WO2018203506A1 - Optical coherence tomography apparatus - Google Patents

Optical coherence tomography apparatus Download PDF

Info

Publication number
WO2018203506A1
WO2018203506A1 PCT/JP2018/016842 JP2018016842W WO2018203506A1 WO 2018203506 A1 WO2018203506 A1 WO 2018203506A1 JP 2018016842 W JP2018016842 W JP 2018016842W WO 2018203506 A1 WO2018203506 A1 WO 2018203506A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
line image
optical
optical system
line
Prior art date
Application number
PCT/JP2018/016842
Other languages
French (fr)
Japanese (ja)
Inventor
英之 大番
岩永 知行
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018203506A1 publication Critical patent/WO2018203506A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention relates to an optical coherence tomographic imaging apparatus that acquires an optical coherence tomographic image of an inspection object.
  • OCT optical coherence tomography
  • the Fourier domain OCT includes a spectral domain OCT (SD-OCT) and a swept source OCT (SS-OCT).
  • SD-OCT spectral domain OCT
  • SS-OCT swept source OCT
  • These Fourier domain OCTs use light from a light source having a wide wavelength band, perform signal acquisition by dispersing the obtained interference light, and perform processing such as Fourier transform on the acquired signal, thereby allowing the eye to be examined. Information on the fault is obtained.
  • SD-OCT using broadband light
  • information for each frequency is obtained by spatially spectroscopically using a spectroscope.
  • SS-OCT that uses light from a wavelength-swept light source, light from a light source that emits light having a different wavelength in time is spectrally dispersed to obtain information for each frequency.
  • a line-field OCT apparatus (hereinafter referred to as an LF-OCT apparatus) that obtains tomographic information using measurement light that is shaped into a linear shape instead of using spot-like measurement light for the purpose of shortening measurement time.
  • an LF-OCT apparatus a line-field OCT apparatus that obtains tomographic information using measurement light that is shaped into a linear shape instead of using spot-like measurement light for the purpose of shortening measurement time.
  • the light emitted from the wavelength sweep type light source 01 is guided to the line image generation system 201.
  • the emitted light is converted into parallel light by the collimator lens 02 and then formed into light that forms a line-shaped image by the first cylindrical lens 03 and the lens 04 that are arranged subsequently.
  • These configurations are arranged such that the line-shaped light forms a line image at a position that is conjugate with a predetermined diopter, for example, the fundus of the eye to be examined with 0 diopter.
  • the line-shaped light is divided into measurement light and reference light by the beam splitter 12 after molding.
  • the first cylindrical lens 03 is arranged so that the measurement light forms a line image on the fundus of the subject eye 010 having a predetermined diopter.
  • the first cylindrical lens 03 is disposed before the light emitted from the wavelength-swept light source 01 is divided into measurement light and reference light by the beam splitter 12, and is guided to the beam splitter 12 as light connecting a line image. It is burned.
  • the reference light split by the beam splitter 12 is corrected by the reference optical system 202 so that the optical path length of the measurement light with respect to the fundus of the eye 010 to be imaged is equal to the optical path length.
  • the present invention has been made in view of the above situation, and provides an LF-OCT apparatus in which the angle of the cylindrical lens arranged in the reference optical system can be easily adjusted.
  • an optical coherence tomographic imaging apparatus includes: Splitting means for splitting light from the light source into measurement light and reference light; First line image generation means arranged in the optical path of the measurement light to generate a first line image of the measurement light; A second line image generation unit that is arranged in a reference optical system that adjusts the optical path length of the reference light and generates a second line image of the reference light that has the optical path length adjusted; Interfering means for generating interference light by combining the generated first line image and the second line image on the same imaging plane via an inspection object; And a tomographic image generation unit configured to generate a tomographic image of the inspection object using the generated interference light.
  • the measurement optical system 103 includes a lens 016, a focus lens 008, a galvanometric mirror 009, and an objective lens unit 017 arranged in order from the beam splitter 012.
  • the galvanometric mirror 009 is composed of a variable angle mirror disposed at a position substantially conjugate with the anterior eye portion of the eye 010 to be examined.
  • the objective lens unit 017 is composed of two lenses, guides the measurement light to the eye 010 to be examined, and forms a line image on the fundus.
  • the reference light returned by the retroreflector is guided to the second cylindrical lens 007 through the mirror unit 021.
  • the second cylindrical lens 007 forms a line image forming lens system with an accompanying lens.
  • the reference light passes through the line image forming lens system and then passes through the beam splitter 012 to form a line image on the second imaging plane 018.
  • the LF-OCT apparatus 300 includes the above-described OCT optical system 100, sampling unit 113, memory 114, signal processing unit 115, operation input unit 116, monitor 117, and control unit 118.
  • the control unit 118 is connected to the light source 001 and the line sensor 011 described above, the sampling unit 113, the memory 114, the signal processing unit 115, the operation input unit 116, and the monitor 117.
  • the control unit 118 can be configured using a general-purpose computer, but may be configured from a dedicated computer.
  • the monitor 117 is illustrated as a separate body from the control unit 118, these may be a single configuration. That is, some or all of the configurations shown as separate bodies in FIG. 2 may be integrally formed.
  • each structure is connected by wire, it is good also as connecting this part or all by radio
  • the light emitted from the light source 001 is first divided into the reference light and the measurement light before being formed into a line shape, and the measurement light is transmitted to the eye 010 to be examined through the measurement optical path.
  • the reference light is formed into a line after the adjustment of the reference optical path length.
  • the polarization adjustment paddle 004 is provided before the reference light is converted into spatial light in the reference optical system 102. For this reason, it is possible to adjust the polarization independently of the measuring light without arranging a large number of wave plates and adjusting the angle of each of them.
  • the light from the light source 001 is split into measurement light and reference light by a coupler 002 which is an example of a splitting unit.
  • a first cylindrical lens 003 which is an example of a first line image generation unit, is disposed in the optical path of the measurement light and generates a first line image of the measurement light on the first imaging plane 015.
  • the second cylindrical lens 007 as an example of the second line image generation unit is disposed in the reference optical system 102 that adjusts the optical path length of the reference light, and the reference light passes through the reference mirror 006 and is the reference optical path length.
  • the second line image is generated by the reference light after the adjustment of.
  • These cylindrical lenses are an example of a line image generating means, and can be replaced by another optical member having the same function as long as a similar line image is obtained.
  • the beam splitter 012 is an example of an interference means for combining and interfering the first line image and the second line image on the same imaging plane, and connects the two line images on the same imaging plane. If it is possible to make the image interfere, it can be replaced by a known optical member. Further, the arrangement in the reflection direction and the transmission direction with respect to the beam splitter 012 of the measurement optical system 103 and the reference optical system 102 may be opposite to that in the embodiment.
  • a first collimator lens 013 is disposed as an example of first collimating means that uses the measurement light guided to the first line image generating means as parallel light.
  • a second collimator lens 020 is disposed as an example of second collimating means that collimates the reference light guided from the coupler 002 and emitted to the reference optical system 102. Then, the first cylindrical lens 003 and the second cylindrical lens 007 respectively generate a first line image and a second line image from parallel light.
  • These collimator lenses are examples of collimating means, and can be replaced by optical members having the same function as long as similar parallel light is obtained.
  • the light split by the reflection by the beam splitter 012 in the parallel light is used as measurement light.
  • the measurement light is guided to the line image generation system 101 ′, and a line image is formed on the first imaging plane 015 by the first cylindrical lens 003 and the lens 014 arranged in the same manner as in the first embodiment. To do.
  • the measurement light in the form of a line passes through the beam splitter 012 and is guided to the measurement optical system 103.
  • the measurement optical system 103 has the same configuration as that of the first embodiment.
  • the polarization adjusting means is arranged in the reference optical system.
  • the reference light passes through the outgoing path and the return path twice also in the polarization adjusting means, so that high mounting accuracy is required.
  • the optical path is actually made different between the forward path and the return path, and the mode of passing only once in either the forward path or the return path is used. Possible correspondence.
  • the polarization adjusting unit 025 allows the reference light to pass through when it is guided to the reference optical system 102 '. Accordingly, there is no need to pay attention to such an optical path, and such an arrangement problem does not occur.
  • the dividing means includes a beam splitter 023.
  • the reference optical system 102 ′ includes a polarization adjusting unit 025 that is disposed between the beam splitter 023 and the second cylindrical lens 007 and adjusts the polarization of the reference light.
  • the polarization adjusting unit 025 is disposed at a position where the reference light passes through the reference optical system 102 'at the beginning. However, it can be arranged at any position on the optical path of the reference light in the reference optical system 102 ′ and between the beam splitter 023 and the second cylindrical lens 007.
  • the first line image generating means is constituted by a cylindrical lens, and the cylindrical lens can be defined as a first line image forming lens having different curvatures in two orthogonal meridian directions.
  • the second line image generating means is also composed of a cylindrical lens, and the cylindrical lens can be defined as a second line image forming lens having different curvatures in two orthogonal meridian directions.
  • the line image generation means is not limited to one configured from a single cylindrical lens, and may be any apparatus that has at least one cylindrical lens and forms a line image.
  • the description has been given by taking as an example an apparatus for capturing or measuring a fundus tomographic image and a three-dimensional tomographic image.
  • the inspection object to be inspected is not limited to the fundus of the eye to be examined, and may be, for example, the anterior eye portion of the eye to be examined. It is obvious that the effect of the present invention can be obtained even if the present invention is applied to an apparatus that captures or measures the tomographic image and three-dimensional tomographic image of the anterior segment.
  • the present invention can be applied to skins and organs other than the eyes as the object to be inspected.
  • the present invention has an aspect as an optical coherence tomography apparatus that captures an image based on data obtained from a medical device such as an endoscope.
  • a wavelength sweep type (SS) light source is used as the light source, and the light from the light source is formed into a line shape, projected onto the eye to be examined, and reflected and scattered by the eye to be examined.
  • the light and the line-shaped reference light are made to interfere.
  • the line sensor obtains an interference signal from the interference light, and performs signal processing on the interference signal to obtain a tomographic image of the eye to be examined.
  • the mode of the light source is not limited to this, and a super luminescence diode (SLD) that emits light in a wavelength region of about 50 nm to 100 nm may be used as the light source.
  • SLD super luminescence diode
  • the line-shaped interference light is wavelength-resolved by a spectroscope, the separated interference light is detected for each wavelength by a two-dimensional area sensor as a detector, and signal processing is performed to obtain a tomographic image and a three-dimensional tomogram of the eye to be examined. An image can be acquired.
  • the present invention has been described above with reference to the embodiments, but the present invention is not limited to the above-described embodiments.
  • the mirror or mirror unit should be changed as appropriate in view of the space allowed for the optical system.
  • the present invention includes inventions modified within the scope not departing from the spirit of the present invention and inventions equivalent to the present invention.
  • each Example mentioned above can be combined suitably in the range which is not contrary to the meaning of this invention.
  • 001 Light source
  • 002 Coupler
  • 003 First cylindrical lens
  • 007 Second cylindrical lens
  • 012 Beam splitter
  • 013 Collimator lens
  • 020 Second collimator lens

Abstract

The present invention facilitates adjustment, etc., of a cylindrical lens disposed in a reference optical system in an LF-OCT apparatus. The LF-OCT apparatus according to the present invention is provided with: a division means for dividing light from a light source into measurement light and reference light; a first line image generation means that is disposed on the optical path of the measurement light and that generates a first line image of the measurement light; a second line image generation means that is disposed in the reference optical system for adjusting the optical path length of the reference light and that generates a second line image of the reference light, the optical path length of which has been adjusted; an interference means for generating interference light by synthesizing, on the same image-forming surface, the first line image and the second line image generated via an object being inspected; and a tomographic image generation means for generating, by using the generated interference light, a tomographic image of the object being inspected.

Description

光干渉断層撮像装置Optical coherence tomography system
 本発明は、被検査物の光干渉断層像を取得する光干渉断層撮像装置に関する。 The present invention relates to an optical coherence tomographic imaging apparatus that acquires an optical coherence tomographic image of an inspection object.
 近年、眼科分野において、非侵襲で眼底および前眼部の断層を観察/計測できる光干渉断層撮像法(Optical Coherence Tomography:OCT)を用いた装置(以下OCT装置という。)が普及している。OCTでは、低コヒーレント光(測定光)を被検眼に照射し、被検眼からのその戻り光と参照光とを合波させて得た干渉光を用いて、被検眼の断層に関する情報を得ている。また、この測定光を被検眼の例えば眼底上の所定範囲に走査することで、該所定範囲の3次元断層情報が得られる。当該方法を具現化するOCT装置は、医療において研究から臨床まで広く使われている。 In recent years, in the field of ophthalmology, an apparatus using an optical coherence tomography (OCT) (hereinafter referred to as an OCT apparatus) that can observe / measure a tomographic image of the fundus and anterior segment non-invasively has become widespread. In OCT, low-coherent light (measurement light) is irradiated to the eye, and information on the tomogram of the eye is obtained using interference light obtained by combining the return light from the eye and the reference light. Yes. Further, by scanning the measurement light over a predetermined range on the eye fundus of the eye to be examined, three-dimensional tomographic information in the predetermined range can be obtained. An OCT apparatus that embodies this method is widely used in medicine from research to clinical practice.
 OCTは、タイムドメインOCT、およびフーリエドメインOCTの2種に大別されている。更に、フーリエドメインOCTには、スペクトラルドメインOCT(SD-OCT)とスウェプトソースOCT(SS-OCT)とがある。これらフーリエドメインOCTは、広い波長帯域を有する光源からの光を利用し、得られた干渉光を分光して信号取得を行い、取得した信号にフーリエ変換等の処理を施すことで、被検眼の断層の情報を得ている。広帯域光を用いるSD-OCTでは、分光器により空間的に分光して周波数毎の情報を得ている。波長掃引型光源からの光を用いるSS-OCTでは、時間的に異なる波長の光を発する光源からの光を用いてこれを時間的に分光して周波数毎の情報を得ている。 OCT is roughly classified into two types: time domain OCT and Fourier domain OCT. Further, the Fourier domain OCT includes a spectral domain OCT (SD-OCT) and a swept source OCT (SS-OCT). These Fourier domain OCTs use light from a light source having a wide wavelength band, perform signal acquisition by dispersing the obtained interference light, and perform processing such as Fourier transform on the acquired signal, thereby allowing the eye to be examined. Information on the fault is obtained. In SD-OCT using broadband light, information for each frequency is obtained by spatially spectroscopically using a spectroscope. In SS-OCT that uses light from a wavelength-swept light source, light from a light source that emits light having a different wavelength in time is spectrally dispersed to obtain information for each frequency.
 例えば測定時間の短縮化を目的として、スポット状の測定光を用いるのではなく線状に成型した測定光を用いて断層情報を得るラインフィールド(Line-Field)OCT装置(以下LF-OCT装置)が提案されている。ここで、非特許文献1に開示されるLF-OCT装置の光学系について、その概略構成を示す図4を参照して簡単に述べる。 For example, a line-field OCT apparatus (hereinafter referred to as an LF-OCT apparatus) that obtains tomographic information using measurement light that is shaped into a linear shape instead of using spot-like measurement light for the purpose of shortening measurement time. Has been proposed. Here, the optical system of the LF-OCT apparatus disclosed in Non-Patent Document 1 will be briefly described with reference to FIG.
 該LF-OCT装置の光学系200において、波長掃引型光源01から射出された光は、ライン像生成系201に導かれる。ライン像生成系201において、射出光はコリメータレンズ02により平行光とされ、続いて配置される第1のシリンドリカルレンズ03およびレンズ04によりライン状の像を結ぶ光に成型される。これら構成は、該ライン状の光が所定視度、例えば0ディオプタの被検眼眼底と共役な位置でライン像を形成するように配置される。該ライン状の光は、成型後にビームスプリッタ12により測定光と参照光に分割される。 In the optical system 200 of the LF-OCT apparatus, the light emitted from the wavelength sweep type light source 01 is guided to the line image generation system 201. In the line image generation system 201, the emitted light is converted into parallel light by the collimator lens 02 and then formed into light that forms a line-shaped image by the first cylindrical lens 03 and the lens 04 that are arranged subsequently. These configurations are arranged such that the line-shaped light forms a line image at a position that is conjugate with a predetermined diopter, for example, the fundus of the eye to be examined with 0 diopter. The line-shaped light is divided into measurement light and reference light by the beam splitter 12 after molding.
 測定光は測定光学系203に導かれ、被検眼010の眼底上でライン像を形成し、反射・散乱されて戻り光として眼底から再びビームスプリッタ12に戻る。参照光は、参照光学系202に導かれる。参照光は、参照光学系202のレンズおよび第2のシリンドリカルレンズ07からなるユニットにより平行光とされ、参照光の光路に配置されたミラーユニット21等を経て参照ミラー06に至る。なお、参照光の光路には、参照光の偏光を調整するために、波長板等から構成される偏光調整手段25も配置される。該平行光は参照ミラー06で反射された後、この光路を逆に辿る。そして、第2のシリンドリカルレンズ07等のユニットにより再びライン状の光に成型されてビームスプリッタ12に導かれる。眼底を経た測定光(戻り光)と参照光学系の光路を経た参照光とは、ビームスプリッタ12で合波され、ライン状の干渉光とされて検出光学系204に導かれる。検出光学系204ではそのライン状の干渉光をラインセンサ11で検出し干渉信号を出力する。この干渉信号に信号処理を施すことによって、被検眼眼底の断層像が取得できる。また、このライン状の測定光を該ラインの延在方向と異なる(例えば垂直な)方向に走査することで、3次元の断層像が取得できる。 The measurement light is guided to the measurement optical system 203, forms a line image on the fundus of the eye 010 to be examined, is reflected and scattered, and returns to the beam splitter 12 from the fundus as return light again. The reference light is guided to the reference optical system 202. The reference light is converted into parallel light by a unit including the lens of the reference optical system 202 and the second cylindrical lens 07, and reaches the reference mirror 06 through the mirror unit 21 and the like disposed in the optical path of the reference light. In addition, in the optical path of the reference light, a polarization adjusting unit 25 composed of a wave plate or the like is also arranged in order to adjust the polarization of the reference light. The parallel light is reflected by the reference mirror 06, and then follows this optical path in reverse. Then, the light is again shaped into a line light by a unit such as the second cylindrical lens 07 and guided to the beam splitter 12. The measurement light (return light) that has passed through the fundus and the reference light that has passed through the optical path of the reference optical system are combined by the beam splitter 12, converted into line-shaped interference light, and guided to the detection optical system 204. The detection optical system 204 detects the line-shaped interference light by the line sensor 11 and outputs an interference signal. By performing signal processing on this interference signal, a tomographic image of the fundus of the eye to be examined can be acquired. Further, a three-dimensional tomographic image can be acquired by scanning the line-shaped measurement light in a direction different from (for example, perpendicular to) the extending direction of the line.
 非特許文献1に開示されるLF-OCT装置では、測定光が所定視度の被検眼010の眼底上でライン像を形成するように第1のシリンドリカルレンズ03を配している。そして、該第1のシリンドリカルレンズ03は、波長掃引型光源01から射出した光をビームスプリッタ12で測定光と参照光に分割する前に配置され、ビームスプリッタ12にはライン像を結ぶ光として導かれる。ビームスプリッタ12で分割された参照光は、撮影対象である被検眼010の眼底に対する測定光の光路長とその光路長が等しくなるように参照光学系202により光路長補正される。そして、上述したように、光路長の補正後にビームスプリッタ12により戻り光と合波されて、干渉光として検出光学系204に導かれる。測定光学系203および参照光学系202は、その際に導かれる干渉光がラインセンサ11上でライン像を形成するように配置されている。即ち、参照光学系202では、参照光が所定視度の被検眼010の眼底と共役な位置でライン像を形成する必要がある。 In the LF-OCT apparatus disclosed in Non-Patent Document 1, the first cylindrical lens 03 is arranged so that the measurement light forms a line image on the fundus of the subject eye 010 having a predetermined diopter. The first cylindrical lens 03 is disposed before the light emitted from the wavelength-swept light source 01 is divided into measurement light and reference light by the beam splitter 12, and is guided to the beam splitter 12 as light connecting a line image. It is burned. The reference light split by the beam splitter 12 is corrected by the reference optical system 202 so that the optical path length of the measurement light with respect to the fundus of the eye 010 to be imaged is equal to the optical path length. Then, as described above, after correction of the optical path length, the beam is combined with the return light by the beam splitter 12 and guided to the detection optical system 204 as interference light. The measurement optical system 203 and the reference optical system 202 are arranged so that the interference light guided at that time forms a line image on the line sensor 11. That is, in the reference optical system 202, it is necessary to form a line image at a position where the reference light is conjugate with the fundus of the eye 010 to be examined having a predetermined diopter.
 ここで、参照光の光路長補正するためには、第2のシリンドリカルレンズ07によって参照光を再び平行光とし、光路長補正した後に、再び第2のシリンドリカルレンズ07によりライン像を結ぶ光に該参照光を成型する必要がある。このように、LF-OCT装置の参照光学系202では、参照光が第2のシリンドリカルレンズ07を往路と復路で2回通過する。このため、該第2のシリンドリカルレンズ07には、光軸に対する位置や角度の調整における非常に高い取り付け精度が要求される。 Here, in order to correct the optical path length of the reference light, the reference light is made parallel again by the second cylindrical lens 07, and after correcting the optical path length, the light that forms the line image by the second cylindrical lens 07 is again used. It is necessary to mold the reference beam. As described above, in the reference optical system 202 of the LF-OCT apparatus, the reference light passes through the second cylindrical lens 07 twice on the forward path and the return path. For this reason, the second cylindrical lens 07 is required to have a very high mounting accuracy in adjusting the position and angle with respect to the optical axis.
 本発明は以上の状況に鑑みたものであって、参照光学系に配置されるシリンドリカルレンズの光軸に対する角度等の調整が容易なLF-OCT装置を提供する。 The present invention has been made in view of the above situation, and provides an LF-OCT apparatus in which the angle of the cylindrical lens arranged in the reference optical system can be easily adjusted.
 上記課題を解決するために、本発明の一態様に係る光干渉断層撮像装置は、
 光源からの光を測定光と参照光とに分割する分割手段と、
 前記測定光の光路に配置されて前記測定光の第1のライン像を生成する第1のライン像生成手段と、
 前記参照光の光路長を調整する参照光学系に配置されて前記光路長が調整された参照光の第2のライン像を生成する第2のライン像生成手段と、
 被検査物を介した前記生成された第1のライン像と前記第2のライン像とを同一の結像面上で合波して干渉光を生成する干渉手段と、
 前記生成された干渉光を用いて前記被検査物の断層像を生成する断層像生成手段と、を備えることを特徴とする。
In order to solve the above problems, an optical coherence tomographic imaging apparatus according to an aspect of the present invention includes:
Splitting means for splitting light from the light source into measurement light and reference light;
First line image generation means arranged in the optical path of the measurement light to generate a first line image of the measurement light;
A second line image generation unit that is arranged in a reference optical system that adjusts the optical path length of the reference light and generates a second line image of the reference light that has the optical path length adjusted;
Interfering means for generating interference light by combining the generated first line image and the second line image on the same imaging plane via an inspection object;
And a tomographic image generation unit configured to generate a tomographic image of the inspection object using the generated interference light.
 本発明によれば、LF-OCT装置において、参照光学系に配置されるシリンドリカルレンズの光軸に対する角度等の調整が容易となる。 According to the present invention, in the LF-OCT apparatus, it is easy to adjust the angle and the like with respect to the optical axis of the cylindrical lens arranged in the reference optical system.
本発明の実施例1における、ライン走査型OCT装置(LF-OCT装置)の光学レイアウトを示す図である。It is a figure which shows the optical layout of the line scanning OCT apparatus (LF-OCT apparatus) in Example 1 of this invention. 本発明の実施例1における、ライン走査型OCT装置における機能構成を示すブロック図である。It is a block diagram which shows the function structure in the line scanning OCT apparatus in Example 1 of this invention. 本発明の実施例2における、ライン走査型OCT装置の光学レイアウトを示す図である。It is a figure which shows the optical layout of the line scanning OCT apparatus in Example 2 of this invention. 従来のライン走査型OCT装置の光学レイアウトを示す図である。It is a figure which shows the optical layout of the conventional line scanning OCT apparatus.
 以下、本発明を実施するための例示的な実施例を、図面を参照して説明する。ただし、以下の実施例で説明される寸法、材料、形状、および構成要素の相対的な位置等は任意であり、本発明が適用される装置の構成又は様々な条件に応じて変更できる。また、図面において、同一であるか又は機能的に類似している要素を示すために図面間で同じ参照符号を用いる。 Hereinafter, exemplary embodiments for carrying out the present invention will be described with reference to the drawings. However, dimensions, materials, shapes, and relative positions of components described in the following embodiments are arbitrary, and can be changed according to the configuration of the apparatus to which the present invention is applied or various conditions. Also, in the drawings, the same reference numerals are used between the drawings to indicate the same or functionally similar elements.
(実施例1)
 図1および図2を参照して、本発明の実施例1によるOCT装置について説明する。本実施例では、参照光学系に配置されるシリンドリカルレンズを、参照光が1回通過する態様のLF-OCT装置について述べる。参照光学系のシリンドリカルレンズを参照光が1回通過するシンプルな構成とすることで、光軸に対する取り付け時の位置および回転の調整が容易となる。更に、取り付け精度における許容幅が大きくなることによって、該シリンドリカルレンズの部品精度を下げることが可能となることも期待できる。なお、以下の説明において、該LF-OCT装置による検査対象となる被検査物として、被検眼の眼底を例として説明する。
Example 1
An OCT apparatus according to a first embodiment of the present invention will be described with reference to FIGS. In this embodiment, an LF-OCT apparatus in which the reference light passes through the cylindrical lens arranged in the reference optical system once will be described. A simple configuration in which the reference light passes once through the cylindrical lens of the reference optical system makes it easy to adjust the position and rotation at the time of attachment to the optical axis. Furthermore, it can be expected that the accuracy of parts of the cylindrical lens can be lowered by increasing the allowable width in the mounting accuracy. In the following description, the fundus of the eye to be inspected will be described as an example of the object to be inspected by the LF-OCT apparatus.
 上述したように、従来のLF-OCT装置では、光を分割して測定光と参照光を生成する前にライン像を生成し、ライン状の光を測定光と参照光とに分割した後に、各々を測定光路と参照光路とに導くこととしている。これに対して、本実施例1(および後述する実施例2)では、光源からの光を参照光と測定光とにまず分割し、各々個別にライン像を形成するように成型した後、仮想の同一結像面上にてライン像を結んで干渉するように各光学部材を配置している。このような構成とすることにより、本発明では参照光学系に配置されるシリンドリカルレンズの光軸に対する角度等の調整を容易としている。以下、実施例1の詳細について述べる。 As described above, the conventional LF-OCT apparatus generates a line image before splitting the light to generate the measurement light and the reference light, and after dividing the line-shaped light into the measurement light and the reference light, Each is led to a measurement optical path and a reference optical path. On the other hand, in the first embodiment (and second embodiment described later), the light from the light source is first divided into reference light and measurement light, and each is individually molded to form a line image, and then virtual The optical members are arranged so as to form line images and interfere with each other on the same imaging plane. By adopting such a configuration, in the present invention, it is easy to adjust the angle and the like with respect to the optical axis of the cylindrical lens disposed in the reference optical system. Details of the first embodiment will be described below.
(光学構成)
 図1は、本実施例に係るLF-OCT装置におけるOCT光学系100における光学要素等とそのレイアウトとを模式的に示している。該OCT光学系100は、光源001、ライン像生成系101、参照光学系102、測定光学系103、検出光学系104、およびビームスプリッタ012を主たる構成として有する。
(Optical configuration)
FIG. 1 schematically shows the optical elements and the like in the OCT optical system 100 in the LF-OCT apparatus according to this embodiment and the layout thereof. The OCT optical system 100 mainly includes a light source 001, a line image generation system 101, a reference optical system 102, a measurement optical system 103, a detection optical system 104, and a beam splitter 012.
 光源001は波長掃引型(Swept Soure:以下SS)光源であり、例えば掃引中心波長1050nm、掃引幅100nmで波長を掃引しながら光を射出する。光源001から射出された光は、カプラ002によって、所望の分割比の下、測定光と参照光とに分割される。カプラ002により分割された測定光および参照光は、各々光ファイバによりライン像生成系101および参照光学系102に導かれる。 The light source 001 is a wavelength swept source (hereinafter referred to as SS) light source, and emits light while sweeping the wavelength at a sweep center wavelength of 1050 nm and a sweep width of 100 nm, for example. The light emitted from the light source 001 is split by the coupler 002 into measurement light and reference light under a desired split ratio. The measurement light and the reference light divided by the coupler 002 are guided to the line image generation system 101 and the reference optical system 102 by optical fibers, respectively.
 ライン像生成系101は、測定光の光ファイバの射出端より順に配置される第1のコリメータレンズ013、第1のシリンドリカルレンズ003およびレンズ014を有する。ライン像生成系101へ導かれた測定光は、第1のコリメータレンズ013により平行光となり、第1のシリンドリカルレンズ003およびレンズ014とによって、仮想の第1の結像平面015上にライン像を形成する。ライン像を結ぶ光とされた測定光は、ビームスプリッタ012を通過して測定光学系103へ導かれる。 The line image generation system 101 includes a first collimator lens 013, a first cylindrical lens 003, and a lens 014 that are arranged in order from the exit end of the optical fiber of the measurement light. The measurement light guided to the line image generation system 101 becomes parallel light by the first collimator lens 013, and a line image is formed on the virtual first imaging plane 015 by the first cylindrical lens 003 and the lens 014. Form. The measurement light that is the light that connects the line images passes through the beam splitter 012 and is guided to the measurement optical system 103.
 測定光学系103は、ビームスプリッタ012より順に配置されるレンズ016、フォーカスレンズ008、ガルバノメトリックミラー009および対物レンズユニット017を有する。本実施例において、ガルバノメトリックミラー009は、被検眼010の前眼部と略共役な位置に配置された角度可変ミラーより構成される。また、本実施例において、対物レンズユニット017は2つのレンズより構成され、測定光を被検眼010へ導き、眼底上にライン像を形成する。 The measurement optical system 103 includes a lens 016, a focus lens 008, a galvanometric mirror 009, and an objective lens unit 017 arranged in order from the beam splitter 012. In this embodiment, the galvanometric mirror 009 is composed of a variable angle mirror disposed at a position substantially conjugate with the anterior eye portion of the eye 010 to be examined. In this embodiment, the objective lens unit 017 is composed of two lenses, guides the measurement light to the eye 010 to be examined, and forms a line image on the fundus.
 フォーカスレンズ008は後述するフォーカス駆動手段081(図2参照)により光軸に沿って移動可能であり、結像平面015と被検眼010の眼底とが光学的に共役になるように、光軸上で移動される。また、眼底上に導かれた測定光によるライン像は、ガルバノメトリックミラー009の角度を変えることにより、延在方向とは異なる(本実施例では垂直)方向に眼底上で走査される。 The focus lens 008 can be moved along the optical axis by a focus driving unit 081 (see FIG. 2) to be described later. It is moved with. Further, the line image of the measurement light guided onto the fundus is scanned on the fundus in a direction different from the extending direction (perpendicular in this embodiment) by changing the angle of the galvanometric mirror 009.
 被検眼010の眼底で反射散乱した測定光は、戻り光として測定光学系103を逆に辿り再びビームスプリッタ012に入射する。該戻り光はビームスプリッタ012によって反射され、検出光学系104へ導かれる。その際、該戻り光は、仮想の第2の結像平面018上に、ライン像を形成する。検出光学系104における第2の結像平面018は、被検眼010の眼底および第1の結像平面015と光学的に共役となっており、更に検出用レンズ群019を介して配置されるラインセンサ011の受光面とも共役となっている。このため、眼底上のライン像から反射散乱された測定光はライン像としてラインセンサ011へと達することになる。 The measurement light reflected and scattered by the fundus of the eye to be examined 010 travels back through the measurement optical system 103 as return light and enters the beam splitter 012 again. The return light is reflected by the beam splitter 012 and guided to the detection optical system 104. At that time, the return light forms a line image on the virtual second imaging plane 018. The second imaging plane 018 in the detection optical system 104 is optically conjugate with the fundus of the eye 010 to be examined and the first imaging plane 015, and is a line arranged via the detection lens group 019. The light receiving surface of the sensor 011 is also conjugate. For this reason, the measurement light reflected and scattered from the line image on the fundus reaches the line sensor 011 as a line image.
 カプラ002により得られた参照光は、光ファイバを介して参照光学系102へ導かれる。該参照光学系102は、光ファイバの射出端より順に配された、第2のコリメータレンズ020、NDフィルター005、ミラーユニット021、参照ミラー006、第2のシリンドリカルレンズ007を有する。なお、光ファイバには複数の環状に束ねた偏光調整用パドル004が配されており、該偏光調整用パドル004を駆動する後述する偏光調整駆動手段041がこれに付随している。偏光調整駆動手段041によって偏光調整用パドル004の環状部分の捩れ等を調節することにより、参照光の偏光状態が変えられる。このように該偏光調整用パドル004等が設けられることにより、測定光と参照光との干渉状態が良くなるように、測定光の偏光状態に対する参照光の偏光状態を調整できる。 The reference light obtained by the coupler 002 is guided to the reference optical system 102 through an optical fiber. The reference optical system 102 includes a second collimator lens 020, an ND filter 005, a mirror unit 021, a reference mirror 006, and a second cylindrical lens 007 arranged in order from the emission end of the optical fiber. The optical fiber is provided with a plurality of polarization adjustment paddles 004 bundled in an annular shape, and a polarization adjustment drive means 041 described later for driving the polarization adjustment paddle 004 is attached thereto. The polarization state of the reference light is changed by adjusting the twist of the annular portion of the polarization adjustment paddle 004 by the polarization adjustment drive unit 041. By providing the polarization adjustment paddle 004 and the like in this manner, the polarization state of the reference light with respect to the polarization state of the measurement light can be adjusted so that the interference state between the measurement light and the reference light is improved.
 偏光調整されて光ファイバの射出端より射出された参照光は、第2のコリメータレンズ020により平行光とされ、更にNDフィルター005を通過することで所定光量に減衰される。減衰後、該参照光はミラーユニット021を経て参照ミラー006に至る。参照ミラー006は本実施例でレトロリフレクタの態様で構成され、図中矢印で示す光軸方向に移動可能とされている。該レトロリフレクタが光軸方向に移動することで、測定光学系103における測定光の光路長と参照光の光路長との差を補正することができる。 The reference light that has been polarization-adjusted and is emitted from the exit end of the optical fiber is converted into parallel light by the second collimator lens 020, and further attenuated to a predetermined light amount by passing through the ND filter 005. After attenuation, the reference light reaches the reference mirror 006 through the mirror unit 021. The reference mirror 006 is configured in the form of a retroreflector in the present embodiment, and is movable in the optical axis direction indicated by an arrow in the drawing. By moving the retro reflector in the optical axis direction, the difference between the optical path length of the measurement light and the optical path length of the reference light in the measurement optical system 103 can be corrected.
 該レトロリフレクタで折り返された参照光は、ミラーユニット021を経て第2のシリンドリカルレンズ007に導かれる。該第2のシリンドリカルレンズ007は、付随するレンズとからライン像形成レンズ系を構成する。参照光は該ライン像形成レンズ系を経た後、ビームスプリッタ012を透過して、第2の結像平面018上にライン像を形成する。 The reference light returned by the retroreflector is guided to the second cylindrical lens 007 through the mirror unit 021. The second cylindrical lens 007 forms a line image forming lens system with an accompanying lens. The reference light passes through the line image forming lens system and then passes through the beam splitter 012 to form a line image on the second imaging plane 018.
 参照光学系を経た参照光と眼底に照射された測定光の戻り光とがビームスプリッタ012により合波され、第2の結像平面018上では参照光と測定光(戻り光)の各々のライン像が干渉する。その干渉したライン像は検出光学系104内において検出用レンズ群019を経て、ラインセンサ011で受光される。該ラインセンサ011は、受光結果に応じた干渉信号を検出し、出力する。当該信号は後述する信号処理部115等により処理され、眼底の断層画像が生成される。 The reference light that has passed through the reference optical system and the return light of the measurement light applied to the fundus are combined by the beam splitter 012, and each line of the reference light and the measurement light (return light) on the second imaging plane 018. The image interferes. The interfering line image is received by the line sensor 011 through the detection lens group 019 in the detection optical system 104. The line sensor 011 detects and outputs an interference signal corresponding to the light reception result. The signal is processed by a signal processing unit 115, which will be described later, and a tomographic image of the fundus is generated.
(機能構成)
 次に、図2を参照して本実施例に係るLF-OCT装置について説明する。該LF-OCT装置300は、上述したOCT光学系100、サンプリング部113、メモリ114、信号処理部115、操作入力部116、モニタ117および制御部118を有する。制御部118は、上述した光源001およびラインセンサ011、並びにサンプリング部113、メモリ114、信号処理部115、操作入力部116およびモニタ117に接続される。
(Functional configuration)
Next, the LF-OCT apparatus according to the present embodiment will be described with reference to FIG. The LF-OCT apparatus 300 includes the above-described OCT optical system 100, sampling unit 113, memory 114, signal processing unit 115, operation input unit 116, monitor 117, and control unit 118. The control unit 118 is connected to the light source 001 and the line sensor 011 described above, the sampling unit 113, the memory 114, the signal processing unit 115, the operation input unit 116, and the monitor 117.
 また、制御部118は、OCT光学系に配される偏光調整駆動手段041、リフレクタ駆動手段061、ガルバノ駆動手段091およびフォーカス駆動手段081等に接続される。偏光調整駆動手段041は、上述したように偏光調整用パドル004を駆動して参照光の偏光を調整する。リフレクタ駆動手段061はレトロリフレクタ(参照ミラー006)を光軸方向に駆動させ、参照光の光路長を調整する。ガルバノ駆動手段091はガルバノメトリックミラー009の角度調整を行い、これによりライン状の測定光を眼底にて走査する。フォーカス駆動手段081は上述したようにフォーカスレンズ008を光軸方向に移動させ、ライン状の測定光を眼底に合焦させる。なお、これら駆動手段は、例えばステップモータ等の公知の駆動系より構築されることからここでの説明は省略する。 Further, the control unit 118 is connected to the polarization adjustment drive unit 041, the reflector drive unit 061, the galvano drive unit 091, the focus drive unit 081, and the like arranged in the OCT optical system. As described above, the polarization adjustment driving unit 041 drives the polarization adjustment paddle 004 to adjust the polarization of the reference light. The reflector driving means 061 drives the retro reflector (reference mirror 006) in the optical axis direction to adjust the optical path length of the reference light. The galvano driving means 091 adjusts the angle of the galvanometric mirror 009, thereby scanning the line-shaped measurement light on the fundus. As described above, the focus driving unit 081 moves the focus lens 008 in the optical axis direction to focus the line-shaped measurement light on the fundus. Since these driving means are constructed by a known driving system such as a step motor, description thereof is omitted here.
 列状に配置された複数の受光素子からなるラインセンサ011における受光素子は、例えば眼底像を表示する表示画面において、眼底におけるライン状の測定光の延在方向に並ぶ各画素と対応する。従って、ガルバノ駆動手段091が指定した測定光の照射位置に対応する画素毎に、光源001の1回の波長掃引に対応してサンプリング部113が干渉信号をサンプリングすることとなる。1回の波長掃引に伴う干渉信号のサンプリング終了後、ガルバノメトリックミラー009が駆動されて測定光の照射位置が該ライン状の測定光の延在方向とは垂直な方向に一画素分移動し、当該位置にて再度干渉信号のサンプリングが行われる。以降はこの繰り返しで、例えばモニタ117の表示画面上の各画素に応じた干渉信号が次々にサンプリングされる。 The light receiving elements in the line sensor 011 composed of a plurality of light receiving elements arranged in a row correspond to the pixels arranged in the extending direction of the line-shaped measurement light on the fundus, for example, on the display screen displaying the fundus image. Therefore, the sampling unit 113 samples the interference signal corresponding to one wavelength sweep of the light source 001 for each pixel corresponding to the measurement light irradiation position designated by the galvano driving unit 091. After sampling of the interference signal accompanying one wavelength sweep, the galvanometric mirror 009 is driven to move the measurement light irradiation position by one pixel in a direction perpendicular to the extending direction of the line-shaped measurement light, The interference signal is sampled again at the position. Thereafter, by repeating this, for example, interference signals corresponding to each pixel on the display screen of the monitor 117 are sampled one after another.
 サンプリング部113によりサンプリングされた干渉信号は、メモリ114にガルバノメトリックミラー009の駆動位置と関連付けて記憶される。メモリ114に記憶された干渉信号は、信号処理部115により、周波数解析され、画素毎で深さ方向の断層像データが生成される。そして、これら断層像データをまとめて被検眼010の眼底の3次元断層像が生成され、操作者の指示等に応じた画像が構成されてモニタ117に表示される。3次元の断層像表示、任意の切断線に沿った断層像の表示、3次元断層像データに基づいて生成された平面像等表示すべき画像の指示、或いはサンプリング条件の変更等は、例えばGUIやキーボード、マウス等からなる操作入力部116を介して行われる。制御部118は、表示制御手段として、入力された指示に応じて生成した画像を表示手段であるモニタ117に表示させる。 The interference signal sampled by the sampling unit 113 is stored in the memory 114 in association with the drive position of the galvanometric mirror 009. The interference signal stored in the memory 114 is subjected to frequency analysis by the signal processing unit 115, and tomographic image data in the depth direction is generated for each pixel. These tomographic image data are combined to generate a three-dimensional tomographic image of the fundus of the eye 010 to be inspected, and an image corresponding to an instruction from the operator is constructed and displayed on the monitor 117. 3D tomographic image display, display of a tomographic image along an arbitrary cutting line, indication of an image to be displayed such as a plane image generated based on 3D tomographic image data, or change of sampling conditions, for example, GUI And an operation input unit 116 including a keyboard, a mouse, and the like. The control unit 118 displays an image generated according to the input instruction on the monitor 117 as a display unit as a display control unit.
 なお、制御部118は汎用のコンピュータを用いて構成することができるが、専用のコンピュータより構成してもよい。また、モニタ117は制御部118と別体として示しているが、これらは単一の構成としてもよい。即ち、図2にて各々別体として示した各構成は、一部又は全体が一体として構成されてもよい。また、各々の構成は有線により接続されているがこれを一部或いは全部を無線にて接続することとしてもよい。 The control unit 118 can be configured using a general-purpose computer, but may be configured from a dedicated computer. In addition, although the monitor 117 is illustrated as a separate body from the control unit 118, these may be a single configuration. That is, some or all of the configurations shown as separate bodies in FIG. 2 may be integrally formed. Moreover, although each structure is connected by wire, it is good also as connecting this part or all by radio | wireless.
 以上に述べたように、本実施例では、光源001から発せられた光を、ライン状に成型する前にまず参照光と測定光とに分割し、測定光は測定光路にて被検眼010に至る前に、参照光は参照光路長の調整が終わった後に各々ライン状に成型している。このような態様とすることにより、参照光学系102に配置された第2のシリンドリカルレンズ007に対し、参照光は1回通過するだけのシンプルな構成とすることができている。このため、該第2のシリンドリカルレンズ007に求められる部品精度、およびその取り付けの際の光軸に対する位置および回転の精度を下げることができる。従って、実際に装置を構築する際に、該第2のシリンドリカルレンズ007の取り付け時の調整が容易となる。 As described above, in the present embodiment, the light emitted from the light source 001 is first divided into the reference light and the measurement light before being formed into a line shape, and the measurement light is transmitted to the eye 010 to be examined through the measurement optical path. Before arriving, the reference light is formed into a line after the adjustment of the reference optical path length. By adopting such an aspect, the reference light can pass through the second cylindrical lens 007 disposed in the reference optical system 102 so that the reference light passes only once. For this reason, the component accuracy required for the second cylindrical lens 007, and the position and rotation accuracy with respect to the optical axis at the time of attachment can be lowered. Therefore, when the apparatus is actually constructed, adjustment at the time of mounting the second cylindrical lens 007 is facilitated.
 また、干渉信号を得るためには、好適には戻り光と参照光学系を経た参照光との偏光状態を一致させることが望ましい。この場合、測定光或いは戻り光とは別個に、参照光の偏光状態を調整することが望ましい。本実施例によれば、参照光が参照光学系102において空間光とされる前段階で偏光調整用パドル004が設けられている。このため、波長板等を多数配置して各々の角度調整等をすることなく、且つ測定光とは独立して偏光調整が可能となる。従って、例えば非特許文献1に開示されるOCT装置のように、参照光の光路を往路と復路とで分離してその何れかに波長板を配置する場合と比較して、シンプルな構成で偏光調整を行うことができる。その結果、測定光と参照光との適切な干渉状態が容易に得られ、良好な断層像を得ることができる。また、測定光と参照光との偏光調整も、個別且つ容易に行うことができる。 Also, in order to obtain an interference signal, it is desirable to match the polarization state of the return light and the reference light that has passed through the reference optical system. In this case, it is desirable to adjust the polarization state of the reference light separately from the measurement light or the return light. According to this embodiment, the polarization adjustment paddle 004 is provided before the reference light is converted into spatial light in the reference optical system 102. For this reason, it is possible to adjust the polarization independently of the measuring light without arranging a large number of wave plates and adjusting the angle of each of them. Therefore, for example, as in the OCT apparatus disclosed in Non-Patent Document 1, the optical path of the reference light is separated by the forward path and the return path, and compared with the case where the wave plate is disposed on either of them, the polarization can be achieved with a simple configuration. Adjustments can be made. As a result, an appropriate interference state between the measurement light and the reference light can be easily obtained, and a good tomographic image can be obtained. Also, the polarization adjustment of the measurement light and the reference light can be performed individually and easily.
 本実施例において、光源001からの光は、分割手段の一例であるカプラ002によって測定光と参照光とに分割される。第1のライン像生成手段の一例である第1のシリンドリカルレンズ003は、測定光の光路に配置されて該測定光の第1のライン像を第1の結像平面015上で生成する。また、第2のライン像生成手段の一例である第2のシリンドリカルレンズ007は、参照光の光路長を調整する参照光学系102に配置されて、該参照光が参照ミラー006を経て参照光路長が調整された後の参照光により、第2のライン像を生成する。なお、これらシリンドリカルレンズはライン像生成手段の一例であって、同様のライン像が得られれば同じ機能を有する他の光学部材により代替可能である。 In this embodiment, the light from the light source 001 is split into measurement light and reference light by a coupler 002 which is an example of a splitting unit. A first cylindrical lens 003, which is an example of a first line image generation unit, is disposed in the optical path of the measurement light and generates a first line image of the measurement light on the first imaging plane 015. The second cylindrical lens 007 as an example of the second line image generation unit is disposed in the reference optical system 102 that adjusts the optical path length of the reference light, and the reference light passes through the reference mirror 006 and is the reference optical path length. The second line image is generated by the reference light after the adjustment of. These cylindrical lenses are an example of a line image generating means, and can be replaced by another optical member having the same function as long as a similar line image is obtained.
 被検眼眼底を介して生成された第1のライン像と第2のライン像とは、干渉手段の一例であるビームスプリッタ012によって、同一の結像平面となる第2の結像平面018上でライン像として合波して干渉光を生成する。サンプリング部113、信号処理部115、制御部118等は、以上より生成された干渉光を用いて眼底の断層像を生成する断層像生成手段を構成する。これら構成により、本実施例に示した光干渉断層撮像装置(LF-OCT装置)が構築される。なお、ビームスプリッタ012は第1のライン像と第2のライン像とを同一結像平面上で合波、干渉させる干渉手段の一例であって、2つのライン像を同一結像平面上で結像、干渉させることが可能であれば公知の光学部材により代替可能である。また、測定光学系103と参照光学系102のビームスプリッタ012に関する反射方向および透過方向の配置は、実施例の逆の配置としてもよい。 The first line image and the second line image generated via the fundus of the eye to be examined are formed on the second imaging plane 018 which is the same imaging plane by the beam splitter 012 which is an example of an interference unit. The light is combined as a line image to generate interference light. The sampling unit 113, the signal processing unit 115, the control unit 118, and the like constitute tomographic image generation means for generating a tomographic image of the fundus using the interference light generated as described above. With these configurations, the optical coherence tomography apparatus (LF-OCT apparatus) shown in the present embodiment is constructed. The beam splitter 012 is an example of an interference means for combining and interfering the first line image and the second line image on the same imaging plane, and connects the two line images on the same imaging plane. If it is possible to make the image interfere, it can be replaced by a known optical member. Further, the arrangement in the reflection direction and the transmission direction with respect to the beam splitter 012 of the measurement optical system 103 and the reference optical system 102 may be opposite to that in the embodiment.
 ここで、該LF-OCT装置にあっては、該第1のライン像生成手段に導かれる測定光を平行光とする第1のコリメート手段の一例として、第1のコリメータレンズ013が配される。また、カプラ002から導かれて参照光学系102に射出された参照光を平行光とする第2のコリメート手段の一例として、第2のコリメータレンズ020が配される。そして、第1のシリンドリカルレンズ003および第2のシリンドリカルレンズ007は、各々平行光から第1のライン像および第2のライン像を生成する。なお、これらコリメータレンズはコリメート手段の一例であって、同様の平行光が得られれば、同じ機能を有する光学部材により代替可能である。 Here, in the LF-OCT apparatus, a first collimator lens 013 is disposed as an example of first collimating means that uses the measurement light guided to the first line image generating means as parallel light. . In addition, a second collimator lens 020 is disposed as an example of second collimating means that collimates the reference light guided from the coupler 002 and emitted to the reference optical system 102. Then, the first cylindrical lens 003 and the second cylindrical lens 007 respectively generate a first line image and a second line image from parallel light. These collimator lenses are examples of collimating means, and can be replaced by optical members having the same function as long as similar parallel light is obtained.
 上述したように、本実施例では分割手段としてカプラ002を含み、該参照光はカプラ002から参照光学系102に光ファイバを介して導かれる。その際、該光ファイバは複数の環状として束ねられて、この環状の部分の捩れが調整される等、駆動されることで参照光の偏光を調整する。この光ファイバの環状部は、これを駆動する偏光調整駆動手段041により偏光調整部の一例として機能する。参照光は被検眼010を経た測定光の戻り光と合波されるが、その際に好適な干渉状態を得るためには戻り光と参照光との偏光が一致していることが望ましい。本実施例では参照光をライン状等に成型する前にこの偏光調整が行われる位置に該偏光調整部を配置することにより、容易且つ適切に参照光の偏光を調整することができる。 As described above, the present embodiment includes the coupler 002 as the dividing means, and the reference light is guided from the coupler 002 to the reference optical system 102 via the optical fiber. At this time, the optical fiber is bundled as a plurality of annular shapes, and the polarization of the reference light is adjusted by being driven, for example, by adjusting the twist of the annular portion. The annular portion of the optical fiber functions as an example of a polarization adjustment unit by the polarization adjustment drive unit 041 that drives the optical fiber. The reference light is combined with the return light of the measurement light that has passed through the eye to be examined 010. In order to obtain a suitable interference state at that time, it is desirable that the polarization of the return light and the reference light match. In the present embodiment, the polarization of the reference light can be adjusted easily and appropriately by arranging the polarization adjusting unit at a position where the polarization adjustment is performed before the reference light is formed into a line shape or the like.
(実施例2)
 次に、図3を参照して、本発明の実施例2によるLF-OCT装置について説明する。上述した実施例1では、光源001より射出された光は光ファイバによってカプラ002に導かれ、参照光および測定光も該カプラ002から光ファイバによって各々参照光学系102および測定光学系103に導かれている。これに対し、実施例2では光源001からの光を空間光として分割し、対応する光学系に導くこととしている。なお、図3において、実施例1と同じ構成要素に関しては同じ参照番号を用いることとし、ここでの説明は省略する。
(Example 2)
Next, an LF-OCT apparatus according to Embodiment 2 of the present invention will be described with reference to FIG. In the first embodiment described above, the light emitted from the light source 001 is guided to the coupler 002 by the optical fiber, and the reference light and the measurement light are also guided from the coupler 002 to the reference optical system 102 and the measurement optical system 103, respectively. ing. On the other hand, in the second embodiment, the light from the light source 001 is divided as spatial light and guided to the corresponding optical system. In FIG. 3, the same reference numerals are used for the same components as those in the first embodiment, and the description thereof is omitted here.
 以下、実施例1との具体的な相違点について述べる。実施例1では、光源001からの射出光をカプラ002によって、測定光と参照光に分割した。しかし、実施例2では、光源001からの射出光を光源部コリメータレンズ022により平行光とし、ビームスプリッタ023によって、測定光と参照光とに分割している。なお、ビームスプリッタ023による分割比は、カプラ002の場合と同様の所望の値とされている。また、以下ではビームスプリッタ023により反射された光を測定光とし、透過された光を参照光としているが、逆に反射された光を参照光とし且つ透過された光を測定光としてもよい。 Hereinafter, specific differences from the first embodiment will be described. In the first embodiment, the light emitted from the light source 001 is split into measurement light and reference light by the coupler 002. However, in the second embodiment, the light emitted from the light source 001 is converted into parallel light by the light source unit collimator lens 022 and divided into measurement light and reference light by the beam splitter 023. The split ratio by the beam splitter 023 is set to a desired value similar to that of the coupler 002. In the following, the light reflected by the beam splitter 023 is used as measurement light, and the transmitted light is used as reference light. Conversely, the reflected light may be used as reference light and the transmitted light may be used as measurement light.
 本実施例では、該平行光においてビームスプリッタ012による反射で分割された光は、測定光とされる。該測定光は、ライン像生成系101’へ導かれ、実施例1の場合と同様に配置される第1のシリンドリカルレンズ003およびレンズ014によって、第1の結像平面015上にライン像を形成する。ライン状とされた測定光は、ビームスプリッタ012を通過して測定光学系103へ導かれる。測定光学系103は実施例1のものと同じ構成からなる。 In this embodiment, the light split by the reflection by the beam splitter 012 in the parallel light is used as measurement light. The measurement light is guided to the line image generation system 101 ′, and a line image is formed on the first imaging plane 015 by the first cylindrical lens 003 and the lens 014 arranged in the same manner as in the first embodiment. To do. The measurement light in the form of a line passes through the beam splitter 012 and is guided to the measurement optical system 103. The measurement optical system 103 has the same configuration as that of the first embodiment.
 一方、該平行光においてビームスプリッタ012による透過で分割された光は、参照光とされる。該参照光は、ミラー024により参照光学系102’へ導かれる。参照光学系102’には複数の波長板などで構成される偏光調整手段025が配置されており、ミラー024により参照光学系102’に導かれた参照光は該偏光調整手段025によって偏光調整される。変更調整後、参照光はミラー026により、NDフィルター005に導かれる。NDフィルター005以降に配置される構成については、実施例1における参照光学系102のものと同じ構成からなる。 On the other hand, the light divided by the transmission by the beam splitter 012 in the parallel light is used as reference light. The reference light is guided to the reference optical system 102 ′ by the mirror 024. The reference optical system 102 ′ is provided with a polarization adjusting unit 025 including a plurality of wave plates, and the reference light guided to the reference optical system 102 ′ by the mirror 024 is subjected to polarization adjustment by the polarization adjusting unit 025. The After the change adjustment, the reference light is guided to the ND filter 005 by the mirror 026. The configuration arranged after the ND filter 005 is the same as that of the reference optical system 102 in the first embodiment.
 測定光学系103により眼底を経た戻り光と、参照光学系102’を経た参照光とは、実施例1の場合と同様に第2の結像平面018上で合波され、干渉したライン像を生成する。該干渉したライン像が、ラインセンサ011で受光され、該ラインセンサ011は受光結果に応じた信号を出力する。以降、実施例1と同様に、図2のブロック図に示された構成要素等により、被検眼010の眼底の断層像を得ることができる。 The return light that has passed through the fundus by the measurement optical system 103 and the reference light that has passed through the reference optical system 102 ′ are combined on the second imaging plane 018 in the same manner as in the first embodiment, and an interfering line image is obtained. Generate. The interfering line image is received by the line sensor 011 and the line sensor 011 outputs a signal corresponding to the light reception result. Thereafter, similarly to the first embodiment, a tomographic image of the fundus of the eye 010 to be examined can be obtained using the components shown in the block diagram of FIG.
 例えば、ライン状に成型した光を参照光と測定光とに分割し、その後に参照光の偏光調整を行おうとした場合も、偏光調整手段は参照光学系に配置される。この場合、第2のシリンドリカルレンズと同様に、偏光調整手段においても参照光は往路と復路とで2回通過することとなるため、高い取り付け精度等が求められる。ここで、2回通過の状態での適切な偏光調整は容易ではないため、実際には往路と復路とで光路を異ならせ、往路又は復路の何れかで1回のみ通過する態様とする等の対応が考えられる。本実施例では、偏光調整手段025は参照光を参照光学系102’に導いた段階で通過させることとしている。従って、このような光路上留意することが無くなり、このような配置上の課題も生じなくなる。 For example, when the light shaped into a line is divided into reference light and measurement light, and then the polarization of the reference light is adjusted, the polarization adjusting means is arranged in the reference optical system. In this case, similarly to the second cylindrical lens, the reference light passes through the outgoing path and the return path twice also in the polarization adjusting means, so that high mounting accuracy is required. Here, since it is not easy to appropriately adjust the polarization in the state of passing twice, the optical path is actually made different between the forward path and the return path, and the mode of passing only once in either the forward path or the return path is used. Possible correspondence. In this embodiment, the polarization adjusting unit 025 allows the reference light to pass through when it is guided to the reference optical system 102 '. Accordingly, there is no need to pay attention to such an optical path, and such an arrangement problem does not occur.
 本実施例では、分割手段はビームスプリッタ023を含む。そして、参照光学系102’は、ビームスプリッタ023と第2のシリンドリカルレンズ007との間に配置されて該参照光の偏光を調整する偏光調整手段025を備える。本実施例において偏光調整手段025は、参照光学系102’の最初に参照光が通過する位置に配置されている。しかし、参照光学系102’内の参照光の光路上であって、ビームスプリッタ023と第2のシリンドリカルレンズ007の間の任意の位置に配置することができる。 In the present embodiment, the dividing means includes a beam splitter 023. The reference optical system 102 ′ includes a polarization adjusting unit 025 that is disposed between the beam splitter 023 and the second cylindrical lens 007 and adjusts the polarization of the reference light. In the present embodiment, the polarization adjusting unit 025 is disposed at a position where the reference light passes through the reference optical system 102 'at the beginning. However, it can be arranged at any position on the optical path of the reference light in the reference optical system 102 ′ and between the beam splitter 023 and the second cylindrical lens 007.
 以上に述べた実施例において、第1のライン像生成手段はシリンドリカルレンズより構成され、該シリンドリカルレンズは直交する2つの経線方向の曲率が異なる第1のライン像形成レンズとして定義できる。また、第2のライン像生成手段も同様にシリンドリカルレンズより構成され、該シリンドリカルレンズは直交する2つの経線方向の曲率が異なる第2のライン像形成レンズとして定義できる。なお、ライン像生成手段としては、単一のシリンドリカルレンズから構成されるものに限られず、少なくとも1つのシリンドリカルレンズを有して、ライン像を形成するものであればよい。 In the embodiment described above, the first line image generating means is constituted by a cylindrical lens, and the cylindrical lens can be defined as a first line image forming lens having different curvatures in two orthogonal meridian directions. Similarly, the second line image generating means is also composed of a cylindrical lens, and the cylindrical lens can be defined as a second line image forming lens having different curvatures in two orthogonal meridian directions. Note that the line image generation means is not limited to one configured from a single cylindrical lens, and may be any apparatus that has at least one cylindrical lens and forms a line image.
 上述した実施例1および実施例2では、眼底の断層像および3次元断層像を撮像或いは計測する装置を例にとって説明した。しかし、検査対象となる被検査物は被検眼眼底に限らず、例えば被検眼の前眼部であってもよい。該前眼部の断層像および3次元断層像を撮像或いは計測する装置に応用しても、本発明の効果が得られることは明白である。また、被検査物として眼以外の皮膚や臓器等に本発明を適用することも可能である。この場合、本発明は例えば内視鏡等の医療機器より得られるデータに基づいて画像を撮影する光干渉断層撮像装置としての態様を有する。 In the above-described first and second embodiments, the description has been given by taking as an example an apparatus for capturing or measuring a fundus tomographic image and a three-dimensional tomographic image. However, the inspection object to be inspected is not limited to the fundus of the eye to be examined, and may be, for example, the anterior eye portion of the eye to be examined. It is obvious that the effect of the present invention can be obtained even if the present invention is applied to an apparatus that captures or measures the tomographic image and three-dimensional tomographic image of the anterior segment. In addition, the present invention can be applied to skins and organs other than the eyes as the object to be inspected. In this case, the present invention has an aspect as an optical coherence tomography apparatus that captures an image based on data obtained from a medical device such as an endoscope.
 また、上述した実施例1および実施例2では、光源に波長掃引型(SS)光源を用い、該光源からの光をライン状に成型した後に被検眼に投影し、被検眼で反射散乱した測定光とライン状の参照光を干渉させている。そして、ラインセンサで該干渉光より干渉信号を得て、これに信号処理を施すことで被検眼の断層像を取得している。しかし光源の態様はこれに限定されず、光源に50nm~100nm程度の波長域の光を射出するスーパールミネッセンスダイオード(SLD)を用いてもよい。この場合、ライン状の干渉光を分光器で波長分解し、検出器として2次元エリアセンサーで分解後の干渉光を波長毎に検出し、信号処理することで被検眼の断層像および3次元断層像を取得できる。 Further, in the above-described Example 1 and Example 2, a wavelength sweep type (SS) light source is used as the light source, and the light from the light source is formed into a line shape, projected onto the eye to be examined, and reflected and scattered by the eye to be examined. The light and the line-shaped reference light are made to interfere. The line sensor obtains an interference signal from the interference light, and performs signal processing on the interference signal to obtain a tomographic image of the eye to be examined. However, the mode of the light source is not limited to this, and a super luminescence diode (SLD) that emits light in a wavelength region of about 50 nm to 100 nm may be used as the light source. In this case, the line-shaped interference light is wavelength-resolved by a spectroscope, the separated interference light is detected for each wavelength by a two-dimensional area sensor as a detector, and signal processing is performed to obtain a tomographic image and a three-dimensional tomogram of the eye to be examined. An image can be acquired.
 以上、実施例を参照して本発明について説明したが、本発明は上述した実施例に限定されるものではない。例えばミラー、或いはミラーユニット等は光学系に許容されるスペース等に鑑みて適宜変更されるべきである。即ち、本発明の趣旨に反しない範囲で変更された発明、および本発明と均等な発明も本発明に含まれる。また、上述した各実施例は、本発明の趣旨に反しない範囲で適宜組み合わせることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above-described embodiments. For example, the mirror or mirror unit should be changed as appropriate in view of the space allowed for the optical system. In other words, the present invention includes inventions modified within the scope not departing from the spirit of the present invention and inventions equivalent to the present invention. Moreover, each Example mentioned above can be combined suitably in the range which is not contrary to the meaning of this invention.
 この出願は2017年5月1日に出願された日本国特許出願番号2017-091421の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。 This application claims the priority of Japanese Patent Application No. 2017-091421 filed on May 1, 2017, the contents of which are incorporated herein by reference.
001:光源、 002:カプラ、 003:第1のシリンドリカルレンズ、 007:第2のシリンドリカルレンズ、 012:ビームスプリッタ、 013:コリメータレンズ、 020:第2のコリメータレンズ

 
001: Light source, 002: Coupler, 003: First cylindrical lens, 007: Second cylindrical lens, 012: Beam splitter, 013: Collimator lens, 020: Second collimator lens

Claims (10)

  1.  光源からの光を測定光と参照光とに分割する分割手段と、
     前記測定光の光路に配置されて前記測定光の第1のライン像を生成する第1のライン像生成手段と、
     前記参照光の光路長を調整する参照光学系に配置されて前記光路長が調整された参照光の第2のライン像を生成する第2のライン像生成手段と、
     被検査物を介した前記生成された第1のライン像と前記第2のライン像とを同一の結像平面上で合波して干渉光を生成する干渉手段と、
     前記生成された干渉光を用いて前記被検査物の断層像を生成する断層像生成手段と、を備えることを特徴とする光干渉断層撮像装置。
    Splitting means for splitting light from the light source into measurement light and reference light;
    First line image generation means arranged in the optical path of the measurement light to generate a first line image of the measurement light;
    A second line image generation unit that is arranged in a reference optical system that adjusts the optical path length of the reference light and generates a second line image of the reference light that has the optical path length adjusted;
    Interfering means for generating interference light by combining the generated first line image and the second line image on the same imaging plane via an inspection object;
    An optical coherence tomographic imaging apparatus comprising: a tomographic image generation unit configured to generate a tomographic image of the inspection object using the generated interference light.
  2.  前記第1のライン像生成手段に導かれる前記測定光を平行光とする第1のコリメート手段と、
     前記分割手段から導かれて前記参照光学系に射出された参照光を平行光とする第2のコリメート手段と、を更に備え、
     前記第1のライン像生成手段は前記第1のコリメート手段により平行光とされた前記測定光から前記第1のライン像を生成し、前記第2のライン像生成手段は前記第2のコリメート手段により平行光とされた前記参照光から前記第2のライン像を生成することを特徴とする請求項1に記載の光干渉断層撮像装置。
    First collimating means for collimating the measurement light guided to the first line image generating means;
    Second collimating means for making the reference light guided from the dividing means and emitted to the reference optical system into parallel light,
    The first line image generation means generates the first line image from the measurement light converted into parallel light by the first collimation means, and the second line image generation means is the second collimation means. 2. The optical coherence tomographic imaging apparatus according to claim 1, wherein the second line image is generated from the reference light that has been converted into parallel light.
  3.  前記分割手段はカプラを含むことを特徴とする請求項1又は2に記載の光干渉断層撮像装置。 The optical coherence tomographic imaging apparatus according to claim 1 or 2, wherein the dividing means includes a coupler.
  4.  前記参照光は前記カプラから前記参照光学系に光ファイバを介して導かれ、
     前記光ファイバは、複数の環状として束ねられた前記光ファイバを駆動することで前記参照光の偏光を調整する偏光調整部を備えることを特徴とする請求項3に記載の光干渉断層撮像装置。
    The reference light is guided from the coupler to the reference optical system via an optical fiber,
    The optical coherence tomography apparatus according to claim 3, wherein the optical fiber includes a polarization adjustment unit that adjusts polarization of the reference light by driving the optical fibers bundled as a plurality of rings.
  5.  前記分割手段はビームスプリッタを含むことを特徴とする請求項1又は2に記載の光干渉断層撮像装置。 3. The optical coherence tomography apparatus according to claim 1, wherein the dividing unit includes a beam splitter.
  6.  前記参照光学系は、前記ビームスプリッタと前記第2のライン像生成手段との間に配置されて前記参照光の偏光を調整する偏光調整手段を備えることを特徴とする請求項5に記載の光干渉断層撮像装置。 The light according to claim 5, wherein the reference optical system includes a polarization adjusting unit that is disposed between the beam splitter and the second line image generating unit and adjusts the polarization of the reference light. Coherent tomography device.
  7.  前記第1のライン像生成手段は、直交する2つの経線方向の曲率が異なる第1のライン像形成レンズを少なくとも備えることを特徴とする請求項1乃至6の何れか1項に記載の光干渉断層撮像装置。 The optical interference according to any one of claims 1 to 6, wherein the first line image generation means includes at least a first line image forming lens having different curvatures in two orthogonal meridian directions. Tomographic imaging device.
  8.  前記第2のライン像生成手段は、直交する2つの経線方向の曲率が異なる第2のライン像形成レンズを少なくとも備えることを特徴とする請求項1乃至7の何れか1項に記載の光干渉断層撮像装置。 The optical interference according to any one of claims 1 to 7, wherein the second line image generation means includes at least a second line image forming lens having different curvatures in two orthogonal meridian directions. Tomographic imaging device.
  9.  前記被検査物が眼であることを特徴とする請求項1乃至8の何れか1項に記載の光干渉断層撮像装置。 9. The optical coherence tomographic imaging apparatus according to claim 1, wherein the object to be inspected is an eye.
  10.  前記光源は、波長掃引型の光源であり、
     前記断層像生成手段は、前記干渉光から干渉信号を検出するラインセンサを含むことを特徴とする請求項1乃至9の何れか1項に記載の光干渉断層撮像装置。
    The light source is a wavelength sweep type light source,
    The optical coherence tomographic imaging apparatus according to claim 1, wherein the tomographic image generation unit includes a line sensor that detects an interference signal from the interference light.
PCT/JP2018/016842 2017-05-01 2018-04-25 Optical coherence tomography apparatus WO2018203506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017091421A JP2018187038A (en) 2017-05-01 2017-05-01 Optical coherence tomographic imaging apparatus
JP2017-091421 2017-05-01

Publications (1)

Publication Number Publication Date
WO2018203506A1 true WO2018203506A1 (en) 2018-11-08

Family

ID=64016635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016842 WO2018203506A1 (en) 2017-05-01 2018-04-25 Optical coherence tomography apparatus

Country Status (2)

Country Link
JP (1) JP2018187038A (en)
WO (1) WO2018203506A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518909A (en) * 2021-05-26 2021-10-19 香港应用科技研究院有限公司 Cost-effective linear scanning optical coherence tomography device
WO2022246902A1 (en) * 2021-05-26 2022-12-01 Hong Kong Applied Science and Technology Research Institute Company Limited Cost-effective line-scan optical coherence tomography apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527770A (en) * 2006-02-24 2009-07-30 ザ ジェネラル ホスピタル コーポレイション Method and system for performing angle-resolved Fourier domain optical coherence tomography
WO2015189174A2 (en) * 2014-06-10 2015-12-17 Carl Zeiss Meditec, Inc. Improved frequency-domain interferometric based imaging systems and methods
US20160209201A1 (en) * 2013-10-09 2016-07-21 Carl Zeiss Meditec Inc. Improved line-field imaging systems and methods
US20160345820A1 (en) * 2015-05-28 2016-12-01 Cylite Pty Ltd High resolution 3-d spectral domain optical imaging apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527770A (en) * 2006-02-24 2009-07-30 ザ ジェネラル ホスピタル コーポレイション Method and system for performing angle-resolved Fourier domain optical coherence tomography
US20160209201A1 (en) * 2013-10-09 2016-07-21 Carl Zeiss Meditec Inc. Improved line-field imaging systems and methods
WO2015189174A2 (en) * 2014-06-10 2015-12-17 Carl Zeiss Meditec, Inc. Improved frequency-domain interferometric based imaging systems and methods
US20160345820A1 (en) * 2015-05-28 2016-12-01 Cylite Pty Ltd High resolution 3-d spectral domain optical imaging apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518909A (en) * 2021-05-26 2021-10-19 香港应用科技研究院有限公司 Cost-effective linear scanning optical coherence tomography device
WO2022246902A1 (en) * 2021-05-26 2022-12-01 Hong Kong Applied Science and Technology Research Institute Company Limited Cost-effective line-scan optical coherence tomography apparatus
US11578965B2 (en) 2021-05-26 2023-02-14 Hong Kong Applied Science and Technology Research Institute Company Limited Cost-effective line-scan optical coherence tomography apparatus

Also Published As

Publication number Publication date
JP2018187038A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
US10028656B2 (en) Optical coherence tomographic apparatus
US10327632B2 (en) Systems and methods for wide field-of-view optical coherence tomography
US9033500B2 (en) Optical coherence tomography and method thereof
JP5032203B2 (en) Fundus observation apparatus and program for controlling the same
US9615736B2 (en) Optical interference tomographic apparatus, and method for controlling optical interference tomographic apparatus
JP6207221B2 (en) Optical tomography system
US20130194541A1 (en) Optical tomographic apparatus and control method thereof
JP2016032609A (en) Ophthalmologic apparatus
US9675243B2 (en) Ophthalmic photographing apparatus
JP2015102537A (en) Optical interference tomograph meter
WO2016060033A1 (en) Ophthalmological device
JP5506504B2 (en) Imaging apparatus and imaging method
JP2022189969A (en) Ophthalmologic apparatus, and ophthalmologic information processing system
WO2018203506A1 (en) Optical coherence tomography apparatus
JP2019033919A (en) Measurement device
US20200397282A1 (en) Ophthalmologic apparatus and method of controlling the same
JP2014213156A (en) Optical tomographic imaging device
JP2018023675A (en) Optical tomographic imaging apparatus
JP6218425B2 (en) Optical tomography system
JP6498162B2 (en) Optical tomography system
WO2019035426A1 (en) Measurement device
JP2017221741A (en) Image formation device, image formation method and program
JP5995810B2 (en) Optical tomography system
JP2019072027A (en) Ophthalmologic apparatus and focus unit
JP2017205658A (en) Ocular fundus imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18795268

Country of ref document: EP

Kind code of ref document: A1