WO2018189913A1 - Information processing device and information processing method - Google Patents

Information processing device and information processing method Download PDF

Info

Publication number
WO2018189913A1
WO2018189913A1 PCT/JP2017/015399 JP2017015399W WO2018189913A1 WO 2018189913 A1 WO2018189913 A1 WO 2018189913A1 JP 2017015399 W JP2017015399 W JP 2017015399W WO 2018189913 A1 WO2018189913 A1 WO 2018189913A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
priority
information processing
attribute
vehicle
Prior art date
Application number
PCT/JP2017/015399
Other languages
French (fr)
Japanese (ja)
Inventor
山田 健一郎
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to PCT/JP2017/015399 priority Critical patent/WO2018189913A1/en
Publication of WO2018189913A1 publication Critical patent/WO2018189913A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an information processing apparatus and an information processing method, and more particularly to an inter-vehicle communication system, an inter-road communication system, and a traffic management system.
  • VICS Vehicle Information
  • Communication System
  • VICS WIDE registered trademark
  • Non-Patent Document 1 proposes an evaluation formula for calculating the value of data using parameters representing the freshness of data such as time, distance, and speed.
  • the data received via the wireless relay device is judged to have a higher priority than the directly received data because the data is automobile data with a high risk of collision.
  • Hiroyuki Saai 3 others, “About data distribution considering surrounding vehicles for information sharing using inter-vehicle communication”, Proc. 19th Data Engineering Workshop, IEICE, April 7, 2008 4.1 (p.2-3), 4.4 (p.4-6), (URL: http://www.ieice.org/iss/de/DEWS/DEWS2008/proceedings/)
  • Non-Patent Document 1 the value of data is judged only by the reliability according to freshness and the route for the purpose of alleviating traffic congestion, and in Patent Document 1, it is judged only by the collision risk for the purpose of avoiding the collision of the vehicle. That is, in the conventional system, the priority of data is set according to only one criterion for one purpose.
  • data that can be acquired by the in-vehicle sensor is not limited to specific data such as traffic data in Non-Patent Document 1 and collision risk in Patent Document 1.
  • the data to be shared is limited to in-vehicle sensors and fixed point monitoring cameras used in the traffic system.
  • a new system that includes sharable data objects and personally owned devices is required.
  • an object of the present invention is to construct an information processing apparatus and an information processing method that share various types of data regarding data priority.
  • the present invention provides, for example, a data storage unit that stores surrounding information, and an attribute priority that is a priority of a plurality of attributes of the surrounding information stored in the data storage unit.
  • An attribute priority determination unit for determining and a communication unit for communicating the surrounding information stored in the data storage unit to another vehicle, and the communication unit is in accordance with the priority of the plurality of attributes determined by the attribute priority determination unit. The priority of information at the time of communication is changed, and surrounding information is communicated to other vehicles according to the changed priority.
  • FIG. 1 is a schematic diagram of an information processing system in Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the vehicle-mounted communication apparatus in Example 1.
  • FIG. 3 is a flowchart of data access processing according to the first embodiment. It is a block diagram of the inquiry packet in Example 1.
  • 3 is a flowchart of data distribution processing according to the first embodiment.
  • 3 is a configuration diagram of a distribution request packet in Embodiment 1.
  • FIG. It is an example of the attribute priority table in Example 1.
  • 1 is a configuration diagram of a data format of an information processing system in Embodiment 1.
  • FIG. It is an example of the priority list in the first embodiment.
  • FIG. 10 is a block configuration diagram of an information processing apparatus according to a second embodiment.
  • FIG. 10 is a schematic diagram illustrating a pattern for determining a movement route of a host vehicle that holds puddle data in the third embodiment.
  • FIG. 10 is a block configuration diagram illustrating a configuration of an automobile control unit according to a third embodiment. It is the schematic diagram which showed the pattern of the movement path
  • FIG. 10 is a schematic diagram illustrating processing for a puddle in a lane departure prevention support system according to a third embodiment.
  • the first embodiment provides a data priority according to data attributes for the purpose of efficiently using a limited communication network and communication time. This is an example.
  • FIG. 1 is a schematic diagram showing an outline of an information processing system 100 in the present embodiment.
  • the information processing system 100 is a system for sharing data detected by an in-vehicle sensor while a vehicle using the system is traveling on a road, and includes the own vehicle and other vehicles with which the other party communicates.
  • the information processing system 100 includes another vehicle 200 that travels in the same lane as the host vehicle 101, another vehicle 300 that travels in the opposite lane, a relay wireless device 400, a traffic system infrastructure 500, and a traffic system network 600.
  • the traffic system server 700 is included.
  • Each vehicle is equipped with a surrounding information acquisition unit 102 and an in-vehicle communication device 103.
  • FIG. 2 is a block diagram showing the functional configuration of the in-vehicle communication device 103 in this embodiment.
  • the in-vehicle communication device 103 includes a data storage unit 103-1, an attribute priority determination unit 103-2, an in-attribute priority determination unit 103-3, a communication unit 103-4, a vehicle arrival position calculation unit 103-4, The holding data list creation unit 103-5 is configured.
  • the communication unit 103-4 includes a data transmission unit 103-4-1 and a data reception unit 103-4-2.
  • the user of the information processing system 100 designates a position of interest at the time of data access, and requests data detected within a circle having a radius Rac centered on the position.
  • the own vehicle 101 requests data created on its own predicted movement route.
  • the priority at the time of request is increased.
  • the priority is determined only by the intra-attribute priority.
  • the intra-attribute priority may be determined according to, for example, the intra-attribute priority P defined by Expression (1).
  • E is the valid time of the data
  • te is the time elapsed since the data was created
  • d is the distance from the current position to the detection position
  • v is the moving speed of the vehicle
  • ⁇ and ⁇ are preset Represents each effective coefficient.
  • d / v represents the time required for movement from the current position of the vehicle to the position where the data was created.
  • the priority can be adjusted by setting E, ⁇ , and ⁇ .
  • E the priority of all data in the communication network is increased, so that the number of effective data increases and the user of the information processing system 100 acquires more opportunities.
  • E acquisition is possible.
  • Opportunities can be reduced.
  • set larger than ⁇
  • the priority greatly depends on the elapsed time te, and the priority of data created in a wider range becomes higher.
  • is larger than ⁇ , the priority is near the current position.
  • the priority of data created in a narrow range becomes high. For example, a higher priority can be set for data in a movement route predicted to arrive by the host vehicle.
  • FIG. 3 is a flowchart of data access processing in this embodiment.
  • the host vehicle 101 searches its own data storage unit 103-1. Whether the request data is held is checked (step S502). If the request data is held in the data storage unit 103-1 as a result of the search (Yes in step S502), the process proceeds to step S513, and the data access process ends. On the other hand, if the request data is not held in the data storage unit 103-1 (No in step S502), the process proceeds to step S503, and the host vehicle 101 transmits an inquiry packet.
  • Fig. 4 shows an example of items included in the inquiry packet.
  • the inquiry packet includes a packet number, a transmission vehicle ID, a request data attribute, a request data position, a transmission vehicle planned route, the number of hops, and a communicable time.
  • step S504 a timeout of the inquiry packet transmitted by the host vehicle 101 is determined.
  • the inquiry packet may be not only direct communication but also multi-hop communication, and the multi-hop upper limit number k is preset in the system. If the set time-out period is exceeded (Yes in step S504), the user is informed that the inquiry communication has not been established, and then the process proceeds to step S513, where the data access process ends. On the other hand, when an inquiry packet is received by another vehicle during the set timeout period (No in step S504), the process proceeds to step S505.
  • step S505 the other vehicle that has received the inquiry packet checks the number of hops of the inquiry packet, and determines whether or not the number of hops from the inquiry packet transmission vehicle (own vehicle 101) is within the multi-hop upper limit k times. If the set multi-hop upper limit number k is exceeded (No in step S505), the hop number is overwritten to notify that the multi-hop number upper limit has been reached, and the reply packet is transmitted to the inquiry packet transmission vehicle (own vehicle). 101), the process proceeds to step S513, and the data access process ends. Note that it is not always necessary to transmit a reply packet indicating that the upper limit hop count has been reached. In this case, the process proceeds to step S513 in the timeout process in step S504.
  • the inquiry packet transmission vehicle (own vehicle 101)
  • the set upper limit number of multihops (No in step S505)
  • the other vehicle that has received the packet is directly connected as a relay vehicle.
  • the inquiry packet is transmitted to the other vehicle, and the process proceeds to step S506.
  • the inquiry packet to be transmitted as a relay is transmitted after overwriting the transmission vehicle ID of the other vehicle that has become the relay vehicle and the obtained communication time.
  • step S506 in the other vehicle that has received the inquiry packet, communication between the inquiry packet transmission vehicle (own vehicle 101) and the received other vehicle, which is predicted from the information of the transmission vehicle planned route included in the inquiry packet, becomes possible. Calculate the possible communication time.
  • step S507 the other vehicle that has received the inquiry packet searches the data storage unit 103-1 of the received other vehicle to determine whether or not the designated attribute and the designated position data included in the inquiry packet are held. Investigate whether data is retained. As a result of the search, if the received other vehicle does not hold the requested data in its own data storage unit 103-1 (No in step S507), the process proceeds to step S513, and the data access process ends. On the other hand, if the request data is held in the data storage unit 103-1 (Yes in step S507), the process proceeds to step S508.
  • step S508 all transmission vehicles included in the inquiry packet (the own vehicle 101 that is the first transmission source and other vehicles that have become relay vehicles) IDs and communicable times, and a data list in the vicinity of the designated position that the own packet has are included.
  • the reply packet is transmitted to the own vehicle 101.
  • step S509 when the own vehicle 101 that has received the reply packet receives reply packets from a plurality of other vehicles, the communication possible time in all communication paths including multi-hop communication to other vehicles holding data.
  • the shortest time is derived as the communicable time in the multi-hop communication between the own vehicle 101 and the vehicle.
  • step S510 the own vehicle 101 compares the data held in its own data storage unit 103-1 with the priority of the data included in the received list, and as the data actually requested in order from the data with the highest priority. Then, a request packet is transmitted to the other vehicle with the shortest communication time determined in the above-described step S509, and at that time, the communicable time with the target other vehicle is updated based on the latest planned vehicle route.
  • the data requested by the own vehicle 101 is held not only for a single vehicle but also for a plurality of vehicles, after preferentially selecting a vehicle with a small number of hops and a long communicable time, A request packet is transmitted to the corresponding plurality of vehicles.
  • step S510 is completed, the process proceeds to step S511.
  • step S511 the connection is disconnected due to unforeseen reasons such as whether reception of request data from the vehicle that has received the request packet has been completed, or that there is not enough available communication time during reception of the request data. Determine whether or not. If the request data is being received or is being communicated (No in step S511), the process proceeds to step S511 again, and step S511 is repeated until the determination is Yes. When reception of request data is completed or communication is disconnected (Yes in step S511), the process proceeds to step S512.
  • step S512 after the accessed data is saved in the data storage unit 103-1 of the host vehicle, the user of the host vehicle 101 is notified by the video output unit that the requested data access has been completed, and the data access is performed.
  • the process ends (step S513).
  • the video output unit is an arbitrary visible interface such as an in-vehicle display or an icon display.
  • the notification that the request data access is completed is not necessarily limited to the video output unit.
  • any means that can notify the driver such as a vibration output unit or a voice output unit, may be used.
  • the own vehicle 101 distributes data by connecting at the time of passing in the opposite lane or the intersection with the other vehicle 300 that is the oncoming vehicle, when traveling in parallel with the other vehicle 200 traveling in the same lane by traveling on the road.
  • the connection between vehicles is not limited to direct connection, but may be multi-hop communication via a plurality of automobiles.
  • multi-hop communication via the relay radio apparatus 400 may be used.
  • the communication time between vehicles and between roads is limited, and the own vehicle 101 cannot distribute data without limitation. Therefore, it is necessary to select data to be distributed.
  • the data to be distributed is distributed so that the priority of the data that is likely to be accessed in the future by the vehicle to be distributed becomes high.
  • FIG. 5 is a flowchart of data distribution processing in the present embodiment.
  • the in-vehicle communication device 103 recognizes that it is connected to another vehicle directly or via the relay wireless device 400, it starts data distribution processing (step S701), and the own vehicle 101 is stored in its own data storage unit 103-1. From the information of the past movement route, the vehicle arrival position calculation unit 103-4 calculates a position that the vehicle arrival position is predicted to reach after Tf seconds.
  • the retained data list creation unit 103-5 is executed by the vehicle arrival position calculation unit 103-4.
  • a list of data created in a two-dimensional rectangular area having the obtained arrival position and the current position as a vertex is created as a retained data list (step S702).
  • the process proceeds to step S703.
  • step S703 a data sharing packet configured based on the retained data list and the like generated in step S702 is created, and the data transmitting unit 103-4 that configures the communication unit 103-4 with respect to the connected other vehicle 300. -1 transmits a distribution request packet. Note that the processing in step S702 and step S703 is performed in the same manner in the other vehicle 300 that is the connection destination.
  • the distribution request packet includes a packet number, a transmission vehicle ID, a transmission vehicle current position, a transmission vehicle predicted position, a transmission vehicle speed vector, the number of hops, and a holding data list (details of the data format related to the holding data list will be described later).
  • step S704 reception time-out determination of the distribution request packet transmitted from the other vehicle 300 is performed. If the distribution request packet transmitted from the other vehicle 300 is not received within the timeout time set by the data receiving unit 103-4-2 constituting the communication unit 103-4 (Yes in step S704), the distribution request communication is not performed. After notifying the user that it has not been established, the process proceeds to step S710, and the data distribution process ends. On the other hand, when the data receiving unit 103-4-2 receives the distribution request packet during the set timeout period (No in step S704), the process proceeds to step S705. In step S705, intra-attribute priority determination is performed.
  • the in-vehicle communication device 103 determines priority by placing the highest priority on attributes.
  • the attribute priority determination unit 103-2 determines the data priority based on the attribute priority table stored in the data storage unit 103-1.
  • the attribute priority determined by the attribute priority determination unit 103-2 is the priority for each attribute of the data, and the value is high in data and humanitarian urgency that affects driving safety. The higher the data, the higher the priority.
  • Fig. 7 shows an example of the attribute priority table.
  • the attribute priority column represents the priority order, and the smaller the attribute priority value, the higher the priority. For example, road conditions such as vehicle information and freezing information, which are represented by the presence of blind spots, have a high impact on safety, so attribute priority is high, while parking space availability is safe.
  • the attribute priority is set low because the influence on the property is low.
  • the priority of the attribute priority table is not necessarily limited to the initial state, and items such as addition of items and change of priority may be updated in accordance with user settings or legal revisions.
  • FIG. 8 shows a configuration diagram of a data format of the information processing system 100 in the present embodiment.
  • the data format is divided into two types: index data 1000 in which features and the like regarding each data are described, and a data body 1001 including detailed detection information detected by the surrounding information acquisition unit 102 and the like.
  • the index data 1000 includes a detection data attribute 1002, a detection time 1003, and a detection position 1004.
  • the index data 1000 has a very small data size, and communication of only the index data 1000 can be completed in a short time compared to the data body. Therefore, the data information that constitutes the retained data list of the distribution request packet does not include the data body, and is composed only of the index data 1000.
  • the retained data list included in the distribution request packet received from the other vehicle 300 received by the data receiving unit 103-4-2 is the distribution request created and transmitted by the own vehicle 101.
  • the data is sorted into a batch data list, and then classified by attribute based on the attribute priority table by the attribute priority determining unit 103-2.
  • the data list in which the attribute and the priority based on the attribute are determined in the previous step S705 are further compared with the priority criteria that differ for each attribute within each attribute by the attribute priority determination unit 103-6. Determine the priority.
  • the priority determination that is different for each attribute may be, for example, a determination based on the priority P expressed by Expression (1).
  • the DR-NL (DR Nearby List) method is used to determine not only the freshness of the data but also the accessibility p shown in Equation (2) and the method that also considers the number of hops. May be.
  • p in the formula (2) represents accessibility
  • h represents the number of hops to reach the packet recorded in the distribution request packet.
  • the priority is determined based on a value obtained by multiplying the value represented by the equation (1) by (1-p) taking the access priority into consideration.
  • a DR (Data Reliability) method or a DR-DH (DR With Dissemination History) method may be used.
  • step S706 the process proceeds to step S707.
  • the priority list created through the above steps S705 and S706 is, for example, as shown in FIG. FIG. 9 is a virtual representation of the priority list with three axes of attribute priority, attribute priority, and attribute priority determination value. The smaller the value of the attribute priority axis in FIG. 9 is, the higher the priority is. The axis of attribute priority is closer to A in alphabetical order, and the priority in the attribute is higher. Normally, detection data with a high attribute priority has a high influence on safety, so the number of detection data itself is not so large, but detection data with a low attribute priority is expected to be very large. In the priority list of FIG.
  • data distribution starts with data of attribute priority 1 and intra-attribute priority A, and then the intra-attribute priority is lowered to B, and after all data within the attribute is distributed, attribute priority is given.
  • the data is transmitted to the connected other vehicle 300 from the data transmission unit 103-4-1 constituting the communication unit 103-4 in the order of the priority within the attribute.
  • step S708 the connection is disconnected due to unforeseen reasons such as transmission of the data started in step S707 is completed, or communication becomes difficult due to shadowing by the shielding object during transmission of the distribution schedule data. Determine whether or not.
  • the process proceeds to step S708 again, and step S708 is repeated until the determination is Yes.
  • the transmission of the distribution schedule data is completed or the communication is disconnected (Yes in step S708), the process proceeds to step S709.
  • step S709 the user of the host vehicle 101 is notified of the end of the data distribution process by any means such as a visible interface such as a display or voice, and the data distribution process ends (step S709). S710). Note that the end notification in step S709 is not necessarily required, and it is not necessary to notify the user of the end of the process for the data distribution process.
  • the own vehicle 101 can detect various types detected by the surrounding information acquisition unit 102 without being limited to the single-purpose concept based on single attribute data as in the past.
  • the data can be shared on the basis of the optimum evaluation criteria even in a limited communication time by the vehicle-to-vehicle or inter-road communication, and the evaluation criteria based on the priority regarding the data attribute of this embodiment.
  • Example 1 described access and distribution of information already converted into data.
  • a process for making sensor data detected by an in-vehicle sensor of the own vehicle 101 and other means optimal data at the time of sharing in the information processing system 100 will be specifically described. That is, a specific process until the detection item is recognized from detection information such as a sensor will be described.
  • FIG. 10 is a block diagram of an information processing apparatus 1200 that performs input / output and information processing related to the information processing system 100 of the host vehicle 101 in the present embodiment.
  • the information processing apparatus 1200 includes an in-vehicle communication device 103, a control unit 1201, a system bus 1202, a surrounding information acquisition unit 1203, a surrounding information processing unit 1204, a map creation unit 1205, an automobile control unit 1206, a video output unit 1207, and a vibration output unit 1208. , An audio output unit 1209, and a sensor-equipped terminal 1210.
  • the control unit 1201 controls the entire information processing apparatus 1200, and is, for example, a microprocessor.
  • a system bus 1202 is a data communication path for transmitting and receiving data between the control unit 1201 and each unit in the information processing apparatus 1200.
  • the surrounding information acquisition unit 1203 is a part that measures the surrounding environment 1207 of the host vehicle 101, and the surrounding information is acquired by measuring the surrounding environment 1207.
  • the ambient information acquired by the ambient information acquisition unit 1203 is input to the ambient information processing unit 1204, and analysis processing of the ambient information is performed.
  • the map creation unit 1205 converts the surrounding environment 1207 as data on the map based on the analysis result of the surrounding information processing unit 1204.
  • the vehicle control unit 1206 operates the host vehicle 101 based on the map information created by the map creation unit 1205 or the map information transmitted from another vehicle, a traffic system, or the like obtained by sharing data with the in-vehicle communication device 103. To control.
  • FIG. 11 is a configuration diagram of the surrounding information acquisition unit 1203 in the present embodiment.
  • Ambient information is obtained by measuring the ambient environment 1207 with the ambient information acquisition unit 1203.
  • the ambient information acquisition unit 1203 includes, for example, an RGB camera 1203-1, an infrared camera unit 1203-2, a laser radar 1203-3, a sound collecting microphone 1203-4, and a millimeter wave radar 1203-5.
  • ⁇ Detection data 1 vehicle information (emergency vehicle)>
  • vehicle information (emergency vehicle)
  • a sound collection microphone 1203-4 constituting the surrounding information acquisition unit 1203 A method for detecting the siren sound of an emergency vehicle will be described.
  • a band designed with the fundamental frequency as a target by the surrounding information processing unit 1204 for the detection signal of the sound collecting microphone 1203-4 By applying a filtering process that passes the pass filter, only the signal intensity of the fundamental frequency can be observed.
  • a threshold setting that can be distinguished from ambient noise is provided for the signal level after the bandpass filter, and it is determined that an emergency vehicle is detected when a signal level that exceeds the threshold is detected.
  • the design of the band pass filter may be 0.65 second period, that is, about 1.5 Hz.
  • the surrounding information processing unit 1204 applies an image recognition process, thereby combining the red lamp of the emergency vehicle combined with the vehicle recognition. Flashing or emergency letters may be detected.
  • the map creation unit 1205 calculates the current position of the host vehicle 101 as coordinates from the information of the past travel route stored in its own data storage unit 103-1.
  • the position is set as an emergency vehicle detection position 1004.
  • the current position of the host vehicle 101 may be acquired by a GPS (Global Positioning System) mounted on the host vehicle 101 (not shown).
  • the detection start position at which the emergency vehicle can be detected is first stored, and then overwritten by the current position of the host vehicle 101 at a predetermined time interval. .
  • the position is overwritten as the detection position 1004, and the detection process is terminated.
  • the estimated relative speed between the estimated emergency vehicle and the host vehicle 101 is obtained by calculating the frequency deviation from the reference frequency due to the Doppler effect after designing the bandpass filter with a wider pass frequency.
  • the main body may be stored in the data storage unit 103-1.
  • ⁇ Detection data 2 Road surface condition (snow cover, freezing)> As an example of detecting snow coverage and freezing on the road surface classified as road surface condition (severe) in the attribute priority table of FIG. 7 as the attribute 1002 of the detection data, for example, by a probe car equipped with a dedicated sensor (not shown) Think about detection.
  • the probe car is equipped with one or more of a radiation type thermometer that can measure the road surface temperature in a non-contact manner and a reflectance sensor that can measure the light reflectance, and can detect the frozen state of the road surface.
  • a radiation type thermometer that can measure the road surface temperature in a non-contact manner
  • a reflectance sensor that can measure the light reflectance, and can detect the frozen state of the road surface. This is stored as the configuration of the surrounding information acquisition unit 1203. If the detection result of the radiation type thermometer is 0 ° C or less, the surrounding information processing unit 1204 determines that the road area is snow or the road surface is frozen.
  • a predetermined threshold is provided for the reflectance, and when the reflectance is higher than that value, it is determined that the road area is snow.
  • combining the radiation type thermometer and the reflectance sensor if the reflectance is not more than a predetermined threshold and not more than 0 degrees C, it is determined that the road surface is frozen.
  • the map creation unit 1205 calculates the current position of the host vehicle 101 from the past movement route information stored in its own data storage unit 103-1 as coordinates, The position is set as a road surface condition detection position 1004.
  • the current position may be acquired by GPS.
  • the road surface condition detection position 1004 the position where the road surface condition can be detected is stored as a detection start position, and then the current position of the host vehicle 101 at a predetermined time interval is sequentially added to the data body.
  • the position is added as a detection end position to the detection position 1004, and the detection process is ended.
  • the detection position 1004 included in the index data 1000 is only the detection start position and the detection end position in order to reduce the data capacity, and the coordinate group from the detection start position to the detection end position recorded in the data body corresponds. Indicates the area of road surface condition to be performed.
  • the data storage location is not necessarily limited to the above, and the index data 1000 may include a coordinate group from the detection start position to the detection end position.
  • ⁇ Detection data 3 Visibility (fog, volcanic ash, PM2.5)>
  • detecting fog, volcanic ash, and PM2.5 classified in the field of view in the attribute priority table of FIG. 7 as the attribute 1002 of the detection data for example, an RGB camera 1203-1 configuring the ambient information acquisition unit 1203 A method of detecting the visibility state by the millimeter wave radar 1203-5 will be described.
  • the ambient information processing unit 1204 calculates a scattering coefficient based on the distance between the forward imaging target image by the RGB camera 1203-1 and the forward imaging target by the millimeter wave radar 1203-5. As the scattering coefficient obtained by calculation increases, the field of view deteriorates. It is determined that fog or PM2.5 is detected when a threshold value of a predetermined scattering coefficient is exceeded.
  • the map creation unit 1205 determines the current position of the host vehicle 101 from the information of the past travel route stored in its own data storage unit 103-1. Are used as coordinates, and their positions are designated as fog, volcanic ash, and PM2.5 detection position 1004. The current position may be acquired by GPS.
  • the position where the visibility situation can be detected is stored as a detection start position, and then the current position of the host vehicle 101 at a predetermined time interval is sequentially added to the data body.
  • the position is added as a detection end position to the detection position 1004, and the detection process is terminated. That is, the detection position 1004 included in the index data 1000 is only the detection start position and the detection end position in order to reduce the data capacity, and the coordinate group from the detection start position to the detection end position recorded in the data body corresponds. It represents the field of view situation.
  • the data storage location is not necessarily limited to the above, and the index data 1000 may include a coordinate group from the detection start position to the detection end position.
  • ⁇ Detection data 4 Road surface condition (puddle)>
  • the laser radar 1203-3 constituting the surrounding information acquisition unit 1203.
  • IR Infrared
  • FIG. 12A is a schematic diagram showing a state in front of the host vehicle 101, and shows a state in which a puddle 1400 exists in front of the host vehicle 101.
  • three-dimensional measurement and IR intensity measurement are performed using the laser radar 1203-3 for the visual field shown in FIG.
  • the results of the three-dimensional measurement and IR intensity measurement are made one-dimensional in the horizontal direction 1401 across the puddle in FIG. 12A, as shown in the upper diagram of FIG. 12B and the upper diagram of FIG. Become.
  • the one-dimensional data at the time of three-dimensional measurement is substantially constant regardless of the presence or absence of a puddle (the distance changes when there is an object), and the one-dimensional data at the time of IR intensity data measurement has an intensity in the puddle region. descend.
  • the infrared light used in the laser radar 1203-3 has a high absorbance for water, but the distance measurement result shows that the distance measurement result is sufficient if it is within the range of the distance measurement even if the measurement intensity decreases. This is because the influence is small. Therefore, using the results of the three-dimensional measurement and IR intensity measurement of the laser radar 1203-3 as an input, the surrounding information processing unit 1204 takes a first-order differentiation with respect to these inputs in a predetermined horizontal direction.
  • the results shown in the lower diagram of FIG. 12B and the lower diagram of FIG. 12C are obtained.
  • the first-order differential value of the distance data is below a predetermined threshold value
  • the pixel whose IR differential data first-order differential value is lower than the predetermined threshold value is in a predetermined horizontal direction.
  • the pixel where the first differential value of the distance data is below a predetermined threshold value and the first differential value of the IR intensity data exceeds the predetermined threshold value It is determined that the puddle area ends.
  • the puddle region can be determined by performing the above one-dimensional puddle region determination for all horizontal directions in the field of view of the laser radar 1203-3.
  • this determination method both the distance data and the intensity data are used for determination, so that it is possible to distinguish between a flat region and a puddle. Since detection is performed by the laser radar 1203-3, detection is possible even at night. Since the comparison is made at almost the same time, the judgment result is not affected by the external light or the illumination state, and the comparison is made by the detection result of the light from substantially the same angle, so that it is not affected by the difference in the reflectance of the puddle according to the angle. .
  • the map creation unit 1205 calculates the current position of the host vehicle 101 from the past movement route information stored in the data storage unit 103-1 as coordinates.
  • the current position may be acquired by GPS. Further, the center of gravity coordinates of the detected puddle area is derived, and the coordinates obtained by adding the relative coordinates up to the center of gravity coordinates obtained from the three-dimensional measurement result to the current position of the own vehicle 101 are stored in the index data 1000.
  • the detection position 1004 is recorded.
  • the information on the puddle area obtained by the surrounding information processing unit 1204 is recorded in the data storage unit 103-1 as the data body.
  • a sensor-equipped terminal typified by a smartphone owned by a person riding in the host vehicle 101
  • a sensor-equipped terminal typified by a smartphone owned by a person riding in the host vehicle 101
  • the photographed image of the puddle is transmitted to the in-vehicle communication device 103 via the communication unit constituting the sensor-equipped terminal 1210 after setting the attribute of the data photographed by the user as the road surface condition (puddle). Upload from the communication device 103 to the traffic system server 700 connected to the traffic system network 600 via the traffic system infrastructure 500.
  • the current position of the sensor-equipped terminal 1210 is added to the uploaded data by GPS, and the traffic system server 700 stores the current position of the sensor-equipped terminal 1210 in the index data 1000 for the uploaded puddle data. Is recorded as the detected position 1004.
  • the means for transmitting information about the puddle acquired by the sensor-equipped terminal 1210 is not necessarily limited to means via the in-vehicle communication device 103.
  • communication may be performed directly from the sensor-equipped terminal 1210 to the traffic system infrastructure 500, or may be performed by communication means using a mobile phone communication network.
  • the surrounding information processing unit 1204 Based on the moving image of the other vehicle traveling in front of the RGB camera 1203-1 or the infrared camera unit 1203-2 that detects the front of the host vehicle 101, the surrounding information processing unit 1204 performs template matching based on prior teacher data. It is determined that the puddle is detected by detecting the splash of the puddle that another vehicle has stepped on by image recognition such as the above. At this time, the surrounding information processing unit 1204 evaluates the puddle by calculating the items (1) to (4) shown in FIG.
  • Each item includes (1) the speed vo of the other vehicle ahead estimated from the own vehicle speed obtained from the automobile control unit 1206, (2) the tire width wt of the other vehicle ahead, (3) the tire center position pt, ( 4) Represents the maximum flying distance dw of the splash.
  • the calculated values (1) to (4) are stored in the data storage unit 103-1 as the data body. The use of the calculated values (1) to (4) will be described later in the third embodiment.
  • the map creation unit 1205 After the detection process of the puddle area by the surrounding information processing unit 1204, the map creation unit 1205 calculates the current position of the host vehicle 101 from the past movement route information stored in its own data storage unit 103-1 as coordinates. The current position may be acquired by GPS. Finally, the map creation unit 1205 records the obtained coordinates of the current position as the puddle detection position 1004 stored in the index data 1000.
  • the surrounding information acquisition unit is installed on a road, and data obtained by monitoring a vehicle traveling on the road or the state of the road may be stored as surrounding information in the data storage unit.
  • various detection items can be recognized from detection information such as sensors.
  • processing when applying various data acquired and shared by the information processing system 100 shown in the first and second embodiments to the control of driving of the own vehicle 101 is described. This will be specifically described.
  • FIG. 14 is a schematic diagram showing a pattern for determining the movement route of the host vehicle 101 holding the puddle data.
  • FIG. 15 is a block diagram showing the configuration of the automobile control unit 1206.
  • the vehicle control unit 1206 includes a travel track / speed track calculation unit 1206-1, an ECU (engine control unit) 1206-2, an engine 1206-3, a steering control unit 1206-4, and a steering 1206-5.
  • the traveling trajectory / speed trajectory calculating unit 1206-1 determines the traveling trajectory and the speed trajectory of the host vehicle 101 based on the data stored in the data storage unit 103-1.
  • the ECU 1206-2 controls the engine 1206-3 to realize the speed trajectory.
  • the steering control unit 1206-4 controls the steering 1206-5 using the traveling track determined by the traveling track / speed track calculating unit 1206-1 as an input.
  • the traveling trajectory / speed trajectory calculating unit 1206-1 is aware of the presence of the puddle 1700 in advance because there is no pedestrian in the vicinity that may be splashed when the own vehicle 101 steps on the puddle 1700. Also, select the trajectory to step on without worrying.
  • the situation is the same as that in FIG. 14A.
  • the vehicle 101 is set to prevent the vehicle 101 from getting dirty by stepping on a puddle when the antifouling mode is selected.
  • the traveling trajectory / speed trajectory calculating unit 1206-1 avoids stepping on the puddle by changing the traveling trajectory in front of the puddle 1700 in order to avoid contamination due to the host vehicle 101 stepping on the puddle 1700. is doing.
  • the traveling trajectory / speed trajectory calculating unit 1206-1 changes the traveling trajectory in front of the puddle 1700 in order to prevent the pedestrian 1701 from splashing when the own vehicle 101 steps on the puddle 1700. Avoiding stepping on puddles.
  • the pedestrian 1701 exists around the puddle 1700 by the real-time detection of the surrounding information acquisition unit 1203 while holding the information on the puddle 1700, and the other vehicle 1702 is in the adjacent lane of the host vehicle 101. I know that exists.
  • the traveling trajectory / speed trajectory calculating unit 1206-1 determines that there is a possibility of colliding with another vehicle 1702 in the adjacent lane when the traveling trajectory is changed as in FIG.
  • the size of the traveling vehicle and the speed trajectory are changed by changing the speed trajectory. To be.
  • Expression (3) is an expression that is used to estimate the speed allowed for the own vehicle 101 when the own vehicle 101 controls the traveling track of the puddle 1700 and steps on the puddle 1700 at the tire center position pt.
  • v in the expression (3) represents the speed allowed for the own vehicle 101
  • d represents the maximum distance of splashing that is not applied to the pedestrian 1701
  • w represents the tire width of the own vehicle 101.
  • FIG. 16 is a schematic diagram showing a pattern for determining a moving route of the host vehicle 101 that holds data of falling objects.
  • the traveling trajectory / speed trajectory calculating unit 1206-1 avoids a collision with the falling object by changing the traveling trajectory in front of the falling object 1900 in order for the own vehicle 101 to avoid the falling object 1900.
  • FIG. 16 (B) it is grasped that the other vehicle 1901 exists in the adjacent lane of the own vehicle 101 by the real-time detection of the surrounding information acquisition part 1203, hold
  • the traveling trajectory / speed trajectory calculating unit 1206-1 determines that there is a possibility of colliding with another vehicle 1901 in the adjacent lane when the traveling trajectory is changed as in FIG. Therefore, the vehicle is controlled to stop in front of the falling object 1900 by changing the speed trajectory. Then, after confirming that there is no risk of collision with other vehicles in the adjacent lane, change lanes and restart.
  • the information processing system 100 has been used to describe automatic control of the vehicle control unit 1206 as in automatic driving.
  • the information processing system 100 can be used only for automatic driving. It is not limited to. For example, it can be used as a safe driving support system to help the user drive.
  • FIG. 17 shows an example using an AR display device 2000 that provides AR (Augmented Reality) information to the driver.
  • This AR display device 2000 is a device that superimposes and displays an image of the in-vehicle information on an actual scene viewed by the driver.
  • FIG. 17 shows an example when puddle data is held in the data storage unit 103-1.
  • a mark 2002 that displays the position of the puddle 2001 in an easy-to-understand manner for the driver based on the puddle data held in the data storage unit 103-1 is superimposed on the actual scene.
  • a frame covering the puddle 2001 is displayed as an example of the mark.
  • a display 2004 that prompts the host vehicle 101 to decelerate is actually present in order to avoid splashing the pedestrian 2003.
  • the interface for prompting deceleration is not necessarily limited to visual information using the AR display device 2000, and may be voice guidance 2005 as shown in FIG.
  • the data attribute applicable to the AR display device 2000 is not limited to the same road surface condition (mild) as the puddle, and may be other attributes.
  • the in-attribute priority P changes according to the distance d from the current position to the detection position. That is, as shown in FIG. 18 (A), when the host vehicle 101 is traveling in the direction of the host vehicle traveling vector indicated by the arrow, for example, when considering data related to falling objects, the priority within the attribute is as shown in FIG. The maximum value is taken at the detection position as shown in FIG. In FIG. 18B, for simplicity, ⁇ is set to zero and the influence of the passage of time since data creation is ignored.
  • the attribute is high for a while as shown by the broken line in FIG. Has internal priority.
  • data that does not have a wide area such as a fallen object or a puddle once the detection position is exceeded by appropriate control for the host vehicle 101. Is unlikely to be used in the future, and the original priority within the attribute should be zero as shown by the solid line in FIG.
  • the distance d from the current position to the detection position has a polarity corresponding to the traveling direction of the host vehicle 101, and is positive (d> 0) when the detection position is ahead with respect to the traveling direction, If the detection position is behind, it is negative (d ⁇ 0). After that, the in-attribute priority is determined based on Expression (4).
  • a lane departure prevention support system that maintains lanes by recognizing a white line or a yellow line on a roadway by a surrounding information acquisition unit 1203 such as an RGB camera 1203-1 is known as a safe driving support system. These systems are used to detect white lines and yellow lines on the roadway based on the binarized result obtained by providing a luminance threshold value from the 1203-1 visual field detection result of an RGB camera or the like. As a problem of this lane departure prevention support system, if there are various detection obstacles on the road white line or yellow line, for example, puddle or snow cover, it is not always possible to display only the white line or yellow line by binarization, and false detection May cause.
  • FIG. 19 is a schematic diagram showing processing of a puddle in the lane departure prevention support system according to the present embodiment.
  • 19A shows an image detected by the RGB camera 1203-1 including the puddle 2200 on the white line or yellow line of the field of view
  • FIG. 19B shows an image obtained by binarizing the detection image of FIG. Respectively. Since the puddle 2200 has a very high reflectance depending on the angle, as shown in FIG. 19B, there is a possibility that the puddle 2200 may remain together with a white line or a yellow line when binarized. If image recognition is performed with this FIG. 19B, erroneous detection may occur.
  • various data that can be acquired and shared by the information processing system can be applied to control of driving of the host vehicle.
  • this invention is not limited to said Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 100 Information processing system
  • 101 Own vehicle
  • 102 Ambient information acquisition part
  • 103 In-vehicle communication apparatus
  • 200 300
  • 400 Relay radio
  • 500 Transportation system infrastructure
  • 600 Transportation system network
  • 700 Traffic system server
  • 1200 Information processing device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

The purpose of the present invention is to build an information processing device and information processing method which share various types of data in relation to the priority of the data. To achieve this purpose, provided is an information processing device which comprises a data storage unit for storing peripheral information, an attribute priority assessment unit for assessing attribute priority, defined as priorities for a plurality of attributes of the peripheral information stored in the data storage unit, and a communication unit for communicating to other vehicles the peripheral information stored in the data storage unit, and which is configured so as to change, in accordance with the priorities assessed for the plurality of attributes by the attribute priority assessment unit, the priorities according to which the communication unit communicates the information, and to communicate the peripheral information to the other vehicles according to the changed priority.

Description

情報処理装置および情報処理方法Information processing apparatus and information processing method
 本発明は、情報処理装置および情報処理方法に係り、特に、車車間通信システム、車路間通信システム、交通管理システムに関する。 The present invention relates to an information processing apparatus and an information processing method, and more particularly to an inter-vehicle communication system, an inter-road communication system, and a traffic management system.
 近年、先進運転支援システムの普及や一般道路での自動運転の実現を目指して、自動車の運転経路や制御に影響を与える、渋滞状況、路面状況といった様々な自動車の周囲の情報を、走行する自動車間で共有する要求が高まっている。これらの要求に対して、現在、渋滞状況や交通規制の情報共有を目的として、路側に設置された無線通信機と車道を走行する自動車との間でデータを送受信する技術であるVICS(Vehicle Information and Communication System)(登録商標)やVICS WIDE(登録商標)が普及している。 In recent years, with the aim of popularizing advanced driving support systems and realizing automatic driving on ordinary roads, information on the surroundings of various automobiles such as traffic conditions and road conditions that affect the driving route and control of automobiles is traveling. There is a growing demand to share between them. In response to these demands, VICS (Vehicle Information) is a technology that currently transmits and receives data between roadside wireless communication devices and vehicles traveling on the roadway for the purpose of sharing information on traffic conditions and traffic regulations. and Communication (System) (registered trademark) and VICS WIDE (registered trademark) are widely used.
 しかし、これら既存のシステムでは管理センタに情報を集約した後に、情報処理および編集を経て各自動車へと配信する為、情報伝達の遅延が生じる。このため使用者は鮮度の高い情報を得ることが出来ないという問題がある。また、これらシステムのインフラ整備と維持には膨大な費用が必要とされる為、主要幹線道路にしかこれらのシステムが設置出来ないという問題がある。 However, in these existing systems, since information is collected in the management center and then distributed to each vehicle through information processing and editing, information transmission is delayed. For this reason, there is a problem that the user cannot obtain information with high freshness. In addition, there is a problem that these systems can be installed only on main arterial roads because enormous costs are required for infrastructure development and maintenance of these systems.
 これらの問題の改善を目的として、近年、無線LAN(Local Area Network)によるアドホック通信と同様の機能を用いて車車間や車路間でのリアルタイムの情報交換をする研究が盛んに行われている。ここで、車車間通信や車路間通信ではデータを送受信し合う自動車同士あるいは自動車と路上の通信機との位置関係がお互いに高速に変化している為、常に通信しているとは限らない。すなわち、互いの通信時間が限られる為、車両は無制限にデータを配布出来ない。そこで、各車両は対向車線や交差点ですれ違う対向車両に接続した場合に、限られた通信時間内に有益なデータを交換する為、将来アクセスする可能性が高い、すなわち優先度の高いデータを独自の評価方法により決定する手法が提案されている。 In recent years, with the aim of improving these problems, research on real-time information exchange between vehicles and between roads using functions similar to ad hoc communication by wireless LAN (Local Area Network) has been actively conducted. . Here, in the inter-vehicle communication and the inter-road communication, the positional relationship between the vehicles that transmit and receive data or between the vehicle and the communication device on the road changes at a high speed, so the communication is not always performed. . That is, since the mutual communication time is limited, the vehicle cannot distribute data indefinitely. Therefore, when each vehicle is connected to an oncoming vehicle that passes each other in an oncoming lane or intersection, in order to exchange useful data within a limited communication time, it is highly probable that it will be accessed in the future. A method of determining by the evaluation method is proposed.
 本技術分野の背景技術として非特許文献1や特許文献1がある。非特許文献1ではデータの価値を時間、距離、および速度というデータの鮮度を表すパラメータによって計算する評価式を提案している。一方で、特許文献1では直接受信したデータよりも無線中継装置を経由で受信したデータは衝突危険度の高い自動車のデータであるとして優先度を高く判断している。 There are Non-Patent Document 1 and Patent Document 1 as background technologies in this technical field. Non-Patent Document 1 proposes an evaluation formula for calculating the value of data using parameters representing the freshness of data such as time, distance, and speed. On the other hand, in Patent Document 1, the data received via the wireless relay device is judged to have a higher priority than the directly received data because the data is automobile data with a high risk of collision.
特開2009-9486号公報JP 2009-9486 A
 非特許文献1では渋滞緩和を目的として、データの価値を鮮度や経路に応じた信頼度だけで判断し、特許文献1では車両の衝突回避を目的として、衝突危険度だけで判断している。すなわち、従来のシステムでは1つの目的の為に1つの判断基準のみに則ってデータの優先度を設定している。しかし、車載センサが取得できるデータは非特許文献1における交通データや、特許文献1における衝突危険性といった特定のデータに限定されるものではない。 In Non-Patent Document 1, the value of data is judged only by the reliability according to freshness and the route for the purpose of alleviating traffic congestion, and in Patent Document 1, it is judged only by the collision risk for the purpose of avoiding the collision of the vehicle. That is, in the conventional system, the priority of data is set according to only one criterion for one purpose. However, data that can be acquired by the in-vehicle sensor is not limited to specific data such as traffic data in Non-Patent Document 1 and collision risk in Patent Document 1.
 今日のセンサ技術の向上に伴い、これら以外にも路面の凍結状況や積雪状況といった運転の安全性に関わる重要なデータから、駐車場の空き状況といった運転の安全性の観点からは重要性が低いものの有用性のあるデータまで、様々な種類のデータを検出することが可能である。車車間および車路間通信の本格的に実用化される将来を鑑みると、各自動車は自動運転の実現の為にそれぞれ異なる目的の為に異なる種類の車載センサを備えることとなる。そのような世界においては、異なるデータを補間し合い、適切にデータを共有する、新たなシステムが必要となる。 Along with the improvement of today's sensor technology, other important data related to driving safety such as road surface freezing conditions and snow conditions are less important from the viewpoint of driving safety such as parking space availability. It is possible to detect various types of data up to useful data. In view of the full-fledged commercialization of inter-vehicle and inter-road communication, each automobile will be equipped with different types of in-vehicle sensors for different purposes in order to realize automatic driving. In such a world, there is a need for new systems that interpolate different data and share data appropriately.
 また、従来の車車間通信や車路間通信では共有する対象のデータは車載センサや交通システムで用いる定点の監視カメラ等に限定されていた。しかし、今日のスマホに代表されるセンサを搭載したデバイスおよびネットワークインフラの普及を背景として、共有可能なデータ対象は従来の枠にとらわれない、個人所有のデバイスも含む新たなシステムが必要となる。 Also, in the conventional inter-vehicle communication and inter-road communication, the data to be shared is limited to in-vehicle sensors and fixed point monitoring cameras used in the traffic system. However, with the spread of devices equipped with sensors typified by today's smartphones and network infrastructure, a new system that includes sharable data objects and personally owned devices is required.
 そこで、本発明の目的は、データの優先度に関して様々な種類のデータを共有する情報処理装置および情報処理方法を構築することである。 Therefore, an object of the present invention is to construct an information processing apparatus and an information processing method that share various types of data regarding data priority.
 本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、周囲情報を記憶するデータ記憶部と、データ記憶部に記憶した周囲情報の複数の属性の優先度である属性優先度を判定する属性優先度判定部と、データ記憶部に記憶された周囲情報を他車両へ通信する通信部とを備え、属性優先度判定部によって判定した複数の属性の優先度に応じて通信部が通信する際の情報の優先度を変更し、変更された優先度に応じて周囲情報を他車両へ通信する構成とする。 In view of the above-described background art and problems, the present invention provides, for example, a data storage unit that stores surrounding information, and an attribute priority that is a priority of a plurality of attributes of the surrounding information stored in the data storage unit. An attribute priority determination unit for determining and a communication unit for communicating the surrounding information stored in the data storage unit to another vehicle, and the communication unit is in accordance with the priority of the plurality of attributes determined by the attribute priority determination unit The priority of information at the time of communication is changed, and surrounding information is communicated to other vehicles according to the changed priority.
 本発明によれば、データの優先度に関して様々な種類のデータを共有する情報処理装置および情報処理方法を提供することができる。 According to the present invention, it is possible to provide an information processing apparatus and an information processing method that share various types of data regarding data priorities.
実施例1における情報処理システムの模式図である。1 is a schematic diagram of an information processing system in Embodiment 1. FIG. 実施例1における車載通信機の構成を示すブロック図である。It is a block diagram which shows the structure of the vehicle-mounted communication apparatus in Example 1. FIG. 実施例1におけるデータアクセス処理のフローチャートである。3 is a flowchart of data access processing according to the first embodiment. 実施例1における問い合わせパケットの構成図である。It is a block diagram of the inquiry packet in Example 1. 実施例1におけるデータ配布処理のフローチャートである。3 is a flowchart of data distribution processing according to the first embodiment. 実施例1における配布要求パケットの構成図である。3 is a configuration diagram of a distribution request packet in Embodiment 1. FIG. 実施例1における属性優先度テーブルの一例である。It is an example of the attribute priority table in Example 1. 実施例1における情報処理システムのデータ形式の構成図である。1 is a configuration diagram of a data format of an information processing system in Embodiment 1. FIG. 本実施例1における優先度リストの一例である。It is an example of the priority list in the first embodiment. 実施例2における情報処理装置のブロック構成図である。FIG. 10 is a block configuration diagram of an information processing apparatus according to a second embodiment. 実施例2における周囲情報取得部の構成図である。It is a block diagram of the surrounding information acquisition part in Example 2. FIG. 実施例2におけるレーザーレーダーを用いた水たまり検出方法の説明図である。It is explanatory drawing of the puddle detection method using the laser radar in Example 2. FIG. 実施例2における他車両が踏んだ水たまりの水しぶきからの水たまり評価項目を示した模式図である。It is the schematic diagram which showed the puddle evaluation item from the splash of the puddle which the other vehicle stepped on in Example 2. FIG. 実施例3における水たまりのデータを保持する自車両の移動経路決定のパターンを示した模式図である。FIG. 10 is a schematic diagram illustrating a pattern for determining a movement route of a host vehicle that holds puddle data in the third embodiment. 実施例3における自動車制御部の構成を示したブロック構成図である。FIG. 10 is a block configuration diagram illustrating a configuration of an automobile control unit according to a third embodiment. 実施例3における落下物のデータを保持する自車両の移動経路決定のパターンを示した模式図である。It is the schematic diagram which showed the pattern of the movement path | route determination of the own vehicle holding the data of the falling object in Example 3. FIG. 実施例3におけるAR情報を運転者に提供するAR表示装置を利用した例を示す模式図である。It is a schematic diagram which shows the example using AR display apparatus which provides AR information in a driver | operator in Example 3. FIG. 実施例3における進行方向に応じた極性に対する属性内優先度の概念を示した模式図である。It is the schematic diagram which showed the concept of the priority in an attribute with respect to the polarity according to the advancing direction in Example 3. FIG. 実施例3における車線逸脱防止支援システムにおける水たまりの処理を示した模式図である。FIG. 10 is a schematic diagram illustrating processing for a puddle in a lane departure prevention support system according to a third embodiment.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 実施例1は様々な種類のデータを共有する情報処理システムにおいて、限られた通信網や通信時間を効率的に利用することを目的として、データの属性に応じてデータの優先度を設ける観点での実施例である。 In the information processing system that shares various types of data, the first embodiment provides a data priority according to data attributes for the purpose of efficiently using a limited communication network and communication time. This is an example.
 図1は本実施例における情報処理システム100の概要を示した模式図である。情報処理システム100は、システムを利用する自動車が道路を走行中に車載センサによって検出したデータを自動車間で共有するシステムであり、自車両と通信相手の他車両を含む。例えば、図1に示すように情報処理システム100は、自車両101と同一車線を走行する他車両200、対向車線を走行する他車両300、中継無線装置400、交通システムインフラ500、交通システムネットワーク600、交通システムサーバ700を含む。各車両はそれぞれ周囲情報取得部102、車載通信機103を搭載する。 FIG. 1 is a schematic diagram showing an outline of an information processing system 100 in the present embodiment. The information processing system 100 is a system for sharing data detected by an in-vehicle sensor while a vehicle using the system is traveling on a road, and includes the own vehicle and other vehicles with which the other party communicates. For example, as illustrated in FIG. 1, the information processing system 100 includes another vehicle 200 that travels in the same lane as the host vehicle 101, another vehicle 300 that travels in the opposite lane, a relay wireless device 400, a traffic system infrastructure 500, and a traffic system network 600. The traffic system server 700 is included. Each vehicle is equipped with a surrounding information acquisition unit 102 and an in-vehicle communication device 103.
 図2は本実施例における車載通信機103の機能構成を表したブロック図である。図2において、車載通信機103はデータ記憶部103-1、属性優先度判定部103-2、属性内優先度判定部103-3、通信部103-4、車両到達位置計算部103-4、保持データリスト作成部103-5によって構成される。さらに、通信部103-4はデータ送信部103-4-1およびデータ受信部103-4-2によって構成される。 FIG. 2 is a block diagram showing the functional configuration of the in-vehicle communication device 103 in this embodiment. In FIG. 2, the in-vehicle communication device 103 includes a data storage unit 103-1, an attribute priority determination unit 103-2, an in-attribute priority determination unit 103-3, a communication unit 103-4, a vehicle arrival position calculation unit 103-4, The holding data list creation unit 103-5 is configured. Further, the communication unit 103-4 includes a data transmission unit 103-4-1 and a data reception unit 103-4-2.
 まず、車両間でのデータ共有における、希望するデータを要求するデータアクセス手法について記す。 First, a data access method for requesting desired data in data sharing between vehicles will be described.
 情報処理システム100の使用者はデータアクセス時に関心のある位置を指定し、その位置を中心とした半径Racの円内で検出されたデータを要求する。このとき、自車両101は自身の移動予測経路上で作成されたデータを要求する。さらに、自車両101の現在位置に近い場所で検出されたデータほど、自身が実際に必要とする可能性が高い為、要求時の優先度を高くする。データアクセスにおいて、データ属性は要求するデータの属性に決まっている為、優先度は属性内優先度のみによって決定する。 The user of the information processing system 100 designates a position of interest at the time of data access, and requests data detected within a circle having a radius Rac centered on the position. At this time, the own vehicle 101 requests data created on its own predicted movement route. Furthermore, since the data detected near the current position of the host vehicle 101 is more likely to be actually required, the priority at the time of request is increased. In data access, since the data attribute is determined by the attribute of the requested data, the priority is determined only by the intra-attribute priority.
 属性内優先度は、例えば、式(1)で定義される属性内優先度Pに応じて判断しても良い。 The intra-attribute priority may be determined according to, for example, the intra-attribute priority P defined by Expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Eはデータの有効時間、teはデータが作成されてから経過した時間を、dは現在位置から検出位置までの距離、vは車両の移動速度を、そしてαおよびβは事前に設定される有効係数をそれぞれ表す。 Where E is the valid time of the data, te is the time elapsed since the data was created, d is the distance from the current position to the detection position, v is the moving speed of the vehicle, and α and β are preset Represents each effective coefficient.
 式(1)から明らかなように、d/vは車両の現在位置からデータ作成された位置までの移動所要時間を表す。優先度は、E、αおよびβの設定により、特性を調整することが出来る。Eを大きくした場合、通信網内の全データの優先度が上がるため、有効なデータ数が増大して情報処理システム100の使用者が取得する機会が増える一方、Eを小さくすることで、取得機会を減らすことも可能である。また、αをβより大きく設定すると、優先度が経過時間teに大きく依存することとなり、より広範囲で作成されたデータの優先度が高くなり、逆にβをαより大きくすると、現在位置付近の狭い範囲で作成されたデータの優先度が高くなる。例えば、自車両が到達すると予測される移動経路内のデータ程、優先度を高く設定することが出来る。 As is clear from Equation (1), d / v represents the time required for movement from the current position of the vehicle to the position where the data was created. The priority can be adjusted by setting E, α, and β. When E is increased, the priority of all data in the communication network is increased, so that the number of effective data increases and the user of the information processing system 100 acquires more opportunities. On the other hand, by reducing E, acquisition is possible. Opportunities can be reduced. Also, if α is set larger than β, the priority greatly depends on the elapsed time te, and the priority of data created in a wider range becomes higher. Conversely, if β is larger than α, the priority is near the current position. The priority of data created in a narrow range becomes high. For example, a higher priority can be set for data in a movement route predicted to arrive by the host vehicle.
 以下、自車両101に乗車する使用者が位置を指定し、その周辺情報を要求した場合について説明する。 Hereinafter, a case where a user who gets on the own vehicle 101 designates a position and requests peripheral information thereof will be described.
 図3は本実施例におけるデータアクセス処理のフローチャートである。使用者が関心のある情報と位置を指定することで、その周辺情報を要求してデータアクセス処理が開始されると(ステップS501)、自車両101は自身のデータ記憶部103-1を検索し、要求データを保持しているか否かを調査する(ステップS502)。検索の結果、データ記憶部103-1に要求データを保持していた場合(ステップS502におけるYes)、ステップS513に移行し、データアクセス処理は終了する。一方で、データ記憶部103-1に要求データを保持していなかった場合(ステップS502におけるNo)、続いてステップS503に移行し、自車両101は問い合わせパケットを送信する。 FIG. 3 is a flowchart of data access processing in this embodiment. By designating the information and position that the user is interested in and requesting the surrounding information to start the data access process (step S501), the host vehicle 101 searches its own data storage unit 103-1. Whether the request data is held is checked (step S502). If the request data is held in the data storage unit 103-1 as a result of the search (Yes in step S502), the process proceeds to step S513, and the data access process ends. On the other hand, if the request data is not held in the data storage unit 103-1 (No in step S502), the process proceeds to step S503, and the host vehicle 101 transmits an inquiry packet.
 図4に、問い合わせパケットに含まれる項目の例を示す。問い合わせパケットは、パケット番号、送信車両ID、要求データ属性、要求データ位置、送信車両予定経路、ホップ数、および通信可能時間によって構成される。 Fig. 4 shows an example of items included in the inquiry packet. The inquiry packet includes a packet number, a transmission vehicle ID, a request data attribute, a request data position, a transmission vehicle planned route, the number of hops, and a communicable time.
 次に、図3において、ステップS504では自車両101が送信した問い合わせパケットのタイムアウトを判断する。なお、問い合わせパケットは直接通信だけでなく、マルチホップ通信であってもよく、マルチホップの上限回数kはシステムに事前に設定されている。設定したタイムアウト時間を超過した場合(ステップS504にけるYes)、問い合わせ通信が成立しなかった旨を使用者に知らせた後に、ステップS513に移行し、データアクセス処理は終了する。一方、設定したタイムアウト時間中に他車両に問い合わせパケットが受信された場合(ステップS504におけるNo)、ステップS505に移行する。 Next, in FIG. 3, in step S504, a timeout of the inquiry packet transmitted by the host vehicle 101 is determined. The inquiry packet may be not only direct communication but also multi-hop communication, and the multi-hop upper limit number k is preset in the system. If the set time-out period is exceeded (Yes in step S504), the user is informed that the inquiry communication has not been established, and then the process proceeds to step S513, where the data access process ends. On the other hand, when an inquiry packet is received by another vehicle during the set timeout period (No in step S504), the process proceeds to step S505.
 ステップS505では問い合わせパケットを受信した他車両は、問い合わせパケットのホップ数を確認し、問い合わせパケット送信車両(自車両101)からのホップ数がマルチホップ上限k回以内か否かを判断する。設定したマルチホップ上限回数kを上回っている場合(ステップS505におけるNo)、マルチホップ数上限に達した旨を知らせる為に、ホップ数を上書きした上で、返信パケットを問い合わせパケット送信車両(自車両101)に送信した後に、ステップS513に移行し、データアクセス処理は終了する。なお、上限ホップ数に達した旨の返信パケットは必ずしも送信する必要はなく、その場合はステップS504におけるタイムアウト処理でステップS513に移行する。一方、問い合わせパケット送信車両(自車両101)からのホップ数が設定したマルチホップ数上限回数以下であった場合(ステップS505におけるNo)、パケットを受信した他車両が中継車として、直接接続している他車両に対して問い合わせパケットを送信し、ステップS506に移行する。このとき、中継として送信する問い合わせパケットには、中継車となった他車両の送信車両IDと求めた通信時間を上書きした上で、送信する。 In step S505, the other vehicle that has received the inquiry packet checks the number of hops of the inquiry packet, and determines whether or not the number of hops from the inquiry packet transmission vehicle (own vehicle 101) is within the multi-hop upper limit k times. If the set multi-hop upper limit number k is exceeded (No in step S505), the hop number is overwritten to notify that the multi-hop number upper limit has been reached, and the reply packet is transmitted to the inquiry packet transmission vehicle (own vehicle). 101), the process proceeds to step S513, and the data access process ends. Note that it is not always necessary to transmit a reply packet indicating that the upper limit hop count has been reached. In this case, the process proceeds to step S513 in the timeout process in step S504. On the other hand, when the number of hops from the inquiry packet transmission vehicle (own vehicle 101) is equal to or less than the set upper limit number of multihops (No in step S505), the other vehicle that has received the packet is directly connected as a relay vehicle. The inquiry packet is transmitted to the other vehicle, and the process proceeds to step S506. At this time, the inquiry packet to be transmitted as a relay is transmitted after overwriting the transmission vehicle ID of the other vehicle that has become the relay vehicle and the obtained communication time.
 ステップS506では、問い合わせパケットを受信した他車両において、問い合わせパケットに含まれる送信車両予定経路の情報から予想される、問い合わせパケット送信車両(自車両101)と受信した他車両との通信可能となるまでの通信可能時間を計算する。 In step S506, in the other vehicle that has received the inquiry packet, communication between the inquiry packet transmission vehicle (own vehicle 101) and the received other vehicle, which is predicted from the information of the transmission vehicle planned route included in the inquiry packet, becomes possible. Calculate the possible communication time.
 続くステップS507では、問い合わせパケット受信した他車両は、問い合わせパケットに含まれる指定属性かつ指定位置のデータを保持しているか否かを、受信した他車両のデータ記憶部103-1を検索し、要求データを保持しているか否かを調査する。検索の結果、受信した他車両が自身のデータ記憶部103-1に要求データを保持していなかった場合(ステップS507におけるNo)、ステップS513に移行し、データアクセス処理は終了する。一方で、データ記憶部103-1に要求データを保持している場合(ステップS507におけるYes)、続いてステップS508に移行する。 In subsequent step S507, the other vehicle that has received the inquiry packet searches the data storage unit 103-1 of the received other vehicle to determine whether or not the designated attribute and the designated position data included in the inquiry packet are held. Investigate whether data is retained. As a result of the search, if the received other vehicle does not hold the requested data in its own data storage unit 103-1 (No in step S507), the process proceeds to step S513, and the data access process ends. On the other hand, if the request data is held in the data storage unit 103-1 (Yes in step S507), the process proceeds to step S508.
 ステップS508では、問い合わせパケットに含まれる全ての送信車両(最初の送信元である自車両101および中継車となった他車両)IDと通信可能時間、および自身のもつ指定位置付近のデータリストを含んだ返信パケットを自車両101に送信する。 In step S508, all transmission vehicles included in the inquiry packet (the own vehicle 101 that is the first transmission source and other vehicles that have become relay vehicles) IDs and communicable times, and a data list in the vicinity of the designated position that the own packet has are included. The reply packet is transmitted to the own vehicle 101.
 ステップS509では、返信パケットを受信した自車両101において、複数の他車両からの返信パケットを受信すると、データを保持する他車両までのマルチホップ通信を含む全ての通信経路の中において、通信可能時間のうち、最短時間のものを自車両101と、その車両とのマルチホップ通信での通信可能時間として導出する。 In step S509, when the own vehicle 101 that has received the reply packet receives reply packets from a plurality of other vehicles, the communication possible time in all communication paths including multi-hop communication to other vehicles holding data. Among these, the shortest time is derived as the communicable time in the multi-hop communication between the own vehicle 101 and the vehicle.
 続く、ステップS510では、自車両101は自身のデータ記憶部103-1に保持するデータと受信したリストに含まれるデータの優先度を比較し、優先度の高いデータから順に実際に要求するデータとして、前述のステップS509において判定した最短通信時間の他車両に対して要求パケットを送信し、その際には対象の他車両との通信可能時間を、最新の車両予定経路に基づいて更新する。なお、自車両101が要求するデータが単一の車両だけでなく、複数の車両にまたがって保持されている場合、ホップ数が少なく、通信可能時間が長い車両を優先的に選択した上で、該当する複数車両に要求パケットを送信する。ステップS510が完了すると、ステップS511に移行する。 Subsequently, in step S510, the own vehicle 101 compares the data held in its own data storage unit 103-1 with the priority of the data included in the received list, and as the data actually requested in order from the data with the highest priority. Then, a request packet is transmitted to the other vehicle with the shortest communication time determined in the above-described step S509, and at that time, the communicable time with the target other vehicle is updated based on the latest planned vehicle route. In addition, when the data requested by the own vehicle 101 is held not only for a single vehicle but also for a plurality of vehicles, after preferentially selecting a vehicle with a small number of hops and a long communicable time, A request packet is transmitted to the corresponding plurality of vehicles. When step S510 is completed, the process proceeds to step S511.
 ステップS511では、要求パケットを受信した車両からの要求データの受信が終了したかどうか、あるいは要求データを受信中に予定していた通信可能時間が足りなかった等の不測の理由によって接続が切断されたかどうかを判定する。要求データを受信中あるいは通信中である場合(ステップS511におけるNo)、再びステップS511に移行して判定がYesとなるまでステップS511を繰り返す。要求データの受信が終了あるいは通信が切断された場合(ステップS511におけるYes)、ステップS512に移行する。 In step S511, the connection is disconnected due to unforeseen reasons such as whether reception of request data from the vehicle that has received the request packet has been completed, or that there is not enough available communication time during reception of the request data. Determine whether or not. If the request data is being received or is being communicated (No in step S511), the process proceeds to step S511 again, and step S511 is repeated until the determination is Yes. When reception of request data is completed or communication is disconnected (Yes in step S511), the process proceeds to step S512.
 ステップS512では、アクセスしたデータを自車のデータ記憶部103-1に保存した後、自車両101の使用者に対して、映像出力部によって要求データアクセスが終了した旨を通知して、データアクセス処理は終了する(ステップS513)。映像出力部は、例えば車載ディスプレイやアイコン表示といった視認可能な任意のインターフェースである。ここで要求データアクセスが終了した旨の通知は必ずしも映像出力部に限定されない。例えば、振動出力部や音声出力部など運転者に通知可能な手段であればどの手段でもよい。 In step S512, after the accessed data is saved in the data storage unit 103-1 of the host vehicle, the user of the host vehicle 101 is notified by the video output unit that the requested data access has been completed, and the data access is performed. The process ends (step S513). The video output unit is an arbitrary visible interface such as an in-vehicle display or an icon display. Here, the notification that the request data access is completed is not necessarily limited to the video output unit. For example, any means that can notify the driver, such as a vibration output unit or a voice output unit, may be used.
 次に、車両間でのデータ共有のためのデータ配布手法について記す。自車両101は道路を走行することで同一車線を走行する他車両200との縦列走行時、対向車である他車両300との対向車線や交差点でのすれ違い時に接続することでデータを配布する。このとき、車車間の接続は直接接続だけに限定されるものでなく、複数の自動車を経由したマルチホップ通信でもよい。また、車車間だけの通信が遮蔽物によるシャドーイングにより困難な場合は、中継無線装置400を経由したマルチホップ通信でもよい。前述のように車両間や車路間の通信時間は限られており、自車両101は無制限にデータを配布出来ない為、配布するデータを選択する必要がある。また、配布するデータについても、配布対象となる車両が将来アクセスする可能性の高いデータの優先度が高くなるように配布する。 Next, the data distribution method for data sharing between vehicles will be described. The own vehicle 101 distributes data by connecting at the time of passing in the opposite lane or the intersection with the other vehicle 300 that is the oncoming vehicle, when traveling in parallel with the other vehicle 200 traveling in the same lane by traveling on the road. At this time, the connection between vehicles is not limited to direct connection, but may be multi-hop communication via a plurality of automobiles. Further, when communication between vehicles only is difficult due to shadowing by a shielding object, multi-hop communication via the relay radio apparatus 400 may be used. As described above, the communication time between vehicles and between roads is limited, and the own vehicle 101 cannot distribute data without limitation. Therefore, it is necessary to select data to be distributed. Also, the data to be distributed is distributed so that the priority of the data that is likely to be accessed in the future by the vehicle to be distributed becomes high.
 図5は、本実施例におけるデータ配布処理のフローチャートである。以下、図2および図5を用いて対向車線を走行する他車両300と接続してデータを配布する場合の詳細を説明する。車載通信機103は他の車両と直接あるいは中継無線装置400を介して接続したと認識すると、データ配布処理を開始する(ステップS701)、自車両101は自身のデータ記憶部103-1に保存された過去の移動経路の情報から車両到達位置計算部103-4はTf秒後に自身が到達すると予測される位置を計算する。さらに、車両到達位置計算部103-4からの入力と自身のデータ記憶部103-1に保存された検出データを基に保持データリスト作成部103-5は、車両到達位置計算部103-4によって得られた到達位置と現在の自身の位置を頂点とする二次元の矩形領域内で作成されたデータのリストを保持データリストとして作成する(ステップS702)。データリストの作成が完了するとステップS703に移行する。 FIG. 5 is a flowchart of data distribution processing in the present embodiment. Hereinafter, details of the case where data is distributed by connecting to another vehicle 300 traveling in the oncoming lane will be described with reference to FIGS. 2 and 5. When the in-vehicle communication device 103 recognizes that it is connected to another vehicle directly or via the relay wireless device 400, it starts data distribution processing (step S701), and the own vehicle 101 is stored in its own data storage unit 103-1. From the information of the past movement route, the vehicle arrival position calculation unit 103-4 calculates a position that the vehicle arrival position is predicted to reach after Tf seconds. Further, based on the input from the vehicle arrival position calculation unit 103-4 and the detection data stored in its own data storage unit 103-1, the retained data list creation unit 103-5 is executed by the vehicle arrival position calculation unit 103-4. A list of data created in a two-dimensional rectangular area having the obtained arrival position and the current position as a vertex is created as a retained data list (step S702). When the creation of the data list is completed, the process proceeds to step S703.
 続いてステップS703ではステップS702で作成した保持データリスト等を基に構成されるデータ共有パケットを作成し、さらに接続した他車両300に対して通信部103-4を構成するデータ送信部103-4-1が配布要求パケットを送信する。なお、ステップS702およびステップS703の処理は接続先である他車両300でも同様に実施される。 Subsequently, in step S703, a data sharing packet configured based on the retained data list and the like generated in step S702 is created, and the data transmitting unit 103-4 that configures the communication unit 103-4 with respect to the connected other vehicle 300. -1 transmits a distribution request packet. Note that the processing in step S702 and step S703 is performed in the same manner in the other vehicle 300 that is the connection destination.
 図6に配布要求パケットに含まれる項目の例を示す。配布要求パケットは、パケット番号、送信車両ID、送信車両現在位置、送信車両予測位置、送信車両速度ベクトル、ホップ数、および保持データリスト(保持データリストに関するデータ形式の詳細は後述する)によって構成される。 Fig. 6 shows examples of items included in the distribution request packet. The distribution request packet includes a packet number, a transmission vehicle ID, a transmission vehicle current position, a transmission vehicle predicted position, a transmission vehicle speed vector, the number of hops, and a holding data list (details of the data format related to the holding data list will be described later). The
 次に、ステップS704では他車両300から送信された配布要求パケットの受信タイムアウト判定を行う。通信部103-4を構成するデータ受信部103-4-2が設定したタイムアウト時間内に他車両300から送信された配布要求パケットを受信しなかった場合(ステップS704におけるYes)、配布要求通信が成立しなかった旨を使用者に知らせた後に、ステップS710に移行し、データ配布処理は終了する。一方、設定したタイムアウト時間中にデータ受信部103-4-2が配布要求パケットを受信した場合(ステップS704におけるNo)、ステップS705に移行する。ステップS705では属性内優先度判定を実施する。本実施例における情報処理ステム100では、車載通信機103は属性を最も重視して優先度を判定する。その際、属性優先度判定部103-2によって、データ記憶部103-1に記憶された属性優先度テーブルに基づきデータの優先度を判定する。ここで、属性優先度判定部103-2で判定する属性優先度とは、データの属性ごとに持つ優先度であり、その値は運転の安全性に影響するデータや人道的に緊急度が高いデータ程、優先度が高く設定される。 Next, in step S704, reception time-out determination of the distribution request packet transmitted from the other vehicle 300 is performed. If the distribution request packet transmitted from the other vehicle 300 is not received within the timeout time set by the data receiving unit 103-4-2 constituting the communication unit 103-4 (Yes in step S704), the distribution request communication is not performed. After notifying the user that it has not been established, the process proceeds to step S710, and the data distribution process ends. On the other hand, when the data receiving unit 103-4-2 receives the distribution request packet during the set timeout period (No in step S704), the process proceeds to step S705. In step S705, intra-attribute priority determination is performed. In the information processing system 100 according to the present embodiment, the in-vehicle communication device 103 determines priority by placing the highest priority on attributes. At that time, the attribute priority determination unit 103-2 determines the data priority based on the attribute priority table stored in the data storage unit 103-1. Here, the attribute priority determined by the attribute priority determination unit 103-2 is the priority for each attribute of the data, and the value is high in data and humanitarian urgency that affects driving safety. The higher the data, the higher the priority.
 図7に属性優先度テーブルの一例を示す。属性優先度の列が優先度の順番を表しており、属性優先度の値が小さいほど優先度が高い。例えば、自車両にとって死角の車両の存在等に代表される車両情報や凍結情報等の路面状況は安全性への影響が高い為、属性優先度が高く、一方で駐車場の空き状況などは安全性への影響が低い為、属性優先度が低く設定されている。この属性優先度テーブルの優先度は初期状態に必ずしも限定するものでなく、使用者の設定や法改正に伴い、項目の追加および優先順位の変更等のアップデートがなされてもよい。 Fig. 7 shows an example of the attribute priority table. The attribute priority column represents the priority order, and the smaller the attribute priority value, the higher the priority. For example, road conditions such as vehicle information and freezing information, which are represented by the presence of blind spots, have a high impact on safety, so attribute priority is high, while parking space availability is safe. The attribute priority is set low because the influence on the property is low. The priority of the attribute priority table is not necessarily limited to the initial state, and items such as addition of items and change of priority may be updated in accordance with user settings or legal revisions.
 ここで、図8に本実施例における情報処理システム100のデータ形式の構成図を示す。データ形式は、各データに関する特徴等が記されたインデックスデータ1000と、周囲情報取得部102等で検出された詳細な検出情報を含むデータ本体1001の2つに分けられる。インデックスデータ1000は、検出データの属性1002、検出時の時刻1003、検出位置1004で構成される。インデックスデータ1000は非常にデータサイズが小さく、インデックスデータ1000のみの通信はデータ本体に比較すると短時間に終えることが出来る。そこで、配布要求パケットの保持データリストを構成するデータ情報はデータ本体を含まず、インデックスデータ1000のみで構成される。 Here, FIG. 8 shows a configuration diagram of a data format of the information processing system 100 in the present embodiment. The data format is divided into two types: index data 1000 in which features and the like regarding each data are described, and a data body 1001 including detailed detection information detected by the surrounding information acquisition unit 102 and the like. The index data 1000 includes a detection data attribute 1002, a detection time 1003, and a detection position 1004. The index data 1000 has a very small data size, and communication of only the index data 1000 can be completed in a short time compared to the data body. Therefore, the data information that constitutes the retained data list of the distribution request packet does not include the data body, and is composed only of the index data 1000.
 図5におけるステップS705の属性優先度判定時には、データ受信部103-4-2が受信した他車両300から受信した配布要求パケットに含まれる保持データリストは、自車両101が作成および送信した配布要求パケットに含まれる保持データリストとまとめて他車両が保持する重複データを除いて、一括のデータリストとした後に、属性優先度判定部103-2によって、属性優先度テーブルに基づいて属性別に分類される。 At the time of attribute priority determination in step S705 in FIG. 5, the retained data list included in the distribution request packet received from the other vehicle 300 received by the data receiving unit 103-4-2 is the distribution request created and transmitted by the own vehicle 101. After the duplicated data held by other vehicles is collected together with the held data list included in the packet, the data is sorted into a batch data list, and then classified by attribute based on the attribute priority table by the attribute priority determining unit 103-2. The
 次のステップS706では、先のステップS705で属性ならびに属性に基づく優先度を判定されたデータリストを、さらに属性内優先度判定部103-6によってそれぞれの属性内で属性ごとに異なる優先度基準によって優先度を判定する。このとき、属性ごとに異なる優先度判定は例えば、式(1)で表される優先度Pに基づく判定であってもよい。 In the next step S706, the data list in which the attribute and the priority based on the attribute are determined in the previous step S705 are further compared with the priority criteria that differ for each attribute within each attribute by the attribute priority determination unit 103-6. Determine the priority. At this time, the priority determination that is different for each attribute may be, for example, a determination based on the priority P expressed by Expression (1).
 属性が車両情報(重度)であれば、DR-NL(DR with Nearby List)手法によって、データの鮮度だけでなく式(2)に示すアクセス可能性pによって、ホップ数も考慮した手法によって判断してもよい。 If the attribute is vehicle information (severe), the DR-NL (DR Nearby List) method is used to determine not only the freshness of the data but also the accessibility p shown in Equation (2) and the method that also considers the number of hops. May be.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、式(2)におけるpはアクセス可能性を、hは配布要求パケットに記録されたパケット到達までのホップ数を、それぞれ表す。DR-NL手法では高いホップ数で到達したデータは今後もアクセス可能であり続ける可能性が低く、優先してアクセスすべきという判定を行う。その為、DR-NL手法における優先度Pの計算時は式(1)で表される値にアクセス優先度を加味した(1-p)を乗算した値を基準に優先度を判断する。その他にもDR(Data Reliability)手法、あるいはDR-DH(DR with Dissemination History)手法であってもよい。 Here, p in the formula (2) represents accessibility, and h represents the number of hops to reach the packet recorded in the distribution request packet. In the DR-NL method, it is unlikely that data that has reached a high hop count will continue to be accessible in the future, and it is determined that access should be given priority. Therefore, when calculating the priority P in the DR-NL method, the priority is determined based on a value obtained by multiplying the value represented by the equation (1) by (1-p) taking the access priority into consideration. In addition, a DR (Data Reliability) method or a DR-DH (DR With Dissemination History) method may be used.
 図5において、ステップS706終了後はステップS707に移行する。上記のステップS705およびステップS706を経て作成した優先度リストは、例えば図9のようになる。図9は優先度リストを仮想的に属性優先度、属性内優先度、および属性内優先度判定値の3軸で表現したものである。図9の属性優先度の軸は値が小さい程、優先度が高く、属性内優先度の軸はアルファベット順でAに近いほど属性内における優先度が高い。通常、属性優先度が高くなる検出データは安全性への影響が高い分、検出データ数自体はそれ程多くない一方、属性優先度が小さい検出データは非常に数が多くなると予想される。図9の優先度リストにおいて、データ配信は属性優先度1かつ属性内優先度Aのデータから始まり、続いて属性内優先度をBへと下げていき、属性内全てのデータ配信後は属性優先度を2へと下げて、同様に属性内優先度の順に通信部103-4を構成するデータ送信部103-4-1から接続した他車両300へとデータを送信していく。 In FIG. 5, after step S706 is completed, the process proceeds to step S707. The priority list created through the above steps S705 and S706 is, for example, as shown in FIG. FIG. 9 is a virtual representation of the priority list with three axes of attribute priority, attribute priority, and attribute priority determination value. The smaller the value of the attribute priority axis in FIG. 9 is, the higher the priority is. The axis of attribute priority is closer to A in alphabetical order, and the priority in the attribute is higher. Normally, detection data with a high attribute priority has a high influence on safety, so the number of detection data itself is not so large, but detection data with a low attribute priority is expected to be very large. In the priority list of FIG. 9, data distribution starts with data of attribute priority 1 and intra-attribute priority A, and then the intra-attribute priority is lowered to B, and after all data within the attribute is distributed, attribute priority is given. Similarly, the data is transmitted to the connected other vehicle 300 from the data transmission unit 103-4-1 constituting the communication unit 103-4 in the order of the priority within the attribute.
 続くステップS708では、ステップS707にて送信を開始したデータの送信が終了したか、あるいは配布予定データを送信中に通信が遮蔽物によるシャドーイングにより困難となる等の不測の理由によって接続が切断されたかどうかを判定する。配布予定データを送信中である場合(ステップS708におけるNo)、再びステップS708に移行して判定がYesとなるまでステップS708を繰り返す。配布予定データの送信が終了あるいは通信が切断された場合(ステップS708におけるYes)、ステップS709に移行する。 In the subsequent step S708, the connection is disconnected due to unforeseen reasons such as transmission of the data started in step S707 is completed, or communication becomes difficult due to shadowing by the shielding object during transmission of the distribution schedule data. Determine whether or not. When the distribution schedule data is being transmitted (No in step S708), the process proceeds to step S708 again, and step S708 is repeated until the determination is Yes. When the transmission of the distribution schedule data is completed or the communication is disconnected (Yes in step S708), the process proceeds to step S709.
 ステップS709では自車両101の使用者に対して、ディスプレイ等の視認可能なインターフェースや音声等の任意の手段にて、データ配布処理が終了した旨を通知して、データ配布処理は終了する(ステップS710)。なお、ステップS709の終了通知は必ずしも必要でなく、データ配布処理については処理の終了を使用者に伝えなくてもよい。 In step S709, the user of the host vehicle 101 is notified of the end of the data distribution process by any means such as a visible interface such as a display or voice, and the data distribution process ends (step S709). S710). Note that the end notification in step S709 is not necessarily required, and it is not necessary to notify the user of the end of the process for the data distribution process.
 以上、本実施例の構成および処理によれば、従来のように単一属性のデータによる単一目的の概念にとらわれることなく、自車両101は自身の周囲情報取得部102によって検出した様々な種類のデータを車車間あるいは車路間通信によって、本実施例のデータ属性に関する優先度による評価基準によって、限定された通信時間においても最適な評価基準に基づきデータを共有することが出来る。 As described above, according to the configuration and processing of the present embodiment, the own vehicle 101 can detect various types detected by the surrounding information acquisition unit 102 without being limited to the single-purpose concept based on single attribute data as in the past. The data can be shared on the basis of the optimum evaluation criteria even in a limited communication time by the vehicle-to-vehicle or inter-road communication, and the evaluation criteria based on the priority regarding the data attribute of this embodiment.
 実施例1は既にデータ化された情報のアクセスや配布について述べた。本実施例は、自車両101の車載センサおよびその他手段によって検出されたセンサデータを、情報処理システム100における共有時に最適なデータとする処理について具体的に説明する。すなわち、センサ等の検出情報から検出項目を認識するまでの具体的な処理について説明する。 Example 1 described access and distribution of information already converted into data. In the present embodiment, a process for making sensor data detected by an in-vehicle sensor of the own vehicle 101 and other means optimal data at the time of sharing in the information processing system 100 will be specifically described. That is, a specific process until the detection item is recognized from detection information such as a sensor will be described.
 図10は、本実施例における自車両101の情報処理システム100に関連する入出力およびその情報の処理を行う情報処理装置1200のブロック図を示す。情報処理装置1200は、車載通信機103、制御部1201、システムバス1202、周囲情報取得部1203、周囲情報処理部1204、マップ作成部1205、自動車制御部1206、映像出力部1207、振動出力部1208、音声出力部1209、センサ搭載端末1210で構成される。 FIG. 10 is a block diagram of an information processing apparatus 1200 that performs input / output and information processing related to the information processing system 100 of the host vehicle 101 in the present embodiment. The information processing apparatus 1200 includes an in-vehicle communication device 103, a control unit 1201, a system bus 1202, a surrounding information acquisition unit 1203, a surrounding information processing unit 1204, a map creation unit 1205, an automobile control unit 1206, a video output unit 1207, and a vibration output unit 1208. , An audio output unit 1209, and a sensor-equipped terminal 1210.
 制御部1201は、情報処理装置1200全体の制御を行う、例えばマイクロプロセッサのようなものである。システムバス1202は、制御部1201と情報処理装置1200内の各部との間でデータ送受信を行う為のデータ通信路である。周囲情報取得部1203は自車両101の周囲環境1207を測定する部分であり、周囲環境1207を測定することで周囲情報が取得される。周囲情報処理部1204には周囲情報取得部1203で取得された周囲情報が入力され、その周囲情報の解析処理を実施する。マップ作成部1205は周囲情報処理部1204の解析結果を基に周囲環境1207をマップ上の情報としてデータ化する。自動車制御部1206はマップ作成部1205が作成したマップ情報、あるいは車載通信機103によってデータ共有することで得られた、他車両や交通システム等から送信されたマップ情報を基に自車両101の運転を制御する。 The control unit 1201 controls the entire information processing apparatus 1200, and is, for example, a microprocessor. A system bus 1202 is a data communication path for transmitting and receiving data between the control unit 1201 and each unit in the information processing apparatus 1200. The surrounding information acquisition unit 1203 is a part that measures the surrounding environment 1207 of the host vehicle 101, and the surrounding information is acquired by measuring the surrounding environment 1207. The ambient information acquired by the ambient information acquisition unit 1203 is input to the ambient information processing unit 1204, and analysis processing of the ambient information is performed. The map creation unit 1205 converts the surrounding environment 1207 as data on the map based on the analysis result of the surrounding information processing unit 1204. The vehicle control unit 1206 operates the host vehicle 101 based on the map information created by the map creation unit 1205 or the map information transmitted from another vehicle, a traffic system, or the like obtained by sharing data with the in-vehicle communication device 103. To control.
 図11は、本実施例における周囲情報取得部1203の構成図である。周囲環境1207を周囲情報取得部1203により測定することで周囲情報を得る。周囲情報取得部1203は、例えば、RGBカメラ1203-1、赤外線カメラ部1203-2、レーザーレーダー1203-3、集音マイク1203-4、ミリ波レーダー1203-5で構成される。 FIG. 11 is a configuration diagram of the surrounding information acquisition unit 1203 in the present embodiment. Ambient information is obtained by measuring the ambient environment 1207 with the ambient information acquisition unit 1203. The ambient information acquisition unit 1203 includes, for example, an RGB camera 1203-1, an infrared camera unit 1203-2, a laser radar 1203-3, a sound collecting microphone 1203-4, and a millimeter wave radar 1203-5.
 以下、各部の構成および機能の詳細を検出データの例に応じて説明する。 Hereinafter, the details of the configuration and functions of each unit will be described according to examples of detection data.
 <検出データ1:車両情報(緊急車両)>
 検出データの属性1002として、図7の属性優先度テーブルにおける車両情報(重度)に分類される緊急車両の接近を検出する例として、例えば、周囲情報取得部1203を構成する集音マイク1203-4によって緊急車両のサイレン音を検出する方法について説明する。
<Detection data 1: vehicle information (emergency vehicle)>
As an example of detecting the approach of an emergency vehicle classified as vehicle information (severity) in the attribute priority table of FIG. 7 as the attribute 1002 of the detection data, for example, a sound collection microphone 1203-4 constituting the surrounding information acquisition unit 1203 A method for detecting the siren sound of an emergency vehicle will be described.
 緊急車両用のサイレン音は、特定の基本周波数を約0.65秒間隔で繰り返す為、集音マイク1203-4の検出信号に対して、周囲情報処理部1204によって基本周波数をターゲットとして設計したバンドパスフィルタを通過させるフィルタリング処理を施すことで、基本周波数の信号強度だけを観測することが出来る。例えば、バンドパスフィルタ後段の信号レベルに対して、周囲雑音と区別可能な閾値設定を設けておき、閾値を超えた信号レベル検出時に緊急車両検出と判定する。なお、バンドパスフィルタの設計は0.65秒周期、すなわち約1.5Hzとしてもよい。 Since the siren sound for an emergency vehicle repeats a specific fundamental frequency at intervals of about 0.65 seconds, a band designed with the fundamental frequency as a target by the surrounding information processing unit 1204 for the detection signal of the sound collecting microphone 1203-4 By applying a filtering process that passes the pass filter, only the signal intensity of the fundamental frequency can be observed. For example, a threshold setting that can be distinguished from ambient noise is provided for the signal level after the bandpass filter, and it is determined that an emergency vehicle is detected when a signal level that exceeds the threshold is detected. The design of the band pass filter may be 0.65 second period, that is, about 1.5 Hz.
 その他にも、周囲情報取得部1203を構成するRGBカメラ1203-1によって周囲画像取得後、周囲情報処理部1204にて、画像認識処理を適用することで、車両認識と組み合わせた緊急車両の赤色ランプの点滅や救急の文字を検出してもよい。 In addition, after the surrounding image is acquired by the RGB camera 1203-1 constituting the surrounding information acquiring unit 1203, the surrounding information processing unit 1204 applies an image recognition process, thereby combining the red lamp of the emergency vehicle combined with the vehicle recognition. Flashing or emergency letters may be detected.
 周囲情報処理部1204による緊急車両の検出処理後、マップ作成部1205は自身のデータ記憶部103-1に保存された過去の移動経路の情報から、自車両101の現在位置を座標として計算し、その位置を緊急車両の検出位置1004とする。なお、自車両101の現在位置は自車両101に搭載した(図示しない)GPS(Global Positioning System)によって取得してもよい。 After the emergency vehicle detection process by the surrounding information processing unit 1204, the map creation unit 1205 calculates the current position of the host vehicle 101 as coordinates from the information of the past travel route stored in its own data storage unit 103-1. The position is set as an emergency vehicle detection position 1004. Note that the current position of the host vehicle 101 may be acquired by a GPS (Global Positioning System) mounted on the host vehicle 101 (not shown).
 情報共有システム100として保持する緊急車両の検出位置1004としては、緊急車両を検出可能となった検出開始位置を最初に保存し、その後、所定の時間間隔における自車両101の現在位置によって上書きをする。緊急車両を検出不可能となった場合、その位置を検出位置1004として上書きして、検出処理を終了する。また、敢えて上記バンドパスフィルタの通過周波数を広めに設計した上で、ドップラー効果による基準周波数からの周波数のずれ量を計算することで、推定される緊急車両と自車両101の推定相対速度をデータ本体としてデータ記憶部103-1に保存しても良い。 As the emergency vehicle detection position 1004 held as the information sharing system 100, the detection start position at which the emergency vehicle can be detected is first stored, and then overwritten by the current position of the host vehicle 101 at a predetermined time interval. . When the emergency vehicle cannot be detected, the position is overwritten as the detection position 1004, and the detection process is terminated. In addition, the estimated relative speed between the estimated emergency vehicle and the host vehicle 101 is obtained by calculating the frequency deviation from the reference frequency due to the Doppler effect after designing the bandpass filter with a wider pass frequency. The main body may be stored in the data storage unit 103-1.
 <検出データ2:路面状況(積雪、凍結)>
 検出データの属性1002として、図7の属性優先度テーブルにおける路面状況(重度)に分類される路面の積雪や凍結状況を検出する例として、例えば、専用センサ(図示しない)を搭載したプローブカーによる検出を考える。
<Detection data 2: Road surface condition (snow cover, freezing)>
As an example of detecting snow coverage and freezing on the road surface classified as road surface condition (severe) in the attribute priority table of FIG. 7 as the attribute 1002 of the detection data, for example, by a probe car equipped with a dedicated sensor (not shown) Think about detection.
 プローブカーは、専用センサとして、路面温度を非接触で測定可能な放射型温度計、光反射率を計測可能な反射率センサ、のうち一つあるいは複数を備え、路面の凍結状況を検出可能な周囲情報取得部1203の構成として保持する。周囲情報処理部1204は、放射型温度計の検出結果については、0度C以下であれば、路面積雪あるいは路面凍結と判定する。反射率センサについては、反射率に対して所定の閾値を設け、その値を上回る反射率の高さのとき、路面積雪と判定する。さらに、放射型温度計と反射率センサを組み合わせて、反射率が所定の閾値以下かつ0度C以下であれば、路面凍結と判定する。 As a dedicated sensor, the probe car is equipped with one or more of a radiation type thermometer that can measure the road surface temperature in a non-contact manner and a reflectance sensor that can measure the light reflectance, and can detect the frozen state of the road surface. This is stored as the configuration of the surrounding information acquisition unit 1203. If the detection result of the radiation type thermometer is 0 ° C or less, the surrounding information processing unit 1204 determines that the road area is snow or the road surface is frozen. For the reflectance sensor, a predetermined threshold is provided for the reflectance, and when the reflectance is higher than that value, it is determined that the road area is snow. Furthermore, combining the radiation type thermometer and the reflectance sensor, if the reflectance is not more than a predetermined threshold and not more than 0 degrees C, it is determined that the road surface is frozen.
 周囲情報処理部1204による路面状況の検出処理後、マップ作成部1205は自身のデータ記憶部103-1に保存された過去の移動経路の情報から、自車両101の現在位置を座標として計算し、その位置を路面状況の検出位置1004とする。なお、現在位置はGPSによって取得してもよい。路面状況の検出位置1004としては、路面状況を検出可能となった位置を検出開始位置として保存し、その後、所定の時間間隔における自車両101の現在位置をデータ本体に順次追加する。検出開始位置と異なる路面状況を検出した場合、その位置を検出終了位置として検出位置1004に追加して、検出処理を終了する。すなわち、インデックスデータ1000に含まれる検出位置1004はデータ容量を削減する為に、検出開始位置と検出終了位置のみであり、データ本体に記録された検出開始位置から検出終了位置までの座標群が該当する路面状況の領域を表す。なお、データ格納場所は必ずしも上記に限定するものではなく、インデックスデータ1000に検出開始位置から検出終了位置までの座標群を含んでもよい。 After the road surface condition detection processing by the surrounding information processing unit 1204, the map creation unit 1205 calculates the current position of the host vehicle 101 from the past movement route information stored in its own data storage unit 103-1 as coordinates, The position is set as a road surface condition detection position 1004. The current position may be acquired by GPS. As the road surface condition detection position 1004, the position where the road surface condition can be detected is stored as a detection start position, and then the current position of the host vehicle 101 at a predetermined time interval is sequentially added to the data body. When a road surface condition different from the detection start position is detected, the position is added as a detection end position to the detection position 1004, and the detection process is ended. That is, the detection position 1004 included in the index data 1000 is only the detection start position and the detection end position in order to reduce the data capacity, and the coordinate group from the detection start position to the detection end position recorded in the data body corresponds. Indicates the area of road surface condition to be performed. The data storage location is not necessarily limited to the above, and the index data 1000 may include a coordinate group from the detection start position to the detection end position.
 <検出データ3:視界(霧、火山灰、PM2.5)>
 検出データの属性1002として、図7の属性優先度テーブルにおける視界に分類される、霧、火山灰、およびPM2.5を検出する例として、例えば、周囲情報取得部1203を構成するRGBカメラ1203-1、ミリ波レーダー1203-5によって視界状態を検出する方法について説明する。
<Detection data 3: Visibility (fog, volcanic ash, PM2.5)>
As an example of detecting fog, volcanic ash, and PM2.5 classified in the field of view in the attribute priority table of FIG. 7 as the attribute 1002 of the detection data, for example, an RGB camera 1203-1 configuring the ambient information acquisition unit 1203 A method of detecting the visibility state by the millimeter wave radar 1203-5 will be described.
 霧、火山灰、およびPM2.5といった散乱体が視界を覆う場合であっても、ミリ波は可視光に比べて比較的散乱されにくい為、ミリ波レーダー1203-5は正確に対象物までの距離を計測可能である。そこで、RGBカメラ1203-1による前方の撮像対象画像と、ミリ波レーダー1203-5による前方の撮像対象までの距離を基に、周囲情報処理部1204は、散乱係数を計算する。計算によって得られた散乱係数が高くなるにつれて、視界は悪くなる。所定の散乱係数の閾値を上回ったところで霧またはPM2.5検出と判定する。 Even when scatterers such as fog, volcanic ash, and PM2.5 cover the field of view, millimeter waves are less likely to be scattered than visible light, so millimeter wave radar 1203-5 is accurate to the object. Can be measured. Therefore, the ambient information processing unit 1204 calculates a scattering coefficient based on the distance between the forward imaging target image by the RGB camera 1203-1 and the forward imaging target by the millimeter wave radar 1203-5. As the scattering coefficient obtained by calculation increases, the field of view deteriorates. It is determined that fog or PM2.5 is detected when a threshold value of a predetermined scattering coefficient is exceeded.
 周囲情報処理部1204による霧、火山灰、およびPM2.5の検出処理後、マップ作成部1205は自身のデータ記憶部103-1に保存された過去の移動経路の情報から、自車両101の現在位置を座標として計算し、その位置を霧、火山灰、およびPM2.5検出位置1004とする。なお、現在位置はGPSによって取得してもよい。 After the detection processing of fog, volcanic ash, and PM2.5 by the surrounding information processing unit 1204, the map creation unit 1205 determines the current position of the host vehicle 101 from the information of the past travel route stored in its own data storage unit 103-1. Are used as coordinates, and their positions are designated as fog, volcanic ash, and PM2.5 detection position 1004. The current position may be acquired by GPS.
 視界状況の検出位置1004としては、視界状況を検出可能となった位置を検出開始位置として保存し、その後、所定の時間間隔における自車両101の現在位置をデータ本体に順次追加する。散乱係数が所定の閾値を下回った場合、その位置を検出終了位置として検出位置1004に追加して、検出処理を終了する。すなわち、インデックスデータ1000に含まれる検出位置1004はデータ容量を削減する為に、検出開始位置と検出終了位置のみであり、データ本体に記録された検出開始位置から検出終了位置までの座標群が該当する視界状況の領域を表す。なお、データ格納場所は必ずしも上記に限定するものではなく、インデックスデータ1000に検出開始位置から検出終了位置までの座標群を含んでもよい。 As the visibility state detection position 1004, the position where the visibility situation can be detected is stored as a detection start position, and then the current position of the host vehicle 101 at a predetermined time interval is sequentially added to the data body. When the scattering coefficient falls below a predetermined threshold, the position is added as a detection end position to the detection position 1004, and the detection process is terminated. That is, the detection position 1004 included in the index data 1000 is only the detection start position and the detection end position in order to reduce the data capacity, and the coordinate group from the detection start position to the detection end position recorded in the data body corresponds. It represents the field of view situation. The data storage location is not necessarily limited to the above, and the index data 1000 may include a coordinate group from the detection start position to the detection end position.
 <検出データ4:路面状況(水たまり)>
 検出データの属性1002として、図7の属性優先度テーブルにおける路面状況(軽度)に分類される水たまりを検出する例として、まず、周囲情報取得部1203を構成するレーザーレーダー1203-3によって水たまりの存在する領域を検出する方法について説明する。ここで、レーザーレーダー1203-3は二次元の視野に対して距離情報を付加した三次元測定、および二次元の視野のIR(Infared)強度情報を同時に得ることが出来るものとする。
<Detection data 4: Road surface condition (puddle)>
As an example of detecting a puddle classified as road condition (mild) in the attribute priority table of FIG. 7 as the attribute 1002 of the detection data, first, the presence of a puddle is detected by the laser radar 1203-3 constituting the surrounding information acquisition unit 1203. A method for detecting a region to be performed will be described. Here, it is assumed that the laser radar 1203-3 can simultaneously obtain three-dimensional measurement with distance information added to a two-dimensional field of view and IR (Infrared) intensity information of the two-dimensional field of view.
 以下、図12を用いて水たまり検出方法について説明する。図12(A)は自車両101の前方の様子を表した模式図であり、自車両101の前方に水たまり1400が存在する様子を示している。今、図12(A)で示される視野に対してレーザーレーダー1203-3を用いて三次元測定およびIR強度測定を行う。その三次元測定およびIR強度測定の結果を図12(A)中の水たまりを横切る水平方向1401に対して一次元化すると、図12(B)上図および図12(C)上図のようになる。すなわち、三次元測定時の一次元化データは水たまりの有無に関わらず略一定(物体がある場合は距離が変わるので変化する)、IR強度データ測定時の一次元化データは水たまり領域において強度が低下する。これはレーザーレーダー1203-3で用いられる赤外光が水に対する吸光率が高い一方で、距離測定では測定強度が低下しても、距離測定に十分な強度の範囲であれば距離測定結果には影響が小さい為である。そこで、レーザーレーダー1203-3の三次元測定およびIR強度測定の結果を入力として、周囲情報処理部1204はそれら入力に対して所定の水平方向に対して一階微分を取る。その結果、図12(B)下図および図12(C)下図の結果が得られる。得られた結果に対して、距離データの一階微分値が所定の閾値を下回っており、かつ、IR強度データの一階微分値が所定の閾値を下回った画素において、所定の水平方向に対して水たまり領域開始と判定し、距離データの一階微分値が所定の閾値を下回っており、かつ、IR強度データの一階微分値が所定の閾値を上回った画素において、所定の水平方向に対して水たまり領域終了と判定する。 Hereinafter, a puddle detection method will be described with reference to FIG. FIG. 12A is a schematic diagram showing a state in front of the host vehicle 101, and shows a state in which a puddle 1400 exists in front of the host vehicle 101. Now, three-dimensional measurement and IR intensity measurement are performed using the laser radar 1203-3 for the visual field shown in FIG. When the results of the three-dimensional measurement and IR intensity measurement are made one-dimensional in the horizontal direction 1401 across the puddle in FIG. 12A, as shown in the upper diagram of FIG. 12B and the upper diagram of FIG. Become. That is, the one-dimensional data at the time of three-dimensional measurement is substantially constant regardless of the presence or absence of a puddle (the distance changes when there is an object), and the one-dimensional data at the time of IR intensity data measurement has an intensity in the puddle region. descend. This is because the infrared light used in the laser radar 1203-3 has a high absorbance for water, but the distance measurement result shows that the distance measurement result is sufficient if it is within the range of the distance measurement even if the measurement intensity decreases. This is because the influence is small. Therefore, using the results of the three-dimensional measurement and IR intensity measurement of the laser radar 1203-3 as an input, the surrounding information processing unit 1204 takes a first-order differentiation with respect to these inputs in a predetermined horizontal direction. As a result, the results shown in the lower diagram of FIG. 12B and the lower diagram of FIG. 12C are obtained. With respect to the obtained result, the first-order differential value of the distance data is below a predetermined threshold value, and the pixel whose IR differential data first-order differential value is lower than the predetermined threshold value is in a predetermined horizontal direction. In the pixel where the first differential value of the distance data is below a predetermined threshold value and the first differential value of the IR intensity data exceeds the predetermined threshold value, It is determined that the puddle area ends.
 以上の一次元方向の水たまり領域判定をレーザーレーダー1203-3の視野における全ての水平方向に対して行うことで、水たまり領域を判定することが出来る。この判定方法を用いることで、距離データと強度データの両方で判定しているので平坦な領域と水たまりの区別が可能である、レーザーレーダー1203-3による検出であるので夜間でも検出が可能である、略同一時刻で比較するので外光や照明状況に判定結果が影響されない、略同一角度からの光の検出結果によって比較するので角度に応じた水たまりの反射率の違いに影響されないという特徴がある。 The puddle region can be determined by performing the above one-dimensional puddle region determination for all horizontal directions in the field of view of the laser radar 1203-3. By using this determination method, both the distance data and the intensity data are used for determination, so that it is possible to distinguish between a flat region and a puddle. Since detection is performed by the laser radar 1203-3, detection is possible even at night. Since the comparison is made at almost the same time, the judgment result is not affected by the external light or the illumination state, and the comparison is made by the detection result of the light from substantially the same angle, so that it is not affected by the difference in the reflectance of the puddle according to the angle. .
 周囲情報処理部1204による水たまり領域の検出処理後、マップ作成部1205は自身のデータ記憶部103-1に保存された過去の移動経路の情報から、自車両101の現在位置を座標として計算する。なお、現在位置はGPSによって取得してもよい。さらに、検出された水たまり領域の重心座標を導出し、自車両101の現在位置に、三次元測定結果から得られる該重心座標までの相対座標を足し合わせた座標をインデックスデータ1000で保存する水たまりの検出位置1004として記録する。一方で、周囲情報処理部1204によって得られた水たまり領域の情報はデータ本体としてデータ記憶部103-1に記録する。 After the detection process of the puddle area by the surrounding information processing unit 1204, the map creation unit 1205 calculates the current position of the host vehicle 101 from the past movement route information stored in the data storage unit 103-1 as coordinates. The current position may be acquired by GPS. Further, the center of gravity coordinates of the detected puddle area is derived, and the coordinates obtained by adding the relative coordinates up to the center of gravity coordinates obtained from the three-dimensional measurement result to the current position of the own vehicle 101 are stored in the index data 1000. The detection position 1004 is recorded. On the other hand, the information on the puddle area obtained by the surrounding information processing unit 1204 is recorded in the data storage unit 103-1 as the data body.
 次に、上記以外の第二の水たまり領域検出方法として、自車両101の車載センサ以外に、自車両101に乗車している人が所有するスマートフォンに代表されるセンサ搭載端末による検出について説明する。例えば、図10に示すように自車両101に乗車している情報処理装置1200の使用者が自身のセンサ搭載端末1210によって水たまりを撮影する。撮影した水たまりの画像は使用者自身が撮影したデータの属性を路面状況(水たまり)と設定した上で、センサ搭載端末1210を構成する通信部を経由して車載通信機103に送信され、更に車載通信機103から交通システムインフラ500を経由して交通システムネットワーク600に接続された交通システムサーバ700へとアップロードする。このとき、アップロードデータにはセンサ搭載端末1210の現在位置がGPSによって付加されており、交通システムサーバ700はアップロードされた水たまりデータについて、このセンサ搭載端末1210の現在位置をインデックスデータ1000で保存する水たまりの検出位置1004として記録する。このときセンサ搭載端末1210によって取得された水たまりに関する情報の送信手段は必ずしも車載通信機103を経由した手段に限定されない。例えばセンサ搭載端末1210から直接交通システムインフラ500へと通信してもよいし、携帯電話通信網を利用した通信手段により通信してもよい。 Next, as a second puddle area detection method other than the above, detection by a sensor-equipped terminal typified by a smartphone owned by a person riding in the host vehicle 101 will be described in addition to the in-vehicle sensor of the host vehicle 101. For example, as shown in FIG. 10, a user of the information processing apparatus 1200 riding on the host vehicle 101 photographs a puddle with his / her sensor-equipped terminal 1210. The photographed image of the puddle is transmitted to the in-vehicle communication device 103 via the communication unit constituting the sensor-equipped terminal 1210 after setting the attribute of the data photographed by the user as the road surface condition (puddle). Upload from the communication device 103 to the traffic system server 700 connected to the traffic system network 600 via the traffic system infrastructure 500. At this time, the current position of the sensor-equipped terminal 1210 is added to the uploaded data by GPS, and the traffic system server 700 stores the current position of the sensor-equipped terminal 1210 in the index data 1000 for the uploaded puddle data. Is recorded as the detected position 1004. At this time, the means for transmitting information about the puddle acquired by the sensor-equipped terminal 1210 is not necessarily limited to means via the in-vehicle communication device 103. For example, communication may be performed directly from the sensor-equipped terminal 1210 to the traffic system infrastructure 500, or may be performed by communication means using a mobile phone communication network.
 次に、上記以外の第三の水たまり領域検出方法として、例えば、周囲情報取得部1203を構成するRGBカメラ1203-1、または赤外線カメラ部1203-2によって視界状態を検出する方法について説明する。自車両101の前方を検出するRGBカメラ1203-1、または赤外線カメラ部1203-2によって前方を走行する他車両の動画を基に、周囲情報処理部1204は事前の教師データを基にしたテンプレートマッチング等の画像認識によって、他車両が踏んだ水たまりの水しぶきを検出することで水たまり検出と判定する。このとき、周囲情報処理部1204は水たまり検出時の画像等から、図13に示す(1)から(4)の項目を計算して、水たまりを評価する。各項目は、(1)自動車制御部1206から得られる自車速度から推定される前方の他車両の速度vo、(2)前方の他車両のタイヤ幅wt、(3)タイヤ中心位置pt、(4)水しぶきの最大飛距離dwをそれぞれ表す。これら(1)から(4)の計算値はデータ本体としてデータ記憶部103-1に記憶される。なお、(1)から(4)の計算値の活用については実施例3において後述する。周囲情報処理部1204による水たまり領域の検出処理後、マップ作成部1205は自身のデータ記憶部103-1に保存された過去の移動経路の情報から、自車両101の現在位置を座標として計算する。なお、現在位置はGPSによって取得してもよい。マップ作成部1205は、最後に、得られた現在位置の座標をインデックスデータ1000で保存する水たまりの検出位置1004として記録する。 Next, as a third puddle region detection method other than the above, for example, a method of detecting the visibility state by the RGB camera 1203-1 or the infrared camera unit 1203-2 constituting the surrounding information acquisition unit 1203 will be described. Based on the moving image of the other vehicle traveling in front of the RGB camera 1203-1 or the infrared camera unit 1203-2 that detects the front of the host vehicle 101, the surrounding information processing unit 1204 performs template matching based on prior teacher data. It is determined that the puddle is detected by detecting the splash of the puddle that another vehicle has stepped on by image recognition such as the above. At this time, the surrounding information processing unit 1204 evaluates the puddle by calculating the items (1) to (4) shown in FIG. 13 from the image when the puddle is detected. Each item includes (1) the speed vo of the other vehicle ahead estimated from the own vehicle speed obtained from the automobile control unit 1206, (2) the tire width wt of the other vehicle ahead, (3) the tire center position pt, ( 4) Represents the maximum flying distance dw of the splash. The calculated values (1) to (4) are stored in the data storage unit 103-1 as the data body. The use of the calculated values (1) to (4) will be described later in the third embodiment. After the detection process of the puddle area by the surrounding information processing unit 1204, the map creation unit 1205 calculates the current position of the host vehicle 101 from the past movement route information stored in its own data storage unit 103-1 as coordinates. The current position may be acquired by GPS. Finally, the map creation unit 1205 records the obtained coordinates of the current position as the puddle detection position 1004 stored in the index data 1000.
 なお、周囲情報取得部は道路に設置されており、その道路を通行している車両あるいは道路の状況を監視することにより得られたデータをデータ記憶部に周囲情報として記憶してもよい。 Note that the surrounding information acquisition unit is installed on a road, and data obtained by monitoring a vehicle traveling on the road or the state of the road may be stored as surrounding information in the data storage unit.
 以上のように、本実施例によれば、センサ等の検出情報から種々の検出項目を認識することが出来る。 As described above, according to the present embodiment, various detection items can be recognized from detection information such as sensors.
 本実施例では、これまでの実施例1から実施例2に示した情報処理システム100によって取得および共有が可能となった様々なデータを自車両101の運転の制御へと応用する際の処理を具体的に説明する。 In the present embodiment, processing when applying various data acquired and shared by the information processing system 100 shown in the first and second embodiments to the control of driving of the own vehicle 101 is described. This will be specifically described.
 以下、本実施例における情報処理システムについて、各部の構成および機能の詳細を保持データの例に応じて説明する。 Hereinafter, with respect to the information processing system according to the present embodiment, the details of the configuration and functions of each unit will be described according to the example of the retained data.
 <保持データ1:路面状況(水たまり)>
 検出データの属性1002として、図7の属性優先度テーブルにおける路面状況(軽度)に分類される水たまりのデータを、データ記憶部103-1に保持しているときの、自車両101の制御について説明する。
<Retention data 1: Road surface condition (puddle)>
Explanation will be given on the control of the own vehicle 101 when the data storage unit 103-1 holds the data of the puddle classified as the road surface condition (mild) in the attribute priority table of FIG. To do.
 図14は、水たまりのデータを保持する自車両101の移動経路決定のパターンを示した模式図である。また、図15は自動車制御部1206の構成を表したブロック図である。 FIG. 14 is a schematic diagram showing a pattern for determining the movement route of the host vehicle 101 holding the puddle data. FIG. 15 is a block diagram showing the configuration of the automobile control unit 1206.
 図15において、自動車制御部1206は、走行軌道・速度軌道算出部1206-1、ECU(エンジンコントロールユニット)1206-2、エンジン1206-3、ステアリング制御部1206-4、ステアリング1206-5で構成される。走行軌道・速度軌道算出部1206-1はデータ記憶部103-1に保持するデータを基に、自車両101の走行軌道および速度軌道を決定する。走行軌道・速度軌道算出部1206-1によって決定された速度軌道を入力としてECU1206-2は該速度軌道を実現するようにエンジン1206-3を制御する。一方で、走行軌道・速度軌道算出部1206-1によって決定された走行軌道を入力としてステアリング制御部1206-4はステアリング1206-5を制御する。 In FIG. 15, the vehicle control unit 1206 includes a travel track / speed track calculation unit 1206-1, an ECU (engine control unit) 1206-2, an engine 1206-3, a steering control unit 1206-4, and a steering 1206-5. The The traveling trajectory / speed trajectory calculating unit 1206-1 determines the traveling trajectory and the speed trajectory of the host vehicle 101 based on the data stored in the data storage unit 103-1. Based on the speed trajectory determined by the travel trajectory / speed trajectory calculation unit 1206-1, the ECU 1206-2 controls the engine 1206-3 to realize the speed trajectory. On the other hand, the steering control unit 1206-4 controls the steering 1206-5 using the traveling track determined by the traveling track / speed track calculating unit 1206-1 as an input.
 例えば、図14(A)の場合、水たまり1700の情報を保持しながらも、周囲情報取得部1203のリアルタイム検出によって、水たまり1700の周囲に歩行者が存在しないことを把握している。このとき、走行軌道・速度軌道算出部1206-1は自車両101が水たまり1700を踏むことで生じる水しぶきがかかる恐れのある歩行者が周辺に存在しない為、水たまり1700の存在を事前に把握しつつも、気にせずに踏む走行軌道を選択する。 For example, in the case of FIG. 14A, while the information of the puddle 1700 is held, it is grasped that there is no pedestrian around the puddle 1700 by the real-time detection of the surrounding information acquisition unit 1203. At this time, the traveling trajectory / speed trajectory calculating unit 1206-1 is aware of the presence of the puddle 1700 in advance because there is no pedestrian in the vicinity that may be splashed when the own vehicle 101 steps on the puddle 1700. Also, select the trajectory to step on without worrying.
 図14(B)の場合、図14(A)と同じ状況ではあるが、例えば防汚モード選択で自車両101が水たまりを踏むことで汚れることを防ぐ設定となっていたときを想定している。このとき、走行軌道・速度軌道算出部1206-1は自車両101が水たまり1700を踏むことでの汚れを回避する為に、走行軌道を水たまり1700の前で変更することで水たまりを踏むことを回避している。 In the case of FIG. 14B, the situation is the same as that in FIG. 14A. However, for example, it is assumed that the vehicle 101 is set to prevent the vehicle 101 from getting dirty by stepping on a puddle when the antifouling mode is selected. . At this time, the traveling trajectory / speed trajectory calculating unit 1206-1 avoids stepping on the puddle by changing the traveling trajectory in front of the puddle 1700 in order to avoid contamination due to the host vehicle 101 stepping on the puddle 1700. is doing.
 図14(C)の場合、水たまり1700の情報を保持しつつ、周囲情報取得部1203のリアルタイム検出によって、水たまり1700の周囲に歩行者1701が存在することを把握している。このとき、走行軌道・速度軌道算出部1206-1は自車両101が水たまり1700を踏むことで歩行者1701に水しぶきがかかることを回避する為に、走行軌道を水たまり1700の前で変更することで水たまりを踏むことを回避している。 In the case of FIG. 14C, it is grasped that the pedestrian 1701 exists around the puddle 1700 by the real-time detection of the surrounding information acquisition unit 1203 while holding the information about the puddle 1700. At this time, the traveling trajectory / speed trajectory calculating unit 1206-1 changes the traveling trajectory in front of the puddle 1700 in order to prevent the pedestrian 1701 from splashing when the own vehicle 101 steps on the puddle 1700. Avoiding stepping on puddles.
 図14(D)の場合、水たまり1700の情報を保持しつつ、周囲情報取得部1203のリアルタイム検出によって、水たまり1700の周囲に歩行者1701が存在する、かつ自車両101の隣接車線に他車両1702が存在することを把握している。このとき、走行軌道・速度軌道算出部1206-1は、図14(C)と同様に走行軌道を変更した場合、隣接車線の他車両1702と衝突する恐れがあると判断する。しかし、自車両101が水たまり1700を踏むことで歩行者1701に水しぶきがかかることも回避する必要がある為、走行軌道とともに、速度軌道を変更することで水しぶきを歩行者1701にかからない程度の大きさとなるようにする。このとき、走行軌道および速度軌道は、実施例2に記載した、前方車両の水しぶきを検出したことで得られた図13の(1)から(4)の計算値が格納されている場合、これらの値を利用して導出する。式(3)は水たまり1700を自車両101が走行軌道を制御し、タイヤ中心位置ptで水たまり1700を踏むとき、自車両101に許容される速度推定に利用する式である。 In the case of FIG. 14D, the pedestrian 1701 exists around the puddle 1700 by the real-time detection of the surrounding information acquisition unit 1203 while holding the information on the puddle 1700, and the other vehicle 1702 is in the adjacent lane of the host vehicle 101. I know that exists. At this time, the traveling trajectory / speed trajectory calculating unit 1206-1 determines that there is a possibility of colliding with another vehicle 1702 in the adjacent lane when the traveling trajectory is changed as in FIG. However, since it is necessary to prevent the pedestrian 1701 from splashing water when the own vehicle 101 steps on the puddle 1700, the size of the traveling vehicle and the speed trajectory are changed by changing the speed trajectory. To be. At this time, when the calculated values of (1) to (4) in FIG. 13 obtained by detecting the splash of the front vehicle described in the second embodiment are stored as the traveling track and the speed track, Derived using the value of. Expression (3) is an expression that is used to estimate the speed allowed for the own vehicle 101 when the own vehicle 101 controls the traveling track of the puddle 1700 and steps on the puddle 1700 at the tire center position pt.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、式(3)におけるvは自車両101に許容される速度を、dは歩行者1701にかかることのない水しぶきの最大飛距離を、wは自車両101のタイヤ幅をそれぞれ表す。 Here, v in the expression (3) represents the speed allowed for the own vehicle 101, d represents the maximum distance of splashing that is not applied to the pedestrian 1701, and w represents the tire width of the own vehicle 101.
 <保持データ2:障害物(落下物)>
 検出データの属性1002として、図7の属性優先度テーブルにおける障害物に分類される落下物のデータを、データ記憶部103-1に保持しているときの、自車両101の制御について説明する。
<Retention data 2: Obstacle (falling object)>
As the detected data attribute 1002, the control of the host vehicle 101 when data of falling objects classified as obstacles in the attribute priority table of FIG. 7 is held in the data storage unit 103-1 will be described.
 図16は、落下物のデータを保持する自車両101の移動経路決定のパターンを示した模式図である。 FIG. 16 is a schematic diagram showing a pattern for determining a moving route of the host vehicle 101 that holds data of falling objects.
 例えば、図16(A)の場合、落下物1900の情報を保持しつつ、周囲情報取得部1203のリアルタイム検出によって、自車両101の隣接車線に他車両が存在しないことを把握している。このとき、走行軌道・速度軌道算出部1206-1は自車両101が落下物1900を回避する為に、走行軌道を落下物1900の前で変更することで落下物との衝突を回避している。 For example, in the case of FIG. 16 (A), it is grasped that there is no other vehicle in the adjacent lane of the host vehicle 101 by real-time detection of the surrounding information acquisition unit 1203 while holding the information of the falling object 1900. At this time, the traveling trajectory / speed trajectory calculating unit 1206-1 avoids a collision with the falling object by changing the traveling trajectory in front of the falling object 1900 in order for the own vehicle 101 to avoid the falling object 1900. .
 図16(B)の場合、落下物1900の情報を保持しつつ、周囲情報取得部1203のリアルタイム検出によって、自車両101の隣接車線に他車両1901が存在することを把握している。このとき、走行軌道・速度軌道算出部1206-1は、図16(A)と同様に走行軌道を変更した場合、隣接車線の他車両1901と衝突する恐れがあると判断する。そこで、速度軌道を変更することで落下物1900の前で停車するように制御する。その後、隣接車線の他車両との衝突の危険性が無いことを確認した上で、車線変更して再出発する。 In the case of FIG. 16 (B), it is grasped that the other vehicle 1901 exists in the adjacent lane of the own vehicle 101 by the real-time detection of the surrounding information acquisition part 1203, hold | maintaining the information of the falling object 1900. At this time, the traveling trajectory / speed trajectory calculating unit 1206-1 determines that there is a possibility of colliding with another vehicle 1901 in the adjacent lane when the traveling trajectory is changed as in FIG. Therefore, the vehicle is controlled to stop in front of the falling object 1900 by changing the speed trajectory. Then, after confirming that there is no risk of collision with other vehicles in the adjacent lane, change lanes and restart.
 また、本実施例では、これまで情報処理システム100を利用して、自動運転のように自動車制御部1206を自動制御する観点での説明をしてきたが、情報処理システム100の利用は自動運転だけに限定されるものではない。例えば、安全運転支援システムとして、使用者の運転を手助けするという利用も可能である。 In this embodiment, the information processing system 100 has been used to describe automatic control of the vehicle control unit 1206 as in automatic driving. However, the information processing system 100 can be used only for automatic driving. It is not limited to. For example, it can be used as a safe driving support system to help the user drive.
 図17はAR(Augmented Reality)情報を運転者に提供するAR表示装置2000を利用した例を示している。このAR表示装置2000は運転者が見ている実在の光景に、上記車載情報の画像を重畳して表示する装置である。特に図17は、水たまりのデータを、データ記憶部103-1に保持しているときの例を表している。データ記憶部103-1に保持している水たまりのデータを基に水たまり2001の位置を運転者に分かりやすく表示する目印2002を実在の光景に重畳する。図17では目印の例として水たまり2001を覆うフレームを表示している。また、周囲情報取得部1203のリアルタイム検出によって、水たまり2001の周辺に歩行者2003を検出した場合、歩行者2003に水しぶきがかかることを回避するために、自車両101の減速を促す表示2004を実在の光景に重畳する。減速を促すためのインターフェースは必ずしもAR表示装置2000を利用した視覚情報に限定するものでなく、例えば図17に示したような音声案内2005であってもよい。なお、AR表示装置2000が適用可能なデータの属性は水たまりと同じ路面状況(軽度)に限定するものでなく、その他の属性であってもよい。 FIG. 17 shows an example using an AR display device 2000 that provides AR (Augmented Reality) information to the driver. This AR display device 2000 is a device that superimposes and displays an image of the in-vehicle information on an actual scene viewed by the driver. In particular, FIG. 17 shows an example when puddle data is held in the data storage unit 103-1. A mark 2002 that displays the position of the puddle 2001 in an easy-to-understand manner for the driver based on the puddle data held in the data storage unit 103-1 is superimposed on the actual scene. In FIG. 17, a frame covering the puddle 2001 is displayed as an example of the mark. In addition, when a pedestrian 2003 is detected around the puddle 2001 by real-time detection of the surrounding information acquisition unit 1203, a display 2004 that prompts the host vehicle 101 to decelerate is actually present in order to avoid splashing the pedestrian 2003. Superimposed on the scene. The interface for prompting deceleration is not necessarily limited to visual information using the AR display device 2000, and may be voice guidance 2005 as shown in FIG. Note that the data attribute applicable to the AR display device 2000 is not limited to the same road surface condition (mild) as the puddle, and may be other attributes.
 また、実施例1では式(1)に基づく、属性内優先度Pの算出方法について説明した。式(1)によれば、属性内優先度Pは現在位置から検出位置までの距離dに応じて変化する。すなわち、図18(A)に示すように、自車両101が矢印で示す自車両走行ベクトル方向に走行している場合、例えば落下物に関するデータを考えると、その属性内優先度は図18(B)に示すように、検出位置において最大値を取る。なお、図18(B)では簡単の為にαをゼロとし、データ作成からの時間経過による影響を無視している。一方で、自動車制御部1206による適切な制御によって検出位置を通過した後も、式(1)によれば最大値を通過直後ではあるものの、図18(B)の破線のように、しばらく高い属性内優先度をもつ。しかし、実際の自車両101にとっての優先度を鑑みると、落下物や水たまりのように広範に領域を持たないデータについては、自車両101にとっては適切な制御によって一旦検出位置を越えると、そのデータを今後使用する可能性は低く、本来の属性内優先度は図18(B)の実線のようにゼロとすべきである。そこで、現在位置から検出位置までの距離dは自車両101の進行方向に応じた極性を設け、進行方向に対して検出位置が前方にある場合に正(d>0)とし、進行方向に対して検出位置が後方にある場合に負(d<0)とする。その上で、式(4)に基づいて属性内優先度を判定する。 In the first embodiment, the method for calculating the in-attribute priority P based on the formula (1) has been described. According to equation (1), the in-attribute priority P changes according to the distance d from the current position to the detection position. That is, as shown in FIG. 18 (A), when the host vehicle 101 is traveling in the direction of the host vehicle traveling vector indicated by the arrow, for example, when considering data related to falling objects, the priority within the attribute is as shown in FIG. The maximum value is taken at the detection position as shown in FIG. In FIG. 18B, for simplicity, α is set to zero and the influence of the passage of time since data creation is ignored. On the other hand, even after passing through the detection position by appropriate control by the vehicle control unit 1206, although it is just after passing through the maximum value according to the equation (1), the attribute is high for a while as shown by the broken line in FIG. Has internal priority. However, in view of the priority for the actual host vehicle 101, data that does not have a wide area such as a fallen object or a puddle once the detection position is exceeded by appropriate control for the host vehicle 101. Is unlikely to be used in the future, and the original priority within the attribute should be zero as shown by the solid line in FIG. Therefore, the distance d from the current position to the detection position has a polarity corresponding to the traveling direction of the host vehicle 101, and is positive (d> 0) when the detection position is ahead with respect to the traveling direction, If the detection position is behind, it is negative (d <0). After that, the in-attribute priority is determined based on Expression (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、安全運転支援システムでは車道の白線や黄線を、RGBカメラ1203-1のような周囲情報取得部1203によって、認識することによって、車線維持を行う車線逸脱防止支援システムが知られている。これらシステムではRGBカメラ等の1203-1の視野検出結果から輝度閾値を設けて二値化した結果をもとに車道の白線や黄線を検出することに利用している。この車線逸脱防止支援システムの問題として、車道の白線や黄線上に様々な検出障害、例えば水たまりや積雪がある場合、二値化によって必ずしも白線や黄線だけを表示することが出来ず、誤検出を起こす可能性がある。 Also, a lane departure prevention support system that maintains lanes by recognizing a white line or a yellow line on a roadway by a surrounding information acquisition unit 1203 such as an RGB camera 1203-1 is known as a safe driving support system. These systems are used to detect white lines and yellow lines on the roadway based on the binarized result obtained by providing a luminance threshold value from the 1203-1 visual field detection result of an RGB camera or the like. As a problem of this lane departure prevention support system, if there are various detection obstacles on the road white line or yellow line, for example, puddle or snow cover, it is not always possible to display only the white line or yellow line by binarization, and false detection May cause.
 図19は、本実施例における車線逸脱防止支援システムにおける水たまりの処理を示した模式図である。図19(A)は視野の白線や黄線上に水たまり2200を含むRGBカメラ1203-1による検出画像を、図19(B)は図19(A)の検出画像を輝度閾値によって二値化した画像をそれぞれ示す。水たまり2200は角度によって非常に高い反射率を持つ為、場合によっては図19(B)のように、二値化時に白線や黄線と一緒に残ってしまう可能性がある。この図19(B)のまま画像認識をすると、誤検出に繋がる可能性がある。そこで、情報処理システム100によって、水たまり2200の検出位置および領域を事前に得ることで、図19(C)のように、RGBカメラ1203-1による検出画像から水たまり部分を除去する処理を実施可能となる。これにより直線検出推定が容易になり、水たまりによる誤検出を改善可能となる。 FIG. 19 is a schematic diagram showing processing of a puddle in the lane departure prevention support system according to the present embodiment. 19A shows an image detected by the RGB camera 1203-1 including the puddle 2200 on the white line or yellow line of the field of view, and FIG. 19B shows an image obtained by binarizing the detection image of FIG. Respectively. Since the puddle 2200 has a very high reflectance depending on the angle, as shown in FIG. 19B, there is a possibility that the puddle 2200 may remain together with a white line or a yellow line when binarized. If image recognition is performed with this FIG. 19B, erroneous detection may occur. Therefore, by obtaining the detection position and area of the puddle 2200 in advance by the information processing system 100, it is possible to perform processing for removing the puddle portion from the detection image by the RGB camera 1203-1 as shown in FIG. 19C. Become. This facilitates straight-line detection estimation and improves false detection due to puddles.
 以上のように、本実施例によれば、情報処理システムによって取得および共有が可能となった様々なデータを自車両の運転の制御へと応用することが可能となる。 As described above, according to this embodiment, various data that can be acquired and shared by the information processing system can be applied to control of driving of the host vehicle.
 なお、本発明は上記の実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to said Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
100:情報処理システム、101:自車両、102:周囲情報取得部、103:車載通信機、200、300:他車両、400:中継無線装置、500:交通システムインフラ、600:交通システムネットワーク、700:交通システムサーバ、1200:情報処理装置 DESCRIPTION OF SYMBOLS 100: Information processing system, 101: Own vehicle, 102: Ambient information acquisition part, 103: In-vehicle communication apparatus, 200, 300: Other vehicle, 400: Relay radio | wireless apparatus, 500: Transportation system infrastructure, 600: Transportation system network, 700 : Traffic system server, 1200: Information processing device

Claims (12)

  1. 周囲情報を記憶するデータ記憶部と、
    前記データ記憶部に記憶した前記周囲情報の複数の属性の優先度である属性優先度を判定する属性優先度判定部と、
    前記データ記憶部に記憶された前記周囲情報を他車両へ通信する通信部とを備え、
    前記属性優先度判定部によって判定した前記複数の属性の優先度に応じて前記通信部が通信する際の情報の優先度を変更し、該変更された優先度に応じて前記周囲情報を他車両へ通信することを特徴とする情報処理装置。
    A data storage unit for storing surrounding information;
    An attribute priority determination unit that determines an attribute priority that is a priority of a plurality of attributes of the surrounding information stored in the data storage unit;
    A communication unit that communicates the surrounding information stored in the data storage unit to another vehicle;
    The priority of the information when the communication unit communicates is changed according to the priority of the plurality of attributes determined by the attribute priority determination unit, and the surrounding information is transferred to the other vehicle according to the changed priority. An information processing apparatus characterized by communicating with
  2. 請求項1に記載の情報処理装置であって、
    前記属性優先度は、安全性に影響するデータ及び/又は人道的に緊急度が高いデータ程、優先度が高く設定されていることを特徴とする情報処理装置。
    The information processing apparatus according to claim 1,
    The attribute priority is set such that higher priority is set for data that affects safety and / or data with higher humanitarian urgency.
  3. 請求項2に記載の情報処理装置であって、
    前記属性優先度判定部で判定した属性ごとにさらに属性内での優先度である属性内優先度を判定する属性内優先度判定部を備え、
    前記属性優先度判定部によって同一属性と判定された周囲情報が複数存在する場合は前記属性内優先度判定部によって判定された属性内での優先度に応じて前記通信部が通信する際の情報の優先度を変更し、該変更された優先度に応じて前記周囲情報を他車両へ通信することを特徴とする情報処理装置。
    An information processing apparatus according to claim 2,
    For each attribute determined by the attribute priority determination unit, further includes an attribute priority determination unit that determines a priority within the attribute that is a priority within the attribute,
    Information when the communication unit communicates according to the priority in the attribute determined by the attribute priority determination unit when there are a plurality of surrounding information determined by the attribute priority determination unit as the same attribute An information processing apparatus characterized by changing the priority of the vehicle and communicating the surrounding information to another vehicle according to the changed priority.
  4. 請求項1から3の何れか1項に記載の情報処理装置であって、
    前記周囲情報を検出する周囲情報取得部を備え、
    前記周囲情報取得部は自動車に設置され該自動車の周囲情報を取得して前記データ記憶部に該周囲情報を記憶することを特徴とする情報処理装置。
    The information processing apparatus according to any one of claims 1 to 3,
    A surrounding information acquisition unit for detecting the surrounding information;
    The information processing apparatus, wherein the surrounding information acquisition unit is installed in an automobile, acquires the surrounding information of the automobile, and stores the surrounding information in the data storage unit.
  5. 請求項1から3の何れか1項に記載の情報処理装置であって、
    前記周囲情報を検出する周囲情報取得部を備え、
    前記周囲情報取得部は道路に設置され該道路を通行している車両あるいは道路の状況を監視することにより得られたデータを前記データ記憶部に周囲情報として記憶することを特徴とする情報処理装置。
    The information processing apparatus according to any one of claims 1 to 3,
    A surrounding information acquisition unit for detecting the surrounding information;
    The surrounding information acquisition unit is installed on a road and stores data obtained by monitoring a vehicle passing through the road or a road condition as surrounding information in the data storage unit. .
  6. 請求項3に記載の情報処理装置であって、
    前記属性内優先度は、検出時からの経過時間が短いデータ程、優先度が高く設定されていることを特徴とする情報処理装置。
    The information processing apparatus according to claim 3,
    The information attribute device is characterized in that the priority within an attribute is set to be higher for data whose elapsed time from the detection is shorter.
  7. 請求項3に記載の情報処理装置であって、
    前記通信において要求データへのアクセスをする場合、前記属性内優先度は、情報処理装置の現在位置とデータの検出位置が近い程、優先度が高く設定されていることを特徴とする情報処理装置。
    The information processing apparatus according to claim 3,
    When accessing request data in the communication, the priority within the attribute is set higher as the current position of the information processing apparatus is closer to the data detection position. .
  8. 請求項3に記載の情報処理装置であって、
    前記属性内優先度は、情報処理システムが到達すると予測される移動経路内のデータ程、優先度が高く設定されていることを特徴とする情報処理装置。
    The information processing apparatus according to claim 3,
    The information processing apparatus according to claim 1, wherein the priority within the attribute is set to a higher priority for data in a movement route predicted to be reached by the information processing system.
  9. 請求項7に記載の情報処理装置であって、
    前記属性内優先度は、前記データの検出位置を前記情報処理装置が通過することで、データの検出位置との距離に関わらずゼロとなることを特徴とする情報処理装置。
    The information processing apparatus according to claim 7,
    The intra-attribute priority is zero regardless of the distance from the data detection position when the information processing apparatus passes the data detection position.
  10. 請求項4または5に記載の情報処理装置であって、
    前記周囲情報取得部は、レーザーレーダーを含み、
    前記レーザーレーダーによって得られた水平方向に対する距離データおよび赤外光の強度データの一次元データに対して、さらに水平方向の一階微分を行って得られるデータについて、距離データの一階微分データが所定の閾値を下回っており、かつ赤外光の強度データの一階微分データが所定の閾値を下回っている水平位置を水たまり領域の開始位置とし、距離データの一階微分データが所定の閾値を下回っており、かつ赤外光の強度データの一階微分データが所定の閾値を上回っている水平位置を水たまり領域の終了位置と判定することを特徴とする情報処理装置。
    An information processing apparatus according to claim 4 or 5,
    The ambient information acquisition unit includes a laser radar,
    For the data obtained by further performing horizontal first-order differentiation on the one-dimensional data of distance data and infrared light intensity data obtained in the horizontal direction obtained by the laser radar, the first-order differential data of the distance data is The horizontal position where the first-order differential data of the infrared light intensity data is lower than the predetermined threshold is set as the start position of the puddle region, and the first-order differential data of the distance data is set to the predetermined threshold. An information processing apparatus, characterized in that a horizontal position that is lower and the first-order differential data of infrared light intensity data exceeds a predetermined threshold is determined as an end position of a puddle region.
  11. 請求項4に記載の情報処理装置であって、
    前記自動車を制御可能な自動車制御部を含み、
    前記周囲情報は、水たまりの位置および領域に関するデータであり、
    前記自動車制御部は、前記水たまりの位置および領域に関するデータを基に、前記水たまり上を走行する走行軌道および速度軌道を制御することを特徴とする情報処理装置。
    The information processing apparatus according to claim 4,
    An automobile control unit capable of controlling the automobile;
    The surrounding information is data relating to the position and area of the puddle,
    The information processing apparatus according to claim 1, wherein the vehicle control unit controls a traveling trajectory and a speed trajectory that travel on the puddle based on data regarding a position and a region of the puddle.
  12. 取得した周囲情報を他車両へ通信する情報処理方法であって、
    前記周囲情報の複数の属性の優先度を判定し、
    該判定した前記複数の属性の優先度に応じて前記周囲情報を他車両へ通信する際の優先度を変更し、該変更された優先度に応じて前記周囲情報を他車両へ通信することを特徴とする情報処理方法。
    An information processing method for communicating acquired surrounding information to another vehicle,
    Determining priorities of a plurality of attributes of the surrounding information;
    Changing priority when communicating the surrounding information to another vehicle according to the determined priorities of the plurality of attributes, and communicating the surrounding information to another vehicle according to the changed priority. A characteristic information processing method.
PCT/JP2017/015399 2017-04-14 2017-04-14 Information processing device and information processing method WO2018189913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015399 WO2018189913A1 (en) 2017-04-14 2017-04-14 Information processing device and information processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015399 WO2018189913A1 (en) 2017-04-14 2017-04-14 Information processing device and information processing method

Publications (1)

Publication Number Publication Date
WO2018189913A1 true WO2018189913A1 (en) 2018-10-18

Family

ID=63792480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015399 WO2018189913A1 (en) 2017-04-14 2017-04-14 Information processing device and information processing method

Country Status (1)

Country Link
WO (1) WO2018189913A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092413A (en) * 2018-11-06 2020-06-11 トヨタ自動車株式会社 Wireless communication assurance for connected vehicles in high network load scenarios
JP2020126357A (en) * 2019-02-01 2020-08-20 トヨタ自動車株式会社 Traffic management system, control method, and vehicle
CN111653086A (en) * 2019-03-04 2020-09-11 通用汽车环球科技运作有限责任公司 Method for prioritizing transmission of sensed objects for collaborative sensor sharing
CN112955943A (en) * 2018-11-29 2021-06-11 住友电气工业株式会社 System, server computer, in-vehicle device, control method, semiconductor integrated circuit, and computer program
CN113498013A (en) * 2020-03-18 2021-10-12 本田技研工业株式会社 Communication device, communication method, recording medium having communication program recorded thereon, and vehicle
CN114127821A (en) * 2019-07-12 2022-03-01 日产自动车株式会社 Information processing apparatus, information processing method, and program
CN114969502A (en) * 2021-06-21 2022-08-30 中移互联网有限公司 Vehicle information exchange method and system, and computer readable storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266399A (en) * 1992-03-19 1993-10-15 Hitachi Ltd Travel controller by inter-vehicle communication
JP2008006995A (en) * 2006-06-29 2008-01-17 Toyota Motor Corp Traveling device for vehicle
JP2009245147A (en) * 2008-03-31 2009-10-22 Equos Research Co Ltd Driving support device
JP2009267963A (en) * 2008-04-28 2009-11-12 Sumitomo Electric Ind Ltd Communication system, wireless communication method and communication apparatus
JP2011258017A (en) * 2010-06-09 2011-12-22 Toyota Infotechnology Center Co Ltd Probe car system, vehicle for the same, and traffic information sharing method for the same
JP2016522886A (en) * 2013-04-11 2016-08-04 グーグル インコーポレイテッド Method and system for detecting weather conditions using in-vehicle sensors
JP2017021584A (en) * 2015-07-10 2017-01-26 矢崎総業株式会社 Network system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266399A (en) * 1992-03-19 1993-10-15 Hitachi Ltd Travel controller by inter-vehicle communication
JP2008006995A (en) * 2006-06-29 2008-01-17 Toyota Motor Corp Traveling device for vehicle
JP2009245147A (en) * 2008-03-31 2009-10-22 Equos Research Co Ltd Driving support device
JP2009267963A (en) * 2008-04-28 2009-11-12 Sumitomo Electric Ind Ltd Communication system, wireless communication method and communication apparatus
JP2011258017A (en) * 2010-06-09 2011-12-22 Toyota Infotechnology Center Co Ltd Probe car system, vehicle for the same, and traffic information sharing method for the same
JP2016522886A (en) * 2013-04-11 2016-08-04 グーグル インコーポレイテッド Method and system for detecting weather conditions using in-vehicle sensors
JP2017021584A (en) * 2015-07-10 2017-01-26 矢崎総業株式会社 Network system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092413A (en) * 2018-11-06 2020-06-11 トヨタ自動車株式会社 Wireless communication assurance for connected vehicles in high network load scenarios
JP7095673B2 (en) 2018-11-06 2022-07-05 トヨタ自動車株式会社 Wireless communication guarantee for connected vehicles in high network load conditions
CN112955943A (en) * 2018-11-29 2021-06-11 住友电气工业株式会社 System, server computer, in-vehicle device, control method, semiconductor integrated circuit, and computer program
CN112955943B (en) * 2018-11-29 2023-02-28 住友电气工业株式会社 System, server computer, in-vehicle device, control method, semiconductor integrated circuit, and recording medium
US11790771B2 (en) 2018-11-29 2023-10-17 Sumitomo Electric Industries, Ltd. Vehicle-mounted device for controlling transmission of sensor data
JP7484721B2 (en) 2018-11-29 2024-05-16 住友電気工業株式会社 System, server computer, in-vehicle device, control method, semiconductor integrated circuit, and computer program
JP2020126357A (en) * 2019-02-01 2020-08-20 トヨタ自動車株式会社 Traffic management system, control method, and vehicle
JP7135904B2 (en) 2019-02-01 2022-09-13 トヨタ自動車株式会社 Traffic management system and its control method
CN111653086A (en) * 2019-03-04 2020-09-11 通用汽车环球科技运作有限责任公司 Method for prioritizing transmission of sensed objects for collaborative sensor sharing
CN111653086B (en) * 2019-03-04 2022-08-09 通用汽车环球科技运作有限责任公司 Method for prioritizing transmission of sensed objects for collaborative sensor sharing
CN114127821A (en) * 2019-07-12 2022-03-01 日产自动车株式会社 Information processing apparatus, information processing method, and program
CN113498013A (en) * 2020-03-18 2021-10-12 本田技研工业株式会社 Communication device, communication method, recording medium having communication program recorded thereon, and vehicle
CN114969502A (en) * 2021-06-21 2022-08-30 中移互联网有限公司 Vehicle information exchange method and system, and computer readable storage medium
CN114969502B (en) * 2021-06-21 2023-10-27 中移互联网有限公司 Vehicle information exchange method and system and computer readable storage medium

Similar Documents

Publication Publication Date Title
WO2018189913A1 (en) Information processing device and information processing method
US20230115658A1 (en) Autonomous driving system
EP3324556B1 (en) Visual communication system for autonomous driving vehicles (adv)
US10163017B2 (en) Systems and methods for vehicle signal light detection
US10176715B2 (en) Navigation system with dynamic mapping mechanism and method of operation thereof
US10290210B2 (en) Distracted driver notification system
US9518829B2 (en) Driving assistance system, vehicle and method
US11361661B2 (en) In-vehicle infotainment system communicating with unmanned aerial vehicle and method of operating the same
US10657822B2 (en) Vehicle control device
JP2018077652A (en) Vehicle driving support system and collective housing
JP2015191583A (en) Recognition/notification device for vehicle and recognition/notification system for vehicle
US11514790B2 (en) Collaborative perception for autonomous vehicles
JP2015225366A (en) Accident prevention system, accident prevention device, and accident prevention method
US11562572B2 (en) Estimating auto exposure values of camera by prioritizing object of interest based on contextual inputs from 3D maps
WO2021009534A1 (en) Information processing device, information processing method, and information processing program
CN110962744A (en) Vehicle blind area detection method and vehicle blind area detection system
KR20220083533A (en) MERGING LiDAR INFORMATION AND CAMERA INFORMATION
KR20220038301A (en) Estimating speed profiles
KR20230154470A (en) trajectory checker
WO2021261228A1 (en) Obstacle information management device, obstacle information management method, and device for vehicle
JP6881001B2 (en) Automatic driving control device
KR20220009379A (en) Information processing device, information processing method, and program
JP6781335B2 (en) Vehicle control system, server device, vehicle control method, and vehicle control program
JP7047001B2 (en) Traffic risk reduction programs, information processing equipment and methods
US20240124029A1 (en) Selecting a vehicle action based on a combination of vehicle action intents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP