WO2018181824A1 - Information processing device, system, information processing method, and program - Google Patents

Information processing device, system, information processing method, and program Download PDF

Info

Publication number
WO2018181824A1
WO2018181824A1 PCT/JP2018/013479 JP2018013479W WO2018181824A1 WO 2018181824 A1 WO2018181824 A1 WO 2018181824A1 JP 2018013479 W JP2018013479 W JP 2018013479W WO 2018181824 A1 WO2018181824 A1 WO 2018181824A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information
medical material
information processing
regenerative medical
Prior art date
Application number
PCT/JP2018/013479
Other languages
French (fr)
Japanese (ja)
Inventor
八木 洋
大造 林田
濱田 謙一
Original Assignee
学校法人慶應義塾
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾, Jsr株式会社 filed Critical 学校法人慶應義塾
Publication of WO2018181824A1 publication Critical patent/WO2018181824A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses

Definitions

  • the present invention relates to an information processing apparatus, system, information processing method, and program.
  • Patent Document 1 discloses a technique for generating a scaffold composed of a three-dimensional porous hollow skeleton composed of a shaped body exhibiting biocompatibility and biodegradability using a three-dimensional printer.
  • An object of the present invention is to provide an information processing apparatus, system, information processing method, and program capable of generating an optimal regenerative medical material according to the situation.
  • the present invention joins a regenerative medical material representing a material for regenerating a living tissue of the internal organ in 3D data representing the internal organ.
  • a first acquisition unit that acquires input data including at least information related to the bonding surface, and generation that generates model data based on the input data when forming the regenerative medical material with a modeling apparatus And an information processing apparatus.
  • the present invention is a system including at least an information processing device and a modeling device for modeling a regenerative medical material indicating a material for reproducing a living tissue, and includes three-dimensional data representing an internal organ
  • a first acquisition unit that acquires input data including at least information on a bonding surface indicating a surface to which the regenerative medical material is bonded, and a source for modeling the regenerative medical material based on the input data
  • a generating unit that generates model data
  • a modeling unit that models the regenerative medical material based on the model data.
  • the present invention provides input data including at least information relating to a joining surface indicating a surface to which a regenerative medical material representing a material for regenerating a living tissue of the internal organ is included among the three-dimensional data representing the internal organ. It is an information processing method including a first acquisition step to be acquired and a generation step of generating model data as a base when the regenerative medical material is modeled by a modeling apparatus based on the input data.
  • the present invention includes at least information on a joint surface indicating a surface on which a regenerative medical material representing a material for regenerating the living tissue of the internal organ is included in the three-dimensional data representing the internal organ in the computer.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a system according to an embodiment.
  • FIG. 2 is a diagram illustrating a hardware configuration example of the information processing apparatus according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of the functions of the information processing apparatus according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of a screen on which three-dimensional data representing the liver is displayed.
  • FIG. 5 is a diagram illustrating a state in which information indicating the input joint surface is displayed superimposed on the three-dimensional data.
  • FIG. 6 is a diagram illustrating an example of a screen on which the bonded three-dimensional data is displayed.
  • FIG. 7 is a flowchart illustrating an operation example of the information processing apparatus according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of functions of the information processing apparatus according to the modification.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a system 1 according to the present embodiment.
  • the system 1 of the present embodiment includes a medical diagnostic apparatus 10, an information processing apparatus 20, and a modeling apparatus 30.
  • the medical diagnostic apparatus 10 includes a medical image diagnostic apparatus 11, an ultrasonic diagnostic apparatus 12, and a biochemical diagnostic apparatus 13.
  • the medical image diagnostic apparatus 11 is an apparatus that generates a three-dimensional data (three-dimensional image) by imagining a portion that is not normally visible without damaging the human body.
  • the medical image diagnostic apparatus 11 includes an X-ray CT apparatus, an MRI, or the like.
  • the medical image diagnostic apparatus 11 generates three-dimensional volume data (an example of three-dimensional data) in which tomographic images (slice images) of internal organs of a patient are stacked, the generated three-dimensional data, and the three-dimensional data
  • the patient ID for identifying the patient corresponding to the data is linked to the information processing apparatus 20.
  • the medical image diagnostic apparatus 11 will be described by taking, as an example, a case in which three-dimensional data representing the liver of the patient is generated for each of a plurality of patients.
  • the types of internal organs that can be generated are arbitrary and are not limited to the liver.
  • Examples of internal organs include, for example, digestive system such as liver, pancreas, stomach, small intestine and large intestine, circulatory system such as heart, spleen and blood vessel, respiratory system such as lung, urinary system such as kidney and bladder, adrenal gland And endocrine system.
  • the ultrasonic diagnostic apparatus 12 is an apparatus that can measure the hardness of a patient's internal organs using an ultrasonic pulse propagated to an object.
  • the ultrasound diagnostic apparatus 12 generates first data indicating the hardness of the patient's liver, and links the generated first data and the patient ID to the information processing apparatus 20.
  • a configuration in which the hardness of a patient's internal organs is measured using MRI may be used.
  • the above-described medical image diagnostic apparatus 11 may also serve as a function of measuring the hardness of the internal organs of the patient without providing the ultrasonic diagnostic apparatus 12.
  • the biochemical diagnostic device 13 can measure data related to biochemical information such as protein, sugar, lipid, enzyme, electrolyte, etc. of patients (typically the amount of protein, sugar, lipid, enzyme, electrolyte, etc. in blood). Device.
  • the biochemical diagnostic device 13 generates second data indicating data relating to the biochemical information of the patient, and associates the generated second data with the patient ID and passes the data to the information processing device 20.
  • the biochemical diagnostic apparatus 13 may be configured to measure the hardness of the internal organs of the patient using the biochemical information. That is, the above-described biochemical diagnostic device 13 may also serve as a function of measuring the hardness of the internal organs of the patient without providing the ultrasonic diagnostic device 12.
  • the information processing apparatus 20 collects the above-described various data (three-dimensional data, first data, and second data) from the medical diagnostic apparatus 10 and represents the liver for each of a plurality of patients (for each patient ID).
  • the three-dimensional data, the first data indicating the hardness of the liver, and the second data relating to the biochemical information of the patient are managed (saved) in association with each other.
  • the information processing device 20 displays three-dimensional data representing the liver of the selected patient in response to an operation of a user (here, a doctor, an engineer, etc.), and in response to an input to the three-dimensional data, In addition to generating model data as a base for modeling a regenerative medical material for regenerating a living tissue (cell group), materials and additives of the regenerative medical material are determined. Details of this will be described later. Then, the information processing apparatus 20 passes model data information including the generated model data and information indicating each of the determined material and additive to the modeling apparatus 30.
  • the modeling apparatus 30 includes a modeling unit 31 that models a regenerative medical material based on the model data information received from the information processing apparatus 20.
  • the modeling unit 31 includes a hardware element group for providing a function of a three-dimensional printer (3D-Printer).
  • the configuration of the modeling unit 31 for providing the function of the three-dimensional printer can be realized by various known configurations.
  • the modeling unit 31 includes a nozzle for discharging a material that has been heated and melted to have a desired temperature and pressure, a moving mechanism for moving the nozzle in a three-dimensional direction, and a pattern having a desired shape by the material discharged from the nozzle. It includes a modeling stage on which layers are formed, a control unit that controls each unit, and the like.
  • the modeling unit 31 models a three-dimensional structure corresponding to the model data by repeatedly laminating pattern layers based on the model data.
  • One pattern layer is formed based on one tomographic image corresponding to the same position as the one pattern layer among the plurality of tomographic images constituting the model data.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 20.
  • the information processing apparatus 20 includes a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, an auxiliary storage device 24, and an input device 25.
  • the display device 26 and an external I / F 27 are provided.
  • the CPU 21 executes the program to comprehensively control the operation of the information processing apparatus 20 and realize various functions of the information processing apparatus 20. Various functions of the information processing apparatus 20 will be described later.
  • the ROM 22 is a non-volatile memory, and stores various data (information written at the manufacturing stage of the information processing apparatus 20) including a program for starting the information processing apparatus 20.
  • the RAM 23 is a volatile memory having a work area for the CPU 21.
  • the auxiliary storage device 24 stores various data such as a program executed by the CPU 21.
  • the auxiliary storage device 24 is composed of, for example, an HDD (Hard Disc Drive).
  • the input device 25 is a device for a user who uses the information processing device 20 (here, a doctor, a technician, etc.) to perform various operations.
  • the input device 25 includes, for example, a mouse, a keyboard, a touch panel, or hardware keys.
  • the display device 26 displays various information including three-dimensional data of the liver for each patient.
  • the display device 26 is configured by, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or a cathode ray tube display.
  • the input device 25 and the display device 26 may be integrally configured in a form such as a touch panel.
  • the external I / F 27 is an interface for connecting (communication) with an external apparatus such as the medical diagnostic apparatus 10 (medical image diagnostic apparatus 11, ultrasonic diagnostic apparatus 12, biochemical diagnostic apparatus 13) or modeling apparatus 30.
  • an external apparatus such as the medical diagnostic apparatus 10 (medical image diagnostic apparatus 11, ultrasonic diagnostic apparatus 12, biochemical diagnostic apparatus 13) or modeling apparatus 30.
  • FIG. 3 is a diagram illustrating an example of functions of the information processing apparatus 20.
  • the information processing apparatus 20 includes a storage unit 201, a user interface unit 202, a first acquisition unit 203, a generation unit 204, a second acquisition unit 205, a determination unit 206, and an output unit 207.
  • the storage unit 201 stores various data acquired from the medical diagnostic apparatus 10.
  • the storage unit 201 stores, for each of a plurality of patients (for each patient ID), three-dimensional data representing the liver, first data indicating the hardness of the liver, and data regarding the biochemical information of the patient.
  • the association information associated with the second data to be shown is stored at least.
  • the storage unit 201 is realized by, for example, the auxiliary storage device 24 (for example, HDD) shown in FIG.
  • the user interface unit 202 has a function of accepting user input and a function of displaying various types of information.
  • the user interface unit 202 that has received the operation reads out the corresponding three-dimensional data from the storage unit 201 and displays it on the display device 26.
  • FIG. 4 is a diagram illustrating an example of a screen (screen displayed on the display device 26) on which three-dimensional data representing the liver is displayed.
  • the user performs an operation for inputting a joint surface indicating a surface on which the regenerative medical material is to be joined, while checking the three-dimensional data of the liver displayed on the display device 26.
  • the user interface unit 202 accepts the input.
  • the “surface to remove the original internal organ officer” is Although it becomes a “joint surface”, the form of the “joint surface” is not limited to this. For example, it is conceivable to add a living tissue without excising the original internal organ. In this case, of the original internal organ officers, the surface to which the biological tissue to be added is connected becomes the “joint surface”.
  • the user interface unit 202 can superimpose and display the input information indicating the joint surface on the three-dimensional data.
  • the screen shown in FIG. 4 is a screen in which the entire three-dimensional data representing the liver is displayed and the joint surface can be input.
  • this screen may be referred to as an “input screen”.
  • the user performs an operation for inputting the volume of the regenerative medical material to be created in the state where the screen of FIG. 4 is displayed, and the user interface unit 202 receives the input.
  • the user interface unit 202 has a function (a function of “accepting unit”) that accepts an input of a joint surface for three-dimensional data representing a liver and an input of a volume of a regenerative medical material. Yes. Furthermore, in this example, the user interface unit 202 also has a function of accepting input of biometric information indicating at least one of the age, sex, weight, and height of a person (patient).
  • the first acquisition unit 203 acquires input data including at least information on the above-described joint surface among the three-dimensional data representing the liver.
  • the input data includes information on the joint surface, volume data indicating the volume of the regenerative medical material, and internal structure data for specifying the internal structure of the regenerative medical material.
  • the information on the joint surface described above includes at least the area and shape of the joint surface.
  • the information on the joint surface further includes the position of the blood vessel on the joint surface.
  • the internal structure data described above includes at least the porosity of the regenerative medical material.
  • the 1st acquisition part 203 is based on the input (In this example, the input of a joint surface, the input of the volume of a regenerative medical material, and the input of biometric information) received by the user interface part 202 (acceptance part). To generate and acquire input data.
  • the first acquisition unit 203 includes the area and shape of the cross section corresponding to the joint surface received by the user interface unit 202 in the three-dimensional data displayed on the input screen (the position of the blood vessel as necessary). Is identified. And the information which shows the area and shape (position of the blood vessel as needed) of the specified section is acquired as information about a joint surface.
  • the acquisition method of the information regarding a joint surface is not restricted to this. For example, it may be a form in which information on the joint surface is automatically acquired using the internal organ officer's three-dimensional analysis software.
  • the 3D analysis software can reproduce the whole image of the internal organ officer, the cut surface by the operation, the state after the cut, and the area and shape of the cut surface. Can be automatically extracted.
  • the three-dimensional analysis software can automatically generate information indicating the area and shape of the cut surface extracted in this manner as information on the joint surface.
  • the function of the first acquisition unit 203 may be provided by the above-described three-dimensional analysis software.
  • the first acquisition unit 203 generates volume data indicating the volume (volume of the regenerative medical material) received by the user interface unit 202.
  • the first acquisition unit 203 in this example is based on the input received by the user interface unit 202 and a plurality of sample data (three-dimensional data) representing a normal liver prepared in advance. Generate material internal structure data.
  • the plurality of sample data is associated with biological information such as the age, sex, weight, and height of a person (patient) and stored in advance in the storage unit 201 or the like. For example, by machine learning based on the plurality of sample data, the combination of the area and shape of the excised surface of the liver, the volume data of the part to be excised, and biometric information is input, and it corresponds to the biometric information of each patient.
  • the learning model for outputting the porosity of the regenerative medical material to be generated may be constructed in advance.
  • the first acquisition unit 203 generates biometric information according to an input (input of biometric information) received by the user interface unit 202.
  • the first acquisition unit 203 uses the learning model, the first acquisition unit 203 generates the joint surface area and shape, volume data, biological information, and the like generated according to the input received by the user interface unit 202 as described above. It is possible to generate (calculate) the porosity corresponding to the combination.
  • the present invention is not limited to this, and for example, the porosity may be manually input.
  • the first acquisition unit 203 can acquire the porosity that is manually input via the user interface unit 202.
  • the learning model is not necessary.
  • the first acquisition unit 203 is based on the input received by the user interface unit 202 (in the above example, the input of the joint surface, the input of the volume of the regenerative medical material, and the input of the biological information). It is possible to generate input data including information on the joint surface, volume data indicating the volume of the regenerative medical material, and internal structure data for specifying the internal structure of the regenerative medical material.
  • the generation unit 204 Based on the input data acquired by the first acquisition unit 203, the generation unit 204 generates model data that is the basis for modeling the regenerative medical material with the modeling apparatus 30. For example, by machine learning based on a plurality of sample data representing a normal liver prepared in advance, the area and shape of the excision surface of the liver, volume data of the part to be excised, and the porosity of the regenerative medical material to be generated The learning model that outputs the skeleton data indicating the skeleton shape of the regenerative medical material to be generated may be configured in advance. In this case, the generation unit 204 can generate (calculate) skeleton data corresponding to the input data acquired by the first acquisition unit 203 using the learning model. The skeleton data generated in this way becomes model data.
  • the above-described input data does not include the void ratio, and by machine learning based on a plurality of sample data prepared in advance, the area and shape of the excision surface of the liver, and the volume data of the part to be excised A learning model that outputs the skeleton data may be constructed in advance.
  • the generation unit 204 generates (calculates) skeleton data corresponding to the input data (in this example, the porosity is not included) acquired by the first acquisition unit 203 using the learning model. Can do.
  • the method for generating the model data is not limited to this, and various methods known in the art of generating internal organ skeletons using an extracellular matrix can be used.
  • the user interface unit 202 includes three-dimensional data representing a state in which the model data generated by the generation unit 204 is joined to the original three-dimensional data (in the following description, “joined three-dimensional data”). Display on the display device 26.
  • FIG. 6 is a diagram illustrating an example of a screen on which the bonded three-dimensional data is displayed. In the following description, this screen may be referred to as a “model data preview screen”.
  • the user interface unit 202 is configured to display volume data indicating the remaining volume after excising a portion corresponding to the model data from the original three-dimensional data together with the above-described joint three-dimensional data. May be. It is also possible to display volume data indicating the volume of the entire three-dimensional data before excising the site corresponding to the model data or volume data indicating the volume of the excised site. Furthermore, based on a plurality of sample data representing a normal liver, normal liver volume data corresponding to biological information such as age, sex, weight, and height of each patient can be displayed. In some cases, the user confirms the joint three-dimensional data and the volume data, and as a result, may increase or decrease the volume of the model data (change the model data).
  • the user presses an operation for returning from the above-described model data preview screen to the above-described input screen (in this example, the screen shown in FIG. 4) (for example, a “return” button displayed on the model data preview screen). Operation etc.).
  • the user interface unit 202 performs control to display the above-described input screen again. Thereafter, the process until the model data as described above is generated and displayed is performed again.
  • the second acquisition unit 205 refers to the above-described association information (information obtained by associating at least the three-dimensional data representing the liver and the first data representing the hardness of the liver for each of a plurality of patients)
  • the first data associated with the three-dimensional data corresponding to the input data acquired by the first acquisition unit 203 (three-dimensional data that is the input target of the joint surface) is acquired.
  • the above-described association information associates, for each of a plurality of patients, three-dimensional data representing the liver, first data, and second data indicating data related to the patient's biochemical information.
  • the second acquisition unit 205 acquires the second data associated with the three-dimensional data corresponding to the input data acquired by the first acquisition unit 203 with reference to the association information. .
  • the determining unit 206 determines the material of the regenerative medical material according to the first data acquired by the second acquiring unit 205. For example, information indicating the correspondence between hardness and material (sometimes referred to as “first information” in the following description) is determined in advance based on experiments or the like, and the determination unit 206 determines the first information. Referring to, the material associated with the hardness indicated by the first data acquired by the second acquisition unit 205 can be determined as the material for the regenerative medical material.
  • the determination unit 206 determines an additive for promoting regeneration, which is added to the material of the regenerative medical material, according to the second data acquired by the second acquisition unit 205.
  • the second information information indicating a correspondence relationship between biochemical information (for example, protein components in blood, etc.) and an additive (varies depending on protein components) (hereinafter referred to as “second information” in some cases).
  • the determination unit 206 refers to the second information and associates it with the biochemical information indicated by the second data acquired by the second acquisition unit 205 with reference to the second information.
  • the added additive can be determined as an additive for promoting regeneration.
  • the output unit 207 outputs model data information including the model data generated by the generation unit 204 and the materials and additives of the regenerative medical material determined by the determination unit 206 to the modeling apparatus 30.
  • FIG. 7 is a flowchart showing an operation example of the information processing apparatus 20 of the present embodiment.
  • the above-described input screen is displayed on the display device 26 (assuming the state of FIG. 4).
  • the specific content of each step is as above-mentioned, detailed description is abbreviate
  • the user interface unit 202 receives an input of a joint surface for 3D data representing the liver and an input of a volume of a regenerative medical material (step S1).
  • the 1st acquisition part 203 produces
  • the specific contents are as described above.
  • the generation unit 204 generates model data based on the input data acquired in step S2 (step S3).
  • the second acquisition unit 205 acquires first data and second data associated with the three-dimensional data corresponding to the input data acquired in step S2 (step S4).
  • the determination unit 206 determines the material of the regenerative medical material according to the first data acquired at step S4, and determines the additive according to the second data acquired at step S4. (Step S5).
  • the output unit 207 outputs model data information including the model data generated in step S3 and information indicating each of the material and additive determined in step S5 to the modeling apparatus 30 (step) S6).
  • the information processing apparatus 20 uses the regenerative medical material indicating the material for regenerating the living tissue of the liver among the three-dimensional data representing the liver (an example of an internal organ).
  • Input data including at least information on the bonding surface indicating the surfaces to be bonded is acquired, and model data is generated based on the acquired input data. That is, since the regenerative medical material is generated by reflecting the information on the portion of the liver where the regenerative medical material is to be joined, it is possible to generate the optimal regenerative medical material according to the situation.
  • first data data indicating the hardness of the liver
  • second data data relating to patient biochemical information
  • first data data indicating the hardness of the liver
  • second data data relating to patient biochemical information
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the gist thereof in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment.
  • the above input data may be manually input. That is, the user interface unit 202 may receive the above-described input data input in response to a user operation, and the first acquisition unit 203 may acquire the received input data. In this case, the user of the information processing device 20 needs to perform an operation for inputting all information (information on the joint surface, volume data, internal structure data) constituting the above-described input data.
  • the first acquisition unit 203 calculates the porosity of the regenerative medical material to be created based on the input received by the user interface unit 202 and a plurality of sample data prepared in advance.
  • the present invention is not limited to this.
  • the void ratio may be generated by reflecting the first data described above (data indicating the hardness of the internal organs).
  • the first acquisition unit 203 uses the learning model to generate the joint surface area, shape, and volume data generated according to the input received by the user interface unit 202 as described above, and the second It is possible to generate (calculate) the porosity corresponding to the combination with the first data acquired by the acquisition unit 205.
  • the system 1 in the above-described embodiment is configured to include the medical diagnostic apparatus 10, the information processing apparatus 20, and the modeling apparatus 30.
  • the part including the information processing apparatus 20 and the modeling apparatus 30 may be considered as the system 1 of the present embodiment.
  • the system 1 of the present embodiment only needs to include at least the information processing device 20 described above and the modeling device 30 for modeling the regenerative medical material.
  • at least a part of the functions of the information processing apparatus 20 described above may be mounted on the modeling apparatus 30.
  • the system to which the present invention is applied includes at least the first acquisition unit 203 described above, the generation unit 204 described above, and the modeling unit 31 described above.
  • the modeling apparatus 30 can be arbitrarily provided.
  • the form provided in the modeling apparatus 30 may be sufficient as the above-mentioned production
  • Modification 4 it may be a form in which it is not necessary to input biometric information when determining the porosity.
  • the user interface unit 202 does not need a function of accepting input of patient biometric information.
  • a combination of the area and shape of the excision surface of the liver and the volume data of the part to be excised is input, and a regenerative medical material to be generated (in this example, it is excised)
  • the learning model that outputs the porosity of the regenerative medical material corresponding to the region to be reconstructed may be constructed in advance.
  • the first acquisition unit 203 uses this learning model, and the porosity corresponding to the combination of the area and shape of the joint surface and the volume data generated according to the input received by the user interface unit 202. Can be generated (calculated). That is, the user interface unit 202 (accepting unit) accepts the input of the joint surface with respect to the three-dimensional data representing the internal organs and the input of the volume of the regenerative medical material, and the first obtaining unit 203 is the user interface unit.
  • the input data may be generated and acquired based on the input received in 202 (in this example, the input of the joint surface and the input of the volume of the regenerative medical material).
  • the above-described input data may further include biometric information indicating at least one of age, sex, weight, and height.
  • the first acquisition unit 203 generates biometric information according to an input (input of biometric information) received by the user interface unit 202.
  • the input data acquired by the first acquisition unit 203 includes information on the joint surface, the volume data, the internal structure data, and the biological information.
  • the generation unit 204 Model data is generated based on the input data.
  • the generation unit 204 can generate (calculate) skeleton data corresponding to the input data acquired by the first acquisition unit 203 using the learning model.
  • the input data may be in a form further including biometric information indicating at least one of the age, sex, weight, and height of the patient. According to the present modification described above, it is possible to generate an optimal regenerative medical material according to the age, sex, weight, height, etc. of each patient.
  • the user interface unit 202 combines volume data indicating the remaining volume after excision and the hardness of the remaining internal organs (liver in this example) after excision together with the above-described joint three-dimensional data.
  • the volume data indicating the volume of the regenerative medical material required based on the data of 1 may be displayed (displayed on the above-described model data preview screen).
  • the doctor can correct the volume data indicating the volume of the regenerative medical material required according to the situation of the internal organs of the patient. Become.
  • the information processing apparatus 20 may further include a third acquisition unit 208.
  • the third acquisition unit 208 acquires third data indicating the above-described biological information.
  • the third acquisition unit 208 can also acquire biometric information received by the user interface unit 202 as third data.
  • the determination unit 206 determines the material of the regenerative medical material based on the first data acquired by the second acquisition unit 205 and the third data acquired by the third acquisition unit 208. can do.
  • information indicating a correspondence relationship between hardness, biological information, and material (sometimes referred to as “third information” in the following description) is determined in advance based on experiments or the like. Referring to the information, the association between the hardness indicated by the first data acquired by the second acquisition unit 205 and the biometric information indicated by the third data acquired by the third acquisition unit 208
  • the obtained material can be determined as a material for a regenerative medical material.
  • the determination unit 206 adds an additive for promoting regeneration according to the second data acquired by the second acquisition unit 205 and the third data acquired by the third acquisition unit 208. It can also be determined. For example, information indicating the correspondence between biochemical information, biological information, and additives (sometimes referred to as “fourth information” in the following description) is determined in advance based on experiments or the like. With reference to this fourth information, biochemical information indicated by the second data acquired by the second acquisition unit 205, and biological information indicated by the third data acquired by the third acquisition unit 208 The additive associated with the combination can be determined as an additive for promoting regeneration. According to the present modification described above, it is possible to generate an optimal regenerative medical material according to the age, sex, weight, height, etc. of each patient.
  • the generated model data may be processed.
  • the doctor confirms the model data (generated model data) displayed on the model data preview screen described above, and the internal organ officer is atrophied or expanded as compared with the normal state depending on the situation of the internal organ officer of the patient.
  • the enlargement ratio for enlarging to a size suitable for the internal organ officer of the healthy body or the reduction ratio for reduction is input, and the generation unit 204 outputs the fourth enlargement ratio or reduction ratio indicating the input enlargement ratio or reduction ratio.
  • the generated model data may be enlarged or reduced according to the data.
  • the doctor can determine the enlargement rate or reduction rate for making the size of the internal organs of the healthy body based on the biological information such as the age, sex, weight, and height of the patient. According to the present modification described above, it is possible to generate an optimal regenerative medical material according to the situation such as the age of each patient and the state of internal organs.
  • the program executed by the information processing apparatus 20 of the above-described embodiment is a file in an installable format or an executable format, and is a CD-ROM, a flexible disk (FD), a CD-R, a DVD (Digital Versatile Disk). It may be configured to be recorded on a computer-readable recording medium such as USB (Universal Serial Bus), or provided or distributed via a network such as the Internet. Further, various programs may be provided by being incorporated in advance in a nonvolatile storage medium such as a ROM.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Instructional Devices (AREA)

Abstract

Provided are an information processing device, a system, an information processing method and a program capable of generating a material for regenerative medicine that is optimized to the situation. This information processing device is provided with a first acquisition unit and a generation unit. The first acquisition unit acquires, out of three-dimensional data describing an internal organ, input data including at least information relating to a joining surface, defined as a surface to which a material for regenerative medicine is joined. The material for regenerative medicine is defined as a material for regenerating biological tissue of an internal organ. The generation unit generates, on the basis of the input data, model data which serves as a base for forming the material for regenerative medicine using a forming device.

Description

情報処理装置、システム、情報処理方法およびプログラムInformation processing apparatus, system, information processing method, and program
 本発明は、情報処理装置、システム、情報処理方法およびプログラムに関する。 The present invention relates to an information processing apparatus, system, information processing method, and program.
 従来、例えば細胞外マトリックスなどにより、例えば肝臓、腎臓等の内臓器官の生体組織(細胞群)を再生するための再生医療用素材(生体細胞が接着・増殖するための骨格となる足場)を生成する技術が知られている。例えば特許文献1には、生体適合性および生分解性を示す造形体により構成された3次元多孔中空骨格からなる足場を、3次元プリンターで生成する技術が開示されている。 Conventionally, regenerative medical materials (scaffolds that serve as a skeleton for the adhesion and proliferation of living cells) for regenerating living organs (cell groups) of internal organs such as the liver and kidney are generated using, for example, an extracellular matrix. The technology to do is known. For example, Patent Document 1 discloses a technique for generating a scaffold composed of a three-dimensional porous hollow skeleton composed of a shaped body exhibiting biocompatibility and biodegradability using a three-dimensional printer.
特開2015-89433号公報JP2015-89433A
 しかしながら、従来技術では、例えば内臓器官の一部を切除し、代替となる再生医療用素材を接合する場合などにおいて、該内臓器官のうち再生医療用素材を接合すべき箇所の情報を反映させて再生医療用素材を生成することは行われていなかった。そのため、状況に応じた最適な再生医療用素材を生成することは困難であった。 However, in the prior art, for example, in the case where a part of an internal organ officer is excised and an alternative regenerative medical material is joined, information on the location where the regenerative medical material is to be joined is reflected in the internal organ officer. Generation of regenerative medical materials has not been performed. For this reason, it has been difficult to generate an optimal material for regenerative medicine according to the situation.
 本発明は、状況に応じた最適な再生医療用素材を生成することが可能な情報処理装置、システム、情報処理方法およびプログラムを提供することを目的とする。 An object of the present invention is to provide an information processing apparatus, system, information processing method, and program capable of generating an optimal regenerative medical material according to the situation.
 上述した課題を解決し、目的を達成するために、本発明は、内臓器官を表す3次元データのうち、前記内臓器官の生体組織を再生するための素材を示す再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得する第1の取得部と、前記入力データに基づいて、前記再生医療用素材を造形装置で造形する際の元となるモデルデータを生成する生成部と、を備える情報処理装置である。 In order to solve the above-described problems and achieve the object, the present invention joins a regenerative medical material representing a material for regenerating a living tissue of the internal organ in 3D data representing the internal organ. A first acquisition unit that acquires input data including at least information related to the bonding surface, and generation that generates model data based on the input data when forming the regenerative medical material with a modeling apparatus And an information processing apparatus.
 また、本発明は、情報処理装置と、生体組織を再生するための素材を示す再生医療用素材を造形するための造形装置と、を少なくとも備えたシステムであって、内臓器官を表す3次元データのうち前記再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得する第1の取得部と、前記入力データに基づいて、前記再生医療用素材を造形する際の元となるモデルデータを生成する生成部と、前記モデルデータに基づいて前記再生医療用素材を造形する造形部と、を備えるシステムである。 In addition, the present invention is a system including at least an information processing device and a modeling device for modeling a regenerative medical material indicating a material for reproducing a living tissue, and includes three-dimensional data representing an internal organ A first acquisition unit that acquires input data including at least information on a bonding surface indicating a surface to which the regenerative medical material is bonded, and a source for modeling the regenerative medical material based on the input data A generating unit that generates model data, and a modeling unit that models the regenerative medical material based on the model data.
 また、本発明は、内臓器官を表す3次元データのうち、前記内臓器官の生体組織を再生するための素材を示す再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得する第1の取得ステップと、前記入力データに基づいて、前記再生医療用素材を造形装置で造形する際の元となるモデルデータを生成する生成ステップと、を含む、情報処理方法である。 Further, the present invention provides input data including at least information relating to a joining surface indicating a surface to which a regenerative medical material representing a material for regenerating a living tissue of the internal organ is included among the three-dimensional data representing the internal organ. It is an information processing method including a first acquisition step to be acquired and a generation step of generating model data as a base when the regenerative medical material is modeled by a modeling apparatus based on the input data.
 また、本発明は、コンピュータに、内臓器官を表す3次元データのうち、前記内臓器官の生体組織を再生するための素材を示す再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得する第1の取得ステップと、前記入力データに基づいて、前記再生医療用素材を造形装置で造形する際の元となるモデルデータを生成する生成ステップと、を実行させるためのプログラムである。 Further, the present invention includes at least information on a joint surface indicating a surface on which a regenerative medical material representing a material for regenerating the living tissue of the internal organ is included in the three-dimensional data representing the internal organ in the computer. A program for executing a first acquisition step of acquiring input data, and a generation step of generating model data as a base when the regenerative medical material is modeled by a modeling apparatus based on the input data It is.
 本発明によれば、状況に応じた最適な再生医療用素材を生成することが可能になる。 According to the present invention, it is possible to generate an optimal material for regenerative medicine according to the situation.
図1は、実施形態のシステムの概略構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a schematic configuration of a system according to an embodiment. 図2は、実施形態の情報処理装置のハードウェア構成例を示す図である。FIG. 2 is a diagram illustrating a hardware configuration example of the information processing apparatus according to the embodiment. 図3は、実施形態の情報処理装置が有する機能の一例を示す図である。FIG. 3 is a diagram illustrating an example of the functions of the information processing apparatus according to the embodiment. 図4は、肝臓を表す3次元データが表示された画面の一例を示す図である。FIG. 4 is a diagram illustrating an example of a screen on which three-dimensional data representing the liver is displayed. 図5は、入力された接合面を示す情報が3次元データに重畳して表示された状態を示す図である。FIG. 5 is a diagram illustrating a state in which information indicating the input joint surface is displayed superimposed on the three-dimensional data. 図6は、接合3次元データが表示された画面の一例を示す図である。FIG. 6 is a diagram illustrating an example of a screen on which the bonded three-dimensional data is displayed. 図7は、実施形態の情報処理装置の動作例を示すフローチャートである。FIG. 7 is a flowchart illustrating an operation example of the information processing apparatus according to the embodiment. 図8は、変形例の情報処理装置が有する機能の一例を示す図である。FIG. 8 is a diagram illustrating an example of functions of the information processing apparatus according to the modification.
 以下、添付図面を参照しながら、本発明に係る情報処理装置、システム、情報処理方法およびプログラムの実施形態を詳細に説明する。 Hereinafter, embodiments of an information processing apparatus, a system, an information processing method, and a program according to the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本実施形態のシステム1の概略構成の一例を示す図である。図1に示すように、本実施形態のシステム1は、医用診断装置10と、情報処理装置20と、造形装置30と、を含む。 FIG. 1 is a diagram illustrating an example of a schematic configuration of a system 1 according to the present embodiment. As shown in FIG. 1, the system 1 of the present embodiment includes a medical diagnostic apparatus 10, an information processing apparatus 20, and a modeling apparatus 30.
 図1の例では、医用診断装置10は、医用画像診断装置11と、超音波診断装置12と、生化学診断装置13と、を含む。 In the example of FIG. 1, the medical diagnostic apparatus 10 includes a medical image diagnostic apparatus 11, an ultrasonic diagnostic apparatus 12, and a biochemical diagnostic apparatus 13.
 医用画像診断装置11は、人体を傷つけることなく、通常は目視できない部分をイメージ化して3次元データ(3次元画像)を生成する装置である。例えば医用画像診断装置11はX線CT装置やMRI等で構成される。この例では、医用画像診断装置11は、患者の内臓器官の断層像(スライス画像)を積層した3次元ボリュームデータ(3次元データの一例)を生成し、生成した3次元データと、該3次元データに対応する患者を識別する患者IDとを紐付けて情報処理装置20へ渡す。以下の説明では、医用画像診断装置11は、複数の患者ごとに、該患者の肝臓を表す3次元データを生成する場合を例に挙げて説明するが、医用画像診断装置11によって3次元データを生成可能な内臓器官の種類は任意であり、肝臓に限られるものではない。内臓器官の例としては、例えば肝臓、膵臓、胃、小腸、大腸等の消化器系、心臓、脾臓、血管等の循環器系、肺等の呼吸器系、腎臓や膀胱等の泌尿器系、副腎等の内分泌系などを挙げることができる。 The medical image diagnostic apparatus 11 is an apparatus that generates a three-dimensional data (three-dimensional image) by imagining a portion that is not normally visible without damaging the human body. For example, the medical image diagnostic apparatus 11 includes an X-ray CT apparatus, an MRI, or the like. In this example, the medical image diagnostic apparatus 11 generates three-dimensional volume data (an example of three-dimensional data) in which tomographic images (slice images) of internal organs of a patient are stacked, the generated three-dimensional data, and the three-dimensional data The patient ID for identifying the patient corresponding to the data is linked to the information processing apparatus 20. In the following description, the medical image diagnostic apparatus 11 will be described by taking, as an example, a case in which three-dimensional data representing the liver of the patient is generated for each of a plurality of patients. The types of internal organs that can be generated are arbitrary and are not limited to the liver. Examples of internal organs include, for example, digestive system such as liver, pancreas, stomach, small intestine and large intestine, circulatory system such as heart, spleen and blood vessel, respiratory system such as lung, urinary system such as kidney and bladder, adrenal gland And endocrine system.
 超音波診断装置12は、対象物へ伝搬させる超音波パルスを利用して、患者の内臓器官の硬さを測定可能な装置である。この例では、超音波診断装置12は、患者の肝臓の硬さを示す第1のデータを生成し、生成した第1のデータと、患者IDとを紐付けて情報処理装置20へ渡す。なお、例えば超音波診断装置12の代わりに、MRIを利用して患者の内臓器官の硬さを測定する形態であってもよい。つまり、超音波診断装置12が設けられずに、上述の医用画像診断装置11が、患者の内臓器官の硬さを測定する機能を兼ねる形態であってもよい。 The ultrasonic diagnostic apparatus 12 is an apparatus that can measure the hardness of a patient's internal organs using an ultrasonic pulse propagated to an object. In this example, the ultrasound diagnostic apparatus 12 generates first data indicating the hardness of the patient's liver, and links the generated first data and the patient ID to the information processing apparatus 20. Note that, for example, instead of the ultrasonic diagnostic apparatus 12, a configuration in which the hardness of a patient's internal organs is measured using MRI may be used. In other words, the above-described medical image diagnostic apparatus 11 may also serve as a function of measuring the hardness of the internal organs of the patient without providing the ultrasonic diagnostic apparatus 12.
 生化学診断装置13は、患者のタンパク質、糖、脂質、酵素、電解質等の生化学情報に関するデータ(典型的には血液中のタンパク質、糖、脂質、酵素、電解質等の量など)を測定可能な装置である。この例では、生化学診断装置13は、患者の生化学情報に関するデータを示す第2のデータを生成し、生成した第2のデータと、患者IDとを紐付けて情報処理装置20へ渡す。なお、例えば超音波診断装置12の代わりに、生化学診断装置13が、生化学情報を利用して患者の内臓器官の硬さを測定する形態であってもよい。つまり、超音波診断装置12が設けられずに、上述の生化学診断装置13が、患者の内臓器官の硬さを測定する機能を兼ねる形態であってもよい。 The biochemical diagnostic device 13 can measure data related to biochemical information such as protein, sugar, lipid, enzyme, electrolyte, etc. of patients (typically the amount of protein, sugar, lipid, enzyme, electrolyte, etc. in blood). Device. In this example, the biochemical diagnostic device 13 generates second data indicating data relating to the biochemical information of the patient, and associates the generated second data with the patient ID and passes the data to the information processing device 20. For example, instead of the ultrasonic diagnostic apparatus 12, the biochemical diagnostic apparatus 13 may be configured to measure the hardness of the internal organs of the patient using the biochemical information. That is, the above-described biochemical diagnostic device 13 may also serve as a function of measuring the hardness of the internal organs of the patient without providing the ultrasonic diagnostic device 12.
 情報処理装置20は、医用診断装置10から上述の各種のデータ(3次元データ、第1のデータ、第2のデータ)を収集し、複数の患者ごとに(患者IDごとに)、肝臓を表す3次元データと、肝臓の硬さを示す第1のデータと、患者の生化学情報に関する第2のデータと、を紐付けて管理(保存)する。情報処理装置20は、ユーザ(ここでは医師や技師等を想定)の操作に応じて、選択された患者の肝臓を表す3次元データを表示し、該3次元データに対する入力に応じて、肝臓の生体組織(細胞群)を再生するための再生医療用素材を造形する際の元となるモデルデータを生成するとともに、該再生医療用素材の材料と添加物を決定する。この詳細な内容については後述する。そして、情報処理装置20は、生成したモデルデータ、決定した材料および添加物の各々を示す情報と、を含むモデルデータ情報を造形装置30へ渡す。 The information processing apparatus 20 collects the above-described various data (three-dimensional data, first data, and second data) from the medical diagnostic apparatus 10 and represents the liver for each of a plurality of patients (for each patient ID). The three-dimensional data, the first data indicating the hardness of the liver, and the second data relating to the biochemical information of the patient are managed (saved) in association with each other. The information processing device 20 displays three-dimensional data representing the liver of the selected patient in response to an operation of a user (here, a doctor, an engineer, etc.), and in response to an input to the three-dimensional data, In addition to generating model data as a base for modeling a regenerative medical material for regenerating a living tissue (cell group), materials and additives of the regenerative medical material are determined. Details of this will be described later. Then, the information processing apparatus 20 passes model data information including the generated model data and information indicating each of the determined material and additive to the modeling apparatus 30.
 造形装置30は、情報処理装置20から受け取ったモデルデータ情報に基づいて再生医療用素材を造形する造形部31を備える。この例では、造形部31は、3次元プリンター(3D-Printer)の機能を提供するためのハードウェア要素群で構成される。 The modeling apparatus 30 includes a modeling unit 31 that models a regenerative medical material based on the model data information received from the information processing apparatus 20. In this example, the modeling unit 31 includes a hardware element group for providing a function of a three-dimensional printer (3D-Printer).
 3次元プリンターの機能を提供するための造形部31の構成は、公知の様々な構成で実現可能である。例えば造形部31は、加熱溶融されて所望の温度・圧力となった材料を吐き出すためのノズル、ノズルを3次元方向に移動するための移動機構、ノズルから吐き出された材料により所望の形状のパターン層が形成される造形ステージ、各部を制御する制御部などを含んで構成される。造形部31は、モデルデータに基づいてパターン層を繰り返し積層することにより、モデルデータに対応する3次元構造体を造形する。なお、1つのパターン層は、モデルデータを構成する複数の断層画像のうち、該1つのパターン層と同じ位置に対応する1つの断層画像に基づいて形成される。 The configuration of the modeling unit 31 for providing the function of the three-dimensional printer can be realized by various known configurations. For example, the modeling unit 31 includes a nozzle for discharging a material that has been heated and melted to have a desired temperature and pressure, a moving mechanism for moving the nozzle in a three-dimensional direction, and a pattern having a desired shape by the material discharged from the nozzle. It includes a modeling stage on which layers are formed, a control unit that controls each unit, and the like. The modeling unit 31 models a three-dimensional structure corresponding to the model data by repeatedly laminating pattern layers based on the model data. One pattern layer is formed based on one tomographic image corresponding to the same position as the one pattern layer among the plurality of tomographic images constituting the model data.
 次に、本実施形態の情報処理装置20について説明する。図2は、情報処理装置20のハードウェア構成の一例を示す図である。図2に示すように、情報処理装置20は、CPU(Central Processing Unit)21と、ROM(Read Only Memory)22と、RAM(Random Access Memory)23と、補助記憶装置24と、入力装置25と、表示装置26と、外部I/F27と、を備える。 Next, the information processing apparatus 20 of this embodiment will be described. FIG. 2 is a diagram illustrating an example of a hardware configuration of the information processing apparatus 20. As shown in FIG. 2, the information processing apparatus 20 includes a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, an auxiliary storage device 24, and an input device 25. The display device 26 and an external I / F 27 are provided.
 CPU21は、プログラムを実行することにより、情報処理装置20の動作を統括的に制御し、情報処理装置20が有する各種の機能を実現する。情報処理装置20が有する各種の機能については後述する。 The CPU 21 executes the program to comprehensively control the operation of the information processing apparatus 20 and realize various functions of the information processing apparatus 20. Various functions of the information processing apparatus 20 will be described later.
 ROM22は、不揮発性のメモリであり、情報処理装置20を起動させるためのプログラムを含む各種データ(情報処理装置20の製造段階で書き込まれる情報)を記憶する。RAM23は、CPU21の作業領域を有する揮発性のメモリである。補助記憶装置24は、CPU21が実行するプログラム等の各種データを記憶する。補助記憶装置24は、例えばHDD(Hard Disc Drive)などで構成される。 The ROM 22 is a non-volatile memory, and stores various data (information written at the manufacturing stage of the information processing apparatus 20) including a program for starting the information processing apparatus 20. The RAM 23 is a volatile memory having a work area for the CPU 21. The auxiliary storage device 24 stores various data such as a program executed by the CPU 21. The auxiliary storage device 24 is composed of, for example, an HDD (Hard Disc Drive).
 入力装置25は、情報処理装置20を使用するユーザ(ここでは医師や技師等)が各種の操作を行うためのデバイスである。入力装置25は、例えばマウス、キーボード、タッチパネル又はハードウェアキーで構成される。 The input device 25 is a device for a user who uses the information processing device 20 (here, a doctor, a technician, etc.) to perform various operations. The input device 25 includes, for example, a mouse, a keyboard, a touch panel, or hardware keys.
 表示装置26は、患者ごとの肝臓の3次元データを含む各種の情報を表示する。表示装置26は、例えば液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ又はブラウン管ディスプレイで構成される。なお、例えばタッチパネルのような形態で、入力装置25と表示装置26とが一体に構成されてもよい。 The display device 26 displays various information including three-dimensional data of the liver for each patient. The display device 26 is configured by, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or a cathode ray tube display. For example, the input device 25 and the display device 26 may be integrally configured in a form such as a touch panel.
 外部I/F27は、医用診断装置10(医用画像診断装置11、超音波診断装置12、生化学診断装置13)や造形装置30などの外部装置と接続(通信)するためのインタフェースである。 The external I / F 27 is an interface for connecting (communication) with an external apparatus such as the medical diagnostic apparatus 10 (medical image diagnostic apparatus 11, ultrasonic diagnostic apparatus 12, biochemical diagnostic apparatus 13) or modeling apparatus 30.
 図3は、情報処理装置20が有する機能の一例を示す図である。なお、図3の例では、本実施形態に関する機能のみを例示しているが、情報処理装置20が有する機能はこれらに限られるものではない。図3に示すように、情報処理装置20は、記憶部201、ユーザインタフェース部202、第1の取得部203、生成部204、第2の取得部205、決定部206、出力部207を有する。 FIG. 3 is a diagram illustrating an example of functions of the information processing apparatus 20. In the example of FIG. 3, only functions related to the present embodiment are illustrated, but the functions of the information processing apparatus 20 are not limited to these. As illustrated in FIG. 3, the information processing apparatus 20 includes a storage unit 201, a user interface unit 202, a first acquisition unit 203, a generation unit 204, a second acquisition unit 205, a determination unit 206, and an output unit 207.
 記憶部201は、医用診断装置10から取得した各種のデータを記憶する。この例では、記憶部201は、複数の患者ごとに(患者IDごとに)、肝臓を表す3次元データと、肝臓の硬さを示す第1のデータと、該患者の生化学情報に関するデータを示す第2のデータとを紐付けた紐付情報を少なくとも記憶する。記憶部201は、例えば図2に示す補助記憶装置24(例えばHDD)で実現される。 The storage unit 201 stores various data acquired from the medical diagnostic apparatus 10. In this example, the storage unit 201 stores, for each of a plurality of patients (for each patient ID), three-dimensional data representing the liver, first data indicating the hardness of the liver, and data regarding the biochemical information of the patient. The association information associated with the second data to be shown is stored at least. The storage unit 201 is realized by, for example, the auxiliary storage device 24 (for example, HDD) shown in FIG.
 ユーザインタフェース部202は、ユーザの入力を受け付ける機能、および、各種の情報を表示する機能を有する。ユーザが、任意の患者の肝臓を表す3次元データを呼び出すための操作を行うと、該操作を受け付けたユーザインタフェース部202は、対応する3次元データを記憶部201から読み出して表示装置26に表示する制御を行う。図4は、肝臓を表す3次元データが表示された画面(表示装置26に表示される画面)の一例を示す図である。 The user interface unit 202 has a function of accepting user input and a function of displaying various types of information. When the user performs an operation for calling up three-dimensional data representing the liver of an arbitrary patient, the user interface unit 202 that has received the operation reads out the corresponding three-dimensional data from the storage unit 201 and displays it on the display device 26. Control. FIG. 4 is a diagram illustrating an example of a screen (screen displayed on the display device 26) on which three-dimensional data representing the liver is displayed.
 本実施形態では、ユーザは、表示装置26に表示された肝臓の3次元データを確認しながら、該3次元データのうち、再生医療用素材を接合する面を示す接合面を入力するための操作を行い、ユーザインタフェース部202は該入力を受け付ける。なお、ここでは、肝臓のうち症状が発生している部位を切除し、その切除した箇所に再生医療用素材を接合することを想定しているので、「元の内臓器官を切除する面」が「接合面」となるが、「接合面」の形態はこれに限られるものではない。例えば元の内臓器官を切除することなく生体組織を追加接合する場合も考えられる。この場合は、元の内臓器官のうち、追加する生体組織が接続される面が「接合面」となる。 In the present embodiment, the user performs an operation for inputting a joint surface indicating a surface on which the regenerative medical material is to be joined, while checking the three-dimensional data of the liver displayed on the display device 26. The user interface unit 202 accepts the input. Here, since it is assumed that the part of the liver where the symptom is occurring is removed and the regenerative medical material is joined to the removed part, the “surface to remove the original internal organ officer” is Although it becomes a “joint surface”, the form of the “joint surface” is not limited to this. For example, it is conceivable to add a living tissue without excising the original internal organ. In this case, of the original internal organ officers, the surface to which the biological tissue to be added is connected becomes the “joint surface”.
 また、例えば図5に示すように、ユーザインタフェース部202は、入力された接合面を示す情報を3次元データに重畳して表示することができる。 For example, as shown in FIG. 5, the user interface unit 202 can superimpose and display the input information indicating the joint surface on the three-dimensional data.
 なお、ここでは、図4に示す画面は、肝臓を表す3次元データ全体が表示され、かつ、接合面を入力可能な状態の画面である。以下の説明では、この画面を「入力画面」と称する場合がある。 Here, the screen shown in FIG. 4 is a screen in which the entire three-dimensional data representing the liver is displayed and the joint surface can be input. In the following description, this screen may be referred to as an “input screen”.
 また、本実施形態では、ユーザは、図4の画面が表示された状態で、これから作成すべき再生医療用素材の体積を入力するための操作を行い、ユーザインタフェース部202は該入力を受け付ける。 In this embodiment, the user performs an operation for inputting the volume of the regenerative medical material to be created in the state where the screen of FIG. 4 is displayed, and the user interface unit 202 receives the input.
 つまり、本実施形態のユーザインタフェース部202は、肝臓を表す3次元データに対する接合面の入力と、再生医療用素材の体積の入力と、を受け付ける機能(「受付部」の機能)を有している。さらに、この例では、ユーザインタフェース部202は、人(患者)の年齢、性別、体重、身長のうちの少なくとも1つを示す生体情報の入力を受け付ける機能も有している。 That is, the user interface unit 202 according to the present embodiment has a function (a function of “accepting unit”) that accepts an input of a joint surface for three-dimensional data representing a liver and an input of a volume of a regenerative medical material. Yes. Furthermore, in this example, the user interface unit 202 also has a function of accepting input of biometric information indicating at least one of the age, sex, weight, and height of a person (patient).
 図3の説明を続ける。第1の取得部203は、肝臓を表す3次元データのうち前述の接合面に関する情報を少なくとも含む入力データを取得する。入力データは、接合面に関する情報と、再生医療用素材の体積を示す体積データと、該再生医療用素材の内部構造を特定するための内部構造データと、を含む。 Continue the explanation of FIG. The first acquisition unit 203 acquires input data including at least information on the above-described joint surface among the three-dimensional data representing the liver. The input data includes information on the joint surface, volume data indicating the volume of the regenerative medical material, and internal structure data for specifying the internal structure of the regenerative medical material.
 前述の接合面に関する情報は、接合面の面積および形状を少なくとも含む。ここでは、接合面に関する情報は、接合面における血管の位置をさらに含む。また、前述の内部構造データは、再生医療用素材の空隙率を少なくとも含む。 The information on the joint surface described above includes at least the area and shape of the joint surface. Here, the information on the joint surface further includes the position of the blood vessel on the joint surface. The internal structure data described above includes at least the porosity of the regenerative medical material.
 本実施形態では、第1の取得部203は、ユーザインタフェース部202(受付部)で受け付けた入力(この例では接合面の入力と再生医療用素材の体積の入力と生体情報の入力)に基づいて、入力データを生成して取得する。 In this embodiment, the 1st acquisition part 203 is based on the input (In this example, the input of a joint surface, the input of the volume of a regenerative medical material, and the input of biometric information) received by the user interface part 202 (acceptance part). To generate and acquire input data.
 例えば、第1の取得部203は、前述の入力画面に表示された3次元データのうち、ユーザインタフェース部202で受け付けた接合面に対応する断面の面積および形状(必要に応じて血管の位置)を特定する。そして、その特定した断面の面積および形状(必要に応じて血管の位置)を示す情報を、接合面に関する情報として取得する。なお、接合面に関する情報の取得方法はこれに限られるものではない。例えば内臓器官の3次元解析ソフトを用いて、接合面に関する情報を自動的に取得する形態であってもよい。この場合、医師が手術プランニングに関する情報を入力すると、3次元解析ソフトは、内臓器官の全体像と手術による切断面、切断後の状態などを再現することが可能であり、切断面の面積および形状を示す情報を自動的に抽出することができる。3次元解析ソフトは、このようにして抽出した切断面の面積および形状を示す情報を、接合面に関する情報として自動的に生成することができる。以上のように、第1の取得部203の機能が、上述の3次元解析ソフトにより提供される形態であってもよい。また、第1の取得部203は、ユーザインタフェース部202で受け付けた体積(再生医療用素材の体積)を示す体積データを生成する。 For example, the first acquisition unit 203 includes the area and shape of the cross section corresponding to the joint surface received by the user interface unit 202 in the three-dimensional data displayed on the input screen (the position of the blood vessel as necessary). Is identified. And the information which shows the area and shape (position of the blood vessel as needed) of the specified section is acquired as information about a joint surface. In addition, the acquisition method of the information regarding a joint surface is not restricted to this. For example, it may be a form in which information on the joint surface is automatically acquired using the internal organ officer's three-dimensional analysis software. In this case, when the doctor inputs information related to the surgical planning, the 3D analysis software can reproduce the whole image of the internal organ officer, the cut surface by the operation, the state after the cut, and the area and shape of the cut surface. Can be automatically extracted. The three-dimensional analysis software can automatically generate information indicating the area and shape of the cut surface extracted in this manner as information on the joint surface. As described above, the function of the first acquisition unit 203 may be provided by the above-described three-dimensional analysis software. In addition, the first acquisition unit 203 generates volume data indicating the volume (volume of the regenerative medical material) received by the user interface unit 202.
 また、この例における第1の取得部203は、ユーザインタフェース部202で受け付けた入力と、予め用意された正常な肝臓を表す複数のサンプルデータ(3次元のデータ)とに基づいて、再生医療用素材の内部構造データを生成する。この複数のサンプルデータは例えば、人(患者)の年齢、性別、体重、身長等の生体情報と紐付けられて記憶部201等に予め格納されている。例えば、この複数のサンプルデータに基づく機械学習等により、肝臓の切除面の面積および形状と、切除される部位の体積データと、生体情報との組み合わせを入力とし、各患者の生体情報に対応して生成すべき再生医療用素材(この例では、切除される部位に対応する再生医療用素材)の空隙率を出力する学習モデルを予め構築しておく形態であってもよい。この場合、第1の取得部203は、ユーザインタフェース部202で受け付けた入力(生体情報の入力)に応じて生体情報を生成する。そして、第1の取得部203は、この学習モデルを用いて、前述のようにユーザインタフェース部202で受け付けた入力に応じて生成した、接合面の面積および形状と、体積データと、生体情報との組み合わせに対応する空隙率を生成(算出)することができる。 In addition, the first acquisition unit 203 in this example is based on the input received by the user interface unit 202 and a plurality of sample data (three-dimensional data) representing a normal liver prepared in advance. Generate material internal structure data. The plurality of sample data is associated with biological information such as the age, sex, weight, and height of a person (patient) and stored in advance in the storage unit 201 or the like. For example, by machine learning based on the plurality of sample data, the combination of the area and shape of the excised surface of the liver, the volume data of the part to be excised, and biometric information is input, and it corresponds to the biometric information of each patient. The learning model for outputting the porosity of the regenerative medical material to be generated (in this example, the regenerative medical material corresponding to the part to be excised) may be constructed in advance. In this case, the first acquisition unit 203 generates biometric information according to an input (input of biometric information) received by the user interface unit 202. Then, using the learning model, the first acquisition unit 203 generates the joint surface area and shape, volume data, biological information, and the like generated according to the input received by the user interface unit 202 as described above. It is possible to generate (calculate) the porosity corresponding to the combination.
 なお、これに限らず、例えば空隙率は手動で入力される形態であってもよい。この場合、第1の取得部203は、ユーザインタフェース部202を介して手動で入力された空隙率を取得することができる。この場合、上記の学習モデルは不要になる。 Note that the present invention is not limited to this, and for example, the porosity may be manually input. In this case, the first acquisition unit 203 can acquire the porosity that is manually input via the user interface unit 202. In this case, the learning model is not necessary.
 以上のようにして、第1の取得部203は、ユーザインタフェース部202で受け付けた入力(以上の例では、接合面の入力と再生医療用素材の体積の入力と生体情報の入力)に基づいて、接合面に関する情報と、再生医療用素材の体積を示す体積データと、再生医療用素材の内部構造を特定するための内部構造データと、を含む入力データを生成することができる。 As described above, the first acquisition unit 203 is based on the input received by the user interface unit 202 (in the above example, the input of the joint surface, the input of the volume of the regenerative medical material, and the input of the biological information). It is possible to generate input data including information on the joint surface, volume data indicating the volume of the regenerative medical material, and internal structure data for specifying the internal structure of the regenerative medical material.
 図3の説明を続ける。生成部204は、第1の取得部203により取得された入力データに基づいて、再生医療用素材を造形装置30で造形する際の元となるモデルデータを生成する。例えば、予め用意された正常な肝臓を表す複数のサンプルデータに基づく機械学習等により、肝臓の切除面の面積および形状と、切除する部位の体積データと、生成すべき再生医療用素材の空隙率との組み合わせを入力とし、生成すべき再生医療用素材の骨格形状を示す骨格データを出力する学習モデルを予め構築しておく形態であってもよい。この場合、生成部204は、この学習モデルを用いて、第1の取得部203により取得された入力データに対応する骨格データを生成(算出)することができる。このようにして生成された骨格データがモデルデータとなる。 Continue the explanation of FIG. Based on the input data acquired by the first acquisition unit 203, the generation unit 204 generates model data that is the basis for modeling the regenerative medical material with the modeling apparatus 30. For example, by machine learning based on a plurality of sample data representing a normal liver prepared in advance, the area and shape of the excision surface of the liver, volume data of the part to be excised, and the porosity of the regenerative medical material to be generated The learning model that outputs the skeleton data indicating the skeleton shape of the regenerative medical material to be generated may be configured in advance. In this case, the generation unit 204 can generate (calculate) skeleton data corresponding to the input data acquired by the first acquisition unit 203 using the learning model. The skeleton data generated in this way becomes model data.
 また、例えば前述の入力データの中には空隙率が含まれずに、予め用意された複数のサンプルデータに基づく機械学習等により、肝臓の切除面の面積および形状と、切除する部位の体積データとの組み合わせを入力とし、骨格データを出力する学習モデルを予め構築しておいてもよい。この場合、生成部204は、この学習モデルを用いて、第1の取得部203により取得された入力データ(この例では空隙率は含まれない)に対応する骨格データを生成(算出)することができる。 In addition, for example, the above-described input data does not include the void ratio, and by machine learning based on a plurality of sample data prepared in advance, the area and shape of the excision surface of the liver, and the volume data of the part to be excised A learning model that outputs the skeleton data may be constructed in advance. In this case, the generation unit 204 generates (calculates) skeleton data corresponding to the input data (in this example, the porosity is not included) acquired by the first acquisition unit 203 using the learning model. Can do.
 なお、これに限らず、モデルデータを生成する方法は任意であり、例えば細胞外マトリックスによる内臓器官骨格生成技術等で知られている様々な方法を利用することができる。 Note that the method for generating the model data is not limited to this, and various methods known in the art of generating internal organ skeletons using an extracellular matrix can be used.
 この例では、ユーザインタフェース部202は、生成部204により生成されたモデルデータが、元となる3次元データに接合された状態を表す3次元データ(以下の説明では、「接合3次元データ」と称する場合がある)を表示装置26に表示する制御を行う。図6は、接合3次元データが表示された画面の一例を示す図である。以下の説明では、この画面を「モデルデータプレビュー画面」と称する場合がある。 In this example, the user interface unit 202 includes three-dimensional data representing a state in which the model data generated by the generation unit 204 is joined to the original three-dimensional data (in the following description, “joined three-dimensional data”). Display on the display device 26. FIG. 6 is a diagram illustrating an example of a screen on which the bonded three-dimensional data is displayed. In the following description, this screen may be referred to as a “model data preview screen”.
 また、例えばユーザインタフェース部202は、前述の接合3次元データと併せて、元となる3次元データからモデルデータに相当する部位を切除した後の残りの体積を示す体積データを表示する形態であってもよい。また、モデルデータに相当する部位を切除する前の3次元データ全体の体積を示す体積データあるいは切除した部位の体積を示す体積データを表示することもできる。さらに、正常な肝臓を表す複数のサンプルデータに基づいて、各患者の年齢、性別、体重、身長等の生体情報に対応する正常な肝臓の体積データを表示することもできる。ユーザは、接合3次元データや体積データを確認し、その結果、モデルデータのボリュームを増減させたい場合(モデルデータを変更したい場合)もある。この場合、ユーザは、前述のモデルデータプレビュー画面から、前述の入力画面(この例では図4に示す画面)へ戻すための操作(例えばモデルデータプレビュー画面に表示された「戻る」ボタンを押下する操作等)を行うことができる。ユーザインタフェース部202は、この操作を受け付けた場合、再び前述の入力画面を表示する制御を行う。以降は、上述したようなモデルデータを生成して表示するまでの処理が再び行われる。 Further, for example, the user interface unit 202 is configured to display volume data indicating the remaining volume after excising a portion corresponding to the model data from the original three-dimensional data together with the above-described joint three-dimensional data. May be. It is also possible to display volume data indicating the volume of the entire three-dimensional data before excising the site corresponding to the model data or volume data indicating the volume of the excised site. Furthermore, based on a plurality of sample data representing a normal liver, normal liver volume data corresponding to biological information such as age, sex, weight, and height of each patient can be displayed. In some cases, the user confirms the joint three-dimensional data and the volume data, and as a result, may increase or decrease the volume of the model data (change the model data). In this case, the user presses an operation for returning from the above-described model data preview screen to the above-described input screen (in this example, the screen shown in FIG. 4) (for example, a “return” button displayed on the model data preview screen). Operation etc.). When receiving this operation, the user interface unit 202 performs control to display the above-described input screen again. Thereafter, the process until the model data as described above is generated and displayed is performed again.
 図3に戻って説明を続ける。第2の取得部205は、前述の紐付情報(複数の患者ごとに、肝臓を表す3次元データと、肝臓の硬さを示す第1のデータとを少なくとも紐付けた情報)を参照して、第1の取得部203により取得された入力データに対応する3次元データ(接合面の入力対象となった3次元データ)に紐付けられた第1のデータを取得する。また、ここでは、前述の紐付情報は、複数の患者ごとに、肝臓を表す3次元データと、第1のデータと、該患者の生化学情報に関するデータを示す第2のデータとを紐付けた情報であり、第2の取得部205は、この紐付情報を参照して、第1の取得部203により取得された入力データに対応する3次元データに紐付けられた第2のデータも取得する。 Referring back to FIG. The second acquisition unit 205 refers to the above-described association information (information obtained by associating at least the three-dimensional data representing the liver and the first data representing the hardness of the liver for each of a plurality of patients) The first data associated with the three-dimensional data corresponding to the input data acquired by the first acquisition unit 203 (three-dimensional data that is the input target of the joint surface) is acquired. In addition, here, the above-described association information associates, for each of a plurality of patients, three-dimensional data representing the liver, first data, and second data indicating data related to the patient's biochemical information. The second acquisition unit 205 acquires the second data associated with the three-dimensional data corresponding to the input data acquired by the first acquisition unit 203 with reference to the association information. .
 決定部206は、第2の取得部205により取得された第1のデータに応じて、再生医療用素材の材料を決定する。例えば硬さと材料との対応関係を表す情報(以下の説明では「第1の情報」と称する場合がある)を予め実験等に基づいて定めておき、決定部206は、この第1の情報を参照して、第2の取得部205により取得された第1のデータが示す硬さに対応付けられた材料を、再生医療用素材の材料として決定することができる。 The determining unit 206 determines the material of the regenerative medical material according to the first data acquired by the second acquiring unit 205. For example, information indicating the correspondence between hardness and material (sometimes referred to as “first information” in the following description) is determined in advance based on experiments or the like, and the determination unit 206 determines the first information. Referring to, the material associated with the hardness indicated by the first data acquired by the second acquisition unit 205 can be determined as the material for the regenerative medical material.
 また、決定部206は、第2の取得部205により取得された第2のデータに応じて、再生医療用素材の材料に添加する、再生を促すための添加物を決定する。例えば、生化学情報(例えば血液中のタンパク質の成分等)と、添加物(タンパク質の成分に応じて異なる)との対応関係を表す情報(以下の説明では「第2の情報」と称する場合がある)を予め実験等に基づいて定めておき、決定部206は、この第2の情報を参照して、第2の取得部205により取得された第2のデータが示す生化学情報に対応付けられた添加物を、再生を促すための添加物として決定することができる。 Further, the determination unit 206 determines an additive for promoting regeneration, which is added to the material of the regenerative medical material, according to the second data acquired by the second acquisition unit 205. For example, information indicating a correspondence relationship between biochemical information (for example, protein components in blood, etc.) and an additive (varies depending on protein components) (hereinafter referred to as “second information” in some cases). The determination unit 206 refers to the second information and associates it with the biochemical information indicated by the second data acquired by the second acquisition unit 205 with reference to the second information. The added additive can be determined as an additive for promoting regeneration.
 出力部207は、生成部204により生成されたモデルデータと、決定部206により決定された再生医療用素材の材料および添加物と、を含むモデルデータ情報を造形装置30へ出力する。 The output unit 207 outputs model data information including the model data generated by the generation unit 204 and the materials and additives of the regenerative medical material determined by the determination unit 206 to the modeling apparatus 30.
 図7は、本実施形態の情報処理装置20の動作例を示すフローチャートである。この例では、表示装置26に前述の入力画面が表示されていることを前提(図4の状態を前提)とする。また、各ステップの具体的な内容は上述したとおりであるので、詳細な説明は適宜に省略する。 FIG. 7 is a flowchart showing an operation example of the information processing apparatus 20 of the present embodiment. In this example, it is assumed that the above-described input screen is displayed on the display device 26 (assuming the state of FIG. 4). Moreover, since the specific content of each step is as above-mentioned, detailed description is abbreviate | omitted suitably.
 図7に示すように、まず、ユーザインタフェース部202は、肝臓を表す3次元データに対する接合面の入力と、再生医療用素材の体積の入力と、を受け付ける(ステップS1)。次に、第1の取得部203は、ステップS1で受け付けた入力に基づいて、入力データを生成して取得する(ステップS2)。具体的な内容は上述したとおりである。 As shown in FIG. 7, first, the user interface unit 202 receives an input of a joint surface for 3D data representing the liver and an input of a volume of a regenerative medical material (step S1). Next, the 1st acquisition part 203 produces | generates and acquires input data based on the input received by step S1 (step S2). The specific contents are as described above.
 次に、生成部204は、ステップS2で取得された入力データに基づいて、モデルデータを生成する(ステップS3)。次に、第2の取得部205は、ステップS2により取得された入力データに対応する3次元データに紐付けられた第1のデータおよび第2のデータを取得する(ステップS4)。 Next, the generation unit 204 generates model data based on the input data acquired in step S2 (step S3). Next, the second acquisition unit 205 acquires first data and second data associated with the three-dimensional data corresponding to the input data acquired in step S2 (step S4).
 次に、決定部206は、ステップS4で取得された第1のデータに応じて、再生医療用素材の材料を決定し、ステップS4で取得された第2のデータに応じて、添加物を決定する(ステップS5)。次に、出力部207は、ステップS3で生成されたモデルデータと、ステップS5で決定された材料および添加物の各々を示す情報と、を含むモデルデータ情報を、造形装置30へ出力する(ステップS6)。 Next, the determination unit 206 determines the material of the regenerative medical material according to the first data acquired at step S4, and determines the additive according to the second data acquired at step S4. (Step S5). Next, the output unit 207 outputs model data information including the model data generated in step S3 and information indicating each of the material and additive determined in step S5 to the modeling apparatus 30 (step) S6).
 以上に説明したように、本実施形態の情報処理装置20は、肝臓(内臓器官の一例)を表す3次元データのうち、該肝臓の生体組織を再生するための素材を示す再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得し、その取得した入力データに基づいてモデルデータを生成する。つまり、肝臓のうち再生医療用素材を接合すべき箇所の情報を反映させて再生医療用素材を生成するので、状況に応じた最適な再生医療用素材を生成することが可能になる。 As described above, the information processing apparatus 20 according to the present embodiment uses the regenerative medical material indicating the material for regenerating the living tissue of the liver among the three-dimensional data representing the liver (an example of an internal organ). Input data including at least information on the bonding surface indicating the surfaces to be bonded is acquired, and model data is generated based on the acquired input data. That is, since the regenerative medical material is generated by reflecting the information on the portion of the liver where the regenerative medical material is to be joined, it is possible to generate the optimal regenerative medical material according to the situation.
 さらに、本実施形態では、生成したモデルデータの元になる3次元データに紐付けられた第1のデータ(肝臓の硬さを示すデータ)および第2のデータ(患者の生化学情報に関するデータ)を用いて、該生成したモデルデータに基づいて造形される再生医療用素材の材料と添加物を決定するので、患者個人に適した再生医療用素材を生成することが可能になる。つまり、各患者の年齢や内臓器官の状態等の状況に応じた最適な再生医療用素材を生成することが可能になる。 Furthermore, in the present embodiment, first data (data indicating the hardness of the liver) and second data (data relating to patient biochemical information) associated with the three-dimensional data that is the basis of the generated model data. Is used to determine the materials and additives of the regenerative medical material to be shaped based on the generated model data, so that the regenerative medical material suitable for the individual patient can be generated. That is, it is possible to generate an optimal material for regenerative medicine according to the situation such as the age of each patient and the state of internal organs.
 以上、本発明に係る実施形態について説明したが、本発明は、上述の実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述の実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。 As mentioned above, although the embodiment according to the present invention has been described, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the gist thereof in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment.
 以下に変形例を記載する。 The following is a modified example.
(1)変形例1
 例えば前述の入力データは手動で入力される形態であってもよい。つまり、ユーザインタフェース部202は、ユーザの操作に応じて入力される前述の入力データを受け付け、第1の取得部203は、その受け付けた入力データを取得する形態であってもよい。この場合、情報処理装置20のユーザは、前述の入力データを構成する全ての情報(接合面に関する情報、体積データ、内部構造データ)を入力するための操作を行う必要がある。
(1) Modification 1
For example, the above input data may be manually input. That is, the user interface unit 202 may receive the above-described input data input in response to a user operation, and the first acquisition unit 203 may acquire the received input data. In this case, the user of the information processing device 20 needs to perform an operation for inputting all information (information on the joint surface, volume data, internal structure data) constituting the above-described input data.
(2)変形例2
 上述の実施形態では、第1の取得部203は、ユーザインタフェース部202で受け付けた入力と、予め用意された複数のサンプルデータとに基づいて、作成すべき再生医療用素材の空隙率を算出していたが、これに限らず、例えば上述の第1のデータ(内臓器官の硬さを示すデータ)を反映させて空隙率を生成する形態であってもよい。
(2) Modification 2
In the above-described embodiment, the first acquisition unit 203 calculates the porosity of the regenerative medical material to be created based on the input received by the user interface unit 202 and a plurality of sample data prepared in advance. However, the present invention is not limited to this. For example, the void ratio may be generated by reflecting the first data described above (data indicating the hardness of the internal organs).
 例えば、予め用意された複数のサンプルデータと、各サンプルデータの硬さを示す情報とに基づく機械学習等により、肝臓の切除面の面積および形状と、切除する部位の体積データと、硬さを示す第1のデータとの組み合わせを入力とし、作成すべき再生医療用素材の空隙率を出力する学習モデルを予め構築しておく形態であってもよい。この場合、第1の取得部203は、この学習モデルを用いて、前述のようにユーザインタフェース部202で受け付けた入力に応じて生成した、接合面の面積、形状および体積データと、第2の取得部205により取得された第1のデータと、の組み合わせに対応する空隙率を生成(算出)することができる。 For example, by machine learning based on a plurality of sample data prepared in advance and information indicating the hardness of each sample data, the area and shape of the excision surface of the liver, the volume data of the part to be excised, and the hardness A learning model that takes a combination with the first data shown as an input and outputs the porosity of the regenerative medical material to be created may be constructed in advance. In this case, the first acquisition unit 203 uses the learning model to generate the joint surface area, shape, and volume data generated according to the input received by the user interface unit 202 as described above, and the second It is possible to generate (calculate) the porosity corresponding to the combination with the first data acquired by the acquisition unit 205.
(3)変形例3
 上述の実施形態におけるシステム1は、医用診断装置10と、情報処理装置20と、造形装置30と、を含んで構成されているが、例えば情報処理装置20と、造形装置30とを含む部分(医用診断装置10)を除いた部分を、本実施形態のシステム1と考えてもよい。要するに、本実施形態のシステム1は、以上に説明した情報処理装置20と、再生医療用素材を造形するための造形装置30と、を少なくとも備える形態であればよい。また、例えば上述した情報処理装置20が有する機能のうちの少なくとも一部が造形装置30に搭載される形態であってもよい。要するに、本発明が適用されるシステムは、上述の第1の取得部203と、上述の生成部204と、上述の造形部31と、を少なくとも備え、これらの構成要素は、情報処理装置20または造形装置30に任意に設けられ得る。例えば上述の生成部204が造形装置30に設けられる形態であってもよい。
(3) Modification 3
The system 1 in the above-described embodiment is configured to include the medical diagnostic apparatus 10, the information processing apparatus 20, and the modeling apparatus 30. For example, the part including the information processing apparatus 20 and the modeling apparatus 30 ( The portion excluding the medical diagnostic apparatus 10) may be considered as the system 1 of the present embodiment. In short, the system 1 of the present embodiment only needs to include at least the information processing device 20 described above and the modeling device 30 for modeling the regenerative medical material. For example, at least a part of the functions of the information processing apparatus 20 described above may be mounted on the modeling apparatus 30. In short, the system to which the present invention is applied includes at least the first acquisition unit 203 described above, the generation unit 204 described above, and the modeling unit 31 described above. The modeling apparatus 30 can be arbitrarily provided. For example, the form provided in the modeling apparatus 30 may be sufficient as the above-mentioned production | generation part 204. FIG.
(4)変形例4
 例えば空隙率の決定に際して、生体情報の入力が不要となる形態であってもよい。この場合、ユーザインタフェース部202は、患者の生体情報の入力を受け付ける機能は不要となる。例えば複数のサンプルデータに基づく機械学習等により、肝臓の切除面の面積および形状と、切除される部位の体積データとの組み合わせを入力とし、生成すべき再生医療用素材(この例では、切除される部位に対応する再生医療用素材)の空隙率を出力する学習モデルを予め構築しておく形態であってもよい。この場合、第1の取得部203は、この学習モデルを用いて、ユーザインタフェース部202で受け付けた入力に応じて生成した、接合面の面積および形状と、体積データとの組み合わせに対応する空隙率を生成(算出)することができる。つまり、ユーザインタフェース部202(受付部)は、内臓器官を表す3次元データに対する接合面の入力と、再生医療用素材の体積の入力と、を受け付け、第1の取得部203は、ユーザインタフェース部202で受け付けた入力(この例では接合面の入力と再生医療用素材の体積の入力)に基づいて、入力データを生成して取得する形態であってもよい。
(4) Modification 4
For example, it may be a form in which it is not necessary to input biometric information when determining the porosity. In this case, the user interface unit 202 does not need a function of accepting input of patient biometric information. For example, by machine learning based on a plurality of sample data, a combination of the area and shape of the excision surface of the liver and the volume data of the part to be excised is input, and a regenerative medical material to be generated (in this example, it is excised) The learning model that outputs the porosity of the regenerative medical material corresponding to the region to be reconstructed may be constructed in advance. In this case, the first acquisition unit 203 uses this learning model, and the porosity corresponding to the combination of the area and shape of the joint surface and the volume data generated according to the input received by the user interface unit 202. Can be generated (calculated). That is, the user interface unit 202 (accepting unit) accepts the input of the joint surface with respect to the three-dimensional data representing the internal organs and the input of the volume of the regenerative medical material, and the first obtaining unit 203 is the user interface unit. The input data may be generated and acquired based on the input received in 202 (in this example, the input of the joint surface and the input of the volume of the regenerative medical material).
(5)変形例5
 例えば前述の入力データの中に、年齢、性別、体重、身長のうちの少なくとも1つを示す生体情報がさらに含まれる形態であってもよい。この場合、第1の取得部203は、ユーザインタフェース部202で受け付けた入力(生体情報の入力)に応じて生体情報を生成する。この場合において第1の取得部203により取得される入力データは、接合面に関する情報と、前述の体積データと、前述の内部構造データと、前述の生体情報とを含み、生成部204は、この入力データに基づいてモデルデータを生成する。例えば、予め用意された正常な肝臓を表す複数のサンプルデータに基づく機械学習等により、肝臓の切除面の面積および形状(接合面に関する情報)と、体積データと、生成すべき再生医療用素材の空隙率と、患者の生体情報との組み合わせを入力とし、前述の骨格データを出力する学習モデルを予め構築しておく形態であってもよい。この場合、生成部204は、この学習モデルを用いて、第1の取得部203により取得された入力データに対応する骨格データを生成(算出)することができる。要するに、入力データは、患者の年齢、性別、体重、身長のうちの少なくとも1つを示す生体情報をさらに含む形態であってもよい。以上の本変形例によれば、各患者の年齢、性別、体重、身長等に応じた最適な再生医療用素材を生成することが可能になる。
(5) Modification 5
For example, the above-described input data may further include biometric information indicating at least one of age, sex, weight, and height. In this case, the first acquisition unit 203 generates biometric information according to an input (input of biometric information) received by the user interface unit 202. In this case, the input data acquired by the first acquisition unit 203 includes information on the joint surface, the volume data, the internal structure data, and the biological information. The generation unit 204 Model data is generated based on the input data. For example, by machine learning or the like based on a plurality of sample data representing a normal liver prepared in advance, the area and shape of the excision surface of the liver (information on the joint surface), volume data, and the regenerative medical material to be generated A form in which a learning model that inputs a combination of the void ratio and the biological information of the patient and outputs the above-described skeleton data may be constructed in advance. In this case, the generation unit 204 can generate (calculate) skeleton data corresponding to the input data acquired by the first acquisition unit 203 using the learning model. In short, the input data may be in a form further including biometric information indicating at least one of the age, sex, weight, and height of the patient. According to the present modification described above, it is possible to generate an optimal regenerative medical material according to the age, sex, weight, height, etc. of each patient.
(6)変形例6
 例えばユーザインタフェース部202は、前述の接合3次元データと併せて、切除した後の残りの体積を示す体積データと、切除した後の残りの内臓器官(この例では肝臓)の硬さを示す第1のデータとに基づいて、必要となる再生医療用素材の体積を示す体積データを表示(前述のモデルデータプレビュー画面に表示)する形態であってもよい。この場合、医師は、表示された再生医療用素材の体積データを参考として、患者の内臓器官の状況に応じて、必要となる再生医療用素材の体積を示す体積データを修正することが可能となる。以上の本変形例によれば、各患者の年齢や内臓器官の状態等の状況に応じた最適な再生医療用素材を生成することが可能になる。
(6) Modification 6
For example, the user interface unit 202 combines volume data indicating the remaining volume after excision and the hardness of the remaining internal organs (liver in this example) after excision together with the above-described joint three-dimensional data. The volume data indicating the volume of the regenerative medical material required based on the data of 1 may be displayed (displayed on the above-described model data preview screen). In this case, referring to the volume data of the regenerative medical material displayed, the doctor can correct the volume data indicating the volume of the regenerative medical material required according to the situation of the internal organs of the patient. Become. According to the present modification described above, it is possible to generate an optimal regenerative medical material according to the situation such as the age of each patient and the state of internal organs.
(7)変形例7
 例えば図8に示すように、情報処理装置20は、第3の取得部208をさらに有する形態であってもよい。第3の取得部208は、前述の生体情報を示す第3のデータを取得する。例えば第3の取得部208は、ユーザインタフェース部202で入力を受け付けた生体情報を、第3のデータとして取得することもできる。そして、決定部206は、第2の取得部205により取得された第1のデータと、第3の取得部208により取得された第3のデータとに応じて、再生医療用素材の材料を決定することができる。例えば硬さと生体情報と材料との対応関係を表す情報(以下の説明では「第3の情報」と称する場合がある)を予め実験等に基づいて定めておき、決定部206は、この第3の情報を参照して、第2の取得部205により取得された第1のデータが示す硬さと、第3の取得部208により取得された第3のデータが示す生体情報との組み合わせに対応付けられた材料を、再生医療用素材の材料として決定することができる。
(7) Modification 7
For example, as illustrated in FIG. 8, the information processing apparatus 20 may further include a third acquisition unit 208. The third acquisition unit 208 acquires third data indicating the above-described biological information. For example, the third acquisition unit 208 can also acquire biometric information received by the user interface unit 202 as third data. Then, the determination unit 206 determines the material of the regenerative medical material based on the first data acquired by the second acquisition unit 205 and the third data acquired by the third acquisition unit 208. can do. For example, information indicating a correspondence relationship between hardness, biological information, and material (sometimes referred to as “third information” in the following description) is determined in advance based on experiments or the like. Referring to the information, the association between the hardness indicated by the first data acquired by the second acquisition unit 205 and the biometric information indicated by the third data acquired by the third acquisition unit 208 The obtained material can be determined as a material for a regenerative medical material.
 また、決定部206は、第2の取得部205により取得された第2のデータと、第3の取得部208により取得された第3のデータとに応じて、再生を促すための添加物を決定することもできる。例えば生化学情報と生体情報と添加物との対応関係を表す情報(以下の説明では「第4の情報」と称する場合がある)を予め実験等に基づいて定めておき、決定部206は、この第4の情報を参照して、第2の取得部205により取得された第2のデータが示す生化学情報と、第3の取得部208により取得された第3のデータが示す生体情報との組み合わせに対応付けられた添加物を、再生を促すための添加物として決定することができる。以上の本変形例によれば、各患者の年齢、性別、体重、身長等に応じた最適な再生医療用素材を生成することが可能になる。 In addition, the determination unit 206 adds an additive for promoting regeneration according to the second data acquired by the second acquisition unit 205 and the third data acquired by the third acquisition unit 208. It can also be determined. For example, information indicating the correspondence between biochemical information, biological information, and additives (sometimes referred to as “fourth information” in the following description) is determined in advance based on experiments or the like. With reference to this fourth information, biochemical information indicated by the second data acquired by the second acquisition unit 205, and biological information indicated by the third data acquired by the third acquisition unit 208 The additive associated with the combination can be determined as an additive for promoting regeneration. According to the present modification described above, it is possible to generate an optimal regenerative medical material according to the age, sex, weight, height, etc. of each patient.
(8)変形例8
 例えば生成されたモデルデータについて加工することが可能な形態であってもよい。例えば医師は、前述のモデルデータプレビュー画面に表示されたモデルデータ(生成済みのモデルデータ)を確認し、患者の内臓器官の状況に応じて、内臓器官が正常な状態に比べて萎縮若しくは拡張している場合、健康体の内臓器官に相応しい大きさに拡大するための拡大率または縮小するための縮小率を入力し、生成部204は、その入力された拡大率または縮小率を示す第4のデータに応じて、生成済みのモデルデータを拡大または縮小する形態であってもよい。医師は、患者の年齢、性別、体重、身長等の生体情報に基づき、健康体の内臓器官の大きさにするための拡大率や縮小率を判断することができる。以上の本変形例によれば、各患者の年齢や内臓器官の状態等の状況に応じた最適な再生医療用素材を生成することが可能になる。
(8) Modification 8
For example, the generated model data may be processed. For example, the doctor confirms the model data (generated model data) displayed on the model data preview screen described above, and the internal organ officer is atrophied or expanded as compared with the normal state depending on the situation of the internal organ officer of the patient. In the case, the enlargement ratio for enlarging to a size suitable for the internal organ officer of the healthy body or the reduction ratio for reduction is input, and the generation unit 204 outputs the fourth enlargement ratio or reduction ratio indicating the input enlargement ratio or reduction ratio. The generated model data may be enlarged or reduced according to the data. The doctor can determine the enlargement rate or reduction rate for making the size of the internal organs of the healthy body based on the biological information such as the age, sex, weight, and height of the patient. According to the present modification described above, it is possible to generate an optimal regenerative medical material according to the situation such as the age of each patient and the state of internal organs.
 上述の実施形態は、以上の変形例と任意に組み合わせることができるし、以上の変形例同士を任意に組み合わせてもよい。 The above-described embodiment can be arbitrarily combined with the above-described modified examples, and the above-described modified examples may be arbitrarily combined with each other.
 また、上述した実施形態の情報処理装置20で実行されるプログラムは、インストール可能な形式または実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)、USB(Universal Serial Bus)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよいし、インターネット等のネットワーク経由で提供または配布するように構成してもよい。また、各種プログラムを、例えばROM等の不揮発性の記憶媒体に予め組み込んで提供するように構成してもよい。 The program executed by the information processing apparatus 20 of the above-described embodiment is a file in an installable format or an executable format, and is a CD-ROM, a flexible disk (FD), a CD-R, a DVD (Digital Versatile Disk). It may be configured to be recorded on a computer-readable recording medium such as USB (Universal Serial Bus), or provided or distributed via a network such as the Internet. Further, various programs may be provided by being incorporated in advance in a nonvolatile storage medium such as a ROM.
1   システム
10  医用診断装置
11  医用画像診断装置
12  超音波診断装置
13  生化学診断装置
20  情報処理装置
30  造形装置
31  造形部
201 記憶部
202 ユーザインタフェース部
203 第1の取得部
204 生成部
205 第2の取得部
206 決定部
207 出力部
208 第3の取得部
DESCRIPTION OF SYMBOLS 1 System 10 Medical diagnostic apparatus 11 Medical image diagnostic apparatus 12 Ultrasonic diagnostic apparatus 13 Biochemical diagnostic apparatus 20 Information processing apparatus 30 Modeling apparatus 31 Modeling part 201 Storage part 202 User interface part 203 First acquisition part 204 Generation part 205 Second Acquisition unit 206 determination unit 207 output unit 208 third acquisition unit

Claims (14)

  1.  内臓器官を表す3次元データのうち、前記内臓器官の生体組織を再生するための素材を示す再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得する第1の取得部と、
     前記入力データに基づいて、前記再生医療用素材を造形装置で造形する際の元となるモデルデータを生成する生成部と、を備える、
     情報処理装置。
    First acquisition for acquiring input data including at least information related to a joint surface indicating a surface to which a regenerative medical material representing a material for regenerating a living tissue of the internal organ officer is obtained from the three-dimensional data representing the internal organ officer. And
    Based on the input data, a generation unit that generates model data serving as a base when modeling the regenerative medical material with a modeling apparatus,
    Information processing device.
  2.  前記入力データは、前記接合面に関する情報と、前記再生医療用素材の体積を示す体積データと、前記再生医療用素材の内部構造を特定するための内部構造データと、を含む、
     請求項1に記載の情報処理装置。
    The input data includes information on the joint surface, volume data indicating the volume of the regenerative medical material, and internal structure data for specifying the internal structure of the regenerative medical material,
    The information processing apparatus according to claim 1.
  3.  前記入力データは、患者の年齢、性別、体重、身長のうちの少なくとも1つを示す生体情報をさらに含む、
     請求項2に記載の情報処理装置。
    The input data further includes biological information indicating at least one of a patient's age, sex, weight, and height,
    The information processing apparatus according to claim 2.
  4.  前記接合面に関する情報は、前記接合面の面積および形状の各々を示す情報を少なくとも含む、
     請求項1乃至3のうちの何れか1項に記載の情報処理装置。
    The information on the joint surface includes at least information indicating each of the area and shape of the joint surface,
    The information processing apparatus according to any one of claims 1 to 3.
  5.  前記接合面に関する情報は、前記接合面における血管の位置を示す情報をさらに含む、
     請求項4に記載の情報処理装置。
    The information on the joint surface further includes information indicating a position of a blood vessel on the joint surface.
    The information processing apparatus according to claim 4.
  6.  前記内部構造データは、前記再生医療用素材の空隙率を含む、
     請求項2乃至5のうちの何れか1項に記載の情報処理装置。
    The internal structure data includes a porosity of the regenerative medical material,
    The information processing apparatus according to any one of claims 2 to 5.
  7.  前記内臓器官を表す3次元データに対する前記接合面の入力と、前記再生医療用素材の体積の入力と、を受け付ける受付部をさらに備え、
     前記第1の取得部は、前記受付部で受け付けた入力に基づいて前記入力データを生成して取得する、
     請求項1乃至6のうちの何れか1項に記載の情報処理装置。
    A reception unit that receives the input of the joint surface with respect to the three-dimensional data representing the internal organ officer and the input of the volume of the regenerative medical material;
    The first acquisition unit generates and acquires the input data based on the input received by the reception unit.
    The information processing apparatus according to any one of claims 1 to 6.
  8.  前記入力データの入力を受け付ける受付部をさらに備え、
     前記第1の取得部は、前記受付部で受け付けた前記入力データを取得する、
     請求項1乃至6のうちの何れか1項に記載の情報処理装置。
    A reception unit for receiving input of the input data;
    The first acquisition unit acquires the input data received by the reception unit;
    The information processing apparatus according to any one of claims 1 to 6.
  9.  複数の患者ごとに、前記内臓器官を表す3次元データと、前記内臓器官の硬さを示す第1のデータとを少なくとも紐付けた紐付情報を記憶する記憶部と、
     前記紐付情報を参照して、前記第1の取得部により取得された前記入力データに対応する3次元データに紐付けられた前記第1のデータを取得する第2の取得部と、
     前記第2の取得部により取得された前記第1のデータに応じて、前記再生医療用素材の材料を決定する決定部と、を備える、
     請求項1乃至8のうちの何れか1項に記載の情報処理装置。
    A storage unit that stores association information that associates at least three-dimensional data representing the internal organ officer and first data indicating the hardness of the internal organ officer for each of a plurality of patients;
    A second obtaining unit that obtains the first data associated with the three-dimensional data corresponding to the input data obtained by the first obtaining unit with reference to the association information;
    A determination unit that determines a material of the regenerative medical material according to the first data acquired by the second acquisition unit,
    The information processing apparatus according to any one of claims 1 to 8.
  10.  前記紐付情報は、複数の患者ごとに、前記内臓器官を表す3次元データと、前記第1のデータと、該患者の生化学情報に関するデータを示す第2のデータとを紐付けた情報であり、
     前記第2の取得部は、前記紐付情報を参照して、前記第1の取得部により取得された前記入力データに対応する3次元データに紐付けられた前記第2のデータも取得し、
     前記決定部は、第2の取得部により取得された前記第2のデータに応じて、前記再生医療用素材の材料に添加する、再生を促すための添加物を決定する、
     請求項9に記載の情報処理装置。
    The association information is information obtained by associating, for each of a plurality of patients, three-dimensional data representing the internal organs, the first data, and second data indicating data related to the biochemical information of the patient. ,
    The second acquisition unit acquires the second data associated with the three-dimensional data corresponding to the input data acquired by the first acquisition unit with reference to the association information,
    The determining unit determines an additive for promoting regeneration to be added to the material of the regenerative medical material according to the second data acquired by the second acquiring unit.
    The information processing apparatus according to claim 9.
  11.  前記生成部により生成された前記モデルデータと、前記決定部により決定された前記再生医療用素材の材料および添加物の各々を示す情報と、を含むモデルデータ情報を、前記造形装置へ出力する出力部をさらに備える、
     請求項10に記載の情報処理装置。
    Output that outputs model data information including the model data generated by the generation unit and information indicating each of the materials and additives of the regenerative medical material determined by the determination unit to the modeling apparatus Further comprising
    The information processing apparatus according to claim 10.
  12.  情報処理装置と、生体組織を再生するための素材を示す再生医療用素材を造形するための造形装置と、を少なくとも備えたシステムであって、
     内臓器官を表す3次元データのうち前記再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得する第1の取得部と、
     前記入力データに基づいて、前記再生医療用素材を造形する際の元となるモデルデータを生成する生成部と、
     前記モデルデータに基づいて前記再生医療用素材を造形する造形部と、を備える、
     システム。
    An information processing apparatus and a modeling apparatus for modeling a regenerative medical material indicating a material for regenerating a living tissue, at least a system comprising:
    A first acquisition unit for acquiring input data including at least information on a bonding surface indicating a surface on which the regenerative medical material is bonded among three-dimensional data representing an internal organ;
    Based on the input data, a generation unit that generates model data serving as a base when modeling the regenerative medical material,
    A modeling unit that models the regenerative medical material based on the model data,
    system.
  13.  内臓器官を表す3次元データのうち、前記内臓器官の生体組織を再生するための素材を示す再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得する第1の取得ステップと、
     前記入力データに基づいて、前記再生医療用素材を造形装置で造形する際の元となるモデルデータを生成する生成ステップと、を含む、
     情報処理方法。
    First acquisition for acquiring input data including at least information related to a joint surface indicating a surface to which a regenerative medical material representing a material for regenerating a living tissue of the internal organ officer is obtained from the three-dimensional data representing the internal organ officer. Steps,
    Generating based on the input data, generating model data that is the basis for modeling the regenerative medical material with a modeling apparatus,
    Information processing method.
  14.  コンピュータに、
     内臓器官を表す3次元データのうち、前記内臓器官の生体組織を再生するための素材を示す再生医療用素材を接合する面を示す接合面に関する情報を少なくとも含む入力データを取得する第1の取得ステップと、
     前記入力データに基づいて、前記再生医療用素材を造形装置で造形する際の元となるモデルデータを生成する生成ステップと、を実行させるためのプログラム。
    On the computer,
    First acquisition for acquiring input data including at least information related to a joint surface indicating a surface to which a regenerative medical material representing a material for regenerating a living tissue of the internal organ officer is obtained from the three-dimensional data representing the internal organ officer. Steps,
    A program for executing a generation step of generating model data as a base when modeling the regenerative medical material with a modeling apparatus based on the input data.
PCT/JP2018/013479 2017-03-31 2018-03-29 Information processing device, system, information processing method, and program WO2018181824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070135 2017-03-31
JP2017070135 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181824A1 true WO2018181824A1 (en) 2018-10-04

Family

ID=63677802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013479 WO2018181824A1 (en) 2017-03-31 2018-03-29 Information processing device, system, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2018181824A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046211A (en) * 2011-08-30 2014-03-17 Qi Imaging Llc Method for functional integration of virtual prosthesis with tissue model
JP2015089433A (en) * 2013-11-06 2015-05-11 学校法人慈恵大学 Tissue regeneration material, manufacturing method thereof, and scaffold for tissue regeneration material
WO2015148646A2 (en) * 2014-03-25 2015-10-01 Biobots, Inc. Methods, devices, and systems for the fabrication of materials and tissues utilizing electromagnetic radiation
JP2016519609A (en) * 2013-04-11 2016-07-07 ユニヴァーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイテッドUniversity Of Florida Research Foundation,Inc. Organ component and method for producing the same
JP2016203417A (en) * 2015-04-16 2016-12-08 キヤノンマーケティングジャパン株式会社 Medical image management system, control method thereof and program, and information processor, control method thereof and program
US20170057169A1 (en) * 2015-08-24 2017-03-02 Siemens Healthcare Gmbh Personalized creation from medical imaging
JP2017060735A (en) * 2015-09-23 2017-03-30 シェンヂェン エクセレント テクノロジー カンパニー リミテッドShenzhen Excellent Technology Company Limited Method and system for constructing prosthesis for defect part of tissues or organs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046211A (en) * 2011-08-30 2014-03-17 Qi Imaging Llc Method for functional integration of virtual prosthesis with tissue model
JP2016519609A (en) * 2013-04-11 2016-07-07 ユニヴァーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイテッドUniversity Of Florida Research Foundation,Inc. Organ component and method for producing the same
JP2015089433A (en) * 2013-11-06 2015-05-11 学校法人慈恵大学 Tissue regeneration material, manufacturing method thereof, and scaffold for tissue regeneration material
WO2015148646A2 (en) * 2014-03-25 2015-10-01 Biobots, Inc. Methods, devices, and systems for the fabrication of materials and tissues utilizing electromagnetic radiation
JP2016203417A (en) * 2015-04-16 2016-12-08 キヤノンマーケティングジャパン株式会社 Medical image management system, control method thereof and program, and information processor, control method thereof and program
US20170057169A1 (en) * 2015-08-24 2017-03-02 Siemens Healthcare Gmbh Personalized creation from medical imaging
JP2017060735A (en) * 2015-09-23 2017-03-30 シェンヂェン エクセレント テクノロジー カンパニー リミテッドShenzhen Excellent Technology Company Limited Method and system for constructing prosthesis for defect part of tissues or organs

Similar Documents

Publication Publication Date Title
Wang et al. 3D printing, computational modeling, and artificial intelligence for structural heart disease
Yoo et al. 3D printing in surgical management of double outlet right ventricle
Farooqi et al. Echocardiography and three-dimensional printing: sound ideas to touch a heart
JP5286352B2 (en) Biological tissue solid model and manufacturing method thereof
Schievano et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data
Huotilainen et al. Imaging requirements for medical applications of additive manufacturing
Yoo et al. 3D modeling and printing in congenital heart surgery: entering the stage of maturation
Noecker et al. Development of patient-specific three-dimensional pediatric cardiac models
US10140888B2 (en) Training and testing system for advanced image processing
JP6719928B2 (en) Ultrasonic diagnostic device, ultrasonic diagnostic device control program, medical image processing device, and medical image processing program
US11602329B2 (en) Control device, control method, control system, and non-transitory recording medium for superimpose display
KR20170035763A (en) Suture construction method for damaged internal organs and tissues, and construction system thereof
Farooqi et al. Innovations in preoperative planning: insights into another dimension using 3D printing for cardiac disease
Fan et al. Three-dimensional printing in structural heart disease and intervention
JP6704828B2 (en) Control device, control method, control system and program
JP2018508880A (en) Touchless advanced image processing and visualization
RU2742205C2 (en) Apparatus for generating reports on invasive medical procedures
WO2001012055A2 (en) Ultrasound graphical vascular report system and method
JP4492645B2 (en) Medical image display apparatus and program
Nam et al. Three-dimensional printing of congenital heart disease models for cardiac surgery simulation: evaluation of surgical skill improvement among inexperienced cardiothoracic surgeons
CN107518911A (en) Medical diagnostic imaging apparatus and medical image-processing apparatus
JP2009077960A (en) Ultrasonographic diagnostic device
WO2018181824A1 (en) Information processing device, system, information processing method, and program
JP5305635B2 (en) Medical image display device
KR20180066588A (en) System and method for storing and managing medical images including complex three-dimensional model extracted from dicom images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP