WO2018171025A1 - 一种干扰最小化的移动组网方法与系统 - Google Patents

一种干扰最小化的移动组网方法与系统 Download PDF

Info

Publication number
WO2018171025A1
WO2018171025A1 PCT/CN2017/084238 CN2017084238W WO2018171025A1 WO 2018171025 A1 WO2018171025 A1 WO 2018171025A1 CN 2017084238 W CN2017084238 W CN 2017084238W WO 2018171025 A1 WO2018171025 A1 WO 2018171025A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
drone
interference
user
user equipment
Prior art date
Application number
PCT/CN2017/084238
Other languages
English (en)
French (fr)
Inventor
伍楷舜
王璐
杨海良
邹永攀
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US15/764,886 priority Critical patent/US10536214B2/en
Publication of WO2018171025A1 publication Critical patent/WO2018171025A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/364Delay profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0862Weighted combining receiver computing weights based on information from the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a mobile networking method and system with minimal interference.
  • the conventional networking method has a large interference problem in the case of high user density, and the base station is not movable.
  • the present invention provides a mobile networking method with minimal interference, including the following steps:
  • the drone establishes connection and communication with the ground base station by means of wireless relay;
  • connection and communication are established between the drones by means of a wireless ad hoc network
  • the drone receives the received signal strength information returned by the user equipment, and measures beam arrival angle information of the user equipment signal;
  • step S5 The information measured in step S4 is shared between the drones.
  • the cellular network signal of the serving user is used as a useful signal, and other unmanned cellular network signals are used as interference.
  • the signal using the method of moving interference alignment and beamforming, aligns the main lobe of the signal with the direction of the incoming wave of the serving user, and the null is aligned with the direction of the incoming wave of the interfering signal, thereby finding an optimal hovering position; [0011] S6.
  • steps S4 and S5 to find the optimal hovering position again.
  • the drone in the step S1, the drone establishes connection and communication with the ground base station by means of wireless relay, and the frequency of the link is different from the frequency of communication between the sub-base station and the user.
  • step S3 multiple UAVs cooperate, and the distributed control mode determines the flight of each UAV, and each UAV covers a certain size area, which is the area Users provide wireless network services that together form a mobile cellular network.
  • the step S4 includes:
  • the user equipment monitors the strength of the drone signal, and feeds the information back to the drone through the network; [0016] S42.
  • the drone receives the signal from its service user, and uses the MUSIC algorithm to estimate the user equipment. The direction of the incoming wave.
  • the step S5 includes:
  • each drone uses a random hill climbing algorithm to find a location
  • the present invention also provides a mobile networking system with minimal interference, including:
  • signal acquisition module the drone is equipped with multiple antennas, collects signals from the user equipment, and obtains channel state information
  • a signal analysis module using a MUSIC algorithm to determine a direction of arrival of a user equipment
  • signal processing module using known signal state information, using precoding to achieve beamforming;
  • Location-finding module Using a random hill-climbing algorithm, the drone finds a hover that is less disturbing to other drones.
  • the signal acquisition module includes:
  • Acquisition unit The unmanned aerial vehicle collects the received wireless signal, and uses a bandpass filter to filter noise and out-of-band interference signals according to the working frequency of the device, obtains a signal to be processed, and acquires channel state information of the physical layer.
  • the signal analysis module includes:
  • extracting the main path information unit using the chromatic dispersion of the multipath signal on the ⁇ domain, the power delay distribution characteristic is used to separate the multipath components of the receiving antenna through different paths, setting a power threshold, and respectively performing the above user signals
  • the path signal is greater than the threshold and is considered to be the primary path information;
  • the primary path information is transferred from the ⁇ domain to the frequency domain by Fourier transform;
  • Arrival angle calculation unit According to the phase offset of the signal reaching the antenna array, the inter-turn difference of the signal to different antennas can be calculated, and the signal can be used to directly view the user signal by using the MUSIC algorithm. The angle of arrival is determined.
  • the signal processing module includes:
  • CSI processing unit smoothing the acquired CSI data to remove signal coherence
  • a beamforming unit based on the smoothed CSI data, calculating a shaping matrix, the main lobe of the signal is aligned with the direction of the incoming wave of the user signal, the null is aligned with the direction of the incoming wave of the interfering signal, and the radiated power of the sub-base station is reduced.
  • Peer-to-peer can reduce interference with other users.
  • the location finding module includes:
  • a field distribution calculation unit for a neighboring drone, estimating a distribution of wireless signals in space according to known position information and a standard propagation model of the wireless signal in space;
  • Position finding unit The drone uses a random hill climbing algorithm to find a position where the signal strength of the adjacent drone is weak, and hovering at the position.
  • the beneficial effects of the present invention are: reducing the interference between adjacent cells by the mobility of the unmanned sub-base station, and the invention mainly utilizes the existing wireless network device, and does not need to install professional equipment, and proposes an interference.
  • the minimal mobile networking method has a very high universal applicability.
  • FIG. 1 is a schematic flowchart of an implementation process of a mobile networking method according to the present invention
  • FIG. 2 is a schematic diagram of a position in a mobile networking method of the present invention
  • FIG. 3 is a schematic diagram of a mobile network system framework of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention discloses a mobile networking method for minimizing interference, including the following steps:
  • the drone establishes connection and communication with the ground base station by means of wireless relay;
  • connection and communication are established between the drones by means of a wireless ad hoc network
  • the drone receives the received signal strength information returned by the user equipment (Received Signal Strength)
  • step S5 The information measured in step S4 is shared between the drones.
  • the cellular network signal of the serving user is used as a useful signal, and other unmanned cellular network signals are used as interference.
  • the signal using the method of moving interference alignment and beamforming, aligns the main lobe of the signal with the direction of the incoming wave of the serving user, and the null is aligned with the direction of the incoming wave of the interfering signal, thereby finding an optimal hovering position;
  • the method is based on the movement of the drone, and the interference to other drones is different at different positions, and the beamforming method is used to reduce interference to other users. Larger interference occurs between base stations operating at the same frequency, and bandpass filters do not filter out-channel interference. In order to obtain the direction of the incoming wave of the service user, it is necessary to separate the direct-view path component of the user signal, and obtain the angle of arrival of the beam by using the MUSIC algorithm. By moving and beamforming, interference to users between sub-base stations and sub-base stations can be minimized.
  • the UAV is used as an air sub-base station, and the UAV establishes connection and communication with the ground base station by using a wireless relay mode, and the link frequency is avoided in order to avoid new interference.
  • the frequency of communication with the child base station and the user is different.
  • the drone at the edge of the network is connected to the nearest ground station, and the uplink and downlink frequencies are different from the cellular network.
  • the child base station is connected to the network, and the child base stations are connected and communicated through the self-organizing network.
  • step S3 multiple UAVs cooperate, and the distributed control mode determines the flight of each UAV.
  • Each drone covers a certain size area to provide wireless network services to users in the area. Together form a mobile cellular network.
  • the process of signals from the transmitting end to the receiving end will go through many paths, and different paths will differ in the time of reaching the day and the angle of arrival.
  • the attenuation experienced by the signal on different paths is also different, and they will have dispersion in the field.
  • the signal on the shorter path arrives earlier in the antenna array, while the longer path signal arrives later in the antenna array. Therefore, the power delay profile can be used to separate the direct view component and the non-direct path component.
  • a signal greater than the threshold is considered to be a possible direct view component by a predetermined power threshold.
  • the signal with the shorter part of the delay is selected as the direct-view path component, and the signal is converted from the ⁇ domain to the frequency by the FFT as the input of the next step.
  • step S4 calculating a user signal arrival angle includes:
  • the user equipment monitors the strength of the drone signal, and feeds the information back to the drone through the network; [0058] S42.
  • the drone receives the signal from its service user, and uses the MUSIC algorithm to estimate the user equipment. The direction of the incoming wave.
  • step S5 finding a minimum interference location includes:
  • each drone uses a random hill climbing algorithm to find a location
  • the drone is connected to the ground base station using a frequency point different from the terminal network
  • the user terminal device monitors the received signal strength of the child base station; [0069] 5) the sub base station collects a signal of the user terminal;
  • the drone moves and finds a location where the interference to the neighboring base station is small.
  • the present invention also discloses a mobile networking system with minimal interference, including:
  • Signal acquisition module The drone is equipped with multiple antennas, collects signals from the user equipment, and obtains channel state information (Channel State Information).
  • signal analysis module using the MUSIC algorithm to determine the direction of the incoming wave of the user equipment
  • signal processing module using known signal state information, using precoding to achieve beamforming;
  • Position finding module Using a random climbing algorithm, the drone finds a position hovering that is less disturbing to other drones.
  • the number of antennas of the drone is two or more.
  • the signal acquisition module further includes:
  • the collecting unit the unmanned aerial vehicle collects the received wireless signal, and uses a band pass filter to filter the noise and the out-of-band interference signal according to the working frequency of the device, obtains a to-be-processed signal, and acquires channel state information of the physical layer at the same time;
  • the signal analysis module includes:
  • Extracting the primary path information unit using the chromatic dispersion of the multipath signal on the ⁇ domain, the power delay distribution characteristic is used to separate the multipath components of the receiving antenna through different paths, setting a power threshold, and each of the above user signals
  • the path signal is greater than the threshold and is considered to be the main path information; the main path information is transferred from the ⁇ domain to the frequency domain by Fourier Transform (FFT).
  • FFT Fourier Transform
  • Arrival angle calculation unit According to the phase offset of the signal reaching the antenna array, the inter-turn difference of the signals reaching different antennas can be calculated. Using the difference between the arrival of the antenna in the antenna array, the MUSIC algorithm can be used to find the angle of arrival of the user signal directly looking at the path.
  • the signal processing module includes:
  • CSI processing unit Smoothing the acquired CSI data to remove signal coherence.
  • Beamforming unit Calculating the shaping matrix based on the smoothed CSI data, the main lobe of the signal is aligned with the user letter In the incoming wave direction of the number, the null is aligned with the incoming wave direction of the interference signal, and the radiation power of the sub-base station is reduced, and the interference to other users can be reduced.
  • the location finding module includes:
  • Field distribution calculation unit For neighboring drones, the distribution of wireless signals in space is estimated based on known position information and a standard propagation model of the wireless signal in space.
  • Position finding unit The drone uses a random hill climbing algorithm to find a position where the signal strength of the adjacent drone is weak, and hovering at the position.
  • the UAV has the advantages of flexibility, low cost, etc.
  • the UAV can be used as an air sub-base station to cover the service area well, and the mobility can be used to control the coverage area and interfere with neighboring cells. reduce.
  • MIMO technology thanks to the use of multiple antennas, interference management methods such as beamforming have been used.
  • the invention mainly utilizes the existing wireless network device, and does not need to install professional equipment, and proposes a mobile networking method with minimize interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明提供了一种干扰最小化的移动组网方法与系统,该移动组网方法包括如下步骤:无人机通过无线中继方式与地面基站建立连接与通信;无人机之间通过无线自组网方式建立连接与通信;多架无人机协作组成蜂窝网络为用户提供无线网络服务;无人机接收由用户设备返回的接收信号强度信息,并测量用户设备信号的波束到达角度信息;运用移动干扰对齐和波束成形的方法,将信号主瓣对准服务用户的来波方向,零陷对准干扰信号的来波方向,从而找到一个最佳悬停位置。本发明的有益效果是:通过无人机子基站的移动性,减小相邻小区之间的干扰,发明主要利用了现有的无线网络设备,无需安装专业设备,具有极高的普遍适用性。

Description

一种干扰最小化的移动组网方法与系统
技术领域
[0001] 本发明涉及无线通信技术领域, 尤其涉及一种干扰最小化的移动组网方法与系 统。
背景技术
[0002] 随着无线通信技术的不断发展, 无线网络设备越来越多, 因此无线接入点的数 量也随着增长。 在 3G和 4G中, 小区覆盖范围变小, 基站数量增加, 使得小区边 缘变得模糊, 同吋高的频谱复用系数不可避免地带来严重的小区间干扰。 如何 有效覆盖服务区域的同吋减小干扰, 提供高质量的通信服务, 是无线网络服务 提供商关注的重点。 在现有的组网方法中, 小区基站通常位于固定的位置, 当 小区内的用户数增大吋, 干扰也随之增大, 造成小区内用户通信质量的下降。
[0003] 传统的组网方法在高用户密度情况下都有干扰大的问题, 而且基站不可移动。
技术问题
[0004] 在此处键入技术问题描述段落。
问题的解决方案
技术解决方案
[0005] 本发明提供了一种干扰最小化的移动组网方法, 包括如下步骤:
[0006] S1.无人机通过无线中继方式与地面基站建立连接与通信;
[0007] S2.无人机之间通过无线自组网方式建立连接与通信;
[0008] S3.多架无人机协作组成蜂窝网络为用户提供无线网络服务;
[0009] S4.无人机接收由用户设备返回的接收信号强度信息, 并测量用户设备信号的 波束到达角度信息;
[0010] S5.无人机之间共享步骤 S4中测量的信息, 对于特定的一架无人机, 将其服务 用户的蜂窝网络信号作为有用信号, 并且将其他无人机蜂窝网络信号作为干扰 信号, 运用移动干扰对齐和波束成形的方法, 将信号主瓣对准服务用户的来波 方向, 零陷对准干扰信号的来波方向, 从而找到一个最佳悬停位置; [0011] S6.当用户设备位置发生变化吋, 重复步骤 S4、 S5, 重新找到最佳悬停位置。
[0012] 作为本发明的进一步改进, 在所述步骤 S1中, 无人机通过无线中继方式与地面 基站建立连接与通信, 链路频率与子基站与用户之间通信的频率不同。
[0013] 作为本发明的进一步改进, 所述步骤 S3中, 多架无人机协作, 分布式控制方式 决定各无人机的飞行, 每架无人机覆盖一定大小的区域, 为所在区域的用户提 供无线网络服务, 共同组成移动的蜂窝网络。
[0014] 作为本发明的进一步改进, 所述步骤 S4中包括:
[0015] S41.用户设备监测无人机信号的强度, 并将此信息通过网络反馈给无人机; [0016] S42.无人机接收来自其服务用户的信号, 运用 MUSIC算法, 估算用户设备的来 波方向。
[0017] 作为本发明的进一步改进, 所述步骤 S5中包括:
[0018] S51.无人机之间通过自身网络, 将步骤 S4中所获信息共享;
[0019] S52.利用基于移动的干扰对齐方法, 各无人机使用随机爬山算法寻找一个位置
, 使得其他无人机的蜂窝网络信号在该无人机所在位置的干扰最小;
[0020] S53.利用波束成形技术, 使得每一架无人机的信号主瓣对准各自服务的用户, 减小对其他用户设备的干扰;
[0021] S54.结合步骤 S52和 S53, 找到一个最佳的悬停位置。
[0022] 本发明还提供了一种干扰最小化的移动组网系统, 包括:
[0023] 信号获取模块: 无人机配备多天线, 采集来自用户设备的信号, 同吋获得信道 状态信息;
[0024] 信号分析模块: 运用 MUSIC算法确定用户设备的来波方向;
[0025] 信号处理模块: 利用已知的信号状态信息, 运用预编码实现波束成形;
[0026] 位置寻找模块: 运用随机爬山算法, 无人机找到一个对于其他无人机干扰较小 的位置悬停。
[0027] 作为本发明的进一步改进, 所述信号获取模块包括:
[0028] 采集单元: 无人机采集收到的无线信号, 根据设备的工作频率, 使用带通滤波 器过滤噪声及带外干扰信号, 得到待处理信号, 同吋获取物理层的信道状态信 息。 [0029] 作为本发明的进一步改进, 所述信号分析模块包括:
[0030] 提取主路径信息单元: 利用多径信号在吋域上的色散, 功率延迟分布特性被用 来分离通过不同路径达到接收天线的多径成分, 设定一个功率阈值, 将上述用 户信号各路径信号大于该阈值的认为是主路径信息; 将主路径信息通过傅里叶 变换从吋域转到频域;
[0031] 到达角度计算单元: 根据信号达到天线阵列的相位偏移, 可以计算信号到达不 同天线的吋间差, 利用信号在天线阵列到达吋间的不同, 运用 MUSIC算法可以 将用户信号直视路径的到达角度 Θ求出。
[0032] 作为本发明的进一步改进, 所述信号处理模块包括:
[0033] CSI处理单元: 将获取的 CSI数据进行平滑处理, 以去除信号相干性;
[0034] 波束成形单元: 基于平滑后的 CSI数据, 计算赋形矩阵, 信号主瓣对准用户信 号的来波方向, 零陷对准干扰信号的来波方向, 减小子基站的放射功率, 同吋 可以减小对其他用户的干扰。
[0035] 作为本发明的进一步改进, 所述位置寻找模块包括:
[0036] 场分布计算单元: 对于邻近的无人机, 根据已知的位置信息和无线信号在空间 中的标准传播模型, 估计无线信号在空间中的分布;
[0037] 位置寻找单元: 无人机运用随机爬山算法, 寻找相邻无人机信号强度较弱的位 置, 并在该位置悬停。
发明的有益效果
有益效果
[0038] 本发明的有益效果是: 通过无人机子基站的移动性, 减小相邻小区之间的干扰 , 发明主要利用了现有的无线网络设备, 无需安装专业设备, 提出了一种干扰 最小化的移动组网方法, 具有极高的普遍适用性。
对附图的简要说明
附图说明
[0039] 图 1是本发明移动组网方法的实施流程示意图;
[0040] 图 2是本发明移动组网方法中的位置示意图;
[0041] 图 3是本发明移动组网系统框架示意图。 实施该发明的最佳实施例
本发明的最佳实施方式
[0042] 在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
[0043] 本发明公幵了一种干扰最小化的移动组网方法, 包括如下步骤:
[0044] S1.无人机通过无线中继方式与地面基站建立连接与通信;
[0045] S2.无人机之间通过无线自组网方式建立连接与通信;
[0046] S3.多架无人机协作组成蜂窝网络为用户提供无线网络服务;
[0047] S4.无人机接收由用户设备返回的接收信号强度信息 (Received Signal Strength
Indicator, RSSl) , 并测量用户设备信号的波束到达角度信息 (Angle of Arrival,
AoA) ;
[0048] S5.无人机之间共享步骤 S4中测量的信息, 对于特定的一架无人机, 将其服务 用户的蜂窝网络信号作为有用信号, 并且将其他无人机蜂窝网络信号作为干扰 信号, 运用移动干扰对齐和波束成形的方法, 将信号主瓣对准服务用户的来波 方向, 零陷对准干扰信号的来波方向, 从而找到一个最佳悬停位置;
[0049] S6.当用户设备位置发生变化吋, 重复步骤 S4、 S5, 重新找到最佳悬停位置。
[0050] 在实际应用中, 我们使用多天线收发信机, 接收无线信号, 子基站为无人机。
该方法是基于无人机的移动, 在不同的位置上对其他无人机的干扰不同, 并用 波束成形的方法减小对其他用户的干扰。 工作于同一频率的基站之间会产生较 大的干扰, 带通滤波器并不能滤除同频干扰。 为了获得服务用户的来波方向,需 要将用户信号直视路径分量分离, 利用 MUSIC算法得到波束的到达角度。 通过 移动和波束成形, 可以将子基站之间和子基站对用户的干扰最小化。
[0051] 具体地, 所述步骤 S1中, 无人机作为空中子基站, 无人机通过无线中继方式与 地面基站建立连接与通信, 同吋为了避免带来新的干扰, 该链路频率与子基站 与用户之间通信的频率不同。
[0052] 当本系统幵始工作吋, 位于网络边缘的无人机连接至离其最近的地面基站, 上 下行链路频点与蜂窝网络频点不同。 [0053] 所述步骤 S2中, 子基站自组网, 子基站之间通过自组网方式连接并进行通信。
[0054] 所述步骤 S3中, 多架无人机协作, 分布式控制方式决定各无人机的飞行。 每架 无人机覆盖一定大小的区域, 为所在区域的用户提供无线网络服务。 共同组成 移动的蜂窝网络。
[0055] 室外环境下, 因为建筑物、 树木等反射物的存在, 信号从发射端到接收端的过 程会经历许多的路径, 不同的路径在达到吋间、 到达角度上都会有所不同。 信 号在不同的路径经历的衰减也是不同的, 他们在吋域上会发生色散。 较短路径 上的信号在到达天线阵列的吋间较早, 而较长的路径的信号到达天线阵列的吋 间较晚。 所以功率延迟分布可以被用来分离直视路径成分和非直视路径成分。 通过预先设定的一个功率阈值, 将大于该阈值的信号认为是可能的直视路径成 分。 将选取延吋较短部分的信号作为直视路径分量, 通过 FFT将信号从吋域转换 到频率, 作为下一步骤的输入。
[0056] 所述步骤 S 4中, 计算用户信号到达角, 包括:
[0057] S41.用户设备监测无人机信号的强度, 并将此信息通过网络反馈给无人机; [0058] S42.无人机接收来自其服务用户的信号, 运用 MUSIC算法, 估算用户设备的来 波方向。
[0059] 在步骤 S5中, 寻找最小干扰位置, 包括:
[0060] S51.无人机之间通过自身网络, 将步骤 S4中所获信息共享;
[0061] S52.利用基于移动的干扰对齐方法, 各无人机使用随机爬山算法寻找一个位置
, 使得其他无人机的蜂窝网络信号在该无人机所在位置的干扰最小;
[0062] S53.利用波束成形技术, 使得每一架无人机的信号主瓣对准各自服务的用户, 减小对其他用户设备的干扰;
[0063] S54.结合步骤 S52和 S53, 找到一个最佳的悬停位置。
[0064] 具体地, 如附图 1所示, 实现室内干扰源定位的流程。
[0065] 1) 无人机使用与终端网络不同的频点连接到地面基站;
[0066] 2) 无人机之间通过自组网方式互相连接并通信;
[0067] 3) 多台无人机组成移动的蜂窝网络, 为用户服务;
[0068] 4) 用户终端设备监测接收到的子基站的信号强度; [0069] 5) 子基站采集用户终端的信号;
[0070] 6) 通过 MUSIC算法得到用户终端的信号到达角;
[0071] 7) 根据上述到达角, 通过波束成形, 将基站信号主瓣对准用户方向, 减小其 他方向上用户的干扰;
[0072] 8) 根据子基站各自的位置, 无人机移动并找到对相邻基站干扰较小的位置。
[0073] 本发明还公幵了一种干扰最小化的移动组网系统, 包括:
[0074] 信号获取模块: 无人机配备多天线, 采集来自用户设备的信号, 同吋获得信道 状态信息 (Channel State Information
[0075] 信号分析模块: 运用 MUSIC算法确定用户设备的来波方向;
[0076] 信号处理模块: 利用已知的信号状态信息, 运用预编码实现波束成形;
[0077] 位置寻找模块: 运用随机爬山算法, 无人机找到一个对于其他无人机干扰较小 的位置悬停。
[0078] 无人机的天线数为 2根或 2根以上。
[0079] 如附图 3中所示, 进一步地, 所述信号获取模块包括:
[0080] 采集单元: 无人机采集收到的无线信号, 根据设备的工作频率, 使用带通滤波 器过滤噪声及带外干扰信号, 得到待处理信号, 同吋获取物理层的信道状态信 息;
[0081] 进一步地, 所述信号分析模块包括:
[0082] 提取主路径信息单元: 利用多径信号在吋域上的色散, 功率延迟分布特性被用 来分离通过不同路径达到接收天线的多径成分, 设定一个功率阈值, 将上述用 户信号各路径信号大于该阈值的认为是主路径信息; 将主路径信息通过傅里叶 变换 (Fast Fourier Transform, FFT) 从吋域转到频域。
[0083] 到达角度计算单元: 根据信号达到天线阵列的相位偏移, 可以计算信号到达不 同天线的吋间差。 利用信号在天线阵列到达吋间的不同, 运用 MUSIC算法可以 将用户信号直视路径的到达角度 Θ求出。
[0084] 进一步地, 所述信号处理模块包括:
[0085] CSI处理单元: 将获取的 CSI数据进行平滑处理, 以去除信号相干性。
[0086] 波束成形单元: 基于平滑后的 CSI数据, 计算赋形矩阵, 信号主瓣对准用户信 号的来波方向, 零陷对准干扰信号的来波方向, 减小子基站的放射功率, 同吋 可以减小对其他用户的干扰。
[0087] 进一步地, 所述位置寻找模块包括:
[0088] 场分布计算单元: 对于邻近的无人机, 根据已知的位置信息和无线信号在空间 中的标准传播模型, 估计无线信号在空间中的分布。
[0089] 位置寻找单元: 无人机运用随机爬山算法, 寻找相邻无人机信号强度较弱的位 置, 并在该位置悬停。
[0090] 无人机具有机动灵活, 成本低等优点, 将无人机作为空中子基站可以对服务区 域很好额覆盖, 同吋可以利用移动性可以对覆盖区域进行控制, 对相邻小区干 扰降低。 随着 MIMO技术的发展, 得益于多天线的使用, 使得波束成形等干扰管 理方法得以使用。
[0091] 通过无人机子基站的移动性, 减小相邻小区之间的干扰, 发明主要利用了现有 的无线网络设备, 无需安装专业设备, 提出了一种干扰最小化的移动组网方法
, 具有极高的普遍适用性。
[0092] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术 人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。
工业实用性
[0093] 在此处键入工业实用性描述段落。
序列表自由内容
[0094] 在此处键入序列表自由内容描述段落。

Claims

权利要求书
一种干扰最小化的移动组网方法, 其特征在于, 包括如下步骤:
51.无人机通过无线中继方式与地面基站建立连接与通信;
52.无人机之间通过无线自组网方式建立连接与通信;
53.多架无人机协作组成蜂窝网络为用户提供无线网络服务;
54.无人机接收由用户设备返回的接收信号强度信息, 并测量用户设 备信号的波束到达角度信息;
55.无人机之间共享步骤 S4中测量的信息, 对于特定的一架无人机, 将其服务用户的蜂窝网络信号作为有用信号, 并且将其他无人机蜂窝 网络信号作为干扰信号, 运用移动干扰对齐和波束成形的方法, 将信 号主瓣对准服务用户的来波方向, 零陷对准干扰信号的来波方向, 从 而找到一个最佳悬停位置;
56.当用户设备位置发生变化吋, 重复步骤 S4、 S5, 重新找到最佳悬 停位置。
根据权利要求 1所述的移动组网方法, 其特征在于, 在所述步骤 S1中 , 无人机通过无线中继方式与地面基站建立连接与通信, 链路频率与 子基站与用户之间通信的频率不同。
根据权利要求 1所述的移动组网方法, 其特征在于, 所述步骤 S3中, 多架无人机协作, 分布式控制方式决定各无人机的飞行, 每架无人机 覆盖一定大小的区域, 为所在区域的用户提供无线网络服务, 共同组 成移动的蜂窝网络。
根据权利要求 1所述的移动组网方法, 其特征在于, 所述步骤 S4中包 括:
541.用户设备监测无人机信号的强度, 并将此信息通过网络反馈给无 人机;
542.无人机接收来自其服务用户的信号, 运用 MUSIC算法, 估算用户 设备的来波方向。
根据权利要求 1所述的移动组网方法, 其特征在于, 所述步骤 S5中包 括:
551.无人机之间通过自身网络, 将步骤 S4中所获信息共享;
552.利用基于移动的干扰对齐方法, 各无人机使用随机爬山算法寻找 一个位置, 使得其他无人机的蜂窝网络信号在该无人机所在位置的干 扰最小;
553.利用波束成形技术, 使得每一架无人机的信号主瓣对准各自服务 的用户, 减小对其他用户设备的干扰;
554.结合步骤 S52和 S53, 找到一个最佳的悬停位置。
[权利要求 6] —种干扰最小化的移动组网系统, 包括:
信号获取模块: 无人机配备多天线, 采集来自用户设备的信号, 同吋 获得信道状态信息;
信号分析模块: 运用 MUSIC算法确定用户设备的来波方向; 信号处理模块: 利用已知的信号状态信息, 运用预编码实现波束成形 位置寻找模块: 运用随机爬山算法, 无人机找到一个对于其他无人机 干扰较小的位置悬停。
[权利要求 7] 根据权利要求 6所述的移动组网系统, 其特征在于, 所述信号获取模 块包括:
采集单元: 无人机采集收到的无线信号, 根据设备的工作频率, 使用 带通滤波器过滤噪声及带外干扰信号, 得到待处理信号, 同吋获取物 理层的信道状态信息。
[权利要求 8] 根据权利要求 6所述的移动组网系统, 其特征在于, 所述信号分析模 块包括:
提取主路径信息单元: 利用多径信号在吋域上的色散, 功率延迟分布 特性被用来分离通过不同路径达到接收天线的多径成分, 设定一个功 率阈值, 将上述用户信号各路径信号大于该阈值的认为是主路径信息 ; 将主路径信息通过傅里叶变换从吋域转到频域; 到达角度计算单元: 根据信号达到天线阵列的相位偏移, 可以计算信 号到达不同天线的吋间差, 利用信号在天线阵列到达吋间的不同, 运 用 MUSIC算法可以将用户信号直视路径的到达角度 Θ求出。
[权利要求 9] 根据权利要求 6所述的移动组网系统, 其特征在于, 所述信号处理模 块包括:
CSI处理单元: 将获取的 CSI数据进行平滑处理, 以去除信号相干性 波束成形单元: 基于平滑后的 CSI数据, 计算赋形矩阵, 信号主瓣对 准用户信号的来波方向, 零陷对准干扰信号的来波方向, 减小子基站 的放射功率, 同吋可以减小对其他用户的干扰。
[权利要求 10] 根据权利要求 6所述的移动组网系统, 其特征在于, 所述位置寻找模 块包括:
场分布计算单元: 对于邻近的无人机, 根据已知的位置信息和无线 信号在空间中的标准传播模型, 估计无线信号在空间中的分布; 位置寻找单元: 无人机运用随机爬山算法, 寻找相邻无人机信号强 度较弱的位置, 并在该位置悬停。
PCT/CN2017/084238 2017-03-21 2017-05-12 一种干扰最小化的移动组网方法与系统 WO2018171025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/764,886 US10536214B2 (en) 2017-03-21 2017-05-12 Mobile networking method and system for minimizing interference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710172677 2017-03-21
CN201710172677.7 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018171025A1 true WO2018171025A1 (zh) 2018-09-27

Family

ID=59446276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084238 WO2018171025A1 (zh) 2017-03-21 2017-05-12 一种干扰最小化的移动组网方法与系统

Country Status (3)

Country Link
US (1) US10536214B2 (zh)
CN (1) CN107017938B (zh)
WO (1) WO2018171025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950063A (zh) * 2020-07-15 2022-01-18 重庆丰鸟无人机科技有限公司 无线通信网络组网方法、装置、计算机设备和存储介质

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447859B1 (ko) * 2016-04-26 2022-09-27 삼성전자 주식회사 무선 통신 시스템에서 핸드오버를 지원하는 방법 및 장치
GB2565349A (en) * 2017-08-11 2019-02-13 Tcl Communication Ltd Interference mitigation for aerial vehicles in wireless communications
CN107918403A (zh) * 2017-12-31 2018-04-17 天津津彩物联科技有限公司 一种多无人机飞行轨迹协同规划的实现方法
CN108650011B (zh) * 2018-03-29 2020-09-18 武汉轻工大学 多无人机与地面网络协作性数据中继方法及系统
CN108683442B (zh) * 2018-05-16 2020-12-11 大连理工大学 基于干扰对齐的无人机通信系统的能量效率优化方法
CN110896550A (zh) * 2018-09-12 2020-03-20 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
US11184232B2 (en) * 2018-11-26 2021-11-23 Eagle Technology, Llc Radio frequency (RF) communication system providing enhanced RF equipment configuration updates for mobile vehicles based upon reward matrices and related methods
CN110113086B (zh) * 2019-04-02 2021-11-02 东南大学 大规模mimo无人机系统混合预编码和位置设计方法
GB2584891A (en) * 2019-06-20 2020-12-23 Stratospheric Platforms Ltd A fleet of high altitude platforms comprising antennas and method of positioning thereof
CN110430577B (zh) * 2019-08-06 2021-11-30 北京邮电大学 一种基于时间相关性的无人机基站群组部署方法
US10998946B2 (en) * 2019-09-04 2021-05-04 T-Mobile Usa, Inc. Minimizing uplink and downlink interference in mobile network connected drones
CN110673635B (zh) * 2019-09-30 2021-10-26 华南理工大学 一种基于无线能量传输网络的无人机三维轨迹的设计方法
WO2021102796A1 (zh) * 2019-11-28 2021-06-03 深圳市大疆创新科技有限公司 无人机基站位置的确定方法、终端及计算机可读存储介质
CN111031589A (zh) * 2019-12-24 2020-04-17 深圳奇迹智慧网络有限公司 网络连接方法、装置、计算机可读存储介质和计算机设备
CN111585633B (zh) * 2020-03-25 2021-02-12 北京理工大学 飞行器平台及飞行器平台的组网方法
CN111865395B (zh) * 2020-06-12 2022-07-05 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种面向无人机编队通信的轨迹生成与跟踪方法及系统
CN111812583A (zh) * 2020-06-22 2020-10-23 中国科学院重庆绿色智能技术研究院 一种无人机群定位系统和定位方法
US20230353221A1 (en) * 2020-07-23 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Technique for rotating multi-sector antennas on aircrafts
CN111986518B (zh) * 2020-08-31 2022-03-22 上海大学 一种无人艇协同通信控制系统
CN112498684A (zh) * 2020-11-02 2021-03-16 杭州电子科技大学 一种无人机搭载移动式5g微基站平台及使用方法
US20220148434A1 (en) * 2020-11-11 2022-05-12 AT&T Technical Services Company, Inc. System and method for selecting long-lasting anchor base stations for unmanned aerial vehicles
CN113543136B (zh) * 2021-07-12 2023-09-15 北京邮电大学 窃听源3d定位方法及相关设备
CN113993098B (zh) * 2021-09-15 2024-02-13 北京邮电大学 一种6g无人机用户的功率控制因子设定方法
CN114221726B (zh) * 2021-12-16 2024-04-12 浙江建德通用航空研究院 ka频段无人机通信系统的下行链路同频干扰表征方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924586A (zh) * 2009-06-10 2010-12-22 中兴通讯股份有限公司 一种多用户波束成形的方法和基站
WO2013051969A1 (en) * 2011-10-04 2013-04-11 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for positioning in wireless communication systems
CN103634034A (zh) * 2012-08-23 2014-03-12 中兴通讯股份有限公司 波束赋形处理方法及装置
CN106330283A (zh) * 2015-06-26 2017-01-11 微思泰(北京)信息技术有限公司 一种适用于蜂窝系统的全双工组网方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2978258B1 (en) * 2014-07-22 2017-03-08 Alcatel Lucent Seamless replacement of a first drone base station with a second drone base station
KR101770113B1 (ko) * 2015-08-13 2017-08-22 삼성에스디에스 주식회사 드론의 네트워크 관리 장치 및 방법
CN105223958B (zh) * 2015-09-25 2017-10-10 中国电子进出口总公司 一种基于系留式无人机的应急通信与支援系统和方法
CN205249225U (zh) * 2015-11-10 2016-05-18 南京佰联信息技术有限公司 无人机通信系统
CN105763230B (zh) * 2016-05-03 2018-11-13 中国科学院自动化研究所 可移动式多旋翼无人机自主基站系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924586A (zh) * 2009-06-10 2010-12-22 中兴通讯股份有限公司 一种多用户波束成形的方法和基站
WO2013051969A1 (en) * 2011-10-04 2013-04-11 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for positioning in wireless communication systems
CN103634034A (zh) * 2012-08-23 2014-03-12 中兴通讯股份有限公司 波束赋形处理方法及装置
CN106330283A (zh) * 2015-06-26 2017-01-11 微思泰(北京)信息技术有限公司 一种适用于蜂窝系统的全双工组网方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950063A (zh) * 2020-07-15 2022-01-18 重庆丰鸟无人机科技有限公司 无线通信网络组网方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
US10536214B2 (en) 2020-01-14
US20190058523A1 (en) 2019-02-21
CN107017938A (zh) 2017-08-04
CN107017938B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2018171025A1 (zh) 一种干扰最小化的移动组网方法与系统
US11012136B2 (en) Beamforming in a MU-MIMO wireless communication system with relays
US11831372B2 (en) Non-line of sight wireless communication system and method
US11265071B2 (en) Electronic device, method and apparatus for wireless communication system, and storage medium
Kammoun et al. Preliminary results on 3D channel modeling: From theory to standardization
US7610036B2 (en) Space-time-frequency sensing of RF spectrum in cognitive radios
US9325409B1 (en) Non-line of sight wireless communication system and method
US9456354B2 (en) Non-line of sight wireless communication system and method
CN110313134A (zh) 电子设备、通信装置和信号处理方法
WO2021164676A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
Miao et al. Lightweight 3-D beamforming design in 5G UAV broadcasting communications
US20210391917A1 (en) Communication network and method of making a connection
CN110753354B (zh) 基于无人机协作星地联合noma通信系统位置部署方法
CN103297104A (zh) 天线阵列配置方法及天线阵列
CN114208048A (zh) 分布式大规模mimo网络中的广播和多播传输
KR20170001662A (ko) 기지국 장치, 신호 전송 방법 및 신호 처리 시스템
US20190191317A1 (en) Coordinated Interference Mitigation in Communication Systems
US20200127713A1 (en) Interference free geographical zonal mapping utilizing slow varying channel covariance matrix
EP3641487B1 (en) Data dimension reduction method, device and system, computer device, and storage medium
Kim et al. MIMO wireless networks with directional antennas in indoor environments
Wei et al. Optimization of downtilts adjustment combining joint transmission and 3D beamforming in 3D MIMO
US11438044B1 (en) Interference aware eigen-beamforming based on second order statistics
Wang et al. Coverage analysis for cellular-connected UAVs with 3D antenna patterns
Noh et al. System evaluation for millimeter-wave radio access network
Pan et al. On the Uplink Distributed Detection in UAV-enabled Aerial Cell-Free mMIMO Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.12.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17902058

Country of ref document: EP

Kind code of ref document: A1