ましく、0~0.05体積%であることが最も好ましい。硬化時の酸素濃度を1.0体積%よりも小さくすることで、酸素による硬化阻害の影響を受けにくくなり、強固な膜となる。 The oxygen concentration at the time of curing in step (4-2) is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and 0 to 0.05% by volume. Is most preferred. By making the oxygen concentration at the time of curing smaller than 1.0% by volume, it becomes difficult to be affected by the inhibition of curing by oxygen and becomes a strong film.
 工程(4-2)において、層(ca)中の硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部を硬化させる際、支持体の層(ca)側とは反対側から紫外線を照射してもよいし、仮支持体側から紫外線を照射してもよい。 In the step (4-2), when a part of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (ca) is cured, the layer (ca) side of the support and May be irradiated with ultraviolet rays from the opposite side, or may be irradiated with ultraviolet rays from the temporary support side.
[工程(5)]
 工程(5)は、工程(4)又は(4-2)の完了後の積層体から仮支持体を剥離する工程である。
 工程(4)又は(4-2)の完了後の積層体から仮支持体を剥離できるためには、層(ca)と仮支持体との間に適度な接着力が付与されていることにより、層(ca)及び粒子(a2)を含む部分を粘着フィルムに転写できる状態となっていることが好ましい。例えば、製造プロセス中の積層体の曲げ又は搬送テンションでは層(ca)及び粒子(a2)を含む部分は仮支持体から脱離しないが、層(b)に接触させた際、又は層(b)に接触させて紫外線照射を施した際に層(ca)及び粒子(a2)を含む部分が脱離する状態となっていることが好ましい。
[Step (5)]
Step (5) is a step of peeling the temporary support from the laminate after completion of step (4) or (4-2).
In order to be able to peel the temporary support from the laminate after completion of the step (4) or (4-2), an appropriate adhesive force is applied between the layer (ca) and the temporary support. It is preferable that the portion including the layer (ca) and the particles (a2) can be transferred to the adhesive film. For example, the layer containing the layer (ca) and the particles (a2) is not detached from the temporary support by bending or conveying tension of the laminate during the manufacturing process, but when contacting the layer (b) or the layer (b It is preferable that the portion including the layer (ca) and the particles (a2) is detached when being irradiated with ultraviolet rays.
 工程(2)、(3)、(4)、(4-2)、(5)において、層(ca)の表面に直交する方向には粒子(a2)が複数存在しないことが好ましい。
 ここで、層(ca)の表面に直交する方向には粒子(a2)が複数存在しないとは、層(ca)の面内の10μm×10μmを走査型電子顕微鏡(SEM)で3視野観察した際に、表面に直交する方向に複数重なって存在していない状態の粒子(a2)の個数の割合が、80%以上であることを表し、好ましくは95%以上である。
In the steps (2), (3), (4), (4-2) and (5), it is preferable that a plurality of particles (a2) do not exist in the direction perpendicular to the surface of the layer (ca).
Here, the fact that a plurality of particles (a2) do not exist in the direction orthogonal to the surface of the layer (ca) is that 10 μm × 10 μm in the plane of the layer (ca) was observed with three fields of view with a scanning electron microscope (SEM). In this case, the ratio of the number of particles (a2) that are not overlapped in the direction orthogonal to the surface is 80% or more, preferably 95% or more.
 工程(4)、(4-2)、(5)において、層(ca)の膜厚と層(b)の膜厚の合計の膜厚が、粒子(a2)の平均一次粒径よりも大きいことが好ましい。
 層(ca)の膜厚と層(b)の膜厚の合計の膜厚が、粒子(a2)の平均一次粒径よりも大きいと粒子(a2)が層(ca)及び層(b)を合わせた層中に埋没した状態にすることができるため好ましい。
In the steps (4), (4-2), and (5), the total thickness of the layer (ca) and the layer (b) is larger than the average primary particle size of the particles (a2). It is preferable.
When the total film thickness of the layer (ca) and the layer (b) is larger than the average primary particle size of the particles (a2), the particles (a2) This is preferable because it can be buried in the combined layers.
 さらに、工程(4)、(4-2)、(5)において、層(ca)の膜厚は、粒子(a2)の平均一次粒径の5~70%であることが好ましく、20~40%であることがより好ましい。層(ca)の膜厚が粒子(a2)の平均一次粒径の5%以上であると、後述する工程(8)で粘着フィルムを剥離して、層(ca)及び粒子(a2)を含む部分を防眩フィルムにおける防眩層へ転写した後に得られる防眩性反射防止フィルムから粒子(a2)が脱落しにくく耐擦傷性が向上するため好ましい。また、層(ca)の膜厚が粒子(a2)の平均一次粒径の70%以下であると屈折率の傾斜が十分となり、十分な反射防止性能が得られる。層(ca)の膜厚が粒子(a2)の平均一次粒径の20~40%であると、十分な耐擦傷性と反射防止能が両立できるため好ましい。後述の工程(6)~(10)においても同様である。
 工程(5)の完了後の層(ca)の膜厚は、層(ca)の膜断面を、走査型電子顕微鏡(SEM)で観察し、任意に100箇所の膜厚を計測してその平均値を求めた場合に、10nm~100nm(より好ましくは20nm~90nm、さらに好ましくは30nm~70nm)となるように調整するのが好ましい。
Further, in the steps (4), (4-2), and (5), the thickness of the layer (ca) is preferably 5 to 70% of the average primary particle diameter of the particles (a2), and 20 to 40 % Is more preferable. When the film thickness of the layer (ca) is 5% or more of the average primary particle diameter of the particles (a2), the pressure-sensitive adhesive film is peeled off in the step (8) described later, and the layer (ca) and the particles (a2) are included. The particles (a2) are less likely to fall off from the antiglare antireflection film obtained after the portion is transferred to the antiglare layer in the antiglare film, which is preferable. Moreover, when the film thickness of the layer (ca) is 70% or less of the average primary particle diameter of the particles (a2), the refractive index is sufficiently inclined, and sufficient antireflection performance is obtained. It is preferable that the film thickness of the layer (ca) is 20 to 40% of the average primary particle diameter of the particles (a2) since sufficient scratch resistance and antireflection ability can be achieved at the same time. The same applies to steps (6) to (10) described later.
The film thickness of the layer (ca) after completion of the step (5) is obtained by observing the film cross section of the layer (ca) with a scanning electron microscope (SEM), arbitrarily measuring the film thickness at 100 locations, and averaging When the value is obtained, it is preferably adjusted to be 10 nm to 100 nm (more preferably 20 nm to 90 nm, still more preferably 30 nm to 70 nm).
 工程(5)が完了して得られる積層体における層(ca)の層(b)側とは反対側の面からは粒子(a2)が突出していないことが好ましい。
 工程(5)が完了して得られる積層体における層(ca)の層(b)側とは反対側の面の表面粗さは、30nm以下が好ましく、10nm以下がより好ましい。
 層(ca)の層(b)側とは反対側の面の表面粗さが30nm以下であると、粒子(a2)が層(ca)の層(b)側とは反対側の面から突出しておらず、後述する工程(8)で粘着フィルムを剥離して、層(ca)及び粒子(a2)を含む部分(反射防止層)を防眩フィルムにおける防眩層へ転写する際に転写されやすく、また、転写後に反射防止層に欠陥が生じにくい。また、層(ca)の層(b)側とは反対側の面の表面粗さがが10nm以下であると工程(6)において層(ca)と防眩層とを貼り合せる際に良好な密着性を確保することができ、防眩性反射防止フィルムのヘイズの上昇を引き起こす転写層(粒子(a2)及び層(ca)を含む部分)-防眩層間の空隙発生を抑制することができるため好ましい。
 本発明において、表面粗さはSPA-400(日立ハイテクノサイエンス製)を使用し、測定範囲5μm×5μm、測定モード:DFM,測定周波数:2Hzの測定条件で測定した。
It is preferable that the particles (a2) do not protrude from the surface opposite to the layer (b) side of the layer (ca) in the laminate obtained by completing the step (5).
30 nm or less is preferable and, as for the surface roughness of the surface on the opposite side to the layer (b) side of the layer (ca) in the laminated body obtained by completing a process (5), 10 nm or less is more preferable.
When the surface roughness of the surface of the layer (ca) opposite to the layer (b) side is 30 nm or less, the particles (a2) protrude from the surface of the layer (ca) opposite to the layer (b) side. However, it is transferred when the adhesive film is peeled off in the step (8) to be described later and the portion (antireflection layer) containing the layer (ca) and the particles (a2) is transferred to the antiglare layer in the antiglare film. It is easy to cause defects in the antireflection layer after transfer. Moreover, when the surface roughness of the surface of the layer (ca) opposite to the layer (b) side is 10 nm or less, it is favorable when the layer (ca) and the antiglare layer are bonded together in the step (6). Adhesion can be ensured, and the generation of voids between the transfer layer (part containing particles (a2) and layer (ca)) and the antiglare layer that causes an increase in haze of the antiglare antireflection film can be suppressed. Therefore, it is preferable.
In the present invention, the surface roughness was measured using SPA-400 (manufactured by Hitachi High-Technology) under the measurement conditions of measurement range 5 μm × 5 μm, measurement mode: DFM, measurement frequency: 2 Hz.
 工程(5)が完了して得られる積層体における粒子(a2)及び層(ca)を含む部分は、粘着フィルムの層(b)から剥離できるものである。
 粒子(a2)及び層(ca)を含む部分が粘着フィルムの層(b)から剥離できるとは、粒子(a2)及び層(ca)を含む部分と粘着フィルムの層(b)との間に適度な接着力が付与されていることにより、後述の転写工程(工程(8))において粒子(a2)及び層(ca)を含む部分が層(b)の表面から脱離して防眩フィルムにおける防眩層表面に転写できる状態となっていることを示す。粒子(a2)及び層(ca)を含む部分(反射防止層)が防眩層表面に転写できる、すなわち転写性があるとは、転写後の防眩性反射防止フィルムの転写面(反射防止層を有する面)とは反対側に、粘着剤付き黒色ポリエチレンテレフタレートシート(巴川製紙所製;「くっきりみえーる」)を貼り合わせて目視観察した際、反射防止層を転写する前よりも反射率が下がっている領域の面積の割合が、転写する面積に対して、80%以上であることを表す。粒子(a2)及び層(ca)を含む部分と層(b)との接着力については特に限定されないが、例えば幅25mmの転写部材(工程(5)が完了して得られる積層体)の粒子(a2)及び層(ca)を含む部分を接着剤を用いて厚み1.1mmのガラス基材に固定化し、粒子(a2)及び層(ca)を含む部分と層(b)を90°方向に速度1000mm/minで剥離させたときの剥離力によって測定することができる。上記方法によって測定した剥離力が0.2N/25mm~4.0N/25mmであることが好ましく、0.6N/25mm~4.0N/25mmであることがより好ましい。剥離力が0.6N/25mm以上であると、工程(5)において、仮支持体を剥離する際に、仮支持体上に粒子(a2)及び層(ca)の一部が残存しにくいため、最終的に得られる防眩性反射防止フィルムの反射率及びヘイズが低下する。剥離力が4.0N/25mm以下であると、工程(8)において、粘着フィルムを剥離する際、層(b)に粒子(a2)の一部が残存しにくいため、最終的に得られる防眩性反射防止フィルムの反射率及びヘイズが低下する。
The part containing the particles (a2) and the layer (ca) in the laminate obtained by completing the step (5) can be peeled from the layer (b) of the adhesive film.
That the part containing the particles (a2) and the layer (ca) can be separated from the layer (b) of the adhesive film means that the part containing the particles (a2) and the layer (ca) and the layer (b) of the adhesive film In the anti-glare film, the portion including the particles (a2) and the layer (ca) is detached from the surface of the layer (b) in the transfer step (step (8)) to be described later by applying an appropriate adhesive force. It shows that it can be transferred to the surface of the antiglare layer. The portion including the particles (a2) and the layer (ca) (antireflection layer) can be transferred to the surface of the antiglare layer, that is, has transferability, the transfer surface (antireflection layer) of the antiglare antireflection film after transfer. When the black polyethylene terephthalate sheet with adhesive (manufactured by Yodogawa Paper; “Kikkiri Mieru”) is attached to the opposite side to the opposite side, the reflectance is higher than before the antireflection layer is transferred. It represents that the area ratio of the region where is lowered is 80% or more with respect to the area to be transferred. The adhesive force between the layer (b) and the part including the particle (a2) and the layer (ca) is not particularly limited. For example, particles of a transfer member having a width of 25 mm (a laminate obtained by completing the step (5)) The part including (a2) and the layer (ca) is fixed to a glass substrate having a thickness of 1.1 mm using an adhesive, and the part including the particle (a2) and the layer (ca) and the layer (b) are oriented in a 90 ° direction. Can be measured by the peeling force when peeled at a speed of 1000 mm / min. The peel force measured by the above method is preferably 0.2 N / 25 mm to 4.0 N / 25 mm, more preferably 0.6 N / 25 mm to 4.0 N / 25 mm. When the peeling force is 0.6 N / 25 mm or more, part of the particles (a2) and the layer (ca) hardly remain on the temporary support when the temporary support is peeled off in the step (5). The reflectance and haze of the antiglare antireflection film finally obtained are lowered. When the peeling force is 4.0 N / 25 mm or less, in the step (8), when the adhesive film is peeled off, a part of the particles (a2) hardly remains in the layer (b). The reflectance and haze of the antiglare antireflection film are reduced.
 工程(5)が完了して得られる積層体は、積層体の全ヘイズから、積層体から粒子(a2)及び層(ca)を含む部分を取り除いてなる部分のヘイズを差し引いた値(Δヘイズ)が1.00%以下であることが好ましい。
 ヘイズの測定は、フィルム試料40mm×80mmを、25℃、相対湿度60%で、日本電色工業(株)製ヘーズメーターNDH4000で、JIS-K7136(2000年)に従って測定することができる。
 Δヘイズはマイナスの値であっても良い。Δヘイズは、1.00%以下であることが好ましく、0.80%以下であることがより好ましく、0.40%以下であることがさらに好ましい。Δヘイズを1.00%以下とすることで、工程(5)が完了して得られる積層体を用いて得られる防眩性反射防止フィルムのヘイズを低くし、良好な反射防止性能を得ることが可能となる。Δヘイズが0.40%以下である場合は特に、工程(5)が完了して得られる積層体を用いて得られる防眩性反射防止フィルムの転写面とは反対側を粘着剤付き黒色ポリエチレンテレフタレートシート(巴川製紙所製;「くっきりみえーる」)に貼り合わせて目視観察した際でもヘイズによる白濁感が無く、優れた防眩性反射防止フィルムが得られる。
The layered product obtained by completing step (5) is a value obtained by subtracting the haze of the part obtained by removing the part containing particles (a2) and layer (ca) from the layered product from the total haze of the layered product (Δ haze). ) Is preferably 1.00% or less.
The haze can be measured according to JIS-K7136 (2000) with a haze meter NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd. at 25 ° C. and 60% relative humidity at a film sample of 40 mm × 80 mm.
Δhaze may be a negative value. The Δ haze is preferably 1.00% or less, more preferably 0.80% or less, and further preferably 0.40% or less. By setting the Δhaze to 1.00% or less, the haze of the antiglare antireflection film obtained using the laminate obtained by completing the step (5) is lowered, and good antireflection performance is obtained. Is possible. Especially when Δhaze is 0.40% or less, black polyethylene with pressure-sensitive adhesive is provided on the side opposite to the transfer surface of the antiglare antireflection film obtained by using the laminate obtained by completing step (5). Even when bonded to a terephthalate sheet (manufactured by Yodogawa Paper Mill; “Kikkiri Mieru”) and visually observed, there is no cloudiness due to haze, and an excellent antiglare antireflection film can be obtained.
 なお、工程(5)が完了して得られる積層体における層(ca)の表面硬化率は、10~70%である。表面硬化率が10%以上であることで、転写の際に反射防止層(すなわち、層(ca)及び粒子(a2)を含む部分)の一部が変形し、反射防止能が低下することを防ぐことが可能であり、表面硬化率が70%以下であることで、防眩層と反射防止層との密着性を良好に保つことができる。 The surface hardening rate of the layer (ca) in the laminate obtained by completing the step (5) is 10 to 70%. When the surface curing rate is 10% or more, a part of the antireflection layer (that is, the portion including the layer (ca) and the particles (a2)) is deformed at the time of transfer, and the antireflection ability is reduced. It is possible to prevent this, and when the surface curing rate is 70% or less, the adhesion between the antiglare layer and the antireflection layer can be kept good.
[工程(6)]
 工程(6)は、工程(5)が完了して得られる積層体における層(ca)と防眩フィルムの防眩層とを貼り合せる工程である。
 層(ca)と防眩層とを貼り合わせる方法としては特に限定されず公知の方法を用いることができ、たとえばロールラミネート法が挙げられる。
 層(ca)と防眩層とが接するように防眩フィルムを貼り合わせることが好ましい。
[Step (6)]
Step (6) is a step of bonding the layer (ca) in the laminate obtained by completing step (5) and the antiglare layer of the antiglare film.
The method for laminating the layer (ca) and the antiglare layer is not particularly limited, and a known method can be used, for example, a roll laminating method.
The antiglare film is preferably bonded so that the layer (ca) and the antiglare layer are in contact with each other.
 なお、本発明では工程(6)において、工程(5)が完了して得られる積層体における層(ca)と防眩フィルムの防眩層との間に接着層を設ける工程を含むことも好ましい。接着層については上述した通りである。 In the present invention, the step (6) preferably includes a step of providing an adhesive layer between the layer (ca) in the laminate obtained by completing the step (5) and the antiglare layer of the antiglare film. . The adhesive layer is as described above.
 また、本発明では工程(6)において、工程(5)が完了して得られる積層体における層(ca)と防眩フィルムの防眩層とを貼り合せた後、加熱工程を設けることも好ましい。加熱工程を行うことで、防眩層と反射防止層との密着性を向上させることができ、防眩性反射防止フィルムの耐擦傷性を向上させることができる。 In the present invention, in step (6), it is also preferable to provide a heating step after laminating the layer (ca) in the laminate obtained by completing step (5) and the antiglare layer of the antiglare film. . By performing the heating step, the adhesion between the antiglare layer and the antireflection layer can be improved, and the scratch resistance of the antiglare and antireflection film can be improved.
[工程(7)]
 工程(7)は、粒子(a2)が、層(b)及び層(ca)を合わせた層中に埋没した状態で層(ca)を硬化させる工程であり、具体的には、層(ca)中の硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の一部又は全部を硬化させる工程である。なお、層(ca)中の硬化性化合物(a1)及び化合物(a1c)からなる群より選択される化合物の全部を硬化させるとは、通常の方法で硬化させた場合に、硬化しきれなかった化合物が残っている場合も含むものである。工程(7)における硬化率については、特に限定されないが、膜強度の観点から硬化率が60%以上であることが好ましく、80%以上であることがより好ましい。
 工程(7)により、上記工程(6)で貼り合せた防眩フィルムにおける防眩層と層(ca)とを接着させることができる。
[Step (7)]
The step (7) is a step of curing the layer (ca) in a state where the particles (a2) are buried in the combined layer of the layer (b) and the layer (ca). Specifically, the step (7) ) In which a part or all of the compound selected from the group consisting of the curable compound (a1) and the compound (a1c) is cured. It should be noted that the curing of all of the compounds selected from the group consisting of the curable compound (a1) and the compound (a1c) in the layer (ca) could not be cured when cured by a normal method. This includes the case where the compound remains. Although it does not specifically limit about the hardening rate in a process (7), From a viewpoint of film | membrane strength, it is preferable that a hardening rate is 60% or more, and it is more preferable that it is 80% or more.
By the step (7), the antiglare layer and the layer (ca) in the antiglare film bonded in the step (6) can be adhered.
 工程(7)における硬化は上記工程(4-2)に記載の条件と同様の条件で行うことが好ましい。 The curing in the step (7) is preferably performed under the same conditions as described in the above step (4-2).
[工程(8)]
 工程(8)は、工程(7)で得られた積層体から粘着フィルムを剥離する工程である。
 工程(8)において粘着フィルムを剥離するためには、工程(5)が完了して得られる積層体における粒子(a2)及び層(ca)を含む部分と層(b)との接着力の指標として、上記測定法にて測定した剥離力が、0.2N/25mm以上4.0N/25mm以下であることが好ましい。
[Step (8)]
Step (8) is a step of peeling the adhesive film from the laminate obtained in step (7).
In order to peel off the pressure-sensitive adhesive film in the step (8), an index of the adhesive force between the layer (b) and the part containing the particles (a2) and the layer (ca) in the laminate obtained by completing the step (5). As above, it is preferable that the peeling force measured by the above measurement method is 0.2 N / 25 mm or more and 4.0 N / 25 mm or less.
 工程(8)が完了した後には、層(ca)の表面に粒子(a2)によって形成された凹凸形状からなるモスアイ構造を有する防眩性反射防止フィルムが得られるが、その後に更に工程(9)及び(10)を行ってもよい。 After the step (8) is completed, an antiglare antireflection film having a moth-eye structure having a concavo-convex shape formed by particles (a2) on the surface of the layer (ca) is obtained. ) And (10) may be performed.
[工程(9)]
 工程(9)は、粒子(a2)が、層(ca)の基材フィルム側の界面とは反対側の界面から突出した状態で、層(ca)を硬化させる工程であり、具体的には、層(ca)中の硬化性化合物(a1)及び化合物(a1c)を全て硬化させる工程である。なお、前述の工程(7)で層(ca)中の硬化性化合物(a1)及び化合物(a1c)を全て硬化させた場合は、工程(9)を行わなくてもよい。
[Step (9)]
Step (9) is a step of curing the layer (ca) in a state where the particles (a2) protrude from the interface on the side opposite to the base film side interface of the layer (ca). Specifically, In this step, the curable compound (a1) and the compound (a1c) in the layer (ca) are all cured. In the case where the curable compound (a1) and the compound (a1c) in the layer (ca) are all cured in the step (7), the step (9) may not be performed.
 工程(9)における硬化は上記工程(4-2)に記載の条件と同様の条件で行うことが好ましい。
 工程(9)において、層(ca)の基材フィルム側とは反対側から紫外線を照射して層(ca)中の硬化性化合物(a1)及び化合物(a1c)を硬化させることが製造適正上好ましい。
The curing in the step (9) is preferably performed under the same conditions as described in the above step (4-2).
In the process (9), it is suitable for manufacturing to cure the curable compound (a1) and the compound (a1c) in the layer (ca) by irradiating ultraviolet rays from the side opposite to the base film side of the layer (ca). preferable.
 工程(9)の完了後の層(ca)は、層中に化合物(a1c)を含む層である。ただし、前述の通り、通常の方法で硬化させた場合に、硬化しきれなかった化合物が残っていてもよい。 The layer (ca) after completion of the step (9) is a layer containing the compound (a1c) in the layer. However, as described above, when cured by a normal method, a compound that could not be cured may remain.
[工程(10)]
 工程(10)は、工程(9)完了後の積層体を溶剤で洗浄する工程である。
 本発明の防眩性反射防止フィルムの製造においては、支持体及び層(b)を剥離した際にも層(ca)側に粘着剤が残りにくいが、工程(10)により、基材フィルム、防眩層、及び層(ca)は溶解せずに、粘着剤を溶解する溶剤(メチルイソブチルケトン、メチルエチルケトン、アセトン等)を用いて洗浄してもよい。
[Step (10)]
Step (10) is a step of washing the laminate after completion of step (9) with a solvent.
In the production of the antiglare antireflection film of the present invention, the adhesive is unlikely to remain on the layer (ca) side even when the support and the layer (b) are peeled off. You may wash | clean using the solvent (Methyl isobutyl ketone, methyl ethyl ketone, acetone, etc.) which melt | dissolves an adhesive, without melt | dissolving an anti-glare layer and a layer (ca).
[偏光板保護フィルム]
 本発明の防眩性反射防止フィルムは、偏光膜の表面保護フィルム(偏光板保護フィルム)として用いることができる。
[Polarizing plate protective film]
The antiglare antireflection film of the present invention can be used as a surface protective film (polarizing plate protective film) of a polarizing film.
 偏光子との貼り合せの前に、本発明の防眩性反射防止フィルムをケン化処理することもできる。ケン化処理は、加温したアルカリ水溶液中に一定時間防眩性反射防止フィルムを浸漬し、水洗を行った後、中和するための酸洗浄を行う処理である。本発明の防眩性反射防止フィルムにおける基材フィルムの偏光膜と貼り合わせる側の面が親水化されればどのような処理条件でも構わないため、処理剤の濃度、処理剤液の温度、処理時間は適宜決定されるが、通常生産性を確保する必要から3分以内で処理可能なように処理条件を決定する。一般的な条件としては、アルカリ濃度が3質量%~25質量%であり、処理温度は30℃~70℃、処理時間は15秒~5分である。アルカリ処理に用いるアルカリ種としては水酸化ナトリウム、水酸化カリウムが好適であり、酸洗浄に使用する酸としては硫酸が好適であり、水洗に用いる水はイオン交換水又は純水が好適である。
 反射防止層を設けたのと反対側の基材フィルム表面をケン化処理し、ポリビニルアルコール水溶液を用いて偏光子に貼り合せる。
Prior to bonding with the polarizer, the antiglare antireflection film of the present invention can be saponified. The saponification treatment is a treatment in which an antiglare antireflection film is immersed in a heated alkaline aqueous solution for a certain time, washed with water, and then washed with acid for neutralization. In the antiglare antireflection film of the present invention, any treatment conditions may be used as long as the surface of the substrate film to be bonded to the polarizing film is hydrophilized, so the concentration of the treatment agent, the temperature of the treatment solution, the treatment Although the time is appropriately determined, the processing conditions are determined so that processing can be performed within 3 minutes from the need to ensure normal productivity. As general conditions, the alkali concentration is 3% by mass to 25% by mass, the treatment temperature is 30 ° C. to 70 ° C., and the treatment time is 15 seconds to 5 minutes. Sodium hydroxide and potassium hydroxide are preferable as the alkali species used for the alkali treatment, sulfuric acid is preferable as the acid used for the acid cleaning, and ion-exchanged water or pure water is preferable as the water used for the water cleaning.
The surface of the base film opposite to the side on which the antireflection layer is provided is saponified and bonded to a polarizer using a polyvinyl alcohol aqueous solution.
 また本発明の防眩性反射防止フィルムと偏光子との貼り合せに、紫外線硬化型の接着剤を使用することもできる。本発明の反射防止層を設けたのと反対側の基材フィルム表面に紫外線硬化型の接着剤層を設けることが好ましく、特に短時間乾燥による生産性向上を目的として、特定の紫外線硬化樹脂を用いて、偏光子に貼りあわせることが好ましい。例えば特開2012-144690号公報には、各々のホモポリマーのTgが60℃以上かつ、SP(Solubility Parameter)値が29~32のラジカル重合性化合物20~60質量%と、SP値が18~21のラジカル重合性化合物10~30質量%と、SP値が21~23のラジカル重合性化合物20~60質量%の3種を含有した接着剤層を介して、偏光子に貼りあわせ、接着性、耐久性、耐水性を向上させている。この接着剤層を用いる場合は偏光子との貼り合せ前に本発明の防眩性反射防止フィルムをケン化処理をしても良いし、しなくても良い。 Further, an ultraviolet curable adhesive may be used for bonding the antiglare antireflection film of the present invention and the polarizer. It is preferable to provide an ultraviolet curable adhesive layer on the surface of the base film opposite to the antireflection layer of the present invention, and a specific ultraviolet curable resin is preferably used for the purpose of improving productivity by drying for a short time. It is preferable to use and attach to a polarizer. For example, Japanese Patent Application Laid-Open No. 2012-144690 discloses that each homopolymer has a Tg of 60 ° C. or more, a radically polymerizable compound (SP) having a SP (Solubility Parameter) value of 29 to 32, and an SP value of 18 to Adhesive properties are bonded to a polarizer through an adhesive layer containing 10 to 30% by mass of a 21 radical polymerizable compound and 20 to 60% by mass of a radical polymerizable compound having an SP value of 21 to 23. Improves durability and water resistance. When this adhesive layer is used, the antiglare antireflection film of the present invention may or may not be saponified before being bonded to the polarizer.
[偏光板]
 本発明の偏光板は、偏光子と上記偏光子を保護する少なくとも1枚の保護フィルムを有する偏光板であって、上記保護フィルムの少なくとも1枚が本発明の防眩性反射防止フィルムである。偏光子は保護フィルム(本発明の防眩性反射防止フィルム)と本発明の防眩性反射防止フィルム以外のフィルムに挟まれていても良いし、保護フィルムと偏光子との組み合わせでも良い。
 上記本発明の防眩性反射防止フィルム以外のフィルムは、光学異方層を含んでなる光学補償層を有する光学補償フィルムであることが好ましい。光学補償フィルム(位相差フィルム)は、液晶表示画面の視野角特性を改良することができる。光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点では、特開2001-100042号公報に記載されている光学補償フィルムが好ましい。
[Polarizer]
The polarizing plate of the present invention is a polarizing plate having a polarizer and at least one protective film for protecting the polarizer, and at least one of the protective films is the antiglare antireflection film of the present invention. The polarizer may be sandwiched between films other than the protective film (the antiglare antireflection film of the present invention) and the antiglare antireflection film of the present invention, or may be a combination of a protective film and a polarizer.
The film other than the antiglare antireflection film of the present invention is preferably an optical compensation film having an optical compensation layer comprising an optically anisotropic layer. The optical compensation film (retardation film) can improve the viewing angle characteristics of the liquid crystal display screen. As the optical compensation film, known ones can be used, but the optical compensation film described in JP-A-2001-100042 is preferable from the viewpoint of widening the viewing angle.
 偏光子には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜がある。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造することができる。 Polarizers include iodine-based polarizing films, dye-based polarizing films using dichroic dyes, and polyene-based polarizing films. The iodine-based polarizing film and the dye-based polarizing film can be generally produced using a polyvinyl alcohol film.
[画像表示装置]
 本発明の画像表示装置は、本発明の防眩性反射防止フィルム又は偏光板を有する。
 本発明の防眩性反射防止フィルム及び偏光板は液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に好適に用いることができ、特に液晶表示装置が好ましい。
 一般的に、液晶表示装置は、液晶セル及びその両側に配置された2枚の偏光板を有し、液晶セルは、2枚の電極基板の間に液晶を担持している。更に、光学異方性層が、液晶セルと一方の偏光板との間に一枚配置されるか、又は液晶セルと双方の偏光板との間に2枚配置されることもある。液晶セルは、TNモード、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane Switching)モード又はECB(Electrically Controlled Birefringence)モードであることが好ましい。
[Image display device]
The image display device of the present invention has the antiglare antireflection film or polarizing plate of the present invention.
The antiglare antireflection film and polarizing plate of the present invention are suitable for image display devices such as liquid crystal display devices (LCD), plasma display panels (PDP), electroluminescence displays (ELD), and cathode ray tube display devices (CRT). A liquid crystal display device is particularly preferable.
In general, a liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof, and the liquid crystal cell carries a liquid crystal between two electrode substrates. Furthermore, one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or two optically anisotropic layers may be disposed between the liquid crystal cell and both polarizing plates. The liquid crystal cell is preferably a TN mode, a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane Switching) mode, or an ECB (Electrically Controlled Birefringence) mode.
 本発明の防眩性反射防止フィルム及び偏光板は、次世代の画像表示装置である、高コントラストの自発光型ディスプレイ、具体的には、有機エレクトロルミネッセンス(OLED)ディスプレイや、LEDアレイディスプレイ、フィールドエミッションディスプレイ等に用いることもできる。本発明の防眩性反射防止フィルム、又は本発明の防眩性反射防止フィルムを持つ偏光板を、自発光型ディスプレイの表面に用いることで、外光の反射を抑制することができ、特に明室下でのコントラスト向上に役立つ。 The anti-glare antireflection film and polarizing plate of the present invention are high-contrast self-luminous displays, specifically organic electroluminescence (OLED) displays, LED array displays, fields, which are next-generation image display devices. It can also be used for an emission display. By using the antiglare antireflection film of the present invention or the polarizing plate having the antiglare antireflection film of the present invention on the surface of a self-luminous display, reflection of external light can be suppressed. Helps improve contrast in the room.
 但し自発光型ディスプレイの表面に用いる場合は、液晶表示装置よりも発光素子までの距離が短く、最表面までに存在する光学フィルム枚数が少なくなる傾向が高く、表面フィルムとしては発光素子の光に対する耐久性が必須となる。特にエネルギーの高い青色光への耐久性が高いことが要求される。本発明の防眩性反射防止フィルムの中でも、シリカ粒子を用いたモスアイ構造を持つ防眩性反射防止フィルムにおいて、より青色光に対する耐久性を向上させるには、反射防止層を形成するバインダー樹脂の平均ケイ素含有率=Si/Cが0.01以上であることが好ましく、0.05以上であることがより好ましく、更に0.08以上であることが好ましい。なお、含有率Si/Cはバインダー樹脂中のケイ素と炭素とのモル比を表し、例えばXPS表面分析装置を用いて、ケイ素含有率(Si)および炭素原子含有率(C)を測定することにより求めることができる。 However, when used on the surface of a self-luminous display, the distance to the light emitting element is shorter than the liquid crystal display device, and the number of optical films existing up to the outermost surface tends to be small. Durability is essential. In particular, high durability against high-energy blue light is required. Among the antiglare antireflection films of the present invention, in the antiglare antireflection film having a moth-eye structure using silica particles, in order to further improve the durability against blue light, the binder resin forming the antireflection layer is used. Average silicon content = Si / C is preferably 0.01 or more, more preferably 0.05 or more, and further preferably 0.08 or more. In addition, content rate Si / C represents the molar ratio of the silicon and carbon in binder resin, for example by measuring a silicon content rate (Si) and a carbon atom content rate (C) using an XPS surface analyzer. Can be sought.
 本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。 In order to describe the present invention in detail, examples will be described below, but the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.
<防眩層形成用塗布液の調製>
 下記に記載の組成で各成分を添加し、得られた組成物をミキシングタンクに投入し、攪拌し、孔径30μmのポリプロピレン製フィルターで濾過して防眩層形成用塗布液BO-1~BO-8とした。
<Preparation of coating solution for forming antiglare layer>
Each component was added with the composition described below, and the resulting composition was put into a mixing tank, stirred, filtered through a polypropylene filter having a pore size of 30 μm, and coating solutions BO-1 to BO— for forming an antiglare layer. It was set to 8.
(防眩層形成用塗布液BO-1)
 PET-30              57.0質量部
 M-321               34.0質量部
 イルガキュア127            3.0質量部
 SSX-108              4.5質量部
 CAB                  1.4質量部
 SP-13                0.1質量部
 メチルエチルケトン(MEK)      30.0質量部
 メチルイソブチルケトン(MiBK)   70.0質量部
(Anti-glare layer forming coating solution BO-1)
PET-30 57.0 parts M-321 34.0 parts Irgacure 127 3.0 parts SSX-108 4.5 parts CAB 1.4 parts SP-13 0.1 parts methyl ethyl ketone (MEK) 30 0.0 part by mass Methyl isobutyl ketone (MiBK) 70.0 parts by mass
(防眩層形成用塗布液BO-2)
 PET-30              49.0質量部
 M-321               29.5質量部
 イルガキュア127            3.0質量部
 SSX-108             17.0質量部
 CAB                  1.4質量部
 SP-13                0.1質量部
 メチルエチルケトン(MEK)      30.0質量部
 メチルイソブチルケトン(MiBK)   70.0質量部
(Anti-glare layer forming coating solution BO-2)
PET-30 49.0 parts by weight M-321 29.5 parts by weight Irgacure 127 3.0 parts by weight SSX-108 17.0 parts by weight CAB 1.4 parts by weight SP-13 0.1 parts by weight Methyl ethyl ketone (MEK) 30 0.0 part by mass Methyl isobutyl ketone (MiBK) 70.0 parts by mass
(防眩層形成用塗布液BO-3)
 PET-30              49.0質量部
 M-321               29.5質量部
 イルガキュア819            3.0質量部
 SSX-108             17.0質量部
 CAB                  1.4質量部
 SP-13                0.1質量部
 メチルエチルケトン(MEK)      30.0質量部
 メチルイソブチルケトン(MiBK)   70.0質量部
(Anti-glare layer forming coating solution BO-3)
PET-30 49.0 parts by weight M-321 29.5 parts by weight Irgacure 819 3.0 parts by weight SSX-108 17.0 parts by weight CAB 1.4 parts by weight SP-13 0.1 parts by weight Methyl ethyl ketone (MEK) 30 0.0 part by mass Methyl isobutyl ketone (MiBK) 70.0 parts by mass
(防眩層形成用塗布液BO-4)
 PET-30              49.0質量部
 M-321               29.5質量部
 イルガキュア127            3.0質量部
 SSX-108             17.0質量部
 CAB                  1.4質量部
 共重合体(A-16)           0.1質量部
 メチルエチルケトン(MEK)      30.0質量部
 メチルイソブチルケトン(MiBK)   70.0質量部
(Anti-glare layer forming coating solution BO-4)
PET-30 49.0 parts M-321 29.5 parts by weight Irgacure 127 3.0 parts by weight SSX-108 17.0 parts by weight CAB 1.4 parts by weight Copolymer (A-16) 0.1 parts by weight Methyl ethyl ketone (MEK) 30.0 parts by mass Methyl isobutyl ketone (MiBK) 70.0 parts by mass
(防眩層形成用塗布液BO-5)
 PET-30              49.0質量部
 M-321               29.5質量部
 イルガキュア127            3.0質量部
 SSX-108             17.0質量部
 CAB                  1.4質量部
 共重合体(A-7)           0.02質量部
 共重合体(A-16)          0.08質量部
 メチルエチルケトン(MEK)      30.0質量部
 メチルイソブチルケトン(MiBK)   70.0質量部
(Anti-glare layer coating solution BO-5)
PET-30 49.0 parts by weight M-321 29.5 parts by weight Irgacure 127 3.0 parts by weight SSX-108 17.0 parts by weight CAB 1.4 parts by weight Copolymer (A-7) 0.02 parts by weight Copolymer (A-16) 0.08 parts by mass Methyl ethyl ketone (MEK) 30.0 parts by mass Methyl isobutyl ketone (MiBK) 70.0 parts by mass
(防眩層形成用塗布液BO-6)
 PET-30              57.0質量部
 M-321               34.0質量部
 イルガキュア127            3.0質量部
 SSX-108              0.1質量部
 CAB                  1.4質量部
 SP-13                0.1質量部
 メチルエチルケトン(MEK)      30.0質量部
 メチルイソブチルケトン(MiBK)   70.0質量部
(Anti-glare layer forming coating solution BO-6)
PET-30 57.0 parts M-321 34.0 parts Irgacure 127 3.0 parts SSX-108 0.1 parts CAB 1.4 parts SP-13 0.1 parts methyl ethyl ketone (MEK) 30 0.0 part by mass Methyl isobutyl ketone (MiBK) 70.0 parts by mass
(防眩層形成用塗布液BO-7)
 PET-30              57.0質量部
 M-321               34.0質量部
 イルガキュア127            3.0質量部
 SSX-108             40.0質量部
 CAB                  1.4質量部
 SP-13                0.1質量部
 メチルエチルケトン(MEK)      30.0質量部
 メチルイソブチルケトン(MiBK)   70.0質量部
(Anti-glare layer forming coating solution BO-7)
PET-30 57.0 parts M-321 34.0 parts Irgacure 127 3.0 parts SSX-108 40.0 parts CAB 1.4 parts SP-13 0.1 parts methyl ethyl ketone (MEK) 30 0.0 part by mass Methyl isobutyl ketone (MiBK) 70.0 parts by mass
(防眩層形成用塗布液BO-8)
 PET-30              57.0質量部
 M-321               34.0質量部
 イルガキュア127            3.0質量部
 SSX-108             0.01質量部
 CAB                  1.4質量部
 SP-13                0.1質量部
 メチルエチルケトン(MEK)      30.0質量部
 メチルイソブチルケトン(MiBK)   70.0質量部
(Anti-glare layer forming coating solution BO-8)
PET-30 57.0 parts M-321 34.0 parts Irgacure 127 3.0 parts SSX-108 0.01 parts CAB 1.4 parts SP-13 0.1 parts methyl ethyl ketone (MEK) 30 0.0 part by mass Methyl isobutyl ketone (MiBK) 70.0 parts by mass
 それぞれ使用した化合物を以下に示す。
 ・PET-30:ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物[日本化薬(株)製]
 ・M-321:トリメチロールプロパンPO変性(n≒2)トリアクリレート[東亜合成(株)製]
 ・イルガキュア127:重合開始剤[BASFジャパン(株)製]
 ・イルガキュア819:重合開始剤[BASFジャパン(株)製]
 ・SSX-108:平均粒径8μmPMMA粒子[積水化成品工業(株)製]
 ・CAB:セルロースアセテートブチレート、CAB531-1[イーストマン・ケミカル(株)製]
 ・SP-13:下記構造のフッ素系表面改質剤(繰り返し単位の含有比率はモル比率である)
The compounds used are shown below.
PET-30: A mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate [manufactured by Nippon Kayaku Co., Ltd.]
M-321: trimethylolpropane PO-modified (n≈2) triacrylate [manufactured by Toagosei Co., Ltd.]
・ Irgacure 127: Polymerization initiator [manufactured by BASF Japan Ltd.]
・ Irgacure 819: polymerization initiator [manufactured by BASF Japan Ltd.]
SSX-108: Average particle size 8 μm PMMA particles [manufactured by Sekisui Plastics Co., Ltd.]
CAB: cellulose acetate butyrate, CAB531-1 [Eastman Chemical Co., Ltd.]
SP-13: Fluorine-based surface modifier having the following structure (the content ratio of repeating units is a molar ratio)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
<共重合体(A-7)の合成例>
 攪拌機、温度計、還流冷却管、および、窒素ガス導入管を備えた300ミリリットル三口フラスコに、シクロヘキサノン6.7g、イソプロパノール1.7gを仕込んで、73℃まで昇温した。
 次いで、2-(パーフルオロヘキシル)エチルアクリレート12.3g(29.3ミリモル)、4-(4-アクリロイルオキシブトキシ)ベンゾイルオキシフェニルボロン酸5.6g(14.7ミリモル)、アクリル酸2.1g(29.3ミリモル)、シクロヘキサノン26.4g、イソプロパノール6.6g、および、アゾ重合開始剤(V-601、和光純薬(株)製)0.51gからなる混合溶液を、150分で滴下が完了するように等速で滴下した。滴下完了後、90℃まで昇温し、更に4時間攪拌を続けた。
 次いで、グリシジルメタクリレート4.2g(29.3ミリモル)、テトラブチルアンモニウムブロミド1.5g(4.7ミリモル)、p-メトキシフェノール0.4g、シクロヘキサノン16.2g、イソプロパノール4.1gを仕込んで、80℃まで昇温し、8時間攪拌を続け、下記式(A-7)で表される共重合体(以下、「共重合体(A-7)」と略す。)のシクロヘキサノン・イソプロパノール溶液88.6gを得た。
 この共重合体(A-7)の重量平均分子量(Mw)は、60,300(ゲルパーミエーションクロマトグラフィー(EcoSECHLC-8320GPC(東ソー(株)製))により溶離液NMP、流速0.50ml/min、温度40℃の測定条件にてポリスチレン換算で算出、使用カラムはTSKgel SuperAWM-H×3本(東ソー(株)製))であった。また、得られた共重合体(A-7)の酸価は7.3mgKOH/gであり、カルボン酸の残存率は5モル%であった。下記式中の繰り返し単位の含有比率はモル比率である。
<Synthesis Example of Copolymer (A-7)>
A 300 ml three-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube was charged with 6.7 g of cyclohexanone and 1.7 g of isopropanol and heated to 73 ° C.
Then, 12.3 g (29.3 mmol) of 2- (perfluorohexyl) ethyl acrylate, 5.6 g (14.7 mmol) of 4- (4-acryloyloxybutoxy) benzoyloxyphenylboronic acid, and 2.1 g of acrylic acid (29.3 mmol), 26.4 g of cyclohexanone, 6.6 g of isopropanol, and 0.51 g of an azo polymerization initiator (V-601, manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise over 150 minutes. It was added dropwise at a constant speed to complete. After completion of the dropwise addition, the temperature was raised to 90 ° C. and stirring was further continued for 4 hours.
Next, 4.2 g (29.3 mmol) of glycidyl methacrylate, 1.5 g (4.7 mmol) of tetrabutylammonium bromide, 0.4 g of p-methoxyphenol, 16.2 g of cyclohexanone, and 4.1 g of isopropanol were charged. The mixture was heated to 0 ° C. and stirred for 8 hours, and a cyclohexanone / isopropanol solution of a copolymer represented by the following formula (A-7) (hereinafter abbreviated as “copolymer (A-7)”) 88. 6 g was obtained.
The copolymer (A-7) had a weight average molecular weight (Mw) of 60,300 (gel permeation chromatography (EcoSECHLC-8320GPC (manufactured by Tosoh Corp.))), eluent NMP, flow rate 0.50 ml / min. Calculated in terms of polystyrene under the measurement conditions of a temperature of 40 ° C., and the column used was TSKgel SuperAWM-H × 3 (manufactured by Tosoh Corporation). Further, the acid value of the obtained copolymer (A-7) was 7.3 mgKOH / g, and the residual ratio of carboxylic acid was 5 mol%. The content ratio of the repeating unit in the following formula is a molar ratio.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
<共重合体(A-16)の合成例>
 2-(パーフルオロヘキシル)エチルアクリレートを変更した以外は共重合体(A-7)と同様の方法で、下記構造を有する共重合体(A-16)を合成した。この共重合体(A-16)の重量平均分子量(Mw)は、60,300であった。また、得られた共重合体(A-16)の酸価は7.3mgKOH/gであり、カルボン酸の残存率は5モル%であった。下記式中の繰り返し単位の含有比率はモル比率である。
<Synthesis Example of Copolymer (A-16)>
A copolymer (A-16) having the following structure was synthesized in the same manner as the copolymer (A-7) except that 2- (perfluorohexyl) ethyl acrylate was changed. The copolymer (A-16) had a weight average molecular weight (Mw) of 60,300. Further, the acid value of the obtained copolymer (A-16) was 7.3 mgKOH / g, and the residual ratio of carboxylic acid was 5 mol%. The content ratio of the repeating unit in the following formula is a molar ratio.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
<防眩フィルムの作製>
(防眩フィルムAG-1の作製)
 セルローストリアセテートフィルム(TDP60UL、富士フイルム(株)製)をロール形態で巻き出して、スロットダイを有するコーターを用いて、防眩層形成用塗布液BO-1を塗布した。搬送速度20m/分の条件で塗布し、40℃で15秒間、90℃で30秒間乾燥の後、さらに酸素濃度1.4%の雰囲気となるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量10mJ/cm、1mW/cmの紫外線を照射して塗布層を硬化させ、平均膜厚12.0μmの防眩層を形成し、AG-1を作製した。
<Preparation of antiglare film>
(Preparation of antiglare film AG-1)
A cellulose triacetate film (TDP60UL, manufactured by FUJIFILM Corporation) was unwound in a roll form, and coating solution BO-1 for forming an antiglare layer was applied using a coater having a slot die. After coating at a transfer speed of 20 m / min, drying at 40 ° C. for 15 seconds and 90 ° C. for 30 seconds, and then purging with nitrogen to create an atmosphere with an oxygen concentration of 1.4%, 240 W / cm air-cooled metal halide lamp (Made by Eye Graphics Co., Ltd.), the coating layer is cured by irradiating with an irradiation amount of 10 mJ / cm 2 and 1 mW / cm 2 to form an antiglare layer having an average film thickness of 12.0 μm, AG-1 was produced.
(防眩フィルムAG-2の作製)
 AG-1の作製において、防眩層形成用塗布液BO-1に代えて、防眩層形成用塗布液BO-2を塗布した以外は、AG-1と同様にしてAG-2を作製した。
(Preparation of antiglare film AG-2)
AG-2 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
(防眩フィルムAG-3の作製)
 AG-2の作製において、紫外線照射条件を、酸素濃度を0.1%未満、照射量600mJ/cm、150mW/cmに変更し、紫外線照射後の防眩層に以下のコロナ処理を行う以外はAG-2と同様にしてAG-3を作製した。具体的には、商品名ソリッドステートコロナ処理機6KVAモデル(ピラー社製)を用い、AG-2を20m/分でコロナ放電処理した。このとき、電流・電圧の読み取り値より、処理条件0.375KV・A・分/m、処理時放電周波数9.6KHz、電極と誘電体ロールのギャップクリアランスは、1.6mmであった。
(Preparation of antiglare film AG-3)
In the production of AG-2, the ultraviolet irradiation conditions were changed to an oxygen concentration of less than 0.1%, irradiation doses of 600 mJ / cm 2 and 150 mW / cm 2, and the anti-glare layer after ultraviolet irradiation was subjected to the following corona treatment. AG-3 was produced in the same manner as AG-2, except for the above. Specifically, AG-2 was subjected to corona discharge treatment at 20 m / min using a trade name Solid State Corona Treatment Machine 6KVA model (manufactured by Pillar). At this time, from the current / voltage readings, the processing conditions were 0.375 KV · A · min / m 2 , the discharge frequency during processing was 9.6 KHz, and the gap clearance between the electrode and the dielectric roll was 1.6 mm.
(防眩フィルムAG-4の作製)
 AG-1の作製において、防眩層形成用塗布液BO-1に代えて、防眩層形成用塗布液BO-3を塗布した以外は、AG-1と同様にしてAG-4を作製した。
(Preparation of anti-glare film AG-4)
AG-4 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
(防眩フィルムAG-5の作製)
 AG-4の作製において、紫外線照射条件を、照射量5mJ/cm、1mW/cmに変更した以外は、AG-4と同様にしてAG-5を作製した。
(Preparation of antiglare film AG-5)
AG-5 was produced in the same manner as AG-4, except that in the production of AG-4, the ultraviolet irradiation conditions were changed to a dose of 5 mJ / cm 2 and 1 mW / cm 2 .
(防眩フィルムAG-6の作製)
 AG-4の作製において、紫外線照射条件を、照射量2.5mJ/cm、1mW/cmに変更した以外は、AG-4と同様にしてAG-6を作製した。
(Preparation of antiglare film AG-6)
AG-6 was produced in the same manner as AG-4, except that the UV irradiation conditions were changed to 2.5 mJ / cm 2 and 1 mW / cm 2 in the production of AG-4.
(防眩フィルムAG-7の作製)
 AG-1の作製において、防眩層形成用塗布液BO-1に代えて、防眩層形成用塗布液BO-4を塗布した以外は、AG-1と同様にしてAG-7を作製した。
(Preparation of antiglare film AG-7)
AG-7 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
(防眩フィルムAG-8の作製)
 AG-1の作製において、防眩層形成用塗布液BO-1に代えて、防眩層形成用塗布液BO-5を塗布した以外は、AG-1と同様にしてAG-8を作製した。
(Preparation of antiglare film AG-8)
AG-8 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
(防眩フィルムAG-9の作製)
 AG-1の作製において、防眩層形成用塗布液BO-1に代えて、防眩層形成用塗布液BO-6を塗布した以外は、AG-1と同様にしてAG-9を作製した。
(Preparation of antiglare film AG-9)
AG-9 was produced in the same manner as AG-1, except that in the preparation of AG-1, the antiglare layer forming coating solution BO-6 was applied instead of the antiglare layer forming coating solution BO-1. .
(防眩フィルムAG-10の作製)
 AG-1の作製において、防眩層形成用塗布液BO-1に代えて、防眩層形成用塗布液BO-7を塗布した以外は、AG-1と同様にしてAG-10を作製した。
(Preparation of antiglare film AG-10)
AG-10 was prepared in the same manner as AG-1, except that the antiglare layer forming coating solution BO-1 was applied instead of the antiglare layer forming coating solution BO-1. .
(防眩フィルムAG-11の作製)
 AG-1の作製において、防眩層形成用塗布液BO-1に代えて、防眩層形成用塗布液BO-8を塗布した以外は、AG-1と同様にしてAG-11を作製した。
(Preparation of antiglare film AG-11)
AG-11 was produced in the same manner as AG-1, except that in the preparation of AG-1, the antiglare layer forming coating solution BO-8 was applied instead of the antiglare layer forming coating solution BO-1. .
(反射防止層の作製)
[シリカ粒子P1の合成]
 撹拌機、滴下装置および温度計を備えた容量200Lの反応器に、メチルアルコール67.54kgと、28質量%アンモニア水(水および触媒)26.33kgとを仕込み、撹拌しながら液温を33℃に調節した。一方、滴下装置に、テトラメトキシシラン12.70kgをメチルアルコール5.59kgに溶解させた溶液を仕込んだ。反応器中の液温を33℃に保持しながら、滴下装置から上記溶液を44分間かけて滴下し、滴下終了後、さらに44分間、液温を上記温度に保持しながら撹拌することにより、テトラメトキシシランの加水分解および縮合を行い、シリカ粒子前駆体を含有する分散液を得た。この分散液を、瞬間真空蒸発装置((ホソカワミクロン(株)社製クラックス・システムCVX-8B型)を用いて加熱管温度175℃、減圧度200torr(27kPa)の条件で気流乾燥させることにより、シリカ粒子P1を得た。
 シリカ粒子P1の平均一次粒径は170nm、粒径の分散度(CV値)は3.3%、押し込み硬度は340MPaであった。
(Preparation of antireflection layer)
[Synthesis of Silica Particle P1]
A 200 L reactor equipped with a stirrer, a dropping device and a thermometer was charged with 67.54 kg of methyl alcohol and 26.33 kg of 28% by mass aqueous ammonia (water and catalyst), and the liquid temperature was kept at 33 ° C. while stirring. Adjusted. Meanwhile, a dropping device was charged with a solution prepared by dissolving 12.70 kg of tetramethoxysilane in 5.59 kg of methyl alcohol. While maintaining the liquid temperature in the reactor at 33 ° C., the above solution was dropped from the dropping device over 44 minutes, and after completion of the dropping, stirring was further performed for 44 minutes while maintaining the liquid temperature at the above temperature. Hydrolysis and condensation of methoxysilane was performed to obtain a dispersion containing a silica particle precursor. This dispersion liquid was air-dried under the conditions of a heating tube temperature of 175 ° C. and a reduced pressure of 200 torr (27 kPa) using an instantaneous vacuum evaporation apparatus (Crax System CVX-8B type manufactured by Hosokawa Micron Corporation), thereby producing silica. Particles P1 were obtained.
Silica particles P1 had an average primary particle size of 170 nm, a particle size dispersity (CV value) of 3.3%, and an indentation hardness of 340 MPa.
[焼成シリカ粒子P2の作製]
 5kgのシリカ粒子P1をルツボに入れ、電気炉を用いて900℃で2時間焼成した後、冷却して、次いで粉砕機を用いて粉砕し、分級前焼成シリカ粒子を得た。さらに分級前焼成シリカ粒子に対してジェット粉砕分級機(日本ニューマ社製IDS-2型)を用いて解砕および分級を行うことにより焼成シリカ粒子P2を得た。
[Preparation of calcined silica particles P2]
5 kg of silica particles P1 were put in a crucible, fired at 900 ° C. for 2 hours using an electric furnace, cooled, and then ground using a grinder to obtain pre-classified fired silica particles. Further, the baked silica particles P2 were obtained by crushing and classifying the baked silica particles before classification using a jet pulverization classifier (IDS-2 type, manufactured by Nippon Puma Co., Ltd.).
[シランカップリング剤処理シリカ粒子P3の作製]
 5kgの焼成シリカ粒子P2を、加熱ジャケットを備えた容量20Lのヘンシェルミキサ(三井鉱山株式会社製FM20J型)に仕込んだ。焼成シリカ粒子P2を撹拌しているところに、3-アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)45gを、メチルアルコール90gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら150℃まで約1時間かけて昇温し、150℃で12時間保持して加熱処理を行った。加熱処理では、掻き落とし装置を撹拌羽根とは逆方向に常時回転させながら、壁面付着物の掻き落としを行った。また、適宜、へらを用いて壁面付着物を掻き落とすことも行った。加熱後、冷却し、ジェット粉砕分級機を用いて解砕および分級を行い、シランカップリング剤処理シリカ粒子P3を得た。
 シランカップリング剤処理シリカ粒子P3の平均一次粒径は171nm、粒径の分散度(CV値)は3.3%、押し込み硬度は470MPaであった。
[Production of Silane Coupling Agent-treated Silica Particles P3]
5 kg of the fired silica particles P2 were charged into a 20 L Henschel mixer (FM20J type, manufactured by Mitsui Mining Co., Ltd.) equipped with a heating jacket. While the calcined silica particles P2 were being stirred, a solution prepared by dissolving 45 g of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in 90 g of methyl alcohol was added dropwise and mixed. Then, it heated up to 150 degreeC over about 1 hour, mixing and stirring, and hold | maintained at 150 degreeC for 12 hours, and heat-processed. In the heat treatment, scrapes on the wall surface were scraped while the scraping device was always rotated in the direction opposite to the stirring blade. Moreover, the wall deposits were also scraped off using a spatula as appropriate. After heating, the mixture was cooled, and pulverization and classification were performed using a jet pulverization classifier to obtain silane coupling agent-treated silica particles P3.
The average primary particle size of the silane coupling agent-treated silica particles P3 was 171 nm, the particle size dispersion (CV value) was 3.3%, and the indentation hardness was 470 MPa.
[シリカ粒子分散液PA-1の作製]
 シランカップリング剤処理シリカ粒子P3を50g、MEK200g、直径0.05mmジルコニアビーズ600gを直径12cmの1L瓶容器に入れ、ボールミルV-2M(入江商会)にセットし、250回転/分で10時間分散した。このようにして、シリカ粒子分散液PA-1(固形分濃度20質量%)を作製した。
 なお、シリカ粒子分散液PA-1に含まれるシリカ粒子の平均一次粒径、CV値、及び押し込み硬度は、シランカップリング剤処理シリカ粒子P3におけるものと同じである。
[Preparation of Silica Particle Dispersion PA-1]
Silane coupling agent-treated silica particles P3 (50 g), MEK (200 g), 0.05 mm diameter zirconia beads (600 g) are placed in a 1 L bottle container with a diameter of 12 cm, set in a ball mill V-2M (Irie Shokai), and dispersed for 10 hours at 250 rpm. did. In this way, a silica particle dispersion PA-1 (solid content concentration 20% by mass) was prepared.
The average primary particle size, CV value, and indentation hardness of the silica particles contained in the silica particle dispersion PA-1 are the same as those in the silane coupling agent-treated silica particles P3.
 [シリカ粒子分散液PA-2の作製]
 焼成シリカ粒子P2を50g、エタノール200g、直径0.05mmジルコニアビーズ600gを直径12cmの1L瓶容器に入れ、ボールミルV-2M(入江商会)にセットし、250回転/分で10時間分散した。このようにして、シリカ粒子分散液PA-2(固形分濃度20質量%)を作製した。
[Preparation of Silica Particle Dispersion PA-2]
50 g of sintered silica particles P2, 200 g of ethanol, and 600 g of zirconia beads having a diameter of 0.05 mm were placed in a 1 L bottle container having a diameter of 12 cm, set in a ball mill V-2M (Irie Shokai), and dispersed at 250 rpm for 10 hours. In this way, a silica particle dispersion PA-2 (solid content concentration 20% by mass) was produced.
[化合物C3の合成]
 還流冷却器、温度計を付けたフラスコに3-イソシアネートプロピルトリメトキシシラン19.3gとグリセリン1,3-ビスアクリラート3.9g、2-ヒドロキシエチルアクリレート6.8g、ジラウリン酸ジブチル錫0.1g、トルエン70.0gを添加し、室温で12時間撹拌した。撹拌後、メチルハイドロキノン500ppmを加え、減圧留去を行い、化合物C3を得た。
[Synthesis of Compound C3]
In a flask equipped with a reflux condenser and a thermometer, 19.3 g of 3-isocyanatopropyltrimethoxysilane, 3.9 g of glycerol 1,3-bisacrylate, 6.8 g of 2-hydroxyethyl acrylate, 0.1 g of dibutyltin dilaurate 70.0 g of toluene was added and stirred at room temperature for 12 hours. After stirring, 500 ppm of methylhydroquinone was added and distilled off under reduced pressure to obtain Compound C3.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
[層(a)形成用組成物の調製]
 下記の組成となるように各成分をミキシングタンクに投入し、60分間攪拌し、30分間超音波分散機により分散し、塗布液とした。
[Preparation of composition for forming layer (a)]
Each component was put into a mixing tank so as to have the following composition, stirred for 60 minutes, and dispersed with an ultrasonic disperser for 30 minutes to obtain a coating solution.
組成物(A-1)
 U-15HA                 1.4質量部
 化合物C3                  1.5質量部
 A-TMPT                 1.7質量部
 KBM-4803               4.1質量部
 イルガキュア127              0.2質量部
 化合物P                   0.1質量部
 FP-2                   0.1質量部
 シリカ粒子分散液PA-1          32.3質量部
 エタノール                 12.7質量部
 メチルエチルケトン             33.2質量部
 アセトン                  12.7質量部
Composition (A-1)
U-15HA 1.4 parts by weight Compound C3 1.5 parts by weight A-TMPT 1.7 parts by weight KBM-4803 4.1 parts by weight Irgacure 127 0.2 parts by weight Compound P 0.1 parts by weight FP-2 1 part by weight Silica particle dispersion PA-1 32.3 parts by weight Ethanol 12.7 parts by weight Methyl ethyl ketone 33.2 parts by weight Acetone 12.7 parts by weight
 U-15HA、化合物C3、A-TMPT、及びKBM-4803が硬化性化合物(a1)である。 U-15HA, compound C3, A-TMPT, and KBM-4803 are curable compounds (a1).
組成物(A-2)
 SIRIUS-501             2.8質量部
 X-12-1049              1.5質量部
 A-TMPT                 1.7質量部
 クエン酸アセチルトリエチル          4.1質量部
 イルガキュア127              0.2質量部
 化合物P                   0.1質量部
 FP-2                   0.1質量部
 シリカ粒子分散液PA-1          32.3質量部
 エタノール                 12.7質量部
 メチルエチルケトン             31.8質量部
 アセトン                  12.7質量部
Composition (A-2)
SIRIUS-501 2.8 parts by mass X-12-1049 1.5 parts by mass A-TMPT 1.7 parts by mass Acetyltriethyl citrate 4.1 parts by mass Irgacure 127 0.2 parts by mass Compound P 0.1 parts by mass FP -2 0.1 parts by weight Silica particle dispersion PA-1 32.3 parts by weight Ethanol 12.7 parts by weight Methyl ethyl ketone 31.8 parts by weight Acetone 12.7 parts by weight
 SIRIUS-501、X-12-1049、A-TMPTが硬化性化合物(a1)である。 SIRIUS-501, X-12-1049, and A-TMPT are curable compounds (a1).
組成物(B-1)
 化合物I-30                1.4質量部
 X-12-1049              1.5質量部
 KR-513                 1.7質量部
 クエン酸アセチルトリエチル          4.1質量部
 イルガキュア127              0.2質量部
 化合物P                   0.1質量部
 FP-2                   0.1質量部
 シリカ粒子分散液PA-1          32.3質量部
 エタノール                 12.7質量部
 メチルエチルケトン             33.2質量部
 アセトン                  12.7質量部
Composition (B-1)
Compound I-30 1.4 parts by mass X-12-1049 1.5 parts by mass KR-513 1.7 parts by mass Acetyltriethyl citrate 4.1 parts by mass Irgacure 127 0.2 parts by mass Compound P 0.1 parts by mass FP-2 0.1 parts by weight Silica particle dispersion PA-1 32.3 parts by weight Ethanol 12.7 parts by weight Methyl ethyl ketone 33.2 parts by weight Acetone 12.7 parts by weight
 化合物I-30、X-12-1049、KR-513が硬化性化合物(a1)である。 Compounds I-30, X-12-1049, and KR-513 are curable compounds (a1).
組成物(B-2)
 硬化性樹脂C                 1.4質量部
 KR-516                 1.5質量部
 KBM-4803               1.7質量部
 クエン酸アセチルトリエチル          4.1質量部
 イルガキュア127              0.2質量部
 化合物P                   0.1質量部
 FP-2                   0.1質量部
 シリカ粒子分散液PA-2          32.3質量部
 メチルエチルケトン             45.9質量部
 アセトン                  12.7質量部
Composition (B-2)
Curable resin C 1.4 parts by mass KR-516 1.5 parts by mass KBM-4803 1.7 parts by mass Acetyltriethyl citrate 4.1 parts by mass Irgacure 127 0.2 parts by mass Compound P 0.1 parts by mass FP- 2 0.1 parts by mass Silica particle dispersion PA-2 32.3 parts by mass Methyl ethyl ketone 45.9 parts by mass Acetone 12.7 parts by mass
 硬化性樹脂C、KR-516、KBM-4803が硬化性化合物(a1)である。 Curable resin C, KR-516, and KBM-4803 are curable compounds (a1).
 それぞれ使用した化合物を以下に示す。
 U-15HA(新中村化学工業(株)製):ウレタンアクリレート
 SIRIUS-501(大阪有機化学工業(株)製):デンドリマーアクリレート
 化合物I-30:特開2011-84672号公報に記載の化合物I-30(重合性基と非重合性基を持つかご型ポリシルセスキオキサン)
 硬化性樹脂C:特開2017-8148号公報に記載の硬化性樹脂C(エポキシ基含有ポリオルガノシルセスキオキサン)
 A-TMPT:多官能アクリレート(新中村化学工業(株)製)
 X-12-1049:アクロイル基を複数有するシランカップリング剤(信越化学工業(株)製)
 KR-513:アクリロイル基/メチル基を有するシランカップリング剤オリゴマー(信越化学工業(株)製)
 KR-516:エポキシ基/メチル基を有するシランカップリング剤オリゴマー(信越化学工業(株)製)
 KBM-4803:ラジカル反応性基以外の反応性基(エポキシ基)を有するシランカップリング剤(信越化学工業(株)製)
 クエン酸アセチルトリエチル:東京化成工業(株)製
 イルガキュア127:光重合開始剤(BASFジャパン(株)製)
 化合物P:下記構造式で表される光酸発生剤(和光純薬(株)製)
The compounds used are shown below.
U-15HA (manufactured by Shin-Nakamura Chemical Co., Ltd.): urethane acrylate SIRIUS-501 (manufactured by Osaka Organic Chemical Industry Co., Ltd.): dendrimer acrylate Compound I-30: Compound I- described in JP 2011-84672 A 30 (Cage type polysilsesquioxane having a polymerizable group and a non-polymerizable group)
Curable resin C: Curable resin C (epoxy group-containing polyorganosilsesquioxane) described in JP-A-2017-8148
A-TMPT: Multifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
X-12-1049: Silane coupling agent having a plurality of acroyl groups (manufactured by Shin-Etsu Chemical Co., Ltd.)
KR-513: Silane coupling agent oligomer having acryloyl group / methyl group (manufactured by Shin-Etsu Chemical Co., Ltd.)
KR-516: Epoxy group / methyl group-containing silane coupling agent oligomer (manufactured by Shin-Etsu Chemical Co., Ltd.)
KBM-4803: Silane coupling agent having reactive groups (epoxy groups) other than radical reactive groups (manufactured by Shin-Etsu Chemical Co., Ltd.)
Acetyltriethyl citrate: manufactured by Tokyo Chemical Industry Co., Ltd. Irgacure 127: photopolymerization initiator (manufactured by BASF Japan)
Compound P: Photoacid generator represented by the following structural formula (manufactured by Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 FP-2 :下記式で表される含フッ素化合物 FP-2: Fluorine-containing compound represented by the following formula
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<防眩性反射防止フィルム1の作製>
 (工程(1) 層(a)の塗工)
 仮支持体として100μmのポリエチレンテレフタレートフィルム(FD100M、富士フイルム(製))上に、組成物(A-1)をダイコーターを用いて2.8ml/m塗布し、30℃で90秒乾燥させた。このようにして層(a)を塗工した。
<Preparation of antiglare antireflection film 1>
(Process (1) Coating of layer (a))
On a 100 μm polyethylene terephthalate film (FD100M, FUJIFILM Corporation) as a temporary support, 2.8 ml / m 2 of composition (A-1) was applied using a die coater and dried at 30 ° C. for 90 seconds. It was. Thus, the layer (a) was applied.
 (工程(2) 層(a)のプレ露光)
 酸素濃度が1.4体積%の雰囲気になるように窒素パージしながら、高圧水銀ランプ(Dr.honle AG社製 型式:33351N 部品番号:LAMP-HOZ 200 D24 U 450 E)を用いて層(a)側から照射量5.0mJ/cm、照度0.60mWで光照射し、硬化性化合物(a1)の一部を硬化させて層(ca)を得た。なお、照射量の測定は、アイグラフィック社製 アイ紫外線積算照度計 UV METER UVPF-A1にHEAD SENSER PD-365を取り付け、測定レンジ0.00にて測定した。
(Step (2) Pre-exposure of layer (a))
Using a high pressure mercury lamp (Model: 33351N manufactured by Dr. Honle AG, part number: LAMP-HOZ 200 D24 U 450 E) while purging with nitrogen so that the atmosphere has an oxygen concentration of 1.4% by volume (a ) Side was irradiated with light at an irradiation amount of 5.0 mJ / cm 2 and an illuminance of 0.60 mW to cure a part of the curable compound (a1) to obtain a layer (ca). The irradiation amount was measured by attaching a HEAD SENSER PD-365 to an eye ultraviolet integrated illuminometer UV METER UVPF-A1 manufactured by Eye Graphic Co., Ltd. and measuring range 0.00.
 (工程(3) 粘着フィルムの貼り合わせ)
 次いで、層(ca)上に、藤森工業(株)製の保護フィルム(マスタックTFB AS3-304)から剥離フィルムを剥離して得られる粘着フィルムを、粘着剤層(層(b))が層(ca)側になるように貼り合わせた。貼り合わせには、業務用ラミネーターBio330(DAE-EL Co.製)を使用し、速度1で実施した。
 なお、ここでの保護フィルムとは、支持体/粘着剤層/剥離フィルムから構成される積層体を指し、保護フィルムから剥離フィルムを剥がした、支持体/粘着剤層から構成される積層体が粘着フィルムである。
(Process (3) Adhesion of adhesive film)
Next, on the layer (ca), an adhesive film obtained by peeling a release film from a protective film (Mastak TFB AS3-304) manufactured by Fujimori Industry Co., Ltd. is used. It was bonded together so as to be on the ca) side. Lamination was performed using a commercial laminator Bio330 (manufactured by DAE-EL Co.) at a speed of 1.
In addition, the protective film here refers to the laminated body comprised from a support body / adhesive layer / release film, and the laminated body comprised from the support body / adhesive layer which peeled the release film from the protective film. It is an adhesive film.
 使用した保護フィルムを以下に示す。
 ・マスタックTFB AS3-304(藤森工業(株)製 帯電防止機能付き光学用保護フィルム)(以下、「AS3-304」ともいう)
 支持体:ポリエステルフィルム(厚み38μm)
 粘着剤層厚み:20μm
 剥離フィルムを剥がした状態での波長250nm~300nmにおける最大透過率:0.1%未満
The protective film used is shown below.
・ Mastak TFB AS3-304 (Fujimori Kogyo Co., Ltd. optical protective film with antistatic function) (hereinafter also referred to as “AS3-304”)
Support: Polyester film (thickness 38 μm)
Adhesive layer thickness: 20 μm
Maximum transmittance at a wavelength of 250 to 300 nm with the release film peeled off: less than 0.1%
 透過率の測定は、島津製作所(株)製の紫外可視近赤外分光光度計UV3150を用いて行った。 The transmittance was measured using an ultraviolet-visible near-infrared spectrophotometer UV3150 manufactured by Shimadzu Corporation.
 (工程(4) 硬化性化合物(a1)の層(b)への浸透)
 粘着フィルムの貼り合わせ後、25℃の環境下で5分間静置し、硬化性化合物(a1)を層(b)へ浸透させた。
(Step (4) penetration of curable compound (a1) into layer (b))
After pasting the adhesive film, it was allowed to stand for 5 minutes in an environment of 25 ° C. to allow the curable compound (a1) to penetrate into the layer (b).
 (工程(4-2) 層(ca)の部分硬化)
 続いて、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、支持体の層(ca)側とは反対側から照度150mW/cm、照射量600mJ/cmの紫外線を照射して層(ca)の一部を硬化させた。
(Step (4-2) Partial curing of layer (ca))
Subsequently, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less, the support layer (ca) side A part of the layer (ca) was cured by irradiating ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the opposite side.
 (工程(5) 仮支持体の剥離 積層体の作製)
 上記積層体から、仮支持体であるFD100Mを剥離角が180°になる方向に速度30m/minで剥離した。
(Step (5) Peeling of temporary support Production of laminate)
From the laminate, the temporary support FD100M was peeled off at a speed of 30 m / min in a direction where the peeling angle was 180 °.
 (工程(6) 防眩フィルムと積層体の貼り合せ)
 上記防眩フィルムAG-1の防眩層側と工程(5)で仮支持体を取り除いた積層体1の層(ca)側を貼り合わせた。貼り合わせには、業務用ラミネーターBio330(DAE-EL Co.製)を使用し、速度1で実施した。その後、貼り合わせた積層体を140℃で2分間加熱した。
(Process (6) Bonding of antiglare film and laminate)
The antiglare layer side of the antiglare film AG-1 and the layer (ca) side of the laminate 1 from which the temporary support was removed in step (5) were bonded together. Lamination was performed using a commercial laminator Bio330 (manufactured by DAE-EL Co.) at a speed of 1. Then, the laminated body bonded together was heated at 140 ° C. for 2 minutes.
 (工程(7) 層(ca)の部分硬化)
 続いて、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、支持体の層(ca)側とは反対側から照度150mW/cm、照射量600mJ/cmの紫外線を照射して層(ca)の一部を硬化させた。
(Step (7) Partial curing of layer (ca))
Subsequently, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less, the support layer (ca) side A part of the layer (ca) was cured by irradiating ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the opposite side.
 (工程(8) 粘着フィルムの剥離)
 上記作製した積層体から粘着フィルム(マスタックTFB AS3-304から剥離フィルムを剥がしたもの)を剥離した。
(Process (8) Peeling of adhesive film)
The pressure-sensitive adhesive film (from which the release film was peeled off from the MASTACK TFB AS3-304) was peeled from the laminate thus produced.
 (工程(9) 層(ca)の硬化)
 続いて、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、層(ca)の基材フィルムとは反対側から照度150mW/cm、照射量600mJ/cmの紫外線を照射して層(ca)を硬化させた。
(Step (9) Curing of layer (ca))
Subsequently, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less, the base film of the layer (ca) The layer (ca) was cured by irradiating ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the opposite side.
 (工程(10) 洗浄)
 続いて、粘着フィルムが貼り合わせてあった面にメチルイソブチルケトンを掛け流して粘着剤層の残渣を洗い流した。その後、25℃で10分乾燥して防眩性反射防止フィルム1を得た。
(Process (10) Cleaning)
Subsequently, methyl isobutyl ketone was poured over the surface on which the adhesive film had been bonded to wash away the residue of the adhesive layer. Then, it dried for 10 minutes at 25 degreeC, and the anti-glare antireflection film 1 was obtained.
<防眩性反射防止フィルム2~10の作製>
 上記防眩性反射防止フィルム1の作製において、工程(6)で貼り合わせる防眩フィルムを下記表1のように変更し、工程(6)貼り合わせ後の加熱条件を下記表1のように変更して、防眩性反射防止フィルム2~10を作製した。
<Preparation of antiglare antireflection films 2 to 10>
In the production of the antiglare antireflection film 1, the antiglare film to be bonded in the step (6) is changed as shown in the following Table 1, and the heating conditions after the step (6) are changed as shown in the following Table 1. Thus, antiglare antireflection films 2 to 10 were produced.
<防眩性反射防止フィルム11の作製>
 上記防眩性反射防止フィルム1の作製において、防眩フィルムをAG-2に変更し、工程(6)において、防眩層側と工程(5)で仮支持体を取り除いた積層体1の層(ca)側に紫外線硬化型接着剤UV1を注入して、業務用ラミネーターBio330(DAE-EL Co.製)の速度1で貼り合わせ、加熱を実施せずに工程(7)に移行した以外は防眩性反射防止フィルム1と同様にして防眩性反射防止フィルム11を作製した。防眩性反射防止フィルム11は防眩層と反射防止層の間に接着層を有する。
<Preparation of antiglare antireflection film 11>
In the production of the antiglare antireflection film 1, the antiglare film is changed to AG-2, and in step (6), the layer 1 of the laminate 1 from which the antiglare layer side and the temporary support are removed in step (5) Except for injecting UV curable adhesive UV1 on the (ca) side, bonding at speed 1 of commercial laminator Bio330 (manufactured by DAE-EL Co.), and proceeding to step (7) without heating. In the same manner as the antiglare antireflection film 1, an antiglare antireflection film 11 was produced. The antiglare antireflection film 11 has an adhesive layer between the antiglare layer and the antireflection layer.
 なお、紫外線硬化型接着剤UV1は下記に記載の組成で各成分を添加し、得られた組成物をミキシングタンクに投入し、攪拌することで作製した。
 紫外線硬化型接着剤UV1
 PET-30                 20.0質量部
 4-ヒドロキシブチルアクリレート       78.0質量部
 イルガキュア907               1.5質量部
 DETX-S                  0.5質量部
The ultraviolet curable adhesive UV1 was prepared by adding each component with the composition described below, and putting the obtained composition into a mixing tank and stirring.
UV curable adhesive UV1
PET-30 20.0 parts by mass 4-hydroxybutyl acrylate 78.0 parts by mass Irgacure 907 1.5 parts by mass DETX-S 0.5 parts by mass
 それぞれ使用した化合物を以下に示す。
 4-ヒドロキシブチルアクリレート(日本化成(株)製):単官能アクリレート
 イルガキュア907:光重合開始剤(BASFジャパン(株)製)
 DETX-S:2、4-ジエチルチオキサントン、光重合促進剤(日本化薬(株)製)
The compounds used are shown below.
4-hydroxybutyl acrylate (manufactured by Nippon Kasei Co., Ltd.): monofunctional acrylate Irgacure 907: photopolymerization initiator (manufactured by BASF Japan Ltd.)
DETX-S: 2,4-diethylthioxanthone, photopolymerization accelerator (manufactured by Nippon Kayaku Co., Ltd.)
<防眩性反射防止フィルム12の作製>
 防眩性反射防止フィルム11の作製において、紫外線硬化型接着剤をUV2に変更する以外は同様にして防眩性反射防止フィルム12を作製した。防眩性反射防止フィルム12は防眩層と反射防止層の間に接着層を有する。
<Preparation of antiglare antireflection film 12>
In the production of the antiglare antireflection film 11, an antiglare antireflection film 12 was produced in the same manner except that the ultraviolet curable adhesive was changed to UV2. The antiglare antireflection film 12 has an adhesive layer between the antiglare layer and the antireflection layer.
 なお、紫外線硬化型接着剤UV2は下記に記載の組成で各成分を添加し、得られた組成物をミキシングタンクに投入し、攪拌することで作製した。
 紫外線硬化型接着剤UV2
 アロニックスM-220            20.0質量部
 4-ヒドロキシブチルアクリレート       78.0質量部
 イルガキュア907               1.5質量部
 DETX-S                  0.5質量部
The ultraviolet curable adhesive UV2 was prepared by adding each component with the composition described below, and putting the obtained composition into a mixing tank and stirring.
UV curable adhesive UV2
Aronix M-220 20.0 parts by mass 4-hydroxybutyl acrylate 78.0 parts by mass Irgacure 907 1.5 parts by mass DETX-S 0.5 part by mass
 使用した化合物を以下に示す。
 アロニックスM220:トリプロピレングリコール(n≒3)ジアクリレート(東亜合成(株)製)
The compounds used are shown below.
Aronix M220: Tripropylene glycol (n≈3) diacrylate (manufactured by Toa Gosei Co., Ltd.)
<防眩性反射防止フィルム13の作製>
 上記防眩フィルムAG-1上に、組成物(A-1)をダイコーターを用いて2.8ml/m塗布し、30℃で90秒乾燥させた後、酸素濃度が1.4体積%の雰囲気になるように窒素パージしながら、高圧水銀ランプ(Dr.honle AG社製 型式:33351N 部品番号:LAMP-HOZ 200 D24 U 450 E)を用いて層(a)側から照射量5.0mJ/cm、照度0.60mWで光照射し、硬化性化合物(a1)の一部を硬化させて層(ca)を得た。なお、照射量の測定は、アイグラフィック社製 アイ紫外線積算照度計 UV METER UVPF-A1にHEAD SENSER PD-365を取り付け、測定レンジ0.00にて測定した。
 次いで、層(ca)上に、藤森工業(株)製の保護フィルム(マスタックTFB AS3-304)から剥離フィルムを剥離して得られる粘着フィルムを、粘着剤層(層(b))が層(ca)側になるように貼り合わせた。貼り合わせには、業務用ラミネーターBio330(DAE-EL Co.製)を使用し、速度1で実施した。
 粘着フィルムを貼り合わせ後、25℃の環境下で5分間静置し、硬化性化合物(a1)を層(b)へ浸透させた。
 続いて、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、支持体の層(ca)側とは反対側から照度150mW/cm、照射量600mJ/cmの紫外線を照射して層(ca)の一部を硬化させた。
 上記作製した積層体から粘着フィルム(マスタックTFB AS3-304から剥離フィルムを剥がしたもの)を剥離し、続いて、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、層(ca)の基材フィルムとは反対側から照度150mW/cm、照射量600mJ/cmの紫外線を照射して層(ca)を硬化させた。最後に、粘着フィルムが貼り合わせてあった面にメチルイソブチルケトンを掛け流して粘着剤層の残渣を洗い流し、25℃で10分乾燥して防眩性反射防止フィルム13を得た。
<Preparation of antiglare antireflection film 13>
On the antiglare film AG-1, the composition (A-1) was applied at 2.8 ml / m 2 using a die coater, dried at 30 ° C. for 90 seconds, and then the oxygen concentration was 1.4% by volume. While purging with nitrogen so as to obtain an atmosphere, a high pressure mercury lamp (Model: 33351N manufactured by Dr. Honle AG Co., Ltd., part number: LAMP-HOZ 200 D24 U 450 E) was used to emit 5.0 mJ from the layer (a) side. / Cm 2 , and irradiation with light at an illuminance of 0.60 mW, a part of the curable compound (a1) was cured to obtain a layer (ca). The irradiation amount was measured by attaching a HEAD SENSER PD-365 to an eye ultraviolet integrated illuminometer UV METER UVPF-A1 manufactured by Eye Graphic Co., Ltd. and measuring range 0.00.
Next, on the layer (ca), an adhesive film obtained by peeling a release film from a protective film (Mastak TFB AS3-304) manufactured by Fujimori Industry Co., Ltd. is used. It was bonded together so as to be on the ca) side. Lamination was performed using a commercial laminator Bio330 (manufactured by DAE-EL Co.) at a speed of 1.
After bonding the adhesive film, it was allowed to stand for 5 minutes in an environment of 25 ° C., and the curable compound (a1) was permeated into the layer (b).
Subsequently, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) while purging with nitrogen so that the atmosphere has an oxygen concentration of 0.01% by volume or less, the support layer (ca) side A part of the layer (ca) was cured by irradiating ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the opposite side.
The pressure-sensitive adhesive film (from which the peeling film was peeled off from the MASTACK TFB AS3-304) was peeled off from the produced laminate, and then 160 W / W while purging with nitrogen so that the atmosphere had an oxygen concentration of 0.01% by volume or less. Using an air-cooled metal halide lamp of cm (made by Eye Graphics Co., Ltd.), the layer (ca) was irradiated with ultraviolet rays having an illuminance of 150 mW / cm 2 and an irradiation amount of 600 mJ / cm 2 from the side opposite to the base film of the layer (ca). (Ca) was cured. Finally, methyl isobutyl ketone was poured over the surface to which the adhesive film had been bonded to wash away the residue of the adhesive layer, and dried at 25 ° C. for 10 minutes to obtain an antiglare antireflection film 13.
<防眩性反射防止フィルム14の作製>
 防眩性反射防止フィルム13の作製において、上記防眩フィルムをAG-2に変更した以外は同様にし、防眩性反射防止フィルム14を作製した。
<Preparation of antiglare antireflection film 14>
An antiglare antireflection film 14 was prepared in the same manner as the antiglare antireflection film 13 except that the antiglare film was changed to AG-2.
<防眩性反射防止フィルム15~21の作製>
 上記防眩性反射防止フィルム1の作製において、工程(4-2)における紫外線照射量を下記表1のように変更し、工程(6)で貼り合わせる防眩フィルムを下記表1のように変更して、防眩性反射防止フィルム15~21を作製した。
<Preparation of antiglare antireflection films 15 to 21>
In the production of the antiglare antireflection film 1, the ultraviolet irradiation amount in the step (4-2) is changed as shown in the following Table 1, and the antiglare film bonded in the step (6) is changed as shown in the following Table 1. Thus, antiglare antireflection films 15 to 21 were produced.
<防眩性反射防止フィルム22の作製>
(高屈折率層用塗布液の調製)
 シクロヘキサノン54質量部およびメチルエチルケトン18質量部に、光重合開始剤(イルガキュア907、BASFジャパン(株)製)0.13質量部および光増感剤(カヤキュアーDETX、日本化薬(株)製)0.04質量部を溶解した。さらに、二酸化チタン分散物26.4質量部およびジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)1.6質量部を加え、室温で30分間撹拌した後、孔径3μmのポリプロピレン製フィルター(PPE-03)で濾過して、高屈折率層用塗布液HN1を調製した。
<Preparation of antiglare antireflection film 22>
(Preparation of coating solution for high refractive index layer)
54 parts by mass of cyclohexanone and 18 parts by mass of methyl ethyl ketone, 0.13 parts by mass of a photopolymerization initiator (Irgacure 907, manufactured by BASF Japan Ltd.) and photosensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) 04 parts by mass were dissolved. Furthermore, 26.4 parts by mass of titanium dioxide dispersion and 1.6 parts by mass of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) were added and stirred at room temperature for 30 minutes. Thereafter, the mixture was filtered through a polypropylene filter (PPE-03) having a pore diameter of 3 μm to prepare a coating solution HN1 for a high refractive index layer.
(低屈折率層用塗布液の調製)
 屈折率1.42であり、熱架橋性含フッ素ポリマーの6質量%のメチルエチルケトン溶液(JN-7228、JSR(株)製)を溶媒置換して、メチルイソブチルケトン85質量%、2-ブタノール15質量%からなる混合溶媒中に固形分10質量%を含有するポリマー溶液を得た。このポリマー溶液70質量部にMEK-ST(平均粒径10~20nm、固形分濃度30質量%のSiOゾルのメチルエチルケトン分散物、日産化学(株)製)10質量部、およびメチルイソブチルケトン42質量部およびシクロヘキサノン28質量部を添加、攪拌の後、孔径3μmのポリプロピレン製フィルター(PPE-03)でろ過して、低屈折率層用塗布液LN1を調製した。
(Preparation of coating solution for low refractive index layer)
A 6% by mass methyl ethyl ketone solution (JN-7228, manufactured by JSR Corporation) of a heat-crosslinkable fluorine-containing polymer having a refractive index of 1.42 was solvent-substituted, and methyl isobutyl ketone 85% by mass, 2-butanol 15% by mass A polymer solution containing 10% by mass of solid content in a mixed solvent consisting of% was obtained. To 70 parts by mass of this polymer solution, 10 parts by mass of MEK-ST (Methyl ethyl ketone dispersion of SiO 2 sol having an average particle size of 10 to 20 nm and a solid concentration of 30% by mass, manufactured by Nissan Chemical Co., Ltd.), and 42 parts by mass of methyl isobutyl ketone And 28 parts by mass of cyclohexanone were added, stirred, and then filtered through a polypropylene filter (PPE-03) having a pore size of 3 μm to prepare a coating solution LN1 for a low refractive index layer.
 防眩性反射防止フィルム1の作製の工程(1)~(5)において、組成物(A-1)に代えて高屈折率層用塗布液HN1を使用し、塗布量を1.8ml/mとする以外は同様の方法を行うことにより、高屈折率転写用積層体1を得た。
 防眩性反射防止フィルム1の作製の工程(1)~(5)において、組成物(A-1)に代えて低屈折率層用塗布液LN1を使用し、塗布量を0.8ml/mとする以外は同様の方法を行うことにより、低屈折率転写用積層体1を得た。
 防眩性反射防止フィルム1の作製の工程(6)~(10)において、積層体1に代えて高屈折率転写用積層体1を用いる以外は同様の方法を行うことにより、防眩フィルム上に高屈折率層を転写で形成した高屈折率層付き防眩フィルムAを作製した。
 防眩性反射防止フィルム1の作製の工程(6)~(10)において、防眩フィルムAG-1に代えて高屈折率層付き防眩フィルムAを用い、積層体1に代えて低屈折率転写用積層体1を用いる以外は同様の方法を行うことにより、防眩フィルム上に高屈折率層と低屈折率層を転写で形成した防眩性反射防止フィルム22を作製した。
In the steps (1) to (5) for producing the antiglare antireflection film 1, the coating solution HN1 for the high refractive index layer was used instead of the composition (A-1), and the coating amount was 1.8 ml / m. A laminate 1 for high refractive index transfer was obtained by carrying out the same method except that 2 .
In the steps (1) to (5) for producing the antiglare antireflection film 1, the coating solution LN1 for the low refractive index layer is used instead of the composition (A-1), and the coating amount is 0.8 ml / m. A laminate 1 for low refractive index transfer was obtained by carrying out the same method except that 2 .
In the steps (6) to (10) for producing the antiglare antireflection film 1, the same method is used except that the laminate 1 for high refractive index transfer is used in place of the laminate 1, whereby an antiglare film is formed. An anti-glare film A with a high refractive index layer in which a high refractive index layer was formed by transfer was prepared.
In the steps (6) to (10) for producing the antiglare antireflection film 1, the antiglare film A with a high refractive index layer is used instead of the antiglare film AG-1, and the low refractive index is used instead of the laminate 1. An antiglare antireflection film 22 in which a high refractive index layer and a low refractive index layer were formed by transfer on an antiglare film was produced by performing the same method except that the transfer laminate 1 was used.
<防眩性反射防止フィルム23の作製>
 上記防眩フィルムAG-1上に、高屈折率層用塗布液HN1をダイコーターを用いて1.8ml/m塗布し、30℃で90秒乾燥させた後、酸素濃度が1.0体積%の雰囲気になるように窒素パージしながら、高圧水銀ランプ(Dr.honle AG社製 型式:33351N 部品番号:LAMP-HOZ 200 D24 U 450 E)を用いて塗布した側から照射量90mJ/cm、照度20mWで光照射し、防眩フィルム上に高屈折率層を塗布で形成した高屈折率層付き防眩フィルムBを作製した。
 上記高屈折率層付き防眩フィルムB上に、低屈折率層用塗布液LN1をダイコーターを用いて0.8ml/m塗布し、30℃で90秒乾燥させた後、酸素濃度が0.01体積%以下の雰囲気になるように窒素パージしながら、高圧水銀ランプ(Dr.honle AG社製 型式:33351N 部品番号:LAMP-HOZ 200 D24 U 450 E)を用いて塗布した側から照射量300mJ/cm、照度60mWで光照射し、防眩性フィルム上に高屈折率層と低屈折率層を塗布で形成した防眩性反射防止フィルム23を作製した。
<Preparation of antiglare antireflection film 23>
On the anti-glare film AG-1, 1.8 ml / m 2 of the coating solution HN1 for the high refractive index layer is applied using a die coater and dried at 30 ° C. for 90 seconds, and then the oxygen concentration is 1.0 volume. The amount of irradiation was 90 mJ / cm 2 from the coated side using a high-pressure mercury lamp (Model: 33351N manufactured by Dr. Honle AG, Inc., part number: LAMP-HOZ 200 D24 U 450 E) while purging with nitrogen so as to obtain an atmosphere of 50%. The antiglare film B with a high refractive index layer was produced by irradiating light at an illuminance of 20 mW and forming a high refractive index layer on the antiglare film by coating.
On the anti-glare film B with a high refractive index layer, 0.8 ml / m 2 of the low refractive index layer coating solution LN1 is applied using a die coater and dried at 30 ° C. for 90 seconds. Irradiation dose from the side coated with a high-pressure mercury lamp (Model: 33351N manufactured by Dr. Honle AG, part number: LAMP-HOZ 200 D24 U 450 E) while purging with nitrogen to an atmosphere of 0.01% by volume or less The antiglare antireflection film 23 was formed by irradiating light at 300 mJ / cm 2 and an illuminance of 60 mW to form a high refractive index layer and a low refractive index layer on the antiglare film by coating.
(接着層の厚み)
 接着層を設けた防眩性反射防止フィルム11、12について、ミクロトームでフィルム切削断面を作製し、走査型電子顕微鏡S-3400N(日立ハイテクノロジーズ(株)製)を用いて断面観察することで接着層の厚みを求めたところ、接着層厚みは0.4μmであった。
(Adhesive layer thickness)
For anti-glare antireflection films 11 and 12 provided with an adhesive layer, a cross-section of the film was prepared with a microtome, and the cross-section was observed using a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation). When the thickness of the layer was determined, the adhesive layer thickness was 0.4 μm.
(反射防止層の表面硬化率)
 工程(6)において、防眩フィルムの防眩層に貼り合わせる前のモスアイ層の表面硬化率を以下の測定方法で測定した。
 即ち、防眩性反射防止フィルム1の作製に記載の反射防止層の作製方法において、3μmの膜厚になるように組成物(A-1)を仮支持体上に塗布した以外を変更せずに工程(5)まで行ったサンプルを作製し、防眩フィルムの防眩層に転写する前に表面IR測定を行った。表面IR測定から、カルボニル基のピーク(1660-1800cm-1)面積と二重結合のピーク高さ(808cm-1)を求め、二重結合のピーク高さをカルボニル基ピーク面積で除した値(以下P101と表す)を求めた。紫外線を照射しない条件で作製した同サンプルについて同様のIR測定を行い、二重結合のピーク高さをカルボニル基ピーク面積で除した値(Q101と表す)を求め、これらの値から下記数式1を用いて表面硬化率を計算した。
(Surface curing rate of antireflection layer)
In the step (6), the surface curing rate of the moth eye layer before being bonded to the antiglare layer of the antiglare film was measured by the following measuring method.
That is, in the preparation method of the antireflection layer described in the preparation of the antiglare antireflection film 1, the composition (A-1) was not changed except that the composition (A-1) was applied on the temporary support so as to have a thickness of 3 μm. The sample which went to the process (5) was produced, and surface IR measurement was performed before transferring to the glare-proof layer of an anti-glare film. From the surface IR measurement, the carbonyl group peak (1660-1800 cm −1 ) area and double bond peak height (808 cm −1 ) were determined, and the double bond peak height was divided by the carbonyl group peak area ( (Hereinafter referred to as P101). The same IR measurement was performed on the same sample prepared under the condition not irradiated with ultraviolet rays, and a value (denoted as Q101) obtained by dividing the peak height of the double bond by the carbonyl group peak area was obtained. Used to calculate the surface cure rate.
数式1 表面硬化率=(1-(P101/Q101))×100 (%)
 防眩層に転写する前の反射防止層の表面硬化率を下記表1に示した。
Formula 1 Surface hardening rate = (1− (P101 / Q101)) × 100 (%)
Table 1 shows the surface hardening rate of the antireflection layer before transferring to the antiglare layer.
<防眩性反射防止フィルムの評価>
 以下の方法により防眩性反射防止フィルムの諸特性の評価を行った。
<Evaluation of antiglare antireflection film>
Various properties of the antiglare antireflection film were evaluated by the following methods.
(防眩性反射防止フィルムの表面形状 Ra、Sm評価)
 作製した防眩性反射防止フィルムの表面形状をJIS B-0601(1994)に基づいて、表面凹凸の算術平均粗さ(Ra)、平均間隔(Sm)を小坂研究所(株)製サーフコーダーMODEL SE-3Fにより評価した。Smに関しては、測定長を8mmとし、カットオフ値は0.8mmとした。
 なお、上記測定により測定される凹凸形状のRa及びSmは、防眩層に起因する凹凸形状であり、防眩性反射防止フィルムが、防眩層上にモスアイ層を有する場合でも、モスアイ層の微細な凹凸形状は上記測定に影響を及ぼさない。
(Surface shape Ra, Sm evaluation of antiglare antireflection film)
The surface shape of the produced antiglare antireflection film is based on JIS B-0601 (1994), and the arithmetic average roughness (Ra) and the average interval (Sm) of the surface irregularities are calculated by Surfcorder MODEL manufactured by Kosaka Laboratory. Evaluated by SE-3F. Regarding Sm, the measurement length was 8 mm, and the cut-off value was 0.8 mm.
Note that Ra and Sm of the concavo-convex shape measured by the above measurement are concavo-convex shapes resulting from the antiglare layer, and even when the antiglare antireflection film has a motheye layer on the antiglare layer, The fine uneven shape does not affect the measurement.
(反射防止層の平均厚みムラ)
 得られた防眩性反射防止フィルムの表面を、走査型電子顕微鏡S-3400N(日立ハイテクノロジーズ(株)製)を用いて観察した。
 反射防止層がモスアイ層である防眩性反射防止フィルム1~21については、低倍の観察から粒子の密な部分と疎な部分を決定し、拡大して10μm×10μm角の粒子数をカウントした。低倍で疎密が観察されない場合には、ランダムで視野を選択して同様の観察を実施した。(疎な部分の粒子数/密な部分の粒子数)を算出し、それぞれ10回の測定値の平均の比を取って、反射防止層の平均厚みムラ(凸部における反射防止層の平均厚み/凹部における反射防止層の平均厚み)とした。
 反射防止層がモスアイ層ではない防眩性反射防止フィルム22及び23については、防眩性反射防止フィルムの凸部における反射防止層の平均厚みと凹部における反射防止層の平均厚みは下記方法で算出した。すなわち、光学顕微鏡等で観察して、防眩層の凸部をけがきペンによりマーキングし、そのマーキングした部分(マーキング部)を含むように切削した断面を光学顕微鏡又は走査型電子顕微鏡(SEM)で観察することで反射防止層の膜厚を算出する。ここで、凸部とは上記マーキング部付近で最も反射防止層の膜厚が薄い部分の膜厚とし、凹部とは上記断面において最も反射防止層の厚みが厚い部分とし、平均厚みは10回の測定の平均値とした。
(Average thickness unevenness of antireflection layer)
The surface of the obtained antiglare antireflection film was observed using a scanning electron microscope S-3400N (manufactured by Hitachi High-Technologies Corporation).
For anti-glare anti-reflection films 1 to 21 whose anti-reflection layer is a moth-eye layer, the dense and sparse parts of the particles are determined from low-magnification observation, and the number of 10 μm × 10 μm square particles is expanded and counted. did. When the density was not observed at low magnification, the field of view was randomly selected and the same observation was performed. The number of particles in the sparse part / the number of particles in the dense part was calculated, and the average ratio of the 10 measurements was taken for each, and the average thickness unevenness of the antireflection layer (the average thickness of the antireflection layer at the protrusions) / Average thickness of the antireflection layer in the recess).
For the antiglare antireflection films 22 and 23 in which the antireflection layer is not a moth-eye layer, the average thickness of the antireflection layer at the convex portion and the average thickness of the antireflection layer at the concave portion of the antiglare antireflection film are calculated by the following methods. did. That is, when observed with an optical microscope or the like, the convex portion of the antiglare layer is marked with a scribing pen, and the cross section cut to include the marked portion (marking portion) is an optical microscope or a scanning electron microscope (SEM). The film thickness of the antireflection layer is calculated by observing in FIG. Here, the convex portion is the thickness of the thinnest portion of the antireflection layer near the marking portion, and the concave portion is the thickest portion of the antireflection layer in the cross section, and the average thickness is 10 times. The average value of the measurement was used.
(積分反射率)
 防眩性反射防止フィルムの裏面(基材フィルムの防眩層側界面とは反対の表面)をサンドペーパーで粗面化した後に黒色インクで処理し、裏面反射をなくした状態で、分光光度計V-550(日本分光(株)製)にアダプターARV-474を装着して、380~780nmの波長領域において、入射角5°における積分反射率を測定し、平均反射率を算出して積分反射率とした。
(Integral reflectance)
The back side of the anti-glare anti-reflection film (the surface opposite to the anti-glare layer side interface of the base film) is roughened with sandpaper and then treated with black ink to eliminate the back reflection. Attach adapter ARV-474 to V-550 (manufactured by JASCO Corporation), measure the integral reflectance at an incident angle of 5 ° in the wavelength range of 380 to 780 nm, calculate the mean reflectance, and integrate the reflectance Rate.
(鏡面反射率)
 上記積分反射率測定に使用したフィルム(サンプル)、装置、アダプターを使用して、380nm~780nmの波長領域において、入射角5°に対し、受光角5°で鏡面反射率を測定し、平均反射率を算出して鏡面反射率とした。
(Specular reflectance)
Using the film (sample), device, and adapter used in the above integrated reflectance measurement, the specular reflectance was measured at a light receiving angle of 5 ° with respect to an incident angle of 5 ° in the wavelength region of 380 nm to 780 nm, and the average reflection was measured. The rate was calculated as the specular reflectance.
(全ヘイズ)
 面の均一性をヘイズ値で評価した。得られた防眩性反射防止フィルムの全ヘイズ値(%)をJIS-K7136(2000年)に準じて測定した。装置には日本電色工業(株)製ヘーズメーターNDH4000を用いた。
(All haze)
The uniformity of the surface was evaluated by the haze value. The total haze value (%) of the obtained antiglare antireflection film was measured according to JIS-K7136 (2000). Nippon Denshoku Industries Co., Ltd. haze meter NDH4000 was used for the apparatus.
(防眩性)
 防眩性反射防止フィルムの基材の反射防止層を設けた側とは反対の面に粘着剤付き黒色ポリエチレンテレフタレートシート(巴川製紙所製;「くっきりみえーる」)をラミネートし、裏面の光反射を防止した30cm×30cmのサンプルを作製した。上記サンプルにルーバーなしのむき出し蛍光灯(8000cd/m)を45度の角度から映し、-45度の方向から観察した際の反射像のボケの程度を以下の基準で評価した。
 A:蛍光灯の輪郭が全くわからない
 B:蛍光灯の輪郭がわずかにわかる
 C:蛍光灯はぼけているが、輪郭は識別できる
 D:蛍光灯がほとんどぼけない
(Anti-glare)
Laminated with a black polyethylene terephthalate sheet with adhesive ("Mr. Kakiri Mieru") on the opposite side of the base of the anti-glare anti-reflection film to the side where the anti-reflection layer is provided. A sample of 30 cm × 30 cm in which reflection was prevented was produced. An exposed fluorescent lamp (8000 cd / m 2 ) without a louver was projected on the sample from an angle of 45 degrees, and the degree of blurring of the reflected image when observed from the direction of −45 degrees was evaluated according to the following criteria.
A: The outline of the fluorescent lamp is not understood at all. B: The outline of the fluorescent lamp is slightly understood. C: The fluorescent lamp is blurred, but the outline can be identified. D: The fluorescent lamp is hardly blurred.
(耐擦傷性:耐擦傷性試験後の積分反射率)
 ラビングテスターの試料と接触する擦り先端部(1cm×1cm)に、スチールウール(日本スチールウール(株)製、グレードNo.0000)を巻いて事前準備した後、作製したサンプルの表面(反射防止層の表面)を、上記テスターの擦り部と接触させ、加重200g、擦り速度10cm/秒、移動距離(片道)10cmの条件で、往復10回擦り、耐傷性試験を行った。得られたサンプルについて、上記積分反射率測定と同様の方法で積分反射率測定を行い、耐傷性試験後の積分反射率を算出した。耐傷性試験前後の反射率差を、以下の基準で評価した。
  A :耐傷性試験前後で反射率差が0.5%以下
  B :耐傷性試験前後で反射率差が0.5%超で0.7%以下
  C :耐傷性試験前後で反射率差が0.7%超で1.0%以下
  D :耐傷性試験前後で反射率差が1.0%超で1.5%以下
  E :耐傷性試験前後で反射率差が1.5%超
 実用特性上、A~Dであることが好ましく、A~Cであることがより好ましく、A~Bであることがさらに好ましい。
(Scratch resistance: integrated reflectivity after scratch resistance test)
After pre-preparing steel wool (grade No. 0000, manufactured by Nippon Steel Wool Co., Ltd.) around the rubbing tip (1 cm × 1 cm) that comes in contact with the rubbing tester surface, the surface of the prepared sample (antireflection layer) The surface was brought into contact with the rubbing part of the tester and rubbed back and forth 10 times under the conditions of a load of 200 g, a rubbing speed of 10 cm / sec, and a moving distance (one way) of 10 cm, and a scratch resistance test was conducted. About the obtained sample, the integrated reflectance measurement was performed by the same method as the above-mentioned integrated reflectance measurement, and the integrated reflectance after the scratch resistance test was calculated. The reflectance difference before and after the scratch resistance test was evaluated according to the following criteria.
A: Reflectance difference is 0.5% or less before and after the scratch resistance test B: Reflectance difference is more than 0.5% and 0.7% or less before and after the scratch resistance test C: Reflectance difference is 0 before and after the scratch resistance test More than 7% and 1.0% or less D: Reflectivity difference before and after scratch resistance test is more than 1.0% and 1.5% or less E: Reflectance difference before and after scratch resistance test is more than 1.5% In addition, A to D are preferable, A to C are more preferable, and A to B are more preferable.
 得られた結果を表2にまとめた。 The results obtained are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 実施例1~19の防眩性反射防止フィルム1~12、15~20、22は、防眩性反射防止フィルムにおける凹部と凸部の反射防止層の平均厚みムラがない均一な構造を有し、積分反射率が1.0%以下、鏡面反射率が0.4%以下と良好な結果となった。これに対して、比較例1、2の防眩性反射防止フィルム13、14は、防眩性反射防止フィルムにおける凹部と凸部の反射防止層の平均厚みムラが大きく、積分反射率が1.0%を超え、鏡面反射率が0.4%を超えた。
 比較例3の防眩性反射防止フィルム21は、防眩層の凹凸形状が所望の範囲ではないため防眩性が十分ではなかった。
 また、比較例4の防眩性反射防止フィルム23は、防眩性反射防止フィルムにおける凹部と凸部の反射防止層の平均厚みムラが大きく、積分反射率が1.0%を超え、鏡面反射率が0.4%を超えた。
 本発明の防眩性反射防止フィルムの製造方法は、防眩層のような凹凸形状のある基材に反射防止能を付与するうえで有効な技術であることが示された。
The antiglare antireflection films 1 to 12, 15 to 20 and 22 of Examples 1 to 19 have a uniform structure with no unevenness in the average thickness of the concave and convex antireflection layers in the antiglare antireflection film. The integrated reflectance was 1.0% or less and the specular reflectance was 0.4% or less. On the other hand, the antiglare antireflection films 13 and 14 of Comparative Examples 1 and 2 have large average thickness unevenness of the antireflection layers of the concave and convex portions in the antiglare antireflection film, and the integrated reflectance is 1. It exceeded 0%, and the specular reflectance exceeded 0.4%.
The antiglare antireflection film 21 of Comparative Example 3 was not sufficiently antiglare because the uneven shape of the antiglare layer was not in the desired range.
Further, the antiglare antireflection film 23 of Comparative Example 4 has a large average thickness unevenness of the antireflection layer of the concave and convex portions in the antiglare antireflection film, the integrated reflectance exceeds 1.0%, and the specular reflection. The rate exceeded 0.4%.
It has been shown that the method for producing an antiglare antireflection film of the present invention is an effective technique for imparting antireflection performance to a substrate having an uneven shape such as an antiglare layer.
 実施例10の防眩性反射防止フィルムを作製する際に組成物(A-1)の代わりに、それぞれ組成物(A-2)、(B-1)、及び(B-2)を用いた以外は、同様にして、実施例24、25、及び26の防眩性反射防止フィルムをそれぞれ作製した。 In producing the antiglare antireflection film of Example 10, compositions (A-2), (B-1) and (B-2) were used instead of the composition (A-1), respectively. The antiglare antireflection films of Examples 24, 25, and 26 were prepared in the same manner except for the above.
(反射防止層のケイ素含有率(Si/C)の測定)
 上記作製した各反射防止フィルムの反射防止層バインダー中のケイ素原子および炭素原子数を、XPS表面分析装置として、VGサイエンティフィックス社製ESCALAB-200Rを用いて、前述の条件で、測定角度0°(測定深さ6nm)とし、ケイ素含有率(Si)および炭素原子含有率(C)を測定し、その結果からSi/Cを算出した。
(Measurement of silicon content (Si / C) of antireflection layer)
The number of silicon atoms and carbon atoms in the antireflection layer binder of each of the antireflection films prepared above was measured at an angle of 0 ° under the above-described conditions using an ESCALAB-200R manufactured by VG Scientific as an XPS surface analyzer. (Measurement depth 6 nm), silicon content (Si) and carbon atom content (C) were measured, and Si / C was calculated from the results.
 自発光型ディスプレイの最表面に用いることを想定し、青色光に対する耐久性試験を実施した。 Suppose that it is used for the outermost surface of a self-luminous display, a durability test against blue light was performed.
(青色耐久性)
 防眩性反射防止フィルムを、温度25℃相対湿度60%に保たれた部屋で、市販の青色光源(OPTEX-FA社製OPSM-H150X142B)上に並べて置き、反射防止フィルムに対して青色光を200時間連続で照射した。上記積分反射率測定と同様の方法で測定を行い、青色耐久性試験後の積分反射率を算出した。耐久性試験前後の反射率差を、以下の基準で評価した。
  A :耐久性試験前後で反射率差が0.2%以下
  B :耐久性試験前後で反射率差が0.2%超で0.5%以下
  C :耐久性試験前後で反射率差が0.5%超で1.0%以下
  D :耐久性試験前後で反射率差が1.0%超
 実用特性上、A~Cであることが好ましく、A~Bであることがより好ましい。
(Blue durability)
The anti-glare anti-reflection film is placed on a commercially available blue light source (OPSM-H150X142B manufactured by OPTEX-FA) in a room maintained at a temperature of 25 ° C. and a relative humidity of 60%, and blue light is applied to the anti-reflection film. Irradiated continuously for 200 hours. Measurement was performed in the same manner as the above-described integrated reflectance measurement, and the integrated reflectance after the blue durability test was calculated. The reflectance difference before and after the durability test was evaluated according to the following criteria.
A: Reflectance difference is 0.2% or less before and after the durability test B: Reflectance difference is more than 0.2% and 0.5% or less before and after the durability test C: Reflectance difference is 0 before and after the durability test More than 0.5% and not more than 1.0% D: Reflectance difference is more than 1.0% before and after the durability test. From the practical characteristics, it is preferably A to C, more preferably A to B.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表3の結果より、本願の防眩性反射防止フィルムにおいて、バインダー樹脂のSi/C比率が0.05以上であれば、青色光を長時間照射されても、バインダーがダメージは受けず、防眩性反射防止フィルムとして耐久性が向上し、低反射率を維持できることが分かった。
 なお、実施例24~26について、防眩性反射防止フィルムの表面形状(Ra及びSm)、反射防止層の平均厚みムラは実施例10の結果と同じであった。
From the results of Table 3, in the antiglare antireflection film of the present application, if the Si / C ratio of the binder resin is 0.05 or more, the binder is not damaged even when irradiated with blue light for a long time. It was found that durability was improved as a dazzling antireflection film, and low reflectance could be maintained.
For Examples 24 to 26, the surface shape (Ra and Sm) of the antiglare antireflection film and the average thickness unevenness of the antireflection layer were the same as those of Example 10.
 1 仮支持体
 2 層(a)、層(ca)
 3 粒子(a2)
 4 層(b)
 5 支持体
 6 粘着フィルム
 7 積層体
 10 モスアイ層(反射防止層)
 11 基材フィルム
 12 防眩層
 13 防眩層用粒子
 14 防眩フィルム
 15 接着層
 16 反射防止層
 20 防眩性反射防止フィルム
 Ln 低屈折率層
 Hn 高屈折率層
 UV 紫外線
1 Temporary Support 2 Layer (a), Layer (ca)
3 particles (a2)
4 layers (b)
5 Support 6 Adhesive Film 7 Laminate 10 Moss Eye Layer (Antireflection Layer)
DESCRIPTION OF SYMBOLS 11 Base film 12 Anti-glare layer 13 Anti-glare layer particle 14 Anti-glare film 15 Adhesive layer 16 Anti-reflective layer 20 Anti-glare anti-reflective film Ln Low refractive index layer Hn High refractive index layer UV Ultraviolet

Claims (13)

  1.  基材フィルムと、防眩層と、反射防止層とをこの順に有する防眩性反射防止フィルムであって、
     前記防眩性反射防止フィルムの積分反射率が1.0%以下であり、
     前記防眩性反射防止フィルムの鏡面反射率が0.4%以下であり、
     前記防眩性反射防止フィルム表面の凹凸形状は、算術平均粗さRaが0.03μm≦Ra≦0.4μmであり、かつ凹凸の平均間隔Smが20μm≦Sm≦700μmであり、
     前記防眩性反射防止フィルムの凸部における反射防止層の平均厚み/凹部における反射防止層の平均厚みの比が1.0~0.7である、防眩性反射防止フィルム。
    An antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order,
    The integrated reflectance of the antiglare antireflection film is 1.0% or less,
    The specular reflectance of the antiglare antireflection film is 0.4% or less,
    The uneven shape of the antiglare antireflection film surface has an arithmetic average roughness Ra of 0.03 μm ≦ Ra ≦ 0.4 μm, and an average interval Sm of unevenness of 20 μm ≦ Sm ≦ 700 μm,
    An antiglare antireflection film, wherein the ratio of the average thickness of the antireflection layer at the convex portion of the antiglare antireflection film to the average thickness of the antireflection layer at the concave portion is 1.0 to 0.7.
  2.  前記防眩性反射防止フィルム表面の凹凸形状は、算術平均粗さRaが0.1μm≦Ra≦0.4μmである、請求項1に記載の防眩性反射防止フィルム。 2. The antiglare antireflection film according to claim 1, wherein the uneven shape on the surface of the antiglare antireflection film has an arithmetic average roughness Ra of 0.1 μm ≦ Ra ≦ 0.4 μm.
  3.  前記防眩層と前記反射防止層の間に接着層を有する、請求項1または2に記載の防眩性反射防止フィルム。 The antiglare antireflection film according to claim 1 or 2, which has an adhesive layer between the antiglare layer and the antireflection layer.
  4.  前記防眩層中に、前記反射防止層と共有結合を形成可能な(メタ)アクリロイル基以外の官能基を有する成分を含有する、請求項1~3のいずれか1項に記載の防眩性反射防止フィルム。 The antiglare property according to any one of claims 1 to 3, wherein the antiglare layer contains a component having a functional group other than a (meth) acryloyl group capable of forming a covalent bond with the antireflection layer. Antireflection film.
  5.  前記反射防止層が、平均一次粒子径100nm以上250nm以下の粒子及びバインダー樹脂を含み、かつ前記防眩層との界面とは反対側の表面に前記粒子によるモスアイ構造を有する、請求項1~4のいずれか1項に記載の防眩性反射防止フィルム。 The antireflection layer includes particles having an average primary particle diameter of 100 nm to 250 nm and a binder resin, and has a moth-eye structure of the particles on the surface opposite to the interface with the antiglare layer. The antiglare antireflection film according to any one of the above.
  6.  前記バインダー樹脂がSi-O結合を有し、前記バインダー樹脂の平均ケイ素含有率Si/Cが0.01以上である請求項5に記載の防眩性反射防止フィルム。 6. The antiglare antireflection film according to claim 5, wherein the binder resin has a Si—O bond, and the average silicon content Si / C of the binder resin is 0.01 or more.
  7.  基材フィルムと、防眩層と、反射防止層とをこの順に有する防眩性反射防止フィルムの製造方法であって、
     前記基材フィルム上に、防眩層用バインダー樹脂形成用化合物と防眩層用粒子を含有する防眩層形成用組成物を塗布し、電離放射線照射又は加熱により前記防眩層形成用組成物を硬化させて防眩層を形成する工程と、
     仮支持体上に、反射防止層形成用組成物を塗布し、電離放射線照射又は加熱により10~70%の表面硬化率で半硬化し反射防止層を形成する工程と、
     前記反射防止層を前記仮支持体上から前記防眩層上に転写する工程と、
    を有する防眩性反射防止フィルムの製造方法。
    A method for producing an antiglare antireflection film having a base film, an antiglare layer, and an antireflection layer in this order,
    On the base film, a composition for forming an antiglare layer containing a binder resin forming compound for an antiglare layer and particles for the antiglare layer is applied, and the composition for forming an antiglare layer is irradiated with ionizing radiation or heated. A step of curing the antiglare layer,
    Applying a composition for forming an antireflection layer on a temporary support, and semi-curing it at a surface curing rate of 10 to 70% by irradiation with ionizing radiation or heating to form an antireflection layer;
    Transferring the antireflection layer from the temporary support onto the antiglare layer;
    The manufacturing method of the anti-glare antireflection film which has this.
  8.  前記反射防止層を前記仮支持体上から前記防眩層上に転写する前に、前記防眩層上又は前記反射防止層上に接着層を設ける工程を有する、請求項7に記載の防眩性反射防止フィルムの製造方法。 The antiglare layer according to claim 7, further comprising a step of providing an adhesive layer on the antiglare layer or on the antireflection layer before transferring the antireflection layer from the temporary support onto the antiglare layer. For producing antireflective film.
  9.  前記反射防止層と前記防眩層を貼り合わせた状態で加熱する工程を有する、請求項7または8に記載の防眩性反射防止フィルムの製造方法。 The method for producing an antiglare antireflection film according to claim 7 or 8, comprising a step of heating the antireflection layer and the antiglare layer in a bonded state.
  10.  仮支持体上に、平均一次粒子径が100nm以上250nm以下の粒子(a2)と硬化性化合物(a1)とを、前記硬化性化合物(a1)を含む層(a)中に前記粒子(a2)が埋没する厚みで設ける工程(1)、
     前記層(a)の一部を硬化させて層(ca)を得る工程(2)、
     支持体及び前記支持体上に粘着剤を含む層(b)を有する粘着フィルムの前記層(b)を、前記層(ca)と貼り合わせる工程(3)、
     前記粒子(a2)が、前記層(ca)及び前記層(b)を合わせた層中に埋没し、かつ、前記層(ca)の前記支持体側の界面から突出するように、前記層(ca)の前記支持体側の界面の位置を前記仮支持体側に近づける工程(4)、
     前記仮支持体を剥離する工程(5)、
     基材フィルムと防眩層を有する防眩フィルムの防眩層と、前記工程(5)で得られた前記層(ca)を含む積層体の前記層(ca)とを貼り合せる工程(6)、
     前記粒子(a2)が、前記層(ca)と、前記層(b)とを合わせた層中に埋没した状態で前記層(ca)を硬化させる工程(7)、ならびに
     前記粘着フィルムを剥離する工程(8)、
    をこの順に有する請求項7~9のいずれか1項に記載の防眩性反射防止フィルムの製造方法。
    On the temporary support, the particles (a2) having an average primary particle diameter of 100 nm or more and 250 nm or less and the curable compound (a1) are contained in the layer (a) containing the curable compound (a1). A step (1) of providing the thickness to be buried
    A step (2) of obtaining a layer (ca) by curing a part of the layer (a);
    A step (3) of bonding the layer (b) of the pressure-sensitive adhesive film having a support and a layer (b) containing a pressure-sensitive adhesive on the support to the layer (ca);
    The layer (ca) is embedded such that the particles (a2) are buried in the layer including the layer (ca) and the layer (b) and project from the interface of the layer (ca) on the support side. (4) the step of bringing the position of the interface on the support side closer to the temporary support side,
    Step (5) of peeling the temporary support,
    A step (6) of laminating the antiglare layer of the antiglare film having the base film and the antiglare layer and the layer (ca) of the laminate including the layer (ca) obtained in the step (5). ,
    A step (7) of curing the layer (ca) in a state where the particles (a2) are embedded in a combined layer of the layer (ca) and the layer (b), and the adhesive film is peeled off. Step (8),
    The method for producing an antiglare and antireflection film according to any one of claims 7 to 9, wherein
  11.  請求項1~6のいずれか1項に記載の防眩性反射防止フィルムを偏光板保護フィルムとして有する偏光板。 A polarizing plate having the antiglare antireflection film according to any one of claims 1 to 6 as a polarizing plate protective film.
  12.  請求項1~6のいずれか1項に記載の防眩性反射防止フィルム、又は請求項11に記載の偏光板を有する画像表示装置。 An image display apparatus comprising the antiglare antireflection film according to any one of claims 1 to 6 or the polarizing plate according to claim 11.
  13.  請求項1~6のいずれか1項に記載の防眩性反射防止フィルムを表面に備えた、自発光型ディスプレイ装置。 A self-luminous display device comprising the antiglare antireflection film according to any one of claims 1 to 6 on a surface.
PCT/JP2018/018042 2017-05-19 2018-05-10 Anti-glare anti-reflection film, anti-glare anti-reflection film production method, polarization plate, image display device, and self-luminous display device WO2018212051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019519201A JP6825095B2 (en) 2017-05-19 2018-05-10 Anti-glare anti-reflective film, manufacturing method of anti-glare anti-reflective film, polarizing plate, image display device, and self-luminous display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017100050 2017-05-19
JP2017-100050 2017-05-19
JP2018071135 2018-04-02
JP2018-071135 2018-04-02

Publications (1)

Publication Number Publication Date
WO2018212051A1 true WO2018212051A1 (en) 2018-11-22

Family

ID=64273740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018042 WO2018212051A1 (en) 2017-05-19 2018-05-10 Anti-glare anti-reflection film, anti-glare anti-reflection film production method, polarization plate, image display device, and self-luminous display device

Country Status (2)

Country Link
JP (1) JP6825095B2 (en)
WO (1) WO2018212051A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207957A1 (en) * 2018-04-26 2019-10-31 富士フイルム株式会社 Hard coat film, article provided with hard coat film, and image display apparatus
JP2021182136A (en) * 2020-05-15 2021-11-25 大日本印刷株式会社 Anti-glare film and image display device
WO2022196218A1 (en) * 2021-03-19 2022-09-22 日本電気硝子株式会社 Coating fluid for spray coating, production method therefor, and method for producing substrate coated with antiglare layer
KR20230096141A (en) * 2020-05-15 2023-06-29 다이니폰 인사츠 가부시키가이샤 Anti-glare film and image display device
CN116897194A (en) * 2021-03-19 2023-10-17 日本电气硝子株式会社 Coating liquid for spraying, method for producing same, and method for producing base material with antiglare layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309711A (en) * 2003-04-04 2004-11-04 Fuji Photo Film Co Ltd Antireflection membrane, antireflection film and picture display device
JP2005070435A (en) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd Manufacturing method for antidazzle antireflection coating
JP2006146027A (en) * 2004-11-24 2006-06-08 Konica Minolta Opto Inc Antiglare antireflection film, polarizing plate and display
JP2007293303A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Light-scattering film, polarizing plate and image display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309711A (en) * 2003-04-04 2004-11-04 Fuji Photo Film Co Ltd Antireflection membrane, antireflection film and picture display device
JP2005070435A (en) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd Manufacturing method for antidazzle antireflection coating
JP2006146027A (en) * 2004-11-24 2006-06-08 Konica Minolta Opto Inc Antiglare antireflection film, polarizing plate and display
JP2007293303A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Light-scattering film, polarizing plate and image display

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207957A1 (en) * 2018-04-26 2019-10-31 富士フイルム株式会社 Hard coat film, article provided with hard coat film, and image display apparatus
JP2021182136A (en) * 2020-05-15 2021-11-25 大日本印刷株式会社 Anti-glare film and image display device
JP7162098B2 (en) 2020-05-15 2022-10-27 大日本印刷株式会社 Antiglare film and image display device
KR20230096141A (en) * 2020-05-15 2023-06-29 다이니폰 인사츠 가부시키가이샤 Anti-glare film and image display device
KR102569310B1 (en) 2020-05-15 2023-08-22 다이니폰 인사츠 가부시키가이샤 Anti-glare film and image display device
US11960162B2 (en) 2020-05-15 2024-04-16 Dai Nippon Printing Co., Ltd. Anti-glare film and image display device
WO2022196218A1 (en) * 2021-03-19 2022-09-22 日本電気硝子株式会社 Coating fluid for spray coating, production method therefor, and method for producing substrate coated with antiglare layer
CN116897194A (en) * 2021-03-19 2023-10-17 日本电气硝子株式会社 Coating liquid for spraying, method for producing same, and method for producing base material with antiglare layer

Also Published As

Publication number Publication date
JP6825095B2 (en) 2021-02-03
JPWO2018212051A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2018212051A1 (en) Anti-glare anti-reflection film, anti-glare anti-reflection film production method, polarization plate, image display device, and self-luminous display device
KR101052709B1 (en) Anti-glare hard coat film, polarizing plate and image display device using the same
KR100917949B1 (en) Hard-coated antiglare film, polarizing plate, image display, and method of manufacturing hard-coated antiglare film
JP6868103B2 (en) Anti-reflective film, polarizing plate, and image display device
TW200807014A (en) Hard-coated antiglare film, and polarizing plate and image display including the same
JP3515447B2 (en) Antireflection material and polarizing film using the same
JP2008151998A (en) Manufacturing method of hard coat film, hard coat film, polarizing plate and image display apparatus
JP2008090263A (en) Antiglare hard coat film, manufacturing method of same, optical element, polarizing plate, and image display apparatus
CN111103637A (en) Antireflection film
JP2007196164A (en) Method for manufacturing optical film, optical film, polarizing plate, and picture display device
JP6596572B2 (en) Laminate, method for producing laminate, and method for producing antireflection film
JP2018132751A (en) Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film
JP5449760B2 (en) Coating composition, laminate and method for producing laminate
KR101943659B1 (en) Optical film, image display device, and method for producing image display device
WO2018025818A1 (en) Layered body, antireflective article, and method for manufacturing same
JP4856880B2 (en) Antireflection film, polarizing plate and image display device
JP6343540B2 (en) Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
WO2018186241A1 (en) Multilayer body, reflection preventing article having three-dimensional curved surface, and method for manufacturing reflection preventing article
JP2007102206A (en) Optical film, antireflection film, and polarizing plate and image display device using same
JP2008257160A (en) Optical laminate, polarizing plate and image display apparatus
JP2007108726A (en) Anti-reflection film, polarizing plate and image display device
WO2018180003A1 (en) Laminate, method for producing laminate and method for producing anti-reflection film
JP6442198B2 (en) Antiglare antireflection film, method for producing antiglare antireflection film, polarizing plate, and image display device
JP2011098445A (en) Optical laminate and method for manufacturing the same, and polarizing plate and display device using the same
WO2018034126A1 (en) Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802414

Country of ref document: EP

Kind code of ref document: A1