WO2018197152A1 - Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve - Google Patents

Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve Download PDF

Info

Publication number
WO2018197152A1
WO2018197152A1 PCT/EP2018/058198 EP2018058198W WO2018197152A1 WO 2018197152 A1 WO2018197152 A1 WO 2018197152A1 EP 2018058198 W EP2018058198 W EP 2018058198W WO 2018197152 A1 WO2018197152 A1 WO 2018197152A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet valve
magnetic core
pump
plastic material
valve member
Prior art date
Application number
PCT/EP2018/058198
Other languages
German (de)
French (fr)
Inventor
Stefan Kolb
Steffen Holm
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018197152A1 publication Critical patent/WO2018197152A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/367Pump inlet valves of the check valve type being open when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/108Valves characterised by the material
    • F04B53/1082Valves characterised by the material magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0076Piston machines or pumps characterised by having positively-driven valving the members being actuated by electro-magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/127Assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/26Fuel-injection apparatus with elastically deformable elements other than coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8046Fuel injection apparatus manufacture, repair or assembly the manufacture involving injection moulding, e.g. of plastic or metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8084Fuel injection apparatus manufacture, repair or assembly involving welding or soldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9015Elastomeric or plastic materials

Definitions

  • the invention relates to an electromagnetically operable inlet valve for a high pressure pump, in particular a fuel injection system, according to the preamble of claim 1. Furthermore, the invention relates to a high pressure pump with such an inlet valve.
  • An electromagnetically operable inlet valve for a high-pressure pump of a fuel injection system is known from DE 10 2015 212 390 A1.
  • the high-pressure pump has at least one pump element with one in one
  • the pump working space can be connected to an inlet for the fuel via the inlet valve.
  • the inlet valve comprises a valve member which cooperates with a valve seat for control and which is movable between an open position and a closed position. In its closed position, the valve member comes to rest against the valve seat.
  • the inlet valve comprises an electromagnetic actuator, through which the valve member is movable.
  • the electromagnetic actuator has a magnetic coil, a magnetic core and an at least indirectly acting on the valve member armature.
  • the magnet armature is displaceably guided in a receptacle in a carrier element. When the solenoid is energized, the armature is movable against the force of a return spring.
  • the carrier element and the magnetic core are connected to each other via a sleeve-shaped connecting element, wherein the connecting element can be welded to the carrier element and / or the magnetic core.
  • the magnet core, the carrier element and the connecting element are at least partially surrounded by the magnetic coil, wherein between the magnetic core, the carrier gerelement and the connecting element on the one hand and the solenoid on the other hand, a gap is present, which is filled with air.
  • fuel is present, which allows cooling.
  • the magnetic coil can give off heat in the outer environment of the actuator. A heat transfer from the magnetic coil to the components surrounded by this carrier element, magnetic core and connecting element is limited by the existing air in the space possible.
  • the inlet valve according to the invention with the features of claim 1 has the advantage that an improved heat transfer from the solenoid to the carrier element and the magnetic core is made possible, whereby excessive heating of other parts of the actuator and / or this enclosing housing can be avoided can. Cooling is by the in
  • Support element available and this preferably flowing fuel allows. This also allows the control of the solenoid with higher currents whereby the range of application of the inlet valve can be extended. In addition, the penetration of moisture is at least reduced by the plastic material at least partially filling the intermediate space, thereby ensuring the function of the inlet valve over a long period of time.
  • the embodiment according to claim 2 has the advantage that a heat transfer from the magnetic coil is further improved.
  • the embodiment according to claim 3 the heat transfer from the magnetic coil is further improved and according to claim 4, at least one welded joint of the connecting element is protected against corrosion. Due to the construction according to claim 5, the plastic material can be introduced in a simple manner in the intermediate space.
  • FIG. 1 shows a schematic longitudinal section through a high-pressure pump
  • Figure 2 shows an enlarged view of a designated II in Figure 1 section with the inlet valve of the high-pressure pump
  • Figure 3 shows a further enlarged section of the inlet valve.
  • a high pressure pump is shown in fragmentary form, which is provided for fuel delivery in a fuel injection system of an internal combustion engine.
  • the high pressure pump has at least one pump element 10, which in turn has a pump piston 12 which by a drive in a
  • a drive shaft 20 may be provided with a cam 22 or eccentric on which the pump piston 12 directly or via a plunger, for example a
  • the pump working chamber 18 can be connected to a fuel inlet 26 via an inlet valve 24 and via an outlet valve 28 to a reservoir 30.
  • the pump working chamber 18 can be filled with fuel when the inlet valve 24 is open.
  • fuel is expelled from the pump working chamber 18 and conveyed into the reservoir 30 when the inlet valve 24 is closed.
  • the inlet valve 24 has a piston-shaped valve member 34, which has a shaft 36 displaceably guided in the through-bore 32 and a head 38 which is larger in diameter than the shaft 36 and which is arranged in the pump working chamber 18.
  • valve seat 40 is formed, with which the valve member 34 cooperates with a formed on its head 38 sealing surface 42.
  • the passage bore 32 has a larger diameter than in the shaft 36 of the
  • Valve member 34 leading portion so that the shaft 36 of the valve member 34 surrounding annular space 44 is formed.
  • annular space 44 open one or more inlet bores 46, on the other hand open on the outside of the housing part 16.
  • valve member 34 protrudes on the pump working chamber 18 side facing away from the housing part 16 out of the through hole 32 and on this a support member 48 is attached.
  • a valve spring 50 is supported, which on the other hand is supported on a region of the housing part 16 surrounding the shaft 36 of the valve member 34.
  • the valve spring 50 is formed for example as a helical compression spring.
  • the inlet valve 24 is actuated by an electromagnetic actuator 60, which is shown in particular in Figures 2 and 3.
  • the actuator 60 is controlled by an electronic control device 62 as a function of operating parameters of the internal combustion engine to be supplied.
  • the electromagnetic actuator 60 has a magnetic coil 64, a magnetic core 66 and a magnet armature 68.
  • the electromagnetic actuator 60 is arranged on the pump working chamber 18 side facing away from the inlet valve 24.
  • the magnetic core 66 and the magnetic coil 64 are surrounded by an actuator housing 70 which can be fastened to the housing part 16 of the high-pressure pump.
  • the actuator housing 70 is fastened to the housing part 16, for example, by means of a screw ring 72 engaging over this tigbar, which is screwed onto an externally threaded collar 74 of the housing part 16.
  • the armature 68 is at least substantially cylindrical in shape and guided in a receptacle in the form of a bore 76 in a carrier element 78 in the direction of its longitudinal axis 69 displaceably via its outer jacket 67.
  • the bore 76 in the carrier element 78 extends at least approximately coaxially to the through hole 32 in the housing part 16 of the high-pressure pump and thus to the valve member 34.
  • the bore 76 is followed in the support member 78 to the inlet valve 24 towards a further bore 77 with a smaller diameter than the bore 76 at.
  • the magnet armature 68 has an at least approximately coaxial to the longitudinal axis 69 of the armature 68 arranged central blind bore 81 into which a on the valve member 34 remote from the armature 68 disposed return spring 82 projects, which is supported on the armature 68.
  • the return spring 82 is supported at its other end at least indirectly on the magnetic core 66, which has a central blind bore 84 into which the return spring 82 protrudes.
  • a support member 85 may be inserted for the return spring 82, for example, be pressed.
  • the magnet armature 68 has one or more through openings 91 to allow passage of fuel during the movement of the magnet armature 68.
  • annular shoulder 88 is formed by the diameter reduction to the further bore 77. Between the annular shoulder 88 and the magnet armature 68 may be arranged a stop element 90, by which the movement of the armature 68 is limited to the inlet valve 24.
  • the stop element 90 is sleeve-shaped and through this the magnet armature 68 protrudes toward the inlet valve 24 and comes at least indirectly on the valve member 34 to the plant.
  • the magnetic core 66 and the carrier element 78 are connected to one another via a sleeve-shaped connecting element 92, which on the magnetic core 66 and on the carrier element 78 by means of a respective one
  • the solenoid 64 may be disposed on a bobbin 65 disposed within the solenoid 64.
  • the bobbin 65 surrounds the Carrier member 78 facing end portion of the magnetic core 66, the portion of the support member 78, in which the receptacle 76 is arranged for the armature 68, and the connecting member 92 to form a gap 94.
  • the gap 94 extends in the radial direction with respect to the longitudinal axis 69 of the armature 68 and in the direction of the longitudinal axis 69 of
  • a plastic material 95 is present, which preferably at least approximately completely fills the gap 94.
  • the plastic material 95 the radial distance between the inner surface of the bobbin 65 on the one hand and the outer surface of the
  • Carrier member 78, the connecting member 92 and the magnetic core 66 on the other hand completely filled. Due to the plastic material 95, a good heat transfer from the magnet coil 64 via the coil carrier 65 to the carrier element 78, the magnetic core 66 and the connecting element 92 is made possible.
  • the interior of the carrier element 78, in which the magnet armature 68 is arranged, is filled with fuel and flows through fuel, so that heat can be dissipated by the fuel.
  • the plastic material 95 is introduced, for example, in liquid form into the intermediate space 94 and subsequently hardens. This is particularly advantageous
  • Plastic material 95 introduced in a manufacturing process in which the plastic actuator housing 70 is made.
  • the components of the inlet valve 24 to be enclosed by the actuator housing 70 are inserted into a casting mold and subsequently the liquid plastic material is injected into the casting mold.
  • the carrier element 78 with the magnetic armature 68 arranged in the receptacle 76 and the magnetic core 66 connected thereto via the connecting element 92 forms a preassembled structural unit which is inserted with the magnetic core 66 into the magnetic coil 64 or its coil carrier 65.
  • a receptacle 96 may be formed for a plug element, via which and an electrical line connected to this, the magnetic coil 64 is connectable to the control device 62.
  • the inlet valve 24 is opened by having its valve member 34 in its open position. det, in which this is arranged with its sealing surface 42 away from the valve seat 40.
  • the movement of the valve member 34 in its open position is effected by the prevailing between the fuel inlet 26 and the pump working chamber 18 pressure difference against the force of the valve spring 50.
  • the magnetic coil 64 of the actuator 60 may be energized or de-energized. When the magnetic coil 64 is energized, the magnetic armature 68 is pulled by the resulting magnetic field against the force of the return spring 82 to the magnetic core 66 out.
  • the armature 68 When the solenoid 64 is deenergized, the armature 68 is urged toward the inlet valve 24 by the force of the return spring 82. The magnet armature 68 abuts at least indirectly on the end face of the shaft 36 of the valve member 34.
  • valve member 34 of the inlet valve 24 is in its open position or closed position.
  • the armature 68 is pressed by the return spring 82 in the direction of arrow B in Figure 2, wherein the valve member 34 is pressed by the armature 68 against the valve spring 50 in the direction of adjustment B in its open position.
  • the force of the force acting on the armature 68 return spring 82 is greater than the force of the valve member 34 acting on the valve spring 50.
  • the armature 68 acts on the valve member 34 and the armature 68 and the valve member 34 are together in the direction of adjustment B emotional.
  • the solenoid coil 64 is not energized can thus be promoted by the pump piston 12 no fuel in the memory 30, but the pump piston 12 displaced fuel is fed back into the fuel inlet 26. If during the delivery stroke of the pump piston 12 fuel is to be conveyed into the reservoir 30, the magnetic coil 64 is energized, so that the magnet armature 68 is pulled toward the magnetic core 66 in a direction opposite to the direction of adjustment B as indicated by arrow A in FIG.
  • the armature 68 thus no longer exerts force on the valve member 34, wherein the magnet armature 68 is moved by the magnetic field in the direction A and the valve member 34 independent of the armature 68 due to the valve spring 50 and between the pump working chamber 18 and the fuel inlet 26 prevailing pressure difference in the direction of adjustment A is moved to its closed position.
  • the delivery rate of the high-pressure pump can be increased.
  • pressure pump can be set variably in the memory 30.
  • the intake valve 24 When a small fuel delivery amount is required, the intake valve 24 is kept open by the actuator 60 during a large part of the delivery stroke of the pump piston 12, and when a large fuel delivery amount is required, the intake valve 24 becomes only for a small part or not at all during the delivery stroke the pump piston 12 is kept open.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The invention relates to an electromagnetically actuatable inlet valve (24) for a high-pressure pump, in particular of a fuel-injection system. The inlet valve (24) has a valve member (34) which can be moved between an open position and a closed position. An electromagnetic actuator (60), by means of which the valve member (34) can be moved, is provided, wherein the electromagnetic actuator (60) comprises a solenoid coil (64), a magnetic core (66) and an armature (68) which acts at least indirectly on the valve member (34). The armature is displaceably guided in a recess (76) of a support element (78) in the direction of its longitudinal axis (69). The magnetic core (66) and the support element (78) are at least partially surrounded by the magnetic coil (64) thus forming an intermediate chamber (94). The intermediate chamber (94) is at least partially filled with a plastic material (95). The transfer of heat from the magnet coil (64) to the magnetic core (66) and the support element (78), through the plastic material (95), is improved such that the temperature of the magnetic coil (64) can be lowered.

Description

Beschreibung  description
Titel: Title:
Elektromagnetisch betätigbares Einlassventil und Hochdruckpumpe mit Einlassventil  Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
Die Erfindung betrifft ein elektromagnetisch betätigbares Einlassventil für eine Hochdruckpumpe, insbesondere eines Kraftstoffeinspritzsystems, gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Hochdruckpumpe mit einem solchen Einlassventil. The invention relates to an electromagnetically operable inlet valve for a high pressure pump, in particular a fuel injection system, according to the preamble of claim 1. Furthermore, the invention relates to a high pressure pump with such an inlet valve.
Stand der Technik State of the art
Ein elektromagnetisch betätigbares Einlassventil für eine Hochdruckpumpe eines Kraftstoffeinspritzsystems, ist durch die DE 10 2015 212 390 A1 bekannt. Die Hochdruckpumpe weist wenigstens ein Pumpenelement auf mit einem in einerAn electromagnetically operable inlet valve for a high-pressure pump of a fuel injection system is known from DE 10 2015 212 390 A1. The high-pressure pump has at least one pump element with one in one
Hubbewegung angetriebenen Pumpenkolben, der einen Pumpenarbeitsraum begrenzt. Der Pumpenarbeitsraum ist über das Einlassventil mit einem Zulauf für den Kraftstoff verbindbar. Das Einlassventil umfasst ein Ventilglied, das mit einem Ventilsitz zur Steuerung zusammenwirkt und das zwischen einer Öffnungs- Stellung und einer Schließstellung bewegbar ist. In seiner Schließstellung kommt das Ventilglied am Ventilsitz zur Anlage. Ferner umfasst das Einlassventil einen elektromagnetischen Aktor, durch den das Ventilglied bewegbar ist. Der elektromagnetische Aktor weist eine Magnetspule, einen Magnetkern und einen zumindest mittelbar auf das Ventilglied wirkenden Magnetanker auf. Der Magnetanker ist in einer Aufnahme in einem Trägerelement verschiebbar geführt. Bei Bestro- mung der Magnetspule ist der Magnetanker gegen die Kraft einer Rückstellfeder bewegbar. Das Trägerelement und der Magnetkern sind über ein hülsenförmiges Verbindungselement miteinander verbunden, wobei das Verbindungselement mit dem Trägerelement und/oder dem Magnetkern verschweißt sein kann. Der Mag- netkern, das Trägerelement und das Verbindungselement sind von der Magnetspule zumindest teilweise umgeben, wobei zwischen dem Magnetkern, dem Trä- gerelement und dem Verbindungselement einerseits sowie der Magnetspule andererseits ein Zwischenraum vorhanden ist, der mit Luft gefüllt ist. Innerhalb des Trägerelements ist Kraftstoff vorhanden, der eine Kühlung ermöglicht. Bei Bestromung kommt es zu einer Erwärmung der Magnetspule, wobei die Magnet- spule Wärme in die äußere Umgebung des Aktors abgeben kann. Eine Wärmeübertragung von der Magnetspule an die von dieser umgebenen Bauteile Trägerelement, Magnetkern und Verbindungselement ist durch die im Zwischenraum vorhandene Luft nur eingeschränkt möglich. Bei einer starken Erwärmung der Magnetspule kann es zu Beschädigungen von Teilen des Aktors oder einem die- sen umgebenden Gehäuse kommen. Außerdem kann es bei nachfolgender Abkühlung zu einem Eintritt von Feuchtigkeit aus der Umgebung des Aktors in den Zwischenraum kommen. Dies kann zu Korrosion des Trägerelements, Magnetkerns und Verbindungselements führen, wobei insbesondere die Schweißverbindung des Verbindungselements geschädigt werden kann, so dass keine sichere Verbindung des Magnetkerns mit dem Trägerelement mehr vorhanden ist. Stroke driven pump piston limiting a pump working space. The pump working space can be connected to an inlet for the fuel via the inlet valve. The inlet valve comprises a valve member which cooperates with a valve seat for control and which is movable between an open position and a closed position. In its closed position, the valve member comes to rest against the valve seat. Furthermore, the inlet valve comprises an electromagnetic actuator, through which the valve member is movable. The electromagnetic actuator has a magnetic coil, a magnetic core and an at least indirectly acting on the valve member armature. The magnet armature is displaceably guided in a receptacle in a carrier element. When the solenoid is energized, the armature is movable against the force of a return spring. The carrier element and the magnetic core are connected to each other via a sleeve-shaped connecting element, wherein the connecting element can be welded to the carrier element and / or the magnetic core. The magnet core, the carrier element and the connecting element are at least partially surrounded by the magnetic coil, wherein between the magnetic core, the carrier gerelement and the connecting element on the one hand and the solenoid on the other hand, a gap is present, which is filled with air. Within the support member fuel is present, which allows cooling. When energized, there is a heating of the magnetic coil, the magnetic coil can give off heat in the outer environment of the actuator. A heat transfer from the magnetic coil to the components surrounded by this carrier element, magnetic core and connecting element is limited by the existing air in the space possible. Strong heating of the solenoid coil can damage parts of the actuator or its surrounding housing. In addition, upon subsequent cooling, moisture may enter the intermediate space from the environment of the actuator. This can lead to corrosion of the carrier element, magnetic core and connecting element, wherein in particular the welded joint of the connecting element can be damaged, so that no secure connection of the magnetic core with the carrier element is more present.
Offenbarung der Erfindung Vorteile der Erfindung Disclosure of the Invention Advantages of the Invention
Das erfindungsgemäße Einlassventil mit den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, dass eine verbesserte Wärmeübertragung von der Magnetspule auf das Trägerelement und den Magnetkern ermöglicht ist, wodurch eine zu starke Erwärmung anderer Teile des Aktors und/oder des diesen um- schließenden Gehäuses vermieden werden kann. Eine Kühlung ist durch den imThe inlet valve according to the invention with the features of claim 1 has the advantage that an improved heat transfer from the solenoid to the carrier element and the magnetic core is made possible, whereby excessive heating of other parts of the actuator and / or this enclosing housing can be avoided can. Cooling is by the in
Trägerelement vorhandenen und dieses vorzugsweise durchströmenden Kraftstoff ermöglicht. Dies ermöglicht auch die Ansteuerung der Magnetspule mit höheren Stromstärken wodurch der Einsatzbereich des Einlassventils erweitert werden kann. Außerdem ist durch das den Zwischenraum zumindest teilweise ausfüllende Kunststoffmaterial ein Eindringen von Feuchtigkeit zumindest verringert und dadurch die Funktion des Einlassventils über einen langen Zeitraum sichergestellt. Support element available and this preferably flowing fuel allows. This also allows the control of the solenoid with higher currents whereby the range of application of the inlet valve can be extended. In addition, the penetration of moisture is at least reduced by the plastic material at least partially filling the intermediate space, thereby ensuring the function of the inlet valve over a long period of time.
In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbil- düngen des erfindungsgemäßen Einlassventils angegeben. Die Ausbildung gemäß Anspruch 2 hat den Vorteil, dass ein Wärmeübergang von der Magnetspule weiter verbessert ist. Durch die Ausbildung gemäß Anspruch 3 ist der Wärmeübergang von der Magnetspule weiter verbessert und gemäß Anspruch 4 ist wenigstens eine Schweißverbindung des Verbindungselements gegen Korrosion geschützt. Durch die Ausbildung gemäß Anspruch 5 kann das Kunststoffmaterial auf einfache Weise in den Zwischenraum eingebracht werden. In the dependent claims advantageous embodiments and continuing to fertilize the inlet valve according to the invention are given. The embodiment according to claim 2 has the advantage that a heat transfer from the magnetic coil is further improved. The embodiment according to claim 3, the heat transfer from the magnetic coil is further improved and according to claim 4, at least one welded joint of the connecting element is protected against corrosion. Due to the construction according to claim 5, the plastic material can be introduced in a simple manner in the intermediate space.
Zeichnung drawing
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der beigefügten Zeichnung näher beschrieben. Es zeigen Figur 1 einen schematischen Längsschnitt durch eine Hochdruckpumpe, Figur 2 in vergrößerter Darstellung einen in Figur 1 mit II bezeichneten Ausschnitt mit dem Einlassventil der Hochdruckpumpe und Figur 3 einen weiter vergrößerten Ausschnitt des Einlassventils. Beschreibung des Ausführungsbeispiels An embodiment of the invention will be described below with reference to the accompanying drawings. 1 shows a schematic longitudinal section through a high-pressure pump, Figure 2 shows an enlarged view of a designated II in Figure 1 section with the inlet valve of the high-pressure pump and Figure 3 shows a further enlarged section of the inlet valve. Description of the embodiment
In Figur 1 ist ausschnittsweise eine Hochdruckpumpe dargestellt, die zur Kraftstoffförderung in einem Kraftstoffeinspritzsystem einer Brennkraftmaschine vorgesehen ist. Die Hochdruckpumpe weist wenigstens ein Pumpenelement 10 auf, das wiederum einen Pumpenkolben 12 aufweist, der durch einen Antrieb in einerIn Figure 1, a high pressure pump is shown in fragmentary form, which is provided for fuel delivery in a fuel injection system of an internal combustion engine. The high pressure pump has at least one pump element 10, which in turn has a pump piston 12 which by a drive in a
Hubbewegung angetrieben wird, in einer Zylinderbohrung 14 eines Gehäuseteils 16 der Hochdruckpumpe geführt ist und in der Zylinderbohrung 14 einen Pumpenarbeitsraum 18 begrenzt. Als Antrieb für den Pumpenkolben 12 kann eine Antriebswelle 20 mit einem Nocken 22 oder Exzenter vorgesehen sein, an dem sich der Pumpenkolben 12 direkt oder über einen Stößel, beispielsweise einenHub movement is driven, is guided in a cylinder bore 14 of a housing part 16 of the high-pressure pump and limited in the cylinder bore 14 a pump working chamber 18. As a drive for the pump piston 12, a drive shaft 20 may be provided with a cam 22 or eccentric on which the pump piston 12 directly or via a plunger, for example a
Rollenstößel, abstützt. Der Pumpenarbeitsraum 18 ist über ein Einlassventil 24 mit einem Kraftstoffzulauf 26 verbindbar und über ein Auslassventil 28 mit einem Speicher 30. Beim Saughub des Pumpenkolbens 12 kann der Pumpenarbeitsraum 18 bei geöffnetem Einlassventil 24 mit Kraftstoff befüllt werden. Beim För- derhub des Pumpenkolbens 12 wird durch diesen bei geschlossenem Einlassventil 24 Kraftstoff aus dem Pumpenarbeitsraum 18 verdrängt und in den Speicher 30 gefördert. Roller tappet, supports. The pump working chamber 18 can be connected to a fuel inlet 26 via an inlet valve 24 and via an outlet valve 28 to a reservoir 30. During the suction stroke of the pump piston 12, the pump working chamber 18 can be filled with fuel when the inlet valve 24 is open. During the delivery stroke of the pump piston 12, fuel is expelled from the pump working chamber 18 and conveyed into the reservoir 30 when the inlet valve 24 is closed.
Im Gehäuseteil 16 der Hochdruckpumpe schließt sich wie in Figur 2 dargestellt an die Zylinderbohrung 14 auf deren dem Pumpenkolben 12 abgewandter Seite eine Durchgangsbohrung 32 mit kleinerem Durchmesser als die Zylinderbohrung 14 an, die auf der Außenseite der Gehäuseteils 16 mündet. Das Einlassventil 24 weist ein kolbenförmiges Ventilglied 34 auf, das einen in der Durchgangsbohrung 32 verschiebbar geführten Schaft 36 und einen im Durchmesser gegenüber dem Schaft 36 größeren Kopf 38 aufweist, der im Pumpenarbeitsraum 18 angeordnet ist. Am Übergang von der Zylinderbohrung 14 zur Durchgangsbohrung 32 ist amIn the housing part 16 of the high pressure pump closes as shown in Figure 2 to the cylinder bore 14 on the pump piston 12 side facing away from a through hole 32 with a smaller diameter than the cylinder bore 14, which opens on the outside of the housing part 16. The inlet valve 24 has a piston-shaped valve member 34, which has a shaft 36 displaceably guided in the through-bore 32 and a head 38 which is larger in diameter than the shaft 36 and which is arranged in the pump working chamber 18. At the transition from the cylinder bore 14 to the through hole 32 is on
Gehäuseteil 16 ein Ventilsitz 40 gebildet, mit dem das Ventilglied 34 mit einer an seinem Kopf 38 ausgebildeten Dichtfläche 42 zusammenwirkt. Housing part 16, a valve seat 40 is formed, with which the valve member 34 cooperates with a formed on its head 38 sealing surface 42.
In einem an den Ventilsitz 40 anschließenden Abschnitt weist die Durchgangs- bohrung 32 einen größeren Durchmesser auf als in deren den Schaft 36 desIn a section adjoining the valve seat 40, the passage bore 32 has a larger diameter than in the shaft 36 of the
Ventilglieds 34 führendem Abschnitt, so dass ein den Schaft 36 des Ventilglieds 34 umgebender Ringraum 44 gebildet ist. In den Ringraum 44 münden eine oder mehrere Zulaufbohrungen 46, die andererseits auf der Außenseite des Gehäuseteils 16 münden. Valve member 34 leading portion, so that the shaft 36 of the valve member 34 surrounding annular space 44 is formed. In the annular space 44 open one or more inlet bores 46, on the other hand open on the outside of the housing part 16.
Der Schaft 36 des Ventilglieds 34 ragt auf der dem Pumpenarbeitsraum 18 abgewandten Seite des Gehäuseteils 16 aus der Durchgangsbohrung 32 heraus und auf diesem ist ein Stützelement 48 befestigt. Am Stützelement 48 stützt sich eine Ventilfeder 50 ab, die sich andererseits an einem den Schaft 36 des Ven- tilglieds 34 umgebenden Bereich des Gehäuseteils 16 abstützt. Durch die Ventilfeder 50 wird das Ventilglied 34 in einer Stellrichtung A in dessen Schließrichtung beaufschlagt, wobei das Ventilglied 34 in seiner Schließstellung mit seiner Dichtfläche 42 am Ventilsitz 40 anliegt. Die Ventilfeder 50 ist beispielsweise als Schraubendruckfeder ausgebildet. The shaft 36 of the valve member 34 protrudes on the pump working chamber 18 side facing away from the housing part 16 out of the through hole 32 and on this a support member 48 is attached. On the support element 48, a valve spring 50 is supported, which on the other hand is supported on a region of the housing part 16 surrounding the shaft 36 of the valve member 34. By the valve spring 50, the valve member 34 is acted upon in a direction of adjustment A in the closing direction, wherein the valve member 34 rests in its closed position with its sealing surface 42 on the valve seat 40. The valve spring 50 is formed for example as a helical compression spring.
Das Einlassventil 24 ist durch einen elektromagnetischen Aktor 60 betätigbar, der insbesondere in den Figuren 2 und 3 dargestellt ist. Der Aktor 60 wird durch eine elektronische Steuereinrichtung 62 in Abhängigkeit von Betriebsparametern der zu versorgenden Brennkraftmaschine angesteuert. Der elektromagnetische Aktor 60 weist eine Magnetspule 64, einen Magnetkern 66 und einen Magnetanker 68 auf. Der elektromagnetische Aktor 60 ist auf der dem Pumpenarbeitsraum 18 abgewandten Seite des Einlassventils 24 angeordnet. Der Magnetkern 66 und die Magnetspule 64 sind von einem Aktorgehäuse 70 umgeben, das am Gehäuseteil 16 der Hochdruckpumpe befestigbar ist. Das Aktorgehäuse 70 ist beispielsweise mittels eines dieses übergreifenden Schraubrings 72 am Gehäuseteil 16 befes- tigbar, der auf einem mit einem Außengewinde versehenen Kragen 74 des Gehäuseteils 16 aufgeschraubt ist. The inlet valve 24 is actuated by an electromagnetic actuator 60, which is shown in particular in Figures 2 and 3. The actuator 60 is controlled by an electronic control device 62 as a function of operating parameters of the internal combustion engine to be supplied. The electromagnetic actuator 60 has a magnetic coil 64, a magnetic core 66 and a magnet armature 68. The electromagnetic actuator 60 is arranged on the pump working chamber 18 side facing away from the inlet valve 24. The magnetic core 66 and the magnetic coil 64 are surrounded by an actuator housing 70 which can be fastened to the housing part 16 of the high-pressure pump. The actuator housing 70 is fastened to the housing part 16, for example, by means of a screw ring 72 engaging over this tigbar, which is screwed onto an externally threaded collar 74 of the housing part 16.
Der Magnetanker 68 ist zumindest im Wesentlichen zylinderförmig ausgebildet und über seinen Außenmantel 67 in einer Aufnahme in Form einer Bohrung 76 in einem Trägerelement 78 in Richtung seiner Längsachse 69 verschiebbar geführt. Die Bohrung 76 im Trägerelement 78 verläuft zumindest annähernd koaxial zur Durchgangsbohrung 32 im Gehäuseteil 16 der Hochdruckpumpe und somit zum Ventilglied 34. An die Bohrung 76 schließt sich im Trägerelement 78 zum Einlassventil 24 hin eine weitere Bohrung 77 mit kleinerem Durchmesser als die Bohrung 76 an. The armature 68 is at least substantially cylindrical in shape and guided in a receptacle in the form of a bore 76 in a carrier element 78 in the direction of its longitudinal axis 69 displaceably via its outer jacket 67. The bore 76 in the carrier element 78 extends at least approximately coaxially to the through hole 32 in the housing part 16 of the high-pressure pump and thus to the valve member 34. The bore 76 is followed in the support member 78 to the inlet valve 24 towards a further bore 77 with a smaller diameter than the bore 76 at.
Der Magnetanker 68 weist eine zumindest annähernd koaxial zur Längsachse 69 des Magnetankers 68 angeordnete zentrale Sackbohrung 81 auf, in die eine auf der dem Ventilglied 34 abgewandten Seite des Magnetankers 68 angeordnete Rückstellfeder 82 hineinragt, die sich am Magnetanker 68 abstützt. Die Rückstellfeder 82 ist an ihrem anderen Ende zumindest mittelbar am Magnetkern 66 abgestützt, der eine zentrale Sackbohrung 84 aufweist, in die die Rückstellfeder 82 hineinragt. In der Bohrung 84 des Magnetankers 66 kann ein Abstützelement 85 für die Rückstellfeder 82 eingefügt, beispielsweise eingepresst sein. Der Magnetanker 68 weist eine oder mehrere Durchgangsöffnungen 91 auf um einen Durchtritt von Kraftstoff bei der Bewegung des Magnetankers 68 zu ermöglichen. The magnet armature 68 has an at least approximately coaxial to the longitudinal axis 69 of the armature 68 arranged central blind bore 81 into which a on the valve member 34 remote from the armature 68 disposed return spring 82 projects, which is supported on the armature 68. The return spring 82 is supported at its other end at least indirectly on the magnetic core 66, which has a central blind bore 84 into which the return spring 82 protrudes. In the bore 84 of the armature 66, a support member 85 may be inserted for the return spring 82, for example, be pressed. The magnet armature 68 has one or more through openings 91 to allow passage of fuel during the movement of the magnet armature 68.
In der Bohrung 76 ist durch die Durchmesserverringerung zur weiteren Bohrung 77 hin eine Ringschulter 88 gebildet. Zwischen der Ringschulter 88 und dem Magnetanker 68 kann ein Anschlagelement 90 angeordnet sein, durch das die Bewegung des Magnetankers 68 zum Einlassventil 24 hin begrenzt ist. Das Anschlagelement 90 ist hülsenförmig ausgebildet und durch dieses ragt der Magnetanker 68 zum Einlassventil 24 hindurch und kommt zumindest mittelbar am Ventilglied 34 zur Anlage. Der Magnetkern 66 und das Trägerelement 78 sind über ein hülsenförmiges Verbindungselement 92 miteinander verbunden, das auf dem Magnetkern 66 und auf dem Trägerelement 78 mittels jeweils einer In the bore 76, an annular shoulder 88 is formed by the diameter reduction to the further bore 77. Between the annular shoulder 88 and the magnet armature 68 may be arranged a stop element 90, by which the movement of the armature 68 is limited to the inlet valve 24. The stop element 90 is sleeve-shaped and through this the magnet armature 68 protrudes toward the inlet valve 24 and comes at least indirectly on the valve member 34 to the plant. The magnetic core 66 and the carrier element 78 are connected to one another via a sleeve-shaped connecting element 92, which on the magnetic core 66 and on the carrier element 78 by means of a respective one
Schweißverbindung 93 befestigt ist. Die Magnetspule 64 kann auf einem Spulenträger 65 angeordnet sein, der innerhalb der Magnetspule 64 angeordnet ist. Der Spulenträger 65 umgibt den dem Trägerelement 78 zugewandten Endbereich des Magnetkerns 66, den Bereich des Trägerelements 78, in dem die Aufnahme 76 für den Magnetanker 68 angeordnet ist, und das Verbindungselement 92 unter Bildung eines Zwischenraums 94. Der Zwischenraum 94 erstreckt sich in radialer Richtung bezüglich der Längsachse 69 des Magnetankers 68 und in Richtung der Längsachse 69 vomWelded joint 93 is attached. The solenoid 64 may be disposed on a bobbin 65 disposed within the solenoid 64. The bobbin 65 surrounds the Carrier member 78 facing end portion of the magnetic core 66, the portion of the support member 78, in which the receptacle 76 is arranged for the armature 68, and the connecting member 92 to form a gap 94. The gap 94 extends in the radial direction with respect to the longitudinal axis 69 of the armature 68 and in the direction of the longitudinal axis 69 of
Trägerelement 68 über das Verbindungselement 92 bis zum Magnetkern 66. Im Zwischenraum 94 ist ein Kunststoffmaterial 95 vorhanden, das den Zwischenraum 94 vorzugsweise zumindest annähernd vollständig ausfüllt. Insbesondere wird durch das Kunststoffmaterial 95 der radiale Abstand zwischen der inneren Oberfläche des Spulenträgers 65 einerseits und der äußeren Oberfläche desCarrier element 68 via the connecting element 92 to the magnetic core 66. In the space 94, a plastic material 95 is present, which preferably at least approximately completely fills the gap 94. In particular, by the plastic material 95, the radial distance between the inner surface of the bobbin 65 on the one hand and the outer surface of the
Trägerelements 78, des Verbindungselements 92 und des Magnetkerns 66 andererseits vollständig ausgefüllt ist. Durch das Kunststoffmaterial 95 ist ein guter Wärmeübergang von der Magnetspule 64 über den Spulenträger 65 auf das Trägerelement 78, den Magnetkern 66 und das Verbindungselement 92 ermöglicht. Das Innere des Trägerelements 78, in dem der Magnetanker 68 angeordnet ist, ist mit Kraftstoff gefüllt und von Kraftstoff durchströmt, so dass durch den Kraftstoff Wärme abgeführt werden kann. Carrier member 78, the connecting member 92 and the magnetic core 66 on the other hand completely filled. Due to the plastic material 95, a good heat transfer from the magnet coil 64 via the coil carrier 65 to the carrier element 78, the magnetic core 66 and the connecting element 92 is made possible. The interior of the carrier element 78, in which the magnet armature 68 is arranged, is filled with fuel and flows through fuel, so that heat can be dissipated by the fuel.
Das Kunststoffmaterial 95 wird beispielsweise in flüssiger Form in den Zwischen- räum 94 eingebracht und härtet anschließend aus. Besonders vorteilhaft wird dasThe plastic material 95 is introduced, for example, in liquid form into the intermediate space 94 and subsequently hardens. This is particularly advantageous
Kunststoffmaterial 95 in einem Fertigungsprozess eingebracht in dem auch das aus Kunststoff bestehende Aktorgehäuse 70 hergestellt wird. Hierbei werden die vom Aktorgehäuse 70 zu umschließenden Bauteile des Einlassventils 24 in eine Gußform eingelegt und anschließend das flüssige Kunststoffmaterial in die Guß- form eingespritzt. Das Trägerelement 78 mit dem in dessen Aufnahme 76 angeordnetem Magnetanker 68 und dem mit diesem über das Verbindungselement 92 verbundenen Magnetkern 66 bildet dabei eine vormontierte Baueinheit, die mit dem Magnetkern 66 voraus in die Magnetspule 64 beziehungsweise deren Spulenträger 65 eingeschoben wird. Am Aktorgehäuse 70 kann eine Aufnahme 96 für ein Steckerelement angeformt sein, über das sowie eine an dieses angeschlossene elektrische Leitung die Magnetspule 64 mit der Steuereinrichtung 62 verbindbar ist. Plastic material 95 introduced in a manufacturing process in which the plastic actuator housing 70 is made. In this case, the components of the inlet valve 24 to be enclosed by the actuator housing 70 are inserted into a casting mold and subsequently the liquid plastic material is injected into the casting mold. The carrier element 78 with the magnetic armature 68 arranged in the receptacle 76 and the magnetic core 66 connected thereto via the connecting element 92 forms a preassembled structural unit which is inserted with the magnetic core 66 into the magnetic coil 64 or its coil carrier 65. On the actuator housing 70, a receptacle 96 may be formed for a plug element, via which and an electrical line connected to this, the magnetic coil 64 is connectable to the control device 62.
Nachfolgend wird die Funktion des elektromagnetisch betätigten Einlassventils 24 erläutert. Während des Saughubs des Pumpenkolbens 12 ist das Einlassventil 24 geöffnet, indem sich dessen Ventilglied 34 in seiner Öffnungsstellung befin- det, in der dieses mit seiner Dichtfläche 42 vom Ventilsitz 40 entfernt angeordnet ist. Die Bewegung des Ventilglieds 34 in seine Öffnungsstellung wird durch die zwischen dem Kraftstoffzulauf 26 und dem Pumpenarbeitsraum 18 herrschende Druckdifferenz gegen die Kraft der Ventilfeder 50 bewirkt. Die Magnetspule 64 des Aktors 60 kann dabei bestromt oder unbestromt sein. Wenn die Magnetspule 64 bestromt ist so wird der Magnetanker 68 durch das entstehende Magnetfeld gegen die Kraft der Rückstellfeder 82 zum Magnetkern 66 hin gezogen. Wenn die Magnetspule 64 nicht bestromt ist so wird der Magnetanker 68 durch die Kraft der Rückstellfeder 82 zum Einlassventil 24 hin gedrückt. Der Magnetanker 68 liegt zumindest mittelbar an der Stirnseite des Schafts 36 des Ventilglieds 34 an. Hereinafter, the function of the solenoid-operated intake valve 24 will be explained. During the suction stroke of the pump piston 12, the inlet valve 24 is opened by having its valve member 34 in its open position. det, in which this is arranged with its sealing surface 42 away from the valve seat 40. The movement of the valve member 34 in its open position is effected by the prevailing between the fuel inlet 26 and the pump working chamber 18 pressure difference against the force of the valve spring 50. The magnetic coil 64 of the actuator 60 may be energized or de-energized. When the magnetic coil 64 is energized, the magnetic armature 68 is pulled by the resulting magnetic field against the force of the return spring 82 to the magnetic core 66 out. When the solenoid 64 is deenergized, the armature 68 is urged toward the inlet valve 24 by the force of the return spring 82. The magnet armature 68 abuts at least indirectly on the end face of the shaft 36 of the valve member 34.
Während des Förderhubs des Pumpenkolbens 12 wird durch den Aktor 60 bestimmt ob sich das Ventilglied 34 des Einlassventils 24 in seiner Öffnungsstellung oder Schließstellung befindet. Bei unbestromter Magnetspule 64 wird der Magnetanker 68 durch die Rückstellfeder 82 in der Stellrichtung gemäß Pfeil B in Figur 2 gedrückt, wobei das Ventilglied 34 durch den Magnetanker 68 gegen die Ventilfeder 50 in der Stellrichtung B in seine Öffnungsstellung gedrückt wird. Die Kraft der auf den Magnetanker 68 wirkenden Rückstellfeder 82 ist größer als die Kraft der auf das Ventilglied 34 wirkenden Ventilfeder 50. In die Stellrichtung B wirkt der Magnetanker 68 auf das Ventilglied 34 und der Magnetanker 68 und das Ventilglied 34 werden gemeinsam in die Stellrichtung B bewegt. Solange die Magnetspule 64 nicht bestromt ist kann somit durch den Pumpenkolben 12 kein Kraftstoff in den Speicher 30 gefördert werden, sondern vom Pumpenkolben 12 verdrängter Kraftstoff wird in den Kraftstoffzulauf 26 zurückgefördert. Wenn während des Förderhubs des Pumpenkolbens 12 Kraftstoff in den Speicher 30 gefördert werden soll so wird die Magnetspule 64 bestromt, so dass der Magnetanker 68 zum Magnetkern 66 hin in einer zur Stellrichtung B entgegengesetzten Stellrichtung gemäß Pfeil A in Figur 2 gezogen wird. Durch den Magnetanker 68 wird somit keine Kraft mehr auf das Ventilglied 34 ausgeübt, wobei der Magnetanker 68 durch das Magnetfeld in die Stellrichtung A bewegt wird und das Ventilglied 34 unabhängig vom Magnetanker 68 bedingt durch die Ventilfeder 50 und die zwischen dem Pumpenarbeitsraum 18 und dem Kraftstoffzulauf 26 herrschende Druckdifferenz in der Stellrichtung A in seine Schließstellung bewegt wird. Durch das Öffnen des Einlassventils 24 beim Förderhub des Pumpenkolbens 12 mittels des elektromagnetischen Aktors 60 kann die Fördermenge der Hoch- druckpumpe in den Speicher 30 variabel eingestellt werden. Wenn eine geringe Kraftstofffördermenge erforderlich ist so wird das Einlassventil 24 durch den Aktor 60 während eines großen Teils des Förderhubs des Pumpenkolbens 12 offen gehalten und wenn eine große Kraftstofffördermenge erforderlich ist, so wird das Einlassventil 24 nur während eines kleinen Teils oder gar nicht während des Förderhubs des Pumpenkolbens 12 offen gehalten. During the delivery stroke of the pump piston 12 is determined by the actuator 60, whether the valve member 34 of the inlet valve 24 is in its open position or closed position. When energized solenoid 64, the armature 68 is pressed by the return spring 82 in the direction of arrow B in Figure 2, wherein the valve member 34 is pressed by the armature 68 against the valve spring 50 in the direction of adjustment B in its open position. The force of the force acting on the armature 68 return spring 82 is greater than the force of the valve member 34 acting on the valve spring 50. In the direction of adjustment B, the armature 68 acts on the valve member 34 and the armature 68 and the valve member 34 are together in the direction of adjustment B emotional. As long as the solenoid coil 64 is not energized can thus be promoted by the pump piston 12 no fuel in the memory 30, but the pump piston 12 displaced fuel is fed back into the fuel inlet 26. If during the delivery stroke of the pump piston 12 fuel is to be conveyed into the reservoir 30, the magnetic coil 64 is energized, so that the magnet armature 68 is pulled toward the magnetic core 66 in a direction opposite to the direction of adjustment B as indicated by arrow A in FIG. The armature 68 thus no longer exerts force on the valve member 34, wherein the magnet armature 68 is moved by the magnetic field in the direction A and the valve member 34 independent of the armature 68 due to the valve spring 50 and between the pump working chamber 18 and the fuel inlet 26 prevailing pressure difference in the direction of adjustment A is moved to its closed position. By opening the inlet valve 24 during the delivery stroke of the pump piston 12 by means of the electromagnetic actuator 60, the delivery rate of the high-pressure pump can be increased. pressure pump can be set variably in the memory 30. When a small fuel delivery amount is required, the intake valve 24 is kept open by the actuator 60 during a large part of the delivery stroke of the pump piston 12, and when a large fuel delivery amount is required, the intake valve 24 becomes only for a small part or not at all during the delivery stroke the pump piston 12 is kept open.

Claims

Ansprüche claims
1 . Elektromagnetisch betätigbares Einlassventil (24) für eine Hochdruckpumpe, insbesondere eines Kraftstoffeinspritzsystems, mit einem Ventilglied (34), das zwischen einer Öffnungsstellung und einer Schließstellung bewegbar ist, mit einem elektromagnetischen Aktor (60), durch den das Ventilglied (34) bewegbar ist, wobei der elektromagnetische Aktor (60) eine Magnetspule (64), einen Magnetkern (66) und einen zumindest mittelbar auf das Ventilglied (34) wirkenden Magnetanker (68) aufweist, der in einer Aufnahme (76) eines Trägerelements (78) in Richtung seiner Längsachse (69) verschiebbar geführt ist, wobei der Magnetkern (66) und das Trägerelement (78) zumindest teilweise von der Magnetspule (64) unter Bildung eines Zwischenraums (94) umgeben sind, dadurch gekennzeichnet, dass der Zwischenraum (94) zumindest teilweise mit einem Kunststoff material (95) ausgefüllt ist. 1 . Electromagnetically actuated inlet valve (24) for a high-pressure pump, in particular a fuel injection system, having a valve member (34) movable between an open position and a closed position, with an electromagnetic actuator (60) through which the valve member (34) is movable the electromagnetic actuator (60) has a magnetic coil (64), a magnetic core (66) and an armature (68) acting at least indirectly on the valve member (34), in a receptacle (76) of a carrier element (78) in the direction of its longitudinal axis (69) is slidably guided, wherein the magnetic core (66) and the carrier element (78) at least partially surrounded by the magnetic coil (64) to form a gap (94), characterized in that the intermediate space (94) at least partially with a Plastic material (95) is filled.
2. Einlassventil nach Anspruch 1 , dadurch gekennzeichnet, dass das Kunststoffmaterial (95) den Zwischenraum (94) in radialer Richtung bezüglich der Längsachse (69) vollständig ausfüllt zwischen einer äußeren Oberfläche des Magnetkerns (66) und des Trägerelements (78) einerseits und einer Oberfläche der Magnetspule (64) oder eines die Magnetspule (64) tragenden Spulenkörpers (65) andererseits. 2. An inlet valve according to claim 1, characterized in that the plastic material (95) the gap (94) in the radial direction with respect to the longitudinal axis (69) completely fills between an outer surface of the magnetic core (66) and the support member (78) on the one hand and a Surface of the magnetic coil (64) or a coil (64) carrying the magnetic coil (64) on the other.
3. Einlassventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Trägerelement (78) und der Magnetkern (66) über ein hülsenförmiges Verbindungselement (92) miteinander verbunden sind, durch das der Zwischenraum (94) teilweise begrenzt wird und dass das Kunststoffmaterial (95) in radialer Richtung bezüglich der Längsachse (69) bis zur Oberfläche des Verbindungselements (92) reicht. 3. Inlet valve according to claim 1 or 2, characterized in that the carrier element (78) and the magnetic core (66) via a sleeve-shaped connecting element (92) are interconnected by the intermediate space (94) is partially limited and that the plastic material ( 95) in the radial direction with respect to the longitudinal axis (69) extends to the surface of the connecting element (92).
4. Einlassventil nach Anspruch 3, dadurch gekennzeichnet, dass das Verbindungselement (92) mittels wenigstens einer Schweißverbindung (93) mit dem Trägerelement (78) und/oder dem Magnetkern (66) verbunden ist und dass das Kunststoffmaterial (95) die wenigstens eine Schweißverbindung (93) bedeckt. 4. inlet valve according to claim 3, characterized in that the connecting element (92) by means of at least one welded joint (93) the carrier element (78) and / or the magnetic core (66) is connected and that the plastic material (95) covers the at least one welded joint (93).
Einlassventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Kunststoffmaterial (95) in flüssiger Form in den Zwischenraum (94) eingebracht und anschließend ausgehärtet ist. Inlet valve according to one of the preceding claims, characterized in that the plastic material (95) is introduced in liquid form into the intermediate space (94) and then cured.
Hochdruckpumpe, insbesondere Kraftstoffhochdruckpumpe, mit wenigstens einem Pumpenelement (10), das einen einen Pumpenarbeitsraum (18) begrenzenden Pumpenkolben (12) aufweist, wobei der Pumpenarbeitsraum (18) über ein Einlassventil (24) mit einem Zulauf (26) verbindbar ist, dadurch gekennzeichnet, dass das Einlassventil (24) gemäß einem der vorstehenden Ansprüche ausgebildet ist. High-pressure pump, in particular high-pressure fuel pump, with at least one pump element (10) having a pump piston (12) defining a pump working chamber (18), wherein the pump working chamber (18) via an inlet valve (24) with an inlet (26) is connectable, characterized in that the inlet valve (24) is designed according to one of the preceding claims.
PCT/EP2018/058198 2017-04-28 2018-03-29 Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve WO2018197152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017207219.9A DE102017207219A1 (en) 2017-04-28 2017-04-28 Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102017207219.9 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018197152A1 true WO2018197152A1 (en) 2018-11-01

Family

ID=61832525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/058198 WO2018197152A1 (en) 2017-04-28 2018-03-29 Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve

Country Status (2)

Country Link
DE (1) DE102017207219A1 (en)
WO (1) WO2018197152A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038844A1 (en) * 2001-10-22 2003-05-08 Robert Bosch Gmbh Size-reduced magnet coil carrier
US20030127544A1 (en) * 2002-01-08 2003-07-10 Demere Sims B. Fuel injector having a ferromagnetic coil bobbin
DE102004004708B3 (en) * 2004-01-30 2005-04-21 Karl Dungs Gmbh & Co. Kg Magnetically-operated double-seat valve for shutting off fluid flow has armature moving circular seal engaging triangular-section seat and surrounding inner valve with triangular-section seal
DE102005061410A1 (en) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Electromagnetically operated valve comprises axle together with core and plastic coil body in which coil is wound
WO2013064226A2 (en) * 2011-11-01 2013-05-10 Norgren Gmbh Solenoid with an over-molded component
DE102013212121A1 (en) * 2013-06-25 2015-01-08 Robert Bosch Gmbh Fuel metering unit for a high-pressure injection system
WO2015043637A1 (en) * 2013-09-26 2015-04-02 Robert Bosch Gmbh Metering unit
DE102015212390A1 (en) 2015-07-02 2017-01-05 Robert Bosch Gmbh Electromagnetically operated suction valve for a high-pressure pump and high-pressure pump

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038844A1 (en) * 2001-10-22 2003-05-08 Robert Bosch Gmbh Size-reduced magnet coil carrier
US20030127544A1 (en) * 2002-01-08 2003-07-10 Demere Sims B. Fuel injector having a ferromagnetic coil bobbin
DE102004004708B3 (en) * 2004-01-30 2005-04-21 Karl Dungs Gmbh & Co. Kg Magnetically-operated double-seat valve for shutting off fluid flow has armature moving circular seal engaging triangular-section seat and surrounding inner valve with triangular-section seal
DE102005061410A1 (en) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Electromagnetically operated valve comprises axle together with core and plastic coil body in which coil is wound
WO2013064226A2 (en) * 2011-11-01 2013-05-10 Norgren Gmbh Solenoid with an over-molded component
DE102013212121A1 (en) * 2013-06-25 2015-01-08 Robert Bosch Gmbh Fuel metering unit for a high-pressure injection system
WO2015043637A1 (en) * 2013-09-26 2015-04-02 Robert Bosch Gmbh Metering unit
DE102015212390A1 (en) 2015-07-02 2017-01-05 Robert Bosch Gmbh Electromagnetically operated suction valve for a high-pressure pump and high-pressure pump

Also Published As

Publication number Publication date
DE102017207219A1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2017144185A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
WO2018073246A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
WO2016058805A1 (en) Electromagnetically operable inlet valve and high-pressure pump with an inlet valve
WO2016012143A1 (en) Electromagnetic actuating unit for an intake valve and intake valve
WO2018001626A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
EP3365551B1 (en) Electromagnetically operable inlet valve and high-pressure pump having an inlet valve
WO2018197152A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
DE102016224722A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
EP3387247B1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
WO2019063209A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
WO2017108343A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
EP3423717B1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
WO2017050463A1 (en) Electromagnetically actuable inlet valve and high-pressure pump having an inlet valve
WO2020083550A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
DE102018208086A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102017201803A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
WO2019197067A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve
DE102017206490A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102020209574A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102015226235A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102017203572A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102018219233A1 (en) Electromagnetically actuated inlet valve and high pressure pump with inlet valve
WO2019115057A1 (en) Electromagnetically actuatable intake valve and high-pressure fuel pump
DE102016205083A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
DE102016224050A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18714517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18714517

Country of ref document: EP

Kind code of ref document: A1