WO2018189862A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2018189862A1
WO2018189862A1 PCT/JP2017/015134 JP2017015134W WO2018189862A1 WO 2018189862 A1 WO2018189862 A1 WO 2018189862A1 JP 2017015134 W JP2017015134 W JP 2017015134W WO 2018189862 A1 WO2018189862 A1 WO 2018189862A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
stick
holder
pair
holding
Prior art date
Application number
PCT/JP2017/015134
Other languages
French (fr)
Japanese (ja)
Inventor
泰成 水野
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2017/015134 priority Critical patent/WO2018189862A1/en
Priority to JP2019512128A priority patent/JPWO2018189862A1/en
Publication of WO2018189862A1 publication Critical patent/WO2018189862A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the present invention relates to a working machine for mounting electronic circuit components on a substrate.
  • Patent Document 1 a land of a lower package component mounted on a printed circuit board is imaged by a substrate recognition camera, position information of the lower package component is obtained from the land of the corner portion, and the upper package component is An example of an electronic component mounting apparatus mounted on the side package component is described.
  • the present invention has been made to solve the above-described problems, and provides a working machine that can mount an upper part on a lower part without deforming the substrate. Objective.
  • the present specification describes a lower component supply device that supplies a lower component to be mounted on a substrate, and an upper component supply that supplies an upper component to be mounted on the upper side of the lower component.
  • An apparatus a working head having a holding tool for holding a component, a moving device for moving the working head, and a control device for controlling the operation of the holding tool and the operation of the moving device.
  • the upper part holding process for holding the upper part supplied by the upper part supply apparatus by the holder, and the lower part supplied by the lower part supply apparatus for the upper part held by the holder.
  • An upper part moving process for moving the upper part above the side part, and an upper part mounting process for mounting the upper part on the lower part on the lower part supply device. Aircraft are disclosed.
  • the upper part held by the holder is mounted on the lower part on the lower part supply apparatus, the upper part can be mounted on the lower part without deforming the substrate. It becomes possible.
  • FIG. 10 is a perspective view showing an example in which an upper part is mounted on a lower part according to another embodiment 1;
  • FIG. 1 shows a component mounter 10.
  • the component mounter 10 is a device for performing a component mounting operation on the circuit substrate 12.
  • the component mounting machine 10 includes an apparatus main body 20, a substrate conveyance holding device 22, a component mounting device 24, a mark camera (imaging device) 26, a parts camera 28, a loose component supply device 30, a component supply device 32, and a control device (FIG. 8).
  • Reference) 36 is provided.
  • the circuit substrate 12 includes a circuit board, a three-dimensional structure substrate, and the like, and the circuit board includes a printed wiring board and a printed circuit board.
  • the apparatus main body 20 includes a frame portion 40 and a beam portion 42 that is overlaid on the frame portion 40.
  • the substrate conveyance holding device 22 is disposed in the center of the frame portion 40 in the front-rear direction, and includes a conveyance device 50 and a clamp device 52.
  • the conveyance device 50 is a device that conveys the circuit substrate 12
  • the clamp device 52 is a device that holds the circuit substrate 12.
  • the base material transport and holding device 22 transports the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position.
  • the conveyance direction of the circuit substrate 12 is referred to as an X direction
  • a horizontal direction perpendicular to the direction is referred to as a Y direction
  • a vertical direction is referred to as a Z direction. That is, the width direction of the component mounting machine 10 is the X direction, and the front-rear direction is the Y direction.
  • the component mounting device 24 is disposed in the beam portion 42 and includes two work heads 60 and 62 and a work head moving device 64. As shown in FIG. 2, a component holder (holder) 66 is detachably provided on the lower end surface of each work head 60, 62.
  • the component holder 66 has a pair of claws 67. As will be described later, by bringing the pair of claws 67 close to each other, the components are gripped and the pair of claws 67 are separated. Remove the gripped parts.
  • the work head moving device 64 has an X direction moving device 68, a Y direction moving device 70, and a Z direction moving device 72.
  • the X-direction moving device 68 and the Y-direction moving device 70 have electromagnetic motors (see FIG. 8) 212 and 214, respectively. By the operation of the electromagnetic motors 212 and 214, the two work heads 60, 62 moves integrally to an arbitrary position on the frame portion 40.
  • Each Z-direction moving device 72 has electromagnetic motors (see FIG. 8) 216A and 216B, and the sliders 74 and 76 are individually moved in the vertical direction by the operation of the electromagnetic motors 216A and 216B. Further, as shown in FIG. 2, each of the work heads 60 and 62 is detachably attached to the sliders 74 and 76, and the Z-direction moving device 72 individually moves the sliders 74 and 76 in the vertical direction. That is, the work heads 60 and 62 are individually moved in the vertical direction by the Z-direction moving devices 72.
  • Each electromagnetic motor 212, 214, 216A, 216B has an encoder (not shown), and the encoder detects the rotation angle of each electromagnetic motor 212, 214, 216A, 216B.
  • the operations of the electromagnetic motors 212, 214, 216A, and 216B are controlled so that the rotation angles of the electromagnetic motors 212, 214, 216A, and 216B become the target rotation angles, so that the work heads 60 and 62 can be Move to position.
  • the work heads 60 and 62 have electromagnetic motors (see FIG. 8) 218A and 218B.
  • the operation of the electromagnetic motors 218A and 218B can rotate to the lower end surfaces of the work heads 60 and 62.
  • Each attached component holder 66 rotates about the vertical axis.
  • Each electromagnetic motor 218A, 218B has an encoder (not shown), and the rotation angle of each electromagnetic motor 2128, 218B is detected by the encoder.
  • each electromagnetic motor 218A, 218B is controlled so that the rotation angle of each electromagnetic motor 218A, 218B becomes the target rotation angle, so that the electromagnetic motor 218A, 218B can be pivotally attached to the lower end surface of each work head 60, 62.
  • Each component holder 66 is rotated about the vertical axis from the origin position to the target rotation angle. That is, the components gripped by the pair of claws 67 of each component holder 66 can be rotated around the vertical axis.
  • the mark camera (imaging device) 26 is attached to the slider 74 so as to face downward, and is moved together with the work head 60 in the X, Y, and Z directions. As a result, the mark camera (imaging device) 26 images an arbitrary position on the frame unit 40. As shown in FIG. 1, the parts camera 28 is disposed between the base material conveyance holding device 22 and the component supply device 32 on the frame portion 40 so as to face upward. Thereby, the parts camera 28 images the components gripped by the component holder 66 of the work heads 60 and 62.
  • the bulk component supply device 30 is disposed at one end of the frame portion 40 in the front-rear direction.
  • the separated component supply device 30 is a device that aligns a plurality of components scattered in a separated state and supplies the components in an aligned state. That is, it is an apparatus that aligns a plurality of components in an arbitrary posture into a predetermined posture and supplies the components in a predetermined posture.
  • the component supply device 32 is disposed at the other end of the frame portion 40 in the front-rear direction.
  • the component supply device 32 includes a tray-type component supply device 78 and a feeder-type component supply device 80.
  • the tray-type component supply device 78 is a device that supplies components placed on the tray.
  • the feeder-type component supply device 80 is a device that supplies components by the stick feeder 82.
  • the stick feeder 82 will be described in detail.
  • examples of the components supplied by the bulk component supply device 30 and the component supply device 32 include an electronic circuit component, a solar cell component, and a power module component.
  • Electronic circuit components include components having leads and components not having leads.
  • the stick feeder 82 is detachably attached to a feeder holding base 86 fixedly provided at the other end of the frame portion 40.
  • the stick feeder 82 is a device that pushes out an electronic circuit component from a component housing stick (see FIG. 3) 88 and supplies the extruded electronic circuit component at a component supply position.
  • the component housing stick 88 is composed of a stick case 90 and a plurality of electronic circuit components 92, as shown in FIG.
  • the stick case 90 is made of resin and has a hollow stick shape inside. That is, the stick case 90 has a tube shape with both ends opened.
  • the internal shape of the stick case 90 is substantially the same as the shape of the electronic circuit component 92, and the internal size of the stick case 90 is slightly larger than the external size of the electronic circuit component 92.
  • a plurality of electronic circuit components 92 are accommodated in the stick case 90 in a line.
  • the electronic circuit component 92 moves along the axial direction of the stick case 90 with almost no rattle inside the stick case 90.
  • the component accommodation stick 88 is distributed in the market in a state where a plurality of electronic circuit components 92 are accommodated in the stick case 90.
  • the user can distribute the stick case 90 in the market.
  • the electronic circuit component 92 housed in the stick case 90 includes a fuse, a fuse socket, a connector, a DIP (abbreviation for Dual Inline Package), and the like.
  • the stick feeder 82 includes a feeder main body 100, a stick holding unit 102, a component buffer unit 104, a component supply unit 106, and a component feeding device 108.
  • the electronic circuit component 92 is sent out from the component accommodation stick 88 held by the holding unit 102, and the sent electronic circuit component 92 is supplied by the component supply unit 106.
  • the feeder main body 100 is mounted on a feeder holding base 86 provided at the end of the frame 40 of the component mounter 10.
  • the front side portion of the feeder main body 100 where the component supply unit 106 is provided is located inside the component mounter 10, and the feeder main body 100.
  • the portion on the rear side where the stick holding unit 102 is provided is located outside the component mounter 10.
  • the stick holding unit 102 includes a pair of holding members 110 and 112 and a holding device 114.
  • One clamping member 110 of the pair of clamping members 110, 112 is erected on the upper surface of the rear side end of the feeder main body 100, and the other clamping member 112 is generally located at the center of the feeder main body 100. Stands on the top surface.
  • the pair of sandwiching members 110 and 112 face each other, and a plurality of component receiving sticks 88 are stacked substantially horizontally between the pair of sandwiching members 110 and 112, and It is arranged on the upper surface.
  • the holding device 114 is a device that holds a plurality of component housing sticks 88 disposed between the pair of clamping members 110 and 112, and includes a first holding mechanism (not shown) and a second holding mechanism (not shown). Including.
  • the first holding mechanism holds the lowermost component storage stick 88 among the plurality of component storage sticks 88 stacked between the pair of clamping members 110 and 112. And when holding
  • the second holding mechanism moves the second component storage stick 88 from the bottom of the plurality of component storage sticks 88 stacked between the pair of clamping members 110 and 112 to the lowest component storage stick 88. And a component holding stick 88 stacked on the second component holding stick 88.
  • the holding of the component storage stick 88 by the first holding mechanism is released and the component storage stick 88 is released below the feeder main body 100, the holding of the component storage stick 88 by the second holding mechanism is released.
  • the second component receiving stick 88 from the bottom moves downward and is held by the first holding mechanism.
  • the third and subsequent component housing sticks 88 from the bottom are held by the second holding mechanism in a state where they are moved downward step by step.
  • the component buffer unit 104 includes a main body 121 and a lid 122.
  • the main body 121 is a member having a generally square bar shape, and a concave portion 123 is formed on the upper surface of the main body 121 so as to extend in the axial direction thereof.
  • the recess 123 is open at both end faces of the main body 121, and the width and depth of the recess 123 are the width and height of the electronic circuit component 92 housed in the component housing stick 88. It is made slightly larger.
  • the lid portion 122 is a flat plate-like member, and is fixed to the main body portion 121 so as to cover the concave portion 123 of the main body portion 121.
  • the component buffer part 104 is being fixed to the upper surface of the feeder main-body part 100 with the attitude
  • the component buffer unit 104 is fixed to the upper surfaces of the two mounting blocks 125 and 126. However, the component buffer unit 104 can be attached to and detached from the mounting blocks 125 and 126 by screws or the like.
  • the mounting block 125 is disposed on the upper surface on the front side of the clamping member 112 of the feeder main body 100, and the mounting block 126 is disposed on the upper surface of the feeder main body 100 while being separated from the mounting block 125 toward the front. It is arranged.
  • the opening on the front side of the stick case 90 of the lowermost component housing stick 88 faces the opening.
  • the component buffer unit 104 fixed to the upper surfaces of the mounting blocks 125 and 126 is parallel to the lowermost component receiving stick 88.
  • the component supply unit 106 generally has a block shape, and is located on the upper surface of the feeder main body 100 so as to face the opening of the recess 123 on the front side of the component buffer unit 104 fixed to the upper surfaces of the mounting blocks 125 and 126. It is arranged.
  • a storage recess 128 is formed on the upper surface of the component supply unit 106, and the inner dimension of the storage recess 128 is slightly larger than the outer dimension of the electronic circuit component 92.
  • the rear wall surface of the housing recess 128 is open, and the opening of the housing recess 128 faces the opening of the recess 123 on the front side of the component buffer unit 104.
  • the component feeding device 108 includes a wire 130 and a wire feeding mechanism 132.
  • the wire 130 has flexibility, and a tip portion of the wire 130 is a plurality of component housing sticks 88 stacked between the pair of sandwiching members 110 and 112 from the rear of the feeder main body 100. It is inserted into the stick case 90 of the lowermost component housing stick 88 (see FIG. 5).
  • the wire 130 is curved toward the lower side of the feeder main body portion 100 at the rear of the feeder main body portion 100, and extends toward the front of the feeder main body portion 100 at the lower portion of the feeder main body portion 100. Yes. Further, the end of the wire 130 facing the front is inserted into the feeder main body 100.
  • the wire feeding mechanism 132 is disposed inside the feeder main body 100 in which the end of the wire 130 is inserted, and has two rollers (not shown). And the wire 130 inserted in the inside of the feeder main-body part 100 is clamped by these two rollers, and these two rollers rotate by the action
  • the wire 130 sandwiched between the two rollers is pulled back into the feeder main body 100.
  • the distal end portion of the wire 130 inserted into the stick case 90 of the lowermost component housing stick 88 moves in a direction of retreating from the lowermost component housing stick 88. That is, the tip of the wire 130 inserted into the stick case 90 moves toward the rear of the stick feeder 82.
  • the electronic circuit component 92 accommodated in the lowermost component accommodating stick 88 is transferred to the component buffer unit 104 by the wire 130 entering the lowermost component accommodating stick 88. It pushes out toward the recessed part 123. As a result, the electronic circuit component 92 is pushed out from the opening on the front side of the lowermost component housing stick 88 into the recess 123 of the component buffer unit 104.
  • the electronic circuit components 92 are sequentially pushed out from the lowermost component housing stick 88 into the recess 123 of the component buffer unit 104, as shown in FIG. As described above, the leading electronic circuit component 92 is pushed out into the storage recess 128 of the component supply unit 106 via the recess 123.
  • the extrusion of the electronic circuit component 92 from the component receiving stick 88 at the lowermost end to the component buffer unit 104 and the extrusion of the electronic circuit component 92 from the component buffer unit 104 to the component supply unit 106 are performed. Both are performed by wire 130. Then, the electronic circuit component 92 pushed out from the component buffer unit 104 is accommodated in the accommodating recess 128 of the component supply unit 106. Accordingly, the stick feeder 82 supplies the electronic circuit component 92 in the storage recess 128, and the electronic circuit component 92 supplied in the storage recess 128 is gripped by the component holder 66 and attached to the circuit substrate 12.
  • the electronic circuit components 92 are sequentially stored in the storage recess 128 by pushing the wire 130.
  • the electronic circuit component 92 stored in the lowermost component storage stick 88 disappears and the lowermost component storage stick 88 is empty.
  • the wire 130 is pulled out from the inside of the lowermost component housing stick 88, and the lowermost component housing stick 88 is replaced.
  • the component holder 66 includes an outer housing 140, an attachment 142, an inner housing 144, a piston 146, a link mechanism 148, a pressing member 150, and a pair of claws 67.
  • the outer housing 140 generally has a cylindrical shape with a lid, and an air circulation pipe 154 extending toward the inside of the outer housing 140 is disposed at the center of the lid portion 152 of the outer housing 140.
  • a through hole 156 penetrating in the axial direction of the air circulation pipe 154 is formed in the air circulation pipe 154.
  • the attachment 142 has a generally disc shape, and a through hole 158 having the same diameter as the through hole 156 of the air circulation pipe 154 is formed at the center thereof.
  • the attachment 142 is being fixed to the cover part 152 of the outer housing 140 so that the two through-holes 156 and 158 may connect.
  • the component holder 66 is attached to the lower end surface of each work head 60, 62 in the attachment 142.
  • the inner housing 144 generally has a cylindrical shape with a lid, and a convex portion 162 protruding upward is formed at the center of the lid portion 160 of the inner housing 144.
  • a through hole 164 penetrating in the vertical direction is formed at the center of the convex portion 162, and the diameter of the through hole 164 is slightly larger than the outer diameter of the air circulation pipe 154 of the outer housing 140.
  • the outer diameter of the inner housing 144 is slightly smaller than the inner diameter of the outer housing 140.
  • the lid 160 of the inner housing 144 is inserted into the outer housing 140 so as to face the lid 152 of the outer housing 140. Further, the air circulation pipe 154 of the outer housing 140 is inserted into the through hole 164 of the convex portion 162 of the inner housing 144. As a result, the lid 160 of the inner housing 144 moves in the vertical direction inside the outer housing 140.
  • a coil spring 166 is disposed between the lid portion 152 of the outer housing 140 and the lid portion 160 of the inner housing 144 in a compressed state. Thereby, the inner housing 144 is biased downward by the elastic force of the coil spring 166.
  • a large-diameter portion 168 projecting in the radial direction is formed on the outer peripheral surface of the inner housing 144, and an annular stopper 170 is attached to the lower end surface of the outer housing 140.
  • the inner diameter of the stopper 170 is slightly smaller than the outer diameter of the large-diameter portion 168 of the inner housing 144, and the large-diameter portion 168 is located above the stopper 170. For this reason, the downward movement of the inner housing 144 urged by the coil spring 166 is restricted by the large diameter portion 168 coming into contact with the stopper 170.
  • the piston 146 generally has a bottomed cylindrical shape, and a recess 174 is formed at the center of the bottom 172 of the piston 146.
  • the outer diameter of the piston 146 is slightly smaller than the inner diameter of the inner housing 144, and the piston 146 is fitted into the inner housing 144 with the bottom 172 facing downward.
  • the air chamber 175 is defined by the piston 146 and the inner housing 144, and the piston 146 moves in the vertical direction inside the inner housing 144.
  • a coil spring 176 is disposed between the convex portion 162 of the inner housing 144 and the concave portion 174 of the piston 146 in a compressed state. Thereby, the piston 146 is urged downward by the elastic force of the coil spring 176.
  • the link mechanism 148 also includes a base 178, a pair of sliders 180, a pair of brackets 182, a pair of arms 184, and a stopper 186.
  • the base 178 has a generally plate shape and is fixed to the lower end portion of the inner housing 144.
  • a rail 188 is formed on the lower end surface of the base 178 so as to extend in the radial direction of the inner housing 144, and a pair of sliders 180 are slidably fitted to the rail 188.
  • the pair of sliders 180 are arranged symmetrically around the central portion of the rail 188.
  • the pair of brackets 182 are fixed to the lower end surface of the recess 174 of the piston 146 side by side in a slightly spaced state. Note that the direction in which the pair of brackets 182 are aligned corresponds to the direction in which the rail 188 extends.
  • One pair of arms 184 is rotatably connected to the pair of brackets 182, and the other ends of the pair of arms 184 are rotated away from each other.
  • a pair of sliders 180 are rotatably connected to the other ends of the pair of arms 184. Thereby, when the piston 146 moves in the vertical direction, the pair of arms 184 rotate, and the pair of sliders 180 approach and separate.
  • the piston 146 is biased downward by the elastic force of the coil spring 176 as described above.
  • one pair of arms 184 connected to the pair of brackets 182 are lowered and the other ends are separated so that the pair of sliders 180 are separated.
  • a stopper 186 is disposed between one end portions of the pair of arms 184 in the lowered state. Therefore, when one end of the pair of arms 184 is lowered to the closest state, the one end of the pair of arms 184 comes into contact with the stopper 186 and the rotation of the arm 184 is restricted. That is, the downward movement of the piston 146 urged by the coil spring 176 is restricted when one end of the pair of arms 184 contacts the stopper 186.
  • the pair of claws 67 are fixed to the lower end surfaces of the pair of sliders 180 so as to extend downward.
  • the presser member 150 is fixed to the lower end surface of the base 178 so as to be positioned between the pair of claws 67.
  • the component holder 66 having the above-described structure, when air is sucked from the air chamber 175, the components are gripped by the pair of claws 67, and the air is supplied to the air chamber 175. The part gripped by the claw 67 is detached. Specifically, when air is not supplied to the air chamber 175, the piston 146 moves downward due to the elastic force of the coil spring 176, as shown in FIG. At this time, since the pair of sliders 180 are separated by the movement of the link mechanism 148 described above, the pair of claws 67 are also separated.
  • the component holder 66 in a state where the pair of claws 67 are separated is pressed toward the component to be grasped, so that the holding member 150 comes into contact with the component to be grasped.
  • the inner housing 144 moves into the outer housing 140 against the elastic force of the coil spring 166, so that the pressing member 150 contacts the component. Impact is alleviated.
  • a manifold (positive / negative pressure supply device) (see FIG. 8) 208 is connected to the air circulation pipe 154 of the outer housing 140 through a through hole 156 of the attachment 142. Then, when negative pressure is supplied to the air flow pipe 154 by the manifold (positive / negative pressure supply device) 208, air is sucked from the air chamber 175, and the piston 146 moves upward as shown in FIG. At this time, the pair of sliders 180 approach and the pair of claws 67 approach due to the movement of the link mechanism 148 described above. As a result, the pair of claws 67 grips the component to be gripped.
  • the manifold (positive / negative pressure supply device) 208 causes the air circulation pipe 154 to be attached. A slight positive pressure is supplied. As a result, air is supplied to the air chamber 175, and the piston 146 moves downward as shown in FIG. At this time, the pair of sliders 180 are separated and the pair of claws 67 are also separated by the movement of the link mechanism 148 described above. As a result, the parts gripped by the pair of claws 67 are detached, and the parts are mounted on the lower part or the circuit substrate 12.
  • the control device 36 includes a controller 200, a plurality of drive circuits 202, an image processing device 204, and a control circuit 206.
  • the plurality of drive circuits 202 include the transport device 50, the clamp device 52, the electromagnetic motors 212, 214, 216A, 216B, 218A, 218B, the manifold (positive / negative pressure supply device) 208, the tray type component supply device 78, and the feeder type component supply.
  • the device 80 is connected to the bulk component supply device 30.
  • the controller 200 includes a CPU 221, a RAM 222, a ROM 223, and the like, mainly a computer, and is connected to a plurality of drive circuits 202.
  • the CPU 221 controls the operations of the substrate conveyance holding device 22, the component mounting device 24, and the like by executing various programs stored in the ROM 223.
  • the RAM 222 is used as a main storage device for the CPU 221 to execute various processes.
  • the ROM 223 stores a program for an upper component mounting process (see FIG. 9) described later, a control program, various data, and the like.
  • the controller 200 is also connected to the image processing device 204.
  • the image processing device 204 processes image data obtained by the mark camera 26 and the part camera 28, and the CPU 221 acquires various information from the image data.
  • the controller 200 is connected to the display device 210 via the control circuit 206, and an arbitrary image is displayed on the display device 210 in response to a command from the CPU 221.
  • the upper part supplied by the upper part stick feeder 82A which is executed by the CPU 221 of the controller 200 configured as described above, becomes the lower part on the part supply unit 106 of the lower part stick feeder 82B.
  • the “upper component mounting process” for mounting the lower component on the mounting board after mounting will be described with reference to FIGS.
  • the CPU 221 starts executing a program for mounting the electronic circuit component 92 on the circuit base material 12 (mounting substrate) according to the mounting order data input in advance
  • the component holder 66 holds the electronic circuit component 92. Therefore, every time the component supply device 32 or the separated component supply device 30 is moved, the “upper component mounting process” is executed.
  • the upper part stick feeder 82A and the lower part stick feeder 82B have the same configuration as the stick feeder 82 described above.
  • the upper part stick feeder 82 ⁇ / b> A and the lower part stick feeder 82 ⁇ / b> B are mounted side by side on the feeder holding base 86.
  • the upper part is housed in the part housing stick 88 held by the stick holding unit 102.
  • the lower part stick feeder 82 ⁇ / b> B the lower part is housed in the part housing stick 88 held by the stick holding unit 102.
  • the same reference numerals as those of the stick feeder 82 shown in FIGS. 4 and 5 indicate the same or corresponding parts as those of the stick feeder 82.
  • step (hereinafter abbreviated as “S”) 11 the CPU 221 determines that the electronic circuit component 92 held by the pair of claws 67 of the component holder 66 is, for example, a lower side such as a fuse socket. A determination process for determining whether the upper part is a fuse or the like to be mounted on the part is executed. If it is determined that the electronic circuit component 92 held by the pair of claws 67 of the component holder 66 is not the upper component (S11: NO), the CPU 221 ends the process. Therefore, the CPU 221 mounts the electronic circuit component 92 gripped by the pair of claws 67 of the component holder 66 on the circuit substrate 12.
  • the CPU 221 proceeds to the process of S12.
  • the CPU 221 drives the electromagnetic motors 212 and 214 to move the component holder 66 attached to the lower end surface of the work head 60 above the component supply unit 106 of the upper component stick feeder 82A.
  • the CPU 221 drives the electromagnetic motor 216 ⁇ / b> A to move the work head 60 downward, so that the pressing member 150 of the component holder 66 contacts the upper component 233 (see FIG. 11) fed into the storage recess 128. Make contact.
  • the CPU 221 drives the manifold 208 to suck air from the air chamber 175 of the component holder 66 and grips the upper component 233 (see FIG. 11) by the pair of claws 67.
  • the CPU 221 drives the electromagnetic motor 216A to move the work head 60 upward while holding the upper part 233 (see FIG. 11) by the pair of claws 67.
  • the CPU 221 drives the electromagnetic motors 212 and 214 to move the component holder 66 mounted on the lower end surface of the work head 60 above the parts camera 28.
  • the CPU 221 images the upper part 233 gripped by the pair of claws 67 of the part holder 66 by the parts camera 28, and the image processing apparatus (recognition processing apparatus) 204 performs recognition processing on the captured image, Recognizing the amount of positional deviation of the upper part 233 relative to the part holder 66, the gripping posture, the drop state, and the like, each data is stored in the RAM 222.
  • the CPU 221 drives the electromagnetic motors 212 and 214 so that the mark camera 26 attached to the lower end of the slider 74 is a component of the lower part stick feeder 82B. Move to above the supply unit 106. Then, as shown in FIG. 10, the CPU 221 images the component supply unit 106 of the lower component stick feeder 82 ⁇ / b> B with the mark camera 26, and the image processing apparatus (recognition processing apparatus) 204 recognizes the captured image. Then, the position of the reference mark 231 formed on the upper end surface of the component supply unit 106 and the position and shape of the storage recess 128 are recognized by pattern matching, and each data is stored in the RAM 222.
  • the CPU 221 images the lower part 232 such as a fuse socket supplied to the housing recess 128 of the component supply unit 106 by the mark camera 26, and displays the captured image.
  • the image processing device (recognition processing device) 204 performs recognition processing, recognizes the positions and shapes of the insertion holes 232A and 232B formed on the upper surface of the lower part 232 by pattern matching, and stores each data in the RAM 222. .
  • the CPU 221 stores the position and shape data of the reference mark 231 and the storage recess 128 stored in the RAM 222 in S14 and the positions and shapes of the insertion holes 232A and 232B stored in the RAM 222 in S15. Read data and. Then, as shown in FIG. 10, the CPU 221 calculates the positional displacement amount in the X and Y directions of the insertion holes 232 ⁇ / b> A and 232 ⁇ / b> B with respect to the outer periphery of the reference mark 231 and the storage recess 128, the inclination angle ⁇ ⁇ b> 1 with respect to the X direction, and the like. The position data of the lower part 232 is stored in the RAM 222.
  • the CPU 221 drives the electromagnetic motors 212 and 214 to attach the component holder 66 mounted on the lower end surface of the work head 60 to the lower component stick feeder 82B. It is moved above the component supply unit 106. Then, the CPU 221 drives the electromagnetic motors 212 and 214 so that the upper part 233 such as a fuse held by the pair of claws 67 of the part holder 66 is located above the lower part 232 supplied to the storage recess 128. Move to.
  • the CPU 221 reads the data of the inclination angle ⁇ 1 with respect to the X direction of each insertion hole 232A, 232B stored in the RAM 222 in S16, drives the electromagnetic motor 218A, rotates the component holder 66 about the vertical axis, Position correction is performed so that the inclination angle of each terminal 233A, 233B of the component 233 with respect to the X direction becomes the inclination angle ⁇ 1.
  • the CPU 221 reads out the data of the positional shift amounts in the X and Y directions of the respective insertion holes 232A and 232B stored in the RAM 222 in S16, drives the respective electromagnetic motors 212 and 214, and each terminal of the upper part 233.
  • the position correction is performed by moving 233A and 233B so as to be positioned directly above the insertion holes 232A and 232B in the vertical direction.
  • the CPU 221 drives the electromagnetic motor 216A to move the work head 60 downward as shown in the upper left end of FIGS. 11 and 12, and the terminals 233A and 233B of the upper part 233 are moved downward.
  • the portion from the tip to the substantially central portion is inserted into each insertion hole 232A, 232B of the lower part 232.
  • the CPU 221 drives the manifold 208 to supply air to the air chamber 175 of the component holder 66 and separates the pair of claws 67 from the upper component 233 as shown in the upper center of FIG.
  • the CPU 221 drives the electromagnetic motor 216 ⁇ / b> A to further move the work head 60 downward by a predetermined height, so that the terminals 233 ⁇ / b> A and 233 ⁇ / b> B of the upper part 233 are connected to the lower part 232 via the pressing member 150.
  • the upper part 233 is assembled and mounted on the lower part 232 by pressing into the respective insertion holes 232A and 232B so that the lower end face of the upper part 233 is brought into contact with the upper end face of the lower part 232.
  • a clearance groove 235 into which each terminal 232C protruding from the bottom surface portion of the lower component 232 enters the bottom surface portion of the housing recess 128 of the component supply unit 106 along the Y direction. Is formed.
  • the bottom part of the lower part 232 reliably contacts the bottom part of the storage recess 128, so that the terminals 233A and 233B of the upper part 233 are pushed into the insertion holes 232A and 232B of the lower part 232,
  • the lower end surface of the upper part 233 can be reliably brought into contact with the upper end surface of the lower part 232. At that time, the deformation of each terminal 232C of the lower part 232 can be surely prevented.
  • the CPU 221 drives the manifold 208 in a state where the pressing member 150 of the component holder 66 is in contact with the upper end surface of the upper component 233 as shown in the upper right end of FIG. Air is sucked from the air chamber 175 of the tool 66, and the upper part 233 is gripped again by the pair of claws 67.
  • the CPU 221 drives the electromagnetic motor 216A to move the work head 60 upward in a state where the upper part 233 is gripped by the pair of claws 67 as shown in the lower right end of FIG.
  • the upper part 233 and the lower part 232 are integrally lifted upward from the part supply unit 106.
  • the CPU 221 drives the electromagnetic motors 212 and 214 to move the component holder 66 mounted on the lower end surface of the work head 60 above the parts camera 28. That is, the CPU 221 moves the upper part 233 and the lower part 232 integrally above the parts camera 28.
  • the CPU 221 images the upper part 233 and the lower part 232 gripped by the pair of claws 67 of the part holder 66 by the parts camera 28, and the image processing apparatus (recognition processing apparatus) 204 captures the captured image.
  • the recognition processing is performed to recognize the positional deviation amount, the gripping posture, the dropping state, and the like of each terminal 232C of the lower part 232 with respect to the component holder 66, and each data is stored in the RAM 222.
  • the CPU 221 drives each electromagnetic motor 212, 214 when there is no recognition abnormality, as shown at the lower left end in FIG. 26 is moved above the position where the lower part 232 of the mounting board 241 is mounted. Then, the CPU 221 images the mounting substrate 241 with the mark camera 26, and the image processing device (recognition processing device) 204 recognizes the captured image to insert each terminal 232 ⁇ / b> C of the lower part 232. The amount of positional deviation of the hole, the inclination angle with respect to the X direction, and the like are recognized by pattern matching, and each data is stored in the RAM 222.
  • the CPU 221 reads data of the inclination angle of each through hole into which each terminal 232C of the lower part 232 is inserted with respect to the X direction, drives the electromagnetic motor 218A, rotates the part holder 66 about the vertical axis, Position correction is performed so that the inclination angle of each terminal 232C of the side component 232 with respect to the X direction becomes the inclination angle of each through hole.
  • the CPU 221 reads out data on the amount of positional deviation of each terminal 232 ⁇ / b> C of the lower part 232 stored in the RAM 222 in S ⁇ b> 19 with respect to the part holder 66, drives each electromagnetic motor 212, 214, and controls the lower part 232.
  • Each terminal 232C is moved so as to be positioned directly above each through-hole into which each terminal 232C of the mounting substrate 241 is inserted to correct the position.
  • the CPU 21 drives the electromagnetic motor 216A to move the work head 60 downward, and moves the upper part 233 and the lower part 232 integrally downward.
  • the CPU 221 inserts each terminal 232 ⁇ / b> C of the lower component 232 into the through hole of the mounting substrate 241, and integrally mounts the upper component 233 and the lower component 232 on the mounting substrate 241.
  • the CPU 221 drives the manifold 208 to supply air to the air chamber 175 of the component holder 66 and separates the pair of claws 67 from the upper component 233, and then ends the processing.
  • the component mounting machine 10 is an example of a working machine.
  • the circuit base 12 and the mounting substrate 241 are examples of substrates.
  • the lower part 232 is an example of a lower part.
  • the lower part stick feeder 82B is an example of a lower part supply apparatus.
  • the upper part 233 is an example of an upper part.
  • the upper part stick feeder 82A is an example of an upper part supply apparatus.
  • the component holder 66 is an example of a holder.
  • Each working head 60, 62 is an example of a working head.
  • the work head moving device 64 is an example of a moving device.
  • the control device 36 is an example of a control device.
  • the process of S12 is an example of an upper part holding process.
  • the process of S17 is an example of an upper part movement process.
  • the process of S18 is an example of an upper part mounting process.
  • the process of S21 is an example of a lower part movement process and a lower part mounting process.
  • the stick feeder 82 is an example of a stick feeder.
  • the component storage stick 88 is an example of a component storage stick.
  • the electronic circuit component 92, the upper component 233, and the lower component 232 are examples of components.
  • the component supply unit 106 is an example of a component supply unit.
  • the mark camera 26 is an example of an imaging device.
  • the image processing device 204 is an example of a recognition processing device.
  • the reference mark 231 is an example of a reference mark.
  • the process of S16 is an example of a position correction process.
  • the process of S17 is an example of a correction movement process.
  • the pair of claws 67 is an example of a plurality of claws.
  • the pressing member 150 is an example of a pressing member.
  • the CPU 221 uses the component holder 66 mounted on the lower end surface of the work head 60 above the component supply unit 106 of the upper component stick feeder 82A. Move to. Then, the CPU 221 holds the upper part 233 supplied in the storage recess 128 provided in the part supply unit 106 with a pair of claws 67. Thereafter, the CPU 221 moves the component holder 66 holding the upper component 233 above the component supply unit 106 of the lower component stick feeder 82B.
  • the CPU 221 moves the work head 60 downward so that the terminals 233A and 233B of the upper part 233 gripped by the part holder 66 are supplied to the storage recess 128 provided in the part supply unit 106.
  • the upper part 233 is pressed and mounted on the lower part 232 via the pressing member 150 by being pushed into the insertion holes 232A and 232B of the side part 232.
  • the upper part 233 gripped by the part holder 66 is pressed onto the lower part 232 via the pressing member 150 on the storage recess 128 provided in the part supply unit 106 of the lower part stick feeder 82B.
  • the mechanical strength of the component supply unit 106 that is, the mechanical strength of the housing recess 128 is easily increased, the pressing load for pressing the upper component 233 is increased, and the upper component 233 is securely attached to the lower component 232. It can be mounted on top.
  • the upper component 233 can be pressed and mounted on the lower component 232 on the storage recess 128 provided in the component supply unit 106 of the lower component stick feeder 82B, the mounting substrate 241 is deformed. Without this, the upper part 233 can be mounted on the lower part 232.
  • the CPU 221 again grips the upper part 233 mounted on the lower part 232 with the pair of claws 67 of the part holder 66, and then moves the work head 60 upward so that the upper part 233 and the lower part 233
  • the component 232 is integrally lifted upward from the component supply unit 106.
  • the CPU 221 moves the component holder 66 that integrally holds the upper component 233 and the lower component 232 onto the mounting substrate 241, and inserts each terminal 232 ⁇ / b> C of the lower component 232 into the through hole of the mounting substrate 241.
  • the upper part 233 and the lower part 232 are integrally mounted on the mounting substrate 241.
  • the lower component 232 on which the upper component 233 is mounted can be mounted on the mounting substrate 241 without deforming the mounting substrate 241.
  • the upper part 233 mounted on the lower part 232 can be gripped again by the pair of claws 67 of the same part holder 66, and the replacement time of the part holder 66 can be shortened and the mounting board 241 can be shortened. Therefore, it is possible to improve the mounting efficiency for mounting the components on the board.
  • the CPU 221 images the component supply unit 106 of the lower component stick feeder 82B by the mark camera 26, and the image processing device (recognition processing device) 204 performs recognition processing on the captured image. Then, the CPU 221 calculates the positional deviation amounts of the insertion holes 232A and 232B in the X and Y directions with respect to the outer periphery of the reference mark 231 and the storage recess 128, the inclination angle ⁇ 1 with respect to the X direction, and the like, and position data of the lower part 232 Is stored in the RAM 222.
  • the CPU 221 corrects the position by moving the terminals 233A and 233B of the upper part 233 so as to be positioned directly above the insertion holes 232A and 232B in the vertical direction.
  • the terminals 233A and 233B of the upper part 233 can be smoothly inserted into the insertion holes 232A and 232B of the lower part 232, and the mounting accuracy can be improved.
  • a component mounter 10 for example, a component mounter 10 according to another embodiment 1 will be described with reference to FIGS. 13 and 14.
  • the CPU 221 images the component supply unit 106 of the lower component stick feeder 82B with the mark camera 26, and the image processing apparatus (recognition processing apparatus) 204 captures the captured image.
  • the recognition process is performed to recognize the position of the reference mark 231 formed on the upper end surface of the component supply unit 106 and the position and shape of the storage recess 128 by pattern matching, and each data is stored in the RAM 222.
  • the CPU 221 has a box-like shape opened to the upper side supplied to the storage recess 128 of the component supply unit 106 by the mark camera 26, and is small on the inner bottom surface.
  • the lower part 245 such as an IC socket in which the insertion holes 245A are formed in a plurality of rows is imaged, and the image processing device (recognition processing device) 204 performs recognition processing on the captured image so that the rectangular shape of the lower part 245 is formed.
  • the position and shape of the outer peripheral edge may be recognized by pattern matching, and each data may be stored in the RAM 222.
  • the CPU 221 determines the position of the reference mark 231 stored in the RAM 222 in S14, the position and shape data of the storage recess 128, and the rectangular outer peripheral edge of the lower part 245 stored in the RAM 222 in S15. Read position and shape data. Then, as shown in FIG. 13, the CPU 221 shifts the position of the rectangular outer periphery of the lower part 245 relative to the outer periphery of the reference mark 231 and the storage recess 128 in the X and Y directions, and the tilt angle ⁇ 2 with respect to the X direction. Etc. may be calculated and stored in the RAM 222 as position data of the lower part 245.
  • the CPU 221 drives the electromagnetic motors 212 and 214 to attach the component holder 66 mounted on the lower end surface of the work head 60 to the lower component stick feeder. It is moved above the component supply unit 106 of 82B. Then, the CPU 221 drives the electromagnetic motors 212 and 214 so that the upper component 246 such as an IC chip held by the pair of claws 67 of the component holder 66 is transferred to the lower component 245 supplied to the storage recess 128. Move upward.
  • the CPU 221 reads the data of the inclination angle ⁇ 2 with respect to the X direction of the rectangular outer peripheral edge of the lower part 245 stored in the RAM 222 in S16 and drives the electromagnetic motor 218A to move the part holder 66 around the vertical axis. To correct the position so that the inclination angle of the terminals 246A of the upper part 246 with respect to the X direction is the inclination angle ⁇ 2.
  • the CPU 221 reads out the data of the positional deviation amount in the X and Y directions of the rectangular outer peripheral edge of the lower part 245 stored in the RAM 222 in S16, and drives the electromagnetic motors 212 and 214 to
  • the terminals 246A provided in rows on both side edges of the component 246 may be moved so as to be positioned directly above the insertion holes 245A arranged in two rows to correct the position.
  • the CPU 221 drives the electromagnetic motor 216A to move the work head 60 downward, and each terminal provided in a row on both side edges of the upper part 246.
  • the portion from 246A to the substantially central portion is inserted into each insertion hole 245A arranged in two rows of the lower part 245.
  • the CPU 221 may drive the manifold 208 to supply air to the air chamber 175 of the component holder 66 so that the pair of claws 67 are separated from the upper component 246.
  • the CPU 221 drives the electromagnetic motor 216 ⁇ / b> A to further move the work head 60 downward by a predetermined height, and each terminal provided in a row on both side edges of the upper part 246 via the pressing member 150.
  • 246A is pushed into the insertion holes 245A arranged in the two rows of the lower part 245, and the lower end surface of the upper part 246 is brought into contact with the inner bottom surface of the lower part 245 so as to be on the inner bottom surface of the lower part 245.
  • the upper part 246 may be assembled and mounted.
  • the upper part 246 gripped by the part holder 66 on the storage recess 128 provided in the part supply unit 106 of the lower part stick feeder 82B is moved to the inner bottom surface of the lower part 245 via the pressing member 150. It can be attached by pressing up. Accordingly, the mechanical strength of the component supply unit 106, that is, the mechanical strength of the housing recess 128 is easily increased, the pressing load for pressing the upper component 246 is increased, and the upper component 246 is securely attached to the lower component 245. It becomes possible to mount on the inner bottom surface.
  • the mounting substrate 241 is mounted. It is possible to mount the upper part 246 on the inner bottom surface of the lower part 245 without deforming.
  • the CPU 221 images the component supply unit 106 of the lower component stick feeder 82B by the mark camera 26, and the image processing device (recognition processing device) 204 performs recognition processing on the captured image. Then, the CPU 221 calculates the positional deviation amount in the X and Y directions of the rectangular outer peripheral edge of the lower part 245 with respect to the outer peripheral edges of the reference mark 231 and the storage recess 128, the inclination angle ⁇ 2 with respect to the X direction, etc.
  • the position data of the component 245 can be stored in the RAM 222.
  • the CPU 221 includes terminals 246A provided in a row on both side edges of the upper part 246, and the insertion holes 245A arranged in two rows of the lower part 245.
  • the position is corrected by moving it so that it is located directly above the vertical direction.
  • the terminals 246A provided in a row on both side edges of the upper part 246 can be smoothly inserted into the insertion holes 245A arranged in the two rows of the lower part 245, thereby improving the mounting accuracy. Can be achieved.
  • a relief groove 235 into which each terminal 245 ⁇ / b> C protruding from the bottom surface portion of the lower component 245 enters is formed in the bottom surface portion of the housing recess 128 of the component supply unit 106 along the Y direction. ing.
  • the bottom surface portion of the lower component 245 is surely brought into contact with the bottom surface portion of the storage recess 128, so that each terminal 246 ⁇ / b> A of the upper component 246 is pushed into each insertion hole 245 ⁇ / b> A of the lower component 245.
  • the lower end surface can be reliably brought into contact with the inner bottom surface of the lower part 245. At that time, the deformation of each terminal 245C of the lower part 245 can be reliably prevented.
  • a component holder 66 capable of gripping the lower part 232 is attached to the work head 62, and in S19, the CPU 221 uses the component holder 66 to attach the lower part 232 to which the upper part 233 is mounted. You may make it hold

Abstract

The invention comprises a lower side component supply device supplying a lower side component to be mounted on a base board, an upper side component supply device supplying an upper side component to be mounted on the upper side of the lower side component, a working head having a holding tool for holding a component, a moving device causing the working head to move, and a control device controlling the operation of the holding tool and the operation of the moving device. The control device is constituted in such a manner as to execute: an upper side component holding process wherein the upper side component supplied by the upper side component supply device is held by the holding tool; an upper side component moving process wherein the upper side component held by the holding tool is caused to move to the upper side of the lower side component supplied by the lower side component supply device; and an upper side component mounting process wherein the upper side component is mounted onto the lower side component on the lower side component supply device.

Description

作業機Working machine
 本発明は、基板に電子回路部品を装着する作業機に関するものである。 The present invention relates to a working machine for mounting electronic circuit components on a substrate.
 下記特許文献1には、プリント基板上に装着された下側パッケージ部品のランドを基板認識カメラで撮像し、そのコーナー部のランドから下側パッケージ部品の位置情報を取得し、上側パッケージ部品を下側パッケージ部品の上に装着する電子部品装着装置の一例が記載されている。 In Patent Document 1 below, a land of a lower package component mounted on a printed circuit board is imaged by a substrate recognition camera, position information of the lower package component is obtained from the land of the corner portion, and the upper package component is An example of an electronic component mounting apparatus mounted on the side package component is described.
特開2007-234701号公報JP 2007-234701 A
 しかしながら、プリント基板上に装着されたヒューズソケット等の下側部品の上側に、保持具で保持したヒューズ等の上側部品の端子を挿入して取り付ける場合には、この上側部品を所定荷重で押圧して取り付ける必要がある。そのため、プリント基板が変形して、下側部品の周囲の電子回路部品の半田付けの剥離やコネクタの電気的接触不良等が発生する虞がある。 However, when inserting and attaching a terminal of an upper part such as a fuse held by a holder on the upper side of a lower part such as a fuse socket mounted on a printed circuit board, the upper part is pressed with a predetermined load. Need to be installed. Therefore, the printed circuit board is deformed, and there is a possibility that peeling of soldering of electronic circuit components around the lower component, poor electrical contact of the connector, or the like may occur.
 そこで、本発明は、上述した問題点を解決するためになされたものであり、基板を変形させることなく、下側部品上に上側部品を装着することが可能となる作業機を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and provides a working machine that can mount an upper part on a lower part without deforming the substrate. Objective.
 上記課題を解決するために、本明細書は、基板上に装着される下側部品を供給する下側部品供給装置と、前記下側部品の上側に装着される上側部品を供給する上側部品供給装置と、部品を保持する保持具を有する作業ヘッドと、前記作業ヘッドを移動させる移動装置と、前記保持具の作動と前記移動装置の作動とを制御する制御装置と、を備え、前記制御装置は、前記上側部品供給装置によって供給された前記上側部品を前記保持具によって保持する上側部品保持処理と、前記保持具によって保持された前記上側部品を前記下側部品供給装置によって供給される前記下側部品の上側に移動させる上側部品移動処理と、前記下側部品供給装置上で前記上側部品を前記下側部品上に装着する上側部品装着処理と、を実行することを特徴とする作業機を開示する。 In order to solve the above-described problems, the present specification describes a lower component supply device that supplies a lower component to be mounted on a substrate, and an upper component supply that supplies an upper component to be mounted on the upper side of the lower component. An apparatus, a working head having a holding tool for holding a component, a moving device for moving the working head, and a control device for controlling the operation of the holding tool and the operation of the moving device. The upper part holding process for holding the upper part supplied by the upper part supply apparatus by the holder, and the lower part supplied by the lower part supply apparatus for the upper part held by the holder. An upper part moving process for moving the upper part above the side part, and an upper part mounting process for mounting the upper part on the lower part on the lower part supply device. Aircraft are disclosed.
 本開示によれば、保持具によって保持された上側部品を下側部品供給装置上で下側部品上に装着するため、基板を変形させることなく、下側部品上に上側部品を装着することが可能となる。 According to the present disclosure, since the upper part held by the holder is mounted on the lower part on the lower part supply apparatus, the upper part can be mounted on the lower part without deforming the substrate. It becomes possible.
本実施形態に係る部品実装機を示す斜視図であるIt is a perspective view which shows the component mounting machine which concerns on this embodiment. 部品装着装置を示す斜視図である。It is a perspective view which shows a component mounting apparatus. 部品収容スティックを示す斜視図である。It is a perspective view which shows a components accommodation stick. スティックフィーダを示す斜視図である。It is a perspective view which shows a stick feeder. 図4のスティックフィーダを側方からの視点において示す断面図である。It is sectional drawing which shows the stick feeder of FIG. 4 in the viewpoint from a side. 1対の爪が離間した状態の部品把持具を示す断面図である。It is sectional drawing which shows the components holding | gripping tool in the state where a pair of nail | claw was spaced apart. 1対の爪が接近した状態の部品把持具を示す断面図である。It is sectional drawing which shows the components holding | gripping tool in the state where a pair of nail | claw approached. 制御装置を示すブロック図である。It is a block diagram which shows a control apparatus. 下側部品上に上側部品を装着する上側部品実装処理を示すフローチャートである。It is a flowchart which shows the upper part mounting process which mounts an upper part on a lower part. 部品供給部に供給された下側部品の撮像画像の一例を示す図である。It is a figure which shows an example of the captured image of the lower part supplied to the components supply part. 下側部品上に上側分品を装着する一例を示す斜視図である。It is a perspective view which shows an example which mounts | wears with an upper part on a lower part. 下側分品上に上側部品を装着した後、下側部品を基板上に装着する一例を示す説明図である。It is explanatory drawing which shows an example which mounts a lower part on a board | substrate after mounting an upper part on a lower part separation. 他の実施形態1に係る部品供給部に供給された下側部品の撮像画像の一例を示す図である。It is a figure which shows an example of the captured image of the lower part supplied to the components supply part which concerns on other Embodiment 1. FIG. 他の実施形態1に係る下側部品上に上側分品を装着する一例を示す斜視図である。FIG. 10 is a perspective view showing an example in which an upper part is mounted on a lower part according to another embodiment 1;
 以下、本発明に係る作業機を具体化した一実施形態に基づき図面を参照しつつ詳細に説明する。先ず、電子回路部品を基板に実装する部品実装機(作業機)10の概略構成について図1乃至図8に基づいて説明する。 DETAILED DESCRIPTION Hereinafter, a working machine according to an embodiment of the present invention will be described in detail with reference to the drawings based on an embodiment. First, a schematic configuration of a component mounting machine (working machine) 10 for mounting electronic circuit components on a substrate will be described with reference to FIGS.
 <部品実装機の構成>
 図1に、部品実装機10を示す。部品実装機10は、回路基材12に対する部品の実装作業を実行するための装置である。部品実装機10は、装置本体20、基材搬送保持装置22、部品装着装置24、マークカメラ(撮像装置)26、パーツカメラ28、ばら部品供給装置30、部品供給装置32、制御装置(図8参照)36を備えている。なお、回路基材12として、回路基板、三次元構造の基材等が挙げられ、回路基板として、プリント配線板、プリント回路板等が挙げられる。
<Configuration of component mounter>
FIG. 1 shows a component mounter 10. The component mounter 10 is a device for performing a component mounting operation on the circuit substrate 12. The component mounting machine 10 includes an apparatus main body 20, a substrate conveyance holding device 22, a component mounting device 24, a mark camera (imaging device) 26, a parts camera 28, a loose component supply device 30, a component supply device 32, and a control device (FIG. 8). Reference) 36 is provided. The circuit substrate 12 includes a circuit board, a three-dimensional structure substrate, and the like, and the circuit board includes a printed wiring board and a printed circuit board.
 装置本体20は、フレーム部40と、そのフレーム部40に上架されたビーム部42とによって構成されている。基材搬送保持装置22は、フレーム部40の前後方向の中央に配設されており、搬送装置50とクランプ装置52とを有している。搬送装置50は、回路基材12を搬送する装置であり、クランプ装置52は、回路基材12を保持する装置である。これにより、基材搬送保持装置22は、回路基材12を搬送するとともに、所定の位置において、回路基材12を固定的に保持する。なお、以下の説明において、回路基材12の搬送方向をX方向と称し、その方向に直角な水平の方向をY方向と称し、鉛直方向をZ方向と称する。つまり、部品実装機10の幅方向は、X方向であり、前後方向は、Y方向である。 The apparatus main body 20 includes a frame portion 40 and a beam portion 42 that is overlaid on the frame portion 40. The substrate conveyance holding device 22 is disposed in the center of the frame portion 40 in the front-rear direction, and includes a conveyance device 50 and a clamp device 52. The conveyance device 50 is a device that conveys the circuit substrate 12, and the clamp device 52 is a device that holds the circuit substrate 12. Thereby, the base material transport and holding device 22 transports the circuit base material 12 and holds the circuit base material 12 fixedly at a predetermined position. In the following description, the conveyance direction of the circuit substrate 12 is referred to as an X direction, a horizontal direction perpendicular to the direction is referred to as a Y direction, and a vertical direction is referred to as a Z direction. That is, the width direction of the component mounting machine 10 is the X direction, and the front-rear direction is the Y direction.
 部品装着装置24は、ビーム部42に配設されており、2台の作業ヘッド60、62と作業ヘッド移動装置64とを有している。各作業ヘッド60、62の下端面には、図2に示すように、部品保持具(保持具)66が着脱可能に設けられている。部品保持具66は、1対の爪67を有しており、後述のように、それら1対の爪67を接近させることで、部品を把持し、1対の爪67を離間させることで、把持した部品を離脱する。 The component mounting device 24 is disposed in the beam portion 42 and includes two work heads 60 and 62 and a work head moving device 64. As shown in FIG. 2, a component holder (holder) 66 is detachably provided on the lower end surface of each work head 60, 62. The component holder 66 has a pair of claws 67. As will be described later, by bringing the pair of claws 67 close to each other, the components are gripped and the pair of claws 67 are separated. Remove the gripped parts.
 また、作業ヘッド移動装置64は、X方向移動装置68とY方向移動装置70とZ方向移動装置72とを有している。そして、X方向移動装置68及びY方向移動装置70は、それぞれ、電磁モータ(図8参照)212、214を有しており、各電磁モータ212、214の作動により、2台の作業ヘッド60、62が、一体的にフレーム部40上の任意の位置に移動する。 The work head moving device 64 has an X direction moving device 68, a Y direction moving device 70, and a Z direction moving device 72. The X-direction moving device 68 and the Y-direction moving device 70 have electromagnetic motors (see FIG. 8) 212 and 214, respectively. By the operation of the electromagnetic motors 212 and 214, the two work heads 60, 62 moves integrally to an arbitrary position on the frame portion 40.
 また、各Z方向移動装置72は、電磁モータ(図8参照)216A、216Bを有しており、各電磁モータ216A、216Bの作動により、スライダ74、76が個別に上下方向に移動する。また、各作業ヘッド60、62は、図2に示すように、スライダ74、76に着脱可能に装着されており、Z方向移動装置72は、スライダ74、76を個別に上下方向に移動させる。つまり、作業ヘッド60、62は、各Z方向移動装置72によって、個別に上下方向に移動させられる。 Each Z-direction moving device 72 has electromagnetic motors (see FIG. 8) 216A and 216B, and the sliders 74 and 76 are individually moved in the vertical direction by the operation of the electromagnetic motors 216A and 216B. Further, as shown in FIG. 2, each of the work heads 60 and 62 is detachably attached to the sliders 74 and 76, and the Z-direction moving device 72 individually moves the sliders 74 and 76 in the vertical direction. That is, the work heads 60 and 62 are individually moved in the vertical direction by the Z-direction moving devices 72.
 尚、各電磁モータ212、214、216A、216Bは、エンコーダ(図示省略)を有しており、エンコーダによって各電磁モータ212、214、216A、216Bの回転角が検出される。そして、各電磁モータ212、214、216A、216Bの回転角が目標回転角となるように、各電磁モータ212、214、216A、216Bの作動が制御されることで、作業ヘッド60、62が目標位置まで移動する。 Each electromagnetic motor 212, 214, 216A, 216B has an encoder (not shown), and the encoder detects the rotation angle of each electromagnetic motor 212, 214, 216A, 216B. The operations of the electromagnetic motors 212, 214, 216A, and 216B are controlled so that the rotation angles of the electromagnetic motors 212, 214, 216A, and 216B become the target rotation angles, so that the work heads 60 and 62 can be Move to position.
 また、各作業ヘッド60、62は、電磁モータ(図8参照)218A、218Bを有しており、各電磁モータ218A、218Bの作動により、各作業ヘッド60、62の下端面に回動可能に取り付けられた各部品保持具66が鉛直軸回りに回動する。尚、各電磁モータ218A、218Bは、エンコーダ(図示省略)を有しており、エンコーダによって各電磁モータ2128、218Bの回転角が検出される。 The work heads 60 and 62 have electromagnetic motors (see FIG. 8) 218A and 218B. The operation of the electromagnetic motors 218A and 218B can rotate to the lower end surfaces of the work heads 60 and 62. Each attached component holder 66 rotates about the vertical axis. Each electromagnetic motor 218A, 218B has an encoder (not shown), and the rotation angle of each electromagnetic motor 2128, 218B is detected by the encoder.
 そして、各電磁モータ218A、218Bの回転角が目標回転角度となるように、各電磁モータ218A、218Bの作動が制御されることで、各作業ヘッド60、62の下端面に回動可能に取り付けられた各部品保持具66が、原点位置から目標回転角度まで鉛直軸回りに回動される。つまり、各部品保持具66の一対の爪67によって把持された部品を鉛直軸回りに回動させることができる。 Then, the operation of each electromagnetic motor 218A, 218B is controlled so that the rotation angle of each electromagnetic motor 218A, 218B becomes the target rotation angle, so that the electromagnetic motor 218A, 218B can be pivotally attached to the lower end surface of each work head 60, 62. Each component holder 66 is rotated about the vertical axis from the origin position to the target rotation angle. That is, the components gripped by the pair of claws 67 of each component holder 66 can be rotated around the vertical axis.
 マークカメラ(撮像装置)26は、図2に示すように、下方を向いた状態でスライダ74に取り付けられており、作業ヘッド60とともに、X方向、Y方向およびZ方向に移動させられる。これにより、マークカメラ(撮像装置)26は、フレーム部40上の任意の位置を撮像する。パーツカメラ28は、図1に示すように、フレーム部40上の基材搬送保持装置22と部品供給装置32との間に、上を向いた状態で配設されている。これにより、パーツカメラ28は、作業ヘッド60、62の部品保持具66に把持された部品を撮像する。 As shown in FIG. 2, the mark camera (imaging device) 26 is attached to the slider 74 so as to face downward, and is moved together with the work head 60 in the X, Y, and Z directions. As a result, the mark camera (imaging device) 26 images an arbitrary position on the frame unit 40. As shown in FIG. 1, the parts camera 28 is disposed between the base material conveyance holding device 22 and the component supply device 32 on the frame portion 40 so as to face upward. Thereby, the parts camera 28 images the components gripped by the component holder 66 of the work heads 60 and 62.
 ばら部品供給装置30は、フレーム部40の前後方向での一方側の端部に配設されている。ばら部品供給装置30は、ばらばらに散在された状態の複数の部品を整列させて、整列させた状態で部品を供給する装置である。つまり、任意の姿勢の複数の部品を、所定の姿勢に整列させて、所定の姿勢の部品を供給する装置である。 The bulk component supply device 30 is disposed at one end of the frame portion 40 in the front-rear direction. The separated component supply device 30 is a device that aligns a plurality of components scattered in a separated state and supplies the components in an aligned state. That is, it is an apparatus that aligns a plurality of components in an arbitrary posture into a predetermined posture and supplies the components in a predetermined posture.
 部品供給装置32は、フレーム部40の前後方向での他方側の端部に配設されている。部品供給装置32は、トレイ型部品供給装置78とフィーダ型部品供給装置80とを有している。トレイ型部品供給装置78は、トレイ上に載置された状態の部品を供給する装置である。フィーダ型部品供給装置80は、スティックフィーダ82によって部品を供給する装置である。以下に、スティックフィーダ82について詳しく説明する。なお、ばら部品供給装置30および、部品供給装置32によって供給される部品として、電子回路部品、太陽電池の構成部品、パワーモジュールの構成部品等が挙げられる。また、電子回路部品には、リードを有する部品,リードを有さない部品等が有る。 The component supply device 32 is disposed at the other end of the frame portion 40 in the front-rear direction. The component supply device 32 includes a tray-type component supply device 78 and a feeder-type component supply device 80. The tray-type component supply device 78 is a device that supplies components placed on the tray. The feeder-type component supply device 80 is a device that supplies components by the stick feeder 82. Hereinafter, the stick feeder 82 will be described in detail. Note that examples of the components supplied by the bulk component supply device 30 and the component supply device 32 include an electronic circuit component, a solar cell component, and a power module component. Electronic circuit components include components having leads and components not having leads.
 スティックフィーダ82は、フレーム部40の他方側の端部に固定的に設けられたフィーダ保持台86に着脱可能に装着されている。スティックフィーダ82は、部品収容スティック(図3参照)88から電子回路部品を押し出し、押し出した電子回路部品を部品供給位置において供給する装置である。 The stick feeder 82 is detachably attached to a feeder holding base 86 fixedly provided at the other end of the frame portion 40. The stick feeder 82 is a device that pushes out an electronic circuit component from a component housing stick (see FIG. 3) 88 and supplies the extruded electronic circuit component at a component supply position.
 部品収容スティック88は、図3に示すように、スティックケース90と複数の電子回路部品92とによって構成されている。スティックケース90は、樹脂により形成されており、内部が空洞のスティック状とされている。つまり、スティックケース90は、両端部が開口するチューブ状とされている。スティックケース90の内部の形状は、電子回路部品92の形状と略同形状をなし、スティックケース90の内寸は、電子回路部品92の外寸より僅かに大きくされている。そして、スティックケース90の内部に、複数の電子回路部品92が一列に並んだ状態で収容されている。 The component housing stick 88 is composed of a stick case 90 and a plurality of electronic circuit components 92, as shown in FIG. The stick case 90 is made of resin and has a hollow stick shape inside. That is, the stick case 90 has a tube shape with both ends opened. The internal shape of the stick case 90 is substantially the same as the shape of the electronic circuit component 92, and the internal size of the stick case 90 is slightly larger than the external size of the electronic circuit component 92. A plurality of electronic circuit components 92 are accommodated in the stick case 90 in a line.
 これにより、電子回路部品92は、スティックケース90の内部において、殆どガタツクことなく、スティックケース90の軸方向に沿って移動する。なお、部品収容スティック88は、一般的に、スティックケース90内に複数の電子回路部品92が収容された状態で、市場で流通しているが、ユーザが、市場で流通しているスティックケース90を購入し、そのスティックケース90の内部に電子回路部品92を収容した部品収容スティック88もある。また、スティックケース90内に収容される電子回路部品92には、ヒューズ、ヒューズソケット、コネクタ、DIP(Dual Inline Packageの略)等が有る。 Thereby, the electronic circuit component 92 moves along the axial direction of the stick case 90 with almost no rattle inside the stick case 90. In general, the component accommodation stick 88 is distributed in the market in a state where a plurality of electronic circuit components 92 are accommodated in the stick case 90. However, the user can distribute the stick case 90 in the market. There is also a component storage stick 88 in which the electronic circuit component 92 is stored in the stick case 90. The electronic circuit component 92 housed in the stick case 90 includes a fuse, a fuse socket, a connector, a DIP (abbreviation for Dual Inline Package), and the like.
 <スティックフィーダの構成>
 また、スティックフィーダ82は、図4に示すように、フィーダ本体部100と、スティック保持部102と、部品バッファ部104と、部品供給部106と、部品送り装置108とによって構成されており、スティック保持部102により保持された部品収容スティック88から電子回路部品92を送り出し、送り出された電子回路部品92を部品供給部106において供給する装置である。
<Configuration of stick feeder>
Further, as shown in FIG. 4, the stick feeder 82 includes a feeder main body 100, a stick holding unit 102, a component buffer unit 104, a component supply unit 106, and a component feeding device 108. The electronic circuit component 92 is sent out from the component accommodation stick 88 held by the holding unit 102, and the sent electronic circuit component 92 is supplied by the component supply unit 106.
 詳しくは、フィーダ本体部100は、部品実装機10のフレーム部40の端部に設けられたフィーダ保持台86に装着されるものである。フィーダ本体部100がフィーダ保持台86に装着された状態において、フィーダ本体部100の部品供給部106が設けられている前方側の部分は、部品実装機10の内部に位置し、フィーダ本体部100のスティック保持部102が設けられている後方側の部分は、部品実装機10の外部に位置する。 Specifically, the feeder main body 100 is mounted on a feeder holding base 86 provided at the end of the frame 40 of the component mounter 10. In a state where the feeder main body 100 is mounted on the feeder holding base 86, the front side portion of the feeder main body 100 where the component supply unit 106 is provided is located inside the component mounter 10, and the feeder main body 100. The portion on the rear side where the stick holding unit 102 is provided is located outside the component mounter 10.
 スティック保持部102は、1対の挟持部材110、112と保持装置114とによって構成されている。1対の挟持部材110、112の一方の挟持部材110は、フィーダ本体部100の後方側端部の上面に立設されており、他方の挟持部材112は、フィーダ本体部100の概して中央部の上面に立設されている。それら1対の挟持部材110、112は、互いに向かい合っており、それら1対の挟持部材110、112の間に、複数の部品収容スティック88が略水平に積層された状態で、フィーダ本体部100の上面に配設されている。 The stick holding unit 102 includes a pair of holding members 110 and 112 and a holding device 114. One clamping member 110 of the pair of clamping members 110, 112 is erected on the upper surface of the rear side end of the feeder main body 100, and the other clamping member 112 is generally located at the center of the feeder main body 100. Stands on the top surface. The pair of sandwiching members 110 and 112 face each other, and a plurality of component receiving sticks 88 are stacked substantially horizontally between the pair of sandwiching members 110 and 112, and It is arranged on the upper surface.
 保持装置114は、1対の挟持部材110、112の間に配設された複数の部品収容スティック88を保持する装置であり、第1保持機構(図示省略)と第2保持機構(図示省略)とを含む。第1保持機構は、1対の挟持部材110、112の間で積層された複数の部品収容スティック88のうちの一番下の部品収容スティック88を保持するものである。そして、第1保持機構による部品収容スティック88の保持が解除されると、その部品収容スティック88は、フィーダ本体部100の上面に形成された穴(図示省略)を介して、フィーダ本体部100の下方に離脱する。 The holding device 114 is a device that holds a plurality of component housing sticks 88 disposed between the pair of clamping members 110 and 112, and includes a first holding mechanism (not shown) and a second holding mechanism (not shown). Including. The first holding mechanism holds the lowermost component storage stick 88 among the plurality of component storage sticks 88 stacked between the pair of clamping members 110 and 112. And when holding | maintenance of the components accommodation stick 88 by a 1st holding mechanism is cancelled | released, the components accommodation stick 88 of the feeder main-body part 100 will be via the hole (illustration omitted) formed in the upper surface of the feeder main-body part 100. FIG. Leave downwards.
 また、第2保持機構は、1対の挟持部材110、112の間で積層された複数の部品収容スティック88のうちの下から2番目の部品収容スティック88を、1番下の部品収容スティック88と離間した状態で保持するとともに、その2番目の部品収容スティック88の上に積層された部品収容スティック88も保持する機構である。そして、第1保持機構による部品収容スティック88の保持が解除され、その部品収容スティック88がフィーダ本体部100の下方に離脱した後に、第2保持機構による部品収容スティック88の保持が解除されると、下から2番目の部品収容スティック88が下方に移動し、第1保持機構により保持される。また、下から3番目以降の部品収容スティック88は、1段ずつ下方に移動した状態で、第2保持機構により保持される。 In addition, the second holding mechanism moves the second component storage stick 88 from the bottom of the plurality of component storage sticks 88 stacked between the pair of clamping members 110 and 112 to the lowest component storage stick 88. And a component holding stick 88 stacked on the second component holding stick 88. When the holding of the component storage stick 88 by the first holding mechanism is released and the component storage stick 88 is released below the feeder main body 100, the holding of the component storage stick 88 by the second holding mechanism is released. The second component receiving stick 88 from the bottom moves downward and is held by the first holding mechanism. In addition, the third and subsequent component housing sticks 88 from the bottom are held by the second holding mechanism in a state where they are moved downward step by step.
 部品バッファ部104は、図4及び図5に示すように、本体部121と蓋部122とによって構成されている。本体部121は、概して四角棒形状の部材であり、その本体部121の上面には、それの軸方向に延びるように凹部123が形成されている。なお、凹部123は、本体部121の両端面に開口しており、その凹部123の幅寸法及び深さ寸法は、部品収容スティック88に収容されている電子回路部品92の幅寸法及び高さ寸法より僅かに大きくされている。 As shown in FIGS. 4 and 5, the component buffer unit 104 includes a main body 121 and a lid 122. The main body 121 is a member having a generally square bar shape, and a concave portion 123 is formed on the upper surface of the main body 121 so as to extend in the axial direction thereof. The recess 123 is open at both end faces of the main body 121, and the width and depth of the recess 123 are the width and height of the electronic circuit component 92 housed in the component housing stick 88. It is made slightly larger.
 また、蓋部122は、平板状の部材であり、本体部121の凹部123を覆うように、本体部121に固定されている。そして、部品バッファ部104は、フィーダ本体部100の上面に、前後方向に延びる姿勢で固定されている。また、部品バッファ部104は、2個の装着ブロック125、126の上面に固定されている。但し、部品バッファ部104は、装着ブロック125、126に、ねじ等により着脱可能とされている。 The lid portion 122 is a flat plate-like member, and is fixed to the main body portion 121 so as to cover the concave portion 123 of the main body portion 121. And the component buffer part 104 is being fixed to the upper surface of the feeder main-body part 100 with the attitude | position extended in the front-back direction. The component buffer unit 104 is fixed to the upper surfaces of the two mounting blocks 125 and 126. However, the component buffer unit 104 can be attached to and detached from the mounting blocks 125 and 126 by screws or the like.
 装着ブロック125は、フィーダ本体部100の挟持部材112の前方側の上面に配設されており、装着ブロック126は、装着ブロック125から前方に向かって離れた状態で、フィーダ本体部100の上面に配設されている。尚、図5に示すように、装着ブロック125、126の上面に固定された部品バッファ部104の後方側の凹部123の開口と、スティック保持部102に保持された複数の部品収容スティック88のうちの最下端の部品収容スティック88のスティックケース90の前方側の開口とが対向する。また、装着ブロック125、126の上面に固定された部品バッファ部104は、その最下端の部品収容スティック88と平行とされている。 The mounting block 125 is disposed on the upper surface on the front side of the clamping member 112 of the feeder main body 100, and the mounting block 126 is disposed on the upper surface of the feeder main body 100 while being separated from the mounting block 125 toward the front. It is arranged. As shown in FIG. 5, the opening of the recess 123 on the rear side of the component buffer unit 104 fixed to the upper surfaces of the mounting blocks 125 and 126, and the plurality of component storage sticks 88 held by the stick holding unit 102 The opening on the front side of the stick case 90 of the lowermost component housing stick 88 faces the opening. Further, the component buffer unit 104 fixed to the upper surfaces of the mounting blocks 125 and 126 is parallel to the lowermost component receiving stick 88.
 また、部品供給部106は、概して、ブロック状をなし、フィーダ本体部100の上面において、装着ブロック125、126の上面に固定された部品バッファ部104の前方側の凹部123の開口と対向する位置に配設されている。部品供給部106の上面には、収納凹部128が形成されており、その収納凹部128の内寸は、電子回路部品92の外寸より僅かに大きくされている。また、収納凹部128の後方側の壁面は開口しており、その収納凹部128の開口と部品バッファ部104の前方側の凹部123の開口とが対向している。 The component supply unit 106 generally has a block shape, and is located on the upper surface of the feeder main body 100 so as to face the opening of the recess 123 on the front side of the component buffer unit 104 fixed to the upper surfaces of the mounting blocks 125 and 126. It is arranged. A storage recess 128 is formed on the upper surface of the component supply unit 106, and the inner dimension of the storage recess 128 is slightly larger than the outer dimension of the electronic circuit component 92. In addition, the rear wall surface of the housing recess 128 is open, and the opening of the housing recess 128 faces the opening of the recess 123 on the front side of the component buffer unit 104.
 また、部品送り装置108は、図4に示すように、ワイヤ130と、ワイヤ送り機構132とによって構成されている。ワイヤ130は、可撓性を有しており、それの先端部が、フィーダ本体部100の後方から、1対の挟持部材110、112の間で積層された複数の部品収容スティック88のうちの最下端の部品収容スティック88のスティックケース90の内部に挿入されている(図5参照)。そして、そのワイヤ130は、フィーダ本体部100の後方において、フィーダ本体部100の下方に向かって湾曲されており、フィーダ本体部100の下方において、フィーダ本体部100の前方に向かって延在している。さらに、ワイヤ130の前方に向かう側の端部は、フィーダ本体部100の内部に挿入されている。 Further, as shown in FIG. 4, the component feeding device 108 includes a wire 130 and a wire feeding mechanism 132. The wire 130 has flexibility, and a tip portion of the wire 130 is a plurality of component housing sticks 88 stacked between the pair of sandwiching members 110 and 112 from the rear of the feeder main body 100. It is inserted into the stick case 90 of the lowermost component housing stick 88 (see FIG. 5). The wire 130 is curved toward the lower side of the feeder main body portion 100 at the rear of the feeder main body portion 100, and extends toward the front of the feeder main body portion 100 at the lower portion of the feeder main body portion 100. Yes. Further, the end of the wire 130 facing the front is inserted into the feeder main body 100.
 ワイヤ送り機構132は、ワイヤ130の端部が挿入されたフィーダ本体部100の内部に配設されており、2個のローラ(図示省略)を有している。そして、フィーダ本体部100の内部に挿入されたワイヤ130が、それら2個のローラによって挟持されており、それら2個のローラは、電磁モータ(図示省略)の作動により回転する。これにより、2個のローラが回転することで、それら2個のローラに挟持されたワイヤ130が送り出される。この際、最下端の部品収容スティック88のスティックケース90の内部に挿入されているワイヤ130の先端部は、スティックケース90の内部に向かって進入する。つまり、スティックケース90の内部に挿入されているワイヤ130の先端部は、スティックフィーダ82の前方に向かって移動する。 The wire feeding mechanism 132 is disposed inside the feeder main body 100 in which the end of the wire 130 is inserted, and has two rollers (not shown). And the wire 130 inserted in the inside of the feeder main-body part 100 is clamped by these two rollers, and these two rollers rotate by the action | operation of an electromagnetic motor (illustration omitted). As a result, the two rollers rotate, so that the wire 130 sandwiched between the two rollers is sent out. At this time, the distal end portion of the wire 130 inserted into the stick case 90 of the lowermost component housing stick 88 enters toward the inside of the stick case 90. That is, the tip of the wire 130 inserted into the stick case 90 moves toward the front of the stick feeder 82.
 一方、電磁モータの作動により2個のローラが逆回転することで、それら2個のローラに挟持されたワイヤ130が、フィーダ本体部100の内部に引き戻される。この際、最下端の部品収容スティック88のスティックケース90の内部に挿入されているワイヤ130の先端部は、最下端の部品収容スティック88の内部から後退する方向に移動する。つまり、スティックケース90の内部に挿入されているワイヤ130の先端部は、スティックフィーダ82の後方に向かって移動する。 On the other hand, when the two rollers are rotated in reverse by the operation of the electromagnetic motor, the wire 130 sandwiched between the two rollers is pulled back into the feeder main body 100. At this time, the distal end portion of the wire 130 inserted into the stick case 90 of the lowermost component housing stick 88 moves in a direction of retreating from the lowermost component housing stick 88. That is, the tip of the wire 130 inserted into the stick case 90 moves toward the rear of the stick feeder 82.
 <スティックフィーダの作動>
 このような構造のスティックフィーダ82では、ワイヤ130が最下端の部品収容スティック88の内部に進入することで、最下端の部品収容スティック88に収容されている電子回路部品92が、部品バッファ部104の凹部123に向かって押し出される。これにより、最下端の部品収容スティック88の前方側の開口から、部品バッファ部104の凹部123の内部に、電子回路部品92が押し出される。
<Operation of stick feeder>
In the stick feeder 82 having such a structure, the electronic circuit component 92 accommodated in the lowermost component accommodating stick 88 is transferred to the component buffer unit 104 by the wire 130 entering the lowermost component accommodating stick 88. It pushes out toward the recessed part 123. As a result, the electronic circuit component 92 is pushed out from the opening on the front side of the lowermost component housing stick 88 into the recess 123 of the component buffer unit 104.
 そして、さらに、ワイヤ130が最下端の部品収容スティック88の内部に進入すると、最下端の部品収容スティック88から順次、電子回路部品92が部品バッファ部104の凹部123に押し出され、図5に示すように、先頭の電子回路部品92が、凹部123を経由して、部品供給部106の収納凹部128に押し出される。 Further, when the wire 130 enters the inside of the lowermost component housing stick 88, the electronic circuit components 92 are sequentially pushed out from the lowermost component housing stick 88 into the recess 123 of the component buffer unit 104, as shown in FIG. As described above, the leading electronic circuit component 92 is pushed out into the storage recess 128 of the component supply unit 106 via the recess 123.
 このように、スティックフィーダ82では、最下端の部品収容スティック88から部品バッファ部104への電子回路部品92の押出しと、部品バッファ部104から部品供給部106への電子回路部品92の押出しとは、両方とも、ワイヤ130によって行われる。そして、部品バッファ部104から押し出された電子回路部品92が、部品供給部106の収納凹部128に収容される。これにより、スティックフィーダ82は、収納凹部128において電子回路部品92を供給し、収納凹部128において供給された電子回路部品92が、部品保持具66によって把持され、回路基材12に装着される。 As described above, in the stick feeder 82, the extrusion of the electronic circuit component 92 from the component receiving stick 88 at the lowermost end to the component buffer unit 104 and the extrusion of the electronic circuit component 92 from the component buffer unit 104 to the component supply unit 106 are performed. Both are performed by wire 130. Then, the electronic circuit component 92 pushed out from the component buffer unit 104 is accommodated in the accommodating recess 128 of the component supply unit 106. Accordingly, the stick feeder 82 supplies the electronic circuit component 92 in the storage recess 128, and the electronic circuit component 92 supplied in the storage recess 128 is gripped by the component holder 66 and attached to the circuit substrate 12.
 そして、収納凹部128において電子回路部品92が部品保持具66によって把持される毎に、ワイヤ130の押し出しによって、電子回路部品92が、順次、収納凹部128に収納される。このように、収納凹部128への電子回路部品92の収納が繰り返し行われると、最下端の部品収容スティック88に収容されている電子回路部品92が無くなり、最下端の部品収容スティック88が空となる。そして、最下端の部品収容スティック88の内部からワイヤ130が引き出され、最下端の部品収容スティック88の交換が行われる。 Then, every time the electronic circuit component 92 is gripped by the component holder 66 in the storage recess 128, the electronic circuit components 92 are sequentially stored in the storage recess 128 by pushing the wire 130. As described above, when the electronic circuit component 92 is repeatedly stored in the storage recess 128, the electronic circuit component 92 stored in the lowermost component storage stick 88 disappears and the lowermost component storage stick 88 is empty. Become. Then, the wire 130 is pulled out from the inside of the lowermost component housing stick 88, and the lowermost component housing stick 88 is replaced.
 <部品保持具の概略構成>
 部品保持具66は、図6に示すように、アウターハウジング140と、アタッチメント142と、インナーハウジング144と、ピストン146と、リンク機構148と、押え部材150と、1対の爪67とを含む。
<Schematic configuration of component holder>
As shown in FIG. 6, the component holder 66 includes an outer housing 140, an attachment 142, an inner housing 144, a piston 146, a link mechanism 148, a pressing member 150, and a pair of claws 67.
 アウターハウジング140は、概して、有蓋円筒状をなし、アウターハウジング140の蓋部152の中央部に、アウターハウジング140の内部に向かって延び出すエア流通管154が配設されている。エア流通管154の内部には、それの軸方向に貫通する貫通穴156が形成されている。また、アタッチメント142は、概して円板状をなし、それの中央には、エア流通管154の貫通穴156と同径の貫通穴158が形成されている。そして、2つの貫通穴156、158が連通するように、アタッチメント142が、アウターハウジング140の蓋部152に固定されている。なお、部品保持具66は、アタッチメント142において各作業ヘッド60、62の下端面に装着される。 The outer housing 140 generally has a cylindrical shape with a lid, and an air circulation pipe 154 extending toward the inside of the outer housing 140 is disposed at the center of the lid portion 152 of the outer housing 140. A through hole 156 penetrating in the axial direction of the air circulation pipe 154 is formed in the air circulation pipe 154. Further, the attachment 142 has a generally disc shape, and a through hole 158 having the same diameter as the through hole 156 of the air circulation pipe 154 is formed at the center thereof. And the attachment 142 is being fixed to the cover part 152 of the outer housing 140 so that the two through- holes 156 and 158 may connect. The component holder 66 is attached to the lower end surface of each work head 60, 62 in the attachment 142.
 インナーハウジング144は、概して、有蓋円筒状をなし、インナーハウジング144の蓋部160の中央部に、上方に突出する凸部162が形成されている。凸部162の中央部には、上下方向に貫通する貫通穴164が形成されており、その貫通穴164の径は、アウターハウジング140のエア流通管154の外径より僅かに大きくされている。また、インナーハウジング144の外径は、アウターハウジング140の内径より僅かに小さくされている。 The inner housing 144 generally has a cylindrical shape with a lid, and a convex portion 162 protruding upward is formed at the center of the lid portion 160 of the inner housing 144. A through hole 164 penetrating in the vertical direction is formed at the center of the convex portion 162, and the diameter of the through hole 164 is slightly larger than the outer diameter of the air circulation pipe 154 of the outer housing 140. The outer diameter of the inner housing 144 is slightly smaller than the inner diameter of the outer housing 140.
 そして、インナーハウジング144の蓋部160が、アウターハウジング140の蓋部152と向かい合うように、アウターハウジング140内に挿入されている。さらに、インナーハウジング144の凸部162の貫通穴164に、アウターハウジング140のエア流通管154が挿入されている。これにより、インナーハウジング144の蓋部160が、アウターハウジング140の内部において、上下方向に移動する。 The lid 160 of the inner housing 144 is inserted into the outer housing 140 so as to face the lid 152 of the outer housing 140. Further, the air circulation pipe 154 of the outer housing 140 is inserted into the through hole 164 of the convex portion 162 of the inner housing 144. As a result, the lid 160 of the inner housing 144 moves in the vertical direction inside the outer housing 140.
 また、アウターハウジング140の蓋部152とインナーハウジング144の蓋部160との間には、コイルスプリング166が圧縮された状態で配設されている。これにより、インナーハウジング144は、コイルスプリング166の弾性力により下方に向かって付勢されている。なお、インナーハウジング144の外周面には、径方向に突出する大径部168が形成されており、アウターハウジング140の下端面には、円環状のストッパ170が取り付けられている。 Further, a coil spring 166 is disposed between the lid portion 152 of the outer housing 140 and the lid portion 160 of the inner housing 144 in a compressed state. Thereby, the inner housing 144 is biased downward by the elastic force of the coil spring 166. A large-diameter portion 168 projecting in the radial direction is formed on the outer peripheral surface of the inner housing 144, and an annular stopper 170 is attached to the lower end surface of the outer housing 140.
 そのストッパ170の内径は、インナーハウジング144の大径部168の外径より僅かに小さくされており、その大径部168は、ストッパ170の上方に位置している。このため、コイルスプリング166により付勢されたインナーハウジング144の下方への移動は、大径部168がストッパ170に接触することにより、規制される。 The inner diameter of the stopper 170 is slightly smaller than the outer diameter of the large-diameter portion 168 of the inner housing 144, and the large-diameter portion 168 is located above the stopper 170. For this reason, the downward movement of the inner housing 144 urged by the coil spring 166 is restricted by the large diameter portion 168 coming into contact with the stopper 170.
 また、ピストン146は、概して、有底円筒状をなし、ピストン146の底部172の中央部に、凹部174が形成されている。ピストン146の外径は、インナーハウジング144の内径より僅かに小さくされており、ピストン146は、底部172を下方に向けた状態で、インナーハウジング144内に嵌入されている。これにより、ピストン146とインナーハウジング144とによって、エア室175が区画され、ピストン146は、インナーハウジング144の内部において、上下方向に移動する。また、インナーハウジング144の凸部162とピストン146の凹部174との間に、コイルスプリング176が圧縮された状態で配設されている。これにより、ピストン146は、コイルスプリング176の弾性力により下方に向かって付勢されている。 The piston 146 generally has a bottomed cylindrical shape, and a recess 174 is formed at the center of the bottom 172 of the piston 146. The outer diameter of the piston 146 is slightly smaller than the inner diameter of the inner housing 144, and the piston 146 is fitted into the inner housing 144 with the bottom 172 facing downward. Thereby, the air chamber 175 is defined by the piston 146 and the inner housing 144, and the piston 146 moves in the vertical direction inside the inner housing 144. In addition, a coil spring 176 is disposed between the convex portion 162 of the inner housing 144 and the concave portion 174 of the piston 146 in a compressed state. Thereby, the piston 146 is urged downward by the elastic force of the coil spring 176.
 また、リンク機構148は、ベース178と、1対のスライダ180と、1対のブラケット182と、1対のアーム184と、ストッパ186とを含む。ベース178は、概して板状をなし、インナーハウジング144の下端部に固定されている。そのベース178の下端面には、インナーハウジング144の径方向に延びるようにレール188が形成されており、そのレール188に、1対のスライダ180がスライド可能に嵌合されている。なお、1対のスライダ180は、レール188の中央部を中心に対称的に配設されている。 The link mechanism 148 also includes a base 178, a pair of sliders 180, a pair of brackets 182, a pair of arms 184, and a stopper 186. The base 178 has a generally plate shape and is fixed to the lower end portion of the inner housing 144. A rail 188 is formed on the lower end surface of the base 178 so as to extend in the radial direction of the inner housing 144, and a pair of sliders 180 are slidably fitted to the rail 188. The pair of sliders 180 are arranged symmetrically around the central portion of the rail 188.
 また、1対のブラケット182は、ピストン146の凹部174の下端面に、僅かに離間した状態で並んで固定されている。なお、1対のブラケット182の並ぶ方向は、レール188の延びる方向と一致している。それら1対のブラケット182には、1対のアーム184の一端部が回動可能に連結されており、1対のアーム184の他端部は、互いに離れる方向に回動している。そして、それら1対のアーム184の他端部に、1対のスライダ180が回動可能に連結されている。これにより、ピストン146が上下方向に移動することで、1対のアーム184が回動し、1対のスライダ180が接近・離間する。 Further, the pair of brackets 182 are fixed to the lower end surface of the recess 174 of the piston 146 side by side in a slightly spaced state. Note that the direction in which the pair of brackets 182 are aligned corresponds to the direction in which the rail 188 extends. One pair of arms 184 is rotatably connected to the pair of brackets 182, and the other ends of the pair of arms 184 are rotated away from each other. A pair of sliders 180 are rotatably connected to the other ends of the pair of arms 184. Thereby, when the piston 146 moves in the vertical direction, the pair of arms 184 rotate, and the pair of sliders 180 approach and separate.
 詳しくは、図7に示すように、ピストン146が上昇すると、1対のブラケット182に連結されている1対のアーム184の一端部も上昇する。その際、1対のアーム184の他端部が互いに接近し、1対のアーム184の他端部に連結されている1対のスライダ180も接近する。一方、ピストン146が下降すると、図6に示すように、1対のブラケット182に連結されている1対のアーム184の一端部も下降する。その際、1対のアーム184の他端部が互いに離間し、1対のアーム184の他端部に連結されている1対のスライダ180も離間する。 Specifically, as shown in FIG. 7, when the piston 146 is lifted, one end of the pair of arms 184 connected to the pair of brackets 182 is also lifted. At this time, the other ends of the pair of arms 184 approach each other, and the pair of sliders 180 connected to the other ends of the pair of arms 184 also approach. On the other hand, when the piston 146 descends, one end of the pair of arms 184 connected to the pair of brackets 182 also descends as shown in FIG. At this time, the other ends of the pair of arms 184 are separated from each other, and the pair of sliders 180 connected to the other ends of the pair of arms 184 are also separated.
 ちなみに、ピストン146は、上述したように、コイルスプリング176の弾性力によって下方に付勢されている。このため、通常、1対のブラケット182に連結されている1対のアーム184の一端部が下降し、他端部が離間することで、1対のスライダ180は離間している。なお、下降した状態の1対のアーム184の一端部の間には、ストッパ186が配設されている。このため、1対のアーム184の一端部が、最も接近する状態まで下降した際に、それら1対のアーム184の一端部は、ストッパ186に接触し、アーム184の回動が規制される。つまり、コイルスプリング176により付勢されたピストン146の下方への移動は、1対のアーム184の一端部がストッパ186に接触することにより、規制される。 Incidentally, the piston 146 is biased downward by the elastic force of the coil spring 176 as described above. For this reason, usually, one pair of arms 184 connected to the pair of brackets 182 are lowered and the other ends are separated so that the pair of sliders 180 are separated. A stopper 186 is disposed between one end portions of the pair of arms 184 in the lowered state. Therefore, when one end of the pair of arms 184 is lowered to the closest state, the one end of the pair of arms 184 comes into contact with the stopper 186 and the rotation of the arm 184 is restricted. That is, the downward movement of the piston 146 urged by the coil spring 176 is restricted when one end of the pair of arms 184 contacts the stopper 186.
 また、1対の爪67は、1対のスライダ180の下端面に、下方に延び出すように固定されている。そして、それら1対の爪67の間に位置するように、押え部材150がベース178の下端面に、固定されている。 Further, the pair of claws 67 are fixed to the lower end surfaces of the pair of sliders 180 so as to extend downward. The presser member 150 is fixed to the lower end surface of the base 178 so as to be positioned between the pair of claws 67.
 上記構造とされた部品保持具66では、エア室175からエアが吸引されることで、1対の爪67により、部品が把持され、エア室175にエアが供給されることで、1対の爪67に把持された部品が離脱する。詳しくは、エア室175にエアが供給されていない場合には、図6に示すように、ピストン146は、コイルスプリング176の弾性力により、下方に移動している。この際、上述したリンク機構148の動きにより、1対のスライダ180は離間しているため、1対の爪67も離間している。 In the component holder 66 having the above-described structure, when air is sucked from the air chamber 175, the components are gripped by the pair of claws 67, and the air is supplied to the air chamber 175. The part gripped by the claw 67 is detached. Specifically, when air is not supplied to the air chamber 175, the piston 146 moves downward due to the elastic force of the coil spring 176, as shown in FIG. At this time, since the pair of sliders 180 are separated by the movement of the link mechanism 148 described above, the pair of claws 67 are also separated.
 そして、1対の爪67が離間した状態の部品保持具66が、把持対象の部品に向かって押し付けられることで、把持対象の部品に、押え部材150が接触する。なお、押え部材150が把持対象の部品に接触した際に、コイルスプリング166の弾性力に抗して、インナーハウジング144がアウターハウジング140の内部に移動するため、部品への押え部材150の接触の衝撃が緩和される。 Then, the component holder 66 in a state where the pair of claws 67 are separated is pressed toward the component to be grasped, so that the holding member 150 comes into contact with the component to be grasped. When the pressing member 150 comes into contact with the component to be gripped, the inner housing 144 moves into the outer housing 140 against the elastic force of the coil spring 166, so that the pressing member 150 contacts the component. Impact is alleviated.
 押え部材150が把持対象の部品に接触すると、エア室175からエアが吸引される。詳しくは、アウターハウジング140のエア流通管154には、アタッチメント142の貫通穴156を介して、マニホールド(正負圧供給装置)(図8参照)208が接続されている。そして、マニホールド(正負圧供給装置)208により、エア流通管154に負圧が供給されることで、エア室175からエアが吸引され、図7に示すように、ピストン146が上方に移動する。この際、上述したリンク機構148の動きにより、1対のスライダ180が接近し、1対の爪67も接近する。これにより、1対の爪67が、把持対象の部品を把持する。 When the pressing member 150 comes into contact with the component to be gripped, air is sucked from the air chamber 175. Specifically, a manifold (positive / negative pressure supply device) (see FIG. 8) 208 is connected to the air circulation pipe 154 of the outer housing 140 through a through hole 156 of the attachment 142. Then, when negative pressure is supplied to the air flow pipe 154 by the manifold (positive / negative pressure supply device) 208, air is sucked from the air chamber 175, and the piston 146 moves upward as shown in FIG. At this time, the pair of sliders 180 approach and the pair of claws 67 approach due to the movement of the link mechanism 148 described above. As a result, the pair of claws 67 grips the component to be gripped.
 そして、部品保持具66により把持された部品が、後述のように下側部品上や回路基材12上に装着される際には、マニホールド(正負圧供給装置)208により、エア流通管154に僅かに正圧が供給される。これにより、エア室175にエアが供給され、図6に示すように、ピストン146が下方に移動する。この際、上述したリンク機構148の動きにより、1対のスライダ180が離間し、1対の爪67も離間する。これにより、1対の爪67により把持された部品が、離脱され、下側部品上や回路基材12上に部品が装着される。 When a component held by the component holder 66 is mounted on the lower component or the circuit substrate 12 as will be described later, the manifold (positive / negative pressure supply device) 208 causes the air circulation pipe 154 to be attached. A slight positive pressure is supplied. As a result, air is supplied to the air chamber 175, and the piston 146 moves downward as shown in FIG. At this time, the pair of sliders 180 are separated and the pair of claws 67 are also separated by the movement of the link mechanism 148 described above. As a result, the parts gripped by the pair of claws 67 are detached, and the parts are mounted on the lower part or the circuit substrate 12.
 また、制御装置36は、図8に示すように、コントローラ200、複数の駆動回路202、画像処理装置204、制御回路206を備えている。複数の駆動回路202は、上記搬送装置50、クランプ装置52、電磁モータ212、214、216A、216B、218A、218B、マニホールド(正負圧供給装置)208、トレイ型部品供給装置78、フィーダ型部品供給装置80、ばら部品供給装置30に接続されている。コントローラ200は、CPU221、RAM222、ROM223等を備え、コンピュータを主体とするものであり、複数の駆動回路202に接続されている。 Further, as shown in FIG. 8, the control device 36 includes a controller 200, a plurality of drive circuits 202, an image processing device 204, and a control circuit 206. The plurality of drive circuits 202 include the transport device 50, the clamp device 52, the electromagnetic motors 212, 214, 216A, 216B, 218A, 218B, the manifold (positive / negative pressure supply device) 208, the tray type component supply device 78, and the feeder type component supply. The device 80 is connected to the bulk component supply device 30. The controller 200 includes a CPU 221, a RAM 222, a ROM 223, and the like, mainly a computer, and is connected to a plurality of drive circuits 202.
 これにより、CPU221は、ROM223に記憶されている各種のプログラムを実行することによって、基材搬送保持装置22、部品装着装置24等の作動を制御する。RAM222はCPU221が各種の処理を実行するための主記憶装置として用いられる。ROM223には、後述の上側部品実装処理(図9参照)のプログラム、制御プログラム、および各種のデータなどが記憶されている。 Thereby, the CPU 221 controls the operations of the substrate conveyance holding device 22, the component mounting device 24, and the like by executing various programs stored in the ROM 223. The RAM 222 is used as a main storage device for the CPU 221 to execute various processes. The ROM 223 stores a program for an upper component mounting process (see FIG. 9) described later, a control program, various data, and the like.
 また、コントローラ200は、画像処理装置204にも接続されている。画像処理装置204は、マークカメラ26およびパーツカメラ28によって得られた画像データを処理するものであり、CPU221は、画像データから各種情報を取得する。更に、コントローラ200は、制御回路206を介して、表示装置210に接続されており、CPU221からの指令により、表示装置210に任意の画像が表示される。 The controller 200 is also connected to the image processing device 204. The image processing device 204 processes image data obtained by the mark camera 26 and the part camera 28, and the CPU 221 acquires various information from the image data. Furthermore, the controller 200 is connected to the display device 210 via the control circuit 206, and an arbitrary image is displayed on the display device 210 in response to a command from the CPU 221.
 <上側部品実装処理>
 次に、上記のように構成されたコントローラ200のCPU221が実行する、上側部品用スティックフィーダ82Aによって供給された上側部品を、下側部品用スティックフィーダ82Bの部品供給部106上において下側部品に装着した後、この下側部品を実装基板に装着する「上側部品実装処理」について図9乃至図12に基づいて説明する。尚、CPU221は、予め入力された装着順データに従って、電子回路部品92を回路基材12(実装基板)上に実装するプログラムの実行を開始すると、部品保持具66が電子回路部品92を把持するために部品供給装置32、若しくは、ばら部品供給装置30へ移動する毎に、「上側部品実装処理」を実行する。
<Upper component mounting process>
Next, the upper part supplied by the upper part stick feeder 82A, which is executed by the CPU 221 of the controller 200 configured as described above, becomes the lower part on the part supply unit 106 of the lower part stick feeder 82B. The “upper component mounting process” for mounting the lower component on the mounting board after mounting will be described with reference to FIGS. When the CPU 221 starts executing a program for mounting the electronic circuit component 92 on the circuit base material 12 (mounting substrate) according to the mounting order data input in advance, the component holder 66 holds the electronic circuit component 92. Therefore, every time the component supply device 32 or the separated component supply device 30 is moved, the “upper component mounting process” is executed.
 また、上側部品用スティックフィーダ82Aと下側部品用スティックフィーダ82Bは、上記スティックフィーダ82と同じ構成である。また、上側部品用スティックフィーダ82Aと下側部品用スティックフィーダ82Bは、フィーダ保持台86に並んで装着されている。但し、上側部品用スティックフィーダ82Aは、スティック保持部102により保持された部品収容スティック88に上側部品が収容されている。下側部品用スティックフィーダ82Bは、スティック保持部102により保持された部品収容スティック88に下側部品が収容されている。従って、以下の説明において、図4及び図5に示す上記スティックフィーダ82の構成等と同一符号は、上記スティックフィーダ82の構成等と同一あるは相当部分を示すものである。 The upper part stick feeder 82A and the lower part stick feeder 82B have the same configuration as the stick feeder 82 described above. The upper part stick feeder 82 </ b> A and the lower part stick feeder 82 </ b> B are mounted side by side on the feeder holding base 86. However, in the upper part stick feeder 82 </ b> A, the upper part is housed in the part housing stick 88 held by the stick holding unit 102. In the lower part stick feeder 82 </ b> B, the lower part is housed in the part housing stick 88 held by the stick holding unit 102. Accordingly, in the following description, the same reference numerals as those of the stick feeder 82 shown in FIGS. 4 and 5 indicate the same or corresponding parts as those of the stick feeder 82.
 図9に示すように、先ず、ステップ(以下、Sと略記する)11において、CPU221は、部品保持具66の一対の爪67で把持する電子回路部品92が、例えば、ヒューズソケット等の下側部品上に装着するヒューズ等の上側部品であるか否かを判定する判定処理を実行する。そして、部品保持具66の一対の爪67で把持する電子回路部品92が、上側部品でないと判定した場合には(S11:NO)、CPU221は、当該処理を終了する。従って、CPU221は、部品保持具66の一対の爪67で把持した電子回路部品92を回路基材12上に装着する。 As shown in FIG. 9, first, in step (hereinafter abbreviated as “S”) 11, the CPU 221 determines that the electronic circuit component 92 held by the pair of claws 67 of the component holder 66 is, for example, a lower side such as a fuse socket. A determination process for determining whether the upper part is a fuse or the like to be mounted on the part is executed. If it is determined that the electronic circuit component 92 held by the pair of claws 67 of the component holder 66 is not the upper component (S11: NO), the CPU 221 ends the process. Therefore, the CPU 221 mounts the electronic circuit component 92 gripped by the pair of claws 67 of the component holder 66 on the circuit substrate 12.
 一方、部品保持具66の一対の爪67で把持する電子回路部品92が、上側部品であると判定した場合には(S11:YES)、CPU221は、S12の処理に移行する。S12において、CPU221は、各電磁モータ212、214を駆動して、作業ヘッド60の下端面に装着されている部品保持具66を上側部品用スティックフィーダ82Aの部品供給部106の上方に移動させる。そして、CPU221は、電磁モータ216Aを駆動して作業ヘッド60を下方向に移動させて、部品保持具66の押え部材150を収納凹部128内に送り出された上側部品233(図11参照)に当接させる。続いて、CPU221は、マニホールド208を駆動して、部品保持具66のエア室175からエアを吸引して、一対の爪67によって上側部品233(図11参照)を把持する。 On the other hand, when it is determined that the electronic circuit component 92 gripped by the pair of claws 67 of the component holder 66 is the upper component (S11: YES), the CPU 221 proceeds to the process of S12. In S12, the CPU 221 drives the electromagnetic motors 212 and 214 to move the component holder 66 attached to the lower end surface of the work head 60 above the component supply unit 106 of the upper component stick feeder 82A. Then, the CPU 221 drives the electromagnetic motor 216 </ b> A to move the work head 60 downward, so that the pressing member 150 of the component holder 66 contacts the upper component 233 (see FIG. 11) fed into the storage recess 128. Make contact. Subsequently, the CPU 221 drives the manifold 208 to suck air from the air chamber 175 of the component holder 66 and grips the upper component 233 (see FIG. 11) by the pair of claws 67.
 その後、S13において、CPU221は、一対の爪67によって上側部品233(図11参照)を把持した状態で、電磁モータ216Aを駆動して作業ヘッド60を上方向に移動させる。また、CPU221は、各電磁モータ212、214を駆動して、作業ヘッド60の下端面に装着されている部品保持具66をパーツカメラ28の上方に移動させる。そして、CPU221は、部品保持具66の一対の爪67によって把持された上側部品233をパーツカメラ28によって撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理して、上側部品233の部品保持具66に対する位置ズレ量、把持姿勢、落下状況等を認識して、各データをRAM222に記憶する。 Thereafter, in S13, the CPU 221 drives the electromagnetic motor 216A to move the work head 60 upward while holding the upper part 233 (see FIG. 11) by the pair of claws 67. In addition, the CPU 221 drives the electromagnetic motors 212 and 214 to move the component holder 66 mounted on the lower end surface of the work head 60 above the parts camera 28. Then, the CPU 221 images the upper part 233 gripped by the pair of claws 67 of the part holder 66 by the parts camera 28, and the image processing apparatus (recognition processing apparatus) 204 performs recognition processing on the captured image, Recognizing the amount of positional deviation of the upper part 233 relative to the part holder 66, the gripping posture, the drop state, and the like, each data is stored in the RAM 222.
 続いて、S14において、CPU221は、認識異常がない場合には、各電磁モータ212、214を駆動して、スライダ74の下端部に取り付けられたマークカメラ26を下側部品用スティックフィーダ82Bの部品供給部106の上方に移動させる。そして、CPU221は、図10に示すように、マークカメラ26によって下側部品用スティックフィーダ82Bの部品供給部106を撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理して、部品供給部106の上端面に形成された基準マーク231の位置と収納凹部128の位置、形状をパターンマッチングによって認識して、各データをRAM222に記憶する。 Subsequently, in S14, when there is no recognition abnormality, the CPU 221 drives the electromagnetic motors 212 and 214 so that the mark camera 26 attached to the lower end of the slider 74 is a component of the lower part stick feeder 82B. Move to above the supply unit 106. Then, as shown in FIG. 10, the CPU 221 images the component supply unit 106 of the lower component stick feeder 82 </ b> B with the mark camera 26, and the image processing apparatus (recognition processing apparatus) 204 recognizes the captured image. Then, the position of the reference mark 231 formed on the upper end surface of the component supply unit 106 and the position and shape of the storage recess 128 are recognized by pattern matching, and each data is stored in the RAM 222.
 そして、S15において、CPU221は、図10に示すように、マークカメラ26によって部品供給部106の収納凹部128に供給されているヒューズソケット等の下側部品232を撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理して、下側部品232の上面に形成された各挿入孔232A、232Bの位置、形状をパターンマッチングによって認識して、各データをRAM222に記憶する。 In S15, as shown in FIG. 10, the CPU 221 images the lower part 232 such as a fuse socket supplied to the housing recess 128 of the component supply unit 106 by the mark camera 26, and displays the captured image. The image processing device (recognition processing device) 204 performs recognition processing, recognizes the positions and shapes of the insertion holes 232A and 232B formed on the upper surface of the lower part 232 by pattern matching, and stores each data in the RAM 222. .
 その後、S16において、CPU221は、上記S14でRAM222に記憶した基準マーク231の位置と収納凹部128の位置、形状のデータと、上記S15でRAM222に記憶した各挿入孔232A、232Bの位置、形状のデータとを読み出す。そして、CPU221は、図10に示すように、基準マーク231及び収納凹部128の外周縁に対する各挿入孔232A、232BのX、Y方向の位置ズレ量、X方向に対する傾き角度θ1等を算出して下側部品232の位置データとしてRAM222に記憶する。 Thereafter, in S16, the CPU 221 stores the position and shape data of the reference mark 231 and the storage recess 128 stored in the RAM 222 in S14 and the positions and shapes of the insertion holes 232A and 232B stored in the RAM 222 in S15. Read data and. Then, as shown in FIG. 10, the CPU 221 calculates the positional displacement amount in the X and Y directions of the insertion holes 232 </ b> A and 232 </ b> B with respect to the outer periphery of the reference mark 231 and the storage recess 128, the inclination angle θ <b> 1 with respect to the X direction, and the like. The position data of the lower part 232 is stored in the RAM 222.
 続いて、S17において、CPU221は、図11に示すように、各電磁モータ212、214を駆動して、作業ヘッド60の下端面に装着されている部品保持具66を下側部品用スティックフィーダ82Bの部品供給部106の上方に移動させる。そして、CPU221は、各電磁モータ212、214を駆動して、部品保持具66の一対の爪67によって把持されたヒューズ等の上側部品233を、収納凹部128に供給された下側部品232の上方に移動させる。 Subsequently, in S17, as shown in FIG. 11, the CPU 221 drives the electromagnetic motors 212 and 214 to attach the component holder 66 mounted on the lower end surface of the work head 60 to the lower component stick feeder 82B. It is moved above the component supply unit 106. Then, the CPU 221 drives the electromagnetic motors 212 and 214 so that the upper part 233 such as a fuse held by the pair of claws 67 of the part holder 66 is located above the lower part 232 supplied to the storage recess 128. Move to.
 そして、CPU221は、上記S16でRAM222に記憶した各挿入孔232A、232BのX方向に対する傾き角度θ1のデータを読み出し、電磁モータ218Aを駆動して部品保持具66を鉛直軸回りに回転し、上側部品233の各端子233A、233BのX方向に対する傾き角度が傾き角度θ1になるように位置補正する。続いて、CPU221は、上記S16でRAM222に記憶した各挿入孔232A、232BのX、Y方向の位置ズレ量のデータを読み出し、各電磁モータ212、214を駆動して、上側部品233の各端子233A、233Bが、各挿入孔232A、232Bの鉛直方向真上に位置するように移動させて位置補正する。 Then, the CPU 221 reads the data of the inclination angle θ1 with respect to the X direction of each insertion hole 232A, 232B stored in the RAM 222 in S16, drives the electromagnetic motor 218A, rotates the component holder 66 about the vertical axis, Position correction is performed so that the inclination angle of each terminal 233A, 233B of the component 233 with respect to the X direction becomes the inclination angle θ1. Subsequently, the CPU 221 reads out the data of the positional shift amounts in the X and Y directions of the respective insertion holes 232A and 232B stored in the RAM 222 in S16, drives the respective electromagnetic motors 212 and 214, and each terminal of the upper part 233. The position correction is performed by moving 233A and 233B so as to be positioned directly above the insertion holes 232A and 232B in the vertical direction.
 続いて、S18において、CPU221は、図11及び図12の上側左端に示すように、電磁モータ216Aを駆動して作業ヘッド60を下方向に移動させて、上側部品233の各端子233A、233Bの先端から略中央部までを、下側部品232の各挿入孔232A、232Bに挿入する。そして、CPU221は、図12の上側中央に示すように、マニホールド208を駆動して、部品保持具66のエア室175にエアを供給して、一対の爪67を離間して上側部品233から離脱させる。 Subsequently, in S18, the CPU 221 drives the electromagnetic motor 216A to move the work head 60 downward as shown in the upper left end of FIGS. 11 and 12, and the terminals 233A and 233B of the upper part 233 are moved downward. The portion from the tip to the substantially central portion is inserted into each insertion hole 232A, 232B of the lower part 232. Then, the CPU 221 drives the manifold 208 to supply air to the air chamber 175 of the component holder 66 and separates the pair of claws 67 from the upper component 233 as shown in the upper center of FIG. Let
 CPU221は、その状態で、電磁モータ216Aを駆動して作業ヘッド60を更に所定高さ下方向に移動させて、押え部材150を介して上側部品233の各端子233A、233Bを下側部品232の各挿入孔232A、232Bに押し込んで、上側部品233の下端面を下側部品232の上端面に当接させて、下側部品232上に上側部品233を組み付けて装着する。 In this state, the CPU 221 drives the electromagnetic motor 216 </ b> A to further move the work head 60 downward by a predetermined height, so that the terminals 233 </ b> A and 233 </ b> B of the upper part 233 are connected to the lower part 232 via the pressing member 150. The upper part 233 is assembled and mounted on the lower part 232 by pressing into the respective insertion holes 232A and 232B so that the lower end face of the upper part 233 is brought into contact with the upper end face of the lower part 232.
 尚、図11及び図12に示すように、部品供給部106の収納凹部128の底面部には、Y方向に沿って、下側部品232の底面部から突出する各端子232Cが入り込む逃げ溝235が形成されている。これにより、下側部品232の底面部が、収納凹部128の底面部に確実の当接するため、上側部品233の各端子233A、233Bを下側部品232の各挿入孔232A、232Bに押し込んで、上側部品233の下端面を下側部品232の上端面に確実に当接させることができる。また、その際に、下側部品232の各端子232Cの変形を確実に防止することができる。 As shown in FIGS. 11 and 12, a clearance groove 235 into which each terminal 232C protruding from the bottom surface portion of the lower component 232 enters the bottom surface portion of the housing recess 128 of the component supply unit 106 along the Y direction. Is formed. As a result, the bottom part of the lower part 232 reliably contacts the bottom part of the storage recess 128, so that the terminals 233A and 233B of the upper part 233 are pushed into the insertion holes 232A and 232B of the lower part 232, The lower end surface of the upper part 233 can be reliably brought into contact with the upper end surface of the lower part 232. At that time, the deformation of each terminal 232C of the lower part 232 can be surely prevented.
 その後、S19において、CPU221は、図12の上側右端に示すように、部品保持具66の押え部材150を上側部品233の上端面に当接させた状態で、マニホールド208を駆動して、部品保持具66のエア室175からエアを吸引して、一対の爪67によって上側部品233を再度把持する。 Thereafter, in S19, the CPU 221 drives the manifold 208 in a state where the pressing member 150 of the component holder 66 is in contact with the upper end surface of the upper component 233 as shown in the upper right end of FIG. Air is sucked from the air chamber 175 of the tool 66, and the upper part 233 is gripped again by the pair of claws 67.
 続いて、S20において、CPU221は、図12の下側右端に示すように、一対の爪67によって上側部品233を把持した状態で、電磁モータ216Aを駆動して作業ヘッド60を上方向に移動させ、上側部品233及び下側部品232を部品供給部106から上方へ一体的に持ち上げる。また、CPU221は、各電磁モータ212、214を駆動して、作業ヘッド60の下端面に装着されている部品保持具66をパーツカメラ28の上方に移動させる。つまり、CPU221は、上側部品233及び下側部品232を一体的にパーツカメラ28の上方に移動させる。 Subsequently, in S20, the CPU 221 drives the electromagnetic motor 216A to move the work head 60 upward in a state where the upper part 233 is gripped by the pair of claws 67 as shown in the lower right end of FIG. The upper part 233 and the lower part 232 are integrally lifted upward from the part supply unit 106. In addition, the CPU 221 drives the electromagnetic motors 212 and 214 to move the component holder 66 mounted on the lower end surface of the work head 60 above the parts camera 28. That is, the CPU 221 moves the upper part 233 and the lower part 232 integrally above the parts camera 28.
 そして、CPU221は、部品保持具66の一対の爪67によって把持された上側部品233及び下側部品232をパーツカメラ28によって撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理して、下側部品232の各端子232Cの部品保持具66に対する位置ズレ量、把持姿勢、落下状況等を認識して、各データをRAM222に記憶する。 The CPU 221 images the upper part 233 and the lower part 232 gripped by the pair of claws 67 of the part holder 66 by the parts camera 28, and the image processing apparatus (recognition processing apparatus) 204 captures the captured image. The recognition processing is performed to recognize the positional deviation amount, the gripping posture, the dropping state, and the like of each terminal 232C of the lower part 232 with respect to the component holder 66, and each data is stored in the RAM 222.
 続いて、S21において、CPU221は、図12の下側左端に示すように、認識異常がない場合には、各電磁モータ212、214を駆動して、スライダ74の下端部に取り付けられたマークカメラ26を実装基板241の下側部品232を装着する位置の上方に移動させる。そして、CPU221は、マークカメラ26によって実装基板241を撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理して、下側部品232の各端子232Cを挿入する各貫通孔の位置ズレ量、X方向に対する傾き角度等をパターンマッチングによって認識し、各データをRAM222に記憶する。 Subsequently, in S21, the CPU 221 drives each electromagnetic motor 212, 214 when there is no recognition abnormality, as shown at the lower left end in FIG. 26 is moved above the position where the lower part 232 of the mounting board 241 is mounted. Then, the CPU 221 images the mounting substrate 241 with the mark camera 26, and the image processing device (recognition processing device) 204 recognizes the captured image to insert each terminal 232 </ b> C of the lower part 232. The amount of positional deviation of the hole, the inclination angle with respect to the X direction, and the like are recognized by pattern matching, and each data is stored in the RAM 222.
 その後、CPU221は、下側部品232の各端子232Cを挿入する各貫通孔のX方向に対する傾き角度のデータを読み出し、電磁モータ218Aを駆動して部品保持具66を鉛直軸回りに回転し、下側部品232の各端子232CのX方向に対する傾き角度が各貫通孔の傾き角度になるように位置補正する。続いて、CPU221は、S19でRAM222に記憶した下側部品232の各端子232Cの部品保持具66に対する位置ズレ量のデータを読み出し、各電磁モータ212、214を駆動して、下側部品232の各端子232Cが、実装基板241の各端子232Cを挿入する各貫通孔の鉛直方向真上に位置するように移動させて位置補正する。 Thereafter, the CPU 221 reads data of the inclination angle of each through hole into which each terminal 232C of the lower part 232 is inserted with respect to the X direction, drives the electromagnetic motor 218A, rotates the part holder 66 about the vertical axis, Position correction is performed so that the inclination angle of each terminal 232C of the side component 232 with respect to the X direction becomes the inclination angle of each through hole. Subsequently, the CPU 221 reads out data on the amount of positional deviation of each terminal 232 </ b> C of the lower part 232 stored in the RAM 222 in S <b> 19 with respect to the part holder 66, drives each electromagnetic motor 212, 214, and controls the lower part 232. Each terminal 232C is moved so as to be positioned directly above each through-hole into which each terminal 232C of the mounting substrate 241 is inserted to correct the position.
 そして、CPU21は、図12の下側左端に示すように、電磁モータ216Aを駆動して作業ヘッド60を下方向に移動させて、上側部品233及び下側部品232を一体的に下方向に移動させる。そして、CPU221は、下側部品232の各端子232Cを実装基板241の貫通孔に挿入して、実装基板241上に上側部品233及び下側部品232を一体的に装着する。その後、CPU221は、マニホールド208を駆動して、部品保持具66のエア室175にエアを供給して、一対の爪67を離間して上側部品233から離脱させた後、当該処理を終了する。 Then, as shown in the lower left end of FIG. 12, the CPU 21 drives the electromagnetic motor 216A to move the work head 60 downward, and moves the upper part 233 and the lower part 232 integrally downward. Let Then, the CPU 221 inserts each terminal 232 </ b> C of the lower component 232 into the through hole of the mounting substrate 241, and integrally mounts the upper component 233 and the lower component 232 on the mounting substrate 241. Thereafter, the CPU 221 drives the manifold 208 to supply air to the air chamber 175 of the component holder 66 and separates the pair of claws 67 from the upper component 233, and then ends the processing.
 ここで、部品実装機10は、作業機の一例である。回路基材12、実装基板241は、基板の一例である。下側部品232は、下側部品の一例である。下側部品用スティックフィーダ82Bは、下側部品供給装置の一例である。上側部品233は、上側部品の一例である。上側部品用スティックフィーダ82Aは、上側部品供給装置の一例である。部品保持具66は、保持具の一例である。各作業ヘッド60、62は、作業ヘッドの一例である。作業ヘッド移動装置64は、移動装置の一例である。制御装置36は、制御装置の一例である。S12の処理は、上側部品保持処理の一例である。S17の処理は、上側部品移動処理の一例である。S18の処理は、上側部品装着処理の一例である。 Here, the component mounting machine 10 is an example of a working machine. The circuit base 12 and the mounting substrate 241 are examples of substrates. The lower part 232 is an example of a lower part. The lower part stick feeder 82B is an example of a lower part supply apparatus. The upper part 233 is an example of an upper part. The upper part stick feeder 82A is an example of an upper part supply apparatus. The component holder 66 is an example of a holder. Each working head 60, 62 is an example of a working head. The work head moving device 64 is an example of a moving device. The control device 36 is an example of a control device. The process of S12 is an example of an upper part holding process. The process of S17 is an example of an upper part movement process. The process of S18 is an example of an upper part mounting process.
 S21の処理は、下側部品移動処理、下側部品装着処理の一例である。スティックフィーダ82は、スティックフィーダの一例である。部品収容スティック88は、部品収容スティックの一例である。電子回路部品92、上側部品233、下側部品232は、部品の一例である。部品供給部106は、部品供給部の一例である。マークカメラ26は、撮像装置の一例である。画像処理装置204は、認識処理装置の一例である。基準マーク231は、基準マークの一例である。S16の処理は、位置補正処理の一例である。S17の処理は、補正移動処理の一例である。一対の爪67は、複数の爪の一例である。押え部材150は、押圧部材の一例である。 The process of S21 is an example of a lower part movement process and a lower part mounting process. The stick feeder 82 is an example of a stick feeder. The component storage stick 88 is an example of a component storage stick. The electronic circuit component 92, the upper component 233, and the lower component 232 are examples of components. The component supply unit 106 is an example of a component supply unit. The mark camera 26 is an example of an imaging device. The image processing device 204 is an example of a recognition processing device. The reference mark 231 is an example of a reference mark. The process of S16 is an example of a position correction process. The process of S17 is an example of a correction movement process. The pair of claws 67 is an example of a plurality of claws. The pressing member 150 is an example of a pressing member.
 以上詳細に説明した通り、本実施形態に係る部品実装機10では、CPU221は、作業ヘッド60の下端面に装着されている部品保持具66を上側部品用スティックフィーダ82Aの部品供給部106の上方に移動させる。そして、CPU221は、部品供給部106に設けられた収納凹部128内に供給された上側部品233を一対の爪67によって把持する。その後、CPU221は、上側部品233を把持した部品保持具66を下側部品用スティックフィーダ82Bの部品供給部106の上方に移動させる。 As described above in detail, in the component mounter 10 according to the present embodiment, the CPU 221 uses the component holder 66 mounted on the lower end surface of the work head 60 above the component supply unit 106 of the upper component stick feeder 82A. Move to. Then, the CPU 221 holds the upper part 233 supplied in the storage recess 128 provided in the part supply unit 106 with a pair of claws 67. Thereafter, the CPU 221 moves the component holder 66 holding the upper component 233 above the component supply unit 106 of the lower component stick feeder 82B.
 そして、CPU221は、作業ヘッド60を下方に移動させて、部品保持具66に把持された上側部品233の各端子233A、233Bを、部品供給部106に設けられた収納凹部128に供給された下側部品232の各挿入孔232A、232Bに押し込んで、押え部材150を介して下側部品232上に上側部品233を押圧して装着する。 Then, the CPU 221 moves the work head 60 downward so that the terminals 233A and 233B of the upper part 233 gripped by the part holder 66 are supplied to the storage recess 128 provided in the part supply unit 106. The upper part 233 is pressed and mounted on the lower part 232 via the pressing member 150 by being pushed into the insertion holes 232A and 232B of the side part 232.
 従って、下側部品用スティックフィーダ82Bの部品供給部106に設けられた収納凹部128上で、部品保持具66に把持された上側部品233を、押え部材150を介して下側部品232上に押圧して装着することができる。これにより、部品供給部106の機械的強度、つまり、収納凹部128の機械的強度を容易に大きくして、上側部品233を押さえる押圧荷重を大きくして、確実に上側部品233を下側部品232上に装着することが可能となる。 Accordingly, the upper part 233 gripped by the part holder 66 is pressed onto the lower part 232 via the pressing member 150 on the storage recess 128 provided in the part supply unit 106 of the lower part stick feeder 82B. Can be installed. Accordingly, the mechanical strength of the component supply unit 106, that is, the mechanical strength of the housing recess 128 is easily increased, the pressing load for pressing the upper component 233 is increased, and the upper component 233 is securely attached to the lower component 232. It can be mounted on top.
 また、下側部品用スティックフィーダ82Bの部品供給部106に設けられた収納凹部128上で、上側部品233を下側部品232上に押圧して装着することができるため、実装基板241を変形させることなく、下側部品232上に上側部品233を装着することが可能となる。 Further, since the upper component 233 can be pressed and mounted on the lower component 232 on the storage recess 128 provided in the component supply unit 106 of the lower component stick feeder 82B, the mounting substrate 241 is deformed. Without this, the upper part 233 can be mounted on the lower part 232.
 また、CPU221は、部品保持具66の一対の爪67で、下側部品232上に装着された上側部品233を再度把持した後、作業ヘッド60を上方向に移動させ、上側部品233及び下側部品232を部品供給部106から上方へ一体的に持ち上げる。そして、CPU221は、上側部品233及び下側部品232を一体的に把持した部品保持具66を実装基板241上に移動させ、下側部品232の各端子232Cを実装基板241の貫通孔に挿入して、実装基板241上に上側部品233及び下側部品232を一体的に装着する。 Further, the CPU 221 again grips the upper part 233 mounted on the lower part 232 with the pair of claws 67 of the part holder 66, and then moves the work head 60 upward so that the upper part 233 and the lower part 233 The component 232 is integrally lifted upward from the component supply unit 106. Then, the CPU 221 moves the component holder 66 that integrally holds the upper component 233 and the lower component 232 onto the mounting substrate 241, and inserts each terminal 232 </ b> C of the lower component 232 into the through hole of the mounting substrate 241. Thus, the upper part 233 and the lower part 232 are integrally mounted on the mounting substrate 241.
 これにより、実装基板241を変形させることなく、上側部品233が装着された下側部品232を実装基板241上に装着することができる。また、同じ部品保持具66の一対の爪67で、下側部品232上に装着された上側部品233を再度把持することが可能となり、部品保持具66の交換時間を短縮して実装基板241上に部品を実装する実装効率の向上を図ることが可能となる。 Thereby, the lower component 232 on which the upper component 233 is mounted can be mounted on the mounting substrate 241 without deforming the mounting substrate 241. In addition, the upper part 233 mounted on the lower part 232 can be gripped again by the pair of claws 67 of the same part holder 66, and the replacement time of the part holder 66 can be shortened and the mounting board 241 can be shortened. Therefore, it is possible to improve the mounting efficiency for mounting the components on the board.
 また、CPU221は、マークカメラ26によって下側部品用スティックフィーダ82Bの部品供給部106を撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理する。そして、CPU221は、基準マーク231及び収納凹部128の外周縁に対する各挿入孔232A、232BのX、Y方向の位置ズレ量、X方向に対する傾き角度θ1等を算出して下側部品232の位置データとしてRAM222に記憶する。 Further, the CPU 221 images the component supply unit 106 of the lower component stick feeder 82B by the mark camera 26, and the image processing device (recognition processing device) 204 performs recognition processing on the captured image. Then, the CPU 221 calculates the positional deviation amounts of the insertion holes 232A and 232B in the X and Y directions with respect to the outer periphery of the reference mark 231 and the storage recess 128, the inclination angle θ1 with respect to the X direction, and the like, and position data of the lower part 232 Is stored in the RAM 222.
 そして、CPU221は、下側部品232の位置データに基づいて、上側部品233の各端子233A、233Bが、各挿入孔232A、232Bの鉛直方向真上に位置するように移動させて位置補正する。これにより、上側部品233の各端子233A、233Bを下側部品232の各挿入孔232A、232Bにスムーズに挿入することが可能となり、取付精度の向上を図ることが可能となる。 Then, based on the position data of the lower part 232, the CPU 221 corrects the position by moving the terminals 233A and 233B of the upper part 233 so as to be positioned directly above the insertion holes 232A and 232B in the vertical direction. As a result, the terminals 233A and 233B of the upper part 233 can be smoothly inserted into the insertion holes 232A and 232B of the lower part 232, and the mounting accuracy can be improved.
 尚、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。尚、以下の説明において、図1乃至図12に示す上記部品実装機10の構成等と同一符号は、上記部品実装機10の構成等と同一あるは相当部分を示すものである。 It should be noted that the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the scope of the present invention. In the following description, the same reference numerals as those of the component mounter 10 shown in FIGS. 1 to 12 denote the same or corresponding parts as those of the component mounter 10.
 <他の実施形態1>
 例えば、他の実施形態1に係る部品実装機10について図13及び図14に基づいて説明する。前記S14において、図13に示すように、CPU221は、マークカメラ26によって下側部品用スティックフィーダ82Bの部品供給部106を撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理して、部品供給部106の上端面に形成された基準マーク231の位置と収納凹部128の位置、形状をパターンマッチングによって認識して、各データをRAM222に記憶する。
<Other embodiment 1>
For example, a component mounter 10 according to another embodiment 1 will be described with reference to FIGS. 13 and 14. In S14, as shown in FIG. 13, the CPU 221 images the component supply unit 106 of the lower component stick feeder 82B with the mark camera 26, and the image processing apparatus (recognition processing apparatus) 204 captures the captured image. The recognition process is performed to recognize the position of the reference mark 231 formed on the upper end surface of the component supply unit 106 and the position and shape of the storage recess 128 by pattern matching, and each data is stored in the RAM 222.
 そして、前記S15において、CPU221は、図13に示すように、マークカメラ26によって部品供給部106の収納凹部128に供給されている上側に開放された箱体状であって、内側底面部に小さな挿入孔245Aが複数列形成されたICソケット等の下側部品245を撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理して、下側部品245の矩形状の外周縁部の位置、形状をパターンマッチングによって認識して、各データをRAM222に記憶するようにしてもよい。 In S15, as shown in FIG. 13, the CPU 221 has a box-like shape opened to the upper side supplied to the storage recess 128 of the component supply unit 106 by the mark camera 26, and is small on the inner bottom surface. The lower part 245 such as an IC socket in which the insertion holes 245A are formed in a plurality of rows is imaged, and the image processing device (recognition processing device) 204 performs recognition processing on the captured image so that the rectangular shape of the lower part 245 is formed. The position and shape of the outer peripheral edge may be recognized by pattern matching, and each data may be stored in the RAM 222.
 その後、前記S16において、CPU221は、S14でRAM222に記憶した基準マーク231の位置と収納凹部128の位置、形状のデータと、S15でRAM222に記憶した下側部品245の矩形状の外周縁部の位置、形状のデータとを読み出す。そして、CPU221は、図13に示すように、基準マーク231及び収納凹部128の外周縁に対する下側部品245の矩形状の外周縁部のX、Y方向の位置ズレ量、X方向に対する傾き角度θ2等を算出して下側部品245の位置データとしてRAM222に記憶するようにしてもよい。 Thereafter, in S16, the CPU 221 determines the position of the reference mark 231 stored in the RAM 222 in S14, the position and shape data of the storage recess 128, and the rectangular outer peripheral edge of the lower part 245 stored in the RAM 222 in S15. Read position and shape data. Then, as shown in FIG. 13, the CPU 221 shifts the position of the rectangular outer periphery of the lower part 245 relative to the outer periphery of the reference mark 231 and the storage recess 128 in the X and Y directions, and the tilt angle θ2 with respect to the X direction. Etc. may be calculated and stored in the RAM 222 as position data of the lower part 245.
 続いて、前記S17において、CPU221は、図14に示すように、各電磁モータ212、214を駆動して、作業ヘッド60の下端面に装着されている部品保持具66を下側部品用スティックフィーダ82Bの部品供給部106の上方に移動させる。そして、CPU221は、各電磁モータ212、214を駆動して、部品保持具66の一対の爪67によって把持されたICチップ等の上側部品246を、収納凹部128に供給された下側部品245の上方に移動させる。 Subsequently, in S17, as shown in FIG. 14, the CPU 221 drives the electromagnetic motors 212 and 214 to attach the component holder 66 mounted on the lower end surface of the work head 60 to the lower component stick feeder. It is moved above the component supply unit 106 of 82B. Then, the CPU 221 drives the electromagnetic motors 212 and 214 so that the upper component 246 such as an IC chip held by the pair of claws 67 of the component holder 66 is transferred to the lower component 245 supplied to the storage recess 128. Move upward.
 そして、CPU221は、上記S16でRAM222に記憶した下側部品245の矩形状の外周縁部のX方向に対する傾き角度θ2のデータを読み出し、電磁モータ218Aを駆動して部品保持具66を鉛直軸回りに回転し、上側部品246の各端子246Aの並び方向のX方向に対する傾き角度が傾き角度θ2になるように位置補正する。続いて、CPU221は、上記S16でRAM222に記憶した下側部品245の矩形状の外周縁部のX、Y方向の位置ズレ量のデータを読み出し、各電磁モータ212、214を駆動して、上側部品246の両側縁に列状に設けられた各端子246Aが、2列に配置された各挿入孔245Aの鉛直方向真上に位置するように移動させて位置補正するようにしてもよい。 Then, the CPU 221 reads the data of the inclination angle θ2 with respect to the X direction of the rectangular outer peripheral edge of the lower part 245 stored in the RAM 222 in S16 and drives the electromagnetic motor 218A to move the part holder 66 around the vertical axis. To correct the position so that the inclination angle of the terminals 246A of the upper part 246 with respect to the X direction is the inclination angle θ2. Subsequently, the CPU 221 reads out the data of the positional deviation amount in the X and Y directions of the rectangular outer peripheral edge of the lower part 245 stored in the RAM 222 in S16, and drives the electromagnetic motors 212 and 214 to The terminals 246A provided in rows on both side edges of the component 246 may be moved so as to be positioned directly above the insertion holes 245A arranged in two rows to correct the position.
 続いて、前記S18において、CPU221は、図14に示すように、電磁モータ216Aを駆動して作業ヘッド60を下方向に移動させて、上側部品246の両側縁に列状に設けられた各端子246Aの先端から略中央部までを、下側部品245の2列に配置された各挿入孔245Aに挿入する。そして、CPU221は、マニホールド208を駆動して、部品保持具66のエア室175にエアを供給して、一対の爪67を離間して上側部品246から離脱させるようにしてもよい。 Subsequently, in S18, as shown in FIG. 14, the CPU 221 drives the electromagnetic motor 216A to move the work head 60 downward, and each terminal provided in a row on both side edges of the upper part 246. The portion from 246A to the substantially central portion is inserted into each insertion hole 245A arranged in two rows of the lower part 245. Then, the CPU 221 may drive the manifold 208 to supply air to the air chamber 175 of the component holder 66 so that the pair of claws 67 are separated from the upper component 246.
 CPU221は、その状態で、電磁モータ216Aを駆動して作業ヘッド60を更に所定高さ下方向に移動させて、押え部材150を介して上側部品246の両側縁に列状に設けられた各端子246Aを下側部品245の2列に配置された各挿入孔245Aに押し込んで、上側部品246の下端面を下側部品245の内側底面に当接させて、下側部品245の内側底面上に上側部品246を組み付けて装着するようにしてもよい。 In this state, the CPU 221 drives the electromagnetic motor 216 </ b> A to further move the work head 60 downward by a predetermined height, and each terminal provided in a row on both side edges of the upper part 246 via the pressing member 150. 246A is pushed into the insertion holes 245A arranged in the two rows of the lower part 245, and the lower end surface of the upper part 246 is brought into contact with the inner bottom surface of the lower part 245 so as to be on the inner bottom surface of the lower part 245. The upper part 246 may be assembled and mounted.
 従って、下側部品用スティックフィーダ82Bの部品供給部106に設けられた収納凹部128上で、部品保持具66に把持された上側部品246を、押え部材150を介して下側部品245の内側底面上に押圧して装着することができる。これにより、部品供給部106の機械的強度、つまり、収納凹部128の機械的強度を容易に大きくして、上側部品246を押さえる押圧荷重を大きくして、確実に上側部品246を下側部品245の内側底面上に装着することが可能となる。 Accordingly, the upper part 246 gripped by the part holder 66 on the storage recess 128 provided in the part supply unit 106 of the lower part stick feeder 82B is moved to the inner bottom surface of the lower part 245 via the pressing member 150. It can be attached by pressing up. Accordingly, the mechanical strength of the component supply unit 106, that is, the mechanical strength of the housing recess 128 is easily increased, the pressing load for pressing the upper component 246 is increased, and the upper component 246 is securely attached to the lower component 245. It becomes possible to mount on the inner bottom surface.
 また、下側部品用スティックフィーダ82Bの部品供給部106に設けられた収納凹部128上で、上側部品246を下側部品245の内側底面上に押圧して装着することができるため、実装基板241を変形させることなく、下側部品245の内側底面上に上側部品246を装着することが可能となる。 Further, since the upper component 246 can be pressed and mounted on the inner bottom surface of the lower component 245 on the storage recess 128 provided in the component supply unit 106 of the lower component stick feeder 82B, the mounting substrate 241 is mounted. It is possible to mount the upper part 246 on the inner bottom surface of the lower part 245 without deforming.
 また、CPU221は、マークカメラ26によって下側部品用スティックフィーダ82Bの部品供給部106を撮像し、この撮像された画像を画像処理装置(認識処理装置)204が認識処理する。そして、CPU221は、基準マーク231及び収納凹部128の外周縁に対する下側部品245の矩形状の外周縁部のX、Y方向の位置ズレ量、X方向に対する傾き角度θ2等を算出して下側部品245の位置データとしてRAM222に記憶することが可能となる。 Further, the CPU 221 images the component supply unit 106 of the lower component stick feeder 82B by the mark camera 26, and the image processing device (recognition processing device) 204 performs recognition processing on the captured image. Then, the CPU 221 calculates the positional deviation amount in the X and Y directions of the rectangular outer peripheral edge of the lower part 245 with respect to the outer peripheral edges of the reference mark 231 and the storage recess 128, the inclination angle θ2 with respect to the X direction, etc. The position data of the component 245 can be stored in the RAM 222.
 そして、CPU221は、下側部品245の位置データに基づいて、上側部品246の両側縁に列状に設けられた各端子246Aが、下側部品245の2列に配置された各挿入孔245Aの鉛直方向真上に位置するように移動させて位置補正する。これにより、上側部品246の両側縁に列状に設けられた各端子246Aを、下側部品245の2列に配置された各挿入孔245Aにスムーズに挿入することが可能となり、取付精度の向上を図ることが可能となる。 Then, based on the position data of the lower part 245, the CPU 221 includes terminals 246A provided in a row on both side edges of the upper part 246, and the insertion holes 245A arranged in two rows of the lower part 245. The position is corrected by moving it so that it is located directly above the vertical direction. As a result, the terminals 246A provided in a row on both side edges of the upper part 246 can be smoothly inserted into the insertion holes 245A arranged in the two rows of the lower part 245, thereby improving the mounting accuracy. Can be achieved.
 また、図14に示すように、部品供給部106の収納凹部128の底面部には、Y方向に沿って、下側部品245の底面部から突出する各端子245Cが入り込む逃げ溝235が形成されている。これにより、下側部品245の底面部が、収納凹部128の底面部に確実の当接するため、上側部品246の各端子246Aを下側部品245の各挿入孔245Aに押し込んで、上側部品246の下端面を下側部品245の内側底面に確実に当接させることができる。また、その際に、下側部品245の各端子245Cの変形を確実に防止することができる。 As shown in FIG. 14, a relief groove 235 into which each terminal 245 </ b> C protruding from the bottom surface portion of the lower component 245 enters is formed in the bottom surface portion of the housing recess 128 of the component supply unit 106 along the Y direction. ing. As a result, the bottom surface portion of the lower component 245 is surely brought into contact with the bottom surface portion of the storage recess 128, so that each terminal 246 </ b> A of the upper component 246 is pushed into each insertion hole 245 </ b> A of the lower component 245. The lower end surface can be reliably brought into contact with the inner bottom surface of the lower part 245. At that time, the deformation of each terminal 245C of the lower part 245 can be reliably prevented.
 <他の実施形態2>
 また、例えば、作業ヘッド62に、下側部品232を把持可能な部品保持具66を取り付けて、前記S19において、CPU221は、この部品保持具66で上側部品233が装着された下側部品232を一対の爪67で把持するようにしてもよい。
<Other embodiment 2>
Further, for example, a component holder 66 capable of gripping the lower part 232 is attached to the work head 62, and in S19, the CPU 221 uses the component holder 66 to attach the lower part 232 to which the upper part 233 is mounted. You may make it hold | grip with a pair of nail | claw 67. FIG.
 10:部品実装機  12:回路基材  26:マークカメラ  36:制御装置  60、62:作業ヘッド  64:作業ヘッド移動装置  66:部品保持具  67:爪  82:スティックフィーダ  82A:上側部品用スティックフィーダ  82B:下側部品用スティックフィーダ  88:部品収容スティック  92:電子回路部品  106:部品供給部  150:押え部材  204:画像処理装置  231:基準マーク  232、245:下側部品  233、246:上側部品  241:実装基板 10: component mounting machine 12: circuit substrate 26: mark camera 36: control device 60, 62: work head 64: work head moving device 66: component holder 67: claw 82: stick feeder 82A: stick feeder 82B for upper part : Stick feeder for lower parts 88: Parts receiving stick 92: Electronic circuit parts 106: Parts supply section 150: Pressing member 204: Image processing device 231: Reference mark 232, 245: Lower parts 233, 246: Upper parts 241: Mounting board

Claims (6)

  1.  基板上に装着される下側部品を供給する下側部品供給装置と、
     前記下側部品の上側に装着される上側部品を供給する上側部品供給装置と、
     部品を保持する保持具を有する作業ヘッドと、
     前記作業ヘッドを移動させる移動装置と、
     前記保持具の作動と前記移動装置の作動とを制御する制御装置と、
     を備え、
     前記制御装置は、
       前記上側部品供給装置によって供給された前記上側部品を前記保持具によって保持する上側部品保持処理と、
       前記保持具によって保持された前記上側部品を前記下側部品供給装置によって供給される前記下側部品の上側に移動させる上側部品移動処理と、
       前記下側部品供給装置上で前記上側部品を前記下側部品上に装着する上側部品装着処理と、
     を実行することを特徴とする作業機。
    A lower part supply device for supplying a lower part to be mounted on a substrate;
    An upper part supply device for supplying an upper part to be mounted on the upper side of the lower part;
    A working head having a holding tool for holding a component;
    A moving device for moving the working head;
    A control device for controlling the operation of the holder and the operation of the moving device;
    With
    The control device includes:
    An upper part holding process for holding the upper part supplied by the upper part supply apparatus with the holder;
    An upper part movement process for moving the upper part held by the holder to the upper side of the lower part supplied by the lower part supply device;
    An upper part mounting process for mounting the upper part on the lower part on the lower part supply device;
    A working machine characterized by executing
  2.  前記制御装置は、
       前記上側部品が装着された前記下側部品を前記保持具によって保持して前記基板上に移動させる下側部品移動処理と、
       前記上側部品が装着された前記下側部品を前記基板上に装着する下側部品装着処理と、
     を実行することを特徴とする作業機。
    The control device includes:
    A lower part movement process in which the lower part mounted with the upper part is held by the holder and moved onto the substrate;
    A lower component mounting process for mounting the lower component on which the upper component is mounted on the substrate;
    A working machine characterized by executing
  3.  前記下側部品供給装置は、スティックフィーダを含み、
     前記スティックフィーダは、
       内部に複数の部品が1列に並んだ状態で収容される部品収容スティックと、
       前記部品収容スティックから送り出された前記部品を前記保持具が保持する位置に設けられた部品供給部と、
     を有し、
     前記制御装置は、前記上側部品装着処理を前記部品供給部上で実行することを特徴とする請求項1又は請求項2に記載の作業機。
    The lower part supply device includes a stick feeder,
    The stick feeder is
    A component storage stick in which a plurality of components are stored in a row;
    A component supply unit provided at a position where the holder holds the component sent out from the component storage stick;
    Have
    The work machine according to claim 1, wherein the control device executes the upper part mounting process on the part supply unit.
  4.  前記部品供給部を撮像する撮像装置と、
     前記撮像装置によって撮像された画像を認識処理する認識処理装置と、
     を備え、
     前記制御装置は、
       前記部品供給部に供給された前記下側部品の形状又は複数の挿入孔のうち、少なくとも一方と、前記部品供給部に設けられた基準マークと、の前記認処理装置の処理結果に基づいて前記部品供給部に供給された前記下側部品の位置補正を行う位置補正処理と、
       前記下側部品の位置補正に基づいて前記保持具を補正移動させる補正移動処理と、
     を実行して、前記上側部品装着処理を実行することを特徴とする請求項3に記載の作業機。
    An imaging device for imaging the component supply unit;
    A recognition processing device for performing recognition processing on an image captured by the imaging device;
    With
    The control device includes:
    Based on the processing result of the recognition processing device of at least one of the shape of the lower part or the plurality of insertion holes supplied to the component supply unit and the reference mark provided in the component supply unit Position correction processing for correcting the position of the lower part supplied to the component supply unit;
    Correction movement processing for correcting and moving the holder based on position correction of the lower part;
    The work implement according to claim 3, wherein the upper part mounting process is executed.
  5.  前記制御装置は、前記下側部品上に装着された前記上側部品を前記保持具によって再度保持して、前記下側部品移動処理と前記下側部品装着処理を実行することを特徴とする請求項2乃至請求項4のいずれかに記載の作業機。 The said control apparatus hold | maintains the said upper part mounted | worn on the said lower part again by the said holder, and performs the said lower part movement process and the said lower part mounting process. The working machine according to any one of claims 2 to 4.
  6.  前記保持具は、
       接近・離間により前記部品を把持・離脱する複数の爪と、
       前記複数の爪の間に配置されて該複数の爪によって把持される前記部品の上端部に当接する押圧部材と、
     を有し、
     前記制御装置は、前記上側部品装着処理において、前記複数の爪によって把持された前記上側部品の接続端子を前記下側部品の挿入孔に当接させて、前記複数の爪を離間させた後、前記保持具を所定高さ下降させて、前記押圧部材を介して前記上側部品を押圧することによって前記下側部品上に該上側部品を装着することを特徴とする請求項1乃至請求項5のいずれかに記載の作業機。
    The holder is
    A plurality of claws that grip and detach the part by approaching and separating;
    A pressing member disposed between the plurality of claws and abutting against an upper end portion of the component held by the plurality of claws;
    Have
    In the upper part mounting process, the control device abuts the connection terminal of the upper part held by the plurality of claws on the insertion hole of the lower part and separates the plurality of claws, 6. The upper part is mounted on the lower part by lowering the holding tool by a predetermined height and pressing the upper part via the pressing member. A working machine according to any one of the above.
PCT/JP2017/015134 2017-04-13 2017-04-13 Work machine WO2018189862A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/015134 WO2018189862A1 (en) 2017-04-13 2017-04-13 Work machine
JP2019512128A JPWO2018189862A1 (en) 2017-04-13 2017-04-13 Working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015134 WO2018189862A1 (en) 2017-04-13 2017-04-13 Work machine

Publications (1)

Publication Number Publication Date
WO2018189862A1 true WO2018189862A1 (en) 2018-10-18

Family

ID=63793200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015134 WO2018189862A1 (en) 2017-04-13 2017-04-13 Work machine

Country Status (2)

Country Link
JP (1) JPWO2018189862A1 (en)
WO (1) WO2018189862A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152844A1 (en) * 2019-01-25 2020-07-30 株式会社Fuji Substrate work machine and component-type recognizing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237696A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Electronic component aggregate and its packaging method
JP2007234701A (en) * 2006-02-28 2007-09-13 Hitachi High-Tech Instruments Co Ltd Electronic component mounting device
JP2013093402A (en) * 2011-10-25 2013-05-16 Ricoh Co Ltd Component mounting system and component mounting method
US20130240608A1 (en) * 2012-03-19 2013-09-19 Wistron Corporation Clamping tool and equipment for rework process
JP2013187529A (en) * 2012-03-12 2013-09-19 National Institute Of Advanced Industrial & Technology Assembly method of chip
WO2016194035A1 (en) * 2015-05-29 2016-12-08 富士機械製造株式会社 Component attaching device and component attaching method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298289A (en) * 1993-04-12 1994-10-25 Fujitsu Miyagi Electron:Kk Ic tray apparatus
WO2016135909A1 (en) * 2015-02-26 2016-09-01 富士機械製造株式会社 Component supply device and mounting device
WO2017051446A1 (en) * 2015-09-22 2017-03-30 富士機械製造株式会社 Part supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237696A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Electronic component aggregate and its packaging method
JP2007234701A (en) * 2006-02-28 2007-09-13 Hitachi High-Tech Instruments Co Ltd Electronic component mounting device
JP2013093402A (en) * 2011-10-25 2013-05-16 Ricoh Co Ltd Component mounting system and component mounting method
JP2013187529A (en) * 2012-03-12 2013-09-19 National Institute Of Advanced Industrial & Technology Assembly method of chip
US20130240608A1 (en) * 2012-03-19 2013-09-19 Wistron Corporation Clamping tool and equipment for rework process
WO2016194035A1 (en) * 2015-05-29 2016-12-08 富士機械製造株式会社 Component attaching device and component attaching method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020152844A1 (en) * 2019-01-25 2020-07-30 株式会社Fuji Substrate work machine and component-type recognizing method
JPWO2020152844A1 (en) * 2019-01-25 2021-09-09 株式会社Fuji Board work machine and component type recognition method
JP7138193B2 (en) 2019-01-25 2022-09-15 株式会社Fuji Board-to-board work machine and component type recognition method

Also Published As

Publication number Publication date
JPWO2018189862A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
KR101835232B1 (en) Die bonding device and method of manufacturing semiconductor device
CN110536764B (en) Lead wire correction device
WO2016135909A1 (en) Component supply device and mounting device
WO2018189862A1 (en) Work machine
WO2022157884A1 (en) Component mounting device, and method for correcting terminal orientation
EP3606315B1 (en) Data creation device and data creation method
CN111096100B (en) Chuck for holding mounted component and component mounting machine
JP6940588B2 (en) Working machine and mounting method
JP6738898B2 (en) Board-to-board working machine
US11064639B2 (en) Operation machine to control holding head
JP6754896B2 (en) Parts gripper
WO2021044506A1 (en) Work machine and component mounting method
JP5903668B2 (en) Component mounting apparatus and component mounting method
EP3397041B1 (en) Information processing device, mounting device, information processing method, and component holding tool
WO2022044247A1 (en) Axial component supply device and supply method
JP7105350B2 (en) suction nozzle
WO2023223486A1 (en) Component mounting machine and method for mounting leaded component onto substrate
JP7138193B2 (en) Board-to-board work machine and component type recognition method
CN113170608B (en) Work head and work machine
JP7118613B2 (en) Chuck and component placement machine
WO2020183535A1 (en) Bending device, component supply device, and bending method
WO2019097584A1 (en) Work machine and mounting method
JP2023167153A (en) Work equipment and method for determining whether multiple gripping claws grip component positioned in cavity
JP2022108020A (en) Lead component feeder, board-to-board working machine, and method for mounting lead component on circuit board
JP2021012919A (en) Component mounting device and method for manufacturing component mounting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905615

Country of ref document: EP

Kind code of ref document: A1