WO2018173589A1 - Distance measurement device and movement device - Google Patents

Distance measurement device and movement device Download PDF

Info

Publication number
WO2018173589A1
WO2018173589A1 PCT/JP2018/005889 JP2018005889W WO2018173589A1 WO 2018173589 A1 WO2018173589 A1 WO 2018173589A1 JP 2018005889 W JP2018005889 W JP 2018005889W WO 2018173589 A1 WO2018173589 A1 WO 2018173589A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
axis
measuring device
distance measuring
reflection
Prior art date
Application number
PCT/JP2018/005889
Other languages
French (fr)
Japanese (ja)
Inventor
智浩 江川
佐伯 哲夫
石丸 裕
岡本 修治
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2018173589A1 publication Critical patent/WO2018173589A1/en

Links

Images

Definitions

  • the present invention relates to a distance measuring device and a moving device.
  • a distance measuring device is mounted on the moving device in order to avoid collision with surrounding objects.
  • the distance measuring device detects the presence / absence of a surrounding object and the distance to the object based on the result of receiving the reflected light of the laser light applied to the surroundings.
  • Patent Document 1 teaches an automatic guided vehicle equipped with a laser obstacle detection sensor.
  • the laser light is irradiated with the optical axis of the laser light reflected by the light projection mirror facing upward from the horizontal line.
  • Patent Document 1 makes no mention of this point. *
  • an object of the present invention is to provide a distance measuring device and a moving device that can reduce a measurement error due to adjustment of the inclination of a reflecting surface.
  • an exemplary distance measuring device of the present invention irradiates light outside, receives reflected light of the light reflected by the external object, and receives the reflected light as a result of receiving the reflected light.
  • a distance measuring device for measuring a distance between the object and the light source a light source that emits the light, a light irradiation unit that irradiates the light to the outside, and the light irradiation unit with a central axis as a center
  • a motor having a rotatable shaft, wherein the light irradiating portion has a reflecting member having a reflecting surface for reflecting the light emitted from the light source, and a first axis on the reflecting surface.
  • An adjustment member capable of adjusting the inclination of the reflection surface in a first circumferential direction; and a support member that supports the reflection member, wherein the first axis is perpendicular to the axial direction along the central axis.
  • the reflection member passes through a reflection point of the light on the reflection surface; Further has a first curved surface, when viewed from the first direction parallel to the axis, the curvature of the first curved surface with respect to the first axis is configured to be constant.
  • an exemplary distance measuring device of the present invention irradiates light outside, receives reflected light of the light reflected by the external object, and receives the reflected light.
  • a distance measuring device for measuring a distance between the object based on a result a light source that emits the light, a light irradiation unit that irradiates the light to the outside, and the light irradiation around a central axis
  • a motor having a shaft that can rotate together with a part, wherein the light irradiation part includes a MEMS mirror element having a mirror part that reflects the light emitted from the light source by a reflection surface, and is on the reflection surface
  • the tilt of the reflecting surface can be adjusted in the first circumferential direction by swinging the mirror portion in a first circumferential direction around the first axis, and the first axis is the central axis. Perpendicular to the axial direction along the reflective surface It is configured to pass through the reflection point. *
  • an exemplary mobile device of the present invention is a mobile device that travels on a road and includes the above-described distance measuring device.
  • the exemplary distance measuring device and the moving device of the present invention it is possible to reduce measurement errors caused by adjusting the inclination of the reflecting surface.
  • FIG. 1 is a schematic side sectional view of a distance measuring device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an electrical configuration of the distance measuring apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a first configuration example of the light projecting mirror unit.
  • FIG. 4 is a diagram illustrating a second configuration example of the light projecting mirror unit.
  • FIG. 5 is a diagram illustrating a third configuration example of the light projecting mirror unit.
  • FIG. 6 is a diagram illustrating a fourth configuration example of the light projecting mirror unit.
  • FIG. 7 is a perspective view of a moving device according to an embodiment of the present invention.
  • FIG. 8 is a side view of the moving apparatus according to the embodiment of the present invention.
  • FIG. 9 is a plan view of the moving device according to the embodiment of the present invention as viewed from above.
  • a direction orthogonal to the central axis J is referred to as a “radial direction”, and a circumferential direction around the central axis J is referred to as a “circumferential direction”.
  • a direction toward the central axis J is referred to as “inward”
  • a direction away from the central axis J is referred to as “outward”.
  • a side surface facing inward in the radial direction is called an “inner side surface”
  • a side surface facing outward in the radial direction is called an “outer side surface”.
  • the distance measuring device 7 is a device that measures a distance from an external object.
  • the distance measuring device 7 irradiates the projection light L1 to the outside, receives the reflected light L2 of the projection light L1 reflected by the external object, and determines the distance to the object based on the light reception result of the reflected light L2. taking measurement.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of the distance measuring device 7. In FIG. 1, the distance measuring device 7 is cut along a cut surface including the central axis J of the motor 79.
  • the distance measuring device 7 includes a laser light source 71, a collimating lens 72, a light projecting mirror unit 73, a light receiving lens 74, a light receiving mirror unit 75, a light receiving unit 77, a rotating housing 78, a motor 79, a housing, and a housing.
  • a body 80, a substrate 81, a wiring 82, and a gyro sensor 83 are included. *
  • the casing 80 has, for example, a substantially cylindrical shape extending in the vertical direction in appearance and stores the laser light source 71 and the light projecting mirror unit 73 in the internal space. More specifically, the housing 80 stores the components 71 to 79 and 81 to 83 of the distance measuring device 7 as described above. A laser light source 71 and a substrate 81 on which a gyro sensor 83 is mounted are provided on the lower surface of the upper end portion in the axial direction Da of the housing 80. Note that the shape of the housing 80 in the external view is not limited to the example of the present embodiment, and may be, for example, a prismatic shape. *
  • the laser light source 71 emits laser light in the infrared region, for example, below the axial direction Da.
  • the type of the laser light source 71 is not particularly limited, but a laser element that emits laser light in the infrared region is preferable in order to reduce manufacturing costs.
  • the collimating lens 72 is disposed below the laser light source 71 in the axial direction Da.
  • the collimating lens 72 emits laser light emitted from the laser light source 71 as parallel light below the axial direction Da.
  • the light projecting mirror 73 is disposed below the collimating lens 72 in the axial direction Da, and is fixed to the rotary casing 78.
  • the light projection mirror unit 73 is an example of a light irradiation unit that irradiates laser light to the outside of the distance measuring device 7.
  • the optical path of the laser light emitted from the laser light source 71 and reaching the light projection mirror unit 73 is on the central axis J.
  • the light projection mirror unit 73 reflects the laser beam emitted from the collimator lens 72 at the reflection point Pr on the reflection surface 731a, and emits the reflected laser beam as the projection light L1.
  • a specific configuration of the light projecting mirror unit 73 will be described later. *
  • the rotary casing 78 is fixed to the shaft 79A of the motor 79, and is driven to rotate about the central axis J by the motor 79. Along with the rotation of the rotary casing 78, the light projecting mirror 73 is also driven to rotate about the central axis J. Therefore, the projection light L1 is emitted in a range of 360 [degree] in the circumferential direction around the central axis J. *
  • the housing 80 has a light-transmitting light transmitting portion 801 in the middle of the vertical direction.
  • the light transmission portion 801 is formed using, for example, a resin material, glass, or the like.
  • the light transmission part 801 has a cylindrical part 801A and a curved part 801B through which the projection light L1 irradiated to the outside from the light projection mirror part 73 passes.
  • the curved portion 801B is provided adjacent to the upper portion of the cylindrical portion 801A in the axial direction Da, and is curved so as to protrude outward in the radial direction. More specifically, the cylindrical portion 801A and the curved portion 801B have an arc shape centered on the central axis J when viewed from the axial direction Da.
  • the cylindrical portion 801A and the curved portion 801B may be annular with the central axis J as the center when viewed from the axial direction Da.
  • the curved portion 801B may have a cylindrical shape or a truncated cone shape along the central axis J, but preferably the reflection point Pr is seen from the circumferential direction centering on the central axis J as shown in FIG.
  • the center is an arc shape.
  • the inner side surface of the curved portion 801B facing the reflecting surface 731a is a concave surface.
  • the irradiation direction DL of the projection light L1 irradiated to the outside through the light transmission unit 801 is centered on the irradiation direction DL of the projection light L1 by adjusting the inclination of the reflection surface 731a described later and rotating the projection mirror unit 73. It is possible to suppress variation due to the movement in the circumferential direction around the axis J. *
  • the shortest distance r1 from the reflection point Pr of the projection light L1 on the reflective surface 731a to the inner surface of the curved portion 801B is constant as shown in FIG. That is, the curvature r2 of the first curved surface 731b with respect to the reflection point Pr is constant when viewed from the circumferential direction centered on the central axis J. In this way, it is possible to prevent a change in the distance r1 until the projection light L1 reaches the curved portion 801B of the light transmission portion 801 from the reflection point Pr on the reflection surface 731a. Therefore, variation in the irradiation direction DL of the projection light L1 irradiated to the outside can be prevented.
  • the projection light L1 passes through the curved portion 801B and is irradiated to the outside of the housing 80.
  • the curved portion 801B is arranged over a predetermined angular range ⁇ in the circumferential direction around the central axis J so as to correspond at least to the predetermined angular range ⁇ of scanning with the projection light L1.
  • the predetermined angle range ⁇ is set to 270 [degree] around the central axis J as an example. That is, the projection light L1 is transmitted through the curved portion 801B at least in the range of 270 degrees around the central axis J. Outside the angle range ⁇ , the projection light L1 is blocked by the inner wall of the housing 80, the wiring 82, or the like.
  • the light receiving lens 74 is provided on the side surface in the radial direction of the rotating housing 78.
  • the light receiving mirror portion 75 is fixed to the lower surface of the upper end portion in the axial direction Da of the rotary casing 78 and is located below the light projecting mirror portion 73 in the axial direction Da.
  • the light receiving portion 77 is positioned below the light receiving mirror portion 75 and is fixed to the upper surface of the lower end portion in the axial direction Da of the rotating housing 78.
  • the light receiving lens 74 and the light receiving unit 77 are rotatable together with the rotating housing 78.
  • the light receiving unit 77 is not limited to this example, and may be configured not to rotate. That is, for example, the light receiving unit 77 may be configured not to be fixed to the rotating casing 78 and to rotate around the central axis J. *
  • the projection light L1 emitted from the distance measuring device 7 is reflected by an external object and becomes diffused light. Part of the diffused light passes through the cylindrical portion 801A as reflected light L2 and enters the light receiving lens 74.
  • the reflected light L2 transmitted through the light receiving lens 74 is incident on the light receiving mirror unit 75 and reflected downward by the light receiving mirror unit 75.
  • the reflected reflected light L2 is received by the light receiving unit 77.
  • the optical path of the reflected light L ⁇ b> 2 that is reflected by the light receiving mirror unit 75 and reaches the light receiving unit 77 is on the central axis J.
  • the light receiving unit 77 converts the received light into an electrical signal by photoelectric conversion.
  • the cylindrical portion 801A is configured in a circumferential range similar to the range in which the curved portion 801B is configured.
  • the motor 79 has a shaft 79 ⁇ / b> A that can rotate together with the projection mirror 73 around the central axis J.
  • the motor 79 is connected to the substrate 81 by the wiring 82 and is driven to rotate when energized from the substrate 81.
  • the motor 79 rotates the rotary casing 78 at a predetermined rotation speed.
  • the rotary casing 78 is driven to rotate at about 3000 rpm.
  • the wiring 82 is routed in the vertical direction of the axial direction Da along the rear inner wall of the housing 80. *
  • the gyro sensor 83 detects the angular velocity or each acceleration of the distance measuring device 7. *
  • the distance measuring device 7 may further include a wavelength filter 76 that extracts light in the infrared region.
  • the wavelength filter 76 is provided between the light receiving mirror unit 75 and the light receiving unit 77, for example.
  • the wavelength filter 76 may be fixed to the rotary casing 78 and rotatable with the rotary casing 78.
  • the wavelength filter 76 may be configured not to rotate. That is, the wavelength filter 76 may be configured not to be fixed to the rotary casing 78 and to rotate around the central axis J, for example.
  • the reflected light L ⁇ b> 2 reflected by the light receiving mirror unit 75 passes through the wavelength filter 76 and is received by the light receiving unit 77.
  • the wavelength filter 76 By providing the wavelength filter 76, it is possible to suppress or prevent light derived from, for example, sunlight other than the reflected light L2 from entering the light receiving mirror unit 75. Therefore, noise included in the light reception result of the light receiving unit 77 can be reduced, so that the measurement accuracy of the distance measuring device 7 can be improved.
  • FIG. 2 is a block diagram showing an electrical configuration of the distance measuring device 7 according to one embodiment of the present invention.
  • the distance measuring device 7 includes a laser light emitting unit 701, a laser light receiving unit 702, a distance meter side unit 703, an arithmetic processing unit 704, a data communication interface 705, and a driving unit 707. Also have. *
  • the laser light emitting unit 701 includes a laser light source 71 (see FIG. 1), an LD driver 701a, and the like.
  • the LD driver 701 a is mounted on the substrate 81 and controls driving of the laser light source 71.
  • the laser light receiving unit 702 includes a light receiving unit 77, a comparator 702a, and the like.
  • the comparator 702 a is mounted on the substrate 81 and receives an electrical signal output from the light receiving unit 77. Further, the comparator 702a compares the level of the electric signal with a predetermined threshold level, and outputs a measurement pulse having a high level or a low level according to the comparison result to the distance measuring unit 703. *
  • the laser emission unit 701 emits laser light using the laser emission pulse output from the arithmetic processing unit 704 as a trigger. At this time, the projection light L ⁇ b> 1 is emitted from the light projecting mirror unit 73.
  • the reflected light L2 is received by the laser light receiving unit 702.
  • a measurement pulse is generated according to the amount of light received by the laser light receiving unit 702, and the measurement pulse is output to the distance measuring unit 703.
  • a reference pulse is output from the arithmetic processing unit 704 to the distance measuring unit 703.
  • the distance measuring unit 703 can acquire the distance to the external measurement object OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising timing of the measurement pulse. That is, the distance measuring unit 703 measures the distance by a so-called TOF (Time Of Flight) method.
  • the distance measurement result is output from the distance measurement unit 703 as measurement data.
  • the drive unit 707 controls the rotational drive of the motor 79.
  • the motor 79 is driven to rotate at a predetermined rotation speed by the drive unit 707.
  • the arithmetic processing unit 704 outputs a laser emission pulse every time the motor 79 rotates by a predetermined unit angle.
  • the predetermined unit angle is 1 [degree].
  • the laser light emitting unit 701 emits light and the projection light L1 is emitted from the light projecting mirror unit 73 each time the rotating housing 78 and the light projecting mirror unit 73 rotate by a predetermined unit angle.
  • the arithmetic processing unit 704 is arranged on an orthogonal coordinate system based on the distance measuring device 7 based on the rotation angle position of the motor 79 at the timing when the laser emission pulse is output and the measurement data obtained corresponding to the laser emission pulse.
  • the position information of is generated. That is, the position of the external measurement object OJ is acquired based on the rotation angle position of the projection mirror unit 73 and the measured distance.
  • the acquired position information is output from the arithmetic processing unit 704 as measurement distance data. In this way, a distance image of the external measurement object OJ can be acquired by scanning with the projection light L1 in the angle range ⁇ . *
  • the data communication interface 705 is a communication unit for outputting the measurement distance data output from the arithmetic processing unit 704 to an external device. *
  • the distance measurement device 7 determines whether or not the external measurement object OJ is located in a predetermined area set around the distance measurement device 7 based on the measurement distance data output from the arithmetic processing unit 704. You may further provide the object determination part (not shown) to determine. For example, if the position of a certain external measurement object OJ indicated by the measurement distance data is located within a predetermined area, the object determination unit determines that the external measurement object OJ is located within the predetermined area. When the object determination unit determines that the external measurement object OJ is located within the predetermined area, the object determination unit outputs a detection signal that is a flag as a high level.
  • the distance measuring device 7 can be used as a device for detecting an obstacle (that is, an external measuring object OJ) located in a predetermined area around the distance measuring device 7.
  • FIG. 3 is a perspective view illustrating a first configuration example of the light projecting mirror unit 73.
  • the light projecting mirror unit 73 includes a reflection member 731, an adjustment member 732, a support member 733, and a fixing member 734. *
  • the reflective member 731 has a reflective surface 731a and a first curved surface 731b.
  • the reflection surface 731 a reflects the laser light emitted from the laser light source 71.
  • the curvature r2 of the first curved surface 731b with respect to the first axis Ax1 is constant as viewed from the direction parallel to the first axis Ax1. That is, the shortest distance r2 from the first axis Ax1 to the first curved surface 731b is constant when viewed from a direction parallel to the first axis Ax1.
  • the first axis Ax1 is perpendicular to the axial direction Da along the central axis J and passes through the reflection point Pr of the laser beam on the reflection surface 731a. *
  • the material of the reflecting member 731 is not particularly limited, and a metal material, a resin material, glass, or the like can be used. More specifically, the reflecting surface 731a is provided on a member formed using the above-described material. *
  • the adjusting member 732 can adjust the inclination of the reflecting surface 731a in the first circumferential direction Dc1 centering on the first axis Ax1 on the reflecting surface 731a.
  • the first circumferential direction Dc1 is a circumferential direction around the first axis Ax1. More specifically, the first circumferential direction Dc1 is a circumferential direction when the first axis Ax1 is a rotation axis, and is, for example, the pitching direction of the reflecting surface 731a.
  • the adjustment member 732 is provided on the upper and lower portions of the reflection member 731. As shown in FIG.
  • the adjustment member 732 is reflected in the first circumferential direction Dc1 by rotating the reflecting member 731 in the first circumferential direction Dc1 with respect to the support member 733 around the first axis Ax1.
  • the inclination of the surface 731a can be adjusted.
  • the support member 733 supports the reflection member 731.
  • the support member 733 includes a storage portion 733 a that stores the reflection member 731.
  • the storage portion 733a has a second curved surface 733b.
  • the second curved surface 733 b faces the first curved surface 731 b and is along the first curved surface 731 b of the reflecting member 731.
  • the adjustment member 732 tilts the reflection surface 731a of the reflection member 731 in the first circumferential direction Dc1 with the first axis Ax1 on the reflection surface 731a as the center.
  • the irradiation direction DL of the projection light L1 reflected by the reflecting surface 731a and irradiated to the outside can be adjusted to the first circumferential direction Dc1.
  • the reflection member 731 supported by the support member 733 has a first curved surface 731b having a constant curvature r2 with respect to the first axis Ax1 on the reflection surface 731a when viewed from a direction parallel to the first axis Ax1. Have.
  • the inclination of the reflection surface 731a can be easily adjusted in the first circumferential direction Dc1 without shifting the reflection point Pr of the projection light L1 on the reflection surface 731a. Therefore, the measurement error of the distance measuring device 7 due to the adjustment of the inclination of the reflecting surface 731a can be reduced.
  • the distance measuring device 7 when the distance measuring device 7 is arranged with the central axis J parallel to the vertical line, even if the distance measuring device 7 is at a height close to the ground (such as a road surface of a road), the first circumferential direction Dc1 described above. For example, the reflection of the projection light L1 on the ground can be suppressed. Therefore, measurement errors such as the distance to an external object (measurement object OJ) can be reduced.
  • the reflection member 731 supported by the support member 733 is stored in the storage portion 733a having the second curved surface 733b along the first curved surface 731b. Therefore, when the inclination of the reflecting surface 731a is adjusted, the first curved surface 731b of the reflecting member 731 can be moved along the second curved surface 733b. Therefore, the tilt of the reflection surface 731a can be easily adjusted in the first circumferential direction Dc1 without shifting the reflection point Pr of the laser beam on the reflection surface 731a. Therefore, the measurement error of the distance measuring device 7 due to the adjustment of the inclination of the reflecting surface 731a can be reduced.
  • the fixing member 734 fixes the reflecting member 731 to the support member 733. More specifically, after the inclination of the reflection surface 731 a is adjusted by the adjustment member 732, the reflection member 731 is fixed to the support member 733 by the fixing member 734. By doing so, it is possible to prevent a deviation in the inclination of the reflecting surface 731a, and thus it is possible to prevent a deviation in the irradiation direction DL of the projection light L1 after adjustment of the reflecting surface 731a.
  • the fixing member 734 is not particularly limited, and an acrylic adhesive, an ultraviolet curing agent, or the like can be used. *
  • Second Configuration Example> Next, a second configuration example of the light projecting mirror unit 73 will be described.
  • the same components as those in the first configuration example may be denoted by the same reference numerals, and the description thereof may be omitted.
  • FIG. 4 is a perspective view illustrating a second configuration example of the light projecting mirror unit 73.
  • the adjustment member 732 is further arranged in a plurality of second circumferential directions Dc2 around the respective second axes Ax2 on the reflection surface 731a.
  • the inclination of the reflecting surface 731a can be adjusted.
  • Each second axis Ax2 intersects the first axis Ax1 and passes through the reflection point Pr on the reflection surface 731a.
  • the second circumferential direction Dc2 is more specifically a circumferential direction when the second axis Ax2 is used as a rotation axis.
  • the first curved surface 731b of the reflecting member 731 is a spherical surface having a constant curvature r2 with respect to the reflection point Pr. That is, as shown in FIG. 4, the shortest distance r2 from the reflection point Pr on the reflection surface 731a to the first curved surface 731b is constant.
  • the adjustment member 732 further tilts the reflection surface 731a of the reflection member 731 in the second circumferential direction Dc2 around the second axis Ax2 on the reflection surface 731a.
  • the irradiation direction DL By adjusting the irradiation direction DL, the irradiation direction DL of the projection light L1 reflected by the reflecting surface 731a and irradiated to the outside can be adjusted to the second circumferential direction Dc2.
  • the first curved surface 731b of the reflecting member 731 has a curvature r2 with respect to the reflection point Pr on the reflecting surface 731a. Is a constant spherical surface.
  • the tilt of the reflection surface 731a can be easily adjusted to the first circumferential direction Dc1 and the second circumferential direction Dc2 without shifting the reflection point Pr of the laser beam on the reflection surface 731a. Therefore, the measurement error of the distance measuring device 7 due to the adjustment of the inclination of the reflecting surface 731a can be further reduced.
  • the second circumferential direction Dc2 is plural in FIG. 4, but is not limited to this example. There may be one second circumferential direction Dc2. More specifically, the second circumferential direction Dc2 only needs to include the third circumferential direction Dc3 centered on the third axis Ax3 on the reflecting surface 731a.
  • the third axis Ax3 is orthogonal to the first axis Ax1 and passes through the reflection point Pr on the reflection surface 731a.
  • the third circumferential direction Dc3 is more specifically a circumferential direction when the third axis Ax3 is a rotation axis, and is, for example, the yawing direction of the reflecting surface 731a. In this way, the inclination of the reflecting surface 731a can be adjusted also in the third circumferential direction Dc3.
  • FIG. 5 is a perspective view illustrating a third configuration example of the light projecting mirror unit 73.
  • the light projecting mirror unit 73 of the third configuration example includes a MEMS mirror element 735.
  • the MEMS mirror element 735 includes a mirror portion 735a that reflects the laser light emitted from the laser light source 71 on the reflection surface 731a.
  • the MEMS mirror element 735 swings the mirror portion 735a in the first circumferential direction Dc1 centered on the first axis Ax1 on the reflection surface 731a, thereby tilting the reflection surface 731a in the first circumferential direction Dc1. It can be adjusted.
  • the first axis Ax1 is perpendicular to the axial direction Da along the central axis J and passes through the reflection point Pr of the laser beam on the reflection surface 731a. *
  • the MEMS mirror element 735 adjusts the inclination of the reflecting surface 731 a based on the detection result of the gyro sensor 83 that detects the angular velocity or the angular acceleration of the distance measuring device 7. More specifically, a mirror drive control unit (not shown) is mounted on the substrate 81, for example, and controls the swing drive of the mirror unit 735a based on the detection result of the gyro sensor 83. *
  • the light projecting mirror unit 73 includes the mirror unit 735a of the MEMS mirror element 735 in the first circumferential direction Dc1 centered on the first axis Ax1 on the reflection surface 731a. And the tilting direction of the reflecting surface 731a is adjusted to the first circumferential direction Dc1, so that the irradiation direction Dx of the projection light L1 reflected by the reflecting surface 731a and irradiated to the outside is changed to the first circumferential direction. It can be adjusted to Dc1. Further, the mirror portion 735a of the MEMS mirror element 735 is very small compared to the optical path length of the projection light L1 irradiated to the outside.
  • the mirror portion 735a is driven to swing, it can be said that the reflection point Pr of the laser beam on the reflection surface 731a does not shift. Therefore, the tilt of the reflecting surface 731a can be easily adjusted in the first circumferential direction Dc1 at any timing without shifting the reflection point Pr of the laser light on the reflecting surface 731a. Therefore, the measurement error of the distance measuring device 7 due to the adjustment of the inclination of the reflecting surface 731a can be reduced.
  • the distance measuring device 7 when the distance measuring device 7 is arranged with the central axis J parallel to the vertical line, even if the distance measuring device 7 is at a height close to the ground (such as a road surface of a road), the first circumferential direction Dc1 described above. For example, the reflection of the projection light L1 on the ground can be suppressed. Therefore, measurement errors such as the distance to an external object (measurement object OJ) can be reduced.
  • the mirror unit 735a is driven to swing based on the detection result of the angular velocity or angular acceleration of the distance measuring device 7 by the sensor 83. Therefore, for example, the inclination of the reflecting surface 731a can be adjusted in consideration of the inclination of the distance measuring device 7 with respect to the vertical line. Therefore, for example, when the distance measuring device 7 is inclined in the first circumferential direction Dc1, the inclination of the reflecting surface 731a is set in the first circumferential direction Dc1 in consideration of the inclination of the first circumferential direction Dc1 in the distance measuring device 7. Can be adjusted. Therefore, even if the distance measuring device 7 is at a height close to the ground (road surface of the road, etc.), reflection of the projection light L1 on the ground (road surface of the road, etc.) can be more reliably suppressed. *
  • FIG. 6 is a perspective view illustrating a fourth configuration example of the light projecting mirror unit 73.
  • the light projecting mirror unit 73 of the fourth configuration example includes a MEMS mirror element 736.
  • the MEMS mirror element 736 can swing the mirror portion 735a in a first circumferential direction Dc1 centered on the first axis Ax1 and in a third circumferential direction Dc3 centered on the third axis Ax3.
  • the third axis Ax3 is orthogonal to the first axis Ax1 and passes through the reflection point Pr on the reflection surface 731a. *
  • the MEMS mirror element 736 swings the mirror portion 735a in the first circumferential direction Dc1 centering on the first axis Ax1 on the reflection surface 731a, thereby changing the inclination of the reflection surface 731a to the first. 1 in the circumferential direction Dc1. Further, the MEMS mirror element 736 further swings the mirror portion 735a in the third circumferential direction Dc3 centering on the third axis Ax3 on the reflecting surface 731a, thereby reducing the inclination of the reflecting surface 731a to the third circumference. Adjustment is possible in the direction Dc3. In this way, for example, the inclination of the reflecting surface 731a of the mirror portion 735a can be adjusted also in the third circumferential direction Dc3 that is the yawing direction of the reflecting surface 731a. *
  • the distance measuring device 7 is mounted on the moving device 200 that travels on the road G.
  • the mobile device 200 can travel autonomously by two-wheel drive.
  • a configuration different from that of the first embodiment will be described, and the same components as those in the first embodiment may be denoted by the same reference numerals, and the description thereof may be omitted. *
  • the use of the moving device 200 on which the distance measuring device 7 is mounted is not limited to the example of the present embodiment, but is suitable for an automatic guided vehicle for use in, for example, carrying goods.
  • automated guided vehicles are designed to be short to facilitate loading and unloading of articles. Therefore, the distance measuring device 7 is arranged at a position relatively close to the road surface of the road G when mounted on the automatic guided vehicle. Therefore, the laser beam is emitted from a position relatively close to the road surface.
  • the spot size of the laser light becomes larger. Therefore, the laser light is easily reflected on the road surface of the road G.
  • the reflected light from the road surface may cause detection errors of the measurement object OJ around the automatic guided vehicle, increase the measurement error of the distance to the measurement object OJ, or cause a measurement abnormality.
  • the moving device 200 as the automatic guided vehicle does not shift the reflection point Pr on the reflection surface 731a of the distance measuring device 7, and the inclination of the reflection surface 731a is at least in the first circumferential direction Dc1 (for example, the pitching direction). Can be adjusted. Therefore, the moving device 200 as an automatic guided vehicle can make it difficult for the laser light to be reflected on the road surface of the road G even when the irradiation distance of the laser light becomes long. Therefore, even in a short moving device 200 such as an automatic guided vehicle, generation of detection errors due to reflected light from the road surface, increase in measurement errors, and generation of measurement abnormalities can be more effectively suppressed or prevented. can do. *
  • a direction perpendicular to the vertical line is referred to as a “horizontal direction”.
  • the normal traveling direction of the moving device 200 is referred to as “front”, and the direction opposite to the normal traveling direction is referred to as “rear”.
  • the direction orthogonal to the normal traveling direction and facing the right side toward the front is referred to as “right”, and is orthogonal to the normal traveling direction and toward the left side toward the front.
  • the direction is called “left”.
  • a surface facing in the horizontal direction is referred to as a “side surface”. *
  • FIG. 7 is a perspective view of a moving device 200 according to an embodiment of the present invention.
  • FIG. 8 is a side view of the moving apparatus 200 according to an embodiment of the present invention.
  • FIG. 9 is a plan view of the moving device 200 according to an embodiment of the present invention as viewed from above. *
  • the moving device 200 includes a vehicle body 1, a loading platform 2, support portions 3L and 3R, drive motors 4L and 4R, drive wheels 5L and 5R, driven wheels 6F and 6R, and a distance measuring device 7. Yes. *
  • the vehicle body 1 includes a base portion 1A and a base portion 1B.
  • the plate-like pedestal 1B is fixed to the rear upper surface of the base 1A.
  • the base part 1B has a triangular part Tr protruding forward. *
  • the plate-shaped loading platform 2 is fixed to the upper surface of the platform 1B. A load can be placed on the upper surface of the loading platform 2.
  • the loading platform 2 extends further forward than the platform 1B. Thus, a gap S is formed between the front of the base 1A and the front of the loading platform 2.
  • the support portion 3L is fixed to the left side of the base portion 1A and supports the drive motor 4L.
  • the drive motor 4L is configured by an AC servo motor as an example.
  • the drive motor 4L incorporates a reduction gear (not shown).
  • the drive wheel 5L is attached to a shaft (not shown) of the drive motor 4L and contacts the road G. The drive wheel 5L can be rotated together with the shaft by the rotational drive of the drive motor 4L. *
  • the support portion 3R is fixed to the right side of the base portion 1A and supports the drive motor 4R.
  • the drive motor 4R is configured by an AC servo motor as an example.
  • the drive motor 4R incorporates a reduction gear (not shown).
  • the drive wheel 5R is attached to a shaft (not shown) of the drive motor 4R and is in contact with the road G. The drive wheel 5R can be rotated together with the shaft by the rotational drive of the drive motor 4R. *
  • the moving device 200 By rotating the drive wheels 5L and 5R with the drive motors 4L and 4R, the moving device 200 can be moved forward and backward on the road G. Further, by controlling so as to provide a difference in the rotational speeds of the drive wheels 5L and 5R, the moving device 200 can be rotated clockwise or counterclockwise to change the direction. *
  • the driven wheel 6F is rotatably attached to the front side of the base portion 1A and is in contact with the road G.
  • the driven wheel 6R is rotatably attached to the rear side of the base portion 1A and contacts the road G.
  • the driven wheels 6F and 6R rotate passively according to the rotation of the drive wheels 5L and 5R. *
  • the distance measuring device 7 is a device that measures a distance from an external object (measurement object OJ).
  • the distance measuring device 7 irradiates the projection light L1 to the outside, receives the reflected light L2 of the projection light L1 reflected by the external measurement object OJ, and measures the measurement object OJ based on the light reception result of the reflected light L2. Measure the distance between. Since the configuration of the distance measuring device 7 is the same as that of the first embodiment, the description thereof is omitted. *
  • the distance measuring device 7 is disposed at the front position of the apex of the triangular portion Tr of the base portion 1B in the gap S between the base portion 1A and the loading platform 2.
  • the center axis J of the distance measuring device 7 is parallel to the vertical ship.
  • In the gap S at least the light transmission part 801 of the distance measuring device 7 is exposed. Without being blocked by the base 1 ⁇ / b> A and the loading platform 2 of the vehicle body 1 through the gap S, it is possible to irradiate the projection light L ⁇ b> 1 from the distance measuring device 7 or to allow the reflected light L ⁇ b> 2 to enter the distance measuring device 7 from the outside. It has become. *
  • the projection light L1 irradiated from the distance measuring device 7 passes through the gap S, is irradiated to the outside of the moving device 200, and is scanned over the measurement range Rs having a predetermined angle range ⁇ in the horizontal direction.
  • the angle range ⁇ includes 180 [degree] in front of the moving device 200 and 45 [degree] in each of the left and right sides.
  • the projection light L1 emitted from the distance measuring device 7 is reflected by the measurement object OJ and becomes diffused light.
  • the distance measuring device 7 measures the distance by a so-called TOF (Time Of Flight) method. Specifically, the distance measuring device 7 receives the reflected light L2 in which the projection light L1 is reflected by the measurement object OJ from the emission of the laser light that is reflected by the light projection mirror unit 73 and becomes the projection light L1. The distance to the measurement object OJ is measured based on the elapsed time until the light is received. Furthermore, the distance measuring device 7 acquires the position of the measurement object OJ based on the elapsed time and the scanning angle position of the projection light L1.
  • TOF Time Of Flight
  • the moving device 200 is equipped with a distance measuring device 7 that can adjust the inclination of the reflecting surface 731a of the light projection mirror unit 73 at least in the first circumferential direction (for example, the pitching direction). For this reason, for example, since the light reflected by the light receiving unit 77 of the light reflected from the ground (road surface of the road, etc.) can be suppressed by adjusting the inclination, the measurement object OJ generated due to the reception of the light reflected from the ground can be suppressed. The measurement error of the distance between them can be reduced.
  • the distance measuring device 7 can reduce the measurement error due to the adjustment of the inclination of the reflecting surface 731a of the projection mirror unit 73, the measurement error such as the distance to the measurement object OJ can be reduced. Therefore, the mobile device 200 can accurately perform surrounding map information creation, self-position identification, obstacle detection, and the like.
  • the mobile device 200 further includes a control unit U, a battery B, and a communication unit T as shown in FIGS.
  • the control unit U, the battery B, and the communication unit T are accommodated in the base 1A. *
  • the control unit U is connected to the drive motors 4L, 4R, the communication unit T, and the like.
  • the control unit U is further connected to the distance measuring device 7 and receives various signals from the distance measuring device 7 to perform various controls.
  • the control unit U also performs drive control of the drive motors 4L and 4R. *
  • the communication unit T performs communication with an external tablet terminal (not shown) based on, for example, Bluetooth (registered trademark). Thereby, the mobile device 200 can be remotely operated by an external information device such as a tablet terminal.
  • an external tablet terminal not shown
  • Bluetooth registered trademark
  • the battery B is composed of, for example, a lithium ion battery, and supplies power to each unit such as the distance measuring device 7, the control unit U, the communication unit T, and the like.
  • the present invention is useful for a distance measuring device mounted on a moving device such as an automatic guided vehicle, for example. *
  • T communication unit
  • Tr triangular part
  • S ... gap
  • ⁇ ... angle range Rs ⁇ ..Measurement range
  • J center axis
  • L1 projection light
  • L2 ... reflection light
  • DL ... irradiation direction
  • Da ... axial direction
  • Pr reflection point
  • Ax1 ... -1st axis Ax2 ... 2nd axis
  • Dc1 ... 1st circumferential direction
  • Dc2 ... 2nd Dc3 ... third circumferential direction, r1, r2 ... curvature, OJ ... measurement object

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

A movement device that travels on a road comprises a distance measurement device. The distance measurement device radiates light to the exterior, receives reflection light reflected by an exterior object, and measures the distance to the object on the basis of the result of receiving the reflection light. The distance measurement device comprises a light source that emits light, a light radiation unit that radiates light to the exterior, and a motor having a shaft capable of rotating together with the light radiation unit about a central axis. The light radiation unit has a reflection member having a reflection surface that reflects light emitted by the light source, an adjustment member capable of adjusting the tilt of the reflection surface in a first circumferential direction about a first axis that lies in the reflection surface, and a support member for supporting the reflection member. The first axis is perpendicular to the axial direction, which is aligned with the central axis, and passes through a light reflection point on the reflection surface. The reflection member additionally has a first curved surface. The curvature of the first curved surface with respect to the first axis is fixed when viewed from a direction parallel to the first axis.

Description

距離測定装置、及び移動装置Distance measuring device and moving device
本発明は、距離測定装置、及び移動装置に関する。 The present invention relates to a distance measuring device and a moving device.
近年、物品の運搬作業を行う無人搬送車などの移動装置が工場、倉庫などに導入されてきている。移動装置には、周囲の物体との衝突を避けるため、距離測定装置が搭載されている。距離測定装置は、周囲に照射するレーザ光の反射光を受光した結果に基づいて周囲の物体の有無、及び物体との間の距離を検知する。  In recent years, mobile devices such as automatic guided vehicles for carrying goods have been introduced in factories, warehouses, and the like. A distance measuring device is mounted on the moving device in order to avoid collision with surrounding objects. The distance measuring device detects the presence / absence of a surrounding object and the distance to the object based on the result of receiving the reflected light of the laser light applied to the surroundings. *
なお、本発明に関連する従来技術の一例として、特許文献1には、レーザ障害物検知センサを搭載する無人搬送台車が教示されている。このレーザ障害物検知センサは、路面を障害物として検知しないようにするため、投光ミラーで反射したレーザ光の光軸を水平線よりも上向きにして、レーザ光を照射している。 In addition, as an example of the prior art related to the present invention, Patent Document 1 teaches an automatic guided vehicle equipped with a laser obstacle detection sensor. In order to prevent the laser obstacle detection sensor from detecting the road surface as an obstacle, the laser light is irradiated with the optical axis of the laser light reflected by the light projection mirror facing upward from the horizontal line.
特開平10-10233号公報Japanese Patent Laid-Open No. 10-10233
しかしながら、レーザ光の反射方向を変えるべく該レーザ光を反射するミラーの傾きを調整する際、反射面上におけるレーザ光の反射点がずれてしまうと、外部に照射するレーザ光の基点が変化するため、距離測定装置の測定結果に誤差が生じることがある。特許文献1では、この点に関して何ら言及していない。  However, when adjusting the tilt of the mirror that reflects the laser beam in order to change the reflection direction of the laser beam, if the reflection point of the laser beam on the reflecting surface is shifted, the base point of the laser beam irradiated to the outside changes. Therefore, an error may occur in the measurement result of the distance measuring device. Patent Document 1 makes no mention of this point. *
上記の状況を鑑みて、本発明の目的は、反射面の傾きの調整に起因する測定誤差を低減することができる距離測定装置、及び移動装置を提供することである。 In view of the above situation, an object of the present invention is to provide a distance measuring device and a moving device that can reduce a measurement error due to adjustment of the inclination of a reflecting surface.
上記目的を達成するために、本発明の例示的な距離測定装置は、外部に光を照射し、前記外部の物体で反射された前記光の反射光を受光し、該反射光の受光結果に基づいて前記物体との間の距離を測定する距離測定装置であって、前記光を出射する光源と、前記光を外部に照射する光照射部と、中心軸を中心にして前記光照射部とともに回転可能なシャフトを有するモータと、を備え、前記光照射部は、前記光源から出射される前記光を反射する反射面を有する反射部材と、前記反射面上にある第1軸を中心とする第1の周方向に前記反射面の傾きを調整可能である調整部材と、前記反射部材を支持する支持部材と、を有し、前記第1軸は、前記中心軸に沿う軸方向と垂直であり、前記反射面上における前記光の反射点を通り、前記反射部材は、第1曲面をさらに有し、前記第1軸と平行な方向から見て、前記第1軸に対する前記第1曲面の曲率は一定である構成とされる。  In order to achieve the above object, an exemplary distance measuring device of the present invention irradiates light outside, receives reflected light of the light reflected by the external object, and receives the reflected light as a result of receiving the reflected light. A distance measuring device for measuring a distance between the object and the light source, a light source that emits the light, a light irradiation unit that irradiates the light to the outside, and the light irradiation unit with a central axis as a center And a motor having a rotatable shaft, wherein the light irradiating portion has a reflecting member having a reflecting surface for reflecting the light emitted from the light source, and a first axis on the reflecting surface. An adjustment member capable of adjusting the inclination of the reflection surface in a first circumferential direction; and a support member that supports the reflection member, wherein the first axis is perpendicular to the axial direction along the central axis. The reflection member passes through a reflection point of the light on the reflection surface; Further has a first curved surface, when viewed from the first direction parallel to the axis, the curvature of the first curved surface with respect to the first axis is configured to be constant. *
また、上記目的を達成するために、本発明の例示的な距離測定装置は、外部に光を照射し、前記外部の物体で反射された前記光の反射光を受光し、該反射光の受光結果に基づいて前記物体との間の距離を測定する距離測定装置であって、前記光を出射する光源と、前記光を外部に照射する光照射部と、中心軸を中心にして前記光照射部とともに回転可能なシャフトを有するモータと、を備え、前記光照射部は、前記光源から出射される前記光を反射面で反射するミラー部を有するMEMSミラー素子を含み、前記反射面上にある第1軸を中心とする第1の周方向に前記ミラー部を揺動することにより、前記反射面の傾きを前記第1の周方向に調整可能であり、前記第1軸は、前記中心軸に沿う軸方向と垂直であり、前記反射面上における前記光の反射点を通る構成とされる。  In order to achieve the above object, an exemplary distance measuring device of the present invention irradiates light outside, receives reflected light of the light reflected by the external object, and receives the reflected light. A distance measuring device for measuring a distance between the object based on a result, a light source that emits the light, a light irradiation unit that irradiates the light to the outside, and the light irradiation around a central axis And a motor having a shaft that can rotate together with a part, wherein the light irradiation part includes a MEMS mirror element having a mirror part that reflects the light emitted from the light source by a reflection surface, and is on the reflection surface The tilt of the reflecting surface can be adjusted in the first circumferential direction by swinging the mirror portion in a first circumferential direction around the first axis, and the first axis is the central axis. Perpendicular to the axial direction along the reflective surface It is configured to pass through the reflection point. *
また、上記目的を達成するために、本発明の例示的な移動装置は、道路を走行する移動装置であって、上記の距離測定装置を備える構成とされる。 In order to achieve the above object, an exemplary mobile device of the present invention is a mobile device that travels on a road and includes the above-described distance measuring device.
本発明の例示的な距離測定装置、及び移動装置によれば、反射面の傾きの調整に起因する測定誤差を低減することができる。 According to the exemplary distance measuring device and the moving device of the present invention, it is possible to reduce measurement errors caused by adjusting the inclination of the reflecting surface.
図1は、本発明の一実施形態に係る距離測定装置の概略側面断面図である。FIG. 1 is a schematic side sectional view of a distance measuring device according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る距離測定装置の電気的構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the distance measuring apparatus according to the embodiment of the present invention. 図3は、投光ミラー部の第1構成例を示す図である。FIG. 3 is a diagram illustrating a first configuration example of the light projecting mirror unit. 図4は、投光ミラー部の第2構成例を示す図である。FIG. 4 is a diagram illustrating a second configuration example of the light projecting mirror unit. 図5は、投光ミラー部の第3構成例を示す図である。FIG. 5 is a diagram illustrating a third configuration example of the light projecting mirror unit. 図6は、投光ミラー部の第4構成例を示す図である。FIG. 6 is a diagram illustrating a fourth configuration example of the light projecting mirror unit. 図7は、本発明の一実施形態に係る移動装置の斜視図である。FIG. 7 is a perspective view of a moving device according to an embodiment of the present invention. 図8は、本発明の一実施形態に係る移動装置の側面図である。FIG. 8 is a side view of the moving apparatus according to the embodiment of the present invention. 図9は、本発明の一実施形態に係る移動装置を上方から視た平面図である。FIG. 9 is a plan view of the moving device according to the embodiment of the present invention as viewed from above.
以下に図面を参照して本発明の例示的な実施形態を説明する。  Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. *
<1.第1実施形態> <1-1.距離測定装置における定義> レーザレンジファインダーとして機能する距離測定装置7を説明する。まず、距離測定装置7において、モータ79の中心軸Jと平行な方向Daを「軸方向Da」と呼ぶ。さらに、軸方向Daにおいて、モータ79からレーザ光源71に向かう方向を「上方」と呼び、レーザ光源71からモータ79に向かう方向を「下方」と呼ぶ。また、各々の構成要素の表面において、軸方向Daの上方に向く面を「上面」と呼び、軸方向Daの下方に向く面を「下面」と呼ぶ。  <1. First Embodiment> <1-1. Definition in Distance Measuring Device> The distance measuring device 7 that functions as a laser range finder will be described. First, in the distance measuring device 7, a direction Da parallel to the central axis J of the motor 79 is referred to as “axial direction Da”. Furthermore, in the axial direction Da, the direction from the motor 79 toward the laser light source 71 is referred to as “upward”, and the direction from the laser light source 71 toward the motor 79 is referred to as “downward”. Further, on the surface of each component, the surface facing upward in the axial direction Da is called “upper surface”, and the surface facing downward in the axial direction Da is called “lower surface”. *
また、中心軸Jに直交する方向を「径方向」と呼び、中心軸Jを中心とする周方向を「周方向」と呼ぶ。さらに、径方向において、中心軸Jに向かう方向を「内方」と呼び、中心軸Jから離れる方向を「外方」と呼ぶ。さらに、各々の構成要素の側面において、径方向の内方に向く側面を「内側面」と呼び、径方向の外方に向く側面を「外側面」と呼ぶ。  Further, a direction orthogonal to the central axis J is referred to as a “radial direction”, and a circumferential direction around the central axis J is referred to as a “circumferential direction”. Further, in the radial direction, a direction toward the central axis J is referred to as “inward”, and a direction away from the central axis J is referred to as “outward”. Further, of the side surfaces of each component, a side surface facing inward in the radial direction is called an “inner side surface”, and a side surface facing outward in the radial direction is called an “outer side surface”. *
なお、以上に説明した方向及び面の呼称は、実際の機器に組み込まれた場合での位置関係及び方向などを示すものではない。また、以下では、「一定」との文言は「略一定」を含む。  Note that the direction and surface designations described above do not indicate the positional relationship and direction when incorporated in an actual device. In the following, the phrase “constant” includes “substantially constant”. *
<1-2.距離測定装置の構成> 距離測定装置7は、外部の物体との間の距離を測定する装置である。距離測定装置7は、外部に投射光L1を照射し、外部の物体で反射された投射光L1の反射光L2を受光し、該反射光L2の受光結果に基づいて物体との間の距離を測定する。図1は、距離測定装置7の構成例を示す断面図である。図1では、モータ79の中心軸Jを含む切断面で距離測定装置7を切断している。距離測定装置7は、レーザ光源71と、コリメートレンズ72と、投光ミラー部73と、受光レンズ74と、受光ミラー部75と、受光部77と、回転筐体78と、モータ79と、筐体80と、基板81と、配線82と、ジャイロセンサ83と、を有する。  <1-2. Configuration of Distance Measuring Device> The distance measuring device 7 is a device that measures a distance from an external object. The distance measuring device 7 irradiates the projection light L1 to the outside, receives the reflected light L2 of the projection light L1 reflected by the external object, and determines the distance to the object based on the light reception result of the reflected light L2. taking measurement. FIG. 1 is a cross-sectional view illustrating a configuration example of the distance measuring device 7. In FIG. 1, the distance measuring device 7 is cut along a cut surface including the central axis J of the motor 79. The distance measuring device 7 includes a laser light source 71, a collimating lens 72, a light projecting mirror unit 73, a light receiving lens 74, a light receiving mirror unit 75, a light receiving unit 77, a rotating housing 78, a motor 79, a housing, and a housing. A body 80, a substrate 81, a wiring 82, and a gyro sensor 83 are included. *
筐体80は、たとえば外観視で上下方向に延びる略円柱状であり、内部空間にレーザ光源71及び投光ミラー部73を格納している。より具体的には、筐体80は、上述のような距離測定装置7の各構成要素71~79及び81~83を格納している。筐体80の軸方向Daにおける上端部の下面には、レーザ光源71と、ジャイロセンサ83を実装する基板81とが設けられている。なお、筐体80の外観視における形状は、本実施形態の例示に限定されず、たとえば角柱状などであってもよい。  The casing 80 has, for example, a substantially cylindrical shape extending in the vertical direction in appearance and stores the laser light source 71 and the light projecting mirror unit 73 in the internal space. More specifically, the housing 80 stores the components 71 to 79 and 81 to 83 of the distance measuring device 7 as described above. A laser light source 71 and a substrate 81 on which a gyro sensor 83 is mounted are provided on the lower surface of the upper end portion in the axial direction Da of the housing 80. Note that the shape of the housing 80 in the external view is not limited to the example of the present embodiment, and may be, for example, a prismatic shape. *
レーザ光源71は、たとえば赤外領域のレーザ光を軸方向Daの下方に出射する。なお、レーザ光源71の種類は特に限定されないが、製造コストを抑えるため、赤外領域のレーザ光を出射するレーザ素子が好ましい。  The laser light source 71 emits laser light in the infrared region, for example, below the axial direction Da. The type of the laser light source 71 is not particularly limited, but a laser element that emits laser light in the infrared region is preferable in order to reduce manufacturing costs. *
コリメートレンズ72は、軸方向Daにおいてレーザ光源71の下方に配置される。コリメートレンズ72は、レーザ光源71から出射されるレーザ光を平行光として軸方向Daの下方に出射する。  The collimating lens 72 is disposed below the laser light source 71 in the axial direction Da. The collimating lens 72 emits laser light emitted from the laser light source 71 as parallel light below the axial direction Da. *
投光ミラー部73は、軸方向Daにおいてコリメートレンズ72の下方に配置されており、回転筐体78に固定されている。投光ミラー部73は、レーザ光を距離測定装置7の外部に照射する光照射部の一例である。レーザ光源71から出射されて投光ミラー部73に至るレーザ光の光路は、中心軸J上にある。投光ミラー部73は、コリメートレンズ72から出射されるレーザ光を反射面731a上の反射点Prにて反射し、反射されたレーザ光を投射光L1として出射する。投光ミラー部73の具体的な構成は後に説明する。  The light projecting mirror 73 is disposed below the collimating lens 72 in the axial direction Da, and is fixed to the rotary casing 78. The light projection mirror unit 73 is an example of a light irradiation unit that irradiates laser light to the outside of the distance measuring device 7. The optical path of the laser light emitted from the laser light source 71 and reaching the light projection mirror unit 73 is on the central axis J. The light projection mirror unit 73 reflects the laser beam emitted from the collimator lens 72 at the reflection point Pr on the reflection surface 731a, and emits the reflected laser beam as the projection light L1. A specific configuration of the light projecting mirror unit 73 will be described later. *
回転筐体78は、モータ79のシャフト79Aに固定され、モータ79によって中心軸Jを中心にして回転駆動される。回転筐体78の回転ととともに、投光ミラー部73も中心軸Jを中心として回転駆動される。そのため、投射光L1は、中心軸Jを中心とする周方向に360[degree]の範囲で出射される。  The rotary casing 78 is fixed to the shaft 79A of the motor 79, and is driven to rotate about the central axis J by the motor 79. Along with the rotation of the rotary casing 78, the light projecting mirror 73 is also driven to rotate about the central axis J. Therefore, the projection light L1 is emitted in a range of 360 [degree] in the circumferential direction around the central axis J. *
筐体80は上下方向の途中において、透光性の光透過部801を有する。光透過部801は、たとえば樹脂材料、ガラスなどを用いて形成されている。光透過部801は、筒部801Aと、投光ミラー部73から外部に照射される投射光L1が通り抜ける曲部801Bを有する。曲部801Bは、軸方向Daにおいて筒部801Aの上方に隣接して設けられ、径方向の外方へ突出するよう湾曲して構成される。より具体的には、筒部801A及び曲部801Bは、軸方向Daから見て中心軸Jを中心とする円弧形状である。或いは、筒部801A及び曲部801Bは、軸方向Daから見て中心軸Jを中心とする環状であってもよい。また、曲部801Bは、中心軸Jに沿う筒形状又は円錐台形状であってもよいが、好ましくは、図1に示すように中心軸Jを中心とする周方向から見て反射点Prを中心とする円弧形状とされる。さらに、反射面731aに向く曲部801Bの内側面は凹面とされる。そのため、光透過部801を通って外部に照射される投射光L1の照射方向DLが、後述する反射面731aの傾き調整と、投光ミラー部73の回転によって投射光L1の照射方向DLが中心軸Jを中心とする周方向に移動することとに起因して、ばらつくことを抑制できる。  The housing 80 has a light-transmitting light transmitting portion 801 in the middle of the vertical direction. The light transmission portion 801 is formed using, for example, a resin material, glass, or the like. The light transmission part 801 has a cylindrical part 801A and a curved part 801B through which the projection light L1 irradiated to the outside from the light projection mirror part 73 passes. The curved portion 801B is provided adjacent to the upper portion of the cylindrical portion 801A in the axial direction Da, and is curved so as to protrude outward in the radial direction. More specifically, the cylindrical portion 801A and the curved portion 801B have an arc shape centered on the central axis J when viewed from the axial direction Da. Alternatively, the cylindrical portion 801A and the curved portion 801B may be annular with the central axis J as the center when viewed from the axial direction Da. Further, the curved portion 801B may have a cylindrical shape or a truncated cone shape along the central axis J, but preferably the reflection point Pr is seen from the circumferential direction centering on the central axis J as shown in FIG. The center is an arc shape. Furthermore, the inner side surface of the curved portion 801B facing the reflecting surface 731a is a concave surface. Therefore, the irradiation direction DL of the projection light L1 irradiated to the outside through the light transmission unit 801 is centered on the irradiation direction DL of the projection light L1 by adjusting the inclination of the reflection surface 731a described later and rotating the projection mirror unit 73. It is possible to suppress variation due to the movement in the circumferential direction around the axis J. *
また、曲部801Bにおいて、さらに好ましくは、図1に示すように反射面731a上における投射光L1の反射点Prから曲部801Bの内側面までの最短距離r1が一定とされる。すなわち、中心軸Jを中心とする周方向から見て、反射点Prに対する第1曲面731bの曲率r2は一定である。こうすれば、投射光L1が反射面731a上の反射点Prから光透過部801の曲部801Bに到達するまでの距離r1の変化を防止できる。従って、外部に照射される投射光L1の照射方向DLのばらつきを防止できる。  Further, in the curved portion 801B, more preferably, the shortest distance r1 from the reflection point Pr of the projection light L1 on the reflective surface 731a to the inner surface of the curved portion 801B is constant as shown in FIG. That is, the curvature r2 of the first curved surface 731b with respect to the reflection point Pr is constant when viewed from the circumferential direction centered on the central axis J. In this way, it is possible to prevent a change in the distance r1 until the projection light L1 reaches the curved portion 801B of the light transmission portion 801 from the reflection point Pr on the reflection surface 731a. Therefore, variation in the irradiation direction DL of the projection light L1 irradiated to the outside can be prevented. *
投射光L1は、曲部801Bを透過して、筐体80の外側へ照射される。曲部801Bは、投射光L1による走査の所定の角度範囲θに少なくとも対応するよう、中心軸Jを中心とする周方向における所定の角度範囲θにわたり配置される。本実施形態では、上記所定の角度範囲θは、たとえば、一例として中心軸J周りの270[degree]に設定される。つまり、投射光L1は、少なくとも中心軸J周り270[degree]の範囲で曲部801Bを透過する。なお、角度範囲θ外では、投射光L1は筐体80の内壁または配線82等により遮られる。  The projection light L1 passes through the curved portion 801B and is irradiated to the outside of the housing 80. The curved portion 801B is arranged over a predetermined angular range θ in the circumferential direction around the central axis J so as to correspond at least to the predetermined angular range θ of scanning with the projection light L1. In the present embodiment, the predetermined angle range θ is set to 270 [degree] around the central axis J as an example. That is, the projection light L1 is transmitted through the curved portion 801B at least in the range of 270 degrees around the central axis J. Outside the angle range θ, the projection light L1 is blocked by the inner wall of the housing 80, the wiring 82, or the like. *
受光レンズ74は、回転筐体78の径方向における側面に設けられている。受光ミラー部75は、回転筐体78の軸方向Daにおける上端部の下面に固定されており、投光ミラー部73より軸方向Daの下方に位置している。受光部77は、受光ミラー部75より下方に位置し、回転筐体78の軸方向Daにおける下端部の上面に固定されている。受光レンズ74及び受光部77は、回転筐体78とともに回転可能となっている。なお、受光部77は、この例示に限定されず、回転しない構成であってもよい。すなわち、受光部77は、たとえば、回転筐体78に固定されず、中心軸Jを中心とする回転はしない構成であってもよい。  The light receiving lens 74 is provided on the side surface in the radial direction of the rotating housing 78. The light receiving mirror portion 75 is fixed to the lower surface of the upper end portion in the axial direction Da of the rotary casing 78 and is located below the light projecting mirror portion 73 in the axial direction Da. The light receiving portion 77 is positioned below the light receiving mirror portion 75 and is fixed to the upper surface of the lower end portion in the axial direction Da of the rotating housing 78. The light receiving lens 74 and the light receiving unit 77 are rotatable together with the rotating housing 78. The light receiving unit 77 is not limited to this example, and may be configured not to rotate. That is, for example, the light receiving unit 77 may be configured not to be fixed to the rotating casing 78 and to rotate around the central axis J. *
距離測定装置7から出射された投射光L1は、外部の物体で反射されて拡散光となる。拡散光の一部は、反射光L2として筒部801Aを透過して受光レンズ74に入射する。受光レンズ74を透過した反射光L2は、受光ミラー部75へ入射され、受光ミラー部75により下方へ反射される。反射された反射光L2は、受光部77により受光される。受光ミラー部75で反射されて受光部77に至る反射
光L2の光路は、中心軸J上にある。受光部77は、受光した光を光電変換により電気信号に変換する。 
The projection light L1 emitted from the distance measuring device 7 is reflected by an external object and becomes diffused light. Part of the diffused light passes through the cylindrical portion 801A as reflected light L2 and enters the light receiving lens 74. The reflected light L2 transmitted through the light receiving lens 74 is incident on the light receiving mirror unit 75 and reflected downward by the light receiving mirror unit 75. The reflected reflected light L2 is received by the light receiving unit 77. The optical path of the reflected light L <b> 2 that is reflected by the light receiving mirror unit 75 and reaches the light receiving unit 77 is on the central axis J. The light receiving unit 77 converts the received light into an electrical signal by photoelectric conversion.
筒部801Aは、曲部801Bが構成される範囲と同様の周方向範囲で構成される。モータ79により回転筐体78が回転駆動されると、受光レンズ74、受光ミラー部75、及び受光部77は、投光ミラー部73とともに回転駆動される。  The cylindrical portion 801A is configured in a circumferential range similar to the range in which the curved portion 801B is configured. When the rotating housing 78 is driven to rotate by the motor 79, the light receiving lens 74, the light receiving mirror unit 75, and the light receiving unit 77 are rotated together with the light projecting mirror unit 73. *
モータ79は、中心軸Jを中心にして投射ミラー部73とともに回転可能なシャフト79Aを有する。モータ79は、配線82によって基板81に接続され、基板81から通電されることで回転駆動される。モータ79は、回転筐体78を所定回転速度で回転させる。例えば、回転筐体78は、3000rpm程度で回転駆動される。配線82は、筐体80の後方内壁に沿って軸方向Daの上下方向に引き回される。  The motor 79 has a shaft 79 </ b> A that can rotate together with the projection mirror 73 around the central axis J. The motor 79 is connected to the substrate 81 by the wiring 82 and is driven to rotate when energized from the substrate 81. The motor 79 rotates the rotary casing 78 at a predetermined rotation speed. For example, the rotary casing 78 is driven to rotate at about 3000 rpm. The wiring 82 is routed in the vertical direction of the axial direction Da along the rear inner wall of the housing 80. *
ジャイロセンサ83は、距離測定装置7の角速度、又は各加速度を検出する。  The gyro sensor 83 detects the angular velocity or each acceleration of the distance measuring device 7. *
このほか、距離測定装置7は、赤外領域の光を抽出する波長フィルタ76をさらに備えていてもよい。波長フィルタ76は、たとえば受光ミラー部75及び受光部77間に設けられる。波長フィルタ76は、回転筐体78に固定されて、回転筐体78とともに回転可能であってよい。或いは、波長フィルタ76は、回転しない構成であってもよい。すなわち、波長フィルタ76は、たとえば、回転筐体78に固定されず、中心軸Jを中心とする回転はしない構成であってもよい。受光ミラー部75で反射された反射光L2は、波長フィルタ76を透過して受光部77により受光される。波長フィルタ76を設けることにより、反射光L2以外のたとえば太陽光などに由来する光が受光ミラー部75に入射することを抑制又は防止できる。従って、受光部77での受光結果に含まれるノイズを低減できるので、距離測定装置7の測定精度を向上できる。  In addition, the distance measuring device 7 may further include a wavelength filter 76 that extracts light in the infrared region. The wavelength filter 76 is provided between the light receiving mirror unit 75 and the light receiving unit 77, for example. The wavelength filter 76 may be fixed to the rotary casing 78 and rotatable with the rotary casing 78. Alternatively, the wavelength filter 76 may be configured not to rotate. That is, the wavelength filter 76 may be configured not to be fixed to the rotary casing 78 and to rotate around the central axis J, for example. The reflected light L <b> 2 reflected by the light receiving mirror unit 75 passes through the wavelength filter 76 and is received by the light receiving unit 77. By providing the wavelength filter 76, it is possible to suppress or prevent light derived from, for example, sunlight other than the reflected light L2 from entering the light receiving mirror unit 75. Therefore, noise included in the light reception result of the light receiving unit 77 can be reduced, so that the measurement accuracy of the distance measuring device 7 can be improved. *
<1-3.距離測定装置の電気的構成> 次に、距離測定装置7の電気的構成について説明する。図2は、本発明の一実施形態に係る距離測定装置7の電気的構成を示すブロック図である。図2に示すように、距離測定装置7は、レーザ発光部701と、レーザ受光部702と、距離計側部703と、演算処理部704と、データ通信インタフェース705と、駆動部707と、をさらに有する。  <1-3. Electrical Configuration of Distance Measuring Device> Next, the electrical configuration of the distance measuring device 7 will be described. FIG. 2 is a block diagram showing an electrical configuration of the distance measuring device 7 according to one embodiment of the present invention. As shown in FIG. 2, the distance measuring device 7 includes a laser light emitting unit 701, a laser light receiving unit 702, a distance meter side unit 703, an arithmetic processing unit 704, a data communication interface 705, and a driving unit 707. Also have. *
レーザ発光部701は、レーザ光源71(図1参照)及びLDドライバ701aなどを有する。LDドライバ701aは、基板81に実装され、レーザ光源71の駆動を制御する。レーザ受光部702は、受光部77及びコンパレータ702aなどを有する。コンパレータ702aは、基板81に実装され、受光部77から出力される電気信号を受信する。また、コンパレータ702aは、上記電気信号のレベルを所定閾値レベルと比較し、比較結果に応じてHighレベルまたはLowレベルとした計測パルスを距離計測部703に出力する。  The laser light emitting unit 701 includes a laser light source 71 (see FIG. 1), an LD driver 701a, and the like. The LD driver 701 a is mounted on the substrate 81 and controls driving of the laser light source 71. The laser light receiving unit 702 includes a light receiving unit 77, a comparator 702a, and the like. The comparator 702 a is mounted on the substrate 81 and receives an electrical signal output from the light receiving unit 77. Further, the comparator 702a compares the level of the electric signal with a predetermined threshold level, and outputs a measurement pulse having a high level or a low level according to the comparison result to the distance measuring unit 703. *
レーザ発光部701は、演算処理部704から出力されるレーザ発光パルスをトリガとしてレーザ光を発光する。このとき、投光ミラー部73から投射光L1が出射される。出射された投射光L1が外部の物体OJ(以下、計測対象物OJ)により反射されると、反射光L2がレーザ受光部702により受光される。レーザ受光部702の受光量に応じて計測パルスが生成され、計測パルスが距離計測部703に出力される。  The laser emission unit 701 emits laser light using the laser emission pulse output from the arithmetic processing unit 704 as a trigger. At this time, the projection light L <b> 1 is emitted from the light projecting mirror unit 73. When the emitted projection light L1 is reflected by an external object OJ (hereinafter, measurement object OJ), the reflected light L2 is received by the laser light receiving unit 702. A measurement pulse is generated according to the amount of light received by the laser light receiving unit 702, and the measurement pulse is output to the distance measuring unit 703. *
ここで、距離計測部703には、演算処理部704から基準パルスが出力される。距離計測部703は、基準パルスの立ち上りタイミングから計測パルスの立ち上りタイミングまでの経過時間を計測することで、外部の計測対象物OJまでの距離を取得することができる。すなわち、距離計測部703は、所謂TOF(Time Of Flight)方式によって距離を計測する。距離の計測結果は計測データとして距離計測部703から出力される。  Here, a reference pulse is output from the arithmetic processing unit 704 to the distance measuring unit 703. The distance measuring unit 703 can acquire the distance to the external measurement object OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising timing of the measurement pulse. That is, the distance measuring unit 703 measures the distance by a so-called TOF (Time Of Flight) method. The distance measurement result is output from the distance measurement unit 703 as measurement data. *
駆動部707は、モータ79の回転駆動を制御する。モータ79は、駆動部707によって所定の回転速度で回転駆動される。演算処理部704は、モータ79が所定単位角度回転するたびにレーザ発光パルスを出力する。例えば、上記所定単位角度は1[degree]とする。これにより、回転筐体78および投光ミラー部73が所定単位角度回転するたびにレーザ発光部701が発光し、投光ミラー部73から投射光L1が出射される。  The drive unit 707 controls the rotational drive of the motor 79. The motor 79 is driven to rotate at a predetermined rotation speed by the drive unit 707. The arithmetic processing unit 704 outputs a laser emission pulse every time the motor 79 rotates by a predetermined unit angle. For example, the predetermined unit angle is 1 [degree]. As a result, the laser light emitting unit 701 emits light and the projection light L1 is emitted from the light projecting mirror unit 73 each time the rotating housing 78 and the light projecting mirror unit 73 rotate by a predetermined unit angle. *
演算処理部704は、レーザ発光パルスを出力したタイミングでのモータ79の回転角度位置と、レーザ発光パルスに対応して得られる計測データに基づいて、距離測定装置7を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー部73の回転角度位置と計測された距離に基づき、外部の計測対象物OJの位置が取得される。上記取得される位置情報は、測定距離データとして演算処理部704より出力される。このようにして、角度範囲θでの投射光L1による走査により、外部の計測対象物OJの距離画像を取得することができる。  The arithmetic processing unit 704 is arranged on an orthogonal coordinate system based on the distance measuring device 7 based on the rotation angle position of the motor 79 at the timing when the laser emission pulse is output and the measurement data obtained corresponding to the laser emission pulse. The position information of is generated. That is, the position of the external measurement object OJ is acquired based on the rotation angle position of the projection mirror unit 73 and the measured distance. The acquired position information is output from the arithmetic processing unit 704 as measurement distance data. In this way, a distance image of the external measurement object OJ can be acquired by scanning with the projection light L1 in the angle range θ. *
データ通信インタフェース705は、演算処理部704から出力された測定距離データを外部の装置に出力するための通信部である。  The data communication interface 705 is a communication unit for outputting the measurement distance data output from the arithmetic processing unit 704 to an external device. *
このほか、距離測定装置7は、演算処理部704から出力される測定距離データに基づき、距離測定装置7の周辺に設定される所定エリア内に外部の計測対象物OJが位置するか否かを判定する物体判定部(不図示)をさらに備えていてもよい。物体判定部は、たとえば、測定距離データで示される或る外部の計測対象物OJの位置が所定エリア内に位置すれば、外部の計測対象物OJが所定エリア内に位置すると判定される。物体判定部は、所定エリア内に外部の計測対象物OJが位置すると判定した場合、フラグである検出信号をHighレベルとして出力する。一方、所定エリア内に外部の計測対象物OJが位置しない場合は、Lowレベルとした検出信号を出力する。こうすれば、距離測定装置7の周辺の所定エリア内に位置する障害物(つまり外部の計測対象物OJ)を検知する装置として、距離測定装置7を利用することができる。  In addition, the distance measurement device 7 determines whether or not the external measurement object OJ is located in a predetermined area set around the distance measurement device 7 based on the measurement distance data output from the arithmetic processing unit 704. You may further provide the object determination part (not shown) to determine. For example, if the position of a certain external measurement object OJ indicated by the measurement distance data is located within a predetermined area, the object determination unit determines that the external measurement object OJ is located within the predetermined area. When the object determination unit determines that the external measurement object OJ is located within the predetermined area, the object determination unit outputs a detection signal that is a flag as a high level. On the other hand, when the external measurement object OJ is not located within the predetermined area, a detection signal having a low level is output. In this way, the distance measuring device 7 can be used as a device for detecting an obstacle (that is, an external measuring object OJ) located in a predetermined area around the distance measuring device 7. *
<1-4.投光ミラー部の構成> 次に、投光ミラー部73の具体的な構成を第1~第4構成例を挙げて説明する。  <1-4. Configuration of Projection Mirror Unit> Next, a specific configuration of the projection mirror unit 73 will be described with reference to first to fourth configuration examples. *
<1-4-1.第1構成例> まず、投光ミラー部73の第1構成例を説明する。図3は、投光ミラー部73の第1構成例を示す斜視図である。投光ミラー部73は、図3に示すように、反射部材731と、調整部材732と、支持部材733と、固定部材734と、を有する。  <1-4-1. First Configuration Example> First, a first configuration example of the light projecting mirror unit 73 will be described. FIG. 3 is a perspective view illustrating a first configuration example of the light projecting mirror unit 73. As shown in FIG. 3, the light projecting mirror unit 73 includes a reflection member 731, an adjustment member 732, a support member 733, and a fixing member 734. *
反射部材731は、反射面731aと、第1曲面731bと、を有する。反射面731aは、レーザ光源71から出射されるレーザ光を反射する。また、図3において、第1軸Ax1と平行な方向から見て、第1軸Ax1に対する第1曲面731bの曲率r2は一定である。すなわち、第1軸Ax1と平行な方向から見て、第1軸Ax1から第1曲面731bまでの最短距離r2は一定である。なお、第1軸Ax1は、中心軸Jに沿う軸方向Daと垂直であり、反射面731a上におけるレーザ光の反射点Prを通っている。  The reflective member 731 has a reflective surface 731a and a first curved surface 731b. The reflection surface 731 a reflects the laser light emitted from the laser light source 71. In FIG. 3, the curvature r2 of the first curved surface 731b with respect to the first axis Ax1 is constant as viewed from the direction parallel to the first axis Ax1. That is, the shortest distance r2 from the first axis Ax1 to the first curved surface 731b is constant when viewed from a direction parallel to the first axis Ax1. The first axis Ax1 is perpendicular to the axial direction Da along the central axis J and passes through the reflection point Pr of the laser beam on the reflection surface 731a. *
反射部材731の材料は、特に限定されず、金属材料、樹脂材料、ガラスなどを用いることができる。より具体的には、上述のような材料を用いて形成された部材に反射面731aが設けられている。  The material of the reflecting member 731 is not particularly limited, and a metal material, a resin material, glass, or the like can be used. More specifically, the reflecting surface 731a is provided on a member formed using the above-described material. *
調整部材732は、反射面731a上にある第1軸Ax1を中心とする第1の周方向Dc1に反射面731aの傾きを調整可能である。なお、第1の周方向Dc1は、第1軸Ax1を中心とする周方向である。より具体的には、第1の周方向Dc1は、第1軸Ax1を回転軸としたときの周方向であり、たとえば反射面731aのピッチング方向である。調整部材732は、第1構成例では反射部材731の上部及び下部に設けられている。調整部材732は、図3に示すように第1軸Ax1を中心にして、支持部材733に対して反射部材731を第1の周方向Dc1に回転させることにより、第1の周方向Dc1に反射面731aの傾きを調整可能である。  The adjusting member 732 can adjust the inclination of the reflecting surface 731a in the first circumferential direction Dc1 centering on the first axis Ax1 on the reflecting surface 731a. The first circumferential direction Dc1 is a circumferential direction around the first axis Ax1. More specifically, the first circumferential direction Dc1 is a circumferential direction when the first axis Ax1 is a rotation axis, and is, for example, the pitching direction of the reflecting surface 731a. In the first configuration example, the adjustment member 732 is provided on the upper and lower portions of the reflection member 731. As shown in FIG. 3, the adjustment member 732 is reflected in the first circumferential direction Dc1 by rotating the reflecting member 731 in the first circumferential direction Dc1 with respect to the support member 733 around the first axis Ax1. The inclination of the surface 731a can be adjusted. *
支持部材733は、反射部材731を支持する。支持部材733は、反射部材731を収納する収納部733aを有する。収納部733aは、第2の曲面733bを有する。第2の曲面733bは、第1曲面731bと対向し、且つ、反射部材731の第1曲面731bに沿う。  The support member 733 supports the reflection member 731. The support member 733 includes a storage portion 733 a that stores the reflection member 731. The storage portion 733a has a second curved surface 733b. The second curved surface 733 b faces the first curved surface 731 b and is along the first curved surface 731 b of the reflecting member 731. *
第1構成例の投光ミラー部73によれば、調整部材732は、反射面731a上にある第1軸Ax1を中心とする第1の周方向Dc1に反射部材731の反射面731aの傾きを調整することにより、反射面731aで反射されて外部に照射される投射光L1の照射方向DLを第1の周方向Dc1に調整できる。また、支持部材733により支持される反射部材731は、第1軸Ax1と平行な方向から見て、反射面731a上にある第1軸Ax1に対して曲率r2が一定である第1曲面731bを有する。従って、反射面731a上における投射光L1の反射点Prをずらすことなく、容易に反射面731aの傾きを第1の周方向Dc1に調整することができる。よって、反射面731aの傾きの調整に起因する距離測定装置7の測定誤差を低減できる。  According to the light projection mirror unit 73 of the first configuration example, the adjustment member 732 tilts the reflection surface 731a of the reflection member 731 in the first circumferential direction Dc1 with the first axis Ax1 on the reflection surface 731a as the center. By adjusting, the irradiation direction DL of the projection light L1 reflected by the reflecting surface 731a and irradiated to the outside can be adjusted to the first circumferential direction Dc1. The reflection member 731 supported by the support member 733 has a first curved surface 731b having a constant curvature r2 with respect to the first axis Ax1 on the reflection surface 731a when viewed from a direction parallel to the first axis Ax1. Have. Therefore, the inclination of the reflection surface 731a can be easily adjusted in the first circumferential direction Dc1 without shifting the reflection point Pr of the projection light L1 on the reflection surface 731a. Therefore, the measurement error of the distance measuring device 7 due to the adjustment of the inclination of the reflecting surface 731a can be reduced. *
また、中心軸Jを鉛直線と平行にして距離測定装置7を配置した場合、距離測定装置7が地面(道路の路面など)に近い高さにあっても、上述の第1の周方向Dc1の調整を行うことにより、たとえば地面での投射光L1の反射を抑制できる。よって、外部の物体(計測対象物OJ)との間の距離などの測定誤差を低減することができる。  Further, when the distance measuring device 7 is arranged with the central axis J parallel to the vertical line, even if the distance measuring device 7 is at a height close to the ground (such as a road surface of a road), the first circumferential direction Dc1 described above. For example, the reflection of the projection light L1 on the ground can be suppressed. Therefore, measurement errors such as the distance to an external object (measurement object OJ) can be reduced. *
また、支持部材733により支持される反射部材731は、第1曲面731bに沿う第2曲面733bを有する収納部733aに収納される。そのため、反射面731aの傾きが調整される際、反射部材731の第1曲面731bを第2曲面733bに沿って動かすことができる。従って、反射面731a上におけるレーザ光の反射点Prをずらすことなく、容易に反射面731aの傾きを第1の周方向Dc1に調整することができる。よって、反射面731aの傾きの調整に起因する距離測定装置7の測定誤差を低減できる。  Further, the reflection member 731 supported by the support member 733 is stored in the storage portion 733a having the second curved surface 733b along the first curved surface 731b. Therefore, when the inclination of the reflecting surface 731a is adjusted, the first curved surface 731b of the reflecting member 731 can be moved along the second curved surface 733b. Therefore, the tilt of the reflection surface 731a can be easily adjusted in the first circumferential direction Dc1 without shifting the reflection point Pr of the laser beam on the reflection surface 731a. Therefore, the measurement error of the distance measuring device 7 due to the adjustment of the inclination of the reflecting surface 731a can be reduced. *
固定部材734は、反射部材731を支持部材733に固定する。より具体的には、調整部材732により反射面731aの傾きが調整された後、固定部材734により反射部材731が支持部材733に固定される。こうすれば、反射面731aの傾きのずれを防止できるので、反射面731aの調整後などにおける投射光L1の照射方向DLのずれを防止できる。固定部材734は、特に限定しないが、アクリル系の接着剤、紫外線硬化剤などを用いることができる。  The fixing member 734 fixes the reflecting member 731 to the support member 733. More specifically, after the inclination of the reflection surface 731 a is adjusted by the adjustment member 732, the reflection member 731 is fixed to the support member 733 by the fixing member 734. By doing so, it is possible to prevent a deviation in the inclination of the reflecting surface 731a, and thus it is possible to prevent a deviation in the irradiation direction DL of the projection light L1 after adjustment of the reflecting surface 731a. The fixing member 734 is not particularly limited, and an acrylic adhesive, an ultraviolet curing agent, or the like can be used. *
<1-4-2.第2構成例> 次に、投光ミラー部73の第2構成例を説明する。なお、第2構成例では、第1構成例と異なる構成を説明し、第1構成例と同様の構成部には同じ符号を付し、その説明を省略することがある。  <1-4-2. Second Configuration Example> Next, a second configuration example of the light projecting mirror unit 73 will be described. In the second configuration example, a configuration different from the first configuration example will be described, and the same components as those in the first configuration example may be denoted by the same reference numerals, and the description thereof may be omitted. *
図4は、投光ミラー部73の第2構成例を示す斜視図である。第2構成例の投光ミラー部73では、図4に示すように、調整部材732はさらに、反射面731a上にある各々の第2軸Ax2を中心とする複数の第2の周方向Dc2に反射面731aの傾きを調整可能である。なお、各々の第2軸Ax2は、第1軸Ax1と交差し、反射面731a上の反射点Prを通る。また、第2の周方向Dc2は、より具体的には、第2軸Ax2を回転軸としたときの周方向である。また、反射部材731の第1曲面731bは、反射点Prに対する曲率r2が一定な球面である。すなわち、図4に示すように反射面731a上の反射点Prから第1曲面731bまでの最短距離r2が一定である。  FIG. 4 is a perspective view illustrating a second configuration example of the light projecting mirror unit 73. In the light projection mirror unit 73 of the second configuration example, as illustrated in FIG. 4, the adjustment member 732 is further arranged in a plurality of second circumferential directions Dc2 around the respective second axes Ax2 on the reflection surface 731a. The inclination of the reflecting surface 731a can be adjusted. Each second axis Ax2 intersects the first axis Ax1 and passes through the reflection point Pr on the reflection surface 731a. Further, the second circumferential direction Dc2 is more specifically a circumferential direction when the second axis Ax2 is used as a rotation axis. The first curved surface 731b of the reflecting member 731 is a spherical surface having a constant curvature r2 with respect to the reflection point Pr. That is, as shown in FIG. 4, the shortest distance r2 from the reflection point Pr on the reflection surface 731a to the first curved surface 731b is constant. *
第2構成例の投光ミラー部73によれば、調整部材732はさらに、反射面731a上にある第2軸Ax2を中心とする第2の周方向Dc2に反射部材731の反射面731aの傾きを調整することにより、反射面731aで反射されて外部に照射される投射光L1の照射方向DLを第2の周方向Dc2にも調整できる。また、反射部材731の第1曲面731bは、反射面731a上の反射点Prに対する曲率r2
が一定な球面である。そのため、反射面731a上におけるレーザ光の反射点Prをずらすことなく、容易に反射面731aの傾きを第1の周方向Dc1と第2の周方向Dc2とに調整することができる。よって、反射面731aの傾きの調整に起因する距離測定装置7の測定誤差をさらに低減できる。 
According to the light projecting mirror portion 73 of the second configuration example, the adjustment member 732 further tilts the reflection surface 731a of the reflection member 731 in the second circumferential direction Dc2 around the second axis Ax2 on the reflection surface 731a. By adjusting the irradiation direction DL, the irradiation direction DL of the projection light L1 reflected by the reflecting surface 731a and irradiated to the outside can be adjusted to the second circumferential direction Dc2. The first curved surface 731b of the reflecting member 731 has a curvature r2 with respect to the reflection point Pr on the reflecting surface 731a.
Is a constant spherical surface. Therefore, the tilt of the reflection surface 731a can be easily adjusted to the first circumferential direction Dc1 and the second circumferential direction Dc2 without shifting the reflection point Pr of the laser beam on the reflection surface 731a. Therefore, the measurement error of the distance measuring device 7 due to the adjustment of the inclination of the reflecting surface 731a can be further reduced.
また、第2の周方向Dc2は、図4では複数であるが、この例示には限定されない。第2の周方向Dc2は、1つであってもよい。より具体的には、第2の周方向Dc2は、反射面731a上にある第3軸Ax3を中心とする第3の周方向Dc3を含んでいればよい。第3軸Ax3は、第1軸Ax1と直交し、反射面731a上の反射点Prを通っている。また、第3の周方向Dc3は、より具体的には、第3軸Ax3を回転軸としたときの周方向であり、たとえば反射面731aのヨーイング方向である。こうすれば、第3の周方向Dc3にも反射面731aの傾きを調整できる。  Further, the second circumferential direction Dc2 is plural in FIG. 4, but is not limited to this example. There may be one second circumferential direction Dc2. More specifically, the second circumferential direction Dc2 only needs to include the third circumferential direction Dc3 centered on the third axis Ax3 on the reflecting surface 731a. The third axis Ax3 is orthogonal to the first axis Ax1 and passes through the reflection point Pr on the reflection surface 731a. The third circumferential direction Dc3 is more specifically a circumferential direction when the third axis Ax3 is a rotation axis, and is, for example, the yawing direction of the reflecting surface 731a. In this way, the inclination of the reflecting surface 731a can be adjusted also in the third circumferential direction Dc3. *
<1-4-3.第3構成例> 次に、投光ミラー部73の第3構成例を説明する。なお、第3構成例では、第1及び第2構成例と異なる構成を説明し、第1及び第2構成例と同様の構成部には同じ符号を付し、その説明を省略することがある。  <1-4-3. Third Configuration Example> Next, a third configuration example of the light projecting mirror unit 73 will be described. In the third configuration example, a configuration different from the first and second configuration examples will be described, and the same components as those in the first and second configuration examples may be denoted by the same reference numerals, and the description thereof may be omitted. . *
図5は、投光ミラー部73の第3構成例を示す斜視図である。第3構成例の投光ミラー部73は、MEMSミラー素子735を含んで構成される。MEMSミラー素子735は、レーザ光源71から出射されるレーザ光を反射面731aで反射するミラー部735aを有する。MEMSミラー素子735は、反射面731a上にある第1軸Ax1を中心とする第1の周方向Dc1にミラー部735aを揺動することにより、反射面731aの傾きを第1の周方向Dc1に調整可能である。なお、第1軸Ax1は、中心軸Jに沿う軸方向Daと垂直であり、反射面731a上におけるレーザ光の反射点Prを通っている。  FIG. 5 is a perspective view illustrating a third configuration example of the light projecting mirror unit 73. The light projecting mirror unit 73 of the third configuration example includes a MEMS mirror element 735. The MEMS mirror element 735 includes a mirror portion 735a that reflects the laser light emitted from the laser light source 71 on the reflection surface 731a. The MEMS mirror element 735 swings the mirror portion 735a in the first circumferential direction Dc1 centered on the first axis Ax1 on the reflection surface 731a, thereby tilting the reflection surface 731a in the first circumferential direction Dc1. It can be adjusted. The first axis Ax1 is perpendicular to the axial direction Da along the central axis J and passes through the reflection point Pr of the laser beam on the reflection surface 731a. *
MEMSミラー素子735は、距離測定装置7の角速度又は角加速度を検出するジャイロセンサ83の検出結果に基づいて、反射面731aの傾きを調整する。より具体的には、ミラー駆動制御部(不図示)が、たとえば基板81に実装され、ジャイロセンサ83の検出結果に基づいてミラー部735aの揺動駆動を制御する。  The MEMS mirror element 735 adjusts the inclination of the reflecting surface 731 a based on the detection result of the gyro sensor 83 that detects the angular velocity or the angular acceleration of the distance measuring device 7. More specifically, a mirror drive control unit (not shown) is mounted on the substrate 81, for example, and controls the swing drive of the mirror unit 735a based on the detection result of the gyro sensor 83. *
第3構成例の投光ミラー部73によれば、投光ミラー部73は、反射面731a上にある第1軸Ax1を中心とする第1の周方向Dc1にMEMSミラー素子735のミラー部735aを揺動駆動して、反射面731aの傾きを第1の周方向Dc1に調整することにより、反射面731aで反射されて外部に照射される投射光L1の照射方向Dxを第1の周方向Dc1に調整できる。また、MEMSミラー素子735のミラー部735aは、外部に照射される投射光L1の光路長と比べて非常に微小である。そのため、ミラー部735aを揺動駆動しても、反射面731a上におけるレーザ光の反射点Prがずれないといえる。従って、反射面731a上におけるレーザ光の反射点Prをずらすことなく、任意のタイミングで容易に反射面731aの傾きを第1の周方向Dc1に調整することができる。よって、反射面731aの傾きの調整に起因する距離測定装置7の測定誤差を低減できる。  According to the light projecting mirror unit 73 of the third configuration example, the light projecting mirror unit 73 includes the mirror unit 735a of the MEMS mirror element 735 in the first circumferential direction Dc1 centered on the first axis Ax1 on the reflection surface 731a. And the tilting direction of the reflecting surface 731a is adjusted to the first circumferential direction Dc1, so that the irradiation direction Dx of the projection light L1 reflected by the reflecting surface 731a and irradiated to the outside is changed to the first circumferential direction. It can be adjusted to Dc1. Further, the mirror portion 735a of the MEMS mirror element 735 is very small compared to the optical path length of the projection light L1 irradiated to the outside. For this reason, even if the mirror portion 735a is driven to swing, it can be said that the reflection point Pr of the laser beam on the reflection surface 731a does not shift. Therefore, the tilt of the reflecting surface 731a can be easily adjusted in the first circumferential direction Dc1 at any timing without shifting the reflection point Pr of the laser light on the reflecting surface 731a. Therefore, the measurement error of the distance measuring device 7 due to the adjustment of the inclination of the reflecting surface 731a can be reduced. *
また、中心軸Jを鉛直線と平行にして距離測定装置7を配置した場合、距離測定装置7が地面(道路の路面など)に近い高さにあっても、上述の第1の周方向Dc1の調整を行うことにより、たとえば地面での投射光L1の反射を抑制できる。よって、外部の物体(計測対象物OJ)との間の距離などの測定誤差を低減することができる。  Further, when the distance measuring device 7 is arranged with the central axis J parallel to the vertical line, even if the distance measuring device 7 is at a height close to the ground (such as a road surface of a road), the first circumferential direction Dc1 described above. For example, the reflection of the projection light L1 on the ground can be suppressed. Therefore, measurement errors such as the distance to an external object (measurement object OJ) can be reduced. *
また、第3構成例の投光ミラー部73によれば、センサ83による距離測定装置7の角速度又は角加速度の検出結果に基づいて、ミラー部735aが揺動駆動される。そのため、たとえば鉛直線に対する距離測定装置7の傾きを考慮して、反射面731aの傾きを調整することができる。従って、たとえば距離測定装置7が第1の周方向Dc1に傾いている場合、距離測定装置7における第1の周方向Dc1の傾きを考慮して反射面731aの傾きを第1の周方向Dc1に調整することができる。従って、距離測定装置7が地面(道路の路面など)に近い高さにあっても、地面(道路の路面など)での投射光L1の反射をより確実に抑制できる。  Further, according to the light projecting mirror unit 73 of the third configuration example, the mirror unit 735a is driven to swing based on the detection result of the angular velocity or angular acceleration of the distance measuring device 7 by the sensor 83. Therefore, for example, the inclination of the reflecting surface 731a can be adjusted in consideration of the inclination of the distance measuring device 7 with respect to the vertical line. Therefore, for example, when the distance measuring device 7 is inclined in the first circumferential direction Dc1, the inclination of the reflecting surface 731a is set in the first circumferential direction Dc1 in consideration of the inclination of the first circumferential direction Dc1 in the distance measuring device 7. Can be adjusted. Therefore, even if the distance measuring device 7 is at a height close to the ground (road surface of the road, etc.), reflection of the projection light L1 on the ground (road surface of the road, etc.) can be more reliably suppressed. *
<1-4-4.第4構成例> 次に、投光ミラー部73の第4構成例を説明する。なお、第4構成例では、第1~第3構成例と異なる構成を説明し、第1~第3構成例と同様の構成部には同じ符号を付し、その説明を省略することがある。  <1-4-4. Fourth Configuration Example> Next, a fourth configuration example of the light projecting mirror unit 73 will be described. In the fourth configuration example, a configuration different from the first to third configuration examples will be described, and the same components as those in the first to third configuration examples will be denoted by the same reference numerals and description thereof may be omitted. . *
図6は、投光ミラー部73の第4構成例を示す斜視図である。第4構成例の投光ミラー部73では、図6に示すように、MEMSミラー素子736を含んで構成される。MEMSミラー素子736は、第1軸Ax1を中心とする第1の周方向Dc1と、第3軸Ax3を中心とする第3の周方向Dc3とにミラー部735aを揺動可能である。なお、第3軸Ax3は、第1軸Ax1と直交し、反射面731a上の反射点Prを通っている。  FIG. 6 is a perspective view illustrating a fourth configuration example of the light projecting mirror unit 73. As shown in FIG. 6, the light projecting mirror unit 73 of the fourth configuration example includes a MEMS mirror element 736. The MEMS mirror element 736 can swing the mirror portion 735a in a first circumferential direction Dc1 centered on the first axis Ax1 and in a third circumferential direction Dc3 centered on the third axis Ax3. The third axis Ax3 is orthogonal to the first axis Ax1 and passes through the reflection point Pr on the reflection surface 731a. *
より具体的には、MEMSミラー素子736は、反射面731a上にある第1軸Ax1を中心とする第1の周方向Dc1にミラー部735aを揺動することにより、反射面731aの傾きを第1の周方向Dc1に調整可能である。また、MEMSミラー素子736はさらに、反射面731a上にある第3軸Ax3を中心とする第3の周方向Dc3にミラー部735aを揺動することにより、反射面731aの傾きを第3の周方向Dc3に調整可能である。こうすれば、たとえば反射面731aのヨーイング方向である第3の周方向Dc3にもミラー部735aの反射面731aの傾きを調整できる。  More specifically, the MEMS mirror element 736 swings the mirror portion 735a in the first circumferential direction Dc1 centering on the first axis Ax1 on the reflection surface 731a, thereby changing the inclination of the reflection surface 731a to the first. 1 in the circumferential direction Dc1. Further, the MEMS mirror element 736 further swings the mirror portion 735a in the third circumferential direction Dc3 centering on the third axis Ax3 on the reflecting surface 731a, thereby reducing the inclination of the reflecting surface 731a to the third circumference. Adjustment is possible in the direction Dc3. In this way, for example, the inclination of the reflecting surface 731a of the mirror portion 735a can be adjusted also in the third circumferential direction Dc3 that is the yawing direction of the reflecting surface 731a. *
<2.第2実施形態> 次に、第2実施形態について説明する。第2実施形態では、距離測定装置7が、道路Gを走行する移動装置200に搭載されている。移動装置200は、二輪駆動により自律的な走行をすることができる。なお、第2実施形態では、第1実施形態と異なる構成を説明し、第1実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。  <2. Second Embodiment> Next, a second embodiment will be described. In the second embodiment, the distance measuring device 7 is mounted on the moving device 200 that travels on the road G. The mobile device 200 can travel autonomously by two-wheel drive. In the second embodiment, a configuration different from that of the first embodiment will be described, and the same components as those in the first embodiment may be denoted by the same reference numerals, and the description thereof may be omitted. *
距離測定装置7を搭載する移動装置200の用途は、本実施形態の例示に限定されないが、たとえば荷物の運搬などを用途とする無人搬送車に好適である。たとえば、無人搬送車は、物品の積み降ろしをし易くするために背が低く設計される。そのため、距離測定装置7は、無人搬送車に搭載される場合、比較的道路Gの路面に近い位置に配置される。従って、レーザ光は、路面に比較的近い位置から照射される。ここで、レーザ光の照射距離が長くなるに従って、レーザ光のスポットサイズは大きくなる。そのため、レーザ光が道路Gの路面で反射され易くなる。なお、路面からの反射光は、無人搬送車の周囲の計測対象物OJの検知誤りを発生させたり、及び該計測対象物OJとの間の距離の測定誤差を増大させたり、測定異常を発生させたりすることがある。対して、無人搬送車としての移動装置200は、距離測定装置7の反射面731a上の反射点Prをずらすことなく、反射面731aの傾きを少なくとも第1の周方向Dc1(たとえばピッチング方向)に調整できる。そのため、無人搬送車としての移動装置200は、レーザ光の照射距離が長くなっても、レーザ光が道路Gの路面で反射され難くすることができる。従って、無人搬送車のような背の低い移動装置200であっても、路面からの反射光に起因する検知誤りの発生、測定誤差の増大、及び測定異常の発生をより効果的に抑制又は防止することができる。  The use of the moving device 200 on which the distance measuring device 7 is mounted is not limited to the example of the present embodiment, but is suitable for an automatic guided vehicle for use in, for example, carrying goods. For example, automated guided vehicles are designed to be short to facilitate loading and unloading of articles. Therefore, the distance measuring device 7 is arranged at a position relatively close to the road surface of the road G when mounted on the automatic guided vehicle. Therefore, the laser beam is emitted from a position relatively close to the road surface. Here, as the irradiation distance of the laser light becomes longer, the spot size of the laser light becomes larger. Therefore, the laser light is easily reflected on the road surface of the road G. The reflected light from the road surface may cause detection errors of the measurement object OJ around the automatic guided vehicle, increase the measurement error of the distance to the measurement object OJ, or cause a measurement abnormality. Sometimes On the other hand, the moving device 200 as the automatic guided vehicle does not shift the reflection point Pr on the reflection surface 731a of the distance measuring device 7, and the inclination of the reflection surface 731a is at least in the first circumferential direction Dc1 (for example, the pitching direction). Can be adjusted. Therefore, the moving device 200 as an automatic guided vehicle can make it difficult for the laser light to be reflected on the road surface of the road G even when the irradiation distance of the laser light becomes long. Therefore, even in a short moving device 200 such as an automatic guided vehicle, generation of detection errors due to reflected light from the road surface, increase in measurement errors, and generation of measurement abnormalities can be more effectively suppressed or prevented. can do. *
<2-1.移動装置における定義> 第2実施形態では、道路Gにおける鉛直線の上方を「上方」と呼び、鉛直線の下方を「下方」と呼ぶ。また、各々の構成要素の表面において、鉛直船の上方に向く面を「上面」と呼び、鉛直線の下方に向く面を「下面」と呼ぶ。  <2-1. Definition in Moving Device> In the second embodiment, the upper part of the vertical line on the road G is referred to as “upper”, and the lower part of the vertical line is referred to as “lower”. Further, on the surface of each component, the surface facing upward of the vertical ship is called “upper surface”, and the surface facing downward of the vertical line is called “lower surface”. *
また、鉛直線に直交する方向を「水平方向」と呼ぶ。水平方向のうち、移動装置200の通常の走行方向を「前方」と呼び、通常の走行方向とは逆の方向を「後方」と呼ぶ。さらに、水平方向のうち、通常の走行方向に対して直交し且つ前方に向かって右側に向く方向を「右方」と呼び、通常の走行方向に対して直交し且つ前方に向かって左側に向く方向を「左方」と呼ぶ。また、移動装置200の各々の構成要素において、水平方向に向く面を「側面」と呼ぶ。  A direction perpendicular to the vertical line is referred to as a “horizontal direction”. Among the horizontal directions, the normal traveling direction of the moving device 200 is referred to as “front”, and the direction opposite to the normal traveling direction is referred to as “rear”. Furthermore, of the horizontal directions, the direction orthogonal to the normal traveling direction and facing the right side toward the front is referred to as “right”, and is orthogonal to the normal traveling direction and toward the left side toward the front. The direction is called “left”. Further, in each component of the moving device 200, a surface facing in the horizontal direction is referred to as a “side surface”. *
なお、以上に説明した方向及び面の呼称は、実際の装置における位置関係及び方向などを示すものではない。  The direction and surface designations described above do not indicate the positional relationship and direction in an actual apparatus. *
<2-2.移動装置の構成> 図7は、本発明の一実施形態に係る移動装置200の斜視図である。図8は、本発明の一実施形態に係る移動装置200の側面図である。図9は、本発明の一実施形態に係る移動装置200を上方から視た平面図である。  <2-2. Configuration of Moving Device> FIG. 7 is a perspective view of a moving device 200 according to an embodiment of the present invention. FIG. 8 is a side view of the moving apparatus 200 according to an embodiment of the present invention. FIG. 9 is a plan view of the moving device 200 according to an embodiment of the present invention as viewed from above. *
移動装置200は、車体1と、荷台2と、支持部3L、3Rと、駆動モータ4L、4Rと、駆動輪5L、5Rと、従動輪6F、6Rと、距離測定装置7と、を備えている。  The moving device 200 includes a vehicle body 1, a loading platform 2, support portions 3L and 3R, drive motors 4L and 4R, drive wheels 5L and 5R, driven wheels 6F and 6R, and a distance measuring device 7. Yes. *
車体1は、基部1Aと、台部1Bと、から構成される。板状の台部1Bは、基部1Aの後方上面に固定される。台部1Bは、前方に突出する三角形部Trを有する。  The vehicle body 1 includes a base portion 1A and a base portion 1B. The plate-like pedestal 1B is fixed to the rear upper surface of the base 1A. The base part 1B has a triangular part Tr protruding forward. *
板状の荷台2は、台部1Bの上面に固定される。荷台2の上面には、荷物を載置することが可能である。荷台2は、台部1Bよりも更に前方まで延びる。これにより、基部1Aの前方と荷台2の前方との間には隙間Sが構成される。  The plate-shaped loading platform 2 is fixed to the upper surface of the platform 1B. A load can be placed on the upper surface of the loading platform 2. The loading platform 2 extends further forward than the platform 1B. Thus, a gap S is formed between the front of the base 1A and the front of the loading platform 2. *
支持部3Lは、基部1Aの左方側に固定され、駆動モータ4Lを支持する。駆動モータ4Lは、一例としてACサーボモータにより構成される。駆動モータ4Lは、不図示の減速機を内蔵する。駆動輪5Lは、駆動モータ4Lのシャフト(不図示)に取り付けられ、道路Gに接する。駆動輪5Lは、駆動モータ4Lの回転駆動により該シャフトとともに回転可能である。  The support portion 3L is fixed to the left side of the base portion 1A and supports the drive motor 4L. The drive motor 4L is configured by an AC servo motor as an example. The drive motor 4L incorporates a reduction gear (not shown). The drive wheel 5L is attached to a shaft (not shown) of the drive motor 4L and contacts the road G. The drive wheel 5L can be rotated together with the shaft by the rotational drive of the drive motor 4L. *
支持部3Rは、基部1Aの右方側に固定され、駆動モータ4Rを支持する。駆動モータ4Rは、一例としてACサーボモータにより構成される。駆動モータ4Rは、不図示の減速機を内蔵する。駆動輪5Rは、駆動モータ4Rのシャフト(不図示)に取り付けられ、道路Gに接する。駆動輪5Rは、駆動モータ4Rの回転駆動により該シャフトとともに回転可能である。  The support portion 3R is fixed to the right side of the base portion 1A and supports the drive motor 4R. The drive motor 4R is configured by an AC servo motor as an example. The drive motor 4R incorporates a reduction gear (not shown). The drive wheel 5R is attached to a shaft (not shown) of the drive motor 4R and is in contact with the road G. The drive wheel 5R can be rotated together with the shaft by the rotational drive of the drive motor 4R. *
駆動モータ4L、4Rにより駆動輪5L、5Rを回転駆動することで、道路G上において移動装置200を前進及び後進させることができる。また、駆動輪5L、5Rの回転速度に差を設けるよう制御することで、移動装置200を右回りまたは左回りに回転させ、方向転換させることができる。  By rotating the drive wheels 5L and 5R with the drive motors 4L and 4R, the moving device 200 can be moved forward and backward on the road G. Further, by controlling so as to provide a difference in the rotational speeds of the drive wheels 5L and 5R, the moving device 200 can be rotated clockwise or counterclockwise to change the direction. *
従動輪6Fは、基部1Aの前方側において回転可能に取り付けられ、道路Gに接する。従動輪6Rは、基部1Aの後方側において回転可能に取り付けられ、道路Gに接する。従動輪6F、6Rは、駆動輪5L、5Rの回転に応じて受動的に回転する。  The driven wheel 6F is rotatably attached to the front side of the base portion 1A and is in contact with the road G. The driven wheel 6R is rotatably attached to the rear side of the base portion 1A and contacts the road G. The driven wheels 6F and 6R rotate passively according to the rotation of the drive wheels 5L and 5R. *
距離測定装置7は、外部の物体(計測対象物OJ)との間の距離を測定する装置である。距離測定装置7は、外部に投射光L1を照射し、外部の計測対象物OJで反射された投射光L1の反射光L2を受光し、該反射光L2の受光結果に基づいて計測対象物OJとの間の距離を測定する。なお、距離測定装置7の構成は第1実施形態と同様であるため、その説明は省略する。  The distance measuring device 7 is a device that measures a distance from an external object (measurement object OJ). The distance measuring device 7 irradiates the projection light L1 to the outside, receives the reflected light L2 of the projection light L1 reflected by the external measurement object OJ, and measures the measurement object OJ based on the light reception result of the reflected light L2. Measure the distance between. Since the configuration of the distance measuring device 7 is the same as that of the first embodiment, the description thereof is omitted. *
距離測定装置7は、基部1A及び荷台2間の隙間Sにおいて台部1Bの三角形部Trの頂点の前方位置に配置される。また、距離測定装置7の中心軸Jは、鉛直船と平行となっている。隙間Sでは、距離測定装置7の少なくとも光透過部801が露出している。隙間Sを通じて車体1の基部1A及び荷台2に遮られることなく、距離測定装置7から外部に投射光L1を照射したり、外部から距離測定装置7に反射光L2が入射したりすることが可能となっている。  The distance measuring device 7 is disposed at the front position of the apex of the triangular portion Tr of the base portion 1B in the gap S between the base portion 1A and the loading platform 2. The center axis J of the distance measuring device 7 is parallel to the vertical ship. In the gap S, at least the light transmission part 801 of the distance measuring device 7 is exposed. Without being blocked by the base 1 </ b> A and the loading platform 2 of the vehicle body 1 through the gap S, it is possible to irradiate the projection light L <b> 1 from the distance measuring device 7 or to allow the reflected light L <b> 2 to enter the distance measuring device 7 from the outside. It has become. *
具体的には、距離測定装置7から照射される投射光L1は、隙間Sを通り、移動装置200の外側へ照射され、水平方向において所定の角度範囲θを有する測定範囲Rsに渡って走査される。本実施形態では、図9に示
すように、距離測定装置7の中心軸Jを中心とする周方向においてθ=270[degree]の範囲で走査される。より具体的には、角度範囲θは、移動装置200の前方180[degree]と後方左右それぞれ45[degree]ずつとを含む。距離測定装置7から出射された投射光L1は、計測対象物OJで反射して拡散光となる。拡散光の一部は、反射光L2として隙間Sを通じて距離測定装置7に入射する。距離測定装置7は、所謂TOF(Time Of Flight)方式によって距離を計測する。具体的には、距離測定装置7は、投光ミラー部73で反射されて投射光L1となるレーザ光の出射から、投射光L1が計測対象物OJで反射された反射光L2を受光部77で受光するまでの経過時間に基づいて、計測対象物OJとの間の距離を計測する。さらに、距離測定装置7は、該経過時間と投射光L1の走査角度位置とに基づいて計測対象物OJの位置を取得する。 
Specifically, the projection light L1 irradiated from the distance measuring device 7 passes through the gap S, is irradiated to the outside of the moving device 200, and is scanned over the measurement range Rs having a predetermined angle range θ in the horizontal direction. The In this embodiment, as shown in FIG. 9, scanning is performed in the range of θ = 270 [degree] in the circumferential direction around the central axis J of the distance measuring device 7. More specifically, the angle range θ includes 180 [degree] in front of the moving device 200 and 45 [degree] in each of the left and right sides. The projection light L1 emitted from the distance measuring device 7 is reflected by the measurement object OJ and becomes diffused light. A part of the diffused light enters the distance measuring device 7 through the gap S as reflected light L2. The distance measuring device 7 measures the distance by a so-called TOF (Time Of Flight) method. Specifically, the distance measuring device 7 receives the reflected light L2 in which the projection light L1 is reflected by the measurement object OJ from the emission of the laser light that is reflected by the light projection mirror unit 73 and becomes the projection light L1. The distance to the measurement object OJ is measured based on the elapsed time until the light is received. Furthermore, the distance measuring device 7 acquires the position of the measurement object OJ based on the elapsed time and the scanning angle position of the projection light L1.
移動装置200は、投光ミラー部73の反射面731aの傾きを少なくとも第1の周方向(たとえばピッチング方向)に調整できる距離測定装置7を搭載している。そのため、たとえば地面(道路の路面など)で反射された光の受光部77での受光を傾き調整により抑制できるので、地面で反射された光の受光に起因して発生する計測対象物OJとの間の距離の測定誤差を低減することができる。また、距離測定装置7は、投光ミラー部73の反射面731aの傾きの調整に起因する測定誤差を低減できるので、計測対象物OJとの間の距離などの測定誤差を低減できる。従って、移動装置200は、周囲のマップ情報作成、自己位置同定、及び障害物検知などを精度よく実施することができる。  The moving device 200 is equipped with a distance measuring device 7 that can adjust the inclination of the reflecting surface 731a of the light projection mirror unit 73 at least in the first circumferential direction (for example, the pitching direction). For this reason, for example, since the light reflected by the light receiving unit 77 of the light reflected from the ground (road surface of the road, etc.) can be suppressed by adjusting the inclination, the measurement object OJ generated due to the reception of the light reflected from the ground can be suppressed. The measurement error of the distance between them can be reduced. In addition, since the distance measuring device 7 can reduce the measurement error due to the adjustment of the inclination of the reflecting surface 731a of the projection mirror unit 73, the measurement error such as the distance to the measurement object OJ can be reduced. Therefore, the mobile device 200 can accurately perform surrounding map information creation, self-position identification, obstacle detection, and the like. *
また、移動装置200は、図7~図9に示すように、制御ユニットU、バッテリーB、及び通信部Tをさらに備えている。制御ユニットU、バッテリーB、及び通信部Tは、基部1Aの内部に収容されている。  In addition, the mobile device 200 further includes a control unit U, a battery B, and a communication unit T as shown in FIGS. The control unit U, the battery B, and the communication unit T are accommodated in the base 1A. *
制御ユニットUは、駆動モータ4L、4R、及び通信部T等に接続されている。制御ユニットUは、さらに距離測定装置7に接続され、距離測定装置7から各種信号を受信して各種の制御を行う。制御ユニットUは、駆動モータ4L、4Rの駆動制御も行う。  The control unit U is connected to the drive motors 4L, 4R, the communication unit T, and the like. The control unit U is further connected to the distance measuring device 7 and receives various signals from the distance measuring device 7 to perform various controls. The control unit U also performs drive control of the drive motors 4L and 4R. *
通信部Tは、外部のタブレット端末(不図示)との間で、たとえばBluetooth(登録商標)に準拠する通信を行う。これにより、たとえばタブレット端末などの外部の情報装置によって、移動装置200を遠隔操作することができる。  The communication unit T performs communication with an external tablet terminal (not shown) based on, for example, Bluetooth (registered trademark). Thereby, the mobile device 200 can be remotely operated by an external information device such as a tablet terminal. *
バッテリーBは、例えばリチウムイオン電池により構成され、距離測定装置7、制御ユニットU、通信部T等の各部に電力を供給する。  The battery B is composed of, for example, a lithium ion battery, and supplies power to each unit such as the distance measuring device 7, the control unit U, the communication unit T, and the like. *
<3.その他> 以上、本発明の実施形態について説明した。なお、本発明の範囲は上述の実施形態に限定されない。本発明は、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。また、上述の実施形態で説明した事項は、矛盾を生じない範囲で適宜任意に組み合わせることができる。 <3. Others> The embodiment of the present invention has been described above. The scope of the present invention is not limited to the above-described embodiment. The present invention can be implemented with various modifications without departing from the spirit of the invention. In addition, the items described in the above embodiments can be arbitrarily combined as long as no contradiction occurs.
本発明は、たとえば、無人搬送車などの移動装置に搭載される距離測定装置に有用である。  The present invention is useful for a distance measuring device mounted on a moving device such as an automatic guided vehicle, for example. *
1・・・車体、1A・・・基部、1B・・・台部、2・・・荷台、3L、3R・・・支持部、4L、4R・・・駆動モータ、5L、5R・・・駆動輪、6F、6R・・・従動輪、7・・・距離測定装置、71・・・レーザ光源、72・・・コリメートレンズ、73・・・投光ミラー部、701・・・レーザ発光部、701a・・・LDドライバ、702・・・レーザ受光部、702a・・・コンパレータ、703・・・距離計測部、704・・・演算処理部、705・・・データ通信インタフェース、707・・・駆動部、731・・・反射部材、731a・・・反射面、731b・・・第1曲面、732・・・調整部材、733・・・支持部材、733・・・収納部、733b・・・第2曲面734・・・固定部材、735、736・・・MEMSミラー素子、735a・・・ミラー部、74・・・受光レンズ、75・・・受光ミラー部、76・・・波長フィルタ、77・・・受光部、78・・・回転筐体、79・・・モータ、80・・・筐体、801・・・透過部、801A・・・筒部、801B・・・曲面部、81・・・基板、82・・・配線、83・・・ジャイロセンサ、200・・・移動装置、U・・・制御ユニット、B・・・バッテリー、T・・・通信部、Tr・・・三角形部、S・・・隙間、θ・・・角度範囲、Rs・・・測定範囲、J・・・中心軸、L1・・・投射光、L2・・・反射光、DL・・・照射方向、Da・・・軸方向、Pr・・・反射点、Ax1・・・第1軸、Ax2・・・第2軸、Ax3・・・第3軸、Dc1・・・第1の周方向、Dc2・・・第2の周方向、Dc3・・・第3の周方向、r1、r2・・・曲率、OJ・・・計測対象物 DESCRIPTION OF SYMBOLS 1 ... Car body, 1A ... Base part, 1B ... Base part, 2 ... Cargo bed, 3L, 3R ... Support part, 4L, 4R ... Drive motor, 5L, 5R ... Drive 6F, 6R ... driven wheel, 7 ... distance measuring device, 71 ... laser light source, 72 ... collimating lens, 73 ... projecting mirror unit, 701 ... laser emitting unit, 701a: LD driver, 702 ... laser light receiving unit, 702a ... comparator, 703 ... distance measuring unit, 704 ... arithmetic processing unit, 705 ... data communication interface, 707 ... drive Part, 731 ... reflective member, 731a ... reflective surface, 731b ... first curved surface, 732 ... adjustment member, 733 ... support member, 733 ... storage part, 733b ... first. Two curved surfaces 734 ... fixing members, 735, 736 ... EMS mirror element, 735a ... mirror part, 74 ... light receiving lens, 75 ... light receiving mirror part, 76 ... wavelength filter, 77 ... light receiving part, 78 ... rotating housing, 79 ..Motor, 80 ... housing, 801 ... transmission portion, 801A ... cylindrical portion, 801B ... curved surface portion, 81 ... substrate, 82 ... wiring, 83 ... gyro sensor , 200 ... moving device, U ... control unit, B ... battery, T ... communication unit, Tr ... triangular part, S ... gap, θ ... angle range, Rs · ..Measurement range, J ... center axis, L1 ... projection light, L2 ... reflection light, DL ... irradiation direction, Da ... axial direction, Pr ... reflection point, Ax1 ... -1st axis, Ax2 ... 2nd axis, Ax3 ... 3rd axis, Dc1 ... 1st circumferential direction, Dc2 ... 2nd , Dc3 ... third circumferential direction, r1, r2 ... curvature, OJ ... measurement object

Claims (11)

  1. 外部に光を照射し、前記外部の物体で反射された前記光の反射光を受光し、該反射光の受光結果に基づいて前記物体との間の距離を測定する距離測定装置であって、 前記光を出射する光源と、 前記光を外部に照射する光照射部と、 中心軸を中心にして前記光照射部とともに回転可能なシャフトを有するモータと、を備え、 前記光照射部は、  前記光源から出射される前記光を反射する反射面を有する反射部材と、  前記反射面上にある第1軸を中心とする第1の周方向に前記反射面の傾きを調整可能である調整部材と、  前記反射部材を支持する支持部材と、を有し、 前記第1軸は、前記中心軸に沿う軸方向と垂直であり、前記反射面上における前記光の反射点を通り、 前記反射部材は、第1曲面をさらに有し、 前記第1軸と平行な方向から見て、前記第1軸に対する前記第1曲面の曲率は一定である距離測定装置。 A distance measuring device that irradiates light externally, receives reflected light of the light reflected by the external object, and measures a distance between the object based on a light reception result of the reflected light, A light source that emits the light, a light irradiation unit that irradiates the light to the outside, and a motor that has a shaft that can rotate with the light irradiation unit around a central axis, and the light irradiation unit includes: A reflecting member having a reflecting surface for reflecting the light emitted from the light source; and an adjusting member capable of adjusting the inclination of the reflecting surface in a first circumferential direction centered on a first axis on the reflecting surface; A supporting member that supports the reflecting member, wherein the first axis is perpendicular to an axial direction along the central axis, passes through the reflection point of the light on the reflecting surface, and the reflecting member is , Further having a first curved surface, When viewed from the direction parallel to the axis, the distance measuring device of curvature of the first curved surface with respect to said first axis is constant.
  2. 前記支持部材は、前記反射部材を収納する収納部を有し、 前記収納部は、前記第1曲面と対向し且つ前記第1曲面に沿う第2の曲面を有する請求項1に記載の距離測定装置。 The distance measurement according to claim 1, wherein the support member has a storage portion that stores the reflection member, and the storage portion has a second curved surface that faces the first curved surface and extends along the first curved surface. apparatus.
  3. 前記調整部材はさらに、前記反射面上にある第2軸を中心とする第2の周方向に前記反射面の傾きを調整可能であり、 前記第2軸は、前記第1軸と交差して、前記反射点を通り、 前記第1曲面は、前記反射点に対する曲率が一定な球面である請求項1又は請求項2に記載の距離測定装置。 The adjusting member is further capable of adjusting the inclination of the reflecting surface in a second circumferential direction centered on a second axis on the reflecting surface, and the second axis intersects the first axis. The distance measuring device according to claim 1, wherein the first curved surface is a spherical surface having a constant curvature with respect to the reflection point through the reflection point.
  4. 前記第2の周方向は、前記反射面上にある第3軸を中心とする第3の周方向を含み、 前記第3軸は、前記第1軸と直交し、前記反射点を通る請求項3に記載の距離測定装置。 The second circumferential direction includes a third circumferential direction centered on a third axis on the reflection surface, and the third axis is orthogonal to the first axis and passes through the reflection point. 3. The distance measuring device according to 3.
  5. 前記光照射部は、前記反射部材を前記支持部材に固定する固定部材をさらに有する請求項1~請求項4のいずれかに記載の距離測定装置。 The distance measuring device according to any one of claims 1 to 4, wherein the light irradiation unit further includes a fixing member that fixes the reflecting member to the support member.
  6. 外部に光を照射し、前記外部の物体で反射された前記光の反射光を受光し、該反射光の受光結果に基づいて前記物体との間の距離を測定する距離測定装置であって、 前記光を出射する光源と、 前記光を外部に照射する光照射部と、 中心軸を中心にして前記光照射部とともに回転可能なシャフトを有するモータと、を備え、 前記光照射部は、前記光源から出射される前記光を反射面で反射するミラー部を有するMEMSミラー素子を含み、前記反射面上にある第1軸を中心とする第1の周方向に前記ミラー部を揺動することにより、前記反射面の傾きを前記第1の周方向に調整可能であり、 前記第1軸は、前記中心軸に沿う軸方向と垂直であり、前記反射面上における前記光の反射点を通る距離測定装置。 A distance measuring device that irradiates light externally, receives reflected light of the light reflected by the external object, and measures a distance between the object based on a light reception result of the reflected light, A light source that emits the light, a light irradiation unit that irradiates the light to the outside, and a motor that has a shaft that can rotate with the light irradiation unit around a central axis, and the light irradiation unit includes: Including a MEMS mirror element having a mirror part for reflecting the light emitted from the light source by a reflecting surface, and swinging the mirror part in a first circumferential direction centering on a first axis on the reflecting surface. The tilt of the reflecting surface can be adjusted in the first circumferential direction, and the first axis is perpendicular to the axial direction along the central axis and passes through the light reflection point on the reflecting surface. Distance measuring device.
  7. 前記MEMSミラー素子は、前記距離測定装置の角速度又は角加速度を検出するセンサの検出結果に基づいて、前記反射面の傾きを調整する請求項6に記載の距離測定装置。 The distance measuring device according to claim 6, wherein the MEMS mirror element adjusts an inclination of the reflecting surface based on a detection result of a sensor that detects an angular velocity or an angular acceleration of the distance measuring device.
  8. 前記MEMSミラー素子はさらに、前記反射面上にある第3軸を中心とする第3の周方向に前記ミラー部を揺動することにより、前記反射面の傾きを前記第3の周方向に調整可能であり、 前記第3軸は、前記第1軸と直交し、前記反射点を通る請求項6又は請求項7に記載の距離測定装置。 The MEMS mirror element further adjusts the tilt of the reflecting surface in the third circumferential direction by swinging the mirror portion in a third circumferential direction around the third axis on the reflecting surface. The distance measuring device according to claim 6 or 7, wherein the third axis is orthogonal to the first axis and passes through the reflection point.
  9. 前記光源及び前記光照射部を格納する筐体をさらに備え、 前記筐体は、前記外部に照射される前記光が通り抜ける曲部を有する透光性の光透過部を有し、 前記曲部は、前記中心軸を中心とする環状又は円弧形状であり、 前記曲部の前記反射面に向く内側面は凹面である請求項1~請求項8のいずれかに記載の距離測定装置。 The housing further includes a housing for storing the light source and the light irradiation unit, and the housing includes a light-transmitting light transmission unit having a curved part through which the light irradiated to the outside passes, The distance measuring device according to any one of claims 1 to 8, wherein the distance measuring device has an annular shape or an arc shape centered on the central axis, and an inner side surface of the curved portion facing the reflecting surface is a concave surface.
  10. 前記反射面上における前記光の前記反射点から前記曲部の前記内側面までの距離は一定である請求項9に記載の距離測定装置。 The distance measuring device according to claim 9, wherein a distance from the reflection point of the light on the reflection surface to the inner surface of the curved portion is constant.
  11. 道路を走行する移動装置であって、 請求項1~請求項10のいずれかに記載の距離測定装置を備える移動装置。 A mobile device that travels on a road, comprising the distance measuring device according to any one of claims 1 to 10.
PCT/JP2018/005889 2017-03-22 2018-02-20 Distance measurement device and movement device WO2018173589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-056181 2017-03-22
JP2017056181 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173589A1 true WO2018173589A1 (en) 2018-09-27

Family

ID=63585282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005889 WO2018173589A1 (en) 2017-03-22 2018-02-20 Distance measurement device and movement device

Country Status (1)

Country Link
WO (1) WO2018173589A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200233090A1 (en) * 2019-01-18 2020-07-23 Continental Automotive Systems, Inc. Actively aligned solid-state lidar system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090615A (en) * 2000-09-13 2002-03-27 Sumitomo Heavy Ind Ltd Movable reflector
JP2005156976A (en) * 2003-11-26 2005-06-16 Olympus Corp Two-dimensional optical deflector
JP2008292271A (en) * 2007-05-24 2008-12-04 Suzuki Motor Corp Control device for vehicle
JP2013210378A (en) * 2009-12-08 2013-10-10 Denso Wave Inc Laser radar device
JP2017009524A (en) * 2015-06-25 2017-01-12 シャープ株式会社 Laser distance measurement module and laser distance measurement apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090615A (en) * 2000-09-13 2002-03-27 Sumitomo Heavy Ind Ltd Movable reflector
JP2005156976A (en) * 2003-11-26 2005-06-16 Olympus Corp Two-dimensional optical deflector
JP2008292271A (en) * 2007-05-24 2008-12-04 Suzuki Motor Corp Control device for vehicle
JP2013210378A (en) * 2009-12-08 2013-10-10 Denso Wave Inc Laser radar device
JP2017009524A (en) * 2015-06-25 2017-01-12 シャープ株式会社 Laser distance measurement module and laser distance measurement apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200233090A1 (en) * 2019-01-18 2020-07-23 Continental Automotive Systems, Inc. Actively aligned solid-state lidar system

Similar Documents

Publication Publication Date Title
JP7266130B2 (en) Systems and methods for LIDAR with adjustable resolution and fail-safe operation
JP6815500B2 (en) Photodetection Lidar with multiple receivers
US10545223B2 (en) Optical scanning object detection device detecting object that invades detection area
EP2940489B1 (en) Object detection device and sensing apparatus
US9389307B2 (en) Panoramic scan radar and panoramic laser scanning method
JP2019144072A (en) Object detection device
KR102438071B1 (en) Lidar scanning device capable of front and rear measurement
WO2019064750A1 (en) Distance measurement device and moving body
JP5765694B2 (en) Ranging method and in-vehicle ranging device
JP2024014877A (en) Systems and methods for modifying lidar field of view
WO2018173595A1 (en) Movement device
WO2018173589A1 (en) Distance measurement device and movement device
JPWO2020071465A1 (en) Distance measuring device
JP6899402B2 (en) Measuring device
CN104175332A (en) Laser-positioning automatic robot
WO2022110210A1 (en) Laser radar and mobile platform
JP6584370B2 (en) Optical radar device for vehicles
WO2018173594A1 (en) Distance measurement device and transport vehicle
WO2020045474A1 (en) Sensor unit and mobile body
WO2019181691A1 (en) Distance measuring device, and moving body
CN114930188A (en) LIDAR occlusion detection method and system
WO2019181692A1 (en) Distance measurement device and moving body
JP2017125765A (en) Object detection device
JPWO2019058678A1 (en) Distance measuring device and a moving body equipped with it
JP2019152588A (en) Object detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP