WO2018193661A1 - Power supply device and power supplying method - Google Patents

Power supply device and power supplying method Download PDF

Info

Publication number
WO2018193661A1
WO2018193661A1 PCT/JP2017/043856 JP2017043856W WO2018193661A1 WO 2018193661 A1 WO2018193661 A1 WO 2018193661A1 JP 2017043856 W JP2017043856 W JP 2017043856W WO 2018193661 A1 WO2018193661 A1 WO 2018193661A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
current
component
supply device
Prior art date
Application number
PCT/JP2017/043856
Other languages
French (fr)
Japanese (ja)
Inventor
裕司 倉永
英範 小田
康二 寺崎
Original Assignee
大電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社 filed Critical 大電株式会社
Priority to JP2017564142A priority Critical patent/JP6351884B1/en
Priority to KR1020177037705A priority patent/KR102057138B1/en
Publication of WO2018193661A1 publication Critical patent/WO2018193661A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present invention relates to a power supply device that obtains a power source using an induction current from a power line including a transmission / distribution line and a ground line (ground wire), and in particular, even when the fluctuation range of the current flowing through the power line is large,
  • the present invention relates to a power supply device capable of stably obtaining power.
  • CT current transformer
  • a CT is attached to a distribution line as an auxiliary power supply, and includes an electric double layer capacitor for power storage and a driving battery for power supply.
  • the power supply monitoring circuit measures the voltage value of the battery and switches between the electric double layer capacitor or the driving battery as a driving power source (see Patent Document 2).
  • an aerial wire that passes through an aerial ground wire installed in parallel with a power transmission line in a split CT core obtained by dividing the core and extracts an induced current generated in the aerial ground wire.
  • the power supply device using the induced current of the ground wire when the means for increasing the output power of the CT, or the processing accuracy of the cut surface of the CT core or the output current is taken out in parallel from a plurality of CTs, the characteristics of each CT vary.
  • there is an overhead ground wire induced current power supply device characterized by connecting a capacitor to the CT output terminal (patent) Reference 3).
  • JP 2002-48831 A Japanese Patent Laid-Open No. 2015-19468 JP 2006-197758 A
  • the conventional power supply device is essentially intended to increase the output power, and is designed to efficiently obtain power for a device with a small current flowing through the power line or a small current fluctuation range. is there.
  • CT is a method in which a current is forcibly supplied to a secondary side with respect to a primary side current based on a certain fixed conversion ratio. That is, when the primary side current is small, a small current is supplied to the secondary side, and when the primary side current is large, a large current is supplied to the secondary side. Therefore, in a conventional power supply device intended to increase the output, it is important in design that the primary current (in this case, the current flowing through the power line) is small or the fluctuation range of the current is small.
  • the current flowing through the actual power line is determined by the output of the power plant and the amount of power required by the power consumer, it varies greatly depending on the time zone, season, sunshine conditions, and the like.
  • the electric power supplied by solar power generation is greatly influenced by the sunlight conditions, and the electric power supplied from the thermal power plant varies greatly to correspond to the summer peak of electric power consumers.
  • the flowing current has an extremely wide fluctuation range from several tens of amperes to several thousand amperes.
  • the conventional power supply device is generally intended to operate with a relatively small current, so when used in a place where a large current flows, such as a transmission / distribution line that becomes a power grid trunk line, it is unexpected. Excessive power is supplied, making it difficult to deal with this excessive power.
  • a low-voltage power line can be newly laid as a means for compensating for insufficient power, particularly when used for power supply to monitoring equipment for underground transmission and distribution facilities such as in manholes.
  • the battery since the battery has a long life, it is necessary to replace the battery regularly. Additional work (application for permission to use roads, opening manholes, exhausting and draining gas in manholes, etc.) is necessary each time, especially in urban areas, and night construction is essential, and traffic regulations There was a problem that interfered with public life due to wastewater, noise, etc.
  • the present invention has been made to solve the above-described problems, and is stably continued without being affected by fluctuations in the current flowing in the power lines including distribution lines (transmission lines) and ground lines (ground wires).
  • An object of the present invention is to provide a power supply device that can obtain power.
  • the present invention controls the phase components on the primary side and secondary side of the inductance so that they are intentionally unbalanced with a completely different concept from the conventional (technique intended to increase output power).
  • a power supply device that can stably and continuously obtain a power supply even if a current flowing through a power line including an electric wire (distribution line), a ground line, and the like fluctuates.
  • the power supply device disclosed in the present application is an inductance component that electromagnetically couples to a power line in a power supply device that supplies power to a load, and current conversion means that supplies an alternating current induced by the inductance component to the load side Rectifying means for rectifying an alternating current supplied from the current converting means into a direct current; power detecting means for detecting a power level supplied from the rectifying means to the load side; the current converting means and the rectifying means And having an inductive component and / or a capacitive component, using the inductive component and / or the capacitive component, disturbing the matching condition of the input impedance of the current conversion means, and unbalance the input impedance.
  • Impedance mismatching means for generating the impedance mismatch, and the impedance mismatch based on the power level detected by the power detection means.
  • control means for controlling the unbalancing by means are those comprising a.
  • the power detection unit detects the power level of the direct current rectified by the rectification unit from the alternating current supplied from the current conversion unit, and the impedance mismatching unit
  • the control means is based on the power level detected by the power detecting means. Since the unbalance by the impedance mismatching means is controlled, the reactive power is generated by the impedance mismatching means, and the power line becomes surplus power (surplus power) without generating Joule heat or overvoltage. Even if fluctuations occur in the current flowing through the power line, it will continue safely and stably. It is possible to supply power to the load side.
  • the current conversion unit is a CT attached to the power line as necessary.
  • the current conversion means is a CT attached to the power line, the inductance component can be handled more easily, and power can be stably supplied to the load side.
  • the power supply device disclosed in the present application further includes surplus power consuming means for consuming surplus power out of the power supplied from the rectifying means to the load side, if necessary, and the power detecting means includes the surplus power.
  • the power level consumed by the power consuming means is detected.
  • the control unit may induct components of the impedance mismatching unit and / or an upper limit value of a threshold with respect to the power value detected by the power detection unit.
  • the control means By increasing the capacitive component, decreasing the inductive component and / or the capacitive component of the impedance mismatching means at the lower limit value of the threshold value, and controlling the power supplied from the rectifying means to the load side, the control means, Since the inductive component and / or the capacitive component of the impedance mismatching means are controlled using the threshold value, the inductive component and / or the capacitive component of the impedance mismatching means can be controlled within a desired range, and the power line Even if fluctuations occur in the current flowing through the power source, the power can be supplied to the load side stably and continuously.
  • the power supply method disclosed in the present application is an electric power supply method for supplying electric power to a load, wherein the electric current is an inductance component electromagnetically coupled to a power line, and an alternating current induced by the inductance component is supplied to the load side.
  • a conversion step a rectification step for rectifying an alternating current supplied from the current conversion step into a direct current
  • a power detection step for detecting a power level supplied from the rectification step to the load side, an inductive component and / or a capacity
  • An impedance mismatching step that unbalances the input impedance by disturbing an input impedance matching condition of the current conversion step using the inductive component and / or the capacitive component
  • the power detection step detects the power level of the direct current rectified by the rectification step
  • the impedance mismatch step detects the inductive component and / or the capacitance component.
  • the control process uses the impedance matching condition on the load side to disturb the impedance, and the control process performs the unbalance process by the impedance mismatch process based on the power level detected by the power detection process. Since the reactive power is generated by the impedance mismatching process, the surplus power (surplus power) is appropriately returned to the power line side (line side), and the current flowing through the power line varies. Even if it occurs, power can be supplied to the load side continuously and stably.
  • the power supply method disclosed in the present application includes a surplus power consumption step of consuming surplus power out of the power supplied from the rectification step to the load side as necessary, and the power detection step includes The power level consumed in the surplus power consumption process is detected.
  • the surplus power consumption step of consuming surplus power among the power supplied from the rectification step to the load side is included, even if surplus power is generated, the surplus power can be efficiently consumed. Power can be supplied to the load side stably and continuously.
  • the control process may include an inductive component of the impedance mismatch process and / or an upper limit value of a threshold with respect to the power value detected in the power detection process.
  • the capacitive component is increased, the inductive component and / or the capacitive component in the impedance mismatch process is decreased by the lower limit value of the threshold value, and the electric power supplied from the rectifying process to the load side is controlled.
  • the control step controls the inductive component and / or the capacitive component of the impedance mismatching step using a threshold value, the inductive component and / or the impedance mismatching step within a desired range.
  • the capacity component can be controlled, and power can be supplied to the load side more stably.
  • the power supply apparatus can process surplus power generated when the current flowing through the power line is large as reactive power, it can use CT that is a high coupling condition when the current flowing through the power line is small, and the output power of CT It is possible to eliminate means for supplementing insufficient power required by conventional power supply devices, such as means for increasing power consumption and power storage means such as a battery, and to simplify surplus power processing means such as heat dissipation and to make a compact device configuration. it can. Further, in the power supply device according to the present invention, since the amount of reactive power generated can be controlled in response to a change in the current flowing through the power line, it can be stably continued without being affected by fluctuations in the current flowing through the power line. A power supply can be obtained.
  • this power supply device becomes wide, and can be used as, for example, a power source for monitoring equipment of underground transmission and distribution equipment in a manhole. That is, by using it as a power source for a monitoring device in a power manhole, it is extremely useful as a power source that replaces the use of a battery in which the installation and life of a new low-voltage power line are problematic.
  • the power supply device can be retrofitted to an existing underground transmission / distribution line in the manhole, so that it can be used as a portable power supply that can be installed as necessary.
  • the block diagram (a) of the power supply device which concerns on the 1st Embodiment of this invention, and the block diagram (b) (c) of the electric power detection means 3 at the time of using a Zener diode are shown.
  • the flowchart of the control method of the power supply device which concerns on the 1st Embodiment of this invention is shown.
  • 1 shows an example of a circuit diagram of a power supply device according to a first embodiment of the present invention.
  • An example of the detailed circuit diagram of the power supply device which concerns on the 1st Embodiment of this invention is shown.
  • An example of the detailed circuit diagram of the power supply device which concerns on the 1st Embodiment of this invention is shown.
  • a configuration diagram (a) of the power supply device according to the third embodiment of the present invention and a configuration diagram of the power supply device when a diode and a resistor are used for the zero-cross detection means are shown in the configuration diagram (b).
  • the power supply device is an inductance component that electromagnetically couples to the power line 101 (connected to the customer load 100) in the power supply device that supplies power to the load 10.
  • the current converting means 1 for supplying an alternating current induced by the inductance component to the load side
  • the rectifying means 2 for rectifying the alternating current supplied from the current converting means 1 into a direct current
  • the power detection means 3 for detecting the power level supplied from the conversion means 1 to the load side, and is connected between the current conversion means 1 and the rectification means 2 and has an inductive component and / or a capacitive component, and the inductive component Impedance mismatching means for disturbing the input impedance matching condition of the current conversion means 1 and unbalance the input impedance by using a capacitance component.
  • a control unit 5 for controlling the unbalancing due to impedance mismatching means 4 is configured to include.
  • the current conversion means 1 is not particularly limited as long as it has an inductance component that electromagnetically couples to the power line 101 and induces an alternating current, but CT can be used.
  • the power line 101 is not limited to a transmission / distribution line, and is not limited as long as it is an electric line or cable in which a current flows, such as factory wiring or a ground line (ground wire).
  • this rectification means 2 is not specifically limited, the rectifier which rectifies
  • the power detecting means 3 is not particularly limited as long as it can detect the power level supplied from the rectifying means 2 to the load side.
  • a Zener diode is preferably used.
  • the power detection means 3 uses a Zener diode and a detection resistor R connected in series with the Zener diode, and is generated at the detection resistor R.
  • the voltage Vzdr to be detected can be detected. That is, as shown in FIG.
  • the power Pzd consumed by the Zener diode is determined by measuring the voltage Vzdr generated at the detection resistor R.
  • the voltage Vzdr generated at the detection resistor R it is possible to easily detect the power level supplied from the rectifying means 2 to the load side.
  • the power detection means 3 includes a Zener diode, and the power detection means 3 generates heat generated by the Zener diode when the power level is detected. May be measured by a temperature sensor or the like.
  • This impedance mismatching means 4 has an inductive component and / or a capacitive component. Using this inductive component and / or capacitive component, the impedance matching condition of the current conversion means 1 is disturbed to imbalance the impedance. It is to become.
  • the unbalanced impedance means that the impedance on the load side of the current conversion means 1 and the impedance on the power supply side (power line 101 side) are not intentionally matched. The purpose of this is to unbalance these impedances by intentionally disturbing the matching condition of the input impedance of the current conversion means 1 using inductive components and / or capacitive components.
  • the main objective was to efficiently supply power to the load side by accurately matching these impedances, so this impedance unbalance is completely different from the conventional case. It is the opposite idea.
  • the control means 5 performs control to increase or decrease the inductive component and / or the capacitance component in the impedance mismatching means 4 according to the power level detected by the power detection means 3, so that the impedance mismatching means 4 Control the degree of unbalance described above.
  • the power detection means 3 detects the power level (S 1), and the control means 5 uses the power detection means 3. It is determined whether the detected power level is equal to or higher than the upper limit value of the threshold (S2). If the detected power level is equal to or higher than the upper limit value of the threshold, the inductive component and / or the capacitive component of the impedance mismatching means 4 is increased ( S3), the effective power supplied from the current conversion means 1 to the load side is decreased.
  • control means 5 determines whether the power level detected by the power detection means 3 is equal to or lower than the lower limit value of the threshold value (S4).
  • the inductive component and / or the capacitive component is reduced (S5), and the effective power supplied from the current conversion means 1 to the load side is increased.
  • FIG. 3 shows an example of a circuit diagram configured according to the above configuration.
  • a CT that has an inductance component electromagnetically coupled to the power line 101 and induces an alternating current is used.
  • this rectifier 2 a full-wave rectifier circuit using a diode bridge is used as a rectifier that rectifies an alternating current into a direct current.
  • the power detection unit 3 as being capable of detecting the power level of the load from the rectifying unit 2, using the Zener diode (and a Zener diode and a detection resistor R 2 connected in series).
  • FIG. 3 shows an example of a single zener diode, the present invention is not limited to this, and a plurality of zener diodes can be connected in series.
  • This impedance mismatching means 4 uses a capacitor as a capacitance component.
  • This impedance mismatching means 4 is comprised from the capacitor
  • the capacitor unit 41 includes a switch mechanism that switches between enabling / disabling of the capacitor circuit with a switch connected in series with the capacitor in order to unbalance the impedance.
  • the impedance mismatching means 4 can be composed of a single capacitor portion 41, but more preferably a plurality of the impedance mismatching means 4 are arranged, and a plurality of capacitors can be controlled by the switch mechanism by the control means 5. It is possible not only to switch the capacitance component (capacitance) ON / OFF, but also to freely adjust the size of the capacitance component, and it is possible to control the capacitance component that is subdivided in stages. Become. That is, by providing a switch that can input a plurality of capacitors in parallel, the control unit 5 can optimally adjust the capacitor input amount according to the power level detected by the power detection unit 3.
  • an MCU which is a microcontroller having an arithmetic function is used.
  • This MCU controls the degree of unbalance by the impedance mismatching unit 4 by controlling the switch mechanism in the capacitor unit 41 according to the power level detected by the power detection unit 3. For example, when the detected power level is larger than the upper limit of the threshold value, the capacitor disposed in the impedance mismatching means 4 is activated (or the effective number of capacitors is increased) by controlling the switch mechanism. To increase the volume component. Further, for example, when the detected power level is smaller than the lower limit of the threshold value, the capacitor disposed in the impedance mismatching means 4 is invalidated (or the number of effective connections of the capacitor is reduced) by controlling the switch mechanism. ) To reduce the capacity component.
  • control unit 5 controls the increase / decrease in the capacitance component of the capacitor unit 41 in the impedance mismatching unit 4 with the switch mechanism, thereby depending on the generation state of the active power of the power supply device that changes over time.
  • Optimal active power control that is, reactive power control
  • the power supply device can control the increase and decrease of reactive power, it is possible to obtain a high-coupling CT that meets the conditions when the current flowing through the power line 101 is small, and the current flowing through the power line 101 is large.
  • a compact apparatus configuration compatible with a dynamic range that also has means for dealing with surplus power at the time is realized.
  • FIG. 4 shows an example of a detailed circuit diagram of the power supply device according to this embodiment based on such a configuration.
  • the current conversion means 1 uses an CT having an inductance component that is electromagnetically coupled to a power cable as the power line 101 and inducing an alternating current.
  • the rectifier 2 uses a full-wave rectifier circuit using a diode bridge as a rectifier that rectifies an alternating current into a direct current.
  • the power detection means 3 uses a Zener diode and a 1.5 ⁇ detection resistor R connected in series with the Zener diode.
  • Zener diodes having a Zener voltage of 6V and a rating of 5W are connected in series so that they can withstand a maximum of 20W of power when the Zener voltage is 24V.
  • FIG. 4 as an example constituted by a plurality of Zener diodes, a case where four are connected in series is shown. However, this number is merely an example, and the present invention is not limited to this, and a plurality (two or more) The Zener diode is not particularly limited.
  • the voltage Vzdr generated by the detection resistor R can be used as a threshold value detected by the power detection means 3 used in the control means 5 by measuring the power consumed by the Zener diode.
  • the impedance mismatching means 4 is composed of four capacitor portions 41 each using a capacitor as a capacitance component and having different electrostatic capacities.
  • Each capacitor unit 41 has a switch that can be turned ON / OFF.
  • As the capacitor of the capacitor unit 41 a film capacitor or a ceramic capacitor having an ideal capacitance is used, and the capacitances are 20 ⁇ F, 40 ⁇ F, 80 ⁇ F, and 160 ⁇ F, respectively.
  • the control means 5 is configured to use a microcontroller (MCU) so that the MCU can control ON / OFF of a switch provided in the capacitor unit 41.
  • MCU microcontroller
  • the capacitance component of the impedance mismatching means 4 can be adjusted in 16 steps from 0 to 300 ⁇ F in steps of 20 ⁇ F.
  • a DC / DC converter 10A that supplies a stable 12V DC voltage to the load 10 and a DC / DC converter 10B that supplies a 5V DC voltage necessary for driving the MCU are provided in front of the load 10. .
  • the CT is electromagnetically coupled to the cable as the power line 101, the energization current of the cable is changed from 60 to 2,000 Arms, and 1 W is consumed by the load 10.
  • the result of measuring the power consumption of the Zener diode detected by the power detection means 3 is shown in FIG.
  • the circled numbers in FIG. 6 indicate the capacitor insertion number (injection number) in the impedance mismatching means 4, and as the number increases by 1, the capacitance of the capacitor increases by 20 ⁇ F.
  • the power supply according to the present embodiment was able to appropriately control the power according to the increase or decrease of the cable energization current. It was also confirmed that 1 W of power could be stably supplied if the cable energization current of the power line 101 was 60 Arms or more.
  • the cable energization current is 1,800 Arms or more, the increase in the capacitance component by the impedance mismatching unit 4 reaches the limit and exceeds the upper limit of 4 W detected by the power detection unit 3. Even when the current was 2,000 Arms, it was well below the rating of 20 W of the Zener diode, so it was confirmed that there was no problem in the power supply device according to this embodiment.
  • the power supply device is not limited to the configuration in which one power supply device having the above-described configuration is provided and electromagnetically coupled to the power line 101 connected to the customer load 100.
  • the power supply device when there are a plurality of power lines 101 having different power systems, by providing a plurality of components of the current conversion means 1, the rectification means 2 and the power detection means 3 of the power supply device configured as described above in one power supply device, It is also possible to make one or the other component function as a spare by attaching the other component to the power line 101 which is a separate power system. That is, even if one or the other power system is stopped, power supply from one side of the structure is not interrupted, so that power can be stably supplied.
  • the power supply device includes the power supplied from the rectifier to the load side as shown in FIG.
  • This configuration includes surplus power consumption means 6 that consumes surplus power, and surplus power detection means 3 a that functions as the power detection means 3 that detects the power level consumed by the surplus power consumption means 6.
  • a constant voltage circuit can be used.
  • a Zener diode or a constant voltage regulator can be used. In the case of a Zener diode, when a voltage exceeding the Zener voltage is applied, the current flowing through the diode increases to maintain a constant voltage, and the Zener diode itself consumes power.
  • the regulator itself generates heat as the voltage on the input side of the regulator increases with respect to the regulator output side (load side) that maintains the constant voltage, and the potential difference between the input and output increases. Consume.
  • the surplus power consumption means 6 is composed of one or a plurality of Zener diodes, and the Zener diode is connected in parallel between the rectifier means 2 and the load 10 can do.
  • the Zener diode is connected in parallel between the rectifier means 2 and the load 10 can do.
  • the surplus power detection means 3a detects the power level of this constant voltage circuit.
  • This power level includes current, voltage, temperature, and the like. That is, the detection target of the surplus power detection means 3a includes the energization current, voltage drop, temperature, etc. of the constant voltage circuit.
  • the surplus power consuming means 6 for consuming surplus power out of the power supplied from the rectifying means 2 to the load side is provided, the amount of surplus power processed by the impedance mismatching means 4 is set to surplus power.
  • the consumption means 6 can also bear the burden, and the device configuration of the impedance mismatching means 4 can be simplified.
  • the power consumption of the surplus power consumption means 6 can be adjusted by controlling the impedance mismatching means 4 by the control means 5, problems such as thermal runaway due to excess processing capacity of the surplus power processing means 6 are prevented. can do.
  • the surplus power consumption means 6 even if the power consumption of the load 10 fluctuates, it is possible to absorb the fluctuation by the power consumption by the surplus power consumption means 6 and realize a power supply device that is resistant to load fluctuations. can do.
  • the power supply device has a capacitance component as the impedance mismatching unit 4 as shown in FIG. A plurality of capacitors formed, and a switch that can be turned on and off by the control means, and as the control means 5, a zero-cross detection means 5a of an AC voltage supplied from the current conversion means to the load side,
  • the control means 5 is configured to turn on and off the impedance mismatching means 4 at the timing when the AC voltage is zero-crossed by the zero-cross detection means 5a.
  • the switch of the impedance mismatching means 4 can use a semiconductor relay.
  • the zero cross detection means 5a measures the AC voltage of the impedance mismatching means 4, and, for example, as shown in FIG. 8B, one end of the output on the load side of the rectification means 2 is common (COM).
  • One of the diodes provided D1 and D2 dividing resistors r 1 and r 2 when the dividing resistor r 2 is connected to the common, by voltage detected by the voltage dividing resistors r 2 detects near become timing at zero volts It is also possible to perform zero cross detection.
  • a semiconductor relay having a zero cross switch function may be used.
  • the switch of the impedance mismatch means 4 can be reliably turned on and off in a state where the voltage is close to zero, preventing a large rush current from flowing through the capacitor and the switch, Generation of noise can be avoided.
  • control unit 5 unbalances the impedance on the load side using only the capacitive component.
  • the present invention is not limited to using only the capacitive component.
  • the control unit 5 can unbalance the impedance using at least a part of the inductance component. That is, it is possible to unbalance the impedance by performing control by combining the two components of the capacitance component and the inductance component.
  • control means 5 uses the two components of the capacitance component and the inductance component for impedance imbalance, the two components of the capacitance component and the inductance component can be combined for more flexibility and efficiency. Therefore, even if a large fluctuation occurs in the current flowing in the power line 101, the impedance unbalance can be finely controlled by adjusting the two components in combination, and stable. The power can be continuously supplied to the load side.
  • the control means 5 can also measure the current of the power line by associating the capacitance component input by the impedance mismatching means 4 with the current flowing through the power line. With this configuration, it is possible to easily grasp the current of the power line that cannot be directly detected on the load side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided is a power supply device capable of stably and continuously obtaining power supply without being affected by the variation of current flowing through a power line. A power supply device for supplying power to a load is provided with: a current conversion means for supplying an AC current to the load side, said AC current being induced by an inductance component magnetically coupled to a power line; a rectifying means for rectifying the AC current supplied from the current conversion means to a DC current; a power detection means for detecting a power level supplied to the load side from the rectifying means; an impedance mismatching means connected between the current conversion means and the rectifying means, having an induction component and/or a capacitance component, and using the induction component and/or the capacitance component to disturb the input impedance matching condition of the current conversion means, thereby unbalancing the input impedance; and a control means for controlling, on the basis of the power level detected by the power detection means, the unbalancing performed by the impedance mismatching means.

Description

電源装置及び電力供給方法Power supply device and power supply method
 本発明は、送配電線や接地線(グランドワイヤ)等を含む電力線からの誘導電流を利用して電源を得る電源装置に関し、特に、電力線に流れる電流の変動幅が大きい場合であっても、安定的に電源が得られる電源装置に関する。 The present invention relates to a power supply device that obtains a power source using an induction current from a power line including a transmission / distribution line and a ground line (ground wire), and in particular, even when the fluctuation range of the current flowing through the power line is large, The present invention relates to a power supply device capable of stably obtaining power.
 各種の送電線の近傍で利用される電気機器に対して、簡易に電力を供給する手段として、電力線にCT(カレントトランス)を設置することによって、電力線に流れる電流によって生じる誘導電流を利用する電源装置が知られている。 A power supply that uses an induced current generated by a current flowing through a power line by installing a CT (current transformer) on the power line as a means for easily supplying power to electrical equipment used in the vicinity of various power transmission lines The device is known.
 例えば、従来の電源装置としては、配電線から交流電流を検出するCTと、当該CTのコイルとによって当該交流電流の周波数を共振周波数とする共振回路を構成する共振用コンデンサとを有することによって、CTのコイルと共振用コンデンサとの共振回路により検出出力を増大しようとする電流検出装置がある(特許文献1参照)。 For example, as a conventional power supply device, by having a CT for detecting an alternating current from a distribution line, and a resonance capacitor that constitutes a resonance circuit having the frequency of the alternating current as a resonance frequency by the coil of the CT, There is a current detection device that attempts to increase the detection output by a resonance circuit of a CT coil and a resonance capacitor (see Patent Document 1).
 また、従来の電源装置としては、例えば、補助電源として配電線にCTを装着し、蓄電用の電気二重層コンデンサと、電源供給用の駆動用電池とを備え、当該電気二重層コンデンサ及び駆動用電池の電圧値を電源監視回路が計測することによって、当該電気二重層コンデンサか駆動用電池のいずれかを駆動電源として切替えて使用するものもある(特許文献2参照)。 In addition, as a conventional power supply device, for example, a CT is attached to a distribution line as an auxiliary power supply, and includes an electric double layer capacitor for power storage and a driving battery for power supply. In some cases, the power supply monitoring circuit measures the voltage value of the battery and switches between the electric double layer capacitor or the driving battery as a driving power source (see Patent Document 2).
 また、従来の電源装置としては、例えば、コアを分割した分割型のCTのコアに、送電線と並行して架設された架空地線を貫通して架空地線に発生する誘導電流を取り出す架空地線の誘導電流利用電源装置において、CTの出力電力を増大させる手段、または、CTのコアの切断面の加工精度や複数のCTから並列に出力電流を取り出す場合、各CTの特性のばらつきを吸収させ、最大の出力電流を取り出せる出力電圧を実用上問題ない程度まで一致させる手段として、CTの出力端子にコンデンサを接続したことを特徴とする架空地線の誘導電流利用電源装置がある(特許文献3参照)。 In addition, as a conventional power supply device, for example, an aerial wire that passes through an aerial ground wire installed in parallel with a power transmission line in a split CT core obtained by dividing the core and extracts an induced current generated in the aerial ground wire. In the power supply device using the induced current of the ground wire, when the means for increasing the output power of the CT, or the processing accuracy of the cut surface of the CT core or the output current is taken out in parallel from a plurality of CTs, the characteristics of each CT vary. As a means for matching the output voltage from which the maximum output current can be absorbed to the extent that there is no practical problem, there is an overhead ground wire induced current power supply device characterized by connecting a capacitor to the CT output terminal (patent) Reference 3).
特開2002-48831号公報JP 2002-48831 A 特開2015-19468号公報Japanese Patent Laid-Open No. 2015-19468 特開2006-197758号公報JP 2006-197758 A
 従来の電源装置は、本質的に、出力電力増加を意図したものであり、電力線に流れる電流が小さいか、電流の変動の幅が小さいものに対して効率良く電力を得られるようにしたものである。 The conventional power supply device is essentially intended to increase the output power, and is designed to efficiently obtain power for a device with a small current flowing through the power line or a small current fluctuation range. is there.
 一般的に、CTは、ある固定の変換比率に基づき、一次側の電流に対して、二次側に強制的に電流が供給されるものである。すなわち、一次側電流が小さい場合は二次側に小さい電流が、一次側電流が大きい場合は二次側に大きい電流が供給されることになる。従って、従来の出力増加を意図した電源装置は、一次電流(この場合、電力線に流れる電流)が小さいか、電流の変動の幅が小さいことが設計上重要である。 Generally, CT is a method in which a current is forcibly supplied to a secondary side with respect to a primary side current based on a certain fixed conversion ratio. That is, when the primary side current is small, a small current is supplied to the secondary side, and when the primary side current is large, a large current is supplied to the secondary side. Therefore, in a conventional power supply device intended to increase the output, it is important in design that the primary current (in this case, the current flowing through the power line) is small or the fluctuation range of the current is small.
 しかし、実際の電力線に流れる電流は、発電所の出力や電力需要家が必要とする電力量によって決まるため、時間帯や季節、日照条件等によって大きく変動するものである。太陽光発電により供給される電力は日照条件で大きく左右され、火力発電所から供給される電力は電力需要家の夏季ピークに対応するため大きく変動する。例えば、火力発電所から延線される送電用ケーブルの場合、流れる電流は数十アンペアから数千アンペア程度まで、その変動の幅が極めて大きい。 However, since the current flowing through the actual power line is determined by the output of the power plant and the amount of power required by the power consumer, it varies greatly depending on the time zone, season, sunshine conditions, and the like. The electric power supplied by solar power generation is greatly influenced by the sunlight conditions, and the electric power supplied from the thermal power plant varies greatly to correspond to the summer peak of electric power consumers. For example, in the case of a power transmission cable extended from a thermal power plant, the flowing current has an extremely wide fluctuation range from several tens of amperes to several thousand amperes.
 従って、このような環境下においてCTを用いた電源装置を使用する場合、電流が大きく変動する場合の対処が重要となる。 Therefore, when using a power supply device using CT in such an environment, it is important to deal with a case where the current fluctuates greatly.
 従来の電源装置では、小電流時を基準にして設計された場合では、実際に電力線に大電流が流れた場合にはCT二次側に大きな電流が供給されてしまい、電源装置の回路内で対処できないレベルのジュール熱や過電圧が発生する危険性がある。大電流に対処する方法として、余剰となる供給電力を熱として消費したり、蓄電池に充電させることも考えられるが、放熱も蓄電も対処できる量に限りがあるうえ、必然的に大掛かりな設備が必要となるという問題があった。 In a conventional power supply device, when designed based on a small current, a large current is actually supplied to the CT secondary side when a large current flows through the power line, and the power supply device circuit There is a risk of generating Joule heat and overvoltage that cannot be handled. As a method of dealing with large currents, it is conceivable to consume excess supply power as heat or charge the storage battery, but there is a limit to the amount that can handle both heat dissipation and storage, and inevitably large facilities are required. There was a problem that it was necessary.
 また、従来の電源装置では、比較的小さい電流で動作するものを一般的な対象としているため、電力網幹線となる送配電線路のように大きな電流が流れる場所で使用する場合には、想定外の過大な電力が供給されてしまい、この過大な電力に対処することが困難となっている。 In addition, the conventional power supply device is generally intended to operate with a relatively small current, so when used in a place where a large current flows, such as a transmission / distribution line that becomes a power grid trunk line, it is unexpected. Excessive power is supplied, making it difficult to deal with this excessive power.
 一方で、従来の電源装置において、平均的な電流で動作させるように設計されたとしても、電流が平均より小さくなった場合に不足電力を補う手段が必要となる。 On the other hand, even if the conventional power supply device is designed to operate with an average current, a means for compensating for the insufficient power is required when the current becomes smaller than the average.
 また、従来の電源装置においては、不足電力を補う手段として、特にマンホール内のような地中送配電設備の監視機器に対する電源供給に使用される場合には、新たに低圧電力線を敷設することが困難な場合が多いことから、バッテリを使用するケースが一般的であるが、バッテリには寿命があることから、定期的なバッテリ交換作業が必要となり、その交換作業に際しては、マンホール内に入孔するための付帯業務(道路の使用許可申請、マンホールの開蓋作業、マンホール内滞留ガスの排気や排水作業等)が都度必要となり、とりわけ都市部においては夜間の工事が必須となるうえ、交通規制や排水、騒音等により公衆の生活に支障をきたす問題があった。 In addition, in a conventional power supply device, a low-voltage power line can be newly laid as a means for compensating for insufficient power, particularly when used for power supply to monitoring equipment for underground transmission and distribution facilities such as in manholes. In many cases, it is difficult to use a battery. However, since the battery has a long life, it is necessary to replace the battery regularly. Additional work (application for permission to use roads, opening manholes, exhausting and draining gas in manholes, etc.) is necessary each time, especially in urban areas, and night construction is essential, and traffic regulations There was a problem that interfered with public life due to wastewater, noise, etc.
 本発明は、前記課題を解消するためになされたものであり、配電線(送電線)や接地線(グランドワイヤ)等を含む電力線に流れる電流の変動に影響されることなく、安定的に継続して電源が得られる電源装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and is stably continued without being affected by fluctuations in the current flowing in the power lines including distribution lines (transmission lines) and ground lines (ground wires). An object of the present invention is to provide a power supply device that can obtain power.
 本発明は、インダクタンスの1次側と2次側の位相成分を、従来(出力電力増加を意図した技術)とは全く異なる発想で、敢えて意図的に不平衡となるように制御を行い、送電線(配電線)や接地線等を含む電力線に流れる電流に変動が生じたとしても、安定的に継続して電源が得られる電源装置を提供する。 The present invention controls the phase components on the primary side and secondary side of the inductance so that they are intentionally unbalanced with a completely different concept from the conventional (technique intended to increase output power). Provided is a power supply device that can stably and continuously obtain a power supply even if a current flowing through a power line including an electric wire (distribution line), a ground line, and the like fluctuates.
 すなわち、本願に開示する電源装置は、負荷に電力を供給する電源装置において、電力線に電磁結合するインダクタンス成分であって、当該インダクタンス成分によって誘起される交流電流を前記負荷側に供給する電流変換手段と、前記電流変換手段から供給される交流電流を直流電流に整流する整流手段と、前記整流手段から負荷側に供給される電力レベルを検出する電力検出手段と、前記電流変換手段と前記整流手段の間に接続され、誘導成分及び/又は容量成分を有し、当該誘導成分及び/又は容量成分を用いて、前記電流変換手段の入力インピーダンスの整合条件を乱して、当該入力インピーダンスを不平衡化するインピーダンス不整合手段と、前記電力検出手段により検出された電力レベルに基づいて、前記インピーダンス不整合手段による不平衡化を制御する制御手段と、を備えるものである。 That is, the power supply device disclosed in the present application is an inductance component that electromagnetically couples to a power line in a power supply device that supplies power to a load, and current conversion means that supplies an alternating current induced by the inductance component to the load side Rectifying means for rectifying an alternating current supplied from the current converting means into a direct current; power detecting means for detecting a power level supplied from the rectifying means to the load side; the current converting means and the rectifying means And having an inductive component and / or a capacitive component, using the inductive component and / or the capacitive component, disturbing the matching condition of the input impedance of the current conversion means, and unbalance the input impedance. Impedance mismatching means for generating the impedance mismatch, and the impedance mismatch based on the power level detected by the power detection means. And control means for controlling the unbalancing by means are those comprising a.
 このように、本願に開示する電源装置は、前記電流変換手段から供給される交流電流から、前記整流手段により整流された直流電流の電力レベルを前記電力検出手段が検出し、前記インピーダンス不整合手段が、前記誘導成分及び/又は容量成分を用いて、負荷側のインピーダンスの整合条件を乱して、インピーダンスを不平衡化し、前記制御手段が、前記電力検出手段により検出された電力レベルに基づいて、前記インピーダンス不整合手段による不平衡化を制御することから、前記インピーダンス不整合手段によって無効電力を発生させて、余剰となった電力(余剰電力)をジュール熱や過電圧を発生させることなく、電力線側(線路側)に戻されることとなり、電力線に流れる電流に変動が生じたとしても、安全かつ安定的に継続して負荷側に電源を供給することができる。 Thus, in the power supply device disclosed in the present application, the power detection unit detects the power level of the direct current rectified by the rectification unit from the alternating current supplied from the current conversion unit, and the impedance mismatching unit However, using the inductive component and / or the capacitive component, the impedance matching condition on the load side is disturbed and the impedance is unbalanced, and the control means is based on the power level detected by the power detecting means. Since the unbalance by the impedance mismatching means is controlled, the reactive power is generated by the impedance mismatching means, and the power line becomes surplus power (surplus power) without generating Joule heat or overvoltage. Even if fluctuations occur in the current flowing through the power line, it will continue safely and stably. It is possible to supply power to the load side.
 また、本願に開示する電源装置は、必要に応じて、前記電流変換手段が、前記電力線に取付けられるCTであるものである。このように、前記電流変換手段が、前記電力線に取付けられるCTであることから、インダクタンス成分をより容易に取り扱えることとなり、安定的に継続して負荷側に電源を供給することができる。 Further, in the power supply device disclosed in the present application, the current conversion unit is a CT attached to the power line as necessary. Thus, since the current conversion means is a CT attached to the power line, the inductance component can be handled more easily, and power can be stably supplied to the load side.
 また、本願に開示する電源装置は、必要に応じて、前記整流手段から負荷側に供給される電力のうち余剰となる電力を消費する余剰電力消費手段を備え、前記電力検出手段が、前記余剰電力消費手段で消費される電力レベルを検出する。このように、前記整流手段から負荷側に供給される電力のうち余剰となる電力を消費する余剰電力消費手段を備えることから、余剰電力が発生したとしても効率よく余剰電力を消費できることとなり、より安定的に継続して負荷側に電源を供給することができる。 The power supply device disclosed in the present application further includes surplus power consuming means for consuming surplus power out of the power supplied from the rectifying means to the load side, if necessary, and the power detecting means includes the surplus power. The power level consumed by the power consuming means is detected. Thus, since the surplus power consumption means for consuming surplus power among the power supplied from the rectification means to the load side is provided, even if surplus power is generated, the surplus power can be consumed efficiently, and more Power can be supplied to the load side stably and continuously.
 また、本願に開示する電源装置は、必要に応じて、前記制御手段が、前記電力検出手段で検出された電力値に対して、閾値の上限値で前記インピーダンス不整合手段の誘導成分及び/又は容量成分を増加させ、閾値の下限値で前記インピーダンス不整合手段の誘導成分及び/又は容量成分を減少させ、前記整流手段から負荷側に供給される電力を制御することにより、前記制御手段が、閾値を用いて、前記インピーダンス不整合手段の誘導成分及び/又は容量成分を制御することから、所望とする範囲内で、前記インピーダンス不整合手段の誘導成分及び/又は容量成分を制御できることとなり、電力線に流れる電流に変動が生じたとしても、安定的に継続して負荷側に電源を供給することができる。 Further, in the power supply device disclosed in the present application, if necessary, the control unit may induct components of the impedance mismatching unit and / or an upper limit value of a threshold with respect to the power value detected by the power detection unit. By increasing the capacitive component, decreasing the inductive component and / or the capacitive component of the impedance mismatching means at the lower limit value of the threshold value, and controlling the power supplied from the rectifying means to the load side, the control means, Since the inductive component and / or the capacitive component of the impedance mismatching means are controlled using the threshold value, the inductive component and / or the capacitive component of the impedance mismatching means can be controlled within a desired range, and the power line Even if fluctuations occur in the current flowing through the power source, the power can be supplied to the load side stably and continuously.
 また、本願に開示する電力供給方法は、負荷に電力を供給する電力供給方法において、電力線に電磁結合するインダクタンス成分であって、当該インダクタンス成分によって誘起される交流電流を前記負荷側に供給する電流変換工程と、前記電流変換工程から供給される交流電流を直流電流に整流する整流工程と、前記整流工程から負荷側に供給される電力レベルを検出する電力検出工程と、誘導成分及び/又は容量成分を有し、当該誘導成分及び/又は容量成分を用いて、前記電流変換工程の入力インピーダンスの整合条件を乱して、当該入力インピーダンスを不平衡化するインピーダンス不整合工程と、前記電力検出工程により検出された電力レベルに基づいて、前記インピーダンス不整合工程による不平衡化を制御する制御工程と、を含むものである。 Further, the power supply method disclosed in the present application is an electric power supply method for supplying electric power to a load, wherein the electric current is an inductance component electromagnetically coupled to a power line, and an alternating current induced by the inductance component is supplied to the load side. A conversion step, a rectification step for rectifying an alternating current supplied from the current conversion step into a direct current, a power detection step for detecting a power level supplied from the rectification step to the load side, an inductive component and / or a capacity An impedance mismatching step that unbalances the input impedance by disturbing an input impedance matching condition of the current conversion step using the inductive component and / or the capacitive component, and the power detection step A control step of controlling unbalance by the impedance mismatch step based on the power level detected by It is intended to include.
 このように、本願に開示する電力供給方法は、前記整流工程により整流された直流電流の電力レベルを前記電力検出工程が検出し、前記インピーダンス不整合工程が、前記誘導成分及び/又は容量成分を用いて、負荷側のインピーダンスの整合条件を乱して、インピーダンスを不平衡化し、前記制御工程が、前記電力検出工程により検出された電力レベルに基づいて、前記インピーダンス不整合工程による不平衡化を制御することから、前記インピーダンス不整合工程によって無効電力を発生させて、余剰となった電力(余剰電力)が、適切に電力線側(線路側)に戻されることとなり、電力線に流れる電流に変動が生じたとしても、安定的に継続して負荷側に電源を供給することができる。 As described above, in the power supply method disclosed in the present application, the power detection step detects the power level of the direct current rectified by the rectification step, and the impedance mismatch step detects the inductive component and / or the capacitance component. Using the impedance matching condition on the load side to disturb the impedance, and the control process performs the unbalance process by the impedance mismatch process based on the power level detected by the power detection process. Since the reactive power is generated by the impedance mismatching process, the surplus power (surplus power) is appropriately returned to the power line side (line side), and the current flowing through the power line varies. Even if it occurs, power can be supplied to the load side continuously and stably.
 また、本願に開示する電力供給方法は、必要に応じて、前記整流工程から負荷側に供給される電力のうち余剰となる電力を消費する余剰電力消費工程を含み、前記電力検出工程が、前記余剰電力消費工程で消費される電力レベルを検出する。このように、前記整流工程から負荷側に供給される電力のうち余剰となる電力を消費する余剰電力消費工程を含むことから、余剰電力が発生したとしても効率よく余剰電力を消費できることとなり、より安定的に継続して負荷側に電源を供給することができる。 Further, the power supply method disclosed in the present application includes a surplus power consumption step of consuming surplus power out of the power supplied from the rectification step to the load side as necessary, and the power detection step includes The power level consumed in the surplus power consumption process is detected. As described above, since the surplus power consumption step of consuming surplus power among the power supplied from the rectification step to the load side is included, even if surplus power is generated, the surplus power can be efficiently consumed. Power can be supplied to the load side stably and continuously.
 また、本願に開示する電力供給方法は、必要に応じて、前記制御工程が、前記電力検出工程で検出された電力値に対して、閾値の上限値で前記インピーダンス不整合工程の誘導成分及び/又は容量成分を増加させ、閾値の下限値で前記インピーダンス不整合工程の誘導成分及び/又は容量成分を減少させ、前記整流工程から負荷側に供給される電力を制御するものである。このように、前記制御工程が、閾値を用いて、前記インピーダンス不整合工程の誘導成分及び/又は容量成分を制御することから、所望とする範囲内で、前記インピーダンス不整合工程の誘導成分及び/又は容量成分を制御できることとなり、より安定的に継続して負荷側に電源を供給することができる。 Further, in the power supply method disclosed in the present application, if necessary, the control process may include an inductive component of the impedance mismatch process and / or an upper limit value of a threshold with respect to the power value detected in the power detection process. Alternatively, the capacitive component is increased, the inductive component and / or the capacitive component in the impedance mismatch process is decreased by the lower limit value of the threshold value, and the electric power supplied from the rectifying process to the load side is controlled. Thus, since the control step controls the inductive component and / or the capacitive component of the impedance mismatching step using a threshold value, the inductive component and / or the impedance mismatching step within a desired range. Alternatively, the capacity component can be controlled, and power can be supplied to the load side more stably.
 この発明に係る電源装置は、電力線に流れる電流が大きい場合に発生する余剰電力を無効電力として処理できるため、電力線に流れる電流が小さいときに高結合条件となるCTを使用でき、CTの出力電力を増大させる手段やバッテリなどの蓄電手段など、従来の電源装置で必要だった不足電力を補う手段を排除できるとともに、放熱などの余剰電力処理手段を簡素化でき、コンパクトな装置構成とすることができる。
 また、この発明に係る電源装置においては、電力線に流れる電流の変化に対応して無効電力の発生量を制御できることから、電力線に流れる電流の変動に影響されることなく、安定的に継続して電源が得ることができる。
 これにより、この電源装置の適用分野が広範囲に及ぶものとなり、例えば、マンホール内の地中送配電設備の監視機器の電源として利用することができる。すなわち、電力用マンホール内の監視装置用の電源として使用することによって、新たな低圧電力線の敷設や寿命が問題となるバッテリの使用に代替する電源として有用性が極めて高い。
 また、CTを分割型とすれば、当該電源装置をマンホール内の既設の地中送配電線に後付けできるため、必要に応じて設置できる可搬型電源としても活用できるものである。
Since the power supply apparatus according to the present invention can process surplus power generated when the current flowing through the power line is large as reactive power, it can use CT that is a high coupling condition when the current flowing through the power line is small, and the output power of CT It is possible to eliminate means for supplementing insufficient power required by conventional power supply devices, such as means for increasing power consumption and power storage means such as a battery, and to simplify surplus power processing means such as heat dissipation and to make a compact device configuration. it can.
Further, in the power supply device according to the present invention, since the amount of reactive power generated can be controlled in response to a change in the current flowing through the power line, it can be stably continued without being affected by fluctuations in the current flowing through the power line. A power supply can be obtained.
Thereby, the application field of this power supply device becomes wide, and can be used as, for example, a power source for monitoring equipment of underground transmission and distribution equipment in a manhole. That is, by using it as a power source for a monitoring device in a power manhole, it is extremely useful as a power source that replaces the use of a battery in which the installation and life of a new low-voltage power line are problematic.
In addition, if the CT is divided, the power supply device can be retrofitted to an existing underground transmission / distribution line in the manhole, so that it can be used as a portable power supply that can be installed as necessary.
本発明の第1の実施形態に係る電源装置の構成図(a)、及び、ツェナーダイオードを用いた場合の電力検出手段3の構成図(b)(c)を示す。The block diagram (a) of the power supply device which concerns on the 1st Embodiment of this invention, and the block diagram (b) (c) of the electric power detection means 3 at the time of using a Zener diode are shown. 本発明の第1の実施形態に係る電源装置の制御方法のフローチャートを示す。The flowchart of the control method of the power supply device which concerns on the 1st Embodiment of this invention is shown. 本発明の第1の実施形態に係る電源装置の回路図の一例を示す。1 shows an example of a circuit diagram of a power supply device according to a first embodiment of the present invention. 本発明の第1の実施形態に係る電源装置の詳細な回路図の一例を示す。An example of the detailed circuit diagram of the power supply device which concerns on the 1st Embodiment of this invention is shown. 本発明の第1の実施形態に係る電源装置の詳細な回路図の一例を示す。An example of the detailed circuit diagram of the power supply device which concerns on the 1st Embodiment of this invention is shown. 本発明の第1の実施形態に係る電源装置の通電試験の結果を示す。The result of the electricity supply test of the power supply device which concerns on the 1st Embodiment of this invention is shown. 本発明の第2の実施形態に係る電源装置の構成図を示す。The block diagram of the power supply device which concerns on the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態に係る電源装置の構成図(a)、及び、ゼロクロス検出手段にダイオードと抵抗を用いた場合の電源装置の構成図を構成図(b)に示す。A configuration diagram (a) of the power supply device according to the third embodiment of the present invention and a configuration diagram of the power supply device when a diode and a resistor are used for the zero-cross detection means are shown in the configuration diagram (b).
(第1の実施形態)
 本願の第1の実施形態に係る電源装置を、上記図1~6に従い説明する。
(First embodiment)
A power supply apparatus according to the first embodiment of the present application will be described with reference to FIGS.
 第1の実施形態に係る電源装置は、図1(a)に示すように、負荷10に電源を供給する電源装置において、電力線101(需要家負荷100に接続される)に電磁結合するインダクタンス成分であって、このインダクタンス成分によって誘起される交流電流をこの負荷側に供給する電流変換手段1と、この電流変換手段1から供給される交流電流を直流電流に整流する整流手段2と、 この電流変換手段1から負荷側に供給される電力レベルを検出する電力検出手段3と、この電流変換手段1と整流手段2の間に接続され、誘導成分及び/又は容量成分を有し、当該誘導成分及び/又は容量成分を用いて、前記電流変換手段1の入力インピーダンスの整合条件を乱して、当該入力インピーダンスを不平衡化するインピーダンス不整合手段4と、この電力検出手段3により検出された電力レベルに基づいて、このインピーダンス不整合手段4による不平衡化を制御する制御手段5と、を備える構成である。 As shown in FIG. 1A, the power supply device according to the first embodiment is an inductance component that electromagnetically couples to the power line 101 (connected to the customer load 100) in the power supply device that supplies power to the load 10. The current converting means 1 for supplying an alternating current induced by the inductance component to the load side, the rectifying means 2 for rectifying the alternating current supplied from the current converting means 1 into a direct current, and the current The power detection means 3 for detecting the power level supplied from the conversion means 1 to the load side, and is connected between the current conversion means 1 and the rectification means 2 and has an inductive component and / or a capacitive component, and the inductive component Impedance mismatching means for disturbing the input impedance matching condition of the current conversion means 1 and unbalance the input impedance by using a capacitance component. If, based on the power level detected by the power detection unit 3, a control unit 5 for controlling the unbalancing due to impedance mismatching means 4 is configured to include.
 この電流変換手段1は、電力線101に電磁結合するインダクタンス成分を有し、交流電流を誘起するものであれば、特に限定されないが、CTを用いることができる。なお、電力線101としては、送配電線に限定されず、工場内配線や接地線(グランドワイヤ)など、電流が流れている電線やケーブルであれば、その限りではない。この整流手段2は、特に限定されないが、交流電流を直流電流に整流する整流器を用いることができる。 The current conversion means 1 is not particularly limited as long as it has an inductance component that electromagnetically couples to the power line 101 and induces an alternating current, but CT can be used. The power line 101 is not limited to a transmission / distribution line, and is not limited as long as it is an electric line or cable in which a current flows, such as factory wiring or a ground line (ground wire). Although this rectification means 2 is not specifically limited, the rectifier which rectifies | straightens an alternating current into a direct current can be used.
 この電力検出手段3は、前記整流手段2から負荷側に供給される電力レベルを検出可能なものであれば、特に限定されないが、例えば、ツェナーダイオードを用いることが好ましい。ツェナーダイオードを用いることによって、例えば、図1(b)に示すように、電力検出手段3として、ツェナーダイオードと、このツェナーダイオードと直列に接続した検出抵抗Rを用いて、この検出抵抗Rで発生する電圧Vzdrを検出することができる。すなわち、図1(b)に示すように、ツェナーダイオードのツェナー電圧をVzdとして、検出抵抗Rに流れる電流をIrとすれば、ツェナーダイオードで消費する電力Pzdは、Pzd=Ir×Vzd=Vzdr/R × Vzdとなる。このうち、ツェナー電圧Vzdと検出抵抗Rは固定値とみなすことができるため、ツェナーダイオードで消費する電力Pzdは、検出抵抗Rで発生する電圧Vzdrを測定することによって決定する。このように、検出抵抗Rで発生する電圧Vzdrを測定することによって、前記整流手段2から負荷側に供給される電力レベルを簡易に検出することが可能となる。 The power detecting means 3 is not particularly limited as long as it can detect the power level supplied from the rectifying means 2 to the load side. For example, a Zener diode is preferably used. By using a Zener diode, for example, as shown in FIG. 1 (b), the power detection means 3 uses a Zener diode and a detection resistor R connected in series with the Zener diode, and is generated at the detection resistor R. The voltage Vzdr to be detected can be detected. That is, as shown in FIG. 1B, if the Zener voltage of the Zener diode is Vzd and the current flowing through the detection resistor R is Ir, the power Pzd consumed by the Zener diode is Pzd = Ir × Vzd = Vzdr / R × Vzd. Among them, since the Zener voltage Vzd and the detection resistor R can be regarded as fixed values, the power Pzd consumed by the Zener diode is determined by measuring the voltage Vzdr generated at the detection resistor R. Thus, by measuring the voltage Vzdr generated at the detection resistor R, it is possible to easily detect the power level supplied from the rectifying means 2 to the load side.
 また、例えば、図1(c)に示すように、電力検出手段3として、ツェナーダイオードを含めて構成され、電力検出手段3が、前記電力レベルの検出の際に、このツェナーダイオードで発生する熱を温度センサ等により測定しても良い。 Further, for example, as shown in FIG. 1C, the power detection means 3 includes a Zener diode, and the power detection means 3 generates heat generated by the Zener diode when the power level is detected. May be measured by a temperature sensor or the like.
 このインピーダンス不整合手段4は、誘導成分及び/又は容量成分を有し、この誘導成分及び/又は容量成分を用いて、電流変換手段1の入力インピーダンスの整合条件を乱して、インピーダンスを不平衡化するものである。
ここで、インピーダンスの不平衡化とは、電流変換手段1の負荷側のインピーダンスと、電源側(電力線101側)のインピーダンスとを敢えて整合させないようにすることであり、電流変換手段1の負荷側で誘導成分及び/又は容量成分を用いて電流変換手段1の入力インピーダンスの整合条件を意図的に乱すことにより、これらのインピーダンスを不平衡化とすることである。
従来の電源装置では、これらのインピーダンスを正確に整合させることによって、負荷側に電力を効率的に供給することが主眼とされていたことから、このインピーダンスの不平衡化とは、従来とは全く逆の発想である。
This impedance mismatching means 4 has an inductive component and / or a capacitive component. Using this inductive component and / or capacitive component, the impedance matching condition of the current conversion means 1 is disturbed to imbalance the impedance. It is to become.
Here, the unbalanced impedance means that the impedance on the load side of the current conversion means 1 and the impedance on the power supply side (power line 101 side) are not intentionally matched. The purpose of this is to unbalance these impedances by intentionally disturbing the matching condition of the input impedance of the current conversion means 1 using inductive components and / or capacitive components.
In conventional power supply devices, the main objective was to efficiently supply power to the load side by accurately matching these impedances, so this impedance unbalance is completely different from the conventional case. It is the opposite idea.
 この制御手段5は、この電力検出手段3により検出された電力レベルに応じて、このインピーダンス不整合手段4における誘導成分及び/又は容量成分を増減させる制御を行うことによって、インピーダンス不整合手段4による上述した不平衡化の度合いを制御する。 The control means 5 performs control to increase or decrease the inductive component and / or the capacitance component in the impedance mismatching means 4 according to the power level detected by the power detection means 3, so that the impedance mismatching means 4 Control the degree of unbalance described above.
 この制御手段5による好適な制御方法については、例えば、図2のフローチャートに示すように、先ず、電力検出手段3で電力レベルを検出し(S1)、制御手段5が、この電力検出手段3で検出された電力レベルが、閾値の上限値以上であるかを判断し(S2)、閾値の上限値以上の場合には、インピーダンス不整合手段4の誘導成分及び/又は容量成分を増加させて(S3)、電流変換手段1から負荷側へ供給される有効電力を減少させる。 As for a suitable control method by the control means 5, for example, as shown in the flowchart of FIG. 2, first, the power detection means 3 detects the power level (S 1), and the control means 5 uses the power detection means 3. It is determined whether the detected power level is equal to or higher than the upper limit value of the threshold (S2). If the detected power level is equal to or higher than the upper limit value of the threshold, the inductive component and / or the capacitive component of the impedance mismatching means 4 is increased ( S3), the effective power supplied from the current conversion means 1 to the load side is decreased.
 また、制御手段5が、この電力検出手段3で検出された電力レベルが、閾値の下限値以下であるかを判断し(S4)、閾値の下限値以下の場合には、インピーダンス不整合手段4の誘導成分及び/又は容量成分を減少させて(S5)、電流変換手段1から負荷側へ供給される有効電力を増加させる。この制御方法によって、安定的に継続した電源供給が実現される。 Further, the control means 5 determines whether the power level detected by the power detection means 3 is equal to or lower than the lower limit value of the threshold value (S4). The inductive component and / or the capacitive component is reduced (S5), and the effective power supplied from the current conversion means 1 to the load side is increased. By this control method, stable and continuous power supply is realized.
 さらに、上記構成に従って構成される回路図の一例を図3に示す。 Furthermore, FIG. 3 shows an example of a circuit diagram configured according to the above configuration.
 図3に示すように、この電流変換手段1としては、電力線101に電磁結合するインダクタンス成分を有し、交流電流を誘起するCTを用いる。この整流手段2としては、交流電流を直流電流に整流する整流器としてダイオードブリッジによる全波整流回路を用いる。この電力検出手段3は、整流手段2から負荷側の電力レベルを検出可能なものとして、ツェナーダイオード(及びツェナーダイオードと直列に接続した検出抵抗Rを含む)を用いる。図3では、1つのツェナーダイオードで構成されている例を示しているが、これに限定されず、複数のツェナーダイオードを直列接続することも可能である。 As shown in FIG. 3, as the current conversion means 1, a CT that has an inductance component electromagnetically coupled to the power line 101 and induces an alternating current is used. As this rectifier 2, a full-wave rectifier circuit using a diode bridge is used as a rectifier that rectifies an alternating current into a direct current. The power detection unit 3, as being capable of detecting the power level of the load from the rectifying unit 2, using the Zener diode (and a Zener diode and a detection resistor R 2 connected in series). Although FIG. 3 shows an example of a single zener diode, the present invention is not limited to this, and a plurality of zener diodes can be connected in series.
 このインピーダンス不整合手段4は、容量成分としてコンデンサを用いる。このインピーダンス不整合手段4は、CTに対して並列接続されるコンデンサとスイッチを備えたコンデンサ部41から構成される。 This impedance mismatching means 4 uses a capacitor as a capacitance component. This impedance mismatching means 4 is comprised from the capacitor | condenser part 41 provided with the capacitor | condenser and switch which are connected in parallel with CT.
 このコンデンサ部41は、インピーダンスを不平衡化するために、コンデンサと直列に接続されたスイッチでコンデンサ回路の有効化/無効化を切替えるスイッチ機構を備える。このインピーダンス不整合手段4は、1つのコンデンサ部41から構成されることもできるが、より好ましくは複数配設されることであり、制御手段5による前記スイッチ機構によって、複数のコンデンサの投入制御が可能となり、容量成分(キャパシタンス)のON/OFFの切替えのみならず、容量成分の大きさを自在に調整することができ、より段階的に細分化された容量成分の制御を行うことが可能となる。すなわち、コンデンサを複数並列に投入可能なスイッチを備えることによって、電力検出手段3により検出された電力レベルに応じて、制御手段5がコンデンサ投入量を最適に調整することが可能となる。 The capacitor unit 41 includes a switch mechanism that switches between enabling / disabling of the capacitor circuit with a switch connected in series with the capacitor in order to unbalance the impedance. The impedance mismatching means 4 can be composed of a single capacitor portion 41, but more preferably a plurality of the impedance mismatching means 4 are arranged, and a plurality of capacitors can be controlled by the switch mechanism by the control means 5. It is possible not only to switch the capacitance component (capacitance) ON / OFF, but also to freely adjust the size of the capacitance component, and it is possible to control the capacitance component that is subdivided in stages. Become. That is, by providing a switch that can input a plurality of capacitors in parallel, the control unit 5 can optimally adjust the capacitor input amount according to the power level detected by the power detection unit 3.
 この制御手段5としては、演算機能を有するマイクロコントローラであるMCUを用いる。このMCUは、この電力検出手段3により検出された電力レベルに応じて、前記コンデンサ部41におけるスイッチ機構を制御することによって、インピーダンス不整合手段4による不平衡化の度合いを制御する。例えば、この検出された電力レベルが閾値の上限より大きい場合には、スイッチ機構を制御することによって、インピーダンス不整合手段4に配されたコンデンサを有効化(もしくはコンデンサの有効接続数を増加)させて、容量成分を増加させる。また、例えば、この検出された電力レベルが閾値の下限より小さい場合には、スイッチ機構を制御することによって、インピーダンス不整合手段4に配されたコンデンサを無効化(もしくはコンデンサの有効接続数を減少)させて、容量成分を減少させる。 As this control means 5, an MCU which is a microcontroller having an arithmetic function is used. This MCU controls the degree of unbalance by the impedance mismatching unit 4 by controlling the switch mechanism in the capacitor unit 41 according to the power level detected by the power detection unit 3. For example, when the detected power level is larger than the upper limit of the threshold value, the capacitor disposed in the impedance mismatching means 4 is activated (or the effective number of capacitors is increased) by controlling the switch mechanism. To increase the volume component. Further, for example, when the detected power level is smaller than the lower limit of the threshold value, the capacitor disposed in the impedance mismatching means 4 is invalidated (or the number of effective connections of the capacitor is reduced) by controlling the switch mechanism. ) To reduce the capacity component.
 本実施形態では、制御手段5が、インピーダンス不整合手段4におけるコンデンサ部41の容量成分の増減をスイッチ機構で制御することによって、経時的に変化する電源装置の有効電力の発生状況に応じて、最適な有効電力の制御(すなわち、無効電力の制御)を安定的に継続して行うことができる。 In the present embodiment, the control unit 5 controls the increase / decrease in the capacitance component of the capacitor unit 41 in the impedance mismatching unit 4 with the switch mechanism, thereby depending on the generation state of the active power of the power supply device that changes over time. Optimal active power control (that is, reactive power control) can be stably and continuously performed.
 以上の構成によって、インピーダンス不整合手段4によって無効電力を発生させて、負荷側に生じる負荷電流の程度に応じて、余剰となった電力(余剰電力)が、最適に電力線101側(線路側)に戻されることとなり、電力線101に流れる電流に大きく変動が生じる状況であっても、安定的に継続して負荷側に電源を供給することができる。 With the above configuration, reactive power is generated by the impedance mismatching means 4, and surplus power (surplus power) is optimally adjusted to the power line 101 side (line side) according to the degree of load current generated on the load side. Thus, even when the current flowing through the power line 101 greatly fluctuates, power can be stably supplied to the load side.
 さらに、本実施形態に係る電源装置は、無効電力の増減を制御できることで、電力線101に流れる電流が少ないに条件に合せた高結合度のCTとすることができ、電力線101に流れる電流が多いときの余剰電力を対処する手段も兼ね備えたダイナミックレンジ対応型のコンパクトな装置構成が実現される。 Furthermore, since the power supply device according to the present embodiment can control the increase and decrease of reactive power, it is possible to obtain a high-coupling CT that meets the conditions when the current flowing through the power line 101 is small, and the current flowing through the power line 101 is large. Thus, a compact apparatus configuration compatible with a dynamic range that also has means for dealing with surplus power at the time is realized.
 このような構成に基づく本実施形態に係る電源装置の詳細な回路図の一例を、図4に示す。電流変換手段1は、電力線101としての電力ケーブルに電磁結合するインダクタンス成分を有し、交流電流を誘起するCTを用いる。整流手段2は、交流電流を直流電流に整流する整流器としてダイオードブリッジによる全波整流回路を用いる。 FIG. 4 shows an example of a detailed circuit diagram of the power supply device according to this embodiment based on such a configuration. The current conversion means 1 uses an CT having an inductance component that is electromagnetically coupled to a power cable as the power line 101 and inducing an alternating current. The rectifier 2 uses a full-wave rectifier circuit using a diode bridge as a rectifier that rectifies an alternating current into a direct current.
 電力検出手段3は、ツェナーダイオードと、このツェナーダイオードと直列に接続した1.5Ωの検出抵抗Rを用いる。ツェナーダイオードは、ツェナー電圧が6Vで定格5Wのものを4個直列に接続し、ツェナー電圧が24Vで最大20Wの電力に耐えられるようにしている。図4では、複数のツェナーダイオードで構成されている一例として、4個直列に接続したケースを示しているが、この個数についてはあくまで例示であり、これに限定されず、複数(2個以上)のツェナーダイオードであれば特に限定されない。 The power detection means 3 uses a Zener diode and a 1.5Ω detection resistor R connected in series with the Zener diode. Four Zener diodes having a Zener voltage of 6V and a rating of 5W are connected in series so that they can withstand a maximum of 20W of power when the Zener voltage is 24V. In FIG. 4, as an example constituted by a plurality of Zener diodes, a case where four are connected in series is shown. However, this number is merely an example, and the present invention is not limited to this, and a plurality (two or more) The Zener diode is not particularly limited.
 制御手段5で用いる電力検出手段3の閾値は、ツェナーダイオードで消費される電力であるが、以下の説明のとおり、検出抵抗Rに発生する電圧を用いている。ツェナーダイオードのツェナー電圧をVzdとして、検出抵抗Rに流れる電流をIrとすれば、ツェナーダイオードで消費する電力Pzdは、Pzd=Ir×Vzd=Vzdr/R × Vzdとなる。このうち、ツェナー電圧Vzdは24Vで、検出抵抗Rは1.5Ωの固定値であるため、ツェナーダイオードで消費する電力Pzdは、検出抵抗Rで発生する電圧Vzdrを測定することによって決定する。電力検出手段3の上限の閾値を4W、下限の閾値を0.4Wに設定すると、検出抵抗Rの電圧Vzdrは、Vzdr=Pzd/Vzd×R=Pzd/24×1.5により計算され、それぞれ、約250mV、約25mVとなる。 The threshold of the power detection means 3 used in the control means 5 is the power consumed by the Zener diode, but the voltage generated in the detection resistor R is used as described below. If the Zener voltage of the Zener diode is Vzd and the current flowing through the detection resistor R is Ir, the power Pzd consumed by the Zener diode is Pzd = Ir × Vzd = Vzdr / R × Vzd. Among these, since the Zener voltage Vzd is 24V and the detection resistor R is a fixed value of 1.5Ω, the power Pzd consumed by the Zener diode is determined by measuring the voltage Vzdr generated by the detection resistor R. When the upper limit threshold of the power detection means 3 is set to 4 W and the lower limit threshold is set to 0.4 W, the voltage Vzdr of the detection resistor R is calculated by Vzdr = Pzd / Vzd × R = Pzd / 24 × 1.5, respectively. , About 250 mV, about 25 mV.
 このように、ツェナーダイオードで消費される電力を検出抵抗Rで発生する電圧Vzdrを測定し、制御手段5で用いる電力検出手段3で検出する閾値として使用することができる。 As described above, the voltage Vzdr generated by the detection resistor R can be used as a threshold value detected by the power detection means 3 used in the control means 5 by measuring the power consumed by the Zener diode.
 インピーダンス不整合手段4は、容量成分としてコンデンサを用い、それぞれ異なる静電容量を有する4つのコンデンサ部41で構成する。また、各コンデンサ部41には、ON/OFFが可能なスイッチを有している。コンデンサ部41のコンデンサは、理想的な静電容量をもつフィルムコンデンサまたはセラミックコンデンサを使用し、静電容量は、それぞれ20μF、40μF、80μF、160μFとしている。 The impedance mismatching means 4 is composed of four capacitor portions 41 each using a capacitor as a capacitance component and having different electrostatic capacities. Each capacitor unit 41 has a switch that can be turned ON / OFF. As the capacitor of the capacitor unit 41, a film capacitor or a ceramic capacitor having an ideal capacitance is used, and the capacitances are 20 μF, 40 μF, 80 μF, and 160 μF, respectively.
 制御手段5は、マイクロコントローラ(MCU)を用い、当該MCUでコンデンサ部41に備えたスイッチのON/OFFを制御できる構成としている。これにより、インピーダンス不整合手段4の容量成分は、20μF刻みで0~300μFまで16段階の調整が可能となる。 The control means 5 is configured to use a microcontroller (MCU) so that the MCU can control ON / OFF of a switch provided in the capacitor unit 41. As a result, the capacitance component of the impedance mismatching means 4 can be adjusted in 16 steps from 0 to 300 μF in steps of 20 μF.
 また、負荷10の前段に、当該負荷10に安定した12Vの直流電圧を供給するDC/DCコンバータ10Aと、MCUの駆動に必要な5Vの直流電圧を供給するDC/DCコンバータ10Bを設けている。 Further, a DC / DC converter 10A that supplies a stable 12V DC voltage to the load 10 and a DC / DC converter 10B that supplies a 5V DC voltage necessary for driving the MCU are provided in front of the load 10. .
 以上のような回路構成を成す電源装置を用いて、電力線101としてのケーブルに、CTを電磁結合させ、ケーブルの通電電流を60~2,000Armsまで変化させ、負荷10で1W消費させた状態で、電力検出手段3で検出されるツェナーダイオードの消費電力を測定した結果を図6に示す。
なお、図6中の丸囲い数字は、インピーダンス不整合手段4におけるコンデンサの投入番号(投入ナンバー)を示し、番号が1増すごとにコンデンサの静電容量が20μFずつ増える。
Using the power supply device having the circuit configuration as described above, the CT is electromagnetically coupled to the cable as the power line 101, the energization current of the cable is changed from 60 to 2,000 Arms, and 1 W is consumed by the load 10. The result of measuring the power consumption of the Zener diode detected by the power detection means 3 is shown in FIG.
The circled numbers in FIG. 6 indicate the capacitor insertion number (injection number) in the impedance mismatching means 4, and as the number increases by 1, the capacitance of the capacitor increases by 20 μF.
 得られた結果から、本実施形態に係る電源装置では、ケーブル通電電流の増減に応じて、適切に電力制御ができていることを確認した。また、電力線101のケーブル通電電流が60Arms以上あれば、1Wの電力が安定的に供給可能であることが確認された。なお、ケーブル通電電流が1,800Arms以上のときは、インピーダンス不整合手段4による容量成分の増加が限界に達し、電力検出手段3で検出する閾値の上限である4Wを超過しているが、通電電流が2,000Armsのときもツェナーダイオードの定格である20Wを大きく下回っていることから、本実施形態に係る電源装置に問題が無いことを確認した。 From the obtained results, it was confirmed that the power supply according to the present embodiment was able to appropriately control the power according to the increase or decrease of the cable energization current. It was also confirmed that 1 W of power could be stably supplied if the cable energization current of the power line 101 was 60 Arms or more. When the cable energization current is 1,800 Arms or more, the increase in the capacitance component by the impedance mismatching unit 4 reaches the limit and exceeds the upper limit of 4 W detected by the power detection unit 3. Even when the current was 2,000 Arms, it was well below the rating of 20 W of the Zener diode, so it was confirmed that there was no problem in the power supply device according to this embodiment.
 図5に示すように、本実施形態に係る電源装置は、上記構成の電源装置の構成を1つ備えて、需要家負荷100に接続された電力線101に電磁結合するという構成に限定されず、例えば、電力系統が異なる複数の電力線101が存在する場合、上記構成の電源装置の電流変換手段1、整流手段2および電力検出手段3の構成体を一つの電源装置に複数備えることによって、一方と他方の構成体をそれぞれ別々の電力系統となる電力線101に装着することで、一方または他方の構成体を予備として機能させることも可能である。すなわち、一方または他方の電力系統が停止しても、片側の構成体からの電源供給が途絶えることが無いため、安定して電力を供給することが可能となる。 As shown in FIG. 5, the power supply device according to the present embodiment is not limited to the configuration in which one power supply device having the above-described configuration is provided and electromagnetically coupled to the power line 101 connected to the customer load 100. For example, when there are a plurality of power lines 101 having different power systems, by providing a plurality of components of the current conversion means 1, the rectification means 2 and the power detection means 3 of the power supply device configured as described above in one power supply device, It is also possible to make one or the other component function as a spare by attaching the other component to the power line 101 which is a separate power system. That is, even if one or the other power system is stopped, power supply from one side of the structure is not interrupted, so that power can be stably supplied.
 また、両方の電力系統が正常に電力供給されていれば、電源装置の構成体が複数あれば得られる電力が増加することは言うまでもない。 Needless to say, if both power systems are normally supplied with power, the power obtained is increased when there are a plurality of power supply components.
(第2の実施形態)
 本願の第2の実施形態に係る電源装置を、上記図7に従い説明する。
(Second Embodiment)
A power supply device according to a second embodiment of the present application will be described with reference to FIG.
 本願の第2の実施形態に係る電源装置は、上述した第1の実施形態に係る電源装置の構成に加え、図7に示すように、前記整流手段から負荷側に供給される電力にのうち余剰となる電力を消費する余剰電力消費手段6と、この余剰電力消費手段6で消費される電力レベルを検出する前記電力検出手段3として機能する余剰電力検出手段3aと、を備える構成である。 In addition to the configuration of the power supply device according to the first embodiment described above, the power supply device according to the second embodiment of the present application includes the power supplied from the rectifier to the load side as shown in FIG. This configuration includes surplus power consumption means 6 that consumes surplus power, and surplus power detection means 3 a that functions as the power detection means 3 that detects the power level consumed by the surplus power consumption means 6.
 この余剰電力消費手段6としては、定電圧回路を用いることができる。この定電圧回路としては、ツェナーダイオードや、定電圧レギュレータを用いることができる。ツェナーダイオードの場合は、ツェナー電圧を超える電圧が印加されようとすると、定電圧を保つためダイオードの通電電流が増加し、ツェナーダイオード自身が電力を消費する。 As this surplus power consumption means 6, a constant voltage circuit can be used. As this constant voltage circuit, a Zener diode or a constant voltage regulator can be used. In the case of a Zener diode, when a voltage exceeding the Zener voltage is applied, the current flowing through the diode increases to maintain a constant voltage, and the Zener diode itself consumes power.
 また、定電圧レギュレータの場合は、定電圧を保つレギュレータ出力側(負荷側)に対しレギュレータの入力側の電圧が高くなり、入出力間の電位差大きくなるのに従って、レギュレータ自身が発熱して電力を消費する。 Also, in the case of a constant voltage regulator, the regulator itself generates heat as the voltage on the input side of the regulator increases with respect to the regulator output side (load side) that maintains the constant voltage, and the potential difference between the input and output increases. Consume.
 ツェナーダイオードを用いる場合の構成例としては、余剰電力消費手段6は、1または複数のツェナーダイオードで構成され、当該ツェナーダイオードが、整流手段2と負荷10との間に並列に接続される構成とすることができる。この構成によって、電力線101の電流が増加し、電流変換手段1から過大な電力が供給された場合に、ツェナーダイオードのインピーダンスが低下することによって、当該過大な電力が余剰電力としてツェナーダイオードで消費されることとなり、制御手段5によるインピーダンス不整合手段4の適切なインピーダンス調整が間に合わないような急激な電力供給があった場合でも、ツェナーダイオードで過大な電力が余剰電力として処理されることとなり、急激な電力供給の変化に対して即座に対処することが可能となる。 As a configuration example in the case of using a Zener diode, the surplus power consumption means 6 is composed of one or a plurality of Zener diodes, and the Zener diode is connected in parallel between the rectifier means 2 and the load 10 can do. With this configuration, when the current of the power line 101 increases and excessive power is supplied from the current conversion unit 1, the excessive power is consumed by the Zener diode as surplus power by reducing the impedance of the Zener diode. Therefore, even when there is a sudden power supply that does not make the proper impedance adjustment of the impedance mismatching means 4 by the control means 5 in time, excessive power is processed as surplus power by the Zener diode. It is possible to immediately cope with a change in power supply.
 前記余剰電力検出手段3aとしては、この定電圧回路の電力レベルを検出する。この電力レベルとしては、電流、電圧、温度などが含まれる。すなわち、前記余剰電力検出手段3aの検出対象としては、定電圧回路の通電電流、電圧降下、温度などが含まれる。 The surplus power detection means 3a detects the power level of this constant voltage circuit. This power level includes current, voltage, temperature, and the like. That is, the detection target of the surplus power detection means 3a includes the energization current, voltage drop, temperature, etc. of the constant voltage circuit.
 この構成によって、前記整流手段2から負荷側に供給される電力のうち余剰となる電力を消費する余剰電力消費手段6を備えることから、インピーダンス不整合手段4で余剰電力を処理する量を余剰電力消費手段6でも負担することができ、インピーダンス不整合手段4の装置構成を簡素化できる。また、制御手段5でインピーダンス不整合手段4を制御することにより、余剰電力消費手段6の消費電力を調整することができるため、余剰電力処理手段6の処理能力超過による熱暴走などの問題を防止することができる。 With this configuration, since the surplus power consuming means 6 for consuming surplus power out of the power supplied from the rectifying means 2 to the load side is provided, the amount of surplus power processed by the impedance mismatching means 4 is set to surplus power. The consumption means 6 can also bear the burden, and the device configuration of the impedance mismatching means 4 can be simplified. Moreover, since the power consumption of the surplus power consumption means 6 can be adjusted by controlling the impedance mismatching means 4 by the control means 5, problems such as thermal runaway due to excess processing capacity of the surplus power processing means 6 are prevented. can do.
 また、余剰電力消費手段6を備えることにより、負荷10の消費電力が変動しても、余剰電力消費手段6による電力消費で変動分を吸収することが可能となり、負荷変動に強い電源装置を実現することができる。 Further, by providing the surplus power consumption means 6, even if the power consumption of the load 10 fluctuates, it is possible to absorb the fluctuation by the power consumption by the surplus power consumption means 6 and realize a power supply device that is resistant to load fluctuations. can do.
(第3の実施形態)
 本願の第3の実施形態に係る電源装置を、上記図8に従い説明する。
(Third embodiment)
A power supply device according to a third embodiment of the present application will be described with reference to FIG.
 本願の第2の実施形態に係る電源装置は、上述した第2の実施形態に係る電源装置の構成に加え、図8(a)に示すように、前記インピーダンス不整合手段4として、容量成分を成す複数のコンデンサと、当該コンデンサを前記制御手段で入切可能なスイッチを備えると共に、前記制御手段5として、前記電流変換手段から前記負荷側に供給される交流電圧のゼロクロス検出手段5aを備え、 前記制御手段5が、前記ゼロクロス検出手段5aにより交流電圧がゼロクロスするタイミングで、前記インピーダンス不整合手段4のスイッチを入切する構成である。 In addition to the configuration of the power supply device according to the second embodiment described above, the power supply device according to the second embodiment of the present application has a capacitance component as the impedance mismatching unit 4 as shown in FIG. A plurality of capacitors formed, and a switch that can be turned on and off by the control means, and as the control means 5, a zero-cross detection means 5a of an AC voltage supplied from the current conversion means to the load side, The control means 5 is configured to turn on and off the impedance mismatching means 4 at the timing when the AC voltage is zero-crossed by the zero-cross detection means 5a.
 このインピーダンス不整合手段4のスイッチは、半導体リレーを用いることができる。ゼロクロス検出手段5aは、前記インピーダンス不整合手段4の交流電圧を測定する他、例えば、図8(b)に示すように、整流手段2より負荷側の出力の一端をコモン(COM)とし、2つのダイオードD1およびD2と分圧抵抗rおよびrを設け、分圧抵抗rをコモンに接続したとき、分圧抵抗rで検出される電圧がゼロボルトに近くなるタイミングを検知することによって、ゼロクロス検出を行うことも可能である。そのほか、ゼロクロススイッチ機能を備えた半導体リレーを使用しても良い。 The switch of the impedance mismatching means 4 can use a semiconductor relay. The zero cross detection means 5a measures the AC voltage of the impedance mismatching means 4, and, for example, as shown in FIG. 8B, one end of the output on the load side of the rectification means 2 is common (COM). One of the diodes provided D1 and D2 dividing resistors r 1 and r 2, when the dividing resistor r 2 is connected to the common, by voltage detected by the voltage dividing resistors r 2 detects near become timing at zero volts It is also possible to perform zero cross detection. In addition, a semiconductor relay having a zero cross switch function may be used.
 このゼロクロス検出手段5aを備える構成によって、インピーダンス不整合手段4のスイッチを、確実に電圧がゼロに近い状態で入切できることとなり、コンデンサやスイッチに大きな突流電流が流れることを防ぎ、回路の故障やノイズの発生を回避することができる。 With the configuration including the zero cross detection means 5a, the switch of the impedance mismatch means 4 can be reliably turned on and off in a state where the voltage is close to zero, preventing a large rush current from flowing through the capacitor and the switch, Generation of noise can be avoided.
(その他の実施形態)
 なお、上記実施形態では、前記制御手段5が、容量成分のみを用いて負荷側のインピーダンスを不平衡化したが、このように、容量成分のみを用いることに限定されない。例えば、その他の実施形態としては、前記制御手段5が、前記インダクタンス成分の少なくとも一部を用いて、インピーダンスを不平衡化することも可能である。すなわち、前記容量成分及び前記インダクタンス成分の2成分を組み合わせて制御を行うことによって、インピーダンスを不平衡化することも可能である。
(Other embodiments)
In the above embodiment, the control unit 5 unbalances the impedance on the load side using only the capacitive component. However, the present invention is not limited to using only the capacitive component. For example, as another embodiment, the control unit 5 can unbalance the impedance using at least a part of the inductance component. That is, it is possible to unbalance the impedance by performing control by combining the two components of the capacitance component and the inductance component.
 このように、前記制御手段5が、インピーダンスの不平衡化に、前記容量成分及び前記インダクタンス成分の2成分を用いることから、前記容量成分及び前記インダクタンス成分の2成分を組み合わせて、より柔軟且つ効率的にインピーダンスを不平衡化できることとなり、電力線101に流れる電流に大きな変動が生じたとしても、当該2成分を組み合わせて調整することによって、インピーダンスの不平衡化をきめ細かく制御することができ、安定的に継続して負荷側に電源を供給することができる。 Thus, since the control means 5 uses the two components of the capacitance component and the inductance component for impedance imbalance, the two components of the capacitance component and the inductance component can be combined for more flexibility and efficiency. Therefore, even if a large fluctuation occurs in the current flowing in the power line 101, the impedance unbalance can be finely controlled by adjusting the two components in combination, and stable. The power can be continuously supplied to the load side.
 なお、前記制御手段5は、前記インピーダンス不整合手段4で投入した容量成分と前記電力線に流れる電流を対応させることにより、電力線の電流を測定することも可能である。この構成によって、前記負荷側で直接検知できない電力線の電流を容易に把握することが可能となる。 The control means 5 can also measure the current of the power line by associating the capacitance component input by the impedance mismatching means 4 with the current flowing through the power line. With this configuration, it is possible to easily grasp the current of the power line that cannot be directly detected on the load side.
1 電流変換手段
2 整流手段
3 電力検出手段
3a 余剰電力検出手段
4 インピーダンス不整合手段
41 コンデンサ部
5 制御手段
5a ゼロクロス検出手段
6 余剰電力消費手段
10 負荷
10A DC/DCコンバータ
10B DC/DCコンバータ
100 需要家負荷
101 電力線
DESCRIPTION OF SYMBOLS 1 Current conversion means 2 Rectification means 3 Power detection means 3a Surplus power detection means 4 Impedance mismatching means 41 Capacitor part 5 Control means 5a Zero cross detection means 6 Surplus power consumption means 10 Load 10A DC / DC converter 10B DC / DC converter 100 Demand House load 101 Power line

Claims (7)

  1.  負荷に電力を供給する電源装置において、
     電力線に電磁結合するインダクタンス成分であって、当該インダクタンス成分によって誘起される交流電流を前記負荷側に供給する電流変換手段と、
     前記電流変換手段から供給される交流電流を直流電流に整流する整流手段と、
     前記整流手段から負荷側に供給される電力レベルを検出する電力検出手段と、
     前記電流変換手段と前記整流手段の間に接続され、誘導成分及び/又は容量成分を有し、当該誘導成分及び/又は容量成分を用いて、前記電流変換手段の入力インピーダンスの整合条件を乱して、当該入力インピーダンスを不平衡化するインピーダンス不整合手段と、
     前記電力検出手段により検出された電力レベルに基づいて、前記インピーダンス不整合手段による不平衡化を制御する制御手段と、
     を備えることを特徴とする
     電源装置。
    In a power supply that supplies power to a load,
    An inductance component that electromagnetically couples to the power line, current converting means for supplying an alternating current induced by the inductance component to the load side;
    Rectifying means for rectifying alternating current supplied from the current converting means into direct current;
    Power detection means for detecting a power level supplied from the rectification means to the load side;
    Connected between the current converting means and the rectifying means and having an inductive component and / or a capacitive component, and using the inductive component and / or the capacitive component, disturb the matching condition of the input impedance of the current converting means. Impedance mismatching means for unbalancing the input impedance;
    Control means for controlling unbalance by the impedance mismatch means based on the power level detected by the power detection means;
    A power supply device comprising:
  2.  請求項1に記載の電源装置において、
     前記電流変換手段が、前記電力線に取付けられるカレントトランスであることを特徴とする
     電源装置。
    The power supply device according to claim 1,
    The power supply device, wherein the current conversion means is a current transformer attached to the power line.
  3.  請求項1又は2に記載の電源装置において、
     前記整流手段から負荷側に供給される電力のうち余剰となる電力を消費する余剰電力消費手段を備え、
     前記電力検出手段が、前記余剰電力消費手段で消費される電力レベルを検出することを特徴とする
     電源装置。
    The power supply device according to claim 1 or 2,
    Surplus power consumption means for consuming surplus power among the power supplied from the rectifying means to the load side,
    The power supply device, wherein the power detection means detects a power level consumed by the surplus power consumption means.
  4.  請求項1~3のいずれかに記載の電源装置において、
     前記制御手段が、前記電力検出手段で検出された電力値に対して、閾値の上限値で前記インピーダンス不整合手段の誘導成分及び/又は容量成分を増加させ、閾値の下限値で前記インピーダンス不整合手段の誘導成分及び/又は容量成分を減少させ、前記整流手段から負荷側に供給される電力を制御することを特徴とする
     電源装置。
    The power supply device according to any one of claims 1 to 3,
    The control means increases the inductive component and / or the capacitive component of the impedance mismatching means with the upper limit value of the threshold with respect to the power value detected by the power detection means, and the impedance mismatch with the lower limit value of the threshold value. A power supply apparatus characterized by controlling inductive components and / or capacitive components of the means and controlling power supplied from the rectifying means to the load side.
  5.  負荷に電力を供給する電力供給方法において、
     電力線に電磁結合するインダクタンス成分であって、当該インダクタンス成分によって誘起される交流電流を前記負荷側に供給する電流変換工程と、
     前記電流変換工程から供給される交流電流を直流電流に整流する整流工程と、
     前記整流工程から負荷側に供給される電力レベルを検出する電力検出工程と、
     誘導成分及び/又は容量成分を有し、当該誘導成分及び/又は容量成分を用いて、前記電流変換工程の入力インピーダンスの整合条件を乱して、当該入力インピーダンスを不平衡化するインピーダンス不整合工程と、
     前記電力検出工程により検出された電力レベルに基づいて、前記インピーダンス不整合工程による不平衡化を制御する制御工程と、
     を含むことを特徴とする
     電力供給方法。
    In a power supply method for supplying power to a load,
    An inductance component that electromagnetically couples to the power line, supplying an alternating current induced by the inductance component to the load side; and
    A rectifying step of rectifying the alternating current supplied from the current converting step into a direct current;
    A power detection step of detecting a power level supplied to the load side from the rectification step;
    Impedance mismatching step having an inductive component and / or a capacitive component, and using the inductive component and / or the capacitive component to disturb the input impedance matching condition of the current conversion step to unbalance the input impedance. When,
    A control step of controlling unbalance by the impedance mismatching step based on the power level detected by the power detection step;
    A power supply method comprising:
  6.  請求項5に記載の電力供給方法において、
     前記整流工程から負荷側に供給される電力のうち余剰となる電力を消費する余剰電力消費工程を含み、
     前記電力検出工程が、前記余剰電力消費工程で消費される電力レベルを検出することを特徴とする
     電力供給方法。
    The power supply method according to claim 5,
    A surplus power consumption step of consuming surplus power out of the power supplied to the load side from the rectification step,
    The power supply method, wherein the power detection step detects a power level consumed in the surplus power consumption step.
  7.  請求項5~6に記載の電力供給方法において、
     前記制御工程が、前記電力検出工程で検出された電力値に対して、閾値の上限値で前記インピーダンス不整合工程の誘導成分及び/又は容量成分を増加させ、閾値の下限値で前記インピーダンス不整合工程の誘導成分及び/又は容量成分を減少させ、前記整流工程から負荷側に供給される電力を制御することを特徴とする
     電力供給方法。
    The power supply method according to any one of claims 5 to 6,
    The control step increases the inductive component and / or the capacitance component of the impedance mismatching step with the upper limit value of the threshold with respect to the power value detected in the power detection step, and the impedance mismatch with the lower limit value of the threshold value. An inductive component and / or a capacitive component of the process is reduced, and the electric power supplied from the rectifying process to the load side is controlled.
PCT/JP2017/043856 2017-04-21 2017-12-06 Power supply device and power supplying method WO2018193661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017564142A JP6351884B1 (en) 2017-04-21 2017-12-06 Power supply device and power supply method
KR1020177037705A KR102057138B1 (en) 2017-04-21 2017-12-06 Power supply and power supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084822 2017-04-21
JP2017084822 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018193661A1 true WO2018193661A1 (en) 2018-10-25

Family

ID=63855774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043856 WO2018193661A1 (en) 2017-04-21 2017-12-06 Power supply device and power supplying method

Country Status (2)

Country Link
KR (1) KR102057138B1 (en)
WO (1) WO2018193661A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095555A1 (en) * 2018-11-08 2020-05-14 Tdk株式会社 Electromagnetic induction-type power generation device
JP2021027659A (en) * 2019-08-02 2021-02-22 株式会社日立製作所 Power supply device and power supply method, and railway vehicle monitoring system using the power supply device
CN113067417A (en) * 2021-04-20 2021-07-02 重庆大学 Reactive compensation-based power-taking CT output power improving method
JP2021145396A (en) * 2020-03-10 2021-09-24 富士電機株式会社 Power supply device
WO2022035038A1 (en) * 2020-08-13 2022-02-17 삼성전자 주식회사 Wireless power transmission device including multiple resonators, and operation method thereof
US20220247210A1 (en) * 2019-12-24 2022-08-04 Tdk Corporation Electromagnetic induction power generator
JP2022541142A (en) * 2019-12-05 2022-09-22 エルジー エナジー ソリューション リミテッド Battery pack with multiple current paths
CN115425769A (en) * 2022-09-05 2022-12-02 广东电网有限责任公司 Resonance energy taking method, system and device for insulated overhead ground wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760822A (en) * 1980-09-18 1982-04-13 Showa Electric Wire & Cable Co Ltd Power feeder
JP2013120098A (en) * 2011-12-06 2013-06-17 Irt:Kk Voltage detection apparatus and power detection apparatus
JP2016507206A (en) * 2013-01-18 2016-03-07 テラ エナジー システム ソリューション カンパニー リミテッド Electromagnetic induction type power supply device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019468A (en) 2013-07-09 2015-01-29 株式会社日立ビルシステム Power supply device of communication apparatus for measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760822A (en) * 1980-09-18 1982-04-13 Showa Electric Wire & Cable Co Ltd Power feeder
JP2013120098A (en) * 2011-12-06 2013-06-17 Irt:Kk Voltage detection apparatus and power detection apparatus
JP2016507206A (en) * 2013-01-18 2016-03-07 テラ エナジー システム ソリューション カンパニー リミテッド Electromagnetic induction type power supply device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095555A1 (en) * 2018-11-08 2020-05-14 Tdk株式会社 Electromagnetic induction-type power generation device
JPWO2020095555A1 (en) * 2018-11-08 2021-09-24 Tdk株式会社 Electromagnetic induction type power generator
JP2021027659A (en) * 2019-08-02 2021-02-22 株式会社日立製作所 Power supply device and power supply method, and railway vehicle monitoring system using the power supply device
JP7257913B2 (en) 2019-08-02 2023-04-14 株式会社日立製作所 Power supply device, power supply method, and railway vehicle monitoring system using the power supply device
JP2022541142A (en) * 2019-12-05 2022-09-22 エルジー エナジー ソリューション リミテッド Battery pack with multiple current paths
JP7237236B2 (en) 2019-12-05 2023-03-10 エルジー エナジー ソリューション リミテッド Battery pack with multiple current paths
US20220247210A1 (en) * 2019-12-24 2022-08-04 Tdk Corporation Electromagnetic induction power generator
JP2021145396A (en) * 2020-03-10 2021-09-24 富士電機株式会社 Power supply device
JP7419890B2 (en) 2020-03-10 2024-01-23 富士電機株式会社 power supply
WO2022035038A1 (en) * 2020-08-13 2022-02-17 삼성전자 주식회사 Wireless power transmission device including multiple resonators, and operation method thereof
CN113067417B (en) * 2021-04-20 2022-11-08 重庆大学 Reactive compensation-based power-taking CT output power improving method
CN113067417A (en) * 2021-04-20 2021-07-02 重庆大学 Reactive compensation-based power-taking CT output power improving method
CN115425769A (en) * 2022-09-05 2022-12-02 广东电网有限责任公司 Resonance energy taking method, system and device for insulated overhead ground wire

Also Published As

Publication number Publication date
KR102057138B1 (en) 2019-12-18
KR20180125867A (en) 2018-11-26

Similar Documents

Publication Publication Date Title
WO2018193661A1 (en) Power supply device and power supplying method
US7880430B2 (en) Power system and method
CA3010956C (en) Electromagnetic induction type power supply device
US10923274B2 (en) Current transformer module and power supply device including the same
JP6351884B1 (en) Power supply device and power supply method
US20200044483A1 (en) Electromagnetic-inductive power supply apparatus
US9205751B2 (en) Battery charging apparatus configured to reduce reactive power through a fuse caused by at least one load
US9192001B2 (en) Reactive power balancing current limited power supply for driving floating DC loads
US20120081072A1 (en) Vehicle battery charger and method of operating same
KR101925182B1 (en) Inductive Power Supply based on Current Transformer
US9906027B2 (en) Transferring electrical power for subsea applications
EP2160825A1 (en) Power supply apparatus
KR101120429B1 (en) Charging circuit of battery for forklift truck
US6583998B2 (en) Power supply regulating having novel charging circuitry
KR100980406B1 (en) AC-DC converter comprising a multi-feedback control circuit
KR101409355B1 (en) Power supply for power line
US6448747B1 (en) Electricity pod controller device
US10992176B2 (en) Dynamic power harvesting system
US20170212544A1 (en) Power consumption reduction device
KR102052950B1 (en) Power conditioning system and Method of driving the same
CN114003082B (en) CT energy-taking method and device based on maximum power point tracking and CT energy-taking system
US11012001B2 (en) Transformer-less, tapped point AC voltage splitter for full bridge DC AC inverters
KR20170121551A (en) Power supply apparatus using current transformer
CN107733101B (en) Wide-area intelligent mutual inductance power-taking control system
KR20180016134A (en) Stabilizing power apparatus and electromagnetic inductive power supply system including thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017564142

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177037705

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906398

Country of ref document: EP

Kind code of ref document: A1