WO2018191935A1 - Techniques and apparatuses for controlling power conservation according to throughput indicators - Google Patents

Techniques and apparatuses for controlling power conservation according to throughput indicators Download PDF

Info

Publication number
WO2018191935A1
WO2018191935A1 PCT/CN2017/081371 CN2017081371W WO2018191935A1 WO 2018191935 A1 WO2018191935 A1 WO 2018191935A1 CN 2017081371 W CN2017081371 W CN 2017081371W WO 2018191935 A1 WO2018191935 A1 WO 2018191935A1
Authority
WO
WIPO (PCT)
Prior art keywords
rank
reception configuration
indicator
configuring
throughput
Prior art date
Application number
PCT/CN2017/081371
Other languages
French (fr)
Inventor
Gaoshan LI
Vivek Chawla
Congchong Ru
Jie Mao
Shashidhar Vummintala
Tom Chin
Wei-Jei Song
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2017/081371 priority Critical patent/WO2018191935A1/en
Publication of WO2018191935A1 publication Critical patent/WO2018191935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for controlling power conservation according to throughput indicators.
  • Wireless communication systems are widely deployed to provide various telecommunication services, such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency divisional multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency divisional multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Third Generation Partnership Project
  • LTE is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, using new spectrum, and integrating with other open standards using OFDMA on the downlink (DL) , SC-FDMA on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology.
  • a method of wireless communication may include estimating, by a user equipment (UE) , an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator; and/or configuring, by the UE, a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
  • UE user equipment
  • a UE may include a memory and one or more processors operatively coupled to the memory.
  • the one or more processors may be configured to estimate an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator; and/or configure a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the one or more processors to estimate an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator; and/or configure a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
  • an apparatus for wireless communication may include means for estimating an estimated downlink data throughput associated with the apparatus based at least in part on a throughput indicator; and/or means for configuring a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the apparatus or a traffic rank of the apparatus.
  • Fig. 1 is a diagram illustrating an example deployment in which multiple wireless networks have overlapping coverage, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example access network in an LTE network architecture, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of a downlink frame structure in LTE, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example of an uplink frame structure in LTE, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example of a radio protocol architecture for a user plane and a control plane in LTE, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a diagram illustrating example components of an evolved Node B and a user equipment in an access network, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating an example of a transmission (Tx) chain and a receiver (Rx) chain that may be used within a wireless communication system, in accordance with various aspects of the present disclosure.
  • Figs. 8A and 8B are illustrations of examples of carrier aggregation types, in accordance with various aspects of the present disclosure.
  • Figs. 9A-9C are diagrams illustrating examples of recursive state machines for dynamic configuration of a reception configuration of a UE, in accordance with various aspects of the present disclosure.
  • Fig. 10 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • a CDMA network may implement a radio access technology (RAT) such as universal terrestrial radio access (UTRA) , CDMA2000, and/or the like.
  • RAT radio access technology
  • UTRA may include wideband CDMA (WCDMA) and/or other variants of CDMA.
  • CDMA2000 may include Interim Standard (IS) -2000, IS-95 and IS-856 standards.
  • IS-2000 may also be referred to as 1x radio transmission technology (1xRTT) , CDMA2000 1X, and/or the like.
  • a TDMA network may implement a RAT such as global system for mobile communications (GSM) , enhanced data rates for GSM evolution (EDGE) , or GSM/EDGE radio access network (GERAN) .
  • GSM global system for mobile communications
  • EDGE enhanced data rates for GSM evolution
  • GERAN GSM/EDGE radio access network
  • An OFDMA network may implement a RAT such as evolved UTRA (E-UTRA) , ultra mobile broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, and/or the like.
  • E-UTRA evolved UTRA
  • UMB ultra mobile broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • UTRA and E-UTRA may be part of the universal mobile telecommunication system (UMTS) .
  • 3GPP long-term evolution (LTE) and LTE-Advanced (LTE-A) are example releases of UMTS that use E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink.
  • UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and RATs mentioned above as well as other wireless networks and RATs.
  • Fig. 1 is a diagram illustrating an example deployment 100 in which multiple wireless networks have overlapping coverage, in accordance with various aspects of the present disclosure. However, wireless networks may not have overlapping coverage in aspects.
  • example deployment 100 may include an evolved universal terrestrial radio access network (E-UTRAN) 105, which may include one or more evolved Node Bs (eNBs) 110, and which may communicate with other devices or networks via a serving gateway (SGW) 115 and/or a mobility management entity (MME) 120.
  • E-UTRAN evolved universal terrestrial radio access network
  • eNBs evolved Node Bs
  • MME mobility management entity
  • example deployment 100 may include a radio access network (RAN) 125, which may include one or more base stations 130, and which may communicate with other devices or networks via a mobile switching center (MSC) 135 and/or an inter-working function (IWF) 140.
  • example deployment 100 may include one or more user equipment (UEs) 145 capable of communicating via E-UTRAN 105 and/or RAN 125.
  • E-UTRAN 105 may support, for example, LTE or another type of RAT.
  • E-UTRAN 105 may include eNBs 110 and other network entities that can support wireless communication for UEs 145.
  • Each eNB 110 may provide communication coverage for a particular geographic area.
  • the term “cell” may refer to a coverage area of eNB 110 and/or an eNB subsystem serving the coverage area on a specific frequency channel.
  • SGW 115 may communicate with E-UTRAN 105 and may perform various functions, such as packet routing and forwarding, mobility anchoring, packet buffering, initiation of network-triggered services, and/or the like.
  • MME 120 may communicate with E-UTRAN 105 and SGW 115 and may perform various functions, such as mobility management, bearer management, distribution of paging messages, security control, authentication, gateway selection, and/or the like, for UEs 145 located within a geographic region served by MME 120 of E-UTRAN 105.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • RAN 125 may support, for example, GSM or another type of RAT.
  • RAN 125 may include base stations 130 and other network entities that can support wireless communication for UEs 145.
  • MSC 135 may communicate with RAN 125 and may perform various functions, such as voice services, routing for circuit-switched calls, and mobility management for UEs 145 located within a geographic region served by MSC 135 of RAN 125.
  • IWF 140 may facilitate communication between MME 120 and MSC 135 (e.g., when E-UTRAN 105 and RAN 125 use different RATs) .
  • MME 120 may communicate directly with an MME that interfaces with RAN 125, for example, without IWF 140 (e.g., when E-UTRAN 105 and RAN 125 use a same RAT) .
  • E-UTRAN 105 and RAN 125 may use the same frequency and/or the same RAT to communicate with UE 145.
  • E-UTRAN 105 and RAN 125 may use different frequencies and/or RATs to communicate with UEs 145.
  • the term base station is not tied to any particular RAT, and may refer to an eNB (e.g., of an LTE network) or another type of base station associated with a different type of RAT.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency or frequency ranges may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency or frequency range may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • UE 145 may be stationary or mobile and may also be referred to as a mobile station, a terminal, an access terminal, a wireless communication device, a subscriber unit, a station, and/or the like.
  • UE 145 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, and/or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • UE 145 may be included inside a housing 145’ that houses components of UE 145, such as processor components, memory components, and/or the like.
  • UE 145 may search for wireless networks from which UE 145 can receive communication services. If UE 145 detects more than one wireless network, then a wireless network with the highest priority may be selected to serve UE 145 and may be referred to as the serving network. UE 145 may perform registration with the serving network, if necessary. UE 145 may then operate in a connected mode to actively communicate with the serving network. Alternatively, UE 145 may operate in an idle mode and camp on the serving network if active communication is not required by UE 145.
  • UE 145 may operate in the idle mode as follows. UE 145 may identify all frequencies/RATs on which it is able to find a “suitable” cell in a normal scenario or an “acceptable” cell in an emergency scenario, where “suitable” and “acceptable” are specified in the LTE standards. UE 145 may then camp on the frequency/RAT with the highest priority among all identified frequencies/RATs. UE 145 may remain camped on this frequency/RAT until either (i) the frequency/RAT is no longer available at a predetermined threshold or (ii) another frequency/RAT with a higher priority reaches this threshold.
  • UE 145 may receive a neighbor list when operating in the idle mode, such as a neighbor list included in a system information block type 5 (SIB 5) provided by an eNB of a RAT on which UE 145 is camped. Additionally, or alternatively, UE 145 may generate a neighbor list.
  • a neighbor list may include information identifying one or more frequencies, at which one or more RATs may be accessed, priority information associated with the one or more RATs, and/or the like.
  • the number and arrangement of devices and networks shown in Fig. 1 are provided as an example. In practice, there may be additional devices and/or networks, fewer devices and/or networks, different devices and/or networks, or differently arranged devices and/or networks than those shown in Fig. 1. Furthermore, two or more devices shown in Fig. 1 may be implemented within a single device, or a single device shown in Fig. 1 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) shown in Fig. 1 may perform one or more functions described as being performed by another set of devices shown in Fig. 1.
  • Fig. 2 is a diagram illustrating an example access network 200 in an LTE network architecture, in accordance with various aspects of the present disclosure.
  • access network 200 may include one or more eNBs 210 (sometimes referred to as “base stations” herein) that serve a corresponding set of cellular regions (cells) 220, one or more low power eNBs 230 that serve a corresponding set of cells 240, and a set of UEs 145, 250.
  • eNBs 210 sometimes referred to as “base stations” herein
  • base stations low power eNBs 230 that serve a corresponding set of cells 240
  • UEs 145, 250 a set of UEs 145, 250.
  • Each eNB 210 may be assigned to a respective cell 220 and may be configured to provide an access point to a RAN.
  • eNB 110, 210 may provide an access point for UE 145, 250 to E-UTRAN 105 (e.g., eNB 210 may correspond to eNB 110, shown in Fig. 1) or may provide an access point for UE 145, 250 to RAN 125 (e.g., eNB 210 may correspond to base station 130, shown in Fig. 1) .
  • the terms base station and eNB may be used interchangeably, and a base station, as used herein, is not tied to any particular RAT.
  • UE 145, 250 may correspond to UE 145, shown in Fig. 1.
  • the eNBs 210 may perform radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and network connectivity (e.g., to SGW 115) .
  • one or more low power eNBs 230 may serve respective cells 240, which may overlap with one or more cells 220 served by eNBs 210.
  • the eNBs 230 may correspond to eNB 110 associated with E-UTRAN 105 and/or base station 130 associated with RAN 125, shown in Fig. 1.
  • a low power eNB 230 may be referred to as a remote radio head (RRH) .
  • the low power eNB 230 may include a femto cell eNB (e.g., home eNB (HeNB) ) , a pico cell eNB, a micro cell eNB, and/or the like.
  • HeNB home eNB
  • a modulation and multiple access scheme employed by access network 200 may vary depending on the particular telecommunications standard being deployed.
  • OFDM is used on the downlink (DL)
  • SC-FDMA is used on the uplink (UL) to support both frequency division duplexing (FDD) and time division duplexing (TDD) .
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB) .
  • EV-DO Evolution-Data Optimized
  • UMB Ultra Mobile Broadband
  • EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations.
  • 3GPP2 3rd Generation Partnership Project 2
  • these concepts may also be extended to UTRA employing WCDMA and other variants of CDMA (e.g., such as TD-SCDMA, GSM employing TDMA, E-UTRA, and/or the like) , UMB, IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM employing OFDMA, and/or the like.
  • WCDMA Wideband Code Division Multiple Access
  • UMB Universal Mobile Broadband Code Division Multiple Access 2000
  • CDMA2000 and UMB are described in documents from the 3GPP2 organization.
  • the actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
  • the eNBs 210 may have multiple antennas supporting MIMO technology.
  • MIMO technology enables eNBs 210 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity.
  • Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency.
  • the data streams may be transmitted to a single UE 145, 250 to increase the data rate or to multiple UEs 145, 250 to increase the overall system capacity. This may be achieved by spatially precoding each data stream (e.g., applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL.
  • the spatially precoded data streams arrive at the UE (s) 250 with different spatial signatures, which enables each of the UE (s) 250 to recover the one or more data streams destined for that UE 145, 250.
  • each UE 145, 250 transmits a spatially precoded data stream, which enables eNBs 210 to identify the source of each spatially precoded data stream.
  • Beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
  • OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol.
  • the subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers.
  • a guard interval e.g., cyclic prefix
  • the UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR) .
  • PAPR peak-to-average power ratio
  • the number and arrangement of devices and cells shown in Fig. 2 are provided as an example. In practice, there may be additional devices and/or cells, fewer devices and/or cells, different devices and/or cells, or differently arranged devices and/or cells than those shown in Fig. 2. Furthermore, two or more devices shown in Fig. 2 may be implemented within a single device, or a single device shown in Fig. 2 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) shown in Fig. 2 may perform one or more functions described as being performed by another set of devices shown in Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of a downlink (DL) frame structure in LTE, in accordance with various aspects of the present disclosure.
  • a frame e.g., of 10 ms
  • Each sub-frame may include two consecutive time slots.
  • a resource grid may be used to represent two time slots, each time slot including a resource block (RB) .
  • the resource grid is divided into multiple resource elements.
  • a resource block includes 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements.
  • a resource block For an extended cyclic prefix, a resource block includes 6 consecutive OFDM symbols in the time domain and has 72 resource elements. Some of the resource elements, as indicated as R 310 and R 320, include DL reference signals (DL-RS) .
  • the DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 310 and UE-specific RS (UE-RS) 320.
  • UE-RS 320 are transmitted only on the resource blocks upon which the corresponding physical DL shared channel (PDSCH) is mapped.
  • the number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
  • an eNB may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the eNB.
  • the primary and secondary synchronization signals may be sent in symbol periods 6 and 5, respectively, in each of subframes 0 and 5 of each radio frame with the normal cyclic prefix (CP) .
  • the synchronization signals may be used by UEs for cell detection and acquisition.
  • the eNB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0.
  • PBCH Physical Broadcast Channel
  • the eNB may send a Physical Control Format Indicator Channel (PCFICH) in the first symbol period of each subframe.
  • the PCFICH may convey the number of symbol periods (M) used for control channels, where M may be equal to 1, 2 or 3 and may change from subframe to subframe. M may also be equal to 4 for a small system bandwidth, e.g., with less than 10 resource blocks.
  • the eNB may send a Physical HARQ Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH) in the first M symbol periods of each subframe.
  • the PHICH may carry information to support hybrid automatic repeat request (HARQ) .
  • the PDCCH may carry information on resource allocation for UEs and control information for downlink channels.
  • the eNB may send a Physical Downlink Shared Channel (PDSCH) in the remaining symbol periods of each subframe.
  • the PDSCH may carry data for UEs scheduled for data transmission on the downlink.
  • the eNB may send the PSS, SSS, and PBCH in the center 1.08 MHz of the system bandwidth used by the eNB.
  • the eNB may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are sent.
  • the eNB may send the PDCCH to groups of UEs in certain portions of the system bandwidth.
  • the eNB may send the PDSCH to specific UEs in specific portions of the system bandwidth.
  • the eNB may send the PSS, SSS, PBCH, PCFICH, and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
  • Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value.
  • Resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs) .
  • Each REG may include four resource elements in one symbol period.
  • the PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0.
  • the PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in symbol periods 0, 1, and 2.
  • the PDCCH may occupy 9, 18, 36, or 72 REGs, which may be selected from the available REGs, in the first M symbol periods, for example. Only certain combinations of REGs may be allowed for the PDCCH.
  • a UE may know the specific REGs used for the PHICH and the PCFICH.
  • the UE may search different combinations of REGs for the PDCCH.
  • the number of combinations to search is typically less than the number of allowed combinations for the PDCCH.
  • An eNB may send the PDCCH to the UE in any of the combinations that the UE will search.
  • Fig. 3 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of an uplink (UL) frame structure in LTE, in accordance with various aspects of the present disclosure.
  • the available resource blocks for the UL may be partitioned into a data section and a control section.
  • the control section may be formed at the two edges of the system bandwidth and may have a configurable size.
  • the resource blocks in the control section may be assigned to UEs for transmission of control information.
  • the data section may include all resource blocks not included in the control section.
  • the UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
  • a UE may be assigned resource blocks 410a, 410b in the control section to transmit control information to an eNB.
  • the UE may also be assigned resource blocks 420a, 420b in the data section to transmit data to the eNB.
  • the UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section.
  • the UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section.
  • a UL transmission may span both slots of a subframe and may hop across frequencies.
  • a set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430.
  • the PRACH 430 carries a random sequence and cannot carry any UL data/signaling.
  • Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks.
  • the starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH.
  • the PRACH attempt is carried in a single subframe (e.g., of 1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (e.g., of 10 ms) .
  • Fig. 4 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of a radio protocol architecture for a user plane and a control plane in LTE, in accordance with various aspects of the present disclosure.
  • the radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions.
  • the L1 layer will be referred to herein as the physical layer 510.
  • Layer 2 (L2 layer) 520 is above the physical layer 510 and is responsible for the link between the UE and eNB over the physical layer 510.
  • the L2 layer 520 includes, for example, a media access control (MAC) sublayer 530, a radio link control (RLC) sublayer 540, and a packet data convergence protocol (PDCP) sublayer 550, which are terminated at the eNB on the network side.
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • the UE may have several upper layers above the L2 layer 520 including a network layer (e.g., IP layer) that is terminated at a packet data network (PDN) gateway on the network side, and an application layer that is terminated at the other end of the connection (e.g., a far end UE, a server, and/or the like) .
  • IP layer e.g., IP layer
  • PDN packet data network gateway
  • the PDCP sublayer 550 provides retransmission of lost data in handover.
  • the PDCP sublayer 550 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs.
  • the RLC sublayer 540 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) .
  • HARQ hybrid automatic repeat request
  • the MAC sublayer 530 provides multiplexing between logical and transport channels.
  • the MAC sublayer 530 is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs.
  • the MAC sublayer 530 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 510 and the L2 layer 520 with the exception that there is no header compression function for the control plane.
  • the control plane also includes a radio resource control (RRC) sublayer 560 in Layer 3 (L3 layer) .
  • the RRC sublayer 560 is responsible for obtaining radio resources (i.e., radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
  • Fig. 5 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 5.
  • Fig. 6 is a diagram illustrating example components 600 of eNB 110, 210, 230 and UE 145, 250 in an access network, in accordance with various aspects of the present disclosure.
  • eNB 110, 210, 230 may include a controller/processor 605, a TX processor 610, a channel estimator 615, an antenna 620, a transmitter 625TX, a receiver 625RX, an RX processor 630, and a memory 635.
  • Fig. 6 is a diagram illustrating example components 600 of eNB 110, 210, 230 and UE 145, 250 in an access network, in accordance with various aspects of the present disclosure.
  • eNB 110, 210, 230 may include a controller/processor 605, a TX processor 610, a channel estimator 615, an antenna 620, a transmitter 625TX, a receiver 625RX, an RX processor 630, and a memory 635.
  • Fig. 6 is a diagram illustrating
  • UE 145, 250 may include a receiver RX, for example, of a transceiver TX/RX 640, a transmitter TX, for example, of a transceiver TX/RX 640, an antenna 645, an RX processor 650, a channel estimator 655, a controller/processor 660, a memory 665, a data sink 670, a data source 675, and a TX processor 680.
  • a receiver RX for example, of a transceiver TX/RX 640
  • a transmitter TX for example, of a transceiver TX/RX 640
  • an antenna 645 for example, an RX processor 650, a channel estimator 655, a controller/processor 660, a memory 665, a data sink 670, a data source 675, and a TX processor 680.
  • controller/processor 605 implements the functionality of the L2 layer.
  • the controller/processor 605 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 145, 250 based, at least in part, on various priority metrics.
  • the controller/processor 605 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 145, 250.
  • the TX processor 610 implements various signal processing functions for the L1 layer (e.g., physical layer) .
  • the signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the UE 145, 250 and mapping to signal constellations based, at least in part, on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • FEC forward error correction
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 615 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 145, 250.
  • Each spatial stream is then provided to a different antenna 620 via a separate transmitter TX, for example, of transceiver TX/RX 625. Each such transmitter TX modulates an RF carrier with a respective spatial stream for transmission.
  • each receiver RX for example, of a transceiver TX/RX 640 receives a signal through its respective antenna 645.
  • Each such receiver RX recovers information modulated onto an RF carrier and provides the information to the receiver (RX) processor 650.
  • the RX processor 650 implements various signal processing functions of the L1 layer.
  • the RX processor 650 performs spatial processing on the information to recover any spatial streams destined for the UE 145, 250. If multiple spatial streams are destined for the UE 145, 250, the spatial streams may be combined by the RX processor 650 into a single OFDM symbol stream.
  • the RX processor 650 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 110, 210, 230. These soft decisions may be based, at least in part, on channel estimates computed by the channel estimator 655.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 110, 210, 230 on the physical channel.
  • the data and control signals are then provided to the controller/processor 660.
  • the controller/processor 660 implements the L2 layer.
  • the controller/processor 660 can be associated with a memory 665 that stores program codes and data.
  • the memory 665 may include a non-transitory computer-readable medium.
  • the controller/processor 660 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to a data sink 670, which represents all the protocol layers above the L2 layer.
  • Various control signals may also be provided to the data sink 670 for L3 processing.
  • the controller/processor 660 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 675 is used to provide upper layer packets to the controller/processor 660.
  • the data source 675 represents all protocol layers above the L2 layer.
  • the controller/processor 660 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based, at least in part, on radio resource allocations by the eNB 110, 210, 230.
  • the controller/processor 660 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 110, 210, 230.
  • Channel estimates derived by a channel estimator 655 from a reference signal or feedback transmitted by the eNB 110, 210, 230 may be used by the TX processor 680 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 680 are provided to different antenna 645 via separate transmitters TX, for example, of transceivers TX/RX 640. Each transmitter TX, for example, of transceiver TX/RX 640 modulates an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the eNB 110, 210, 230 in a manner similar to that described in connection with the receiver function at the UE 145, 250.
  • Each receiver RX for example, of transceiver TX/RX 625 receives a signal through its respective antenna 620.
  • Each receiver RX for example, of transceiver TX/RX 625 recovers information modulated onto an RF carrier and provides the information to a RX processor 630.
  • the RX processor 630 may implement the L1 layer.
  • the controller/processor 605 implements the L2 layer.
  • the controller/processor 605 can be associated with a memory 635 that stores program code and data.
  • the memory 635 may be referred to as a computer-readable medium.
  • the control/processor 605 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 145, 250.
  • Upper layer packets from the controller/processor 605 may be provided to the core network.
  • the controller/processor 605 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • one or more components of UE 145, 250 may be included in a housing 145’ , as shown in Fig 1.
  • One or more components of UE 145, 250 may be configured to perform conserve power according to a throughput indicator, as described in more detail elsewhere herein.
  • the controller/processor 660 and/or other processors and modules of UE 145, 250 may perform or direct operations of, for example, process 900 of Fig. 9, and/or other processes as described herein.
  • one or more of the components shown in Fig. 6 may be employed to perform example process 900, and/or other processes for the techniques described herein.
  • Fig. 6 The number and arrangement of components shown in Fig. 6 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 6. Furthermore, two or more components shown in Fig. 6 may be implemented within a single component, or a single component shown in Fig. 6 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in Fig. 6 may perform one or more functions described as being performed by another set of components shown in Fig. 6.
  • Fig. 7 is a diagram illustrating an example 700 of a transmission (Tx) chain 702 and a receiver (Rx) chain 704 that may be used within a wireless communication system, in accordance with various aspects of the present disclosure.
  • portions of Tx chain 702 may be implemented in a transmitter 625TX and/or 640TX, shown in Fig. 6.
  • Tx chain 702 may be implemented in eNB 210 and/or base station 130 for transmitting data 706 to UE 145, 250 on a downlink channel.
  • Tx chain 702 may be implemented in UE 145, 250 for transmitting data 706 to eNB 210 and/or base station 130 on an uplink channel.
  • An encoder 707 may alter a signal (e.g., a bitstream) 703 into data 706.
  • Data 706 to be transmitted is provided from encoder 707 as input to a serial-to-parallel (S/P) converter 708.
  • S/P converter 708 may split the transmission data into N parallel data streams 710.
  • the N parallel data streams 710 may then be provided as input to a mapper 712.
  • Mapper 712 may map the N parallel data streams 710 onto N constellation points. The mapping may be done using a modulation constellation, such as binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , 8 phase-shift keying (8PSK) , quadrature amplitude modulation (QAM) , etc.
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • 8PSK 8 phase-shift keying
  • QAM quadrature amplitude modulation
  • mapper 712 may output N parallel symbol streams 716, each symbol stream 716 corresponding to one of N orthogonal subcarriers of an inverse fast Fourier transform (IFFT) component 720.
  • IFFT inverse fast Fourier transform
  • N parallel modulations in the frequency domain are equal to N modulation symbols in the frequency domain, which are equal to N mapping and N- point IFFT in the frequency domain, which are equal to one (useful) OFDM symbol in the time domain, which are equal to N samples in the time domain.
  • One OFDM symbol in the time domain, N s is equal to N cp (the number of guard samples per OFDM symbol) + N (the number of useful samples per OFDM symbol) .
  • the N parallel time domain sample streams 718 may be converted into an OFDM/OFDMA symbol stream 722 by a parallel-to-serial (P/S) converter 724.
  • a guard insertion component 726 may insert a guard interval between successive OFDM/OFDMA symbols in the OFDM/OFDMA symbol stream 722.
  • the output of guard insertion component 726 may then be upconverted to a desired transmit frequency band by a radio frequency (RF) front end 728.
  • RF radio frequency
  • An antenna 730 may then transmit the resulting signal 732.
  • Rx chain 704 may utilize OFDM/OFDMA.
  • portions of Tx chain 702 may be implemented in a receiver 625RX and/or 640RX, shown in Fig. 6.
  • Rx chain 704 may be implemented in UE 145, 250 for receiving data 706 from eNB 210 and/or base station 130 on a downlink channel.
  • Rx chain 704 may be implemented in eNB 210 and/or base station 130 for receiving data 706 from UE 145, 250 on an uplink channel.
  • a transmitted signal 732 is shown traveling over a wireless channel 734 from Tx chain 702 to Rx chain 704.
  • the received signal 732' may be downconverted to a baseband signal by an RF front end 728' .
  • a guard removal component 726' may then remove the guard interval that was inserted between OFDM/OFDMA symbols by guard insertion component 726.
  • the output of guard removal component 726' may be provided to an S/P converter 724' .
  • the output may include an OFDM/OFDMA symbol stream 722' , and S/P converter 724' may divide the OFDM/OFDMA symbol stream 722' into N parallel time-domain symbol streams 718' , each of which corresponds to one of the N orthogonal subcarriers.
  • a fast Fourier transform (FFT) component 720' may convert the N parallel time-domain symbol streams 718' into the frequency domain and output N parallel frequency-domain symbol streams 716' .
  • FFT fast Fourier transform
  • a demapper 712' may perform the inverse of the symbol mapping operation that was performed by mapper 712, thereby outputting N parallel data streams 710' .
  • a P/S converter 708' may combine the N parallel data streams 710' into a single data stream 706' .
  • data stream 706' corresponds to data 706 that was provided as input to Tx chain 702.
  • Data stream 706' may be decoded into a decoded data stream 703 by decoder 707' .
  • Fig. 7 The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single components, or a single components shown in Fig. 7 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7. In some aspects, a plurality of Tx chains and/or a plurality of Rx chains may be employed. In some aspects, two or more of such plurality of chains may share one or more power amplifiers.
  • a set of components e.g., one or more components
  • a plurality of Tx chains and/or a plurality of Rx chains may be employed. In some aspects, two or more of such plurality of chains may share one or more power amplifiers.
  • Figs. 8A and 8B are illustrations of examples 800 of carrier aggregation types, in accordance with various aspects of the present disclosure.
  • UE 145, 250 may use spectrum of up to 20 MHz bandwidths allocated in a carrier aggregation of up to a total of 100 MHz (5 component carriers) used for transmission and reception.
  • CA carrier aggregation
  • contiguous CA occurs when multiple available component carriers are adjacent to each other (as illustrated in Fig. 8A) .
  • non-contiguous CA occurs when multiple non-adjacent available component carriers are separated along the frequency band (as illustrated in Fig. 8B) and/or are included in different frequency bands.
  • Both non-contiguous and contiguous CA may aggregate multiple component carriers to serve a single unit of LTE-Advanced UEs 145, 250.
  • UE 145, 250 operating in a multicarrier system (also referred to as carrier aggregation) is configured to aggregate certain functions of multiple carriers, such as control and feedback functions, on the same carrier, which may be referred to as a primary carrier.
  • the remaining carriers that depend on the primary carrier for support may be referred to as secondary carriers.
  • UE 145, 250 may aggregate control functions such as those provided by the optional dedicated channel (DCH) , the nonscheduled grants, a physical uplink control channel (PUCCH) , and/or a physical downlink control channel (PDCCH) .
  • DCH optional dedicated channel
  • PUCCH physical uplink control channel
  • PDCCH physical downlink control channel
  • FIGS. 8A and 8B are provided as examples. Other examples are possible and may differ from what was described in connection with Figs. 8A and 8B.
  • a UE 145, 250 may use certain features to improve downlink performance or reduce power consumption of the UE 145, 250.
  • the UE 145, 250 may use multiple, different receiver chains (Rx chains, such as Rx chain 704) to improve throughput and/or diversity of downlink traffic.
  • Rx chains such as Rx chain 704
  • the UE 145, 250 may use a higher traffic rank (e.g., a higher quantity of MIMO data signals) to improve throughput or diversity when MIMO performance is good, and may use a lower traffic rank to improve reliability when MIMO performance is bad.
  • Rx chains may use battery power when active.
  • using a higher traffic rank may consume more processor power and battery power than using a lower traffic rank. Therefore, it may be beneficial to configure usage or settings of such features according to a need for such features. For example, the benefits provided by multiple Rx chains and/or a higher traffic rank may be outweighed by the decreased battery life required to implement and maintain these features.
  • Techniques and apparatuses, described herein, configure a reception configuration of a UE 145, 250 based at least in part on an estimated downlink throughput of the UE 145, 250.
  • the UE 145, 250 may determine the estimated downlink throughput based at least in part on one or more throughput indicators associated with the UE 145, 250.
  • the UE 145, 250 may configure a quantity of active Rx chains of the UE 145, 250, a reported rank indicator of the UE 145, 250, a processor cycle rate of the UE 145, 250, and/or the like.
  • the UE 145, 250 may selectively configure the reception configuration to improve downlink performance, or to reduce battery consumption, based at least in part on the estimated downlink throughput. Furthermore, the UE 145, 250 may select a maximum allowed rank or a rank number to be implemented based at least in part on an RB allocation associated with the UE 145, 250. For example, when the RB allocation does not satisfy a threshold (e.g., when downlink traffic is sparse) , the UE 145, 250 may use fewer Rx chains and/or a lower rank.
  • a threshold e.g., when downlink traffic is sparse
  • the UE 145, 250 may use more Rx chains and/or a higher rank. In this way, the UE 145, 250 adapts a reception configuration based at least in part on channel loading and channel conditions to improve throughput and battery performance of the UE 145, 250.
  • Figs. 9A-9C are diagrams illustrating examples 900 of recursive state machines for dynamic configuration of a reception configuration of a UE 145, 250, in accordance with various aspects of the present disclosure.
  • the UE 145, 250 may identify an estimated downlink throughput based at least in part on a throughput indicator of the UE 145, 250.
  • the throughput indicator may include, for example, a channel characteristic indicator and/or channel quality indication (e.g., signal to noise ratio (SNR) , a cyclic redundancy check (CRC) error count, a rank indicator, a channel quality indicator, etc.
  • SNR signal to noise ratio
  • CRC cyclic redundancy check
  • a traffic characteristic e.g., a transport block size or transport block number, statistical information regarding downlink traffic, and/or the like
  • a channel loading indicator e.g., a resource block allocation rate of a band associated with the UE 145, 250, a reference signal received quality of the UE 145, 250, and/or the like
  • a channel quality indication may include SNR, a CRC error count and/or a channel quality indicator.
  • the state machine may be associated with a set of states 901 through 911.
  • States 901 through 911 may be associated with respective transition conditions 1 through 26 (shown as TC1 through TC26) .
  • TC1 through TC26 respective transition conditions 1 through 26
  • a UE 145, 250 may transition from a first state to a second state when a transition condition between the first state and the second state is satisfied.
  • each state is associated with a particular rank or change in rank and/or a particular quantity of Rx chains or a change in quantity of Rx chains.
  • a rank number may identify a quantity of independent (e.g., uncorrelated, non-redundant) traffic streams on a downlink of the UE 145, 250.
  • ranks and Rx chain quantities are both shown using R i (e.g., R i , R i+1 , and/or R i-1 ) .
  • R i may correspond to a particular rank number or Rx chain quantity.
  • R 1 may correspond to a rank number of 1 or 1 active Rx chain
  • R 2 may correspond to a rank number of 2 or 2 active Rx chains
  • R 3 may correspond to a rank number of 4 or 4 active Rx chains
  • R 4 may correspond to a rank number of 8 or 8 active Rx chains.
  • R i is equal to R 2 . That is, assume that the UE 145, 250 is associated with 2 active Rx chains and a rank number of 2. In such a case, the UE 145, 250 may start at state 901 of Fig. 9A. Now assume that the UE 145, 250 determines that TC1, between state 901 and state 902, is satisfied, as is described in more detail elsewhere herein. In such a case, the UE 145, 250 may deactivate one of the two active Rx chains, leaving a total of 1 active Rx chain. Then, the UE 145, 250 may determine whether TC2, between state 902 and state 904, is satisfied.
  • the UE 145, 250 may transition to state 904, and may decrease a rank number of the UE 145, 250 to 1 (e.g., by reporting a rank indicator of 1 to an eNB 110, 210, 230) .
  • the UE 145, 250 may continue to operate according to the state machine.
  • the UE 145, 250 may start again at state 901, or may use one of the state machines shown in Fig. 9B (e.g., when R i is equal to a maximum rank number or active Rx chain quantity of the UE) or Fig. 9C (e.g., when R i is equal to a minimum rank number or active Rx chain quantity of the UE) .
  • the UE 145, 250 may switch from state 901 to state 902 based at least in part on TC1.
  • TC1 may be based at least in part on a quantity of continuous subframes with a granted rank number that is less than a rank number associated with R i and an SNR value of the UE 145, 250.
  • the UE 145, 250 may switch from state 901 to 902.
  • the maximum threshold SNR may be based at least in part on an SNR threshold of a downlink control channel at R i+1 .
  • the SNR threshold may indicate whether a block error rate (BLER) can meet a quality requirement for downlink control channel decoding at an antenna diversity number R i+1 for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) .
  • the maximum threshold SNR may be based at least in part on an SNR threshold of a downlink shared channel at R i+1 .
  • the SNR threshold may indicate whether a BLER can meet a quality requirement for downlink shared channel decoding at an antenna diversity number R i+1 for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) .
  • the UE 145, 250 may switch from state 902 to state 904 based at least in part on TC2.
  • TC2 may relate to reporting of a decreased rank indicator to eNB 110, 210, 230.
  • the UE 145, 250 may switch from state 902 to 904 when a particular length of time has passed after reporting the decreased rank indicator (e.g., to cause the rank number associated with the UE 145, 250 to decrease) .
  • the particular length of time may be configured to permit the UE 145, 250 to be configured for communication according to the decreased rank number.
  • the UE 145, 250 may switch from state 902 to state 901 based at least in part on TC3.
  • TC3 may relate to a granted rank number and/or a CRC error count.
  • the UE 145, 250 may switch from state 902 to state 901 when the granted rank number is greater than or equal to R i-1 and/or when a CRC error count satisfies an error count threshold.
  • the UE 145, 250 may determine that the channel is associated with low quality, and may accordingly increase a rank and/or Rx chain number of the UE 145, 250 to improve diversity.
  • the UE 145, 250 may switch from state 902 to state 901 based at least in part on TC4.
  • TC4 may relate to a maximum allowed rank of the UE 145, 250, a request for a rank indicator report being received, and/or a quantity of subframes before a periodic rank indicator report is transmitted.
  • the UE 145, 250 may switch from state 902 to state 901 (e.g., may not change the rank number of the UE 145, 250) when the maximum allowed rank is greater than R i-1 and when a request for a rank indicator report is received, or when the UE 145, 250 determines that a periodic rank indicator report is to be transmitted within a particular quantity of subframes.
  • the UE 145, 250 may not change a Rx chain state of the UE 145, 250 until an inter-rank state change is completed, which may reduce configuration errors of the UE 145, 250.
  • the UE 145, 250 may delay the state change from state 902 to state 901 associated with TC3 when TC4 is satisfied to permit measurement of channel conditions (e.g., the rank indicator of the UE 145, 250) to converge.
  • the maximum allowed rank may be based at least in part on a traffic indicator, such as an average quantity of RBs in a current rank indicator reporting cycle (e.g., 80 ms in length, 160 ms in length, and/or the like) .
  • a traffic indicator such as an average quantity of RBs in a current rank indicator reporting cycle (e.g., 80 ms in length, 160 ms in length, and/or the like) .
  • the UE 145, 250 may be associated with various RB thresholds for corresponding values of R i .
  • an average quantity of RBs associated with a maximum allowable rank of R i in a current rank indicator reporting cycle satisfies an RB threshold for a maximum allowable rank of R i+1
  • the UE 145, 250 may reconfigure the maximum allowed rank to R i+1 .
  • the UE 145, 250 may reconfigure the maximum allowed rank to R i-1 .
  • the UE 145, 250 may remain at the maximum allowed rank of R i .
  • the UE 145, 250 may selectively adjust the maximum allowed rank upward or downward based at least in part on allocation of downlink RBs for the UE 145, 250.
  • the UE 145, 250 reduces rank number when traffic is sparse, and increases rank when traffic is common.
  • the UE 145, 250 may maintain state 901 and/or perform another action based at least in part on TC5.
  • TC5 may relate to a measured rank indicator.
  • the UE 145, 250 may maintain state 901 and/or report the measured rank indicator to the eNB 110, 210, 230.
  • the UE 145, 250 may switch from state 901 to state 904 based at least in part on TC6.
  • TC6 may relate to a measured rank indicator.
  • the UE 145, 250 may delay a particular quantity of subframes after determining the measured rank indicator (e.g., to permit the UE 145, 250 to reconfigure to support the measured rank indicator) , and may report the measured rank indicator to the eNB 110, 210, 230.
  • the UE 145, 250 may switch from state 901 to state 903 based at least in part on TC7.
  • TC7 may relate to a granted rank number and/or a CRC error count of the UE 145, 250.
  • the UE 145, 250 may switch from state 901 to state 903.
  • the UE 145, 250 may switch from state 901 to state 903 based at least in part on TC8.
  • TC8 may relate to a maximum allowed rank of the UE 145, 250, a request for a rank indicator report being received, and/or a quantity of subframes before a periodic rank indicator report is transmitted.
  • a maximum allowed rank of the UE 145, 250 is greater than R i
  • the UE 145, 250 may lock a Rx chain state change associated with TC7 until an end of an inter-rank state change, which may permit measurement of the measured rank indicator to converge, thereby improving measurement of the rank indicator.
  • the UE 145, 250 may switch from state 903 to state 901 based at least in part on TC9.
  • TC9 may relate to an SNR of the UE 145, 250.
  • an SNR of the UE 145, 250 satisfies a threshold in comparison to a maximum SNR of a downlink control channel and a downlink shared channel of the UE 145, 250
  • the UE 145, 250 may switch from state 903 to state 901.
  • the maximum SNR may be based at least in part on an SNR threshold of a downlink control channel at R i .
  • the SNR threshold may indicate whether a BLER can meet a quality requirement for downlink control channel decoding at an antenna diversity number R i for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) .
  • the UE 145, 250 may switch from state 903 to state 901 based at least in part on TC10.
  • TC10 may relate to a CQI reporting configuration of the UE 145, 250. For example, when an SNR of the UE 145, 250 satisfies a threshold, and when a total quantity of RBs allocated in a particular number of continuous subframes does not satisfy an RB threshold, the UE 145, 250 may report a decreased CQI to the eNB 110, 210, 230. This may cause the eNB 110, 210, 230 to reduce a quantity of active Rx chains of the UE 145, 250 due to the decreased CQI, thereby causing state 901 to be implemented.
  • the RB threshold may be based at least in part on a loading of a band associated with the UE 145, 250. For example, when the RB threshold is not satisfied, the UE 145, 250 may determine that the band is not heavily loaded, and may therefore use fewer Rx chains since interference is likely to be low. As a more particular example, the RB threshold may correspond to R i . For example, the RB threshold may be equal to a rank number of R i minus one.
  • the UE 145, 250 may switch from state 903 to state 904 based at least in part on TC11.
  • TC11 may relate to a measured rank indicator of the UE 145, 250.
  • the UE 145, 250 may report the measured rank indicator to the eNB 110, 210, 230 (e.g., after a delay of a particular quantity of subframes to permit the UE 145, 250 to be reconfigured to use the measured rank indicator) .
  • the eNB 110, 210, 230 may decrease the rank number of the UE 145, 250 based at least in part on the measured rank indicator, and may, therefore, decrease the quantity of Rx chains of the UE 145, 250 to match the rank number. In this way, when traffic conditions are insufficient to support a large rank number, the UE 145, 250 may decrease rank number so that efficiency is improved and battery is conserved.
  • the UE 145, 250 may remain in state 903 based at least in part on TC12.
  • TC12 may relate to a measured rank indicator of the UE 145, 250.
  • the UE 145, 250 may report the rank indicator to the eNB 110, 210, 230.
  • the eNB 110, 210, 230 may not change the rank number associated with the UE 145, 250.
  • the UE 145, 250 may remain in state 903.
  • the UE 145, 250 may switch from state 903 to state 905 based at least in part on TC13.
  • TC13 may relate to a CRC error count of the UE 145, 250.
  • the UE 145, 250 may switch from state 903 to state 905.
  • the UE 145, 250 may switch from state 903 to state 905 based at least in part on TC14.
  • TC14 may relate to a measured rank indicator of the UE 145, 250.
  • the UE 145, 250 may report the measured rank indicator to the eNB 110, 210, 230 (e.g., after a delay of a particular number of subframes) .
  • the eNB 110, 210, 230 may accordingly increase the rank number of the UE 145, 250 to the measured rank indicator, which may lead to the switch from state 903 to state 901.
  • the UE 145, 250 may transition to the state machine shown by Fig. 9B, or may restart at state 901, when the UE 145, 250 is in state 905.
  • the UE 145, 250 may transition to the state machine shown by Fig. 9B when the UE 145, 250 is associated with a highest rank and/or number of active Rx chains.
  • the UE 145, 250 may recursively switch between states based at least in part on an estimated throughput associated with the UE 145, 250.
  • the estimated throughput may be determined based at least in part on various throughput indicators, as described above.
  • the UE 145, 250 may switch between states based at least in part on transition conditions associated with the various throughput indicators, which may permit optimization of the UE 145, 250 for increased throughput (when the throughput indicators indicate that throughput is likely to be high) or improved battery life (when the throughput indicators indicate that throughput is not likely to be high) .
  • Fig. 9B shows an example of a state machine for a UE 145, 250 associated with a maximum rank number and a maximum number of active Rx chains.
  • R i corresponds to a maximum rank number and a maximum number of Rx chains of a UE 145, 250.
  • the maximum rank number and maximum number of Rx chains of the UE 145, 250 may be associated with a state 906.
  • the UE 145, 250 may switch from state 906 to state 907 based at least in part on TC15.
  • TC15 may relate to a measured rank indicator of the UE 145, 250.
  • the UE 145, 250 may report the measured rank indicator to the eNB 110, 210, 230 (e.g., after a delay of a particular number of subframes to permit the UE 145, 250 to be reconfigured for the measured rank indicator) .
  • the eNB 110, 210, 230 may decrease the rank number associated with the UE to R i-1 based at least in part on the rank indicator, and may therefore decrease the number of active Rx chains associated with the UE 145, 250 to match the rank number.
  • the UE 145, 250 may switch from state 906 to state 908 based at least in part on TC16.
  • TC16 may relate to a granted rank number and an SNR of the UE 145, 250.
  • the UE 145, 250 may switch from state 906 to state 908.
  • the UE 145, 250 may decrease a number of active Rx chains when channel conditions are good on the decreased number of Rx chains, and when a rank number of the UE 145, 250 is lower than the
  • the maximum threshold SNR may be based at least in part on an SNR threshold of a downlink control channel at R i-1 .
  • the SNR threshold may indicate whether a BLER can meet a quality requirement for downlink control channel decoding at an antenna diversity number R i-1 for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) .
  • the maximum threshold SNR may be based at least in part on an SNR threshold of a downlink shared channel at R i-1 .
  • the SNR threshold may indicate whether a BLER can meet a quality requirement for downlink shared channel decoding at an antenna diversity number R i+1 for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) .
  • the UE 145, 250 may switch from state 908 to state 906 based at least in part on TC17.
  • TC17 may relate to a granted rank number and/or a CRC error count of the UE 145, 250.
  • the UE 145, 250 may switch from state 908 to state 906.
  • the UE 145, 250 may improve Rx chain diversity to improve reception of downlink traffic associated with a high CRC error count.
  • the UE 145, 250 may switch from state 908 to state 906 based at least in part on TC18.
  • TC18 may relate to a maximum allowed rank of the UE 145, 250, a request for a rank indicator report being received, and/or a quantity of subframes before a periodic rank indicator report is transmitted.
  • the UE 145, 250 may lock a Rx chain state change associated with TC17 until an end of an inter-rank state change, which may reduce configuration errors of the UE 145, 250 and allow channel quality measurements to converge.
  • the UE 145, 250 may switch from state 908 (or state 906) to state 907 based at least in part on TC19.
  • TC19 may relate to reporting of a measured rank indicator of the UE 145, 250.
  • the UE 145, 250 may report the rank indicator after a delay of a particular quantity of subframes to permit the UE 145, 250 to be reconfigured to support the rank indicator of R i-1 . This may reduce configuration errors of the UE 145, 250, and may provide time for channel estimation results to converge with regard to the UE 145, 250 and the eNB 110, 210, 230.
  • the UE 145, 250 may remain in state 906 based at least in part on TC20.
  • TC20 may relate to a measured rank indicator of the UE 145, 250.
  • the UE 145, 250 may report the measured rank indicator to the eNB 110, 210, 230, and may therefore remain in state 906.
  • Fig. 9C shows an example of a state machine for a UE 145, 250 associated with a minimum rank number and a minimum number of active Rx chains.
  • state 909 corresponds to a rank number of 1 and a single active Rx chain of the UE 145, 250.
  • the UE 145, 250 may switch from state 909 to state 910 based at least in part on TC21.
  • TC21 may relate to a granted rank number or a CRC error count of the UE 145, 250.
  • the UE 145, 250 may switch from state 909 to 910.
  • the UE 145, 250 may increase a quantity of active Rx chains when channel conditions are poor or when additional channels are needed to support a granted rank number.
  • the UE 145, 250 may switch from state 909 to state 910 based at least in part on TC22.
  • TC22 may relate to a maximum allowed rank of the UE 145, 250, a request for a rank indicator report being received, and/or a quantity of subframes before a periodic rank indicator report is transmitted.
  • a maximum allowed rank of the UE 145, 250 is greater than 1, and when a request for a rank indicator report is received, or when the UE 145, 250 determines that a periodic rank indicator report is to be transmitted within a particular quantity of subframes, the UE 145, 250 may lock a Rx chain state change associated with TC21 until an end of an inter-rank state change, which may permit channel condition measurements of the UE 145, 250 to converge.
  • the UE 145, 250 may switch from state 910 to state 909 based at least in part on TC23.
  • TC23 may relate to an SNR of the UE 145, 250.
  • the UE 145, 250 may switch from state 910 to 909 when the SNR of all channels of the UE 145, 250 is greater than a maximum SNR threshold of a downlink data channel of the UE 145, 250 and a downlink shared channel of the UE 145, 250 with a single active Rx chain.
  • the UE 145, 250 may switch to a single active Rx chain when channel conditions indicate that multiple Rx chains are not needed.
  • the UE 145, 250 may switch from state 910 to state 909 based at least in part on TC24.
  • TC24 may relate to an SNR of the UE 145, 250 and an RB allocation of the UE 145, 250.
  • the UE 145, 250 may switch from state 910 to state 909. This may conserve battery resources of the UE 145, 250 that would otherwise be used to operate a higher quantity of Rx chains.
  • the UE 145, 250 may decrease a reported CQI measurement to cause state 909 to be implemented.
  • the UE 145, 250 may remain in state 910 based at least in part on TC25.
  • TC25 may relate to a measured rank indicator of the UE 145, 250.
  • the UE 145, 250 may report the measured rank indicator to eNB 110, 210, 230. Therefore, the UE 145, 250 may remain in state 910.
  • the UE 145, 250 may switch from state 910 to state 911 based at least in part on TC26.
  • TC26 may relate to a CRC error count of the UE 145, 250.
  • the UE 145, 250 may switch from state 910 to state 911 when the CRC error count satisfies a threshold.
  • the UE 145, 250 may improve diversity when error count is high.
  • the UE 145, 250 may switch from state 910 to state 911 based at least in part on TC27.
  • TC27 may relate to a measured rank indicator of the UE 145, 250.
  • the UE 145, 250 may report the measured rank indicator to the eNB 110, 210, 230 (e.g., after a delay) .
  • the UE 145, 250 may be reconfigured to state 911.
  • the UE 145, 250 may transition from state 911 to state 901.
  • the UE 145, 250 may increase or decrease a clock speed of a processor of the UE 145, 250 based at least in part on any one or more of the above states. For example, the UE 145, 250 may decrease a clock speed of a processor of the UE 145, 250 when the UE 145, 250 switches to a state that includes decreasing a traffic rank and/or quantity of active Rx chains. Additionally, or alternatively, the UE 145, 250 may increase a clock speed of a processor of the UE 145, 250 when the UE 145, 250 switches to a state that includes increasing a traffic rank and/or quantity of active Rx chains.
  • the UE 145, 250 may increase a quantity of active Rx chains based at least in part on a CRC error count satisfying an error count threshold. Additionally, or alternatively, the UE 145, 250 may increase a quantity of active Rx chains based at least in part on a granted rank number being greater than a current quantity of active Rx chains. Additionally, or alternatively, the UE 145, 250 may increase a quantity of active Rx chains based at least in part on a maximum allowed rank being greater than a current quantity of active Rx chains and a rank indicator report being provided within a particular length of time or receiving a request for a rank indicator report.
  • the UE 145, 250 may reduce a quantity of active Rx chains when an SNR of the UE 145, 250 satisfies a maximum SNR threshold of a downlink shared channel of the UE 145, 250 and a downlink common channel of the UE 145, 250 at a current quantity of active Rx chains. Additionally, or alternatively, the UE 145, 250 may reduce a quantity of active Rx chains when an SNR of the UE 145, 250 satisfies a downlink control channel SNR threshold, and when an average quantity of RBs in a band associated with the UE 145, 250 in a particular time period does not satisfy an RB threshold.
  • the UE 145, 250 may reduce a quantity of active Rx chains when a particular quantity of continuous subframes are associated with granted rank numbers that are less than a current quantity of active Rx chains minus one, and when the SNR of the UE 145, 250 satisfies the maximum SNR threshold. In other words, when the granted rank number is less than R i-1 for the particular quantity of continuous subframes, the UE 145, 250 may reduce the quantity of active Rx chains.
  • the UE 145, 250 may increase the quantity of active Rx chains based at least in part on a quantity of continuous subframes being associated with granted rank numbers that are greater than the current quantity of active Rx chains minus one, or when the CRC error count satisfies a CRC threshold. In other words, the UE 145, 250 may increase the quantity of active Rx chains when the granted rank number is greater than R i-1 for the particular quantity of continuous subframes.
  • the UE 145, 250 may increase a rank number of the UE 145, 250 when a measured rank number is less than or equal to R i-1 . In such a case, the UE 145, 250 may increase the rank number based at least in part on a particular delay after reporting the measured rank number. Additionally, or alternatively, the UE 145, 250 may increase the current rank number when a CRC error count of the UE 145, 250 satisfies an error count threshold.
  • the UE 145, 250 may decrease a rank number of the UE 145, 250 when the measured rank number is less than or equal to R i-1 . In such a case, the UE 145, 250 may decrease the rank number based at least in part on a particular delay after reporting the measured rank number. In some aspects, the UE 145, 250 may maintain a current rank number of the UE 145, 250 when the measured rank number is between R i-1 and R i .
  • the UE 145, 250 may select a quantity of active Rx chains for an intra-band carrier aggregation implementation. For example, the UE 145, 250 may select a maximum quantity of respective quantities of Rx chains for a primary cell downlink shared channel, a secondary cell downlink shared channel, a primary cell downlink control channel, and a secondary cell downlink control channel. In such a case, each band of the intra-band carrier aggregation implementation may be controlled according to the above state machines and/or conditions.
  • the UE 145, 250 may use a most recent reported rank indicator as a current rank number of the UE 145, 250.
  • IDRX idle mode discontinuous reception
  • the UE 145, 250 may use a quantity of Rx chains equal to R i (e.g., a current rank number of the UE 145, 250) .
  • Figs. 9A-9C are provided as examples. Other examples are possible and may differ from what was described with respect to Figs. 9A-9C.
  • Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Example process 1000 is an example where a UE (e.g., UE 145, 250) performs configuration of a reception configuration based at least in part on a throughput indicator.
  • a UE e.g., UE 145, 250
  • process 1000 may include estimating an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator (block 1010) .
  • the UE 145, 250 may estimate an estimated downlink data throughput based at least in part on at least one throughput indicator, as described above.
  • the at least one throughput indicator may include, for example, a rank indicator, an SNR, a CRC error count, a RB allocation, and/or the like.
  • process 1000 may include configuring a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE (block 1020) .
  • the UE 145, 250 may configure a reception configuration of the UE 145, 250 based at least in part on the estimated downlink data throughput.
  • the UE 145, 250 may configure the reception configuration based at least in part on a channel quality indication of the UE 145, 250.
  • the reception configuration may relate to at least one of a number of active Rx chains of the UE 145, 250 or a traffic rank number of the UE 145, 250. In some aspects, the reception configuration may relate to a clock speed of a processor of the UE 145, 250.
  • configuring the reception configuration further includes modifying a rank indicator transmitted by the UE. In some aspects, configuring the reception configuration further includes configuring a maximum allowed rank of the UE. In some aspects, the maximum allowed rank is determined based at least in part on at least one traffic indicator and a current transmit mode of UE 145, 250. In some aspects, configuring the reception configuration further includes modifying the number of active receiver chains. In some aspects, configuring the reception configuration further includes modifying a channel quality indication transmitted by the UE 145, 250. In some aspects, configuring the reception configuration further includes modifying a clock speed of a processor of the UE 145, 250.
  • the throughput indicator is based at least in part on a transport block size allocated for the UE 145, 250. In some aspects, the throughput indicator is based at least in part on a quantity of consecutive subframes having a granted rank number that is lower than a rank context between the UE 145, 250 and a base station (e.g., eNB 110, 210, 230) . In some aspects, the throughput indicator is based at least in part on a modulation and coding scheme associated with the UE 145, 250.
  • the throughput indicator is based at least in part on a resource block allocation of the UE 145, 250.
  • the channel quality indication is based at least in part on a signal to noise ratio of the UE 145, 250.
  • the channel quality indication is based at least in part on a cyclic redundancy check error rate of the UE 145, 250.
  • the reception configuration is further configured based at least in part on a determination that the UE 145, 250 is associated with a connected-mode discontinuous reception cycle.
  • the reception configuration is further configured based at least in part on a determination that the UE 145, 250 is associated with an idle discontinuous reception cycle.
  • the UE 145, 250 is configured to use at least two channels with an intra-band configuration, the at least two channels are associated with respective quantities of active receiver chains, and the reception configuration is further configured according to a highest quantity of active receiver chains of the respective quantities of active receiver chains. In some aspects, configuring the reception configuration is performed iteratively or dynamically.
  • process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
  • the term component is intended to be broadly construed as hardware, firmware, or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, or a combination of hardware and software.
  • satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may estimate an estimated downlink data throughput associated with the wireless communication device based at least in part on a throughput indicator; and/or configure a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the wireless communication device or a traffic rank of the wireless communication device. Numerous other aspects are provided.

Description

TECHNIQUES AND APPARATUSES FOR CONTROLLING POWER CONSERVATION ACCORDING TO THROUGHPUT INDICATORS
FIELD OF THE DISCLOSURE
 Aspects of the present disclosure generally relate to wireless communication, and more particularly to techniques and apparatuses for controlling power conservation according to throughput indicators.
BACKGROUND
 Wireless communication systems are widely deployed to provide various telecommunication services, such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency divisional multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
 These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, a national, a regional, and even a global level. An example of a telecommunication standard is Long Term Evolution (LTE) . LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project  (3GPP) . LTE is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, using new spectrum, and integrating with other open standards using OFDMA on the downlink (DL) , SC-FDMA on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology.
SUMMARY
 In some aspects, a method of wireless communication may include estimating, by a user equipment (UE) , an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator; and/or configuring, by the UE, a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
 In some aspects, a UE may include a memory and one or more processors operatively coupled to the memory. The one or more processors may be configured to estimate an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator; and/or configure a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
 In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the one or more processors to estimate an estimated downlink data throughput associated with the UE based at least in  part on a throughput indicator; and/or configure a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
 In some aspects, an apparatus for wireless communication may include means for estimating an estimated downlink data throughput associated with the apparatus based at least in part on a throughput indicator; and/or means for configuring a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the apparatus or a traffic rank of the apparatus.
 Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, wireless communication device, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings.
 The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with  the accompanying figures. Each of the figures is provided for the purpose of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
 So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
 Fig. 1 is a diagram illustrating an example deployment in which multiple wireless networks have overlapping coverage, in accordance with various aspects of the present disclosure.
 Fig. 2 is a diagram illustrating an example access network in an LTE network architecture, in accordance with various aspects of the present disclosure.
 Fig. 3 is a diagram illustrating an example of a downlink frame structure in LTE, in accordance with various aspects of the present disclosure.
 Fig. 4 is a diagram illustrating an example of an uplink frame structure in LTE, in accordance with various aspects of the present disclosure.
 Fig. 5 is a diagram illustrating an example of a radio protocol architecture for a user plane and a control plane in LTE, in accordance with various aspects of the present disclosure.
 Fig. 6 is a diagram illustrating example components of an evolved Node B and a user equipment in an access network, in accordance with various aspects of the present disclosure.
 Fig. 7 is a diagram illustrating an example of a transmission (Tx) chain and a receiver (Rx) chain that may be used within a wireless communication system, in accordance with various aspects of the present disclosure.
 Figs. 8A and 8B are illustrations of examples of carrier aggregation types, in accordance with various aspects of the present disclosure.
 Figs. 9A-9C are diagrams illustrating examples of recursive state machines for dynamic configuration of a reception configuration of a UE, in accordance with various aspects of the present disclosure.
 Fig. 10 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
 The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details.
 The techniques described herein may be used for one or more of various wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single carrier  FDMA (SC-FDMA) networks, or other types of networks. A CDMA network may implement a radio access technology (RAT) such as universal terrestrial radio access (UTRA) , CDMA2000, and/or the like. UTRA may include wideband CDMA (WCDMA) and/or other variants of CDMA. CDMA2000 may include Interim Standard (IS) -2000, IS-95 and IS-856 standards. IS-2000 may also be referred to as 1x radio transmission technology (1xRTT) , CDMA2000 1X, and/or the like. A TDMA network may implement a RAT such as global system for mobile communications (GSM) , enhanced data rates for GSM evolution (EDGE) , or GSM/EDGE radio access network (GERAN) . An OFDMA network may implement a RAT such as evolved UTRA (E-UTRA) , ultra mobile broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, and/or the like. UTRA and E-UTRA may be part of the universal mobile telecommunication system (UMTS) . 3GPP long-term evolution (LTE) and LTE-Advanced (LTE-A) are example releases of UMTS that use E-UTRA, which employs OFDMA on the downlink and SC-FDMA on the uplink. UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and RATs mentioned above as well as other wireless networks and RATs.
 Fig. 1 is a diagram illustrating an example deployment 100 in which multiple wireless networks have overlapping coverage, in accordance with various aspects of the present disclosure. However, wireless networks may not have overlapping coverage in aspects. As shown, example deployment 100 may include an evolved universal terrestrial radio access network (E-UTRAN) 105, which may include one or more  evolved Node Bs (eNBs) 110, and which may communicate with other devices or networks via a serving gateway (SGW) 115 and/or a mobility management entity (MME) 120. As further shown, example deployment 100 may include a radio access network (RAN) 125, which may include one or more base stations 130, and which may communicate with other devices or networks via a mobile switching center (MSC) 135 and/or an inter-working function (IWF) 140. As further shown, example deployment 100 may include one or more user equipment (UEs) 145 capable of communicating via E-UTRAN 105 and/or RAN 125.
 E-UTRAN 105 may support, for example, LTE or another type of RAT. E-UTRAN 105 may include eNBs 110 and other network entities that can support wireless communication for UEs 145. Each eNB 110 may provide communication coverage for a particular geographic area. The term “cell” may refer to a coverage area of eNB 110 and/or an eNB subsystem serving the coverage area on a specific frequency channel.
 SGW 115 may communicate with E-UTRAN 105 and may perform various functions, such as packet routing and forwarding, mobility anchoring, packet buffering, initiation of network-triggered services, and/or the like. MME 120 may communicate with E-UTRAN 105 and SGW 115 and may perform various functions, such as mobility management, bearer management, distribution of paging messages, security control, authentication, gateway selection, and/or the like, for UEs 145 located within a geographic region served by MME 120 of E-UTRAN 105. The network entities in LTE are described in 3GPP TS 36.300, entitled “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ; Overall description, ” which is publicly available.
 RAN 125 may support, for example, GSM or another type of RAT. RAN 125 may include base stations 130 and other network entities that can support wireless  communication for UEs 145. MSC 135 may communicate with RAN 125 and may perform various functions, such as voice services, routing for circuit-switched calls, and mobility management for UEs 145 located within a geographic region served by MSC 135 of RAN 125. In some aspects, IWF 140 may facilitate communication between MME 120 and MSC 135 (e.g., when E-UTRAN 105 and RAN 125 use different RATs) . Additionally, or alternatively, MME 120 may communicate directly with an MME that interfaces with RAN 125, for example, without IWF 140 (e.g., when E-UTRAN 105 and RAN 125 use a same RAT) . In some aspects, E-UTRAN 105 and RAN 125 may use the same frequency and/or the same RAT to communicate with UE 145. In some aspects, E-UTRAN 105 and RAN 125 may use different frequencies and/or RATs to communicate with UEs 145. As used herein, the term base station is not tied to any particular RAT, and may refer to an eNB (e.g., of an LTE network) or another type of base station associated with a different type of RAT.
 In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency or frequency ranges may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency or frequency range may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
 UE 145 may be stationary or mobile and may also be referred to as a mobile station, a terminal, an access terminal, a wireless communication device, a subscriber unit, a station, and/or the like. UE 145 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, and/or  the like. UE 145 may be included inside a housing 145’ that houses components of UE 145, such as processor components, memory components, and/or the like.
 Upon power up, UE 145 may search for wireless networks from which UE 145 can receive communication services. If UE 145 detects more than one wireless network, then a wireless network with the highest priority may be selected to serve UE 145 and may be referred to as the serving network. UE 145 may perform registration with the serving network, if necessary. UE 145 may then operate in a connected mode to actively communicate with the serving network. Alternatively, UE 145 may operate in an idle mode and camp on the serving network if active communication is not required by UE 145.
 UE 145 may operate in the idle mode as follows. UE 145 may identify all frequencies/RATs on which it is able to find a “suitable” cell in a normal scenario or an “acceptable” cell in an emergency scenario, where “suitable” and “acceptable” are specified in the LTE standards. UE 145 may then camp on the frequency/RAT with the highest priority among all identified frequencies/RATs. UE 145 may remain camped on this frequency/RAT until either (i) the frequency/RAT is no longer available at a predetermined threshold or (ii) another frequency/RAT with a higher priority reaches this threshold. In some aspects, UE 145 may receive a neighbor list when operating in the idle mode, such as a neighbor list included in a system information block type 5 (SIB 5) provided by an eNB of a RAT on which UE 145 is camped. Additionally, or alternatively, UE 145 may generate a neighbor list. A neighbor list may include information identifying one or more frequencies, at which one or more RATs may be accessed, priority information associated with the one or more RATs, and/or the like.
 The number and arrangement of devices and networks shown in Fig. 1 are provided as an example. In practice, there may be additional devices and/or networks,  fewer devices and/or networks, different devices and/or networks, or differently arranged devices and/or networks than those shown in Fig. 1. Furthermore, two or more devices shown in Fig. 1 may be implemented within a single device, or a single device shown in Fig. 1 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) shown in Fig. 1 may perform one or more functions described as being performed by another set of devices shown in Fig. 1.
 Fig. 2 is a diagram illustrating an example access network 200 in an LTE network architecture, in accordance with various aspects of the present disclosure. As shown, access network 200 may include one or more eNBs 210 (sometimes referred to as “base stations” herein) that serve a corresponding set of cellular regions (cells) 220, one or more low power eNBs 230 that serve a corresponding set of cells 240, and a set of  UEs  145, 250.
 Each eNB 210 may be assigned to a respective cell 220 and may be configured to provide an access point to a RAN. For example,  eNB  110, 210 may provide an access point for  UE  145, 250 to E-UTRAN 105 (e.g., eNB 210 may correspond to eNB 110, shown in Fig. 1) or may provide an access point for  UE  145, 250 to RAN 125 (e.g., eNB 210 may correspond to base station 130, shown in Fig. 1) . In some cases, the terms base station and eNB may be used interchangeably, and a base station, as used herein, is not tied to any particular RAT.  UE  145, 250 may correspond to UE 145, shown in Fig. 1. Fig. 2 does not illustrate a centralized controller for example access network 200, but access network 200 may use a centralized controller in some aspects. The eNBs 210 may perform radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and network connectivity (e.g., to SGW 115) .
 As shown in Fig. 2, one or more low power eNBs 230 may serve respective cells 240, which may overlap with one or more cells 220 served by eNBs 210. The eNBs 230 may correspond to eNB 110 associated with E-UTRAN 105 and/or base station 130 associated with RAN 125, shown in Fig. 1. A low power eNB 230 may be referred to as a remote radio head (RRH) . The low power eNB 230 may include a femto cell eNB (e.g., home eNB (HeNB) ) , a pico cell eNB, a micro cell eNB, and/or the like.
 A modulation and multiple access scheme employed by access network 200 may vary depending on the particular telecommunications standard being deployed. In LTE applications, OFDM is used on the downlink (DL) and SC-FDMA is used on the uplink (UL) to support both frequency division duplexing (FDD) and time division duplexing (TDD) . The various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB) . EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. As another example, these concepts may also be extended to UTRA employing WCDMA and other variants of CDMA (e.g., such as TD-SCDMA, GSM employing TDMA, E-UTRA, and/or the like) , UMB, IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM employing OFDMA, and/or the like. UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization. CDMA2000 and UMB are described in documents from the 3GPP2 organization. The actual wireless communication standard and the multiple  access technology employed will depend on the specific application and the overall design constraints imposed on the system.
 The eNBs 210 may have multiple antennas supporting MIMO technology. The use of MIMO technology enables eNBs 210 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency. The data streams may be transmitted to a  single UE  145, 250 to increase the data rate or to  multiple UEs  145, 250 to increase the overall system capacity. This may be achieved by spatially precoding each data stream (e.g., applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL. The spatially precoded data streams arrive at the UE (s) 250 with different spatial signatures, which enables each of the UE (s) 250 to recover the one or more data streams destined for that  UE  145, 250. On the UL, each  UE  145, 250 transmits a spatially precoded data stream, which enables eNBs 210 to identify the source of each spatially precoded data stream.
 Spatial multiplexing is generally used when channel conditions are good. When channel conditions are less favorable, beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
 In the detailed description that follows, various aspects of an access network will be described with reference to a MIMO system supporting OFDM on the DL. OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol. The subcarriers are spaced apart at precise frequencies. The  spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers. In the time domain, a guard interval (e.g., cyclic prefix) may be added to each OFDM symbol to combat inter-OFDM-symbol interference. The UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR) .
 The number and arrangement of devices and cells shown in Fig. 2 are provided as an example. In practice, there may be additional devices and/or cells, fewer devices and/or cells, different devices and/or cells, or differently arranged devices and/or cells than those shown in Fig. 2. Furthermore, two or more devices shown in Fig. 2 may be implemented within a single device, or a single device shown in Fig. 2 may be implemented as multiple, distributed devices. Additionally, or alternatively, a set of devices (e.g., one or more devices) shown in Fig. 2 may perform one or more functions described as being performed by another set of devices shown in Fig. 2.
 Fig. 3 is a diagram illustrating an example 300 of a downlink (DL) frame structure in LTE, in accordance with various aspects of the present disclosure. A frame (e.g., of 10 ms) may be divided into 10 equally sized sub-frames with indices of 0 through 9. Each sub-frame may include two consecutive time slots. A resource grid may be used to represent two time slots, each time slot including a resource block (RB) . The resource grid is divided into multiple resource elements. In LTE, a resource block includes 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements. For an extended cyclic prefix, a resource block includes 6 consecutive OFDM symbols in the time domain and has 72 resource elements. Some of the resource elements, as indicated as R 310 and R 320, include DL reference signals (DL-RS) . The DL-RS include Cell-specific RS (CRS) (also sometimes called common  RS) 310 and UE-specific RS (UE-RS) 320. UE-RS 320 are transmitted only on the resource blocks upon which the corresponding physical DL shared channel (PDSCH) is mapped. The number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
 In LTE, an eNB may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the eNB. The primary and secondary synchronization signals may be sent in  symbol periods  6 and 5, respectively, in each of  subframes  0 and 5 of each radio frame with the normal cyclic prefix (CP) . The synchronization signals may be used by UEs for cell detection and acquisition. The eNB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0. The PBCH may carry certain system information.
 The eNB may send a Physical Control Format Indicator Channel (PCFICH) in the first symbol period of each subframe. The PCFICH may convey the number of symbol periods (M) used for control channels, where M may be equal to 1, 2 or 3 and may change from subframe to subframe. M may also be equal to 4 for a small system bandwidth, e.g., with less than 10 resource blocks. The eNB may send a Physical HARQ Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH) in the first M symbol periods of each subframe. The PHICH may carry information to support hybrid automatic repeat request (HARQ) . The PDCCH may carry information on resource allocation for UEs and control information for downlink channels. The eNB may send a Physical Downlink Shared Channel (PDSCH) in the remaining symbol periods of each subframe. The PDSCH may carry data for UEs scheduled for data transmission on the downlink.
 The eNB may send the PSS, SSS, and PBCH in the center 1.08 MHz of the system bandwidth used by the eNB. The eNB may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are sent. The eNB may send the PDCCH to groups of UEs in certain portions of the system bandwidth. The eNB may send the PDSCH to specific UEs in specific portions of the system bandwidth. The eNB may send the PSS, SSS, PBCH, PCFICH, and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
 A number of resource elements may be available in each symbol period. Each resource element (RE) may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value. Resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs) . Each REG may include four resource elements in one symbol period. The PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0. The PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in  symbol periods  0, 1, and 2. The PDCCH may occupy 9, 18, 36, or 72 REGs, which may be selected from the available REGs, in the first M symbol periods, for example. Only certain combinations of REGs may be allowed for the PDCCH.
 A UE may know the specific REGs used for the PHICH and the PCFICH. The UE may search different combinations of REGs for the PDCCH. The number of combinations to search is typically less than the number of allowed combinations for the  PDCCH. An eNB may send the PDCCH to the UE in any of the combinations that the UE will search.
 As indicated above, Fig. 3 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 3.
 Fig. 4 is a diagram illustrating an example 400 of an uplink (UL) frame structure in LTE, in accordance with various aspects of the present disclosure. The available resource blocks for the UL may be partitioned into a data section and a control section. The control section may be formed at the two edges of the system bandwidth and may have a configurable size. The resource blocks in the control section may be assigned to UEs for transmission of control information. The data section may include all resource blocks not included in the control section. The UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
 A UE may be assigned  resource blocks  410a, 410b in the control section to transmit control information to an eNB. The UE may also be assigned  resource blocks  420a, 420b in the data section to transmit data to the eNB. The UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section. The UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section. A UL transmission may span both slots of a subframe and may hop across frequencies.
 A set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430. The PRACH 430 carries a random sequence and cannot carry any UL data/signaling. Each random access preamble occupies a bandwidth corresponding to six consecutive  resource blocks. The starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH. The PRACH attempt is carried in a single subframe (e.g., of 1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (e.g., of 10 ms) .
 As indicated above, Fig. 4 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 4.
 Fig. 5 is a diagram illustrating an example 500 of a radio protocol architecture for a user plane and a control plane in LTE, in accordance with various aspects of the present disclosure. The radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3. Layer 1 (L1 layer) is the lowest layer and implements various physical layer signal processing functions. The L1 layer will be referred to herein as the physical layer 510. Layer 2 (L2 layer) 520 is above the physical layer 510 and is responsible for the link between the UE and eNB over the physical layer 510.
 In the user plane, the L2 layer 520 includes, for example, a media access control (MAC) sublayer 530, a radio link control (RLC) sublayer 540, and a packet data convergence protocol (PDCP) sublayer 550, which are terminated at the eNB on the network side. Although not shown, the UE may have several upper layers above the L2 layer 520 including a network layer (e.g., IP layer) that is terminated at a packet data network (PDN) gateway on the network side, and an application layer that is terminated at the other end of the connection (e.g., a far end UE, a server, and/or the like) .
 The PDCP sublayer 550 provides retransmission of lost data in handover. The PDCP sublayer 550 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and  handover support for UEs between eNBs. The RLC sublayer 540 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ) . The MAC sublayer 530 provides multiplexing between logical and transport channels. The MAC sublayer 530 is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs. The MAC sublayer 530 is also responsible for HARQ operations.
 In the control plane, the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 510 and the L2 layer 520 with the exception that there is no header compression function for the control plane. The control plane also includes a radio resource control (RRC) sublayer 560 in Layer 3 (L3 layer) . The RRC sublayer 560 is responsible for obtaining radio resources (i.e., radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
 As indicated above, Fig. 5 is provided as an example. Other examples are possible and may differ from what was described above in connection with Fig. 5.
 Fig. 6 is a diagram illustrating example components 600 of  eNB  110, 210, 230 and  UE  145, 250 in an access network, in accordance with various aspects of the present disclosure. As shown in Fig. 6,  eNB  110, 210, 230 may include a controller/processor 605, a TX processor 610, a channel estimator 615, an antenna 620, a transmitter 625TX, a receiver 625RX, an RX processor 630, and a memory 635. As further shown in Fig. 6,  UE  145, 250 may include a receiver RX, for example, of a transceiver TX/RX 640, a transmitter TX, for example, of a transceiver TX/RX 640, an antenna 645, an RX processor 650, a channel estimator 655, a controller/processor 660, a memory 665, a data sink 670, a data source 675, and a TX processor 680.
 In the DL, upper layer packets from the core network are provided to controller/processor 605. The controller/processor 605 implements the functionality of the L2 layer. In the DL, the controller/processor 605 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the  UE  145, 250 based, at least in part, on various priority metrics. The controller/processor 605 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the  UE  145, 250.
 The TX processor 610 implements various signal processing functions for the L1 layer (e.g., physical layer) . The signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the  UE  145, 250 and mapping to signal constellations based, at least in part, on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 615 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the  UE  145, 250. Each spatial stream is then provided to a different antenna 620 via a separate transmitter TX, for example, of transceiver TX/RX 625. Each such transmitter TX modulates an RF carrier with a respective spatial stream for transmission.
 At the  UE  145, 250, each receiver RX, for example, of a transceiver TX/RX 640 receives a signal through its respective antenna 645. Each such receiver RX recovers information modulated onto an RF carrier and provides the information to the receiver (RX) processor 650. The RX processor 650 implements various signal processing functions of the L1 layer. The RX processor 650 performs spatial processing on the information to recover any spatial streams destined for the  UE  145, 250. If multiple spatial streams are destined for the  UE  145, 250, the spatial streams may be combined by the RX processor 650 into a single OFDM symbol stream. The RX processor 650 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the  eNB  110, 210, 230. These soft decisions may be based, at least in part, on channel estimates computed by the channel estimator 655. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the  eNB  110, 210, 230 on the physical channel. The data and control signals are then provided to the controller/processor 660.
 The controller/processor 660 implements the L2 layer. The controller/processor 660 can be associated with a memory 665 that stores program codes and data. The memory 665 may include a non-transitory computer-readable medium. In the UL, the controller/processor 660 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to a data sink 670, which represents all the  protocol layers above the L2 layer. Various control signals may also be provided to the data sink 670 for L3 processing. The controller/processor 660 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
 In the UL, a data source 675 is used to provide upper layer packets to the controller/processor 660. The data source 675 represents all protocol layers above the L2 layer. Similar to the functionality described in connection with the DL transmission by the  eNB  110, 210, 230, the controller/processor 660 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based, at least in part, on radio resource allocations by the  eNB  110, 210, 230. The controller/processor 660 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the  eNB  110, 210, 230.
 Channel estimates derived by a channel estimator 655 from a reference signal or feedback transmitted by the  eNB  110, 210, 230 may be used by the TX processor 680 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 680 are provided to different antenna 645 via separate transmitters TX, for example, of transceivers TX/RX 640. Each transmitter TX, for example, of transceiver TX/RX 640 modulates an RF carrier with a respective spatial stream for transmission.
 The UL transmission is processed at the  eNB  110, 210, 230 in a manner similar to that described in connection with the receiver function at the  UE  145, 250. Each receiver RX, for example, of transceiver TX/RX 625 receives a signal through its respective antenna 620. Each receiver RX, for example, of transceiver TX/RX 625  recovers information modulated onto an RF carrier and provides the information to a RX processor 630. The RX processor 630 may implement the L1 layer.
 The controller/processor 605 implements the L2 layer. The controller/processor 605 can be associated with a memory 635 that stores program code and data. The memory 635 may be referred to as a computer-readable medium. In the UL, the control/processor 605 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the  UE  145, 250. Upper layer packets from the controller/processor 605 may be provided to the core network. The controller/processor 605 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
 In some aspects, one or more components of  UE  145, 250 may be included in a housing 145’ , as shown in Fig 1. One or more components of  UE  145, 250 may be configured to perform conserve power according to a throughput indicator, as described in more detail elsewhere herein. For example, the controller/processor 660 and/or other processors and modules of  UE  145, 250 may perform or direct operations of, for example, process 900 of Fig. 9, and/or other processes as described herein. In some aspects, one or more of the components shown in Fig. 6 may be employed to perform example process 900, and/or other processes for the techniques described herein.
 The number and arrangement of components shown in Fig. 6 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 6. Furthermore, two or more components shown in Fig. 6 may be implemented within a single component, or a single component shown in Fig. 6 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components  (e.g., one or more components) shown in Fig. 6 may perform one or more functions described as being performed by another set of components shown in Fig. 6.
 Fig. 7 is a diagram illustrating an example 700 of a transmission (Tx) chain 702 and a receiver (Rx) chain 704 that may be used within a wireless communication system, in accordance with various aspects of the present disclosure. In some aspects, portions of Tx chain 702 may be implemented in a transmitter 625TX and/or 640TX, shown in Fig. 6. In some aspects, Tx chain 702 may be implemented in eNB 210 and/or base station 130 for transmitting data 706 to  UE  145, 250 on a downlink channel. In some aspects, Tx chain 702 may be implemented in  UE  145, 250 for transmitting data 706 to eNB 210 and/or base station 130 on an uplink channel.
 An encoder 707 may alter a signal (e.g., a bitstream) 703 into data 706. Data 706 to be transmitted is provided from encoder 707 as input to a serial-to-parallel (S/P) converter 708. In some aspects, S/P converter 708 may split the transmission data into N parallel data streams 710.
 The N parallel data streams 710 may then be provided as input to a mapper 712. Mapper 712 may map the N parallel data streams 710 onto N constellation points. The mapping may be done using a modulation constellation, such as binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , 8 phase-shift keying (8PSK) , quadrature amplitude modulation (QAM) , etc. Thus, mapper 712 may output N parallel symbol streams 716, each symbol stream 716 corresponding to one of N orthogonal subcarriers of an inverse fast Fourier transform (IFFT) component 720. These N parallel symbol streams 716 are represented in the frequency domain and may be converted into N parallel time domain sample streams 718 by IFFT component 720.
 In some aspects, N parallel modulations in the frequency domain are equal to N modulation symbols in the frequency domain, which are equal to N mapping and N- point IFFT in the frequency domain, which are equal to one (useful) OFDM symbol in the time domain, which are equal to N samples in the time domain. One OFDM symbol in the time domain, Ns, is equal to Ncp (the number of guard samples per OFDM symbol) + N (the number of useful samples per OFDM symbol) .
 The N parallel time domain sample streams 718 may be converted into an OFDM/OFDMA symbol stream 722 by a parallel-to-serial (P/S) converter 724. A guard insertion component 726 may insert a guard interval between successive OFDM/OFDMA symbols in the OFDM/OFDMA symbol stream 722. The output of guard insertion component 726 may then be upconverted to a desired transmit frequency band by a radio frequency (RF) front end 728. An antenna 730 may then transmit the resulting signal 732.
 In some aspects, Rx chain 704 may utilize OFDM/OFDMA. In some aspects, portions of Tx chain 702 may be implemented in a receiver 625RX and/or 640RX, shown in Fig. 6. In some aspects, Rx chain 704 may be implemented in  UE  145, 250 for receiving data 706 from eNB 210 and/or base station 130 on a downlink channel. In some aspects, Rx chain 704 may be implemented in eNB 210 and/or base station 130 for receiving data 706 from  UE  145, 250 on an uplink channel.
 A transmitted signal 732 is shown traveling over a wireless channel 734 from Tx chain 702 to Rx chain 704. When a signal 732' is received by an antenna 730' , the received signal 732' may be downconverted to a baseband signal by an RF front end 728' . A guard removal component 726' may then remove the guard interval that was inserted between OFDM/OFDMA symbols by guard insertion component 726.
 The output of guard removal component 726' may be provided to an S/P converter 724' . The output may include an OFDM/OFDMA symbol stream 722' , and S/P converter 724' may divide the OFDM/OFDMA symbol stream 722' into N parallel  time-domain symbol streams 718' , each of which corresponds to one of the N orthogonal subcarriers. A fast Fourier transform (FFT) component 720' may convert the N parallel time-domain symbol streams 718' into the frequency domain and output N parallel frequency-domain symbol streams 716' .
 A demapper 712' may perform the inverse of the symbol mapping operation that was performed by mapper 712, thereby outputting N parallel data streams 710' . A P/S converter 708' may combine the N parallel data streams 710' into a single data stream 706' . Ideally, data stream 706' corresponds to data 706 that was provided as input to Tx chain 702. Data stream 706' may be decoded into a decoded data stream 703 by decoder 707' .
 The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single components, or a single components shown in Fig. 7 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of components (e.g., one or more components) shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7. In some aspects, a plurality of Tx chains and/or a plurality of Rx chains may be employed. In some aspects, two or more of such plurality of chains may share one or more power amplifiers.
 Figs. 8A and 8B are illustrations of examples 800 of carrier aggregation types, in accordance with various aspects of the present disclosure.
 In some aspects,  UE  145, 250 may use spectrum of up to 20 MHz bandwidths allocated in a carrier aggregation of up to a total of 100 MHz (5 component  carriers) used for transmission and reception. For an LTE-Advanced enabled wireless communication system, two types of carrier aggregation (CA) methods may be used, contiguous CA and non-contiguous CA, which are illustrated in Figs. 8A and 8B, respectively. Contiguous CA occurs when multiple available component carriers are adjacent to each other (as illustrated in Fig. 8A) . On the other hand, non-contiguous CA occurs when multiple non-adjacent available component carriers are separated along the frequency band (as illustrated in Fig. 8B) and/or are included in different frequency bands.
 Both non-contiguous and contiguous CA may aggregate multiple component carriers to serve a single unit of LTE- Advanced UEs  145, 250. In various examples,  UE  145, 250 operating in a multicarrier system (also referred to as carrier aggregation) is configured to aggregate certain functions of multiple carriers, such as control and feedback functions, on the same carrier, which may be referred to as a primary carrier. The remaining carriers that depend on the primary carrier for support may be referred to as secondary carriers. For example,  UE  145, 250 may aggregate control functions such as those provided by the optional dedicated channel (DCH) , the nonscheduled grants, a physical uplink control channel (PUCCH) , and/or a physical downlink control channel (PDCCH) .
 As indicated above, Figs. 8A and 8B are provided as examples. Other examples are possible and may differ from what was described in connection with Figs. 8A and 8B.
 A  UE  145, 250 may use certain features to improve downlink performance or reduce power consumption of the  UE  145, 250. For example, the  UE  145, 250 may use multiple, different receiver chains (Rx chains, such as Rx chain 704) to improve throughput and/or diversity of downlink traffic. Additionally, or alternatively, the  UE   145, 250 may use a higher traffic rank (e.g., a higher quantity of MIMO data signals) to improve throughput or diversity when MIMO performance is good, and may use a lower traffic rank to improve reliability when MIMO performance is bad. However, using these features may negatively impact battery life of the  UE  145, 250. For example, Rx chains may use battery power when active. As another example, using a higher traffic rank may consume more processor power and battery power than using a lower traffic rank. Therefore, it may be beneficial to configure usage or settings of such features according to a need for such features. For example, the benefits provided by multiple Rx chains and/or a higher traffic rank may be outweighed by the decreased battery life required to implement and maintain these features.
 Techniques and apparatuses, described herein, configure a reception configuration of a  UE  145, 250 based at least in part on an estimated downlink throughput of the  UE  145, 250. For example, the  UE  145, 250 may determine the estimated downlink throughput based at least in part on one or more throughput indicators associated with the  UE  145, 250. Based at least in part on the estimated downlink throughput, the  UE  145, 250 may configure a quantity of active Rx chains of the  UE  145, 250, a reported rank indicator of the  UE  145, 250, a processor cycle rate of the  UE  145, 250, and/or the like. In this way, the  UE  145, 250 may selectively configure the reception configuration to improve downlink performance, or to reduce battery consumption, based at least in part on the estimated downlink throughput. Furthermore, the  UE  145, 250 may select a maximum allowed rank or a rank number to be implemented based at least in part on an RB allocation associated with the  UE  145, 250. For example, when the RB allocation does not satisfy a threshold (e.g., when downlink traffic is sparse) , the  UE  145, 250 may use fewer Rx chains and/or a lower rank. Additionally, or alternatively, when the RB allocation satisfies the threshold (e.g.,  when downlink traffic is heavy) , the  UE  145, 250 may use more Rx chains and/or a higher rank. In this way, the  UE  145, 250 adapts a reception configuration based at least in part on channel loading and channel conditions to improve throughput and battery performance of the  UE  145, 250.
 Figs. 9A-9C are diagrams illustrating examples 900 of recursive state machines for dynamic configuration of a reception configuration of a  UE  145, 250, in accordance with various aspects of the present disclosure. For example, the  UE  145, 250 may identify an estimated downlink throughput based at least in part on a throughput indicator of the  UE  145, 250. The throughput indicator may include, for example, a channel characteristic indicator and/or channel quality indication (e.g., signal to noise ratio (SNR) , a cyclic redundancy check (CRC) error count, a rank indicator, a channel quality indicator, etc. ) , a traffic characteristic (e.g., a transport block size or transport block number, statistical information regarding downlink traffic, and/or the like) , a channel loading indicator (e.g., a resource block allocation rate of a band associated with the  UE  145, 250, a reference signal received quality of the  UE  145, 250, and/or the like) , and/or the like. In aspects, a channel quality indication may include SNR, a CRC error count and/or a channel quality indicator. Based at least in part on the estimated downlink throughput, the  UE  145, 250 may identify a state to be implemented or a transition from one state to another state, as described in more detail below.
 As shown in Figs. 9A-9C, in some aspects, the state machine may be associated with a set of states 901 through 911. States 901 through 911 may be associated with respective transition conditions 1 through 26 (shown as TC1 through TC26) . For example, a  UE  145, 250 may transition from a first state to a second state when a transition condition between the first state and the second state is satisfied.
 As shown, each state is associated with a particular rank or change in rank and/or a particular quantity of Rx chains or a change in quantity of Rx chains. A rank number may identify a quantity of independent (e.g., uncorrelated, non-redundant) traffic streams on a downlink of the  UE  145, 250. Here, ranks and Rx chain quantities are both shown using Ri (e.g., Ri, Ri+1, and/or Ri-1) . For example, Ri may correspond to a particular rank number or Rx chain quantity. More particularly, R1 may correspond to a rank number of 1 or 1 active Rx chain, R2 may correspond to a rank number of 2 or 2 active Rx chains, R3 may correspond to a rank number of 4 or 4 active Rx chains, and R4 may correspond to a rank number of 8 or 8 active Rx chains.
 As an illustration of switching rank number and/or Rx chain quantity according to states 901 through 905, assume that Ri is equal to R2. That is, assume that the  UE  145, 250 is associated with 2 active Rx chains and a rank number of 2. In such a case, the  UE  145, 250 may start at state 901 of Fig. 9A. Now assume that the  UE  145, 250 determines that TC1, between state 901 and state 902, is satisfied, as is described in more detail elsewhere herein. In such a case, the  UE  145, 250 may deactivate one of the two active Rx chains, leaving a total of 1 active Rx chain. Then, the  UE  145, 250 may determine whether TC2, between state 902 and state 904, is satisfied. If TC2 is satisfied, the  UE  145, 250 may transition to state 904, and may decrease a rank number of the  UE  145, 250 to 1 (e.g., by reporting a rank indicator of 1 to an  eNB  110, 210, 230) . After transitioning to state 904, the  UE  145, 250 may continue to operate according to the state machine. For example, the  UE  145, 250 may start again at state 901, or may use one of the state machines shown in Fig. 9B (e.g., when Ri is equal to a maximum rank number or active Rx chain quantity of the UE) or Fig. 9C (e.g., when Ri is equal to a minimum rank number or active Rx chain quantity of the UE) .
 As shown in Fig. 9A, in some aspects, the  UE  145, 250 may switch from state 901 to state 902 based at least in part on TC1. For example, TC1 may be based at least in part on a quantity of continuous subframes with a granted rank number that is less than a rank number associated with Ri and an SNR value of the  UE  145, 250. More particularly, when the  UE  145, 250 identifies a particular quantity of continuous subframes with a granted rank number that is less than Ri, and when the  UE  145, 250 identifies an SNR value that is greater than a maximum threshold SNR of a downlink control channel of the  UE  145, 250 and a maximum threshold SNR of a downlink shared channel of the  UE  145, 250 at Ri-1, the  UE  145, 250 may switch from state 901 to 902.
 The maximum threshold SNR may be based at least in part on an SNR threshold of a downlink control channel at Ri+1. For example, the SNR threshold may indicate whether a block error rate (BLER) can meet a quality requirement for downlink control channel decoding at an antenna diversity number Ri+1 for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) . Similarly, the maximum threshold SNR may be based at least in part on an SNR threshold of a downlink shared channel at Ri+1. For example, the SNR threshold may indicate whether a BLER can meet a quality requirement for downlink shared channel decoding at an antenna diversity number Ri+1 for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) .
 In some aspects, the  UE  145, 250 may switch from state 902 to state 904 based at least in part on TC2. For example, TC2 may relate to reporting of a decreased rank indicator to  eNB  110, 210, 230. As a more particular example, the  UE  145, 250 may switch from state 902 to 904 when a particular length of time has passed after reporting the decreased rank indicator (e.g., to cause the rank number associated with  the  UE  145, 250 to decrease) . In some aspects, the particular length of time may be configured to permit the  UE  145, 250 to be configured for communication according to the decreased rank number.
 In some aspects, the  UE  145, 250 may switch from state 902 to state 901 based at least in part on TC3. For example, TC3 may relate to a granted rank number and/or a CRC error count. As a more particular example, the  UE  145, 250 may switch from state 902 to state 901 when the granted rank number is greater than or equal to Ri-1 and/or when a CRC error count satisfies an error count threshold. For example, when the CRC error count satisfies the error count threshold, the  UE  145, 250 may determine that the channel is associated with low quality, and may accordingly increase a rank and/or Rx chain number of the  UE  145, 250 to improve diversity.
 Additionally, or alternatively, the  UE  145, 250 may switch from state 902 to state 901 based at least in part on TC4. For example, TC4 may relate to a maximum allowed rank of the  UE  145, 250, a request for a rank indicator report being received, and/or a quantity of subframes before a periodic rank indicator report is transmitted. For example, the  UE  145, 250 may switch from state 902 to state 901 (e.g., may not change the rank number of the UE 145, 250) when the maximum allowed rank is greater than Ri-1 and when a request for a rank indicator report is received, or when the  UE  145, 250 determines that a periodic rank indicator report is to be transmitted within a particular quantity of subframes. In such a case, when TC4 is satisfied, the  UE  145, 250 may not change a Rx chain state of the  UE  145, 250 until an inter-rank state change is completed, which may reduce configuration errors of the  UE  145, 250. For example, the  UE  145, 250 may delay the state change from state 902 to state 901 associated with TC3 when TC4 is satisfied to permit measurement of channel conditions (e.g., the rank indicator of the UE 145, 250) to converge.
 In some aspects, the maximum allowed rank may be based at least in part on a traffic indicator, such as an average quantity of RBs in a current rank indicator reporting cycle (e.g., 80 ms in length, 160 ms in length, and/or the like) . For example, the  UE  145, 250 may be associated with various RB thresholds for corresponding values of Ri. When an average quantity of RBs associated with a maximum allowable rank of Ri in a current rank indicator reporting cycle satisfies an RB threshold for a maximum allowable rank of Ri+1, the  UE  145, 250 may reconfigure the maximum allowed rank to Ri+1. Similarly, when an average quantity of RBs associated with a maximum allowable rank of Ri in a current rank indicator reporting cycle does not satisfy an RB threshold for a maximum allowable rank of Ri-1, the  UE  145, 250 may reconfigure the maximum allowed rank to Ri-1. When the average quantity of RBs satisfies the RB threshold for the maximum allowable rank of Ri-1 and not Ri+1, the  UE  145, 250 may remain at the maximum allowed rank of Ri. In this way, the  UE  145, 250 may selectively adjust the maximum allowed rank upward or downward based at least in part on allocation of downlink RBs for the  UE  145, 250. Thus, the  UE  145, 250 reduces rank number when traffic is sparse, and increases rank when traffic is common.
 In some aspects, the  UE  145, 250 may maintain state 901 and/or perform another action based at least in part on TC5. For example, TC5 may relate to a measured rank indicator. As a more particular example, when the measured rank indicator is greater than Ri-1, the  UE  145, 250 may maintain state 901 and/or report the measured rank indicator to the  eNB  110, 210, 230.
 In some aspects, the  UE  145, 250 may switch from state 901 to state 904 based at least in part on TC6. For example, TC6 may relate to a measured rank indicator. As a more particular example, when the measured rank indicator is less than or equal to Ri-1, the  UE  145, 250 may delay a particular quantity of subframes after  determining the measured rank indicator (e.g., to permit the  UE  145, 250 to reconfigure to support the measured rank indicator) , and may report the measured rank indicator to the  eNB  110, 210, 230.
 In some aspects, the  UE  145, 250 may switch from state 901 to state 903 based at least in part on TC7. For example, TC7 may relate to a granted rank number and/or a CRC error count of the  UE  145, 250. As a more particular example, when the granted rank number is greater than Ri, or when a CRC error count of the  UE  145, 250 satisfies an error count threshold, the  UE  145, 250 may switch from state 901 to state 903. Additionally, or alternatively, the  UE  145, 250 may switch from state 901 to state 903 based at least in part on TC8. For example, TC8 may relate to a maximum allowed rank of the  UE  145, 250, a request for a rank indicator report being received, and/or a quantity of subframes before a periodic rank indicator report is transmitted. As a more particular example, when a maximum allowed rank of the  UE  145, 250 is greater than Ri, and when a request for a rank indicator report is received, or when the  UE  145, 250 determines that a periodic rank indicator report is to be transmitted within a particular quantity of subframes, the  UE  145, 250 may lock a Rx chain state change associated with TC7 until an end of an inter-rank state change, which may permit measurement of the measured rank indicator to converge, thereby improving measurement of the rank indicator.
 In some aspects, the  UE  145, 250 may switch from state 903 to state 901 based at least in part on TC9. For example, TC9 may relate to an SNR of the  UE  145, 250. As a more particular example, when an SNR of the  UE  145, 250 satisfies a threshold in comparison to a maximum SNR of a downlink control channel and a downlink shared channel of the  UE  145, 250, the  UE  145, 250 may switch from state 903 to state 901. The maximum SNR may be based at least in part on an SNR threshold  of a downlink control channel at Ri. For example, the SNR threshold may indicate whether a BLER can meet a quality requirement for downlink control channel decoding at an antenna diversity number Ri for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) .
 Additionally, or alternatively, the  UE  145, 250 may switch from state 903 to state 901 based at least in part on TC10. TC10 may relate to a CQI reporting configuration of the  UE  145, 250. For example, when an SNR of the  UE  145, 250 satisfies a threshold, and when a total quantity of RBs allocated in a particular number of continuous subframes does not satisfy an RB threshold, the  UE  145, 250 may report a decreased CQI to the  eNB  110, 210, 230. This may cause the  eNB  110, 210, 230 to reduce a quantity of active Rx chains of the  UE  145, 250 due to the decreased CQI, thereby causing state 901 to be implemented. The RB threshold may be based at least in part on a loading of a band associated with the  UE  145, 250. For example, when the RB threshold is not satisfied, the  UE  145, 250 may determine that the band is not heavily loaded, and may therefore use fewer Rx chains since interference is likely to be low. As a more particular example, the RB threshold may correspond to Ri. For example, the RB threshold may be equal to a rank number of Ri minus one.
 In some aspects, the  UE  145, 250 may switch from state 903 to state 904 based at least in part on TC11. For example, TC11 may relate to a measured rank indicator of the  UE  145, 250. As a more particular example, when a measured rank indicator is less than or equal to Ri-1, the  UE  145, 250 may report the measured rank indicator to the  eNB  110, 210, 230 (e.g., after a delay of a particular quantity of subframes to permit the  UE  145, 250 to be reconfigured to use the measured rank indicator) . The  eNB  110, 210, 230 may decrease the rank number of the  UE  145, 250 based at least in part on the measured rank indicator, and may, therefore, decrease the  quantity of Rx chains of the  UE  145, 250 to match the rank number. In this way, when traffic conditions are insufficient to support a large rank number, the  UE  145, 250 may decrease rank number so that efficiency is improved and battery is conserved.
 In some aspects, the  UE  145, 250 may remain in state 903 based at least in part on TC12. TC12 may relate to a measured rank indicator of the  UE  145, 250. For example, when the measured rank indicator is between a rank number associated with Ri-1 and a rank number associated with Ri, the  UE  145, 250 may report the rank indicator to the  eNB  110, 210, 230. In such a case, the  eNB  110, 210, 230 may not change the rank number associated with the  UE  145, 250. Thus, the  UE  145, 250 may remain in state 903.
 In some aspects, the  UE  145, 250 may switch from state 903 to state 905 based at least in part on TC13. For example, TC13 may relate to a CRC error count of the  UE  145, 250. As a more particular example, when the CRC error count of the  UE  145, 250 satisfies a threshold, the  UE  145, 250 may switch from state 903 to state 905. Additionally, or alternatively, the  UE  145, 250 may switch from state 903 to state 905 based at least in part on TC14. For example, TC14 may relate to a measured rank indicator of the  UE  145, 250. As a more particular example, when the measured rank indicator corresponds to a rank number that is greater than Ri, the  UE  145, 250 may report the measured rank indicator to the  eNB  110, 210, 230 (e.g., after a delay of a particular number of subframes) . The  eNB  110, 210, 230 may accordingly increase the rank number of the  UE  145, 250 to the measured rank indicator, which may lead to the switch from state 903 to state 901.
 In some aspects, the  UE  145, 250 may transition to the state machine shown by Fig. 9B, or may restart at state 901, when the  UE  145, 250 is in state 905. For  example, the  UE  145, 250 may transition to the state machine shown by Fig. 9B when the  UE  145, 250 is associated with a highest rank and/or number of active Rx chains.
 In this way, the  UE  145, 250 may recursively switch between states based at least in part on an estimated throughput associated with the  UE  145, 250. The estimated throughput may be determined based at least in part on various throughput indicators, as described above. The  UE  145, 250 may switch between states based at least in part on transition conditions associated with the various throughput indicators, which may permit optimization of the  UE  145, 250 for increased throughput (when the throughput indicators indicate that throughput is likely to be high) or improved battery life (when the throughput indicators indicate that throughput is not likely to be high) .
 Fig. 9B shows an example of a state machine for a  UE  145, 250 associated with a maximum rank number and a maximum number of active Rx chains. In other words, in Fig. 9B, Ri corresponds to a maximum rank number and a maximum number of Rx chains of a  UE  145, 250. As shown, the maximum rank number and maximum number of Rx chains of the  UE  145, 250 may be associated with a state 906.
 In some aspects, the  UE  145, 250 may switch from state 906 to state 907 based at least in part on TC15. For example, TC15 may relate to a measured rank indicator of the  UE  145, 250. As a more particular example, when the measured rank indicator is less than or equal to a rank number associated with Ri-1, the  UE  145, 250 may report the measured rank indicator to the  eNB  110, 210, 230 (e.g., after a delay of a particular number of subframes to permit the  UE  145, 250 to be reconfigured for the measured rank indicator) . The  eNB  110, 210, 230 may decrease the rank number associated with the UE to Ri-1 based at least in part on the rank indicator, and may therefore decrease the number of active Rx chains associated with the  UE  145, 250 to match the rank number.
 In some aspects, the  UE  145, 250 may switch from state 906 to state 908 based at least in part on TC16. For example, TC16 may relate to a granted rank number and an SNR of the  UE  145, 250. As a more particular example, when the  UE  145, 250 identifies a particular quantity of subframes associated with a granted rank number that is less than or equal to a rank number associated with Ri-1, and when the SNR of the  UE  145, 250 is greater than an SNR associated with a maximum threshold SNR of a downlink shared channel SNR of the  UE  145, 250 and of a downlink common channel SNR of the  UE  145, 250 associated with a quantity of receiver chains Ri-1, the  UE  145, 250 may switch from state 906 to state 908. Thus, the  UE  145, 250 may decrease a number of active Rx chains when channel conditions are good on the decreased number of Rx chains, and when a rank number of the  UE  145, 250 is lower than the decreased number of Rx chains.
 The maximum threshold SNR may be based at least in part on an SNR threshold of a downlink control channel at Ri-1. For example, the SNR threshold may indicate whether a BLER can meet a quality requirement for downlink control channel decoding at an antenna diversity number Ri-1 for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) . Similarly, the maximum threshold SNR may be based at least in part on an SNR threshold of a downlink shared channel at Ri-1. For example, the SNR threshold may indicate whether a BLER can meet a quality requirement for downlink shared channel decoding at an antenna diversity number Ri+1 for a particular coding rate and/or ambient conditions (e.g., Doppler shift conditions, etc. ) .
 In some aspects, the  UE  145, 250 may switch from state 908 to state 906 based at least in part on TC17. For example, TC17 may relate to a granted rank number and/or a CRC error count of the  UE  145, 250. As a more particular example, when the  granted rank number of the  UE  145, 250 is greater than a rank number associated with Ri-1 or when the CRC error count of the  UE  145, 250 is greater than a threshold, the  UE  145, 250 may switch from state 908 to state 906. Thus, the  UE  145, 250 may improve Rx chain diversity to improve reception of downlink traffic associated with a high CRC error count. Additionally, or alternatively, the  UE  145, 250 may switch from state 908 to state 906 based at least in part on TC18. For example, TC18 may relate to a maximum allowed rank of the  UE  145, 250, a request for a rank indicator report being received, and/or a quantity of subframes before a periodic rank indicator report is transmitted. As a more particular example, when a maximum allowed rank of the  UE  145, 250 is greater than a rank number associated with Ri-1, and when a request for a rank indicator report is received, or when the  UE  145, 250 determines that a periodic rank indicator report is to be transmitted within a particular quantity of subframes, the  UE  145, 250 may lock a Rx chain state change associated with TC17 until an end of an inter-rank state change, which may reduce configuration errors of the  UE  145, 250 and allow channel quality measurements to converge.
 In some aspects, the  UE  145, 250 may switch from state 908 (or state 906) to state 907 based at least in part on TC19. For example, TC19 may relate to reporting of a measured rank indicator of the  UE  145, 250. As a more particular example, when the  UE  145, 250 switches from a state associated with rank number Ri to a state associated with rank number Ri-1 (e.g., from state 906 to state 907 or from state 908 to state 907) based at least in part on a rank indicator of Ri-1, the  UE  145, 250 may report the rank indicator after a delay of a particular quantity of subframes to permit the  UE  145, 250 to be reconfigured to support the rank indicator of Ri-1. This may reduce configuration errors of the  UE  145, 250, and may provide time for channel estimation results to converge with regard to the  UE  145, 250 and the  eNB  110, 210, 230.
 In some aspects, the  UE  145, 250 may remain in state 906 based at least in part on TC20. For example, TC20 may relate to a measured rank indicator of the  UE  145, 250. As a more particular example, when a value of the measured rank indicator is greater than a rank number associated with Ri-1, then the  UE  145, 250 may report the measured rank indicator to the  eNB  110, 210, 230, and may therefore remain in state 906.
 Fig. 9C shows an example of a state machine for a  UE  145, 250 associated with a minimum rank number and a minimum number of active Rx chains. In other words, in Fig. 9C, state 909 corresponds to a rank number of 1 and a single active Rx chain of the  UE  145, 250.
 In some aspects, the  UE  145, 250 may switch from state 909 to state 910 based at least in part on TC21. For example, TC21 may relate to a granted rank number or a CRC error count of the  UE  145, 250. As a more particular example, when the granted rank number is greater than 1 or when the CRC error count satisfies a threshold, the  UE  145, 250 may switch from state 909 to 910. Thus, the  UE  145, 250 may increase a quantity of active Rx chains when channel conditions are poor or when additional channels are needed to support a granted rank number. Additionally, or alternatively, the  UE  145, 250 may switch from state 909 to state 910 based at least in part on TC22. For example, TC22 may relate to a maximum allowed rank of the  UE  145, 250, a request for a rank indicator report being received, and/or a quantity of subframes before a periodic rank indicator report is transmitted. As a more particular example, when a maximum allowed rank of the  UE  145, 250 is greater than 1, and when a request for a rank indicator report is received, or when the  UE  145, 250 determines that a periodic rank indicator report is to be transmitted within a particular quantity of subframes, the  UE  145, 250 may lock a Rx chain state change associated with TC21  until an end of an inter-rank state change, which may permit channel condition measurements of the  UE  145, 250 to converge.
 In some aspects, the  UE  145, 250 may switch from state 910 to state 909 based at least in part on TC23. For example, TC23 may relate to an SNR of the  UE  145, 250. As a more particular example, the  UE  145, 250 may switch from state 910 to 909 when the SNR of all channels of the  UE  145, 250 is greater than a maximum SNR threshold of a downlink data channel of the  UE  145, 250 and a downlink shared channel of the  UE  145, 250 with a single active Rx chain. Thus, the  UE  145, 250 may switch to a single active Rx chain when channel conditions indicate that multiple Rx chains are not needed. Additionally, or alternatively, the  UE  145, 250 may switch from state 910 to state 909 based at least in part on TC24. For example, TC24 may relate to an SNR of the  UE  145, 250 and an RB allocation of the  UE  145, 250. As a more particular example, when the SNR of the  UE  145, 250 is greater than a threshold, and when the RB allocation of the  UE  145, 250 does not satisfy a threshold for a particular quantity of contiguous subframes, the  UE  145, 250 may switch from state 910 to state 909. This may conserve battery resources of the  UE  145, 250 that would otherwise be used to operate a higher quantity of Rx chains. In some aspects, the  UE  145, 250 may decrease a reported CQI measurement to cause state 909 to be implemented.
 In some aspects, the  UE  145, 250 may remain in state 910 based at least in part on TC25. For example, TC25 may relate to a measured rank indicator of the  UE  145, 250. As a more particular example, when the measured rank indicator is less than or equal to 1, the  UE  145, 250 may report the measured rank indicator to  eNB  110, 210, 230. Therefore, the  UE  145, 250 may remain in state 910.
 In some aspects, the  UE  145, 250 may switch from state 910 to state 911 based at least in part on TC26. For example, TC26 may relate to a CRC error count of  the  UE  145, 250. As a more particular example, the  UE  145, 250 may switch from state 910 to state 911 when the CRC error count satisfies a threshold. Thus, the  UE  145, 250 may improve diversity when error count is high. Additionally, or alternatively, the  UE  145, 250 may switch from state 910 to state 911 based at least in part on TC27. For example, TC27 may relate to a measured rank indicator of the  UE  145, 250. As a more particular example, when the measured rank indicator is greater than 1, the  UE  145, 250 may report the measured rank indicator to the  eNB  110, 210, 230 (e.g., after a delay) . Thus, the  UE  145, 250 may be reconfigured to state 911. In some aspects, the  UE  145, 250 may transition from state 911 to state 901.
 In some aspects, the  UE  145, 250 may increase or decrease a clock speed of a processor of the  UE  145, 250 based at least in part on any one or more of the above states. For example, the  UE  145, 250 may decrease a clock speed of a processor of the  UE  145, 250 when the  UE  145, 250 switches to a state that includes decreasing a traffic rank and/or quantity of active Rx chains. Additionally, or alternatively, the  UE  145, 250 may increase a clock speed of a processor of the  UE  145, 250 when the  UE  145, 250 switches to a state that includes increasing a traffic rank and/or quantity of active Rx chains.
 In some aspects, the  UE  145, 250 may increase a quantity of active Rx chains based at least in part on a CRC error count satisfying an error count threshold. Additionally, or alternatively, the  UE  145, 250 may increase a quantity of active Rx chains based at least in part on a granted rank number being greater than a current quantity of active Rx chains. Additionally, or alternatively, the  UE  145, 250 may increase a quantity of active Rx chains based at least in part on a maximum allowed rank being greater than a current quantity of active Rx chains and a rank indicator report  being provided within a particular length of time or receiving a request for a rank indicator report.
 In some aspects, the  UE  145, 250 may reduce a quantity of active Rx chains when an SNR of the  UE  145, 250 satisfies a maximum SNR threshold of a downlink shared channel of the  UE  145, 250 and a downlink common channel of the  UE  145, 250 at a current quantity of active Rx chains. Additionally, or alternatively, the  UE  145, 250 may reduce a quantity of active Rx chains when an SNR of the  UE  145, 250 satisfies a downlink control channel SNR threshold, and when an average quantity of RBs in a band associated with the  UE  145, 250 in a particular time period does not satisfy an RB threshold.
 In some aspects, the  UE  145, 250 may reduce a quantity of active Rx chains when a particular quantity of continuous subframes are associated with granted rank numbers that are less than a current quantity of active Rx chains minus one, and when the SNR of the  UE  145, 250 satisfies the maximum SNR threshold. In other words, when the granted rank number is less than Ri-1 for the particular quantity of continuous subframes, the  UE  145, 250 may reduce the quantity of active Rx chains.
 In some aspects, the  UE  145, 250 may increase the quantity of active Rx chains based at least in part on a quantity of continuous subframes being associated with granted rank numbers that are greater than the current quantity of active Rx chains minus one, or when the CRC error count satisfies a CRC threshold. In other words, the  UE  145, 250 may increase the quantity of active Rx chains when the granted rank number is greater than Ri-1 for the particular quantity of continuous subframes.
 In some aspects, the  UE  145, 250 may increase a rank number of the  UE  145, 250 when a measured rank number is less than or equal to Ri-1. In such a case, the  UE  145, 250 may increase the rank number based at least in part on a particular delay after  reporting the measured rank number. Additionally, or alternatively, the  UE  145, 250 may increase the current rank number when a CRC error count of the  UE  145, 250 satisfies an error count threshold.
 In some aspects, the  UE  145, 250 may decrease a rank number of the  UE  145, 250 when the measured rank number is less than or equal to Ri-1. In such a case, the  UE  145, 250 may decrease the rank number based at least in part on a particular delay after reporting the measured rank number. In some aspects, the  UE  145, 250 may maintain a current rank number of the  UE  145, 250 when the measured rank number is between Ri-1 and Ri.
 In some aspects, the  UE  145, 250 may select a quantity of active Rx chains for an intra-band carrier aggregation implementation. For example, the  UE  145, 250 may select a maximum quantity of respective quantities of Rx chains for a primary cell downlink shared channel, a secondary cell downlink shared channel, a primary cell downlink control channel, and a secondary cell downlink control channel. In such a case, each band of the intra-band carrier aggregation implementation may be controlled according to the above state machines and/or conditions.
 In some aspects, for connected mode discontinuous reception (CDRX) , when the  UE  145, 250 enters an active state of the CDRX cycle, the  UE  145, 250 may use a most recent reported rank indicator as a current rank number of the  UE  145, 250. For idle mode discontinuous reception (IDRX) , when an SNR of the  UE  145, 250 on all channels is greater than a downlink control channel SNR of the  UE  145, 250, the  UE  145, 250 may use a quantity of Rx chains equal to Ri (e.g., a current rank number of the UE 145, 250) .
 As indicated above, Figs. 9A-9C are provided as examples. Other examples are possible and may differ from what was described with respect to Figs. 9A-9C.
 Fig. 10 is a diagram illustrating an example process 1000 performed, for example, by a user equipment, in accordance with various aspects of the present disclosure. Example process 1000 is an example where a UE (e.g., UE 145, 250) performs configuration of a reception configuration based at least in part on a throughput indicator.
 As shown in Fig. 10, in some aspects, process 1000 may include estimating an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator (block 1010) . For example, the  UE  145, 250 may estimate an estimated downlink data throughput based at least in part on at least one throughput indicator, as described above. The at least one throughput indicator may include, for example, a rank indicator, an SNR, a CRC error count, a RB allocation, and/or the like.
 As shown in Fig. 10, in some aspects, process 1000 may include configuring a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication, wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE (block 1020) . For example, the  UE  145, 250 may configure a reception configuration of the  UE  145, 250 based at least in part on the estimated downlink data throughput. Additionally, or alternatively, the  UE  145, 250 may configure the reception configuration based at least in part on a channel quality indication of the  UE  145, 250. The reception configuration may relate to at least one of a number of active Rx chains of the  UE  145, 250 or a traffic rank number of the  UE  145, 250. In some aspects, the reception configuration may relate to a clock speed of a processor of the  UE  145, 250.
 In some aspects, configuring the reception configuration further includes modifying a rank indicator transmitted by the UE. In some aspects, configuring the  reception configuration further includes configuring a maximum allowed rank of the UE. In some aspects, the maximum allowed rank is determined based at least in part on at least one traffic indicator and a current transmit mode of  UE  145, 250. In some aspects, configuring the reception configuration further includes modifying the number of active receiver chains. In some aspects, configuring the reception configuration further includes modifying a channel quality indication transmitted by the  UE  145, 250. In some aspects, configuring the reception configuration further includes modifying a clock speed of a processor of the  UE  145, 250.
 In some aspects, the throughput indicator is based at least in part on a transport block size allocated for the  UE  145, 250. In some aspects, the throughput indicator is based at least in part on a quantity of consecutive subframes having a granted rank number that is lower than a rank context between the  UE  145, 250 and a base station (e.g.,  eNB  110, 210, 230) . In some aspects, the throughput indicator is based at least in part on a modulation and coding scheme associated with the  UE  145, 250.
 In some aspects, the throughput indicator is based at least in part on a resource block allocation of the  UE  145, 250. In some aspects, the channel quality indication is based at least in part on a signal to noise ratio of the  UE  145, 250. In some aspects, the channel quality indication is based at least in part on a cyclic redundancy check error rate of the  UE  145, 250. In some aspects, the reception configuration is further configured based at least in part on a determination that the  UE  145, 250 is associated with a connected-mode discontinuous reception cycle. In some aspects, the reception configuration is further configured based at least in part on a determination that the  UE  145, 250 is associated with an idle discontinuous reception cycle. In some aspects, the  UE  145, 250 is configured to use at least two channels with an intra-band  configuration, the at least two channels are associated with respective quantities of active receiver chains, and the reception configuration is further configured according to a highest quantity of active receiver chains of the respective quantities of active receiver chains. In some aspects, configuring the reception configuration is performed iteratively or dynamically.
 Although Fig. 10 shows example blocks of process 1000, in some aspects, process 1000 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 10. Additionally, or alternatively, two or more of the blocks of process 1000 may be performed in parallel.
 The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations are possible in light of the above disclosure or may be acquired from practice of the aspects.
 As used herein, the term component is intended to be broadly construed as hardware, firmware, or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, or a combination of hardware and software.
 Some aspects are described herein in connection with thresholds. As used herein, satisfying a threshold may refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
 It will be apparent that systems and/or methods, described herein, may be implemented in different forms of hardware, firmware, or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the  operation and behavior of the systems and/or methods were described herein without reference to specific software code—it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
 Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of possible aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of possible aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
 No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the term “one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (69)

  1. A method for wireless communication, comprising:
    estimating, by a user equipment (UE) , an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator; and
    configuring, by the UE, a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication,
    wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
  2. The method of claim 1, wherein configuring the reception configuration further includes configuring a rank indicator transmitted by the UE.
  3. The method of claim 1, wherein configuring the reception configuration further includes configuring a maximum allowed rank of the UE.
  4. The method of claim 3, wherein the maximum allowed rank is determined based at least in part on at least one traffic indicator and a current transmit mode of UE.
  5. The method of claim 1, wherein configuring the reception configuration further includes configuring the number of active receiver chains.
  6. The method of claim 1, wherein configuring the reception configuration further includes configuring a channel quality indication transmitted by the UE.
  7. The method of claim 1, wherein configuring the reception configuration further includes configuring a clock speed of a processor of the UE.
  8. The method of claim 1, wherein the throughput indicator is based at least in part on a transport block size allocated for the UE.
  9. The method of claim 8, wherein the throughput indicator is based at least in part on a quantity of consecutive subframes having a granted rank number that is lower than a rank context between the UE and a base station.
  10. The method of claim 1, wherein the throughput indicator is based at least in part on a modulation and coding scheme associated with the UE.
  11. The method of claim 1, wherein the throughput indicator is based at least in part on a resource block allocation of the UE.
  12. The method of claim 1, wherein the channel quality indication is based at least in part on a signal to noise ratio of the UE.
  13. The method of claim 1, wherein the channel quality indication is based at least in part on a cyclic redundancy check error rate of the UE.
  14. The method of claim 1, wherein the reception configuration is further configured based at least in part on a determination that the UE is associated with a connected-mode discontinuous reception cycle.
  15. The method of claim 1, wherein the reception configuration is further configured based at least in part on a determination that the UE is associated with an idle discontinuous reception cycle.
  16. The method of claim 1, wherein the UE is configured to use at least two channels with an intra-band configuration,
    wherein the at least two channels are associated with respective quantities of active receiver chains; and
    wherein the reception configuration is further configured according to a highest quantity of active receiver chains of the respective quantities of active receiver chains.
  17. The method of claim 1, wherein configuring the reception configuration is performed iteratively or dynamically.
  18. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the one or more processors configured to:
    estimate an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator; and
    configure a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication,
    wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
  19. The UE of claim 18, wherein the one or more processors are further configured to modify a rank indicator transmitted by the UE.
  20. The UE of claim 18, wherein the one or more processors are further configured to configure a maximum allowed rank of the UE.
  21. The UE of claim 20, wherein the maximum allowed rank is determined based at least in part on at least one traffic indicator and a current transmit mode of UE.
  22. The UE of claim 18, wherein the one or more processors are further configured to configure the number of active receiver chains.
  23. The UE of claim 18, wherein the one or more processors are further configured to configure a channel quality indication transmitted by the UE.
  24. The UE of claim 18, wherein the one or more processors are further configured to configure a clock speed of a processor of the UE.
  25. The UE of claim 18, wherein the throughput indicator is based at least in part on a transport block size allocated for the UE.
  26. The UE of claim 25, wherein the throughput indicator is based at least in part on a quantity of consecutive subframes having a granted rank number that is lower than a rank context between the UE and a base station.
  27. The UE of claim 18, wherein the throughput indicator is based at least in part on a modulation and coding scheme associated with the UE.
  28. The UE of claim 18, wherein the throughput indicator is based at least in part on a resource block allocation of the UE.
  29. The UE of claim 18, wherein the channel quality indication is based at least in part on a signal to noise ratio of the UE.
  30. The UE of claim 18, wherein the channel quality indication is based at least in part on a cyclic redundancy check error rate of the UE.
  31. The UE of claim 18, wherein the reception configuration is further configured based at least in part on a determination that the UE is associated with a connected-mode discontinuous reception cycle.
  32. The UE of claim 18, wherein the reception configuration is further configured based at least in part on a determination that the UE is associated with an idle discontinuous reception cycle.
  33. The UE of claim 18, wherein the UE is configured to use at least two channels with an intra-band configuration,
    wherein the at least two channels are associated with respective quantities of active receiver chains; and
    wherein the reception configuration is further configured according to a highest quantity of active receiver chains of the respective quantities of active receiver chains.
  34. The UE of claim 18, wherein configuring the reception configuration is performed iteratively or dynamically.
  35. A non-transitory computer-readable medium storing one or more instructions for wireless communication,
    the one or more instructions, when executed by one or more processors of a user equipment (UE) , causing the one or more processors to:
    estimate an estimated downlink data throughput associated with the UE based at least in part on a throughput indicator; and
    configure a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication,
    wherein the reception configuration relates to at least one of a number of active receiver chains of the UE or a traffic rank of the UE.
  36. The non-transitory computer-readable medium of claim 35, wherein configure the reception configuration further includes configure a rank indicator transmitted by the UE.
  37. The non-transitory computer-readable medium of claim 35, wherein configure the reception configuration further includes configure a maximum allowed rank of the UE.
  38. The non-transitory computer-readable medium of claim 37, wherein the maximum allowed rank is determined based at least in part on at least one traffic indicator and a current transmit mode of UE.
  39. The non-transitory computer-readable medium of claim 35, wherein configure the reception configuration further includes configure the number of active receiver chains.
  40. The non-transitory computer-readable medium of claim 35, wherein configure the reception configuration further includes configure a channel quality indication transmitted by the UE.
  41. The non-transitory computer-readable medium of claim 35, wherein configure the reception configuration further includes configure a clock speed of a processor of the UE.
  42. The non-transitory computer-readable medium of claim 35, wherein the throughput indicator is based at least in part on a transport block size allocated for the UE.
  43. The non-transitory computer-readable medium of claim 42, wherein the throughput indicator is based at least in part on a quantity of consecutive subframes having a granted rank number that is lower than a rank context between the UE and a base station.
  44. The non-transitory computer-readable medium of claim 35, wherein the throughput indicator is based at least in part on a modulation and coding scheme associated with the UE.
  45. The non-transitory computer-readable medium of claim 35, wherein the throughput indicator is based at least in part on a resource block allocation of the UE.
  46. The non-transitory computer-readable medium of claim 35, wherein the channel quality indication is based at least in part on a signal to noise ratio of the UE.
  47. The non-transitory computer-readable medium of claim 35, wherein the channel quality indication is based at least in part on a cyclic redundancy check error rate of the UE.
  48. The non-transitory computer-readable medium of claim 35, wherein the reception configuration is further configured based at least in part on a determination that the UE is associated with a connected-mode discontinuous reception cycle.
  49. The non-transitory computer-readable medium of claim 35, wherein the reception configuration is further configured based at least in part on a determination that the UE is associated with an idle discontinuous reception cycle.
  50. The non-transitory computer-readable medium of claim 35, wherein the UE is configured to use at least two channels with an intra-band configuration,
    wherein the at least two channels are associated with respective quantities of active receiver chains; and
    wherein the reception configuration is further configured according to a highest quantity of active receiver chains of the respective quantities of active receiver chains.
  51. The non-transitory computer-readable medium of claim 35, wherein configuring the reception configuration is performed iteratively or dynamically.
  52. An apparatus for wireless communication, comprising:
    means for estimating an estimated downlink data throughput associated with the apparatus based at least in part on a throughput indicator; and
    means for configuring a reception configuration based at least in part on the estimated downlink data throughput and based at least in part on a channel quality indication,
    wherein the reception configuration relates to at least one of a number of active receiver chains of the apparatus or a traffic rank of the apparatus.
  53. The apparatus of claim 52, wherein the means for configuring the reception configuration further includes means for modifying a rank indicator transmitted by the apparatus.
  54. The apparatus of claim 52, wherein the means for configuring the reception configuration further includes means for configuring a maximum allowed rank of the apparatus.
  55. The apparatus of claim 54, wherein the maximum allowed rank is determined based at least in part on at least one traffic indicator and a current transmit mode of the apparatus.
  56. The apparatus of claim 52, wherein the means for configuring the reception configuration further includes means for configuring the number of active receiver chains.
  57. The apparatus of claim 52, wherein the means for configuring the reception configuration further includes means for configuring a channel quality indication transmitted by the apparatus.
  58. The apparatus of claim 52, wherein the means for configuring the reception configuration further includes means for configuring a clock speed of a processor of the apparatus.
  59. The apparatus of claim 52, wherein the throughput indicator is based at least in part on a transport block size allocated for the apparatus.
  60. The apparatus of claim 59, wherein the throughput indicator is based at least in part on a quantity of consecutive subframes having a granted rank number that is lower than a rank context between the apparatus and a base station.
  61. The apparatus of claim 52, wherein the throughput indicator is based at least in part on a modulation and coding scheme associated with the apparatus.
  62. The apparatus of claim 52, wherein the throughput indicator is based at least in part on a resource block allocation of the apparatus.
  63. The apparatus of claim 52, wherein the channel quality indication is based at least in part on a signal to noise ratio of the apparatus.
  64. The apparatus of claim 52, wherein the channel quality indication is based at least in part on a cyclic redundancy check error rate of the apparatus.
  65. The apparatus of claim 52, wherein the reception configuration is further configured based at least in part on a determination that the apparatus is associated with a connected-mode discontinuous reception cycle.
  66. The apparatus of claim 52, wherein the reception configuration is further configured based at least in part on a determination that the apparatus is associated with an idle discontinuous reception cycle.
  67. The apparatus of claim 52, wherein the apparatus is configured to use at least two channels with an intra-band configuration,
    wherein the at least two channels are associated with respective quantities of active receiver chains; and
    wherein the reception configuration is further configured according to a highest quantity of active receiver chains of the respective quantities of active receiver chains.
  68. The apparatus of claim 52, wherein configuring the reception configuration is performed iteratively or dynamically.
  69. A method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, wireless communication device, base station, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings, specification, and appendix.
PCT/CN2017/081371 2017-04-21 2017-04-21 Techniques and apparatuses for controlling power conservation according to throughput indicators WO2018191935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081371 WO2018191935A1 (en) 2017-04-21 2017-04-21 Techniques and apparatuses for controlling power conservation according to throughput indicators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081371 WO2018191935A1 (en) 2017-04-21 2017-04-21 Techniques and apparatuses for controlling power conservation according to throughput indicators

Publications (1)

Publication Number Publication Date
WO2018191935A1 true WO2018191935A1 (en) 2018-10-25

Family

ID=63856192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081371 WO2018191935A1 (en) 2017-04-21 2017-04-21 Techniques and apparatuses for controlling power conservation according to throughput indicators

Country Status (1)

Country Link
WO (1) WO2018191935A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188190A1 (en) * 2007-02-05 2008-08-07 Narayan Prasad Multi-rank beamforming precoding apparatus and method
US20130114425A1 (en) * 2011-11-07 2013-05-09 Motorola Mobility, Inc. Method and apparatus for rank adaptation in an orthogonal fequency division multiplexing communication system
CN103167013A (en) * 2011-11-07 2013-06-19 宏碁股份有限公司 Data transmission method and mobile communication device
CN103209049A (en) * 2013-02-27 2013-07-17 东南大学 Link self-adaptation transmission method under iteration receiving condition
US20140056156A1 (en) * 2011-11-09 2014-02-27 George Jöngren CSI Reporting for a Set of CSI-RS Resources
US20140098694A1 (en) * 2012-10-09 2014-04-10 Apple Inc. Dynamic receive diversity selection for lte
CN103782522A (en) * 2011-03-31 2014-05-07 华为技术有限公司 Method in a wireless communication system
US20140269373A1 (en) * 2013-03-14 2014-09-18 Apple Inc. Adaptive use of receiver diversity

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188190A1 (en) * 2007-02-05 2008-08-07 Narayan Prasad Multi-rank beamforming precoding apparatus and method
CN103782522A (en) * 2011-03-31 2014-05-07 华为技术有限公司 Method in a wireless communication system
US20130114425A1 (en) * 2011-11-07 2013-05-09 Motorola Mobility, Inc. Method and apparatus for rank adaptation in an orthogonal fequency division multiplexing communication system
CN103167013A (en) * 2011-11-07 2013-06-19 宏碁股份有限公司 Data transmission method and mobile communication device
US20140056156A1 (en) * 2011-11-09 2014-02-27 George Jöngren CSI Reporting for a Set of CSI-RS Resources
US20140098694A1 (en) * 2012-10-09 2014-04-10 Apple Inc. Dynamic receive diversity selection for lte
CN103209049A (en) * 2013-02-27 2013-07-17 东南大学 Link self-adaptation transmission method under iteration receiving condition
US20140269373A1 (en) * 2013-03-14 2014-09-18 Apple Inc. Adaptive use of receiver diversity

Similar Documents

Publication Publication Date Title
US11153898B2 (en) Uplink control resource allocation for dynamic time-division duplex systems
US9949161B2 (en) Techniques and apparatuses for virtual radio link monitoring during carrier aggregation and cross-carrier scheduling
US11229075B2 (en) Techniques and apparatuses for opportunistically operating a dual receive, dual SIM dual standby (DR-DSDS) device as a dual SIM, dual active (DSDA) device
US10123278B2 (en) Techniques and apparatuses for adjusting transmission power for power-limited uplink carrier aggregation scenarios
US10136446B2 (en) Techniques and apparatuses for voice over long term evolution (VoLTE) call prioritization for multiple carriers
US10142943B2 (en) Techniques and apparatuses for peak to average ratio (PAR) based power management
US20180359789A1 (en) Techniques and apparatuses for determining a modification of a discontinuous reception cycle length
US10200828B2 (en) Techniques and apparatuses for utilizing measurement gaps to perform signal decoding for a multimedia broadcast or multicast service
US9750048B2 (en) Feedback signal management for low latency wireless communications
US20180279357A1 (en) Techniques and apparatuses for temporary modification of periodic grants
EP3566506B1 (en) Techniques and apparatuses for differential back-off for long term evolution advanced (lte-a) uplink carrier aggregation (ulca)
WO2018161856A1 (en) Techniques and apparatuses for scheduling request (sr) suppression during multimedia communication
US10194306B2 (en) Techniques and apparatuses for suppressing network status information notifications
US10194348B2 (en) Techniques and apparatuses for improved robust header compression (ROHC) decompression
US10420107B2 (en) Techniques and apparatuses for device-to-device communication using an active secondary component carrier communication chain
US10778143B2 (en) Techniques and apparatuses for mitigating voltage controlled oscillator frequency disturbance
US20180152944A1 (en) Techniques and apparatuses for improving carrier aggregation throughput in a feedback receiver based device
WO2018191935A1 (en) Techniques and apparatuses for controlling power conservation according to throughput indicators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906263

Country of ref document: EP

Kind code of ref document: A1