WO2018207528A1 - Structure abnormality diagnosis device - Google Patents

Structure abnormality diagnosis device Download PDF

Info

Publication number
WO2018207528A1
WO2018207528A1 PCT/JP2018/014956 JP2018014956W WO2018207528A1 WO 2018207528 A1 WO2018207528 A1 WO 2018207528A1 JP 2018014956 W JP2018014956 W JP 2018014956W WO 2018207528 A1 WO2018207528 A1 WO 2018207528A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
information
vibration information
gas
image
Prior art date
Application number
PCT/JP2018/014956
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 森本
基広 浅野
都築 斉一
裕晶 鈴木
輝夫 日置
任晃 堀田
明史 土岐
Original Assignee
コニカミノルタ株式会社
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社, 千代田化工建設株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019517511A priority Critical patent/JP7048590B2/en
Publication of WO2018207528A1 publication Critical patent/WO2018207528A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to a structure abnormality diagnosis apparatus, for example, a structure abnormality diagnosis apparatus that diagnoses the presence or absence of a structure abnormality from the vibration of the structure on a captured image.
  • the vibrations of the structures are observed. Detecting an abnormal condition is performed.
  • a vibration sensor is generally used to detect this abnormal state.
  • As a method of the vibration sensor there are a capacitance method, a piezoelectric element method, a laser Doppler method, and the like, and it is necessary to install a vibration sensor at a point where observation is desired. For this reason, especially when many observation points are set up for the purpose of observing the deterioration of structures, the installation cost and maintenance management cost of the vibration sensor are incurred, and the line connection between the vibration sensor and the control monitoring device There is also the complexity.
  • Patent Document 1 it is necessary to grasp in advance what kind of state will occur when a signal abnormality occurs. For this reason, it is impossible to cope with a vibration state that has not been experienced before or cannot be predicted.
  • the present invention has been made in view of such a situation, and the object of the present invention is to determine whether a structure is abnormal from vibration information of a captured image without grasping in advance the vibration state when the abnormality occurs in the structure. It is an object of the present invention to provide a structure abnormality diagnosis device capable of diagnosing whether or not a certain state exists.
  • a structure abnormality diagnosis device of the present invention includes a vibration information extraction unit that extracts vibration information of a structure reflected in an image from a captured image obtained by capturing the structure, An information storage unit for acquiring and storing the vibration information for a plurality of times; An abnormal state diagnosis unit that performs an abnormal state diagnosis of the structure using vibration information stored by the information storage unit, and outputs the diagnosis result; It is characterized by having.
  • the structure is configured to diagnose the abnormal state of the structure using the accumulated vibration information and output the diagnosis result, so the vibration state when the abnormality occurs in the structure is grasped in advance. Without doing so, it is possible to diagnose whether or not the structure is in an abnormal state from the vibration information of the captured image. Therefore, it is possible to detect an abnormal state that cannot be predicted by previous experience.
  • FIG. 10 is a standard deviation difference image diagram showing a display image obtained by multiplying a standard deviation difference (# 17 in FIG. 9) by 5000 times.
  • the infrared image figure which shows an example of a structure.
  • the graph which shows the temperature change of the edge part of a structure, and a non-edge part.
  • the schematic diagram for demonstrating the principle of the temperature change in the edge part of a structure.
  • the figure which shows the data by which the difference process (# 17 of FIG. 9) of the standard deviation data was performed about the edge part and non-edge part of a structure with a graph.
  • the schematic diagram which shows the specific example of the recording method of a vibration detection area
  • the abnormal state diagnosis unit 3 performs an abnormal state diagnosis of the structure using the vibration information stored by the information storage unit 2, and outputs the diagnosis result.
  • the gas distribution extraction unit 4 extracts gas distribution information existing in the space being imaged from the captured image. 1 and 2 indicate the flow of data between functional blocks.
  • An input signal (captured image information) to the structure abnormality diagnosis device 10A is input to the vibration information extraction unit 1 as shown in FIG.
  • the output result of the vibration information extraction unit 1 is input to the information storage unit 2 and also input to the abnormal state diagnosis unit 3.
  • Data is input from the information storage unit 2 to the abnormal state diagnosis unit 3 as necessary.
  • An output signal (abnormal state diagnosis result) from the abnormal state diagnosis unit 3 is output to the outside as an output from the structure abnormality diagnosis device 10A and also used for input to the information storage unit 2.
  • An input signal (captured image information) to the structure abnormality diagnosis device 10B is input to the gas distribution extraction unit 4 and the vibration information extraction unit 1 as shown in FIG. Both the output results of the gas distribution extraction unit 4 and the vibration information extraction unit 1 are input to the information storage unit 2.
  • the output result of the vibration information extraction unit 1 is also input to the abnormal state diagnosis unit 3, and data is input from the information storage unit 2 to the abnormal state diagnosis unit 3 as necessary.
  • An output signal (abnormal state diagnosis result) from the abnormal state diagnosis unit 3 is output to the outside as an output from the structure abnormality diagnosis device 10B, and is also used for input to the information storage unit 2. That is, the information storage unit 2 stores information that associates the gas spatial distribution information extracted by the gas distribution extraction unit 4 with the structure abnormality state diagnosis result.
  • the gas distribution information can be effectively used by outputting the result extracted by the gas distribution extraction unit 4 to the outside of the structure abnormality diagnosis device 10B.
  • the gas leak alarm device 5 as an output device that performs gas leak notification, gas leak location display, and the like when a gas leak occurs.
  • the gas leakage alarm device 5 include a control terminal device in a central monitoring room, a personal computer (stationary type, portable type, etc.), and a portable terminal (smart phone, touch pad, etc.).
  • the structure abnormality diagnosis apparatuses 10A and 10B are a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD in a digital device such as a personal computer or a portable device (smartphone, tablet terminal, etc.). (Hard Disk Drive) or the like, and the captured image information is input and the abnormal state diagnosis result is output.
  • the CPU reads out a structural abnormality diagnosis processing program stored in the HDD, develops it in the RAM, and executes it, thereby realizing the functional block.
  • FIG. 7 shows a time series infrared image of an outdoor test site in which gas leakage and background temperature change occur.
  • These are the infrared images G1 to G4 obtained by capturing a moving image with an infrared camera, and are actual captured data when the temperature suddenly decreases as a whole because it is shaded by clouds.
  • the input image is an image capturing black body radiation generated by an object having an absolute temperature of 0 K or higher, and the signal intensity of the image represents the temperature of the subject.
  • the wavelength region of the image is an infrared region, and in this image, the gas distribution is recorded as the strength of the signal based on the light absorption of the gas.
  • a point SP1 at which gas can be ejected is set, and for comparison with the point SP1, a point SP2 at which no gas is ejected is also set.
  • the infrared image G1 is an infrared image of the outdoor test site taken at time T1 immediately before the sunlight is blocked by the clouds.
  • the infrared image G2 is an infrared image (with gas) of an outdoor test site taken at time T2 after 5 seconds from time T1. At time T2, sunlight is blocked by clouds, so the background temperature is lower than at time T1.
  • Image G3 is an infrared image (with gas) of the outdoor test site taken at time T3, 10 seconds after time T1. From time T2 to time T3, the state in which the sunlight is blocked by the cloud is continued, so that the temperature of the background is lower at time T3 than at time T2.
  • Image G4 is an infrared image (with gas) of the outdoor test site taken at time T4 15 seconds after time T1. From time T3 to time T4, the state in which sunlight is blocked by the cloud is continued, so that the background temperature is lower at time T4 than at time T3.
  • FIGS. 8A and 8B show temperature changes at two points SP1 and SP2 of the outdoor test site.
  • the vertical axis indicates the temperature
  • the horizontal axis indicates the number of frames.
  • the frame rate is 30 fps. Therefore, the time from the 45th frame to the 495th frame is 15 seconds.
  • the graph (A) indicating the temperature change at the point SP1 is different from the graph (B) indicating the temperature change at the point SP2. Since no gas is ejected at the point SP2, the temperature change at the point SP2 shows only the background temperature change. On the other hand, since the gas is ejected at the point SP1, the gas is drifting at the point SP1. For this reason, the temperature change at the point SP1 indicates the temperature change obtained by adding the background temperature change and the temperature change caused by the leaked gas.
  • FIG. 9 shows an example of a processing flow of gas region extraction (# 10 in FIGS. 5 and 6).
  • averaging is performed at the previous and next 21 frames
  • the time averaging process for high frequency extraction is performed at the previous and next 3 frames.
  • Averaging is performed (# 14 in FIG. 9).
  • the graph of FIG. 10 shows data that has been subjected to time averaging processing (# 11, # 14 of FIG. 9).
  • the original data (FIG. 8A) is shown by a one-dot chain line
  • the data (Ave3) subjected to time averaging processing (# 14 in FIG. 9) in three frames before and after is shown by a solid line
  • time is shown in 21 frames before and after.
  • Data (Ave21) subjected to the averaging process is indicated by a broken line.
  • FIG. 11 (A) shows the difference processing between the data (Ave21) and the original data (FIG. 8 (A)) that have been subjected to the time averaging processing for low frequency extraction (# 11 in FIG. 9) in the previous and next 21 frames (FIG. 9 is the data subjected to # 12) (original-Ave21), and the graph of FIG. 11B shows the data subjected to high-frequency extraction time averaging processing (# 14 of FIG. 9) in three frames before and after. This shows data (original-Ave3) on which difference processing (# 15 in FIG. 9) has been performed between (Ave3) and original data (FIG. 8A).
  • the waveform data in FIG. 11 (B) is a waveform that takes out only a very high frequency component, it does not include information on the frequency corresponding to the fluctuation component of the fluctuation of the gas, and changes so much before and after the gas ejection. You can see that there is nothing. That is, in the difference between the high-frequency extraction time averaging process data and the original data, only high frequencies such as sensor noise are extracted, and no gas is extracted.
  • the waveform data in FIG. 11A is a waveform in which high-frequency noise components such as gas and sensor noise are added, and the waveform data in FIG.
  • 11B is a waveform of only high-frequency noise such as sensor noise.
  • the noise components of both waveforms do not have a complete correlation, the noise component cannot be removed even if the difference is obtained with the waveforms of FIGS. 11A and 11B (noise waveform). Subtraction by level works in much the same way as adding, leaving a noise waveform.)
  • FIGS. 11A and 11B standard deviations are calculated in 21 frames before and after (# 13 and # 16 in FIG. 9).
  • the solid line indicates the standard deviation stdev21 of the original ⁇ Ave21
  • the broken line indicates the standard deviation stdev3 of the original ⁇ Ave3.
  • a difference value Stdev21-3 between the standard deviation stdev21 and the standard deviation stdev3 is calculated (# 17 in FIG. 9).
  • FIG. 13 shows the standard deviation difference value Stdev21-3. From FIG. 13, it can be seen that the value can be corrected to almost 0 until the 90th frame where no gas is emitted. In other words, by taking a standard deviation, a process having an effect of taking an absolute value in the middle is sandwiched so that a high frequency noise component can be actually subtracted. An example in which this processing is performed on the entire image is shown in FIGS.
  • FIG. 14 is a standard deviation image diagram showing a display image obtained by multiplying the standard deviation stdev21 (# 13 in FIG. 9) of the difference between the 21-frame average Ave21 and the original data by 5000.
  • FIG. 15 shows the 3-frame average Ave3 and the original data.
  • FIG. 10 is a standard deviation image diagram showing a display image obtained by multiplying the standard deviation stdev3 (# 16 of FIG. 9) by 5,000 times.
  • FIG. 16 is a standard deviation difference image diagram showing a display image obtained by multiplying the standard deviation difference Stdev21-3 (# 17 in FIG. 9) by 5000 times.
  • FIG. 17 shows an infrared image obtained by photographing an example of the structure ST.
  • FIG. 17B is an enlarged view of the partial area PS existing in the imaging screen Io shown in FIG.
  • E1 indicates an edge portion that is an area including an edge
  • E0 indicates a non-edge portion that is an area that does not include an edge.
  • FIG. 18 shows temperature changes in the edge portion and the non-edge portion. Specifically, in FIG. 18, a thick line indicates a temperature change of one pixel in the non-edge portion E0, and a thin line indicates a temperature change of one pixel corresponding to the edge in the edge portion E1. As can be seen from the graph of FIG. 18, a large temperature change occurs at the edge even when the temperature change is small at the non-edge portion. The principle of this temperature change will be described with reference to FIG. FIG. 19 shows the temperature values of three pixels near the top and bottom of the edge portion E1 in the frame F1 and the frame F2 after 1/30 second.
  • the position on the structure corresponding to each pixel is shifted by 0.1 pixel downward due to the vibration of the structure.
  • the temperature difference between the center pixel and the bottom pixel in the frame F1 was 2 ° C., but in the frame F2 after 1/30 seconds, the temperature between the center pixel and the bottom pixel in the frame F1 It changes by 0.2 ° C. corresponding to 0.1 pixel of the difference of 2 ° C., and it appears that there is a temperature change. Therefore, when the same process as the gas detection is performed, the difference value of the standard deviation shows a large value in the pixel corresponding to the edge, as shown in FIG.
  • the vibration information can be acquired as a change in the value of the pixel corresponding to the edge of the structure ST reflected in the captured image.
  • FIG. 20A corresponds to the graph of FIG. 13, and standard deviation data difference processing (# 17 in FIG. 9) is performed on the pixels of the edge portion E1 and the non-edge portion E0 of the structure ST. Data Stdev21-3 is shown.
  • FIG. 20B is an enlarged view of the region PS including the edge portion E1 and the non-edge portion E0, and FIG. 20C is 8.33 seconds of the difference value Stdev21-3 of the standard deviation of all the pixels in the region PS.
  • 20D is an image obtained by binarizing the image of FIG. 20C.
  • FIG. 3 shows a first processing step example by the structure abnormality diagnosis apparatus 10A (FIG. 1).
  • An input image to the structure abnormality diagnosis device 10 ⁇ / b> A is input to the vibration information extraction unit 1.
  • the vibration information extraction unit 1 an edge existing in the input image is extracted by differentiating the input image (# 30).
  • the vibration information is digitized for each extracted edge (# 32), and the location of the edge and the digitized vibration information are accumulated and recorded in the information storage unit 2 (# 34).
  • the vibration information to be recorded is preferably an average value of the standard deviation difference value Stdev21-3 for a predetermined time.
  • the vibration information is compared with the vibration information at the same location in the accumulated information, and if there is a difference, it is determined that there is abnormal vibration, and abnormality detection processing is performed (# 36).
  • the vibration information of the place determined as having abnormal vibration is recorded (# 38), and the abnormality diagnosis result is output (# 40). Note that the vibration information may be digitized or recorded for all pixels of the input image.
  • FIG. 4 is a flowchart showing a second processing step example by the structure abnormality diagnosis device 10A (FIG. 1).
  • the operator confirms the photographed image on the monitor screen and designates a region for monitoring vibration.
  • An input image to the structure abnormality diagnosis device 10 ⁇ / b> A is input to the vibration information extraction unit 1.
  • the vibration information extraction unit 1 digitizes the vibration information for each designated area (# 42), and accumulates and records the location of the area and the digitized vibration information in the information storage unit 2 (# 44).
  • the vibration information to be recorded may be the average value of the standard deviation difference value Stdev21-3 of each pixel in the region for a predetermined time, but the average value of the standard deviation difference value Stdev21-3 is a predetermined value. It may be the number of pixels in the area exceeding the threshold value. Then, the vibration information and the vibration information of the same area in the accumulated information are compared for each designated area, and if there is a difference, it is determined that there is abnormal vibration, and abnormality detection processing is performed (# 46). The area determined to have abnormal vibration is recorded (# 48), and the abnormality diagnosis result is output (# 50).
  • FIG. 5 is a flowchart showing a first processing process example by the structure abnormality diagnosis device 10B (FIG. 2).
  • An input image to the structure abnormality diagnosis device 10 ⁇ / b> B is input to the gas distribution extraction unit 4 and the vibration information extraction unit 1.
  • gas distribution extraction unit 4 gas distribution information is extracted (# 10). If the presence of the gas is confirmed, a gas leakage source specifying process is performed using image processing, and the calculated gas leakage location is recorded (# 20). The extracted result is effectively used by being output to the outside (# 19). For example, if the output destination is the gas leak alarm device 5, an alarm is issued based on the gas distribution information.
  • the flowchart of FIG. 6 shows a second processing step example by the structure abnormality diagnosis device 10B (FIG. 2).
  • An input image to the structure abnormality diagnosis device 10 ⁇ / b> B is input to the gas distribution extraction unit 4 and the vibration information extraction unit 1.
  • the same processing as steps # 10 to # 20 in FIG. 5 is performed, and the gas leakage location is recorded.
  • the vibration information extraction unit 1 performs an abnormality detection process by the same process as steps # 42 to # 46 in FIG. Then, the gas leakage location and the area determined to have abnormal vibration are recorded in association with each other (# 56), and the abnormality diagnosis result is output (# 58).
  • FIG. 21 shows a specific example of a method for recording an area where vibration is detected (hereinafter referred to as vibration detection area SA).
  • FIG. 21A shows the vibration detection area SA in the partial area PS of the photographed image
  • FIGS. 21B to 21D show a method of recording the vibration detection area SA.
  • the vibration detection area SA is recorded as a coordinate point SB composed of a coordinate set of a plurality of points surrounding the vibration detection area SA where the vibration is detected.
  • the vibration detection area SA is recorded as a circumscribed circle SC that is centered on the center of gravity of the vibration detection area SA where the vibration is detected and circumscribes the vibration detection area SA.
  • the vibration detection area SA is recorded as the coordinates and inclination (angle ⁇ ) of the circumscribed rectangle SD that circumscribes the vibration detection area SA where the vibration is detected.
  • the average value of the standard deviation difference value Stdev21-3 of each pixel in the vibration detection area SA is averaged over the entire area of the vibration detection area SA, or the difference of the standard deviation.
  • the number of pixels in the vibration detection area SA in which the average value of the values Stdev21-3 for a predetermined time exceeds the threshold is preferable.
  • vibration information and accumulated information When comparing vibration information and accumulated information, information in the same area is compared (# 60 in FIGS. 3 to 6). At that time, all accumulated data in the same area is extracted and compared. And a case where only data at substantially the same time are extracted for comparison.
  • the former is effective when it is expected that the vibration method does not have time dependency.
  • the latter is when the vibration method is time-dependent (for example, when periodic mechanical vibration is applied from another location), or when it is desired to eliminate the effect, or conversely, periodic mechanical vibration is applied. This is effective when it is desired to detect abnormal vibrations in an abnormal state.
  • the vibration information is information related to the amplitude of vibration.
  • the frequency of vibration may be used as the vibration information.
  • the above-described embodiments include the following characteristic configurations (C1) to (C7) and the like.
  • a structure abnormality diagnosis device comprising:
  • the apparatus further includes a gas distribution extraction unit that extracts distribution information of gas existing in the space being imaged from the captured image, and the information storage unit includes the gas distribution extraction.
  • stores the information which matched the spatial distribution information of the gas extracted by the part, and the said structure abnormal state diagnostic result.
  • C3 Extracting vibration information of the structure reflected in the image from the captured image of the structure, acquiring and storing the vibration information for a plurality of times, and using the stored vibration information
  • a structure abnormality detection method characterized by performing an abnormal state diagnosis of a structure and outputting the diagnosis result.
  • (C4) processing for extracting vibration information of a structure reflected in an image from a captured image obtained by capturing the structure, processing for acquiring and storing the vibration information for a plurality of times, and stored vibration information
  • a structure abnormality diagnosis program for causing a computer to execute an abnormality state diagnosis of the structure using a computer and outputting a diagnosis result.
  • (C5) A configuration in which the vibration information in the above configurations (C1) to (C4) is acquired as a change in the pixel value of the edge portion of the structure reflected in the captured image.
  • (C6) A configuration in which the vibration information in the above configurations (C1) to (C4) is acquired as the number of pixels indicating a change in the pixel value of the structure reflected in the captured image.
  • the abnormality state diagnosis of the structure ST is performed using the accumulated information and the extracted vibration information. Since the diagnosis result is output, it is determined whether the structure ST is in an abnormal state from the vibration information of the captured image without grasping in advance the vibration state when the abnormality occurs in the structure ST. Diagnosis is possible. Therefore, it is possible to detect an abnormal state that cannot be predicted by previous experience. This is the same even when the structure abnormality detection method and the structure abnormality diagnosis program are used.
  • the spatial distribution of the leakage gas PG and the vibration information of the structure ST are extracted, thereby simultaneously detecting the gas leakage and the abnormal vibration.
  • the spatial distribution of the leakage gas PG and the vibration information of the structure ST are extracted, thereby simultaneously detecting the gas leakage and the abnormal vibration.
  • installation costs, maintenance management costs, and the like can be reduced, and the complexity of line connection is eliminated.
  • recording the gas leakage detection result and the detection result of the abnormal vibration state in association with each other it can be used as predictive maintenance data.

Abstract

This structure abnormality diagnosis device comprises a vibration information extraction unit, an information storage unit, and an abnormal condition diagnosis unit. The vibration information extraction unit extracts vibration information for a structure reflected in a captured image of the structure. The information storage unit acquires the vibration information over a plurality of time periods, and stores said information. The abnormal condition diagnosis unit carries out an abnormal condition diagnosis of the structure using the vibration information stored by the information storage unit, and outputs the diagnosis results thereof.

Description

構造物異常診断装置Structure abnormality diagnosis device
 本発明は、構造物異常診断装置に関するものであり、例えば、撮像画像上の構造物の振動から構造物の異常の有無を診断する構造物異常診断装置に関するものである。 The present invention relates to a structure abnormality diagnosis apparatus, for example, a structure abnormality diagnosis apparatus that diagnoses the presence or absence of a structure abnormality from the vibration of the structure on a captured image.
 工業製品の製造設備,工場,建造物等においては、それらを構成する構造物の腐食・劣化,機械の老朽化等を検知して事故を未然に防ぐため、構造物の振動を観測し、その異常状態を検知する、ということが行われている。この異常状態の検知には振動センサーを用いるのが一般的である。振動センサーの方式としては、静電容量方式,圧電素子方式,レーザードップラー方式等が挙げられるが、いずれも観測したい地点に振動センサーを設置する必要がある。そのため、特に構造物の劣化をみる目的等で多数の観測地点を設ける場合には、振動センサーの設置コストや保守管理コストがかかってしまい、また、振動センサーと制御監視装置との間の回線接続の煩雑さもある。 In industrial equipment manufacturing facilities, factories, buildings, etc., in order to prevent accidents by detecting the corrosion / deterioration of the structures that make them up, aging of machinery, etc., the vibrations of the structures are observed. Detecting an abnormal condition is performed. A vibration sensor is generally used to detect this abnormal state. As a method of the vibration sensor, there are a capacitance method, a piezoelectric element method, a laser Doppler method, and the like, and it is necessary to install a vibration sensor at a point where observation is desired. For this reason, especially when many observation points are set up for the purpose of observing the deterioration of structures, the installation cost and maintenance management cost of the vibration sensor are incurred, and the line connection between the vibration sensor and the control monitoring device There is also the complexity.
 振動情報から構造物が異常な状態にあるかどうかを判定する方法として、例えば特定周波数成分の振幅の変化をみる方法も知られている。例えば、特許文献1に記載の方法では、監視対象物を赤外線カメラで撮像し、温度の時間変化を示す時系列データをフーリエ変換して、特定周波数にて信号ピーク値が発生しているか否かを判定することにより、異常検出を行う構成になっている。 As a method of determining whether or not a structure is in an abnormal state from vibration information, for example, a method of checking a change in amplitude of a specific frequency component is also known. For example, in the method described in Patent Document 1, whether or not a signal peak value is generated at a specific frequency by imaging an object to be monitored with an infrared camera, Fourier-transforming time-series data indicating a temporal change in temperature, and the like. By determining the above, an abnormality detection is performed.
特開2015-219098号公報Japanese Patent Laid-Open No. 2015-219092
 しかしながら、特許文献1に記載されている方法では、信号異常が発生したときにどのような状態になるのかをあらかじめ把握しておく必要がある。そのため、これまでに経験の無い、あるいは予想のできない振動状態に対しては対応することができない。 However, in the method described in Patent Document 1, it is necessary to grasp in advance what kind of state will occur when a signal abnormality occurs. For this reason, it is impossible to cope with a vibration state that has not been experienced before or cannot be predicted.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、構造物に異常が起きたときの振動状態をあらかじめ把握することなしに、撮像画像の振動情報から構造物が異常な状態にあるかどうかを診断することの可能な構造物異常診断装置を提供することにある。 The present invention has been made in view of such a situation, and the object of the present invention is to determine whether a structure is abnormal from vibration information of a captured image without grasping in advance the vibration state when the abnormality occurs in the structure. It is an object of the present invention to provide a structure abnormality diagnosis device capable of diagnosing whether or not a certain state exists.
 上記目的を達成するために、本発明の構造物異常診断装置は、構造物を撮像した撮像画像から画像内に写りこんでいる構造物の振動情報を抽出する振動情報抽出部と、
 前記振動情報を複数時刻分取得して蓄積する情報蓄積部と、
 前記情報蓄積部によって蓄積された振動情報を用いて前記構造物の異常状態診断を行い、その診断結果を出力する異常状態診断部と、
 を有することを特徴とする。
In order to achieve the above object, a structure abnormality diagnosis device of the present invention includes a vibration information extraction unit that extracts vibration information of a structure reflected in an image from a captured image obtained by capturing the structure,
An information storage unit for acquiring and storing the vibration information for a plurality of times;
An abnormal state diagnosis unit that performs an abnormal state diagnosis of the structure using vibration information stored by the information storage unit, and outputs the diagnosis result;
It is characterized by having.
 本発明によれば、蓄積された振動情報を用いて構造物の異常状態診断を行い、その診断結果を出力する構成になっているため、構造物に異常が起きたときの振動状態をあらかじめ把握することなしに、撮像画像の振動情報から構造物が異常な状態にあるかどうかを診断することが可能である。したがって、これまでの経験では予想もできないような異常状態の検知が可能となる。 According to the present invention, the structure is configured to diagnose the abnormal state of the structure using the accumulated vibration information and output the diagnosis result, so the vibration state when the abnormality occurs in the structure is grasped in advance. Without doing so, it is possible to diagnose whether or not the structure is in an abnormal state from the vibration information of the captured image. Therefore, it is possible to detect an abnormal state that cannot be predicted by previous experience.
構造物異常診断装置の第1の実施の形態を示すブロック図。The block diagram which shows 1st Embodiment of a structure abnormality diagnostic apparatus. 構造物異常診断装置の第2の実施の形態を示すブロック図。The block diagram which shows 2nd Embodiment of a structure abnormality diagnostic apparatus. 第1の実施の形態による第1の処理工程例を示すフローチャート。The flowchart which shows the example of the 1st process process by 1st Embodiment. 第1の実施の形態による第2の処理工程例を示すフローチャート。The flowchart which shows the 2nd process process example by 1st Embodiment. 第2の実施の形態による第1の処理工程例を示すフローチャート。The flowchart which shows the 1st example of a process process by 2nd Embodiment. 第2の実施の形態による第2の処理工程例を示すフローチャート。The flowchart which shows the 2nd process process example by 2nd Embodiment. ガス漏れと背景の温度変化とが発生している屋外試験場を時系列で示す赤外線画像図。The infrared image figure which shows the outdoor test place where the gas leak and the temperature change of the background generate | occur | produced in time series. 屋外試験場における2つの地点SP1,SP2の温度変化を示すグラフ。The graph which shows the temperature change of two points SP1 and SP2 in an outdoor test site. ガス領域抽出処理(図5,図6の#10)の一例を示すフローチャート。The flowchart which shows an example of a gas area | region extraction process (# 10 of FIG. 5, FIG. 6). 時間平均化処理(図9の#11,#14)が施されたデータを示すグラフ。The graph which shows the data to which the time averaging process (# 11, # 14 of FIG. 9) was performed. 平均化データと元データとで差分処理(図9の#12,#15)が施されたデータを示すグラフ。10 is a graph showing data on which difference processing (# 12, # 15 in FIG. 9) has been performed between averaged data and original data. 2種類の差分データに対して前後21フレームで標準偏差処理(図9の#13,#16)が施されたデータを示すグラフ。The graph which shows the data by which the standard deviation process (# 13, # 16 of FIG. 9) was performed with respect to two types of difference data by 21 frames before and behind. 2種類の標準偏差データの差分処理(図9の#17)が施されたデータを示すグラフ。The graph which shows the data in which the difference process (# 17 of FIG. 9) of 2 types of standard deviation data was performed. 21フレーム平均との差分の標準偏差(図9の#13)を5000倍した表示画像を示す標準偏差画像図。The standard deviation image figure which shows the display image which multiplied the standard deviation (# 13 of FIG. 9) of the difference with 21 frame average 5000 times. 3フレーム平均との差分の標準偏差(図9の#16)を5000倍した表示画像を示す標準偏差画像図。The standard deviation image figure which shows the display image which multiplied the standard deviation (# 16 of FIG. 9) of the difference with 3 frame average 5000 times. 標準偏差の差分(図9の#17)を5000倍した表示画像を示す標準偏差の差分画像図。FIG. 10 is a standard deviation difference image diagram showing a display image obtained by multiplying a standard deviation difference (# 17 in FIG. 9) by 5000 times. 構造物の一例を示す赤外線画像図。The infrared image figure which shows an example of a structure. 構造物のエッジ部と非エッジ部の温度変化を示すグラフ。The graph which shows the temperature change of the edge part of a structure, and a non-edge part. 構造物のエッジ部における温度変化の原理を説明するための模式図。The schematic diagram for demonstrating the principle of the temperature change in the edge part of a structure. 構造物のエッジ部と非エッジ部について標準偏差データの差分処理(図9の#17)が施されたデータをグラフ等で示す図。The figure which shows the data by which the difference process (# 17 of FIG. 9) of the standard deviation data was performed about the edge part and non-edge part of a structure with a graph. 振動検知領域の記録方法の具体例を示す模式図。The schematic diagram which shows the specific example of the recording method of a vibration detection area | region.
 以下、本発明を実施した構造物異常診断装置等を、図面を参照しつつ説明する。なお、各実施の形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。 Hereinafter, a structural abnormality diagnosis device and the like embodying the present invention will be described with reference to the drawings. In addition, the same code | symbol is mutually attached | subjected to the part which is the same in each embodiment etc., and the corresponding part, and duplication description is abbreviate | omitted suitably.
 図1,図2に、第1,第2の実施の形態に係る構造物異常診断装置10A,10Bの概略構成を示す。構造物異常診断装置10Aは、振動情報抽出部1,情報蓄積部2及び異常状態診断部3を機能ブロックとして有しており、構造物異常診断装置10Bは、振動情報抽出部1,情報蓄積部2,異常状態診断部3及びガス分布抽出部4を機能ブロックとして有している。振動情報抽出部1は、構造物を撮像した撮像画像を入力とし、その撮像画像から画像内に写りこんでいる構造物の振動情報を抽出する。情報蓄積部2は、振動情報を複数時刻分取得して蓄積する。異常状態診断部3は、情報蓄積部2によって蓄積された振動情報を用いて構造物の異常状態診断を行い、その診断結果を出力する。ガス分布抽出部4は、撮像画像から撮像している空間内に存在するガスの分布情報を抽出する。なお、図1,図2中の矢印は、機能ブロック間のデータの流れを示している。 FIG. 1 and FIG. 2 show schematic configurations of the structure abnormality diagnosis apparatuses 10A and 10B according to the first and second embodiments. The structure abnormality diagnosis device 10A includes a vibration information extraction unit 1, an information storage unit 2, and an abnormal state diagnosis unit 3 as functional blocks. The structure abnormality diagnosis device 10B includes a vibration information extraction unit 1, an information storage unit. 2, the abnormal state diagnosis unit 3 and the gas distribution extraction unit 4 are provided as functional blocks. The vibration information extraction unit 1 receives a captured image obtained by capturing a structure, and extracts vibration information of the structure reflected in the image from the captured image. The information storage unit 2 acquires and stores vibration information for a plurality of times. The abnormal state diagnosis unit 3 performs an abnormal state diagnosis of the structure using the vibration information stored by the information storage unit 2, and outputs the diagnosis result. The gas distribution extraction unit 4 extracts gas distribution information existing in the space being imaged from the captured image. 1 and 2 indicate the flow of data between functional blocks.
 構造物異常診断装置10Aに対する入力信号(撮像画像情報)は、図1に示すように、振動情報抽出部1に入力される。振動情報抽出部1の出力結果は、情報蓄積部2に入力されるとともに、異常状態診断部3にも入力される。情報蓄積部2からは必要に応じて異常状態診断部3にデータが入力される。異常状態診断部3からの出力信号(異常状態診断結果)は、構造物異常診断装置10Aからの出力として外部に出力される他、情報蓄積部2への入力にも用いられる。 An input signal (captured image information) to the structure abnormality diagnosis device 10A is input to the vibration information extraction unit 1 as shown in FIG. The output result of the vibration information extraction unit 1 is input to the information storage unit 2 and also input to the abnormal state diagnosis unit 3. Data is input from the information storage unit 2 to the abnormal state diagnosis unit 3 as necessary. An output signal (abnormal state diagnosis result) from the abnormal state diagnosis unit 3 is output to the outside as an output from the structure abnormality diagnosis device 10A and also used for input to the information storage unit 2.
 構造物異常診断装置10Bに対する入力信号(撮像画像情報)は、図2に示すように、ガス分布抽出部4と振動情報抽出部1に入力される。ガス分布抽出部4と振動情報抽出部1の出力結果は、共に情報蓄積部2に入力される。振動情報抽出部1の出力結果は異常状態診断部3にも入力され、情報蓄積部2からは必要に応じて異常状態診断部3にデータが入力される。異常状態診断部3からの出力信号(異常状態診断結果)は、構造物異常診断装置10Bからの出力として外部に出力される他、情報蓄積部2への入力にも用いられる。つまり、情報蓄積部2には、ガス分布抽出部4によって抽出されたガスの空間分布情報と構造物異常状態診断結果とを対応づけた情報が蓄積される。 An input signal (captured image information) to the structure abnormality diagnosis device 10B is input to the gas distribution extraction unit 4 and the vibration information extraction unit 1 as shown in FIG. Both the output results of the gas distribution extraction unit 4 and the vibration information extraction unit 1 are input to the information storage unit 2. The output result of the vibration information extraction unit 1 is also input to the abnormal state diagnosis unit 3, and data is input from the information storage unit 2 to the abnormal state diagnosis unit 3 as necessary. An output signal (abnormal state diagnosis result) from the abnormal state diagnosis unit 3 is output to the outside as an output from the structure abnormality diagnosis device 10B, and is also used for input to the information storage unit 2. That is, the information storage unit 2 stores information that associates the gas spatial distribution information extracted by the gas distribution extraction unit 4 with the structure abnormality state diagnosis result.
 ガス分布抽出部4で抽出した結果を構造物異常診断装置10Bの外部に出力することにより、ガス分布情報の有効活用が可能となる。例えば、図2に示すように、ガス漏れが発生した場合にガス漏れ報知やガス漏れ箇所表示等を行う出力装置として、ガス漏洩警報装置5を使用するのが好ましい。ガス漏洩警報装置5としては、例えば、中央監視室における制御端末装置,パーソナルコンピュータ(据え置き型,可搬型等),携帯端末(スマートフォン,タッチパッド等)が挙げられる。 The gas distribution information can be effectively used by outputting the result extracted by the gas distribution extraction unit 4 to the outside of the structure abnormality diagnosis device 10B. For example, as shown in FIG. 2, it is preferable to use the gas leak alarm device 5 as an output device that performs gas leak notification, gas leak location display, and the like when a gas leak occurs. Examples of the gas leakage alarm device 5 include a control terminal device in a central monitoring room, a personal computer (stationary type, portable type, etc.), and a portable terminal (smart phone, touch pad, etc.).
 構造物異常診断装置10A,10Bは、パーソナルコンピュータ,携帯機器(スマートフォン,タブレット端末等)等のデジタル機器において、CPU(Central Processing Unit),RAM(Random Access Memory),ROM(Read Only Memory),HDD(Hard Disk Drive)等によって構成されており、撮像画像情報を入力とし、異常状態診断結果を出力とする。HDDに格納されている構造物異常診断用の処理プログラムをCPUが読み出し、RAMに展開して実行することによって、上記機能ブロックが実現される。 The structure abnormality diagnosis apparatuses 10A and 10B are a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD in a digital device such as a personal computer or a portable device (smartphone, tablet terminal, etc.). (Hard Disk Drive) or the like, and the captured image information is input and the abnormal state diagnosis result is output. The CPU reads out a structural abnormality diagnosis processing program stored in the HDD, develops it in the RAM, and executes it, thereby realizing the functional block.
 ここで、ガス分布抽出部4によるガス分布情報抽出処理について説明する。まず図7に、構造物異常診断装置10A,10Bへの入力画像の例として、ガス漏れと背景の温度変化とが発生している屋外試験場を時系列の赤外線画像で示す。これらは、赤外線カメラで動画撮影して得られた赤外線画像G1~G4であり、雲で陰ったために、全体的に温度が急激に下がった場合の実際の撮影データである。また、入力画像は絶対温度0K以上の物体が発生する黒体放射光をとらえた画像であり、画像の信号強度は被写体の温度を表している。画像の波長域は赤外領域となっていて、この画像では、ガスの光吸収に基づきガス分布も信号の強弱として記録されている。屋外試験場にはガスを噴出させることができる地点SP1が設定されており、その地点SP1と比較するために、ガスが噴出しない地点SP2も設定されている。 Here, the gas distribution information extraction processing by the gas distribution extraction unit 4 will be described. First, as an example of an input image to the structure abnormality diagnosis apparatuses 10A and 10B, FIG. 7 shows a time series infrared image of an outdoor test site in which gas leakage and background temperature change occur. These are the infrared images G1 to G4 obtained by capturing a moving image with an infrared camera, and are actual captured data when the temperature suddenly decreases as a whole because it is shaded by clouds. The input image is an image capturing black body radiation generated by an object having an absolute temperature of 0 K or higher, and the signal intensity of the image represents the temperature of the subject. The wavelength region of the image is an infrared region, and in this image, the gas distribution is recorded as the strength of the signal based on the light absorption of the gas. In the outdoor test site, a point SP1 at which gas can be ejected is set, and for comparison with the point SP1, a point SP2 at which no gas is ejected is also set.
 赤外線画像G1は、太陽光が雲で遮られる直前の時刻T1に撮影された屋外試験場の赤外線画像である。赤外線画像G2は、時刻T1から5秒後の時刻T2に撮影された屋外試験場の赤外線画像(ガスあり)である。時刻T2は、太陽光が雲で遮られているので、時刻T1と比べて背景の温度が下がっている。画像G3は、時刻T1から10秒後の時刻T3に撮影された屋外試験場の赤外線画像(ガスあり)である。時刻T2から時刻T3まで、太陽光が雲で遮られた状態が継続されているので、時刻T3は、時刻T2と比べて背景の温度が下がっている。画像G4は、時刻T1から15秒後の時刻T4に撮影された屋外試験場の赤外線画像(ガスあり)である。時刻T3から時刻T4まで、太陽光が雲で遮られた状態が継続されているので、時刻T4は、時刻T3と比べて背景の温度が下がっている。 The infrared image G1 is an infrared image of the outdoor test site taken at time T1 immediately before the sunlight is blocked by the clouds. The infrared image G2 is an infrared image (with gas) of an outdoor test site taken at time T2 after 5 seconds from time T1. At time T2, sunlight is blocked by clouds, so the background temperature is lower than at time T1. Image G3 is an infrared image (with gas) of the outdoor test site taken at time T3, 10 seconds after time T1. From time T2 to time T3, the state in which the sunlight is blocked by the cloud is continued, so that the temperature of the background is lower at time T3 than at time T2. Image G4 is an infrared image (with gas) of the outdoor test site taken at time T4 15 seconds after time T1. From time T3 to time T4, the state in which sunlight is blocked by the cloud is continued, so that the background temperature is lower at time T4 than at time T3.
 図8(A),(B)のグラフに、屋外試験場の2つの地点SP1,SP2での温度変化をそれぞれ示す。各グラフにおいて、縦軸は温度を示しており、横軸はフレーム数を示している。フレームレートは30fpsである。よって、第45フレームから第495フレームまでの時間は15秒となる。 8A and 8B show temperature changes at two points SP1 and SP2 of the outdoor test site. In each graph, the vertical axis indicates the temperature, and the horizontal axis indicates the number of frames. The frame rate is 30 fps. Therefore, the time from the 45th frame to the 495th frame is 15 seconds.
 図8(A)に示すように、時刻T1から時刻T2までの間の時刻に、地点SP1でガスの噴出を開始させている。そのため、例えば破線領域で示す範囲から分かるように、地点SP1の温度変化を示すグラフ(A)と地点SP2の温度変化を示すグラフ(B)とは異なっている。地点SP2ではガスが噴出していないので、地点SP2の温度変化は背景の温度変化のみを示している。これに対して、地点SP1では、ガスが噴出しているので、地点SP1にはガスが漂っている。このため、地点SP1の温度変化は、背景の温度変化と漏れたガスによる温度変化とを加算した温度変化を示している。 As shown in FIG. 8A, gas ejection is started at a point SP1 at a time between time T1 and time T2. Therefore, for example, as can be seen from the range indicated by the broken line region, the graph (A) indicating the temperature change at the point SP1 is different from the graph (B) indicating the temperature change at the point SP2. Since no gas is ejected at the point SP2, the temperature change at the point SP2 shows only the background temperature change. On the other hand, since the gas is ejected at the point SP1, the gas is drifting at the point SP1. For this reason, the temperature change at the point SP1 indicates the temperature change obtained by adding the background temperature change and the temperature change caused by the leaked gas.
 図8(B)に示すように、時刻T1から時刻T4までの15秒間で背景の温度は約4℃下がっている。このため、図7に示すように、画像G4は画像G1と比べて全体的に暗く(つまり濃く)なっており、背景の温度が低下していることが分かる。しかし、地点SP1で噴出したガスによる温度変化はわずかであり、0.5℃もないことが分かる。このため、時刻T2,時刻T3,時刻T4では、地点SP1でガスが噴出しているが、噴出したガスによる温度変化よりも、背景の温度変化の方がはるかに大きいので、画像G2,画像G3,画像G4を見ても地点SP1からガスが出ている様子は分からない。 As shown in FIG. 8 (B), the background temperature has dropped by about 4 ° C. in 15 seconds from time T1 to time T4. For this reason, as shown in FIG. 7, it can be seen that the image G4 is generally darker (that is, darker) than the image G1, and the background temperature is lowered. However, it can be seen that the temperature change due to the gas ejected at the point SP1 is slight and not 0.5 ° C. For this reason, at time T2, time T3, and time T4, the gas is ejected at the point SP1, but since the background temperature change is much larger than the temperature change caused by the ejected gas, the image G2, the image G3 , It cannot be seen from the image G4 that gas is emitted from the point SP1.
 図8(A),(B)に示すグラフからは、地点SP1でガスが噴出していることが分かる(すなわち、地点SP1でガス漏れが発生していることが分かる)。しかし、上述したように、図7に示す赤外線画像からは、地点SP1でガスが噴出していることは分からない(すなわち、地点SP1でガス漏れが発生していることが分からない)。そこで、背景の温度変化を考慮して赤外線画像を画像処理することにより、ガスが漏れている様子を画像で示すことができるようにする。つまり、ガスの存在に伴うわずかな温度変化成分(周波数成分)を、以下に説明する手法で取り出す。 From the graphs shown in FIGS. 8A and 8B, it can be seen that gas is ejected at the point SP1 (that is, gas leakage occurs at the point SP1). However, as described above, it is not known from the infrared image shown in FIG. 7 that gas is ejected at the point SP1 (that is, it is not known that a gas leak occurs at the point SP1). Therefore, image processing is performed on the infrared image in consideration of the temperature change of the background so that the state of gas leakage can be shown by the image. That is, a slight temperature change component (frequency component) due to the presence of gas is extracted by the method described below.
 図9に、ガス領域抽出(図5及び図6の#10)の処理フローの一例を示す。背景温度変化に相当するデータ作成のための低周波抽出用時間平均化処理(図9の#11)として前後21フレームでの平均化を行い、高周波抽出用時間平均化処理として前後3フレームでの平均化を行う(図9の#14)。図10のグラフに、時間平均化処理(図9の#11,#14)が施されたデータを示す。図10中、元データ(図8(A))を一点鎖線で示し、前後3フレームで時間平均化処理(図9の#14)されたデータ(Ave3)を実線で示し、前後21フレームで時間平均化処理(図9の#11)されたデータ(Ave21)を破線で示す。 FIG. 9 shows an example of a processing flow of gas region extraction (# 10 in FIGS. 5 and 6). As the time averaging process for low frequency extraction (# 11 in FIG. 9) for data generation corresponding to the background temperature change, averaging is performed at the previous and next 21 frames, and the time averaging process for high frequency extraction is performed at the previous and next 3 frames. Averaging is performed (# 14 in FIG. 9). The graph of FIG. 10 shows data that has been subjected to time averaging processing (# 11, # 14 of FIG. 9). In FIG. 10, the original data (FIG. 8A) is shown by a one-dot chain line, the data (Ave3) subjected to time averaging processing (# 14 in FIG. 9) in three frames before and after is shown by a solid line, and time is shown in 21 frames before and after. Data (Ave21) subjected to the averaging process (# 11 in FIG. 9) is indicated by a broken line.
 さらに、それぞれ元データとの差分を取ると(図9の#12,#15)、図11(A),(B)のグラフに示すような波形データが得られる。図11(A)のグラフは、前後21フレームで低周波抽出用時間平均化処理(図9の#11)されたデータ(Ave21)と元データ(図8(A))とで差分処理(図9の#12)が施されたデータ(元-Ave21)を示しており、図11(B)のグラフは、前後3フレームで高周波抽出用時間平均化処理(図9の#14)されたデータ(Ave3)と元データ(図8(A))とで差分処理(図9の#15)が施されたデータ(元-Ave3)を示している。 Furthermore, if differences from the original data are taken (# 12 and # 15 in FIG. 9), waveform data as shown in the graphs of FIGS. 11 (A) and 11 (B) is obtained. The graph of FIG. 11 (A) shows the difference processing between the data (Ave21) and the original data (FIG. 8 (A)) that have been subjected to the time averaging processing for low frequency extraction (# 11 in FIG. 9) in the previous and next 21 frames (FIG. 9 is the data subjected to # 12) (original-Ave21), and the graph of FIG. 11B shows the data subjected to high-frequency extraction time averaging processing (# 14 of FIG. 9) in three frames before and after. This shows data (original-Ave3) on which difference processing (# 15 in FIG. 9) has been performed between (Ave3) and original data (FIG. 8A).
 図11(A)から分かるように、90フレーム目を超えたあたりからガスが出ている。しかし、図11(B)の波形データは非常に高周波の成分のみを取りだした波形であるため、ガスのゆらゆらする揺らぎ成分に相当する周波数の情報は含まれておらず、ガス噴出前後であまり変化なく見えることが分かる。すなわち、高周波抽出用時間平均化処理データと元データとの差分では、センサーノイズ等の高周波だけが抽出され、ガスは抽出されない。言い換えると、図11(A)の波形データはガスとセンサーノイズ等の高周波ノイズ成分の加算された波形であり、図11(B)の波形データはセンサーノイズ等の高周波ノイズのみの波形である。しかし、両波形のノイズ成分同士は完全な相関があるわけではないので、図11(A),(B)の波形のまま差分を取っても、ノイズ成分を除去することはできない(ノイズの波形レベルでの減算は、加算するのと実質同じように働き、ノイズ波形は残る。)。 As can be seen from FIG. 11 (A), gas is emitted from around the 90th frame. However, since the waveform data in FIG. 11 (B) is a waveform that takes out only a very high frequency component, it does not include information on the frequency corresponding to the fluctuation component of the fluctuation of the gas, and changes so much before and after the gas ejection. You can see that there is nothing. That is, in the difference between the high-frequency extraction time averaging process data and the original data, only high frequencies such as sensor noise are extracted, and no gas is extracted. In other words, the waveform data in FIG. 11A is a waveform in which high-frequency noise components such as gas and sensor noise are added, and the waveform data in FIG. 11B is a waveform of only high-frequency noise such as sensor noise. However, since the noise components of both waveforms do not have a complete correlation, the noise component cannot be removed even if the difference is obtained with the waveforms of FIGS. 11A and 11B (noise waveform). Subtraction by level works in much the same way as adding, leaving a noise waveform.)
 そこで、図11(A),(B)に示す2種類の波形(元-Ave21,元-Ave3)に対して、前後21フレームで標準偏差を算出する(図9の#13,#16)。図12において実線は元-Ave21の標準偏差stdev21を、破線は元-Ave3の標準偏差stdev3をそれぞれ示している。さらに、標準偏差stdev21と標準偏差stdev3との差分値Stdev21-3を算出する(図9の#17)。図13が標準偏差の差分値Stdev21-3を示している。図13から、ガスの出ていない90フレーム目までは、ほぼ0に近い値に補正できていることが分かる。つまり、標準偏差を取ることにより途中で絶対値を取るような効果をもつ処理を挟み、それによって実際に高周波ノイズ成分を減算できるようにしている。この処理を画像全体に対して行った例を、図14~図16に示す。 Therefore, for the two types of waveforms (original-Ave21 and original-Ave3) shown in FIGS. 11A and 11B, standard deviations are calculated in 21 frames before and after (# 13 and # 16 in FIG. 9). In FIG. 12, the solid line indicates the standard deviation stdev21 of the original −Ave21, and the broken line indicates the standard deviation stdev3 of the original −Ave3. Further, a difference value Stdev21-3 between the standard deviation stdev21 and the standard deviation stdev3 is calculated (# 17 in FIG. 9). FIG. 13 shows the standard deviation difference value Stdev21-3. From FIG. 13, it can be seen that the value can be corrected to almost 0 until the 90th frame where no gas is emitted. In other words, by taking a standard deviation, a process having an effect of taking an absolute value in the middle is sandwiched so that a high frequency noise component can be actually subtracted. An example in which this processing is performed on the entire image is shown in FIGS.
 図14は21フレーム平均Ave21と元データとの差分の標準偏差stdev21(図9の#13)を5000倍した表示画像を示す標準偏差画像図であり、図15は3フレーム平均Ave3と元データとの差分の標準偏差stdev3(図9の#16)を5000倍した表示画像を示す標準偏差画像図である。図16は標準偏差の差分Stdev21-3(図9の#17)を5000倍した表示画像を示す標準偏差の差分画像図である。図16に示す画像に画像処理で漏洩源特定処理を施すことによって、漏洩ガスPGの漏洩箇所を得ることができる。 FIG. 14 is a standard deviation image diagram showing a display image obtained by multiplying the standard deviation stdev21 (# 13 in FIG. 9) of the difference between the 21-frame average Ave21 and the original data by 5000. FIG. 15 shows the 3-frame average Ave3 and the original data. FIG. 10 is a standard deviation image diagram showing a display image obtained by multiplying the standard deviation stdev3 (# 16 of FIG. 9) by 5,000 times. FIG. 16 is a standard deviation difference image diagram showing a display image obtained by multiplying the standard deviation difference Stdev21-3 (# 17 in FIG. 9) by 5000 times. By performing leakage source specifying processing by image processing on the image shown in FIG. 16, the leakage location of the leakage gas PG can be obtained.
 次に、振動情報抽出部1による振動情報抽出処理を説明する。図17に、構造物STの一例を撮影した赤外線画像で示す。図17(B)は、図17(A)に示す撮像画面Io内に存在する部分領域PSを拡大したものである。図17(B)においてE1はエッジを含んだ領域であるエッジ部を示し、E0はエッジを含まない領域である非エッジ部を示している。 Next, vibration information extraction processing by the vibration information extraction unit 1 will be described. FIG. 17 shows an infrared image obtained by photographing an example of the structure ST. FIG. 17B is an enlarged view of the partial area PS existing in the imaging screen Io shown in FIG. In FIG. 17B, E1 indicates an edge portion that is an area including an edge, and E0 indicates a non-edge portion that is an area that does not include an edge.
 図18はエッジ部及び非エッジ部の温度変化を示している。具体的には、図18において太線は非エッジ部E0内の一画素の温度変化を示し、細線はエッジ部E1内のエッジに対応する一画素の温度変化を示している。図18のグラフから分かるように、非エッジ部では温度変化が小さい状況でも、エッジでは大きな温度変化が発生する。この温度変化が発生する原理を、図19を用いて説明する。図19はフレームF1とその1/30秒後のフレームF2でのエッジ部E1の上下近傍3画素の温度値を示している。フレームF1とフレームF2とでは、各画素に対応する構造物上の位置が、構造物の振動により下方に0.1画素ずれている。このため、フレームF1では中央の画素と最下の画素とで温度差が2℃あったのが、1/30秒後のフレームF2では、フレームF1における中央の画素と最下の画素との温度差2℃のうちの0.1画素分に相当する0.2℃分変化し、見かけ上温度変化があるように見える。したがって、前記ガス検知と同じ処理を行うと、図20に示すように、標準偏差の差分値はエッジに対応する画素では大きな値を示すことになる。一方、上述のように非エッジ部では構造物の振動により生じる温度変化は小さいので、エッジ部で大きな温度変化が検出され、その近傍の非エッジ部で温度変化が検出されなければ、構造物が振動していると分かる。このように、振動情報は、撮像画像に写りこんでいる構造物STのエッジに対応する画素の値の変化として取得することができる。 FIG. 18 shows temperature changes in the edge portion and the non-edge portion. Specifically, in FIG. 18, a thick line indicates a temperature change of one pixel in the non-edge portion E0, and a thin line indicates a temperature change of one pixel corresponding to the edge in the edge portion E1. As can be seen from the graph of FIG. 18, a large temperature change occurs at the edge even when the temperature change is small at the non-edge portion. The principle of this temperature change will be described with reference to FIG. FIG. 19 shows the temperature values of three pixels near the top and bottom of the edge portion E1 in the frame F1 and the frame F2 after 1/30 second. In the frame F1 and the frame F2, the position on the structure corresponding to each pixel is shifted by 0.1 pixel downward due to the vibration of the structure. For this reason, the temperature difference between the center pixel and the bottom pixel in the frame F1 was 2 ° C., but in the frame F2 after 1/30 seconds, the temperature between the center pixel and the bottom pixel in the frame F1 It changes by 0.2 ° C. corresponding to 0.1 pixel of the difference of 2 ° C., and it appears that there is a temperature change. Therefore, when the same process as the gas detection is performed, the difference value of the standard deviation shows a large value in the pixel corresponding to the edge, as shown in FIG. On the other hand, as described above, since the temperature change caused by the vibration of the structure is small at the non-edge portion, a large temperature change is detected at the edge portion. You can see that it is vibrating. Thus, the vibration information can be acquired as a change in the value of the pixel corresponding to the edge of the structure ST reflected in the captured image.
 図20(A)は、図13のグラフに対応しており、構造物STのエッジ部E1の画素と非エッジ部E0の画素について標準偏差データの差分処理(図9の#17)が施されたデータStdev21-3を示している。図20(B)はエッジ部E1及び非エッジ部E0を含む領域PSの拡大図であり、図20(C)は領域PS内の全画素の標準偏差の差分値Stdev21-3の8.33秒間の平均値を示す画像であり、図20(D)は図20(C)の画像を2値化した画像である。 FIG. 20A corresponds to the graph of FIG. 13, and standard deviation data difference processing (# 17 in FIG. 9) is performed on the pixels of the edge portion E1 and the non-edge portion E0 of the structure ST. Data Stdev21-3 is shown. FIG. 20B is an enlarged view of the region PS including the edge portion E1 and the non-edge portion E0, and FIG. 20C is 8.33 seconds of the difference value Stdev21-3 of the standard deviation of all the pixels in the region PS. 20D is an image obtained by binarizing the image of FIG. 20C.
 振動量を示す評価値として、例えば標準偏差の差分値Stdev21-3の所定時間の平均値を用いるものとする。この平均値を画像化した例を示しているのが図20(C)である。さらに、図20(D)に示すように、その値を適当な閾値で2値化し、閾値を超えた画素数をカウントし、振動量の評価値としてもよい。振動が大きいほど、影響の出る画素数も増加する。したがって、振動情報を、撮像画像に写りこんでいる構造物の画素値(温度)変化を示す画素数として取得するようにしてもよい。また、この標準偏差の差分値の代わりに、高周波成分を減算する処理前の「前後21フレームで平均化との差の標準偏差」(図12の大きい値)を用いるようにしても構わない。 As an evaluation value indicating the vibration amount, for example, an average value of standard deviation difference value Stdev21-3 for a predetermined time is used. FIG. 20C shows an example in which this average value is imaged. Furthermore, as shown in FIG. 20D, the value may be binarized with an appropriate threshold value, and the number of pixels exceeding the threshold value may be counted to obtain an evaluation value of the vibration amount. The greater the vibration, the greater the number of affected pixels. Therefore, vibration information may be acquired as the number of pixels indicating a change in pixel value (temperature) of the structure reflected in the captured image. Further, instead of the difference value of the standard deviation, the “standard deviation of the difference from the averaging in 21 frames before and after” (a large value in FIG. 12) before the process of subtracting the high frequency component may be used.
 次に、本発明に係る構造物異常診断装置による異常診断処理の例を説明する。図3のフローチャートに、構造物異常診断装置10A(図1)による第1の処理工程例を示す。構造物異常診断装置10Aへの入力画像は、振動情報抽出部1に入力される。振動情報抽出部1では、入力画像を微分処理することにより入力画像に存在するエッジを抽出する(#30)。抽出したエッジごとに振動情報を数値化し(#32)、エッジの場所と数値化した振動情報を情報蓄積部2に蓄積記録する(#34)。この場合、記録する振動情報としては、標準偏差の差分値Stdev21-3の所定時間の平均値が好ましい。そして、抽出したエッジごとに振動情報と蓄積情報中の同じ場所の振動情報とを比較し、相違があれば異常振動ありと判定して異常検知処理を行う(#36)。異常振動ありと判定された場所の振動情報を記録し(#38)、異常診断結果を出力する(#40)。なお、振動情報の数値化や記録は、入力画像の全画素について行ってもよい。 Next, an example of abnormality diagnosis processing by the structure abnormality diagnosis apparatus according to the present invention will be described. The flowchart of FIG. 3 shows a first processing step example by the structure abnormality diagnosis apparatus 10A (FIG. 1). An input image to the structure abnormality diagnosis device 10 </ b> A is input to the vibration information extraction unit 1. In the vibration information extraction unit 1, an edge existing in the input image is extracted by differentiating the input image (# 30). The vibration information is digitized for each extracted edge (# 32), and the location of the edge and the digitized vibration information are accumulated and recorded in the information storage unit 2 (# 34). In this case, the vibration information to be recorded is preferably an average value of the standard deviation difference value Stdev21-3 for a predetermined time. Then, for each extracted edge, the vibration information is compared with the vibration information at the same location in the accumulated information, and if there is a difference, it is determined that there is abnormal vibration, and abnormality detection processing is performed (# 36). The vibration information of the place determined as having abnormal vibration is recorded (# 38), and the abnormality diagnosis result is output (# 40). Note that the vibration information may be digitized or recorded for all pixels of the input image.
 図4のフローチャートに、構造物異常診断装置10A(図1)による第2の処理工程例を示す。この第2処理工程例では、撮影画像をオペレーターがモニター画面で確認して、振動を監視する領域を指定する。構造物異常診断装置10Aへの入力画像は、振動情報抽出部1に入力される。振動情報抽出部1では、指定された領域ごとに振動情報を数値化し(#42)、領域の場所と数値化した振動情報を情報蓄積部2に蓄積記録する(#44)。この場合、記録する振動情報としては、領域内の各画素の標準偏差の差分値Stdev21-3の所定時間の平均値でもよいが、標準偏差の差分値Stdev21-3の所定時間の平均値が所定の閾値を越えた、当該領域内の画素の数でもよい。そして、指定した領域ごとに振動情報と蓄積情報中の同じ領域の振動情報とを比較し、相違があれば異常振動ありと判定して異常検知処理を行う(#46)。異常振動ありと判定された領域を記録し(#48)、異常診断結果を出力する(#50)。 FIG. 4 is a flowchart showing a second processing step example by the structure abnormality diagnosis device 10A (FIG. 1). In this second processing step example, the operator confirms the photographed image on the monitor screen and designates a region for monitoring vibration. An input image to the structure abnormality diagnosis device 10 </ b> A is input to the vibration information extraction unit 1. The vibration information extraction unit 1 digitizes the vibration information for each designated area (# 42), and accumulates and records the location of the area and the digitized vibration information in the information storage unit 2 (# 44). In this case, the vibration information to be recorded may be the average value of the standard deviation difference value Stdev21-3 of each pixel in the region for a predetermined time, but the average value of the standard deviation difference value Stdev21-3 is a predetermined value. It may be the number of pixels in the area exceeding the threshold value. Then, the vibration information and the vibration information of the same area in the accumulated information are compared for each designated area, and if there is a difference, it is determined that there is abnormal vibration, and abnormality detection processing is performed (# 46). The area determined to have abnormal vibration is recorded (# 48), and the abnormality diagnosis result is output (# 50).
 図5のフローチャートに、構造物異常診断装置10B(図2)による第1の処理工程例を示す。構造物異常診断装置10Bへの入力画像は、ガス分布抽出部4と振動情報抽出部1に入力される。ガス分布抽出部4では、ガス分布情報が抽出される(#10)。ガスの存在が確認されれば、画像処理を用いてガスの漏洩源特定処理が行われ、算出されたガス漏洩箇所が記録される(#20)。また、抽出した結果は外部に出力されることで有効活用される(#19)。例えば、出力先をガス漏洩警報装置5とすれば、ガス分布情報に基づいて警報が発報される。 FIG. 5 is a flowchart showing a first processing process example by the structure abnormality diagnosis device 10B (FIG. 2). An input image to the structure abnormality diagnosis device 10 </ b> B is input to the gas distribution extraction unit 4 and the vibration information extraction unit 1. In the gas distribution extraction unit 4, gas distribution information is extracted (# 10). If the presence of the gas is confirmed, a gas leakage source specifying process is performed using image processing, and the calculated gas leakage location is recorded (# 20). The extracted result is effectively used by being output to the outside (# 19). For example, if the output destination is the gas leak alarm device 5, an alarm is issued based on the gas distribution information.
 一方、振動情報抽出部1では、図3のステップ#30~#36と同じ処理により、異常検知処理を行う。そして、ガス漏洩箇所と、異常振動ありと判定された領域の振動情報と、を対応づけて記録し(#52)、異常診断結果を出力する(#54)。 On the other hand, the vibration information extraction unit 1 performs the abnormality detection process by the same process as steps # 30 to # 36 in FIG. And a gas leak location and the vibration information of the area | region determined to have abnormal vibration are matched and recorded (# 52), and an abnormal diagnosis result is output (# 54).
 図6のフローチャートに、構造物異常診断装置10B(図2)による第2の処理工程例を示す。構造物異常診断装置10Bへの入力画像は、ガス分布抽出部4と振動情報抽出部1に入力される。ガス分布抽出部4では、図5のステップ#10~#20と同じ処理が行われ、ガス漏洩箇所が記録される。 The flowchart of FIG. 6 shows a second processing step example by the structure abnormality diagnosis device 10B (FIG. 2). An input image to the structure abnormality diagnosis device 10 </ b> B is input to the gas distribution extraction unit 4 and the vibration information extraction unit 1. In the gas distribution extraction unit 4, the same processing as steps # 10 to # 20 in FIG. 5 is performed, and the gas leakage location is recorded.
 一方、振動情報抽出部1では、図4のステップ#42~#46と同じ処理により、異常検知処理を行う。そして、ガス漏洩箇所と、異常振動ありと判定された領域と、を対応づけて記録し(#56)、異常診断結果を出力する(#58)。 On the other hand, the vibration information extraction unit 1 performs an abnormality detection process by the same process as steps # 42 to # 46 in FIG. Then, the gas leakage location and the area determined to have abnormal vibration are recorded in association with each other (# 56), and the abnormality diagnosis result is output (# 58).
 振動情報の記録方法としては(図3の#34等)、画素ごとに振動量を記録する、という方法もあるが、画面内の一部の領域のみで振動が検出された場合には、領域の場所と当該領域としての振動情報とを記録する方が、のちに異常振動解析を行う場合に有用である。図21に振動が検知された領域(以下、振動検知領域SAと記す)の記録方法の具体例を示す。図21(A)は撮影画像の部分領域PS内の振動検知領域SAを表しており、この振動検知領域SAを記録する方法を、図21(B)~(D)が示している。 As a method for recording vibration information (# 34 in FIG. 3 and the like), there is a method of recording the vibration amount for each pixel. However, if vibration is detected in only a part of the area on the screen, the area is displayed. It is useful to record the location and the vibration information as the area when an abnormal vibration analysis is performed later. FIG. 21 shows a specific example of a method for recording an area where vibration is detected (hereinafter referred to as vibration detection area SA). FIG. 21A shows the vibration detection area SA in the partial area PS of the photographed image, and FIGS. 21B to 21D show a method of recording the vibration detection area SA.
 図21(B)に示す記録方法では、振動が検出された振動検知領域SAを取り囲む複数の点の座標の組からなる座標点SBとして、振動検知領域SAを記録する。図21(C)に示す記録方法では、振動が検出された振動検知領域SAの重心を中心とし、かつ、振動検知領域SAに外接する外接円SCとして、振動検知領域SAを記録する。図21(D)に示す記録方法では、振動が検出された振動検知領域SAに外接する外接長方形SDの座標及び傾き(角度θ)として、振動検知領域SAを記録する。振動検知領域SAの振動情報としては、振動検知領域SA内の各画素の標準偏差の差分値Stdev21-3の所定時間の平均値を振動検知領域SAの全域で平均した値や、標準偏差の差分値Stdev21-3の所定時間の平均値が閾値を越えた、振動検知領域SA内の画素の数が好ましい。 In the recording method shown in FIG. 21 (B), the vibration detection area SA is recorded as a coordinate point SB composed of a coordinate set of a plurality of points surrounding the vibration detection area SA where the vibration is detected. In the recording method shown in FIG. 21C, the vibration detection area SA is recorded as a circumscribed circle SC that is centered on the center of gravity of the vibration detection area SA where the vibration is detected and circumscribes the vibration detection area SA. In the recording method shown in FIG. 21D, the vibration detection area SA is recorded as the coordinates and inclination (angle θ) of the circumscribed rectangle SD that circumscribes the vibration detection area SA where the vibration is detected. As vibration information of the vibration detection area SA, the average value of the standard deviation difference value Stdev21-3 of each pixel in the vibration detection area SA is averaged over the entire area of the vibration detection area SA, or the difference of the standard deviation. The number of pixels in the vibration detection area SA in which the average value of the values Stdev21-3 for a predetermined time exceeds the threshold is preferable.
 振動情報と蓄積情報とを比較する際には同じ領域の情報同士を比較するが(図3~図6の#60)、その際、蓄積されている同じ領域のデータを全部抽出して比較対象とする場合と、ほぼ同じ時刻のデータだけを抽出して比較対象とする場合と、がある。前者は振動の仕方に時刻依存性が無いことが予想される場合に有効である。後者は、振動の仕方に時刻依存性がある場合(例えば、定期的な機械振動が他の場所から加えられる等)で、その影響を排除したい場合や、逆に定期的な機械振動が加えられた状態での振動の異常を検知したい場合等に有効である。 When comparing vibration information and accumulated information, information in the same area is compared (# 60 in FIGS. 3 to 6). At that time, all accumulated data in the same area is extracted and compared. And a case where only data at substantially the same time are extracted for comparison. The former is effective when it is expected that the vibration method does not have time dependency. The latter is when the vibration method is time-dependent (for example, when periodic mechanical vibration is applied from another location), or when it is desired to eliminate the effect, or conversely, periodic mechanical vibration is applied. This is effective when it is desired to detect abnormal vibrations in an abnormal state.
 異常検知処理の出力例としては、
・異常検知したことを示すデータを蓄積情報に追加して記録すること、
・異常検知したことを監視装置に表示すること、
・異常検知したことを監視装置に表示し、警報を出すこと、
等が挙げられる。なお、以上の説明では振動情報が振動の振幅に関する情報である場合を説明したが、振動の周波数を振動情報として用いてもよい。
As an output example of abnormality detection processing,
・ Record data indicating that an abnormality has been detected in addition to the stored information,
-Displaying on the monitoring device that an abnormality has been detected,
・ Displays that an abnormality has been detected on the monitoring device and issues an alarm,
Etc. In the above description, the case where the vibration information is information related to the amplitude of vibration has been described. However, the frequency of vibration may be used as the vibration information.
 以上の説明から分かるように、上述した各実施の形態には以下の特徴的な構成(C1)~(C7)等が含まれている。 As can be seen from the above description, the above-described embodiments include the following characteristic configurations (C1) to (C7) and the like.
 (C1):構造物を撮像した撮像画像から画像内に写りこんでいる構造物の振動情報を抽出する振動情報抽出部と、
 前記振動情報を複数時刻分取得して蓄積する情報蓄積部と、
 前記情報蓄積部によって蓄積された振動情報を用いて前記構造物の異常状態診断を行い、その診断結果を出力する異常状態診断部と、
 を有することを特徴とする構造物異常診断装置。
(C1): a vibration information extraction unit that extracts vibration information of a structure reflected in the image from a captured image obtained by imaging the structure;
An information storage unit for acquiring and storing the vibration information for a plurality of times;
An abnormal state diagnosis unit that performs an abnormal state diagnosis of the structure using vibration information stored by the information storage unit, and outputs the diagnosis result;
A structure abnormality diagnosis device comprising:
 (C2):上記構成(C1)において、前記撮像画像から撮像している空間内に存在するガスの分布情報を抽出するガス分布抽出部をさらに有し、前記情報蓄積部が、前記ガス分布抽出部によって抽出されたガスの空間分布情報と前記構造物異常状態診断結果とを対応づけた情報をさらに蓄積する構成。 (C2): In the configuration (C1), the apparatus further includes a gas distribution extraction unit that extracts distribution information of gas existing in the space being imaged from the captured image, and the information storage unit includes the gas distribution extraction. The structure which further accumulate | stores the information which matched the spatial distribution information of the gas extracted by the part, and the said structure abnormal state diagnostic result.
 (C3):構造物を撮像した撮像画像から画像内に写りこんでいる構造物の振動情報を抽出し、前記振動情報を複数時刻分取得して蓄積し、蓄積された振動情報を用いて前記構造物の異常状態診断を行い、その診断結果を出力することを特徴とする構造物異常検知方法。 (C3): Extracting vibration information of the structure reflected in the image from the captured image of the structure, acquiring and storing the vibration information for a plurality of times, and using the stored vibration information A structure abnormality detection method characterized by performing an abnormal state diagnosis of a structure and outputting the diagnosis result.
 (C4):構造物を撮像した撮像画像から画像内に写りこんでいる構造物の振動情報を抽出する処理と、前記振動情報を複数時刻分取得して蓄積する処理と、蓄積された振動情報を用いて前記構造物の異常状態診断を行い、その診断結果を出力する処理と、をコンピュータに実行させることを特徴とする構造物異常診断プログラム。 (C4): processing for extracting vibration information of a structure reflected in an image from a captured image obtained by capturing the structure, processing for acquiring and storing the vibration information for a plurality of times, and stored vibration information A structure abnormality diagnosis program for causing a computer to execute an abnormality state diagnosis of the structure using a computer and outputting a diagnosis result.
 (C5):上記構成(C1)~(C4)における前記振動情報を、前記撮像画像に写りこんでいる構造物のエッジ部の画素値の変化として取得する構成。 (C5): A configuration in which the vibration information in the above configurations (C1) to (C4) is acquired as a change in the pixel value of the edge portion of the structure reflected in the captured image.
 (C6):上記構成(C1)~(C4)における前記振動情報を、前記撮像画像に写りこんでいる構造物の画素値の変化を示す画素数として取得する構成。 (C6): A configuration in which the vibration information in the above configurations (C1) to (C4) is acquired as the number of pixels indicating a change in the pixel value of the structure reflected in the captured image.
 (C7):上記構成(C1)~(C6)において、前記情報蓄積部によって蓄積された振動情報の中から、同じ時刻の振動情報を抽出し、抽出された振動情報を用いて前記構造物の異常状態診断を行い、その診断結果を出力する構成。 (C7): In the above configurations (C1) to (C6), the vibration information at the same time is extracted from the vibration information stored by the information storage unit, and the extracted vibration information is used to extract the structure information. A configuration that diagnoses abnormal conditions and outputs the diagnosis results.
 上述した各実施の形態から分かるように、構造物異常診断装置の実施の形態によれば、蓄積しておいた情報と抽出した振動情報とを用いて構造物STの異常状態診断を行い、その診断結果を出力する構成になっているため、構造物STに異常が起きたときの振動状態をあらかじめ把握することなしに、撮像画像の振動情報から構造物STが異常な状態にあるかどうかを診断することが可能である。したがって、これまでの経験では予想もできないような異常状態の検知が可能となる。これは上記構造物異常検知方法や構造物異常診断プログラムを用いた場合でも同様である。 As can be seen from the above-described embodiments, according to the embodiment of the structure abnormality diagnosis device, the abnormality state diagnosis of the structure ST is performed using the accumulated information and the extracted vibration information. Since the diagnosis result is output, it is determined whether the structure ST is in an abnormal state from the vibration information of the captured image without grasping in advance the vibration state when the abnormality occurs in the structure ST. Diagnosis is possible. Therefore, it is possible to detect an abnormal state that cannot be predicted by previous experience. This is the same even when the structure abnormality detection method and the structure abnormality diagnosis program are used.
 そして、漏洩ガスPGの空間分布が信号の強弱として写りこんだ撮像画像を用いて、漏洩ガスPGの空間分布と構造物STの振動情報を抽出することにより、ガス漏洩検出と異常振動検出を同時に行うことが可能となり、また、振動センサーを多数設ける必要がなくなるため、設置コスト,保守管理コスト等を削減でき、回線接続の煩雑さが解消される。さらに、ガス漏洩検出結果と振動異常状態の検知結果とを対応づけて記録することにより、予知保全のデータとしての活用が可能となる。 Then, by using the captured image in which the spatial distribution of the leakage gas PG is reflected as the strength of the signal, the spatial distribution of the leakage gas PG and the vibration information of the structure ST are extracted, thereby simultaneously detecting the gas leakage and the abnormal vibration. In addition, since it is not necessary to provide a large number of vibration sensors, installation costs, maintenance management costs, and the like can be reduced, and the complexity of line connection is eliminated. Furthermore, by recording the gas leakage detection result and the detection result of the abnormal vibration state in association with each other, it can be used as predictive maintenance data.
 1  振動情報抽出部
 2  情報蓄積部
 3  異常状態診断部
 4  ガス分布抽出部
 5  ガス漏洩警報装置
 10A,10B  構造物異常診断装置
 G1~G4  赤外線画像(撮像画像)
 Io  撮像画面
 PG  漏洩ガス
 SA  振動検知領域
 SB  座標点
 SC  外接円
 SD  外接長方形
 E0  非エッジ部
 E1  エッジ部
 ST  構造物
DESCRIPTION OF SYMBOLS 1 Vibration information extraction part 2 Information storage part 3 Abnormal state diagnostic part 4 Gas distribution extraction part 5 Gas leak alarm apparatus 10A, 10B Structure abnormality diagnostic apparatus G1-G4 Infrared image (captured image)
Io Imaging Screen PG Leakage Gas SA Vibration Detection Area SB Coordinate Point SC circumscribed circle SD circumscribed rectangle E0 non-edge part E1 edge part ST structure

Claims (5)

  1.  構造物を撮像した撮像画像から画像内に写りこんでいる構造物の振動情報を抽出する振動情報抽出部と、
     前記振動情報を複数時刻分取得して蓄積する情報蓄積部と、
     前記情報蓄積部によって蓄積された振動情報を用いて前記構造物の異常状態診断を行い、その診断結果を出力する異常状態診断部と、
     を有する構造物異常診断装置。
    A vibration information extraction unit that extracts vibration information of the structure reflected in the image from a captured image obtained by imaging the structure;
    An information storage unit for acquiring and storing the vibration information for a plurality of times;
    An abnormal state diagnosis unit that performs an abnormal state diagnosis of the structure using vibration information stored by the information storage unit, and outputs the diagnosis result;
    A structure abnormality diagnosis apparatus having
  2.  前記撮像画像から撮像している空間内に存在するガスの分布情報を抽出するガス分布抽出部をさらに有し、前記情報蓄積部が、前記ガス分布抽出部によって抽出されたガスの空間分布情報と前記構造物異常状態診断結果とを対応づけた情報をさらに蓄積する請求項1記載の構造物異常診断装置。 A gas distribution extraction unit that extracts distribution information of gas existing in the space being imaged from the captured image, and the information storage unit includes the spatial distribution information of the gas extracted by the gas distribution extraction unit; The structure abnormality diagnosis device according to claim 1, further storing information associated with the structure abnormality state diagnosis result.
  3.  前記振動情報を、前記撮像画像に写りこんでいる構造物のエッジ部の画素値の変化として取得する請求項1又は2記載の構造物異常診断装置。 3. The structure abnormality diagnosis device according to claim 1 or 2, wherein the vibration information is acquired as a change in a pixel value of an edge portion of the structure reflected in the captured image.
  4.  前記振動情報を、前記撮像画像に写りこんでいる構造物の画素値の変化を示す画素数として取得する請求項1又は2記載の構造物異常診断装置。 The structure abnormality diagnosis device according to claim 1 or 2, wherein the vibration information is acquired as a pixel number indicating a change in a pixel value of a structure reflected in the captured image.
  5.  前記情報蓄積部によって蓄積された振動情報の中から、同じ時刻の振動情報を抽出し、抽出された振動情報を用いて前記構造物の異常状態診断を行い、その診断結果を出力する請求項1~4のいずれか1項に記載の構造物異常診断装置。 2. The vibration information at the same time is extracted from the vibration information stored by the information storage unit, the abnormal state diagnosis of the structure is performed using the extracted vibration information, and the diagnosis result is output. 5. The structure abnormality diagnosis device according to any one of 1 to 4.
PCT/JP2018/014956 2017-05-10 2018-04-09 Structure abnormality diagnosis device WO2018207528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517511A JP7048590B2 (en) 2017-05-10 2018-04-09 Structure abnormality diagnosis device and structure abnormality diagnosis program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-093584 2017-05-10
JP2017093584 2017-05-10

Publications (1)

Publication Number Publication Date
WO2018207528A1 true WO2018207528A1 (en) 2018-11-15

Family

ID=64105357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014956 WO2018207528A1 (en) 2017-05-10 2018-04-09 Structure abnormality diagnosis device

Country Status (2)

Country Link
JP (1) JP7048590B2 (en)
WO (1) WO2018207528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158112A1 (en) * 2021-01-20 2022-07-28 国立大学法人京都大学 Vibration sensing system, vibration sensing method, and vibration sensing program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162096A (en) * 1998-11-30 2000-06-16 Kurimoto Ltd Measuring method for vibration of civil enginnering and construction structure
WO2016143754A1 (en) * 2015-03-09 2016-09-15 コニカミノルタ株式会社 Gas leak location estimating device, gas leak location estimating system, gas leak location estimating method and gas leak location estimating program
JP2017075795A (en) * 2015-10-13 2017-04-20 住友重機械工業株式会社 Fault diagnosis system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676867B2 (en) 2005-11-29 2011-04-27 Jx日鉱日石エネルギー株式会社 Anomaly detection device
JP2009128103A (en) 2007-11-21 2009-06-11 Furukawa Electric Co Ltd:The Abnormal vibration detector
JP6245418B2 (en) 2015-10-29 2017-12-13 コニカミノルタ株式会社 Gas detection image processing apparatus, gas detection image processing method, and gas detection image processing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162096A (en) * 1998-11-30 2000-06-16 Kurimoto Ltd Measuring method for vibration of civil enginnering and construction structure
WO2016143754A1 (en) * 2015-03-09 2016-09-15 コニカミノルタ株式会社 Gas leak location estimating device, gas leak location estimating system, gas leak location estimating method and gas leak location estimating program
JP2017075795A (en) * 2015-10-13 2017-04-20 住友重機械工業株式会社 Fault diagnosis system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158112A1 (en) * 2021-01-20 2022-07-28 国立大学法人京都大学 Vibration sensing system, vibration sensing method, and vibration sensing program

Also Published As

Publication number Publication date
JP7048590B2 (en) 2022-04-05
JPWO2018207528A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US11803297B2 (en) Non-contacting monitor for bridges and civil structures
JP6863383B2 (en) Defect detectors, defect detection methods, and computer-readable recording media
JP6364845B2 (en) Vibration measuring device
JP2013530466A (en) Optical self-diagnosis of stereo camera system
US20180313748A1 (en) Image processing device for gas detection, image processing method for gas detection and image processing program for gas detection
JP6813025B2 (en) Status determination device, status determination method, and program
JP5235718B2 (en) Video surveillance system
WO2018207528A1 (en) Structure abnormality diagnosis device
JP5710230B2 (en) Monitoring system and monitoring method
WO2018123197A1 (en) Gas detection-use image processing device, gas detection-use image processing method, and gas detection-use image processing program
JP2018160722A (en) Video abnormal stop detection device, video recording device, and video abnormal stop detection method
JP7047638B2 (en) Image processing device for gas visualization, image processing method for gas visualization, image processing program for gas visualization, and gas detection system
JP2021043089A (en) Vibration test analyzer and vibration test analysis method
JP2011252746A (en) Device, method and program for detecting cable position
KR100994418B1 (en) System For Processing Imaging For Detecting the Invasion Of Building and Method Thereof
JP6856168B2 (en) Abnormal sound detection device and abnormal sound detection method
JPH0767101A (en) Method and device for monitoring abnormality
TWI812896B (en) Thermal camera health monitoring
JPH04200084A (en) Image monitor device
EP3016080A1 (en) Calibration of metadata event rules
JP6856167B2 (en) Abnormal sound judgment standard creation device and abnormal sound detection device
KR102340286B1 (en) Image-based structural health moniotring method
WO2021014873A1 (en) Monitoring device, monitoring method, and computer readable recording medium
KR102587679B1 (en) Solar panel abnormality detection device and method thereof
JP3402856B2 (en) Plant abnormality detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798922

Country of ref document: EP

Kind code of ref document: A1