WO2018168772A1 - Heat exchanger having heat transfer pipe unit - Google Patents

Heat exchanger having heat transfer pipe unit Download PDF

Info

Publication number
WO2018168772A1
WO2018168772A1 PCT/JP2018/009507 JP2018009507W WO2018168772A1 WO 2018168772 A1 WO2018168772 A1 WO 2018168772A1 JP 2018009507 W JP2018009507 W JP 2018009507W WO 2018168772 A1 WO2018168772 A1 WO 2018168772A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer tube
fins
tube unit
heat
Prior art date
Application number
PCT/JP2018/009507
Other languages
French (fr)
Japanese (ja)
Inventor
透 安東
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018005693A external-priority patent/JP7001917B2/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2018168772A1 publication Critical patent/WO2018168772A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/38Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being staggered to form tortuous fluid passages

Definitions

  • the present invention relates to a heat exchanger having a heat transfer tube unit.
  • Some heat exchangers used in air conditioners and the like have a heat transfer tube unit in which a heat transfer tube for flowing a refrigerant and a fin for performing heat exchange are formed as an integral member.
  • the heat exchanger disclosed in Patent Document 1 Japanese Patent Laid-Open No. 2006-105489
  • the plurality of heat transfer tube units are connected to a common header.
  • a plurality of heat transfer tube units are usually arranged at narrow intervals in the heat exchanger.
  • the air flow passes through the gap between the heat transfer tube units, the air flow is subjected to resistance, so that the amount of air passing is reduced, and as a result, the heat transfer performance may not be improved as intended.
  • the heat transfer tube units are arranged at wide intervals, a part of the air flow passes through the heat exchanger without contacting the heat transfer unit, so the heat transfer performance is not improved.
  • An object of the present invention is to improve the heat transfer performance of a heat exchanger.
  • the heat exchanger includes a plurality of heat transfer tube units each having a plurality of fins and a plurality of heat transfer tubes.
  • the plurality of heat transfer tube units are arranged at intervals in the heat transfer tube unit arrangement direction.
  • the plurality of heat transfer tubes extend in the heat transfer tube extension direction perpendicular to the heat transfer tube unit arrangement direction.
  • the fins and the heat transfer tubes are alternately arranged in the heat transfer tube separation direction perpendicular to the heat transfer tube unit arrangement direction and the heat transfer tube extension direction.
  • the plurality of fins of each heat transfer tube unit are each a first inclined portion that is inclined by a positive acute angle with respect to the heat transfer tube separation direction, and a second inclined portion that is inclined by a negative acute angle with respect to the heat transfer tube separation direction, At least one of the above.
  • the airflow flowing along the heat transfer tube unit meanders according to the change in the inclination of the fins.
  • the probability that the airflow contacts the fins is increased. Therefore, the heat transfer performance of the heat exchanger is improved.
  • the heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the plurality of heat transfer tube units have at least one of a first heat transfer tube unit and a second heat transfer tube unit.
  • Each of the plurality of fins of the first heat transfer tube unit is either a first fin having only a first inclined portion or a second fin having only a second inclined portion.
  • the plurality of fins of the second heat transfer tube unit includes a third fin having both the first inclined portion and the second inclined portion.
  • the first heat transfer tube unit is easy to confirm the shape because the heat transfer tube is located at the top of the meandering.
  • the second heat transfer tube unit occupies a small space because the heat transfer tube is not located at the top of the meandering.
  • the heat exchanger according to the third aspect of the present invention is the heat exchanger according to the second aspect, wherein the plurality of heat transfer tube units have both the first heat transfer tube unit and the second heat transfer tube unit.
  • the heat exchanger has two types of heat transfer tube units. Therefore, by appropriately arranging the two types of heat transfer tube units, it is possible to improve the heat transfer performance while reducing the air resistance.
  • the heat transfer tube belonging to the first heat transfer tube unit is the second heat transfer tube unit. Located between adjacent heat transfer tubes to which it belongs.
  • the heat transfer tubes belonging to the respective heat transfer tube units are not close to each other at the location where the first heat transfer tube unit and the second heat transfer tube unit are adjacent to each other. Therefore, air resistance due to the proximity of the heat transfer tubes hardly occurs at that location.
  • a heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to the third aspect or the fourth aspect, wherein the first heat transfer tube units and the second heat transfer tube units are alternately arranged in the heat transfer tube unit arrangement direction. ing.
  • the heat transfer tubes belonging to the adjacent heat transfer tube units are not close to each other. Therefore, air resistance due to the proximity of the heat transfer tubes is less likely to occur.
  • a heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the second to fifth aspects, wherein the plurality of fins of the first heat transfer tube unit are alternately arranged in the heat transfer tube separation direction. The first fin and the second fin are arranged.
  • the inclination of the fins of the first heat transfer tube unit is alternately reversed. Therefore, a meandering shape with a small pitch can be formed.
  • a heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to any one of the second to fifth aspects, wherein the plurality of fins of the first heat transfer tube unit are two in the heat transfer tube separation direction. These are the first fins and the second fins alternately arranged as described above.
  • the inclination of the fins of the first heat transfer tube unit is reversed every one or more. Therefore, a meandering shape with a large pitch can be formed.
  • a heat exchanger according to an eighth aspect of the present invention is the heat exchanger according to any one of the second to sixth aspects, wherein the plurality of fins of the second heat transfer tube unit alternately have different projecting directions.
  • the third fins are arranged in the heat transfer tube separation direction.
  • a heat exchanger according to a ninth aspect of the present invention is the heat exchanger according to any one of the second aspect, the third aspect, the fourth aspect, the fifth aspect, and the seventh aspect.
  • the plurality of fins include all of the first fin, the second fin, and the third fin, and at least one first fin or second fin is disposed between the two third fins.
  • the inclination of the fins of the second heat transfer tube unit is reversed every one or more. Therefore, a meandering shape with a large pitch can be formed.
  • the plurality of fins are curved surfaces.
  • the plurality of curved fins form a smooth meandering shape and smoothly guide the air flow. Therefore, the air resistance can be further reduced.
  • the heat exchanger according to the first and second aspects of the present invention improves the heat transfer performance of the heat exchanger.
  • the air resistance is reduced while improving the heat transfer performance.
  • the heat exchanger according to the sixth aspect, the seventh aspect, the eighth aspect, and the ninth aspect of the present invention provides variations of the meandering pitch of the fins of the heat transfer tube unit, and can select a heat exchanger suitable for the application. it can.
  • FIG. 1 is a schematic diagram showing an outer shape of a heat exchanger 10.
  • FIG. FIG. 3 is a schematic diagram showing an outer shape of a heat transfer tube unit 30. It is a schematic diagram of the heat exchanger tube unit group 35A of the heat exchanger 10 which concerns on 1st Embodiment. It is a mimetic diagram of heat exchanger tube unit group 35A 'of heat exchanger 10 concerning modification 1A of a 1st embodiment. It is a schematic diagram which shows the external shape of the heat exchanger 10 which concerns on the modification 1B of 1st Embodiment. It is a schematic diagram which shows the external shape of the heat exchanger tube unit 30 of the heat exchanger 10 which concerns on the modification 1B of 1st Embodiment.
  • FIG. 1 shows a heat exchanger 10 according to the first embodiment of the present invention.
  • the heat exchanger 10 is used, for example, in an air conditioner or the like, and performs heat exchange between a refrigerant and air.
  • the heat exchanger 10 includes a first pipe 41, a second pipe 42, a first header 21, a second header 22, and a heat transfer tube unit group 35.
  • the heat transfer tube unit group 35 includes a plurality of heat transfer tube units 30.
  • the first piping 41 and the second piping 42 are for passing a refrigerant. Both the first pipe 41 and the second pipe 42 can function as refrigerant inlets and outlets that can take various states such as gas, liquid, and gas-liquid two-phase.
  • the first pipe 41 is connected to the first header 21 so as to exchange refrigerant with the first header 21.
  • the second pipe 42 is connected to the second header 22 so as to exchange refrigerant with the second header 22.
  • Both the first header 21 and the second header 22 have a heat transfer tube unit connection surface 23.
  • the first header 21 and the second header 22 are arranged such that the heat transfer tube unit connection surfaces 23 face each other or substantially face each other.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35 are arranged at intervals in the heat transfer tube unit arrangement direction x.
  • Each heat transfer tube unit 30 is connected to the first header 21 and the second header at each heat transfer tube unit connection surface 23.
  • the heat transfer tube unit 30 is integrally configured from, for example, aluminum or an aluminum alloy.
  • FIG. 2 shows one heat transfer tube unit 30.
  • the heat transfer tube unit 30 includes a plurality of heat transfer tubes 31 and a plurality of fins 32.
  • the number of heat transfer tubes 31 provided in the heat transfer tube unit 30 is, for example, six or more, but is not limited thereto.
  • the heat transfer tube 31 is for moving the refrigerant between the first header 21 and the second header 22. Both ends of each heat transfer tube 31 are connected to the heat transfer tube unit connection surfaces 23 of the first header 21 and the second header 22.
  • Each heat transfer tube 31 has at least a portion extending in the heat transfer tube extension direction z, and is preferably linear.
  • the plurality of heat transfer tubes 31 are generally arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored.
  • the inner diameter of each heat transfer tube 31 is, for example, 1.5 mm or less, and preferably 0.8 mm or less.
  • the fins 32 are for exchanging heat between the refrigerant flowing through the adjacent heat transfer tubes 31 and the surrounding air. Each fin 32 is disposed between two adjacent heat transfer tubes 31. The fins 32 may be further disposed outside the outermost heat transfer tube 31 of the heat transfer tube unit 30. The fins 32 and the heat transfer tubes 31 are generally alternately arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored.
  • the air is configured to flow in a direction parallel to the yz plane by a fan or the like (not shown). The direction of the air flow may coincide with the heat transfer tube separation direction y.
  • the heat transfer tube unit arrangement direction x, the heat transfer tube separation direction y, and the heat transfer tube extension direction z intersect each other.
  • the heat transfer tube unit arrangement direction x, the heat transfer tube separation direction y, and the heat transfer tube extension direction z are perpendicular to each other.
  • the heat transfer tube unit arrangement direction x and the heat transfer tube separation direction y may be a horizontal direction, and the heat transfer tube extension direction z may be a vertical direction.
  • FIG. 3 is a schematic diagram of a heat transfer tube unit group 35A of the heat exchanger 10 according to the first embodiment of the present invention.
  • a first inclined portion S1 that is inclined by a positive acute angle with respect to the heat transfer tube separation direction y
  • a second inclination portion that is inclined by a negative acute angle with respect to the heat transfer tube separation direction y.
  • an inclined portion S2 There is an inclined portion S2.
  • all the fins 32 are configured as planes.
  • the absolute values of the positive acute angle and the negative acute angle are set to be substantially equal, for example.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35A are all the first heat transfer tube units 30A.
  • the first heat transfer tube unit 30A is either a first fin 32A in which the plurality of fins 32 each have only the first inclined portion S1, or a second fin 32B that has only the second inclined portion S2. Say something.
  • the plurality of fins 32 included in the first heat transfer tube unit 30A are generally arranged alternately in the heat transfer tube separation direction y, and the first fins 32A and the first fins 32A and the heat transfer tube separation direction y are ignored. This is the second fin 32B.
  • the heat transfer tube 31 is located at the top of the meander, so that it is easy to confirm the shape in the manufacturing process, for example.
  • FIG. 4 is a schematic diagram of a heat transfer tube unit group 35A ′ of the heat exchanger 10 according to Modification 1A of the first embodiment of the present invention. Unlike the heat transfer tube unit group 35 according to the first embodiment, in the first heat transfer tube unit 30A of the heat transfer tube unit group 35A ′ according to the modification 1A, all the fins 32 are configured as curved surfaces. Due to this curved surface, the first heat transfer tube unit 30A as a whole has, for example, a sine wave cross section.
  • the plurality of curved fins form a smooth meandering shape and smoothly guide the air flow. Therefore, the air resistance can be further reduced.
  • FIG. 5 shows a heat exchanger 10 according to Modification 1B of the first embodiment of the present invention.
  • the first header 21 and the second header 22 are arranged on the same side with respect to the heat transfer tube unit group 35A ′′.
  • the first header 21 and the second header 22 are connected to a first pipe 41 and a second pipe 42, respectively.
  • FIG. 6 shows one of the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35 ⁇ / b> A ′′ of the heat exchanger 10.
  • the heat transfer tube unit 30 includes a plurality of heat transfer tubes 31 and a plurality of fins 32.
  • Each heat transfer tube 31 has at least a portion extending in the heat transfer tube extension direction z, and is preferably linear.
  • the plurality of heat transfer tubes 31 are arranged in the heat transfer tube separation direction y.
  • the adjacent heat transfer tubes 31 are connected by a curved connecting tube 31c. That is, the heat transfer tube unit 30 has one refrigerant path constituted by the heat transfer tube 31 and the connecting tube 31c. This refrigerant path moves the refrigerant between the first header 21 and the second header 22.
  • the end of the heat transfer tube 31 is connected to any heat transfer tube unit connection surface 23 of the first header 21 and the second header 22.
  • the heat transfer tube unit 30 has fins 32 between adjacent heat transfer tubes 31.
  • the fins 32 may be further disposed outside the outermost heat transfer tube 31 of the heat transfer tube unit 30.
  • the plurality of fins 32 may be connected at the upper end or the lower end of the heat transfer tube unit 30.
  • the fin 32 has a side extending in the heat transfer tube extension direction z, and is joined to the heat transfer tube 31 at that side.
  • the fins 32 and the heat transfer tubes 31 are alternately arranged in the heat transfer tube separation direction y.
  • the direction of the air flow is set at least in a direction parallel to the yz plane, preferably in a direction that coincides with the heat transfer tube separation direction y.
  • the heat transfer tube unit 30 may be manufactured by a method other than extrusion molding of a metal material.
  • FIG. 7 is a schematic diagram of a heat transfer tube unit group 35B of the heat exchanger 10 according to the second embodiment of the present invention.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35B according to the second embodiment are all the first heat transfer tube units 30A.
  • each of the plurality of fins 32 included in the first heat transfer tube unit 30A includes the first fin 32A having only the first inclined portion S1 and the second fin 32A having only the second inclined portion S2.
  • the plurality of fins 32 included in the first heat transfer tube unit 30A are generally alternately arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored.
  • the first fin 32A and the second fin 32B included in the first heat transfer tube unit 30A are two.
  • the sheets are arranged alternately.
  • all the fins 32 are configured as planes. Other elements not mentioned are the same as those in the first embodiment.
  • the first fins 32A and the second fins 32B that are alternately arranged in the heat transfer tube separation direction y are not limited to two each.
  • the first fins 32A and the second fins 32B may be alternately arranged by three or more.
  • the spatial length of the meander cycle of the heat transfer tube unit 30 can be increased. Therefore, the air flow is less susceptible to resistance.
  • FIG. 8 is a schematic diagram of a heat transfer tube unit group 35C of the heat exchanger 10 according to the third embodiment of the present invention.
  • the plurality of fins 32 have only a positive acute angle with respect to the heat transfer tube separation direction y.
  • all the fins 32 are configured as a plane.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35C according to the third embodiment are all second heat transfer tube units 30B.
  • the second heat transfer tube unit 30 ⁇ / b> B refers to a unit in which the third fin 32 ⁇ / b> C having both the first inclined portion S ⁇ b> 1 and the second inclined portion S ⁇ b> 2 is included in the plurality of fins 32.
  • the plurality of fins 32 included in the second heat transfer tube unit 30B are all the third fins 32C.
  • the plurality of fins 32 included in the second heat transfer tube unit 30B are generally arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored.
  • the boundary between the first inclined portion S1 and the second inclined portion S2 in each fin 32 protrudes in either the positive direction or the negative direction of the heat transfer tube unit arrangement direction x.
  • the plurality of fins 32 arranged in the heat transfer tube separation direction y are alternately different in the protruding direction.
  • the fins 32 of the second heat transfer tube unit 30B are all third fins 32C, and the protruding directions of the third fins 32C are alternately reversed. Therefore, since a meandering shape with a small pitch can be formed, the contact frequency between the air flow and the fins 32 is increased, which contributes to improvement in heat transfer performance.
  • the second heat transfer tube unit 30B occupies a small space because the heat transfer tube 31 is not located at the top of the meandering. Therefore, the resistance of the air flow can be reduced, which can improve the heat transfer performance.
  • FIG. 9 is a schematic diagram of a heat transfer tube unit group 35D of the heat exchanger 10 according to the fourth embodiment of the present invention.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35D according to the fourth embodiment are all the second heat transfer tube units 30B.
  • the second heat transfer tube unit 30B includes the third fin 32C having both the first inclined portion S1 and the second inclined portion S2 in the plurality of fins 32.
  • the plurality of fins 32 of the second heat transfer tube unit 30B employed in the fourth embodiment are not only the third fins 32C but also the first fins 32A described in the first embodiment.
  • the second fin 32B is also included.
  • the plurality of fins 32 included in the second heat transfer tube unit 30B according to the fourth embodiment are generally alternately arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored.
  • the plurality of fins 32 include a plurality of third fins 32C arranged so that the protruding directions are alternately different. Further, the first fins 32A and the second fins 32B are alternately arranged at a plurality of locations sandwiched between the adjacent third fins.
  • all the fins 32 are configured as planes. Other elements not mentioned are the same as those in the first embodiment.
  • the inclination of the fins 32 of the second heat transfer tube unit 30B is inverted every other one or more. Therefore, since a meandering shape with a large pitch can be formed, the resistance of the air flow can be reduced, which may improve the heat transfer performance.
  • Modifications (3-1) Number of alternately arranged fins
  • the number of first fins 32A and second fins 32B alternately arranged at a plurality of locations sandwiched between adjacent third fins 32C is limited to one. I can't.
  • two or more first fins 32A and second fins 32B may be alternately arranged.
  • the pitch of the meandering shape of the heat transfer tube unit 30 can be increased, so that the air flow is less susceptible to resistance. Therefore, the heat transfer performance may be improved as in the second embodiment.
  • FIG. 10 is a schematic diagram of a heat transfer tube unit group 35E of the heat exchanger 10 according to the fifth embodiment of the present invention.
  • the plurality of fins 32 include only a positive acute angle with respect to the heat transfer tube separation direction y.
  • all the fins 32 are configured as a plane.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35E are the first heat transfer tube unit 30A used in the first embodiment and the second heat transfer tube unit 30B used in the third embodiment. Since the structure of the first heat transfer tube unit 30A and the second heat transfer tube unit 30B has already been described, description thereof is omitted here.
  • the first heat transfer tube units 30A and the second heat transfer tube units 30B are alternately arranged in the heat transfer tube unit arrangement direction x. Thereby, from the viewpoint of facing the heat transfer tube unit arrangement direction x, the heat transfer tubes 31 belonging to the first heat transfer tube unit 30A are located between the adjacent heat transfer tubes 31 belonging to the second heat transfer tube unit 30B.
  • the heat exchanger 10 has two types of heat transfer tube units, that is, a first heat transfer tube unit 30A and a second heat transfer tube unit 30B. Therefore, by appropriately arranging the two types of heat transfer tube units, it is possible to improve the heat transfer performance while reducing the air resistance.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35E are not limited to the two types of the first heat transfer tube unit 30A and the second heat transfer tube unit 30B. There may be three or more types.
  • the heat transfer tube unit group 35E may be configured by preparing three types of heat transfer tube units in which the positions of the heat transfer tubes are shifted by 1/3 of the fin width and arranging them regularly.
  • FIG. 11 is a schematic diagram of a heat transfer tube unit group 35F of the heat exchanger 10 according to the sixth embodiment of the present invention.
  • the plurality of fins 32 have only a positive acute angle with respect to the heat transfer tube separation direction y.
  • all the fins 32 are configured as a plane.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35F are the first heat transfer tube unit 30A used in the second embodiment and the second heat transfer tube unit 30B used in the fourth embodiment. Since the structure of the first heat transfer tube unit 30A and the second heat transfer tube unit 30B has already been described, description thereof is omitted here.
  • the first heat transfer tube units 30A and the second heat transfer tube units 30B are alternately arranged in the heat transfer tube unit arrangement direction x. Thereby, from the viewpoint of facing the heat transfer tube unit arrangement direction x, the heat transfer tubes 31 belonging to the first heat transfer tube unit 30A are located between the adjacent heat transfer tubes 31 belonging to the second heat transfer tube unit 30B.
  • the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35F include the first heat transfer tube unit 30A and the first heat transfer tube unit 30A. There may be not only two types of the two heat transfer tube units 30B but also three or more types.
  • This configuration may improve the heat transfer performance of the heat exchanger as described in the modification of the fifth embodiment.
  • the number of first fins 32A and second fins 32B that are alternately arranged in the heat transfer tube separation direction y is not limited to two.
  • three or more first fins 32A and second fins 32B may be alternately arranged.
  • the number of the first fins 32A and the second fins 32B alternately arranged in a plurality of gaps defined by the adjacent third fins is not limited to one.
  • two or more first fins 32A and second fins 32B may be alternately arranged.
  • the configuration of the heat transfer tube unit described above may be applied to a flat tube for heat exchange.
  • the flat tube for heat exchange is a member used for, for example, a microchannel heat exchanger.
  • the flat tube for heat exchange has a meandering shape as shown in FIG.
  • the flat tube for heat exchange has heat transfer tubes 31 and fins 32 that are alternately arranged in the heat transfer tube separation direction y.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (10) is provided with a plurality of heat transfer pipe units (30) having a plurality of fins (32) and a plurality of heat transfer pipes (31). The plurality of heat transfer pipe units (30) are disposed at intervals along the arrangement direction (x) of the heat transfer pipe unit. In the heat transfer pipe units (30), the plurality of heat transfer pipes (31) extend in the extension direction (z) of the heat transfer pipe perpendicular to the arrangement direction (x) of the heat transfer pipe unit. In addition, the fins (32) and the heat transfer pipes (31) are disposed in an alternating manner along the spacing direction (y) of the heat transfer pipes perpendicular to the extension direction (z) of the heat transfer pipes and the arrangement direction (x) of the heat transfer pipe unit. Each of the plurality of fins (32) of the heat transfer pipe units (30) includes a first inclined portion (S1) inclined at a positive acute angle with respect to the spacing direction (y) of the heat transfer pipes and/or a second inclined portion (S2) inclined at a negative acute angle with respect to the spacing direction (y) of the heat transfer pipes.

Description

伝熱管ユニットを有する熱交換器Heat exchanger with heat transfer tube unit
 本発明は、伝熱管ユニットを有する熱交換器に関する。 The present invention relates to a heat exchanger having a heat transfer tube unit.
 空気調和装置などに用いられる熱交換器の中には、冷媒を流す伝熱管および熱交換を行うフィンが一体の部材として形成された伝熱管ユニットを有するものがある。特許文献1(特開2006-105489号公報)が開示する熱交換器は、そのような伝熱管ユニットを複数有している。複数の伝熱管ユニットは共通のヘッダに接続されている。 Some heat exchangers used in air conditioners and the like have a heat transfer tube unit in which a heat transfer tube for flowing a refrigerant and a fin for performing heat exchange are formed as an integral member. The heat exchanger disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2006-105489) has a plurality of such heat transfer tube units. The plurality of heat transfer tube units are connected to a common header.
 空気と冷媒の間の伝熱性能を向上させるために、熱交換器では通常、複数の伝熱管ユニットが狭い間隔で配列される。このような伝熱管ユニットの間隙を空気流が通過するとき、空気流は抵抗を受けるので、空気の通過量が減少し、結果的に伝熱性能が意図した通りには向上しないことがある。一方、伝熱管ユニットを広い間隔で配置すると、空気流の一部が伝熱ユニットに接触しないまま熱交換器を通過するので、やはり伝熱性能は向上しない。 In order to improve the heat transfer performance between the air and the refrigerant, a plurality of heat transfer tube units are usually arranged at narrow intervals in the heat exchanger. When the air flow passes through the gap between the heat transfer tube units, the air flow is subjected to resistance, so that the amount of air passing is reduced, and as a result, the heat transfer performance may not be improved as intended. On the other hand, if the heat transfer tube units are arranged at wide intervals, a part of the air flow passes through the heat exchanger without contacting the heat transfer unit, so the heat transfer performance is not improved.
 本発明の課題は、熱交換器の伝熱性能を向上させることである。 An object of the present invention is to improve the heat transfer performance of a heat exchanger.
 本発明の第1観点に係る熱交換器は、複数のフィンおよび複数の伝熱管を有する伝熱管ユニットを複数備える。複数の伝熱管ユニットは、伝熱管ユニット配列方向に間隔をあけて配置される。各伝熱管ユニットにおいて、複数の伝熱管は、伝熱管ユニット配列方向に垂直な伝熱管伸張方向に延びる。各伝熱管ユニットにおいて、フィンおよび伝熱管は、伝熱管ユニット配列方向および伝熱管伸張方向に垂直な伝熱管離間方向に交互に配置されている。各伝熱管ユニットの複数のフィンは、それぞれ、伝熱管離間方向に対して正の鋭角だけ傾斜する第1傾斜部分、および、伝熱管離間方向に対して負の鋭角だけ傾斜する第2傾斜部分、の少なくとも一方を含む。 The heat exchanger according to the first aspect of the present invention includes a plurality of heat transfer tube units each having a plurality of fins and a plurality of heat transfer tubes. The plurality of heat transfer tube units are arranged at intervals in the heat transfer tube unit arrangement direction. In each heat transfer tube unit, the plurality of heat transfer tubes extend in the heat transfer tube extension direction perpendicular to the heat transfer tube unit arrangement direction. In each heat transfer tube unit, the fins and the heat transfer tubes are alternately arranged in the heat transfer tube separation direction perpendicular to the heat transfer tube unit arrangement direction and the heat transfer tube extension direction. The plurality of fins of each heat transfer tube unit are each a first inclined portion that is inclined by a positive acute angle with respect to the heat transfer tube separation direction, and a second inclined portion that is inclined by a negative acute angle with respect to the heat transfer tube separation direction, At least one of the above.
 この構成によれば、伝熱管ユニットに沿って流れる空気流は、フィンの傾斜の変化に従って蛇行する。その結果、空気流がフィンと接触する確率が高くなる。したがって、熱交換器の伝熱性能が向上する。 According to this configuration, the airflow flowing along the heat transfer tube unit meanders according to the change in the inclination of the fins. As a result, the probability that the airflow contacts the fins is increased. Therefore, the heat transfer performance of the heat exchanger is improved.
 本発明の第2観点に係る熱交換器は、第1観点に係る熱交換器において、複数の伝熱管ユニットが、第1伝熱管ユニットおよび第2伝熱管ユニットの少なくとも一方を有する。第1伝熱管ユニットの複数のフィンは、それぞれ、第1傾斜部分のみを有する第1フィン、および、第2傾斜部分のみを有する第2フィン、のいずれかである。第2伝熱管ユニットの複数のフィンは、第1傾斜部分および第2傾斜部分の両方を有する第3フィン、を含む。 The heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the plurality of heat transfer tube units have at least one of a first heat transfer tube unit and a second heat transfer tube unit. Each of the plurality of fins of the first heat transfer tube unit is either a first fin having only a first inclined portion or a second fin having only a second inclined portion. The plurality of fins of the second heat transfer tube unit includes a third fin having both the first inclined portion and the second inclined portion.
 この構成によれば、複数のフィンが蛇行形状を形成する具体的態様が提示される。第1伝熱管ユニットは、蛇行の頂点に伝熱管が位置するので形状の確認が容易である。第2伝熱管ユニットは、蛇行の頂点に伝熱管が位置しないので、占有する空間が小さい。 According to this configuration, a specific mode in which a plurality of fins form a meandering shape is presented. The first heat transfer tube unit is easy to confirm the shape because the heat transfer tube is located at the top of the meandering. The second heat transfer tube unit occupies a small space because the heat transfer tube is not located at the top of the meandering.
 本発明の第3観点に係る熱交換器は、第2観点に係る熱交換器において、複数の伝熱管ユニットが、第1伝熱管ユニットおよび第2伝熱管ユニットの両方を有する。 The heat exchanger according to the third aspect of the present invention is the heat exchanger according to the second aspect, wherein the plurality of heat transfer tube units have both the first heat transfer tube unit and the second heat transfer tube unit.
 この構成によれば、熱交換器は、2種類の伝熱管ユニットを有する。したがって、2種類の伝熱管ユニットを適切に配置することにより、空気抵抗を低下させながら、伝熱性能を向上させることができる。 According to this configuration, the heat exchanger has two types of heat transfer tube units. Therefore, by appropriately arranging the two types of heat transfer tube units, it is possible to improve the heat transfer performance while reducing the air resistance.
 本発明の第4観点に係る熱交換器は、第3観点に係る熱交換器において、伝熱管ユニット配列方向を向く視点において、第1伝熱管ユニットに属する伝熱管は、第2伝熱管ユニットに属する隣接する伝熱管の間に位置する。 In the heat exchanger according to the fourth aspect of the present invention, in the heat exchanger according to the third aspect, the heat transfer tube belonging to the first heat transfer tube unit is the second heat transfer tube unit. Located between adjacent heat transfer tubes to which it belongs.
 この構成によれば、第1伝熱管ユニットと第2伝熱管ユニットが隣接する箇所においては、それぞれの伝熱管ユニットに属する伝熱管が近接しない。したがって、その箇所においては、伝熱管の近接に起因する空気抵抗が起こりにくい。 According to this configuration, the heat transfer tubes belonging to the respective heat transfer tube units are not close to each other at the location where the first heat transfer tube unit and the second heat transfer tube unit are adjacent to each other. Therefore, air resistance due to the proximity of the heat transfer tubes hardly occurs at that location.
 本発明の第5観点に係る熱交換器は、第3観点または第4観点に係る熱交換器において、第1伝熱管ユニットと第2伝熱管ユニットが、伝熱管ユニット配列方向に交互に配列されている。 A heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to the third aspect or the fourth aspect, wherein the first heat transfer tube units and the second heat transfer tube units are alternately arranged in the heat transfer tube unit arrangement direction. ing.
 この構成によれば、第1伝熱管ユニットと第2伝熱管ユニットが交互に配置されるので、隣接する伝熱管ユニットに属する伝熱管が近接しない。したがって、伝熱管の近接に起因する空気抵抗がさらに起こりにくい。 According to this configuration, since the first heat transfer tube units and the second heat transfer tube units are alternately arranged, the heat transfer tubes belonging to the adjacent heat transfer tube units are not close to each other. Therefore, air resistance due to the proximity of the heat transfer tubes is less likely to occur.
 本発明の第6観点に係る熱交換器は、第2観点から第5観点のいずれか1つに係る熱交換器において、第1伝熱管ユニットの複数のフィンが、伝熱管離間方向に交互に配列された第1フィンおよび第2フィンである。 A heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the second to fifth aspects, wherein the plurality of fins of the first heat transfer tube unit are alternately arranged in the heat transfer tube separation direction. The first fin and the second fin are arranged.
 この構成によれば、第1伝熱管ユニットのフィンの傾斜は交互に反転する。したがって、小さなピッチの蛇行形状を形成できる。 According to this configuration, the inclination of the fins of the first heat transfer tube unit is alternately reversed. Therefore, a meandering shape with a small pitch can be formed.
 本発明の第7観点に係る熱交換器は、第2観点から第5観点のいずれか1つに係る熱交換器において、第1伝熱管ユニットの複数のフィンが、伝熱管離間方向に2枚以上ずつ交互に配列された第1フィンおよび第2フィンである。 A heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to any one of the second to fifth aspects, wherein the plurality of fins of the first heat transfer tube unit are two in the heat transfer tube separation direction. These are the first fins and the second fins alternately arranged as described above.
 この構成によれば、第1伝熱管ユニットのフィンの傾斜は1つ以上ずつおきに反転する。したがって、大きなピッチの蛇行形状を形成できる。 ¡According to this configuration, the inclination of the fins of the first heat transfer tube unit is reversed every one or more. Therefore, a meandering shape with a large pitch can be formed.
 本発明の第8観点に係る熱交換器は、第2観点から第6観点のいずれか1つに係る熱交換器において、第2伝熱管ユニットの複数のフィンが、交互に突出方向が異なるように伝熱管離間方向に配列された第3フィンである。 A heat exchanger according to an eighth aspect of the present invention is the heat exchanger according to any one of the second to sixth aspects, wherein the plurality of fins of the second heat transfer tube unit alternately have different projecting directions. The third fins are arranged in the heat transfer tube separation direction.
 この構成によれば、第2伝熱管ユニットのフィンの傾斜は交互に反転する。したがって、小さなピッチの蛇行形状を形成できる。 に よ According to this configuration, the inclination of the fins of the second heat transfer tube unit is alternately reversed. Therefore, a meandering shape with a small pitch can be formed.
 本発明の第9観点に係る熱交換器は、第2観点、第3観点、第4観点、第5観点、第7観点のいずれか1つに記載の熱交換器において、第2伝熱管ユニットの複数のフィンが、第1フィン、第2フィン、第3フィンをすべて含み、かつ、2枚の第3フィンの間に、少なくとも1枚の第1フィンまたは第2フィンが配置されている。 A heat exchanger according to a ninth aspect of the present invention is the heat exchanger according to any one of the second aspect, the third aspect, the fourth aspect, the fifth aspect, and the seventh aspect. The plurality of fins include all of the first fin, the second fin, and the third fin, and at least one first fin or second fin is disposed between the two third fins.
 この構成によれば、第2伝熱管ユニットのフィンの傾斜は1つ以上ずつおきに反転する。したがって、大きなピッチの蛇行形状を形成できる。 ¡According to this configuration, the inclination of the fins of the second heat transfer tube unit is reversed every one or more. Therefore, a meandering shape with a large pitch can be formed.
 本発明の第10観点に係る熱交換器は、第1観点から第9観点のいずれか1つに係る熱交換器において、複数のフィンは曲面である。 In the heat exchanger according to the tenth aspect of the present invention, in the heat exchanger according to any one of the first to ninth aspects, the plurality of fins are curved surfaces.
 この構成によれば、複数の曲面のフィンが滑らかな蛇行形状を形成し、空気流を滑らかに案内する。したがって、空気抵抗をさらに低下できる。 According to this configuration, the plurality of curved fins form a smooth meandering shape and smoothly guide the air flow. Therefore, the air resistance can be further reduced.
 本発明の第1観点、第2観点に係る熱交換器よれば、熱交換器の伝熱性能が向上する。 The heat exchanger according to the first and second aspects of the present invention improves the heat transfer performance of the heat exchanger.
 本発明の第3観点、第4観点、第5観点、第10観点に係る熱交換器によれば、伝熱性能を向上させつつ、空気抵抗が低下する。 According to the heat exchanger according to the third aspect, the fourth aspect, the fifth aspect, and the tenth aspect of the present invention, the air resistance is reduced while improving the heat transfer performance.
 本発明の第6観点、第7観点、第8観点、第9観点に係る熱交換器は、伝熱管ユニットのフィンの蛇行形状のピッチのバリエーションを提供し、用途に適したものを選ぶことができる。 The heat exchanger according to the sixth aspect, the seventh aspect, the eighth aspect, and the ninth aspect of the present invention provides variations of the meandering pitch of the fins of the heat transfer tube unit, and can select a heat exchanger suitable for the application. it can.
熱交換器10の外形を示す模式図である。1 is a schematic diagram showing an outer shape of a heat exchanger 10. FIG. 伝熱管ユニット30の外形を示す模式図である。FIG. 3 is a schematic diagram showing an outer shape of a heat transfer tube unit 30. 第1実施形態に係る熱交換器10の伝熱管ユニット群35Aの模式図である。It is a schematic diagram of the heat exchanger tube unit group 35A of the heat exchanger 10 which concerns on 1st Embodiment. 第1実施形態の変形例1Aに係る熱交換器10の伝熱管ユニット群35A’の模式図である。It is a mimetic diagram of heat exchanger tube unit group 35A 'of heat exchanger 10 concerning modification 1A of a 1st embodiment. 第1実施形態の変形例1Bに係る熱交換器10の外形を示す模式図である。It is a schematic diagram which shows the external shape of the heat exchanger 10 which concerns on the modification 1B of 1st Embodiment. 第1実施形態の変形例1Bに係る熱交換器10の伝熱管ユニット30の外形を示す模式図である。It is a schematic diagram which shows the external shape of the heat exchanger tube unit 30 of the heat exchanger 10 which concerns on the modification 1B of 1st Embodiment. 第2実施形態に係る熱交換器10の伝熱管ユニット群35Bの模式図である。It is a schematic diagram of the heat exchanger tube unit group 35B of the heat exchanger 10 which concerns on 2nd Embodiment. 第3実施形態に係る熱交換器10の伝熱管ユニット群35Cの模式図である。It is a schematic diagram of the heat exchanger tube unit group 35C of the heat exchanger 10 which concerns on 3rd Embodiment. 第4実施形態に係る熱交換器10の伝熱管ユニット群35Dの模式図である。It is a schematic diagram of heat exchanger tube unit group 35D of the heat exchanger 10 which concerns on 4th Embodiment. 第5実施形態に係る熱交換器10の伝熱管ユニット群35Eの模式図である。It is a schematic diagram of the heat exchanger tube unit group 35E of the heat exchanger 10 which concerns on 5th Embodiment. 第6実施形態に係る熱交換器10の伝熱管ユニット群35Fの模式図である。It is a schematic diagram of the heat exchanger tube unit group 35F of the heat exchanger 10 which concerns on 6th Embodiment. 熱交換用扁平管を示す図である。It is a figure which shows the flat tube for heat exchange.
 <第1実施形態>
 (1)全体構成
 図1は、本発明の第1実施形態に係る熱交換器10を示す。熱交換器10は、例えば、空気調和装置などに用いられ、冷媒と空気との間で熱交換を行うためのものである。熱交換器10は、第1配管41、第2配管42、第1ヘッダ21、第2ヘッダ22、および、伝熱管ユニット群35を有する。伝熱管ユニット群35は、複数の伝熱管ユニット30からなる。
<First Embodiment>
(1) Overall Configuration FIG. 1 shows a heat exchanger 10 according to the first embodiment of the present invention. The heat exchanger 10 is used, for example, in an air conditioner or the like, and performs heat exchange between a refrigerant and air. The heat exchanger 10 includes a first pipe 41, a second pipe 42, a first header 21, a second header 22, and a heat transfer tube unit group 35. The heat transfer tube unit group 35 includes a plurality of heat transfer tube units 30.
 (2)各部構成
 (2-1)ヘッダおよび配管
 第1配管41および第2配管42は冷媒を通過させるためのものである。第1配管41および第2配管42はどちらも、ガス、液、気液二相などの様々な状態をとりうる冷媒の導入口および排出口として機能できる。第1配管41は、第1ヘッダ21と冷媒を授受できるように第1ヘッダ21に接続されている。第2配管42は、第2ヘッダ22と冷媒を授受できるように第2ヘッダ22に接続されている。第1ヘッダ21と第2ヘッダ22はいずれも伝熱管ユニット接続面23を有している。第1ヘッダ21と第2ヘッダ22は、それぞれの伝熱管ユニット接続面23が対向するか、あるいは実質的に対向するように配置されている。
(2) Configuration of Each Part (2-1) Header and Piping The first piping 41 and the second piping 42 are for passing a refrigerant. Both the first pipe 41 and the second pipe 42 can function as refrigerant inlets and outlets that can take various states such as gas, liquid, and gas-liquid two-phase. The first pipe 41 is connected to the first header 21 so as to exchange refrigerant with the first header 21. The second pipe 42 is connected to the second header 22 so as to exchange refrigerant with the second header 22. Both the first header 21 and the second header 22 have a heat transfer tube unit connection surface 23. The first header 21 and the second header 22 are arranged such that the heat transfer tube unit connection surfaces 23 face each other or substantially face each other.
 (2-2)伝熱管ユニット群
 伝熱管ユニット群35を構成する複数の伝熱管ユニット30は、伝熱管ユニット配列方向xに間隔をあけて配置されている。各伝熱管ユニット30は、第1ヘッダ21および第2ヘッダと、それぞれの伝熱管ユニット接続面23において接続されている。伝熱管ユニット30は、例えばアルミニウムまたはアルミニウム合金から一体的に構成されている。
(2-2) Heat Transfer Tube Unit Group The plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35 are arranged at intervals in the heat transfer tube unit arrangement direction x. Each heat transfer tube unit 30 is connected to the first header 21 and the second header at each heat transfer tube unit connection surface 23. The heat transfer tube unit 30 is integrally configured from, for example, aluminum or an aluminum alloy.
 図2は、1つの伝熱管ユニット30を示す。伝熱管ユニット30は、複数の伝熱管31および複数のフィン32を有する。伝熱管ユニット30に設けられる伝熱管31の数は、例えば6本以上であるが、これに限られない。 FIG. 2 shows one heat transfer tube unit 30. The heat transfer tube unit 30 includes a plurality of heat transfer tubes 31 and a plurality of fins 32. The number of heat transfer tubes 31 provided in the heat transfer tube unit 30 is, for example, six or more, but is not limited thereto.
 伝熱管31は、第1ヘッダ21と第2ヘッダ22の間で冷媒を移動させるためのものである。各伝熱管31の両端は、第1ヘッダ21と第2ヘッダ22の伝熱管ユニット接続面23に接続されている。各伝熱管31は、少なくとも伝熱管伸張方向zに延びる部分を有しており、好ましくは直線状である。複数の伝熱管31は、伝熱管ユニット配列方向xのオフセットを無視すれば、概して伝熱管離間方向yに配列している。各伝熱管31の内径は、例えば1.5mm以下であり、好ましくは0.8mm以下である。 The heat transfer tube 31 is for moving the refrigerant between the first header 21 and the second header 22. Both ends of each heat transfer tube 31 are connected to the heat transfer tube unit connection surfaces 23 of the first header 21 and the second header 22. Each heat transfer tube 31 has at least a portion extending in the heat transfer tube extension direction z, and is preferably linear. The plurality of heat transfer tubes 31 are generally arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored. The inner diameter of each heat transfer tube 31 is, for example, 1.5 mm or less, and preferably 0.8 mm or less.
 フィン32は、隣接する伝熱管31を流れる冷媒と周囲の空気との間で熱交換を行うためのものである。各フィン32は、隣接する2本の伝熱管31の間に配置される。伝熱管ユニット30の最も外側の伝熱管31の外側にさらにフィン32が配置されてもよい。フィン32と伝熱管31は、伝熱管ユニット配列方向xのオフセット分を無視すれば、概して伝熱管離間方向yに交互に配置されている。空気は、図示しないファンなどによってyz平面と平行な方向に流れるように構成されている。空気流の方向は伝熱管離間方向yと一致してもよい。 The fins 32 are for exchanging heat between the refrigerant flowing through the adjacent heat transfer tubes 31 and the surrounding air. Each fin 32 is disposed between two adjacent heat transfer tubes 31. The fins 32 may be further disposed outside the outermost heat transfer tube 31 of the heat transfer tube unit 30. The fins 32 and the heat transfer tubes 31 are generally alternately arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored. The air is configured to flow in a direction parallel to the yz plane by a fan or the like (not shown). The direction of the air flow may coincide with the heat transfer tube separation direction y.
 伝熱管ユニット配列方向x、伝熱管離間方向y、および伝熱管伸張方向zは、互いに交差している。例えば、伝熱管ユニット配列方向x、伝熱管離間方向y、および伝熱管伸張方向zは、互いに垂直である。伝熱管ユニット配列方向xおよび伝熱管離間方向yは水平方向であり、伝熱管伸張方向zは鉛直方向であってもよい。 The heat transfer tube unit arrangement direction x, the heat transfer tube separation direction y, and the heat transfer tube extension direction z intersect each other. For example, the heat transfer tube unit arrangement direction x, the heat transfer tube separation direction y, and the heat transfer tube extension direction z are perpendicular to each other. The heat transfer tube unit arrangement direction x and the heat transfer tube separation direction y may be a horizontal direction, and the heat transfer tube extension direction z may be a vertical direction.
 (3)伝熱管ユニット30の詳細構成
 図3は本発明の第1実施形態に係る熱交換器10の伝熱管ユニット群35Aの模式図である。複数のフィン32の中には、伝熱管離間方向yに対して正の鋭角だけ傾斜している第1傾斜部分S1と、伝熱管離間方向yに対して負の鋭角だけ傾斜している第2傾斜部分S2とが存在する。本実施形態において、すべてのフィン32は平面として構成されている。正の鋭角と負の鋭角の絶対値は、例えば実質的に等しく設定される。
(3) Detailed Configuration of Heat Transfer Tube Unit 30 FIG. 3 is a schematic diagram of a heat transfer tube unit group 35A of the heat exchanger 10 according to the first embodiment of the present invention. Among the plurality of fins 32, a first inclined portion S1 that is inclined by a positive acute angle with respect to the heat transfer tube separation direction y, and a second inclination portion that is inclined by a negative acute angle with respect to the heat transfer tube separation direction y. There is an inclined portion S2. In the present embodiment, all the fins 32 are configured as planes. The absolute values of the positive acute angle and the negative acute angle are set to be substantially equal, for example.
 伝熱管ユニット群35Aを構成する複数の伝熱管ユニット30は、いずれも第1伝熱管ユニット30Aである。ここで、第1伝熱管ユニット30Aとは、複数のフィン32がそれぞれ、第1傾斜部分S1のみを有する第1フィン32A、および、第2傾斜部分S2のみを有する第2フィン32Bのいずれかであるものをいう。 The plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35A are all the first heat transfer tube units 30A. Here, the first heat transfer tube unit 30A is either a first fin 32A in which the plurality of fins 32 each have only the first inclined portion S1, or a second fin 32B that has only the second inclined portion S2. Say something.
 第1実施形態において、第1伝熱管ユニット30Aが有する複数のフィン32は、伝熱管ユニット配列方向xのオフセットを無視すれば、概して伝熱管離間方向yに交互に配列された第1フィン32Aおよび第2フィン32Bである。 In the first embodiment, the plurality of fins 32 included in the first heat transfer tube unit 30A are generally arranged alternately in the heat transfer tube separation direction y, and the first fins 32A and the first fins 32A and the heat transfer tube separation direction y are ignored. This is the second fin 32B.
 (4)特徴
 (4-1)
 伝熱管ユニット30に沿って流れる空気流は、フィン32の傾斜の変化に従って蛇行する。その結果、空気流がフィン32と接触する確率が高くなる。したがって、熱交換器10の伝熱性能が向上する。
(4) Features (4-1)
The airflow flowing along the heat transfer tube unit 30 meanders according to the change in the inclination of the fins 32. As a result, the probability that the airflow contacts the fins 32 increases. Therefore, the heat transfer performance of the heat exchanger 10 is improved.
 (4-2)
 第1伝熱管ユニット30Aは、蛇行の頂点に伝熱管31が位置するので、例えば製造工程において、形状の確認が容易である。
(4-2)
In the first heat transfer tube unit 30A, the heat transfer tube 31 is located at the top of the meander, so that it is easy to confirm the shape in the manufacturing process, for example.
 (4-3)
 第1伝熱管ユニット30Aのフィン32の傾斜は交互に反転する。したがって、小さなピッチの蛇行形状を形成できるので、空気流とフィン32の接触頻度を増加し、伝熱性能の向上に寄与する。
(4-3)
The inclinations of the fins 32 of the first heat transfer tube unit 30A are alternately reversed. Therefore, since a meandering shape with a small pitch can be formed, the contact frequency between the air flow and the fins 32 is increased, which contributes to improvement in heat transfer performance.
 (5)変形例
 以下に、本実施形態の変形例について説明する。複数の変形例を組み合わせてもよい。
(5) Modifications Modifications of the present embodiment will be described below. A plurality of modifications may be combined.
 (5-1)変形例1A
 図4は、本発明の第1実施形態の変形例1Aに係る熱交換器10の伝熱管ユニット群35A’の模式図である。第1実施形態に係る伝熱管ユニット群35とは異なり、変形例1Aに係る伝熱管ユニット群35A’の第1伝熱管ユニット30Aでは、すべてのフィン32が曲面として構成されている。この曲面のために、第1伝熱管ユニット30Aは全体として、例えば正弦波の形状の断面を持つ。
(5-1) Modification 1A
FIG. 4 is a schematic diagram of a heat transfer tube unit group 35A ′ of the heat exchanger 10 according to Modification 1A of the first embodiment of the present invention. Unlike the heat transfer tube unit group 35 according to the first embodiment, in the first heat transfer tube unit 30A of the heat transfer tube unit group 35A ′ according to the modification 1A, all the fins 32 are configured as curved surfaces. Due to this curved surface, the first heat transfer tube unit 30A as a whole has, for example, a sine wave cross section.
 この構成によれば、複数の曲面のフィンが滑らかな蛇行形状を形成し、空気流を滑らかに案内する。したがって、空気抵抗をさらに低下できる。 According to this configuration, the plurality of curved fins form a smooth meandering shape and smoothly guide the air flow. Therefore, the air resistance can be further reduced.
 (5-2)変形例1B
 図5は、本発明の第1実施形態の変形例1Bに係る熱交換器10である。この熱交換器10では、第1ヘッダ21と第2ヘッダ22は伝熱管ユニット群35A’’に対して同じ側に配置されている。第1ヘッダ21および第2ヘッダ22は、それぞれ第1配管41および第2配管42に接続されている。
(5-2) Modification 1B
FIG. 5 shows a heat exchanger 10 according to Modification 1B of the first embodiment of the present invention. In this heat exchanger 10, the first header 21 and the second header 22 are arranged on the same side with respect to the heat transfer tube unit group 35A ″. The first header 21 and the second header 22 are connected to a first pipe 41 and a second pipe 42, respectively.
 図6は熱交換器10の伝熱管ユニット群35A’’を構成する複数の伝熱管ユニット30のうちの1つを示す。伝熱管ユニット30は、複数の伝熱管31および複数のフィン32を有する。各伝熱管31は、少なくとも伝熱管伸張方向zに延びる部分を有しており、好ましくは直線状である。複数の伝熱管31は、伝熱管離間方向yに配列している。さらに、隣接する伝熱管31は、曲線状の連結管31cによって連結されている。すなわち、伝熱管ユニット30は、伝熱管31および連結管31cによって構成される1本の冷媒経路を有する。この冷媒経路が、第1ヘッダ21と第2ヘッダ22の間で冷媒を移動させる。第1ヘッダ21および第2ヘッダ22のいずれの伝熱管ユニット接続面23にも、伝熱管31の端部が接続される。 FIG. 6 shows one of the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35 </ b> A ″ of the heat exchanger 10. The heat transfer tube unit 30 includes a plurality of heat transfer tubes 31 and a plurality of fins 32. Each heat transfer tube 31 has at least a portion extending in the heat transfer tube extension direction z, and is preferably linear. The plurality of heat transfer tubes 31 are arranged in the heat transfer tube separation direction y. Furthermore, the adjacent heat transfer tubes 31 are connected by a curved connecting tube 31c. That is, the heat transfer tube unit 30 has one refrigerant path constituted by the heat transfer tube 31 and the connecting tube 31c. This refrigerant path moves the refrigerant between the first header 21 and the second header 22. The end of the heat transfer tube 31 is connected to any heat transfer tube unit connection surface 23 of the first header 21 and the second header 22.
 伝熱管ユニット30は、隣接する伝熱管31の間にフィン32を有する。伝熱管ユニット30の最も外側の伝熱管31の外側にさらにフィン32が配置されてもよい。複数のフィン32が伝熱管ユニット30の上端または下端において接続されていてもよい。フィン32は伝熱管伸張方向zに延びる辺を有しており、その辺において伝熱管31と接合している。フィン32と伝熱管31は、伝熱管離間方向yに交互に配置されている。空気流の方向は、少なくともyz平面と平行な方向に、好ましく伝熱管離間方向yと一致する方向に設定されている。伝熱管ユニット30は、金属材料の押出成形以外の方法によって製造されてもよい。 The heat transfer tube unit 30 has fins 32 between adjacent heat transfer tubes 31. The fins 32 may be further disposed outside the outermost heat transfer tube 31 of the heat transfer tube unit 30. The plurality of fins 32 may be connected at the upper end or the lower end of the heat transfer tube unit 30. The fin 32 has a side extending in the heat transfer tube extension direction z, and is joined to the heat transfer tube 31 at that side. The fins 32 and the heat transfer tubes 31 are alternately arranged in the heat transfer tube separation direction y. The direction of the air flow is set at least in a direction parallel to the yz plane, preferably in a direction that coincides with the heat transfer tube separation direction y. The heat transfer tube unit 30 may be manufactured by a method other than extrusion molding of a metal material.
 この構成によれば、伝熱管ユニット30の4辺うちの3つが周囲空間に開放されているので、結露水がより排出されやすい。 According to this configuration, since three of the four sides of the heat transfer tube unit 30 are open to the surrounding space, the dew condensation water is more easily discharged.
 (5-3)変形例1C
 上述の実施形態では、配置の一例として、伝熱管ユニット配列方向xおよび伝熱管離間方向yが水平方向であり、伝熱管伸張方向zが鉛直方向である構成に言及した。これに代えて、熱交換器10を別の方向に配置してもよい。例えば、伝熱管離間方向yおよび伝熱管伸張方向zは水平方向であり、伝熱管ユニット配列方向xは鉛直方向であってもよい。
(5-3) Modification 1C
In the above-described embodiment, as an example of the arrangement, the configuration in which the heat transfer tube unit arrangement direction x and the heat transfer tube separation direction y are horizontal directions and the heat transfer tube extension direction z is vertical is mentioned. Instead of this, the heat exchanger 10 may be arranged in another direction. For example, the heat transfer tube separation direction y and the heat transfer tube extension direction z may be a horizontal direction, and the heat transfer tube unit arrangement direction x may be a vertical direction.
 <第2実施形態>
 (1)構成
 図7は、本発明の第2実施形態に係る熱交換器10の伝熱管ユニット群35Bの模式図である。
Second Embodiment
(1) Configuration FIG. 7 is a schematic diagram of a heat transfer tube unit group 35B of the heat exchanger 10 according to the second embodiment of the present invention.
 第1実施形態に係る伝熱管ユニット群35Aと同様に、第2実施形態に係る伝熱管ユニット群35Bを構成する複数の伝熱管ユニット30は、いずれも第1伝熱管ユニット30Aである。第1実施形態において説明したように、第1伝熱管ユニット30Aが有する複数のフィン32はそれぞれ、第1傾斜部分S1のみを有する第1フィン32A、および、第2傾斜部分S2のみを有する第2フィン32Bのいずれかである。第1伝熱管ユニット30Aが有する複数のフィン32は、伝熱管ユニット配列方向xのオフセットを無視すれば、概して伝熱管離間方向yに交互に配列されている。 Similarly to the heat transfer tube unit group 35A according to the first embodiment, the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35B according to the second embodiment are all the first heat transfer tube units 30A. As described in the first embodiment, each of the plurality of fins 32 included in the first heat transfer tube unit 30A includes the first fin 32A having only the first inclined portion S1 and the second fin 32A having only the second inclined portion S2. One of the fins 32B. The plurality of fins 32 included in the first heat transfer tube unit 30A are generally alternately arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored.
 しかし、第1実施形態に係る伝熱管ユニット群35Aとは異なり、第2実施形態に係る伝熱管ユニット群35Bにおいては、第1伝熱管ユニット30Aが有する第1フィン32Aおよび第2フィン32Bは2枚ずつ交互に配列されている。 However, unlike the heat transfer tube unit group 35A according to the first embodiment, in the heat transfer tube unit group 35B according to the second embodiment, the first fin 32A and the second fin 32B included in the first heat transfer tube unit 30A are two. The sheets are arranged alternately.
 本実施形態においても、すべてのフィン32は平面として構成されている。その他、言及していない要素は第1実施形態と同様である。 Also in this embodiment, all the fins 32 are configured as planes. Other elements not mentioned are the same as those in the first embodiment.
 (2)特徴
 第1伝熱管ユニット30Aのフィン32の傾斜は1つ以上ずつおきに反転するので、大きなピッチの蛇行形状を形成する。これによって、空気流の抵抗が低減されるので、その低減分に応じて隣接する第1伝熱管ユニット30Aの間隔を小さく設計できる等の場合がある。その結果、伝熱性能を向上できる場合がある。
(2) Features Since the inclination of the fins 32 of the first heat transfer tube unit 30A is inverted every other one or more, a meandering shape with a large pitch is formed. As a result, the resistance of the air flow is reduced, and there are cases where the interval between the adjacent first heat transfer tube units 30A can be designed to be small according to the reduction. As a result, the heat transfer performance may be improved.
 (3)変形例
 (3-1)交互配置のフィン数
 概して伝熱管離間方向yに交互に配列される第1フィン32Aおよび第2フィン32Bは、2枚ずつに限られない。例えば、3枚ずつ、またはそれ以上の枚数ずつ第1フィン32Aおよび第2フィン32Bが交互に配列されてもよい。
(3) Modifications (3-1) Number of alternately arranged fins The first fins 32A and the second fins 32B that are alternately arranged in the heat transfer tube separation direction y are not limited to two each. For example, the first fins 32A and the second fins 32B may be alternately arranged by three or more.
 この構成によれば、伝熱管ユニット30の蛇行サイクルの空間的な長さ大きくすることができる。したがって、空気流がさらに抵抗を受けにくくなる。 According to this configuration, the spatial length of the meander cycle of the heat transfer tube unit 30 can be increased. Therefore, the air flow is less susceptible to resistance.
 (3-2)その他
 第1実施形態の変形例を第2実施形態に適用してもよい。
(3-2) Others Modifications of the first embodiment may be applied to the second embodiment.
 <第3実施形態>
 (1)構成
 図8は、本発明の第3実施形態に係る熱交換器10の伝熱管ユニット群35Cの模式図である。第1実施形態に係る伝熱管ユニット群35Aと同様に、第3実施形態に係る伝熱管ユニット群35Cにおいても、複数のフィン32の中には、伝熱管離間方向yに対して正の鋭角だけ傾斜している第1傾斜部分S1と、伝熱管離間方向yに対して負の鋭角だけ傾斜している第2傾斜部分S2とが存在する。本実施形態においても、すべてのフィン32は平面として構成されている。
<Third Embodiment>
(1) Configuration FIG. 8 is a schematic diagram of a heat transfer tube unit group 35C of the heat exchanger 10 according to the third embodiment of the present invention. Similarly to the heat transfer tube unit group 35A according to the first embodiment, also in the heat transfer tube unit group 35C according to the third embodiment, the plurality of fins 32 have only a positive acute angle with respect to the heat transfer tube separation direction y. There are a first inclined portion S1 that is inclined and a second inclined portion S2 that is inclined by a negative acute angle with respect to the heat transfer tube separation direction y. Also in this embodiment, all the fins 32 are configured as a plane.
 第1実施形態に係る伝熱管ユニット群35Aとは異なり、第3実施形態に係る伝熱管ユニット群35Cを構成する複数の伝熱管ユニット30は、いずれも第2伝熱管ユニット30Bである。ここで、第2伝熱管ユニット30Bとは、第1傾斜部分S1および第2傾斜部分S2の両方を有する第3フィン32Cが、複数のフィン32の中に含まれるものをいう。本実施形態では、第2伝熱管ユニット30Bが有する複数のフィン32はすべて第3フィン32Cである。 Unlike the heat transfer tube unit group 35A according to the first embodiment, the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35C according to the third embodiment are all second heat transfer tube units 30B. Here, the second heat transfer tube unit 30 </ b> B refers to a unit in which the third fin 32 </ b> C having both the first inclined portion S <b> 1 and the second inclined portion S <b> 2 is included in the plurality of fins 32. In the present embodiment, the plurality of fins 32 included in the second heat transfer tube unit 30B are all the third fins 32C.
 第3実施形態において、第2伝熱管ユニット30Bが有する複数のフィン32は、伝熱管ユニット配列方向xのオフセットを無視すれば、概して伝熱管離間方向yに配列している。各フィン32の中における第1傾斜部分S1と第2傾斜部分S2の境界は、伝熱管ユニット配列方向xの正方向および負方向のいずれかに突出する。概して伝熱管離間方向yに配列している複数のフィン32は、突出方向が交互に異なっている。 In the third embodiment, the plurality of fins 32 included in the second heat transfer tube unit 30B are generally arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored. The boundary between the first inclined portion S1 and the second inclined portion S2 in each fin 32 protrudes in either the positive direction or the negative direction of the heat transfer tube unit arrangement direction x. Generally, the plurality of fins 32 arranged in the heat transfer tube separation direction y are alternately different in the protruding direction.
 その他、言及していない要素は第1実施形態と同様である。 Other elements not mentioned are the same as those in the first embodiment.
 (2)特徴
 (2-1)
 第2伝熱管ユニット30Bのフィン32はすべて第3フィン32Cであり、第3フィン32Cの突出方向は交互に反転する。したがって、小さなピッチの蛇行形状を形成できるので、空気流とフィン32の接触頻度を増加し、伝熱性能の向上に寄与する。
(2) Features (2-1)
The fins 32 of the second heat transfer tube unit 30B are all third fins 32C, and the protruding directions of the third fins 32C are alternately reversed. Therefore, since a meandering shape with a small pitch can be formed, the contact frequency between the air flow and the fins 32 is increased, which contributes to improvement in heat transfer performance.
 (2-2)
 第2伝熱管ユニット30Bは、蛇行の頂点に伝熱管31が位置しないので、占有する空間が小さい。したがって、空気流の抵抗を低減でき、これによって伝熱性能を向上できる場合がある。
(2-2)
The second heat transfer tube unit 30B occupies a small space because the heat transfer tube 31 is not located at the top of the meandering. Therefore, the resistance of the air flow can be reduced, which can improve the heat transfer performance.
 (3)変形例
 これまでの実施形態の変形例を第3実施形態に適応してもよい。
(3) Modifications Modifications of the previous embodiments may be applied to the third embodiment.
 <第4実施形態>
 (1)構成
 図9は、本発明の第4実施形態に係る熱交換器10の伝熱管ユニット群35Dの模式図である。
<Fourth embodiment>
(1) Configuration FIG. 9 is a schematic diagram of a heat transfer tube unit group 35D of the heat exchanger 10 according to the fourth embodiment of the present invention.
 第3実施形態に係る伝熱管ユニット群35Cと同様に、第4実施形態に係る伝熱管ユニット群35Dを構成する複数の伝熱管ユニット30は、いずれも第2伝熱管ユニット30Bである。第3実施形態において説明したように、第2伝熱管ユニット30Bとは、第1傾斜部分S1および第2傾斜部分S2の両方を有する第3フィン32Cが、複数のフィン32の中に含まれるものをいう。しかし、第3実施形態とは異なり、第4実施形態で採用される第2伝熱管ユニット30Bの複数のフィン32は、第3フィン32Cのみならず、第1実施形態で説明した第1フィン32Aおよび第2フィン32Bも含んでいる。 Similarly to the heat transfer tube unit group 35C according to the third embodiment, the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35D according to the fourth embodiment are all the second heat transfer tube units 30B. As described in the third embodiment, the second heat transfer tube unit 30B includes the third fin 32C having both the first inclined portion S1 and the second inclined portion S2 in the plurality of fins 32. Say. However, unlike the third embodiment, the plurality of fins 32 of the second heat transfer tube unit 30B employed in the fourth embodiment are not only the third fins 32C but also the first fins 32A described in the first embodiment. The second fin 32B is also included.
 第4実施形態に係る第2伝熱管ユニット30Bが有する複数のフィン32は、伝熱管ユニット配列方向xのオフセットを無視すれば、概して伝熱管離間方向yに交互に配列されている。複数のフィン32は、突出方向が交互に異なるように配列された複数の第3フィン32Cを含んでいる。さらに、隣接する第3フィンに挟まれる複数の箇所には、第1フィン32Aおよび第2フィン32Bが交互に配列される。 The plurality of fins 32 included in the second heat transfer tube unit 30B according to the fourth embodiment are generally alternately arranged in the heat transfer tube separation direction y if the offset in the heat transfer tube unit arrangement direction x is ignored. The plurality of fins 32 include a plurality of third fins 32C arranged so that the protruding directions are alternately different. Further, the first fins 32A and the second fins 32B are alternately arranged at a plurality of locations sandwiched between the adjacent third fins.
 本実施形態においても、すべてのフィン32は平面として構成されている。その他、言及していない要素は第1実施形態と同様である。 Also in this embodiment, all the fins 32 are configured as planes. Other elements not mentioned are the same as those in the first embodiment.
 (2)特徴
 この構成によれば、第2伝熱管ユニット30Bのフィン32の傾斜は1つ以上ずつおきに反転する。したがって、大きなピッチの蛇行形状を形成できるので、空気流の抵抗を低減することができ、これによって伝熱性能が向上できる場合がある。
(2) Features According to this configuration, the inclination of the fins 32 of the second heat transfer tube unit 30B is inverted every other one or more. Therefore, since a meandering shape with a large pitch can be formed, the resistance of the air flow can be reduced, which may improve the heat transfer performance.
 (3)変形例
 (3-1)交互配置のフィン数
 隣接する第3フィン32Cに挟まれる複数の箇所に交互に配列される第1フィン32Aおよび第2フィン32Bの数は、1枚に限られない。例えば、2枚ずつ、またはそれ以上の第1フィン32Aおよび第2フィン32Bが交互に配列されてもよい。
(3) Modifications (3-1) Number of alternately arranged fins The number of first fins 32A and second fins 32B alternately arranged at a plurality of locations sandwiched between adjacent third fins 32C is limited to one. I can't. For example, two or more first fins 32A and second fins 32B may be alternately arranged.
 この構成によれば、伝熱管ユニット30の蛇行形状のピッチを大きくすることができるので、空気流が抵抗を受けにくい。したがって、第2実施形態と同様に、伝熱性能を向上できる場合がある。 According to this configuration, the pitch of the meandering shape of the heat transfer tube unit 30 can be increased, so that the air flow is less susceptible to resistance. Therefore, the heat transfer performance may be improved as in the second embodiment.
 (3-2)その他
 これまでの実施形態の変形例を第4実施形態に適応してもよい。
(3-2) Others Modifications of the previous embodiments may be applied to the fourth embodiment.
 <第5実施形態>
 (1)構成
 図10は、本発明の第5実施形態に係る熱交換器10の伝熱管ユニット群35Eの模式図である。第1実施形態に係る伝熱管ユニット群35Aと同様に、第5実施形態に係る伝熱管ユニット群35Eにおいても、複数のフィン32の中には、伝熱管離間方向yに対して正の鋭角だけ傾斜している第1傾斜部分S1と、伝熱管離間方向yに対して負の鋭角だけ傾斜している第2傾斜部分S2とが存在する。本実施形態においても、すべてのフィン32は平面として構成されている。
<Fifth Embodiment>
(1) Configuration FIG. 10 is a schematic diagram of a heat transfer tube unit group 35E of the heat exchanger 10 according to the fifth embodiment of the present invention. Similarly to the heat transfer tube unit group 35A according to the first embodiment, also in the heat transfer tube unit group 35E according to the fifth embodiment, the plurality of fins 32 include only a positive acute angle with respect to the heat transfer tube separation direction y. There are a first inclined portion S1 that is inclined and a second inclined portion S2 that is inclined by a negative acute angle with respect to the heat transfer tube separation direction y. Also in this embodiment, all the fins 32 are configured as a plane.
 伝熱管ユニット群35Eを構成する複数の伝熱管ユニット30は、第1実施形態で用いた第1伝熱管ユニット30A、および第3実施形態で用いた第2伝熱管ユニット30Bである。第1伝熱管ユニット30Aおよび第2伝熱管ユニット30Bの構造については説明済みであるので、ここでの説明は省略する。伝熱管ユニット群35Eにおいて、第1伝熱管ユニット30Aおよび第2伝熱管ユニット30Bは、伝熱管ユニット配列方向xに交互に配置されている。これにより、伝熱管ユニット配列方向xを向く視点において、第1伝熱管ユニット30Aに属する前記伝熱管31は、第2伝熱管ユニット30Bに属する隣接する前記伝熱管31の間に位置している。 The plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35E are the first heat transfer tube unit 30A used in the first embodiment and the second heat transfer tube unit 30B used in the third embodiment. Since the structure of the first heat transfer tube unit 30A and the second heat transfer tube unit 30B has already been described, description thereof is omitted here. In the heat transfer tube unit group 35E, the first heat transfer tube units 30A and the second heat transfer tube units 30B are alternately arranged in the heat transfer tube unit arrangement direction x. Thereby, from the viewpoint of facing the heat transfer tube unit arrangement direction x, the heat transfer tubes 31 belonging to the first heat transfer tube unit 30A are located between the adjacent heat transfer tubes 31 belonging to the second heat transfer tube unit 30B.
 その他、言及していない要素は第1実施形態と同様である。 Other elements not mentioned are the same as those in the first embodiment.
 (2)特徴
 (2-1)
 熱交換器10は、2種類の伝熱管ユニット、すなわち第1伝熱管ユニット30Aおよび第2伝熱管ユニット30Bを有する。したがって、2種類の伝熱管ユニットを適切に配置することにより、空気抵抗を低下させながら、伝熱性能を向上させることができる。
(2) Features (2-1)
The heat exchanger 10 has two types of heat transfer tube units, that is, a first heat transfer tube unit 30A and a second heat transfer tube unit 30B. Therefore, by appropriately arranging the two types of heat transfer tube units, it is possible to improve the heat transfer performance while reducing the air resistance.
 (2-2)
 第1伝熱管ユニット30Aと第2伝熱管ユニット30Bが隣接する箇所においては、それぞれの伝熱管ユニットに属する伝熱管31が近接しない。したがって、その箇所においては、伝熱管31の近接に起因する空気抵抗が起こりにくい。
(2-2)
In locations where the first heat transfer tube unit 30A and the second heat transfer tube unit 30B are adjacent to each other, the heat transfer tubes 31 belonging to the respective heat transfer tube units are not close to each other. Therefore, air resistance due to the proximity of the heat transfer tube 31 hardly occurs at that location.
 (2-3)
 第1伝熱管ユニット30Aと第2伝熱管ユニット30Bが交互に配置されるので、隣接する伝熱管ユニットに属する伝熱管31が近接する箇所が少ない。したがって、伝熱管31の近接に起因する空気抵抗がさらに起こりにくい。
(2-3)
Since the first heat transfer tube units 30A and the second heat transfer tube units 30B are alternately arranged, there are few places where the heat transfer tubes 31 belonging to the adjacent heat transfer tube units are close to each other. Accordingly, air resistance due to the proximity of the heat transfer tube 31 is less likely to occur.
 (3)変形例
 (3-1)伝熱管ユニットの種類
 伝熱管ユニット群35Eを構成する複数の伝熱管ユニット30は、第1伝熱管ユニット30Aおよび第2伝熱管ユニット30Bの2種類のみならず、3種類以上であってもよい。例えば、伝熱管の位置がフィン幅の1/3ずつずれている3種類の伝熱管ユニットを用意して、それらを規則的に配置することによって伝熱管ユニット群35Eを構成してもよい。
(3) Modified Examples (3-1) Types of Heat Transfer Tube Units The plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35E are not limited to the two types of the first heat transfer tube unit 30A and the second heat transfer tube unit 30B. There may be three or more types. For example, the heat transfer tube unit group 35E may be configured by preparing three types of heat transfer tube units in which the positions of the heat transfer tubes are shifted by 1/3 of the fin width and arranging them regularly.
 この構成によれば、例えばフィン幅を大きく設計することが許される場合などにおいて、伝熱管ユニット配列方向xにおける伝熱管ユニットの間隔を短く設定しても空気抵抗を増加させにくい。したがって、熱交換器の伝熱性能が向上できる場合がある。 According to this configuration, for example, when it is allowed to design a large fin width, it is difficult to increase the air resistance even if the interval between the heat transfer tube units in the heat transfer tube unit arrangement direction x is set short. Therefore, the heat transfer performance of the heat exchanger may be improved.
 (3-2)その他
 これまでの実施形態の変形例を第5実施形態に適応してもよい。
(3-2) Others Modifications of the previous embodiments may be applied to the fifth embodiment.
 <第6実施形態>
 (1)構成
 図11は、本発明の第6実施形態に係る熱交換器10の伝熱管ユニット群35Fの模式図である。第1実施形態に係る伝熱管ユニット群35Aと同様に、第6実施形態に係る伝熱管ユニット群35Fにおいても、複数のフィン32の中には、伝熱管離間方向yに対して正の鋭角だけ傾斜している第1傾斜部分S1と、伝熱管離間方向yに対して負の鋭角だけ傾斜している第2傾斜部分S2と、が存在する。本実施形態においても、すべてのフィン32は平面として構成されている。
<Sixth Embodiment>
(1) Configuration FIG. 11 is a schematic diagram of a heat transfer tube unit group 35F of the heat exchanger 10 according to the sixth embodiment of the present invention. Similarly to the heat transfer tube unit group 35A according to the first embodiment, also in the heat transfer tube unit group 35F according to the sixth embodiment, the plurality of fins 32 have only a positive acute angle with respect to the heat transfer tube separation direction y. There are a first inclined portion S1 that is inclined, and a second inclined portion S2 that is inclined by a negative acute angle with respect to the heat transfer tube separation direction y. Also in this embodiment, all the fins 32 are configured as a plane.
 伝熱管ユニット群35Fを構成する複数の伝熱管ユニット30は、第2実施形態で用いた第1伝熱管ユニット30A、および第4実施形態で用いた第2伝熱管ユニット30Bである。第1伝熱管ユニット30Aおよび第2伝熱管ユニット30Bの構造については説明済みであるので、ここでの説明は省略する。伝熱管ユニット群35Fにおいて、第1伝熱管ユニット30Aおよび第2伝熱管ユニット30Bは、伝熱管ユニット配列方向xに交互に配置されている。これにより、伝熱管ユニット配列方向xを向く視点において、第1伝熱管ユニット30Aに属する前記伝熱管31は、第2伝熱管ユニット30Bに属する隣接する前記伝熱管31の間に位置している。 The plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35F are the first heat transfer tube unit 30A used in the second embodiment and the second heat transfer tube unit 30B used in the fourth embodiment. Since the structure of the first heat transfer tube unit 30A and the second heat transfer tube unit 30B has already been described, description thereof is omitted here. In the heat transfer tube unit group 35F, the first heat transfer tube units 30A and the second heat transfer tube units 30B are alternately arranged in the heat transfer tube unit arrangement direction x. Thereby, from the viewpoint of facing the heat transfer tube unit arrangement direction x, the heat transfer tubes 31 belonging to the first heat transfer tube unit 30A are located between the adjacent heat transfer tubes 31 belonging to the second heat transfer tube unit 30B.
 その他、言及していない要素は第1実施形態と同様である。 Other elements not mentioned are the same as those in the first embodiment.
 (2)特徴
 (2-1)
 第1伝熱管ユニット30Aと第2伝熱管ユニット30Bが隣接する箇所においては、それぞれの伝熱管ユニットに属する伝熱管31が近接しない。したがって、その箇所においては、伝熱管31の近接に起因する空気抵抗が起こりにくい。
(2) Features (2-1)
In locations where the first heat transfer tube unit 30A and the second heat transfer tube unit 30B are adjacent to each other, the heat transfer tubes 31 belonging to the respective heat transfer tube units are not close to each other. Therefore, air resistance due to the proximity of the heat transfer tube 31 hardly occurs at that location.
 (2-2)
 第1伝熱管ユニット30Aおよび第2伝熱管ユニット30Bでは、いずれも、フィン32の傾斜が1つ以上ずつおきに反転する。したがって、大きなピッチの蛇行形状を形成できるので、空気流の抵抗を低減することができる。
(2-2)
In both the first heat transfer tube unit 30A and the second heat transfer tube unit 30B, the inclination of the fins 32 is reversed every one or more. Therefore, since a meandering shape with a large pitch can be formed, the resistance to airflow can be reduced.
 (3)変形例
 (3-1)伝熱管ユニットの種類
 第5実施形態の変形例と同様に、伝熱管ユニット群35Fを構成する複数の伝熱管ユニット30は、第1伝熱管ユニット30Aおよび第2伝熱管ユニット30Bの2種類のみならず、3種類以上であってもよい。
(3) Modified Examples (3-1) Types of Heat Transfer Tube Units Similar to the modified example of the fifth embodiment, the plurality of heat transfer tube units 30 constituting the heat transfer tube unit group 35F include the first heat transfer tube unit 30A and the first heat transfer tube unit 30A. There may be not only two types of the two heat transfer tube units 30B but also three or more types.
 この構成によれば、第5実施形態の変形例に関して説明したように、熱交換器の伝熱性能が向上できる場合がある。 This configuration may improve the heat transfer performance of the heat exchanger as described in the modification of the fifth embodiment.
 (3-2)交互配置のフィン数
 第1伝熱管ユニット30Aに関して、概して伝熱管離間方向yに交互に配列される第1フィン32Aおよび第2フィン32Bは、2枚ずつに限られない。例えば、3枚ずつ、またはそれ以上の第1フィン32Aおよび第2フィン32Bが交互に配列されてもよい。
(3-2) Number of Fins Alternatingly Arranged Regarding the first heat transfer tube unit 30A, the number of first fins 32A and second fins 32B that are alternately arranged in the heat transfer tube separation direction y is not limited to two. For example, three or more first fins 32A and second fins 32B may be alternately arranged.
 第2伝熱管ユニット30Bに関して、隣接する第3フィンによって規定される複数の間隙に交互に配列される第1フィン32Aおよび第2フィン32Bの数は、1枚に限られない。例えば、2枚ずつ、またはそれ以上の第1フィン32Aおよび第2フィン32Bが交互に配列されてもよい。 Regarding the second heat transfer tube unit 30B, the number of the first fins 32A and the second fins 32B alternately arranged in a plurality of gaps defined by the adjacent third fins is not limited to one. For example, two or more first fins 32A and second fins 32B may be alternately arranged.
 (3-3)その他
 これまでの実施形態の変形例を第6実施形態に適応してもよい。
(3-3) Others Modifications of the previous embodiments may be applied to the sixth embodiment.
 <結語>
 以上、本開示の実施形態を説明したが、本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
<Conclusion>
While the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the present disclosure.
 例えば、上述の伝熱管ユニットの構成を熱交換用扁平管に適用してもよい。熱交換用扁平管は、例えばマイクロチャネル熱交換器に用いられる部材である。この場合、熱交換用扁平管は図12に示すような蛇行形状を有する。熱交換用扁平管は、伝熱管離間方向yに交互に配列される伝熱管31およびフィン32を有する。 For example, the configuration of the heat transfer tube unit described above may be applied to a flat tube for heat exchange. The flat tube for heat exchange is a member used for, for example, a microchannel heat exchanger. In this case, the flat tube for heat exchange has a meandering shape as shown in FIG. The flat tube for heat exchange has heat transfer tubes 31 and fins 32 that are alternately arranged in the heat transfer tube separation direction y.
   10   熱交換器
   21   第1ヘッダ
   22   第2ヘッダ
   23   伝熱管ユニット接続面
   30   伝熱管ユニット
   30A  第1伝熱管ユニット
   30B  第2伝熱管ユニット
   31   伝熱管
   32   フィン
   32A  第1フィン
   32B  第2フィン
   32C  第3フィン
   41   第1配管
   42   第2配管
   S1   第1傾斜部分
   S2   第2傾斜部分
DESCRIPTION OF SYMBOLS 10 Heat exchanger 21 1st header 22 2nd header 23 Heat transfer tube unit connection surface 30 Heat transfer tube unit 30A 1st heat transfer tube unit 30B 2nd heat transfer tube unit 31 Heat transfer tube 32 Fin 32A 1st fin 32B 2nd fin 32C 3rd Fin 41 First piping 42 Second piping S1 First inclined portion S2 Second inclined portion
特開2006-105489号公報JP 2006-1054889 A

Claims (10)

  1.  複数のフィン(32)および複数の伝熱管(31)を有する伝熱管ユニット(30)、
    を複数備え、
     前記複数の伝熱管ユニットは、伝熱管ユニット配列方向(x)に間隔をあけて配置され、
     各伝熱管ユニットにおいて、
      前記複数の伝熱管は、前記伝熱管ユニット配列方向(x)に垂直な伝熱管伸張方向(z)に延び、
      前記フィンおよび前記伝熱管は、前記伝熱管ユニット配列方向(x)および前記伝熱管伸張方向(z)に垂直な伝熱管離間方向(y)に交互に配置されており、
     各伝熱管ユニットの前記複数のフィンは、それぞれ、
      前記伝熱管離間方向(y)に対して正の鋭角だけ傾斜する第1傾斜部分(S1)、および、
      前記伝熱管離間方向(y)に対して負の鋭角だけ傾斜する第2傾斜部分(S2)、
    の少なくとも一方を含む、
    熱交換器(10)。
    A heat transfer tube unit (30) having a plurality of fins (32) and a plurality of heat transfer tubes (31),
    With multiple
    The plurality of heat transfer tube units are arranged at intervals in the heat transfer tube unit arrangement direction (x),
    In each heat transfer tube unit,
    The plurality of heat transfer tubes extend in a heat transfer tube extension direction (z) perpendicular to the heat transfer tube unit arrangement direction (x),
    The fins and the heat transfer tubes are alternately arranged in the heat transfer tube separation direction (y) perpendicular to the heat transfer tube unit arrangement direction (x) and the heat transfer tube extension direction (z),
    The plurality of fins of each heat transfer tube unit are respectively
    A first inclined portion (S1) inclined by a positive acute angle with respect to the heat transfer tube separating direction (y), and
    A second inclined portion (S2) inclined by a negative acute angle with respect to the heat transfer tube separating direction (y),
    Including at least one of
    Heat exchanger (10).
  2.  前記複数の伝熱管ユニットは、第1伝熱管ユニット(30A)および第2伝熱管ユニット(30B)の少なくとも一方を有し、
     前記第1伝熱管ユニット(30A)の前記複数のフィンは、それぞれ、
      前記第1傾斜部分(S1)のみを有する第1フィン(32A)、および
      前記第2傾斜部分(S2)のみを有する第2フィン(32B)、
    のいずれかであり、
     前記第2伝熱管ユニット(30B)の前記複数のフィンは、
      前記第1傾斜部分(S1)および前記第2傾斜部分(S2)の両方を有する第3フィン(32C)、
    を含む、
    請求項1に記載の熱交換器。
    The plurality of heat transfer tube units have at least one of a first heat transfer tube unit (30A) and a second heat transfer tube unit (30B),
    The plurality of fins of the first heat transfer tube unit (30A) are respectively
    A first fin (32A) having only the first inclined portion (S1), and a second fin (32B) having only the second inclined portion (S2),
    Either
    The plurality of fins of the second heat transfer tube unit (30B)
    A third fin (32C) having both the first inclined portion (S1) and the second inclined portion (S2);
    including,
    The heat exchanger according to claim 1.
  3.  前記複数の伝熱管ユニットは、前記第1伝熱管ユニット(30A)および前記第2伝熱管ユニット(30B)の両方を有する、
    請求項2に記載の熱交換器。
    The plurality of heat transfer tube units include both the first heat transfer tube unit (30A) and the second heat transfer tube unit (30B).
    The heat exchanger according to claim 2.
  4.  前記伝熱管ユニット配列方向(x)を向く視点において、前記第1伝熱管ユニット(30A)に属する前記伝熱管は、前記第2伝熱管ユニット(30B)に属する隣接する前記伝熱管の間に位置する、
    請求項3に記載の熱交換器。
    From the viewpoint of facing the heat transfer tube unit arrangement direction (x), the heat transfer tubes belonging to the first heat transfer tube unit (30A) are positioned between the adjacent heat transfer tubes belonging to the second heat transfer tube unit (30B). To
    The heat exchanger according to claim 3.
  5.  前記第1伝熱管ユニットと前記第2伝熱管ユニットは、前記伝熱管ユニット配列方向(x)に交互に配列されている、
    請求項3または請求項4に記載の熱交換器。
    The first heat transfer tube units and the second heat transfer tube units are alternately arranged in the heat transfer tube unit arrangement direction (x).
    The heat exchanger according to claim 3 or 4.
  6.  前記第1伝熱管ユニットの前記複数のフィンは、前記伝熱管離間方向(y)に交互に配列された前記第1フィンおよび前記第2フィンである、
    請求項2から5のいずれか1つに記載の熱交換器。
    The plurality of fins of the first heat transfer tube unit are the first fins and the second fins alternately arranged in the heat transfer tube separation direction (y).
    The heat exchanger according to any one of claims 2 to 5.
  7.  前記第1伝熱管ユニットの前記複数のフィンは、前記伝熱管離間方向(y)に2枚以上ずつ交互に配列された前記第1フィンおよび前記第2フィンである、
    請求項2から5のいずれか1つに記載の熱交換器。
    The plurality of fins of the first heat transfer tube unit are the first fins and the second fins that are alternately arranged two or more in the heat transfer tube separation direction (y).
    The heat exchanger according to any one of claims 2 to 5.
  8.  前記第2伝熱管ユニットの前記複数のフィンは、交互に突出方向が異なるように前記伝熱管離間方向(y)に配列された前記第3フィンである、
    請求項2から6のいずれか1つに記載の熱交換器。
    The plurality of fins of the second heat transfer tube unit are the third fins arranged in the heat transfer tube separation direction (y) so that the protruding directions are alternately different.
    The heat exchanger according to any one of claims 2 to 6.
  9.  前記第2伝熱管ユニットの前記複数のフィンは、前記第1フィン、前記第2フィン、前記第3フィンをすべて含み、かつ、2枚の前記第3フィンの間に、少なくとも1枚の前記第1フィンまたは前記第2フィンが配置されている、
    請求項2、3、4、5、7のいずれか1つに記載の熱交換器。
    The plurality of fins of the second heat transfer tube unit include all of the first fin, the second fin, and the third fin, and at least one of the first fins between two of the third fins. 1 fin or the second fin is arranged,
    The heat exchanger according to any one of claims 2, 3, 4, 5, and 7.
  10.  前記複数のフィンは曲面である、
    請求項1から9のいずれか1つに記載の熱交換器。
    The plurality of fins are curved surfaces.
    The heat exchanger according to any one of claims 1 to 9.
PCT/JP2018/009507 2017-03-16 2018-03-12 Heat exchanger having heat transfer pipe unit WO2018168772A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-051292 2017-03-16
JP2017051292 2017-03-16
JP2018005693A JP7001917B2 (en) 2017-03-16 2018-01-17 Heat exchanger with heat transfer tube unit
JP2018-005693 2018-01-17

Publications (1)

Publication Number Publication Date
WO2018168772A1 true WO2018168772A1 (en) 2018-09-20

Family

ID=63523101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009507 WO2018168772A1 (en) 2017-03-16 2018-03-12 Heat exchanger having heat transfer pipe unit

Country Status (1)

Country Link
WO (1) WO2018168772A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115665U (en) * 1989-02-28 1990-09-17
WO2014171095A1 (en) * 2013-04-16 2014-10-23 パナソニック株式会社 Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115665U (en) * 1989-02-28 1990-09-17
WO2014171095A1 (en) * 2013-04-16 2014-10-23 パナソニック株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
US20200011607A1 (en) Heat exchanger including heat-transfer-tube unit
US20090173480A1 (en) Louvered air center with vortex generating extensions for compact heat exchanger
CN101806550A (en) Microchannel heat exchanger
JP2008170041A (en) Heat exchanger
JP7461719B2 (en) Heat exchanger and air conditioning system
JP5884055B2 (en) Heat exchanger and offset fin for heat exchanger
US20180340746A1 (en) Heat exchanger
JP5869665B2 (en) Heat exchanger
JP2020094791A5 (en)
JP7001917B2 (en) Heat exchanger with heat transfer tube unit
CN103697745A (en) Collecting pipe assembly and heat exchanger with collecting pipe assembly
JP2010078286A (en) Plate heat exchanger, and air conditioner mounted with the same
US20140332188A1 (en) Heat exchanger
JP2011247539A (en) Heat exchanger
WO2018168772A1 (en) Heat exchanger having heat transfer pipe unit
US20160327342A1 (en) Microchannel heat exchanger with improvement of dirt-resisting and anti-blocking
JP2018162953A (en) Heat exchanger
JP2018155480A (en) Heat exchanger having heat transfer pipe unit
JP2006337005A (en) Tube for heat exchanger
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
JP2015090237A (en) Heat exchanger
KR100941706B1 (en) Heat exchanger
JP2018087646A5 (en)
JP2018087646A (en) Evaporator
JP2008082619A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767396

Country of ref document: EP

Kind code of ref document: A1