WO2018168224A1 - Utilization system for traffic infrastructure investigation data - Google Patents

Utilization system for traffic infrastructure investigation data Download PDF

Info

Publication number
WO2018168224A1
WO2018168224A1 PCT/JP2018/002681 JP2018002681W WO2018168224A1 WO 2018168224 A1 WO2018168224 A1 WO 2018168224A1 JP 2018002681 W JP2018002681 W JP 2018002681W WO 2018168224 A1 WO2018168224 A1 WO 2018168224A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
deterioration
map data
damage
electromagnetic wave
Prior art date
Application number
PCT/JP2018/002681
Other languages
French (fr)
Japanese (ja)
Inventor
雄二 下平
一哉 八木澤
Original Assignee
株式会社土木管理総合試験所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018003963A external-priority patent/JP2018151375A/en
Application filed by 株式会社土木管理総合試験所 filed Critical 株式会社土木管理総合試験所
Publication of WO2018168224A1 publication Critical patent/WO2018168224A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Definitions

  • the present invention relates to a system and a method of using a search result in a traffic infrastructure such as a road, a bridge, a railway, and an airport.
  • Traffic infrastructure such as asphalt damage on the road surface, underground cavitation below the road, or deterioration or damage to bridge floors Damage is a problem.
  • Methods for diagnosing such deterioration and damage of traffic infrastructure have been proposed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-197434, an electromagnetic wave is incident on the ground, and a reflected wave is analyzed, thereby generating a cavity below a target surface such as a road. It is detected that
  • an object of the present invention is to provide a system that can effectively use the detected data regarding the deterioration or damage of the traffic infrastructure and prevent an accident in advance. is there.
  • an electromagnetic wave that is mounted on a vehicle traveling on a target surface of the traffic infrastructure, receives an electromagnetic wave incident on the target surface, and receives a reflected wave reflected.
  • a radar, a GNSS device that is mounted on the vehicle and detects a current traveling location, and is connected to the electromagnetic wave radar and the GNSS device via a communication line; the reflected wave data from the electromagnetic wave radar and the current GNSS device from the GNSS device;
  • a server that receives position data, and the server analyzes the reflected wave data transmitted from the electromagnetic wave radar to detect deterioration of the target surface and under the target surface, damage, and presence of an embedded object.
  • map data and the location where deterioration, damage or buried objects are detected by the analysis program based on the position data.
  • a map data synchronization program for specifying on the map data, and the server sends only map data for which a location where deterioration, damage or buried objects are detected to a specific accessor. It can be downloaded and disclosed on the Internet.
  • the location of the exploration results on the map data is specified, and the map data in which the deterioration, damage (the cavity is also included in the deterioration or damage), and the location of the buried object are specified,
  • specific accessers such as highway management operators, the Ministry of Land, Infrastructure, Transport and Tourism, local governments, consultants, etc., it is possible to reliably advance the development of traffic infrastructure using accurate data, and to prevent accidents. This contributes to prevention.
  • the analysis program has a progress status calculation function for calculating the progress status of deterioration or damage from the reflected wave data at different dates and times when the reflected wave data for the same place is received at different dates and times. Also good. According to this configuration, as the progress of deterioration or damage, the enlargement ratio per deterioration or damage for a predetermined period can be calculated and associated with the map data and disclosed on the Internet.
  • the vehicle may be a vehicle owned by a transportation company or public transportation. According to this configuration, it is possible to perform an exploration by using a vehicle that is always traveling by a transportation company or public transportation, without traveling a vehicle equipped with an electromagnetic wave radar for exploration. For this reason, useless expense does not arise in collection of exploration data.
  • the present invention it is possible to use the accurate traffic infrastructure exploration data to reliably proceed with the development of the traffic infrastructure and contribute to the prevention of accidents.
  • FIG. 1 shows the overall configuration of a traffic infrastructure exploration data utilization system according to this embodiment.
  • the transportation infrastructure of this embodiment is assumed to be a general road or a highway. Cavities, damages, and buried objects occurring below the road are probed by the electromagnetic wave radar 12.
  • the electromagnetic wave radar 12 has a function of irradiating an electromagnetic wave downward on the road and receiving a reflected wave.
  • the electromagnetic wave radar 12 is mounted on a vehicle 13 traveling on the road.
  • the vehicle 13 is a vehicle owned by a transportation company or a vehicle of public transportation.
  • transportation company vehicles include courier trucks and trucks for transportation.
  • public transportation vehicles include buses from bus companies and taxis from taxi companies.
  • the electromagnetic wave radar 12 may be mounted on a police vehicle, an emergency vehicle, a fire fighting vehicle, a public patrol vehicle owned by each local government, or the like as a public vehicle.
  • the administrator of the present system makes a contract with a transportation company that has the electromagnetic wave radar 12 mounted on the vehicle, or a public transportation, to pay the price instead of mounting the electromagnetic wave radar 12 on the vehicle 13. It is good to conclude. Thereby, the motivation for mounting the electromagnetic wave radar 12 on the owned vehicle 13 is given to the transportation company and public transportation. As a price, it is good to set the amount of money per 1 km of traveling.
  • GNSS is a general term for satellite positioning systems that measure the current position using an artificial satellite, and includes, for example, GPS, GOLONASS, GALILEO, and COMPASS.
  • the GNSS device 14 transmits position data based on the received radio waves through a receiving unit 20 that receives radio waves from a plurality of satellites, a telephone line connecting unit 22 that can be connected to a telephone line, and a communication line such as the Internet. And a transmission unit 24.
  • the telephone line connection unit 22 is provided for correcting the position information received by the receiving unit 20 and determined based on the radio wave based on the distance from the base station of the telephone line.
  • the transmission unit 24 transmits position data in real time.
  • the electromagnetic wave radar 12 includes an irradiation unit 25 that radiates electromagnetic waves toward the ground, a reception unit 26 that receives reflected waves from the ground, and a transmission unit 27 that transmits reflected wave data through a communication line such as the Internet. is doing.
  • the transmitter 27 transmits the reflected wave data in real time.
  • the GNSS device 14 and the electromagnetic wave radar 12 are communicably connected to the server 30, and the server 30 receives the position data from the GNSS device 14 and the reflected wave data from the electromagnetic wave radar 12.
  • FIG. 4 shows a schematic configuration of the server.
  • the server 30 includes a control unit 32 configured by a CPU, a memory, and the like, a storage device 34 such as a hard disk, and a communication unit 35 for communicating with a communication line such as the Internet.
  • the storage device 34 stores an analysis program P1, a map data synchronization program P2, and map data D1.
  • the analysis program P1 causes the surface portion to deteriorate based on the reflected wave data transmitted from the electromagnetic wave radar 12, for example, asphalt or concrete deterioration, underground cavities or buried Determine the presence or absence of objects.
  • the determination is made based on the size of the waveform peak of the reflected wave data and the sign of the waveform peak.
  • the control unit 32 can display deterioration, a cavity, or an existing location of an embedded object on the map data D ⁇ b> 1.
  • the map data synchronization program P2 Based on the position data transmitted from the GNSS device 14, the map data synchronization program P2 reflects the deterioration determined by the analysis program P1 and the location of a cavity or an embedded object in the map data D1. In the map data synchronization program P2, it is necessary to synchronize the position data and the reflected wave data, and to accurately reflect the deterioration, the location of the cavity or the embedded object in the map data D1.
  • a display method to the map data D1 for example, there is a method of displaying deterioration, a cavity, or an existence part of a buried object in a color different from other parts.
  • the analysis program determines the degree of deterioration and the degree of abnormality of the cavity or the embedded object based on the reflected wave data.
  • the degree of abnormality is divided into three levels: high, medium, and low.
  • the analysis program determines whether the position is an earthwork section (road) or a bridge based on the position data. Or in the case of a bridge, in the case of a bridge, it is determined whether the pavement is abnormal or the pavement / floor is abnormal. The determined result is stored in the storage device 34 together with the survey date in association with the reflected wave data.
  • the map data D1 is stored in the public directory of the server 30, and the map data D1 displaying the deterioration, the presence of cavities or buried objects is disclosed on the Internet to those who have access authority.
  • a person having access authority can access or browse or download the map data D1.
  • the reflected wave data of the electromagnetic wave radar 12 is received in real time from a transportation company or a traveling vehicle of a public transportation that always travels on the road, and the analysis program P1 and the map data synchronization program P2 cause deterioration and cavitation.
  • the presence of the buried object can be reflected in the map data D1 in real time, it is possible to quickly examine the repair of the traffic infrastructure.
  • the analysis program P1 may have a progress status calculation function that calculates the progress status of deterioration or damage from the reflected wave data at different dates and times.
  • the progress calculation function can calculate the enlargement rate per predetermined number of days of the size of the cavity at the same place by analyzing the reflected wave data, and can be associated with the map data D1 and disclosed on the Internet.
  • Such a system can be used not only for roads but also for deterioration and damage of bridges and tunnels.
  • a tunnel if the electromagnetic wave irradiation direction of the electromagnetic wave radar 12 is set to the direction of the wall surface of the tunnel, it is possible to detect deterioration or damage on the inner wall surface of the tunnel or inside.
  • Such a system can also be used in railways and airports.
  • the electromagnetic wave radar 12 and the GNSS device 14 are mounted on a train that is normally running, and deterioration or damage on the surface of the track or below the track is detected.
  • electromagnetic radar 12 and GNSS are used for towing tractors towing pallets loaded with containers, high lift loaders and belt loaders for loading containers on airplanes, towing cars for moving airplanes, passenger step cars for passengers to get on and off, etc.
  • the device 14 is mounted to detect deterioration and damage on the pavement surface and below the pavement of the airport.
  • FIG. 5 to FIG. 7 show examples of map data in which the presence of deterioration, cavities or buried objects is displayed.
  • FIG. 5 shows a login screen for accessing map data disclosed by the server 30 on the Internet. On the login screen, a member ID input field 40, a password input field 42, and a login button 44 are displayed.
  • a person who wants to use map data (hereinafter simply referred to as a user) needs to register as a member in advance and obtain a member ID and password. Member registration, membership ID, and password assignment to the user are performed by the management operating company of the server 30.
  • the user accesses the URL where the map data is disclosed, and inputs the assigned member ID and password in the member ID input field 40 and password input field 42 on the login screen.
  • the server 30 stores the member ID and password of the member in the storage device 34 in advance, and the control unit 32 of the server 30 confirms the input member ID and password and allows only authenticated persons to log in. .
  • the control unit 32 of the server 30 confirms that the login button 44 is pressed after authenticating the member ID and password, the control unit 32 shifts to a map data display screen.
  • FIG. 6 shows an example of the map data display screen.
  • a map data display section 46 On the map data display screen, a map data display section 46, a diagnosis condition selection field 48, a diagnosis time selection field 50, a point selection method selection field 52, a download point field 54, and a download button 55 are displayed.
  • the map data display unit 46 displays information on the degree of abnormality on the road or bridge on the map data based on the reflected wave data transmitted from the electromagnetic wave radar 12.
  • the degree of abnormality is controlled to be displayed on the map data as dots (points) with high, medium, and small colors.
  • the map data synchronization program P2 classifies the state of deterioration, presence or absence of cavities or buried objects into high, medium, and low degrees of abnormality for each position data, and displays it at the corresponding position on the map data. It is executed by displaying dots (points). For example, the map data synchronization program P2 displays the high abnormality degree in red, the middle abnormality degree in yellow, and the low abnormality degree in blue so that the location of the abnormality can be recognized at a glance.
  • the selection field 48 of the diagnosis condition allows the user to select whether the pavement abnormality level, the presence / absence of cavities / foreign objects, and the laying state of the buried object are displayed in the earthwork section. It is possible for the user to select which one of the abnormality level of the pavement and the floor slab is to be displayed.
  • the control unit 32 of the server 30 displays on the map data display unit 46 about the abnormal state of the earthwork unit or the bridge unit selected by the user and the abnormal content that matches the diagnosis time condition input in the diagnosis time selection field 50. .
  • the user can select one point selection, linear selection, or range selection.
  • One-point selection allows you to select points on the map one by one, and linear selection refers to selecting all starting points and goal points on the map and selecting all points on the map.
  • range selection when a starting point and an end point are selected on a map, all points on the map within the range can be selected.
  • the download point column 54 the user can select so that any one of high, medium and low abnormalities can be excluded.
  • the point finally selected by the user is displayed.
  • the control unit 32 of the server 30 downloads the data at the point selected in the download point column 54 to the user.
  • FIG. 7 shows an example of downloaded data of abnormal points.
  • This data includes road classification, jurisdiction classification, diagnosis condition, survey date, survey position, survey position map, travel image, past rainfall, and analysis data of this point. That is, the storage device 34 of the server 30 stores the road classification, jurisdiction classification, survey date, travel image, past rainfall, and analysis data at the location where the deterioration, damage or buried object obtained by the analysis program P1 is detected. Must be stored in association with each other.
  • the analysis data shown in FIG. 7 is a plan view of the road from above, and is color-coded according to the degree of abnormality high, medium, and low. In this example, it can be seen that the degree of abnormality is large from the point 176 m to the point 178 m at the selected point.
  • the abnormal part can be repaired and repaired quickly and accurately.

Abstract

In order to effectively utilize investigation data about the deterioration in or damage to traffic infrastructure and prevent accidents in advance, the present invention is provided with: an electromagnetic wave radar (12) mounted on a vehicle (13); a GNSS device (14) mounted on the vehicle (13); and a server (30) which is connected to the electromagnetic wave radar (12) and the GNSS device (14) through a communication line and which receives reflective wave data and current position data. The server (30) has: an analysis program (P1) which analyzes the reflective wave data to detect the deterioration and damage that has occurred on a target surface and under the target surface or detect the presence of a buried object; map data (D1); and a map data synchronization program (P2) which, on the basis of position data, specifies on the map data (D1), the place where the deterioration, damage, or buried object has been detected by the analysis program (P1). The server (30) discloses the map data (D1), on which the place is specified where the deterioration, damage, or buried object has been detected, only to specific access members on the Internet.

Description

交通インフラストラクチャ探査データの利用システムTraffic infrastructure exploration data utilization system
 本発明は、道路、橋梁、鉄道、空港などの交通インフラストラクチャにおける探査結果を利用したシステム及び利用方法に関する。 The present invention relates to a system and a method of using a search result in a traffic infrastructure such as a road, a bridge, a railway, and an airport.
 道路表面のアスファルトの損傷、道路の下方の地中の空洞化、あるいは橋梁の床板の劣化や損傷が生じている場合など、交通インフラストラクチャ(以下、交通インフラと省略する場合がある)における劣化や損傷が問題となっている。
 このような交通インフラの劣化や損傷を診断するための方法が、従来より提案されている。
Deterioration in traffic infrastructure (hereinafter sometimes abbreviated as “traffic infrastructure”) such as asphalt damage on the road surface, underground cavitation below the road, or deterioration or damage to bridge floors Damage is a problem.
Methods for diagnosing such deterioration and damage of traffic infrastructure have been proposed.
 例えば、特許文献1:特開2015-197434号公報に開示されている方法によれば、電磁波を地中に入射し、反射波を分析することにより、道路等の対象面の下方に空洞が生じていることを検出している。 For example, according to the method disclosed in Patent Document 1: Japanese Patent Application Laid-Open No. 2015-197434, an electromagnetic wave is incident on the ground, and a reflected wave is analyzed, thereby generating a cavity below a target surface such as a road. It is detected that
特開2015-197434号公報Japanese Patent Laying-Open No. 2015-197434
 交通インフラの劣化や損傷(空洞を含む)を検出した場合、検出したデータをどのように有効利用して事故を未然に防ぐかについては、活発な議論がなされておらず、課題となっている。 When the deterioration or damage of transportation infrastructure (including cavities) is detected, how to effectively use the detected data to prevent accidents has not been actively discussed and has become an issue. .
 そこで本発明は上記課題を解決すべくなされ、その目的とするところは、検出した交通インフラの劣化又は損傷に関する探査データを有効に利用し、事故を未然に防ぐことができるシステムを提供することにある。 Accordingly, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a system that can effectively use the detected data regarding the deterioration or damage of the traffic infrastructure and prevent an accident in advance. is there.
 本発明にかかる交通インフラストラクチャ探査データの利用システムによれば、交通インフラストラクチャの対象面上を走行する車両に搭載され、対象面に向けて電磁波を入射し、反射してきた反射波を受信する電磁波レーダと、前記車両に搭載され、現在走行個所を検出するGNSS装置と、該電磁波レーダ及び前記GNSS装置と通信回線を介して接続され、前記電磁波レーダから反射波データ及び前記GNSS装置からの現在の位置データを受信するサーバと、を具備し、該サーバは、前記電磁波レーダから送信された反射波データを解析して対象面及び対象面下の劣化、損傷及び埋設物の有無を検出する解析プログラムと、地図データと、該解析プログラムによって劣化、損傷又は埋設物が検出された個所を前記位置データに基づいて、前記地図データ上で特定する地図データ同期プログラムと、を有しており、前記サーバは、劣化、損傷又は埋設物が検出された個所が特定された地図データを、特定のアクセス者のみに対してダウンロード可能にインターネット上に開示することを特徴としている。
 この構成を採用することによって、探査結果を地図データ上で場所を特定し、劣化、損傷(空洞も劣化又は損傷に含まれるものとする)、埋設物の存在場所が特定された地図データを、例えば、高速道路の管理事業者、国土交通省、地方自治体、コンサルタント、等の特定のアクセス者に提供することにより、正確なデータを利用した交通インフラの整備を確実に進めることができ、事故を未然に防止できることに寄与する。
According to the traffic infrastructure exploration data utilization system according to the present invention, an electromagnetic wave that is mounted on a vehicle traveling on a target surface of the traffic infrastructure, receives an electromagnetic wave incident on the target surface, and receives a reflected wave reflected. A radar, a GNSS device that is mounted on the vehicle and detects a current traveling location, and is connected to the electromagnetic wave radar and the GNSS device via a communication line; the reflected wave data from the electromagnetic wave radar and the current GNSS device from the GNSS device; A server that receives position data, and the server analyzes the reflected wave data transmitted from the electromagnetic wave radar to detect deterioration of the target surface and under the target surface, damage, and presence of an embedded object. And the map data and the location where deterioration, damage or buried objects are detected by the analysis program based on the position data. A map data synchronization program for specifying on the map data, and the server sends only map data for which a location where deterioration, damage or buried objects are detected to a specific accessor. It can be downloaded and disclosed on the Internet.
By adopting this structure, the location of the exploration results on the map data is specified, and the map data in which the deterioration, damage (the cavity is also included in the deterioration or damage), and the location of the buried object are specified, For example, by providing it to specific accessers such as highway management operators, the Ministry of Land, Infrastructure, Transport and Tourism, local governments, consultants, etc., it is possible to reliably advance the development of traffic infrastructure using accurate data, and to prevent accidents. This contributes to prevention.
 また、前記解析プログラムは、異なる日時で、同じ場所に対する反射波データを受信した場合、異なる日時での反射波データから、劣化又は損傷の進行状況を算出する進行状況算出機能を有することを特徴としてもよい。
 この構成によれば、劣化又は損傷の進行状況として、劣化又は損傷の所定期間あたりの拡大率を算出し、地図データと関連付けさせてインターネット上で開示させることもできる。
The analysis program has a progress status calculation function for calculating the progress status of deterioration or damage from the reflected wave data at different dates and times when the reflected wave data for the same place is received at different dates and times. Also good.
According to this configuration, as the progress of deterioration or damage, the enlargement ratio per deterioration or damage for a predetermined period can be calculated and associated with the map data and disclosed on the Internet.
 また、前記車両は、運輸企業、又は公共交通機関が所有する車両であることを特徴としてもよい。
 この構成によれば、電磁波レーダを搭載した車両を探査用に走行させることなく、運輸企業や公共交通機関によって常に走行している車両を利用して探査を行うことができる。このため、探査データの収集に無駄な費用が生じることが無い。
The vehicle may be a vehicle owned by a transportation company or public transportation.
According to this configuration, it is possible to perform an exploration by using a vehicle that is always traveling by a transportation company or public transportation, without traveling a vehicle equipped with an electromagnetic wave radar for exploration. For this reason, useless expense does not arise in collection of exploration data.
 本発明によれば、正確な交通インフラの探査データを利用し、交通インフラの整備を確実に進めることができ、事故を未然に防止できることに寄与する。 According to the present invention, it is possible to use the accurate traffic infrastructure exploration data to reliably proceed with the development of the traffic infrastructure and contribute to the prevention of accidents.
交通インフラストラクチャ探査データの利用システムの全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the utilization system of traffic infrastructure search data. GNSS装置の構成を示すブロック図である。It is a block diagram which shows the structure of a GNSS apparatus. 電磁波レーダの構成を示すブロック図である。It is a block diagram which shows the structure of an electromagnetic wave radar. サーバの構成を示すブロック図である。It is a block diagram which shows the structure of a server. 地図データアクセス用のログイン画面の一例を示す説明図である。It is explanatory drawing which shows an example of the login screen for map data access. 地図データの表示画面の一例を示す説明図である。It is explanatory drawing which shows an example of the display screen of map data. 選択されたポイントにおけるデータの一例を示す説明図である。It is explanatory drawing which shows an example of the data in the selected point.
 本実施形態の交通インフラの探査データの利用システム全体の構成を図1に示す。
 本実施形態の交通インフラとしては一般道路又は高速道路であるとする。道路の下方に生じている空洞、損傷及び埋設物は、電磁波レーダ12によって探査される。電磁波レーダ12は、道路下方に向けて電磁波を照射し、反射波を受信する機能を有している。
FIG. 1 shows the overall configuration of a traffic infrastructure exploration data utilization system according to this embodiment.
The transportation infrastructure of this embodiment is assumed to be a general road or a highway. Cavities, damages, and buried objects occurring below the road are probed by the electromagnetic wave radar 12. The electromagnetic wave radar 12 has a function of irradiating an electromagnetic wave downward on the road and receiving a reflected wave.
 電磁波レーダ12は、道路を走行する車両13に搭載される。
 車両13としては、運輸会社の所有する車両、又は公共交通機関の車両である。運輸会社の車両とは、宅配便のトラック、運送用のトラックなどを挙げることができる。公共交通機関の車両としては、バス会社のバス、タクシー会社のタクシーなどを挙げることができる。また、公共車両として、警察車両、救急車両、消防車両、各自治体が所有する公務パトロール車両などにも電磁波レーダ12を搭載してもよい。
The electromagnetic wave radar 12 is mounted on a vehicle 13 traveling on the road.
The vehicle 13 is a vehicle owned by a transportation company or a vehicle of public transportation. Examples of transportation company vehicles include courier trucks and trucks for transportation. Examples of public transportation vehicles include buses from bus companies and taxis from taxi companies. Further, the electromagnetic wave radar 12 may be mounted on a police vehicle, an emergency vehicle, a fire fighting vehicle, a public patrol vehicle owned by each local government, or the like as a public vehicle.
 上記のように、電磁波レーダ12を搭載する車両として、走行すること自体が業務である車両を選択することで、わざわざ探査専用の車両を用意し、探査のためだけに走行させるという必要が無い。このため、探査の際のコスト低減に寄与する。 As described above, it is not necessary to prepare a dedicated vehicle for exploration and travel only for exploration by selecting a vehicle for which the traveling itself is a business as a vehicle on which the electromagnetic wave radar 12 is mounted. This contributes to cost reduction during exploration.
 また、本システムの管理者は、電磁波レーダ12を車両に搭載してもらう運輸会社、又は公共交通機関との間で、電磁波レーダ12を車両13に搭載してもらうかわりにその対価を支払う契約を締結するとよい。
 これにより、運輸会社、公共交通機関としては、所有する車両13に電磁波レーダ12を搭載する動機づけが与えられる。対価としては、走行1kmあたりの金額を設定するとよい。
In addition, the administrator of the present system makes a contract with a transportation company that has the electromagnetic wave radar 12 mounted on the vehicle, or a public transportation, to pay the price instead of mounting the electromagnetic wave radar 12 on the vehicle 13. It is good to conclude.
Thereby, the motivation for mounting the electromagnetic wave radar 12 on the owned vehicle 13 is given to the transportation company and public transportation. As a price, it is good to set the amount of money per 1 km of traveling.
 なお、GNSSとは、人工衛星を利用して現在位置を測定する衛星測位システムの総称であり、例えばGPS、GOLONASS、GALILEO、COMPASSなどが含まれる。 Note that GNSS is a general term for satellite positioning systems that measure the current position using an artificial satellite, and includes, for example, GPS, GOLONASS, GALILEO, and COMPASS.
 GNSS装置の概略構成を図2に示す。
 GNSS装置14は、複数の衛星からの電波を受信する受信部20と、電話回線に接続可能である電話回線接続部22と、インターネット等の通信回線により、受信した電波に基づいた位置データを送信する送信部24と、を有している。
 電話回線接続部22は、受信部20で受信して電波に基づいて割り出した位置情報に対し、電話回線の基地局との距離に基づいて補正を行うために設けられている。送信部24は位置データをリアルタイムに送信する。
A schematic configuration of the GNSS apparatus is shown in FIG.
The GNSS device 14 transmits position data based on the received radio waves through a receiving unit 20 that receives radio waves from a plurality of satellites, a telephone line connecting unit 22 that can be connected to a telephone line, and a communication line such as the Internet. And a transmission unit 24.
The telephone line connection unit 22 is provided for correcting the position information received by the receiving unit 20 and determined based on the radio wave based on the distance from the base station of the telephone line. The transmission unit 24 transmits position data in real time.
 電磁波レーダの概略構成を図3に示す。
 電磁波レーダ12は、地中に向けて電磁波を照射する照射部25と、地中からの反射波を受信部26と、インターネット等の通信回線により反射波データを送信する送信部27と、を有している。送信部27は反射波データをリアルタイムに送信する。
A schematic configuration of the electromagnetic wave radar is shown in FIG.
The electromagnetic wave radar 12 includes an irradiation unit 25 that radiates electromagnetic waves toward the ground, a reception unit 26 that receives reflected waves from the ground, and a transmission unit 27 that transmits reflected wave data through a communication line such as the Internet. is doing. The transmitter 27 transmits the reflected wave data in real time.
 GNSS装置14及び電磁波レーダ12は、サーバ30に対して通信可能に接続されており、サーバ30はGNSS装置14からの位置データ及び電磁波レーダ12からの反射波データを受信する。 The GNSS device 14 and the electromagnetic wave radar 12 are communicably connected to the server 30, and the server 30 receives the position data from the GNSS device 14 and the reflected wave data from the electromagnetic wave radar 12.
 図4にサーバの概略構成を示す。
 サーバ30は、CPU、メモリ等から構成される制御部32と、ハードディスク等の記憶装置34と、インターネット等の通信回線と通信するための通信部35と、を有している。
 記憶装置34には、解析プログラムP1、地図データ同期プログラムP2、及び地図データD1が記憶されている。
FIG. 4 shows a schematic configuration of the server.
The server 30 includes a control unit 32 configured by a CPU, a memory, and the like, a storage device 34 such as a hard disk, and a communication unit 35 for communicating with a communication line such as the Internet.
The storage device 34 stores an analysis program P1, a map data synchronization program P2, and map data D1.
 制御部32が、解析プログラムP1を実行することにより、解析プログラムP1は電磁波レーダ12から送信されてきた反射波データに基づいて地表部の劣化、例えばアスファルトやコンクリートの劣化、地中の空洞又は埋設物の有無を判断する。
 解析プログラムP1における具体的な判断手法については省略するが、反射波データの波形ピークの大きさや波形ピークの正負によって判断する。
When the control unit 32 executes the analysis program P1, the analysis program P1 causes the surface portion to deteriorate based on the reflected wave data transmitted from the electromagnetic wave radar 12, for example, asphalt or concrete deterioration, underground cavities or buried Determine the presence or absence of objects.
Although a specific determination method in the analysis program P1 is omitted, the determination is made based on the size of the waveform peak of the reflected wave data and the sign of the waveform peak.
 制御部32が、地図データ同期プログラムP2を実行することにより、地図データD1上に劣化や空洞又は埋設物の存在個所を表示させることができる。
 地図データ同期プログラムP2は、GNSS装置14から送信されてきた位置データに基づき、解析プログラムP1で判断された劣化や空洞又は埋設物の存在個所を地図データD1に反映させる。なお、地図データ同期プログラムP2では、位置データと反射波データとの同期をとり、劣化や空洞又は埋設物の存在個所を正確に地図データD1に反映させる必要がある。
 なお、地図データD1への表示方法としては、例えば劣化や空洞又は埋設物の存在個所を他の個所とは異なる色で表示させる等の方法がある。
By executing the map data synchronization program P <b> 2, the control unit 32 can display deterioration, a cavity, or an existing location of an embedded object on the map data D <b> 1.
Based on the position data transmitted from the GNSS device 14, the map data synchronization program P2 reflects the deterioration determined by the analysis program P1 and the location of a cavity or an embedded object in the map data D1. In the map data synchronization program P2, it is necessary to synchronize the position data and the reflected wave data, and to accurately reflect the deterioration, the location of the cavity or the embedded object in the map data D1.
In addition, as a display method to the map data D1, for example, there is a method of displaying deterioration, a cavity, or an existence part of a buried object in a color different from other parts.
 また、解析プログラムでは、反射波データに基づいて、劣化や空洞又は埋設物の異常度を判定する。異常度は、高、中、低の3段階に区分する。
 また、解析プログラムは、異常度のほかに、その位置が土工部(道路)なのか橋梁なのかを位置データに基づいて判定し、土工部の場合は舗装体の異常か、空洞・異物の存在か、埋設物の敷設状態なのかを判定し、橋梁の場合は舗装体の異常か、舗装体・床版の異常かを判定する。判定した結果は、反射波データと関連付けして、調査年月日とともに記憶装置34に記憶される。
Further, the analysis program determines the degree of deterioration and the degree of abnormality of the cavity or the embedded object based on the reflected wave data. The degree of abnormality is divided into three levels: high, medium, and low.
In addition to the degree of abnormality, the analysis program determines whether the position is an earthwork section (road) or a bridge based on the position data. Or in the case of a bridge, in the case of a bridge, it is determined whether the pavement is abnormal or the pavement / floor is abnormal. The determined result is stored in the storage device 34 together with the survey date in association with the reflected wave data.
 地図データD1は、サーバ30の公開用ディレクトリに保存されており、劣化や空洞又は埋設物の存在を表示させた地図データD1は、アクセス権限を有する者に対してインターネット上で開示される。アクセス権限を有する者は、地図データD1にアクセスして閲覧又はダウンロードすることが可能である。 The map data D1 is stored in the public directory of the server 30, and the map data D1 displaying the deterioration, the presence of cavities or buried objects is disclosed on the Internet to those who have access authority. A person having access authority can access or browse or download the map data D1.
 アクセス権限を有する者としては、例えば高速道路の管理事業者、国土交通省、地方自治体などの発注機関、又はコンサルタント等を想定している。ただし、一般ユーザもアクセス権限を有する者としてもよい。
 これらの者は、本システムの管理者に対して、地図データD1を取得するための対価を支払う契約を交わし、本システムの管理者から地図データD1へアクセスするためのID、パスワードを受領する。
As the person having access authority, for example, a highway management company, an ordering organization such as the Ministry of Land, Infrastructure, Transport and Tourism, a local government, or a consultant is assumed. However, general users may also have access rights.
These persons make a contract to pay the price for acquiring the map data D1 to the manager of the system, and receive an ID and a password for accessing the map data D1 from the manager of the system.
 このように、常に道路上を走行している運輸会社、又は公共交通機関の走行車両から、電磁波レーダ12の反射波データをリアルタイムで受信し、解析プログラムP1及び地図データ同期プログラムP2により劣化や空洞又は埋設物の存在を地図データD1にリアルタイムで反映させることができるため、交通インフラの補修についての検討を迅速に行うことができる。 In this way, the reflected wave data of the electromagnetic wave radar 12 is received in real time from a transportation company or a traveling vehicle of a public transportation that always travels on the road, and the analysis program P1 and the map data synchronization program P2 cause deterioration and cavitation. Alternatively, since the presence of the buried object can be reflected in the map data D1 in real time, it is possible to quickly examine the repair of the traffic infrastructure.
 また、解析プログラムP1は、異なる日時で、同じ場所に対する反射波データを受信した場合、異なる日時での反射波データから、劣化又は損傷の進行状況を算出する進行状況算出機能を有していてもよい。
 進行状況算出機能は、例えば、反射波データの解析により、同じ場所での空洞の大きさの所定日数当たりの拡大率を算出し、地図データD1と関連付けさせてインターネット上で開示させることもできる。
Further, when the analysis program P1 receives reflected wave data for the same place at different dates and times, the analysis program P1 may have a progress status calculation function that calculates the progress status of deterioration or damage from the reflected wave data at different dates and times. Good.
For example, the progress calculation function can calculate the enlargement rate per predetermined number of days of the size of the cavity at the same place by analyzing the reflected wave data, and can be associated with the map data D1 and disclosed on the Internet.
 このようなシステムは道路だけでなく、橋及びトンネルの劣化及び損傷等に対しても用いることができる。例えば、トンネルの場合、電磁波レーダ12の電磁波の照射方向をトンネルの壁面方向にすれば、トンネルの内壁表面や内部の劣化や損傷を検出できる。 Such a system can be used not only for roads but also for deterioration and damage of bridges and tunnels. For example, in the case of a tunnel, if the electromagnetic wave irradiation direction of the electromagnetic wave radar 12 is set to the direction of the wall surface of the tunnel, it is possible to detect deterioration or damage on the inner wall surface of the tunnel or inside.
 また、このようなシステムは、鉄道や空港において用いることができる。
 鉄道の場合には、通常走行している列車に電磁波レーダ12及びGNSS装置14を搭載し、線路表面や線路下方の劣化や損傷を検出する。
Such a system can also be used in railways and airports.
In the case of a railway, the electromagnetic wave radar 12 and the GNSS device 14 are mounted on a train that is normally running, and deterioration or damage on the surface of the track or below the track is detected.
 空港の場合には、コンテナを積んだパレットをけん引するトーイングトラクター、飛行機にコンテナを積み込むハイリフトローダーやベルトローダー、飛行機を動かすトーイングカー、乗客が乗り降りするためのパッセンジャーステップカー等に電磁波レーダ12及びGNSS装置14を搭載し、空港の舗装表面や舗装下方の劣化や損傷を検出する。 In the case of airports, electromagnetic radar 12 and GNSS are used for towing tractors towing pallets loaded with containers, high lift loaders and belt loaders for loading containers on airplanes, towing cars for moving airplanes, passenger step cars for passengers to get on and off, etc. The device 14 is mounted to detect deterioration and damage on the pavement surface and below the pavement of the airport.
 図5~図7に、劣化、空洞又は埋設物の存在を表示させた地図データの例について示す。
 図5は、サーバ30がインターネット上で開示する地図データアクセス用のログイン画面を示している。
 ログイン画面では、会員ID入力欄40、パスワード入力欄42及びログインボタン44が表示される。
 地図データの利用を欲する者(以下、単に利用者と称する)は、予め会員登録をして会員ID及びパスワードを取得しておく必要がある。利用者への会員登録、会員ID及びパスワードの付与などは、サーバ30の管理運営会社で行う。
FIG. 5 to FIG. 7 show examples of map data in which the presence of deterioration, cavities or buried objects is displayed.
FIG. 5 shows a login screen for accessing map data disclosed by the server 30 on the Internet.
On the login screen, a member ID input field 40, a password input field 42, and a login button 44 are displayed.
A person who wants to use map data (hereinafter simply referred to as a user) needs to register as a member in advance and obtain a member ID and password. Member registration, membership ID, and password assignment to the user are performed by the management operating company of the server 30.
 利用者は、地図データが公開されるURLにアクセスし、付与された会員ID及びパスワードをログイン画面の会員ID入力欄40及びパスワード入力欄42に入力する。
 サーバ30は、会員の会員ID及びパスワードを予め記憶装置34に記憶しておき、サーバ30の制御部32は、入力された会員ID及びパスワードを確認し、認証された者のみをログイン可能とする。
 サーバ30の制御部32は、会員ID及びパスワードを認証したのち、ログインボタン44が押下されたことを確認すると、地図データの表示画面に移行する。
The user accesses the URL where the map data is disclosed, and inputs the assigned member ID and password in the member ID input field 40 and password input field 42 on the login screen.
The server 30 stores the member ID and password of the member in the storage device 34 in advance, and the control unit 32 of the server 30 confirms the input member ID and password and allows only authenticated persons to log in. .
When the control unit 32 of the server 30 confirms that the login button 44 is pressed after authenticating the member ID and password, the control unit 32 shifts to a map data display screen.
 図6に、地図データ表示画面の例を示す。
 地図データ表示画面には、地図データ表示部46、診断条件の選択欄48、診断時期の選択欄50、ポイントの選択方法選択欄52、ダウンロードポイント欄54、ダウンロードボタン55が表示される。
 地図データ表示部46には、地図データ上の道路又は橋梁において、電磁波レーダ12から送信されてきた反射波データに基づいて異常度に関する情報が表示される。異常度は、高、中、小で色分けしてドット(ポイント)で地図データ上に表示されるよう制御される。
 地図データにおける異常度の表示は、地図データ同期プログラムP2が、劣化、空洞又は埋設物の有無の状態を位置データごとに異常度高、中、低に分類し、地図データ上の該当する位置にドット(ポイント)を表示させることで実行される。
 例えば、地図データ同期プログラムP2は、異常度高を赤、異常度中を黄、異常度低を青で表示することにより、異常のある個所が一目でわかるようにすることができる。
FIG. 6 shows an example of the map data display screen.
On the map data display screen, a map data display section 46, a diagnosis condition selection field 48, a diagnosis time selection field 50, a point selection method selection field 52, a download point field 54, and a download button 55 are displayed.
The map data display unit 46 displays information on the degree of abnormality on the road or bridge on the map data based on the reflected wave data transmitted from the electromagnetic wave radar 12. The degree of abnormality is controlled to be displayed on the map data as dots (points) with high, medium, and small colors.
In order to display the degree of abnormality in map data, the map data synchronization program P2 classifies the state of deterioration, presence or absence of cavities or buried objects into high, medium, and low degrees of abnormality for each position data, and displays it at the corresponding position on the map data. It is executed by displaying dots (points).
For example, the map data synchronization program P2 displays the high abnormality degree in red, the middle abnormality degree in yellow, and the low abnormality degree in blue so that the location of the abnormality can be recognized at a glance.
 また、診断条件の選択欄48は、土工部で舗装体の異常度、空洞・異物の有無、埋設物の敷設状態のいずれを表示させるかユーザが選択可能となっており、橋梁部で舗装体の異常度、舗装体・床版の異常度のいずれを表示させるかユーザが選択可能となっている。
 サーバ30の制御部32は、ユーザが選択した土工部又は橋梁部の異常状態、及び診断時期の選択欄50に入力された診断時期の条件に合致する異常内容について地図データ表示部46に表示する。
In addition, the selection field 48 of the diagnosis condition allows the user to select whether the pavement abnormality level, the presence / absence of cavities / foreign objects, and the laying state of the buried object are displayed in the earthwork section. It is possible for the user to select which one of the abnormality level of the pavement and the floor slab is to be displayed.
The control unit 32 of the server 30 displays on the map data display unit 46 about the abnormal state of the earthwork unit or the bridge unit selected by the user and the abnormal content that matches the diagnosis time condition input in the diagnosis time selection field 50. .
 また、ポイントの選択方法選択欄52では、一点選択、線形選択、範囲選択のいずれかをユーザが選択可能となっている。
 一点選択とは、地図上にあるポイントを一点ずつ選択することができるものであり、線形選択とは、地図上でスタート地点とゴール地点を選択すると、その線上にある地図上のポイントがすべて選択できるものであり、範囲選択とは、地図上で起点角地点と終点角地点を選択すると、その範囲内にある地図上のポイントがすべて選択できるものである。
 また、ダウンロードポイント欄54では、異常度の高、中、低のいずれかを除外できるようにユーザが選択可能となっている。また、最終的にユーザが選択したポイントが表示される。
In the point selection method selection field 52, the user can select one point selection, linear selection, or range selection.
One-point selection allows you to select points on the map one by one, and linear selection refers to selecting all starting points and goal points on the map and selecting all points on the map. In the range selection, when a starting point and an end point are selected on a map, all points on the map within the range can be selected.
Further, in the download point column 54, the user can select so that any one of high, medium and low abnormalities can be excluded. In addition, the point finally selected by the user is displayed.
 ユーザがポイントを選択した後、ダウンロードボタン55を押下すると、サーバ30の制御部32は、ダウンロードポイント欄54で選択されたポイントにおけるデータをユーザに対してダウンロードする。 When the user presses the download button 55 after selecting a point, the control unit 32 of the server 30 downloads the data at the point selected in the download point column 54 to the user.
 ダウンロードされた、異常のあるポイントのデータの例を図7に示す。
 このデータには、このポイントの道路区分、管轄区分、診断条件、調査日、調査位置、調査位置図、走行画像、過去の雨量、解析データが含まれる。
 すなわち、サーバ30の記憶装置34には、解析プログラムP1によって得られた劣化、損傷又は埋設物が検出された個所における、道路区分、管轄区分、調査日、走行画像、過去の雨量、及び解析データを関連付けして記憶されていることが必要である。
FIG. 7 shows an example of downloaded data of abnormal points.
This data includes road classification, jurisdiction classification, diagnosis condition, survey date, survey position, survey position map, travel image, past rainfall, and analysis data of this point.
That is, the storage device 34 of the server 30 stores the road classification, jurisdiction classification, survey date, travel image, past rainfall, and analysis data at the location where the deterioration, damage or buried object obtained by the analysis program P1 is detected. Must be stored in association with each other.
 図7に示す解析データは、道路を上から平面的に見たものであり、異常度の高、中、低に応じて色分けしている。
 この例では、選択されたポイントにおける176m地点から178m地点に掛けて異常度が大きいことが分かる。
The analysis data shown in FIG. 7 is a plan view of the road from above, and is color-coded according to the degree of abnormality high, medium, and low.
In this example, it can be seen that the degree of abnormality is large from the point 176 m to the point 178 m at the selected point.
 上述してきたように、走行車両から得られた道路又は橋梁の異常に関する情報を、インターネット上で特定の会員に開示することにより、異常個所の補修、改修を迅速かつ的確に行うことができる。

 
As described above, by disclosing information on road or bridge abnormality obtained from the traveling vehicle to a specific member on the Internet, the abnormal part can be repaired and repaired quickly and accurately.

Claims (3)

  1.  交通インフラストラクチャの対象面上を走行する車両に搭載され、対象面に向けて電磁波を入射し、反射してきた反射波を受信する電磁波レーダと、
     前記車両に搭載され、現在走行個所を検出するGNSS装置と、
     該電磁波レーダ及び前記GNSS装置と通信回線を介して接続され、前記電磁波レーダから反射波データ及び前記GNSS装置からの現在の位置データを受信するサーバと、を具備し、
     該サーバは、
     前記電磁波レーダから送信された反射波データを解析して対象面及び対象面下の劣化、損傷及び埋設物の有無を検出する解析プログラムと、
     地図データと、
     該解析プログラムによって劣化、損傷又は埋設物が検出された個所を前記位置データに基づいて、前記地図データ上で特定する地図データ同期プログラムと、を有しており、
     前記サーバは、劣化、損傷又は埋設物が検出された個所が特定された地図データを、特定のアクセス者のみに対してダウンロード可能にインターネット上に開示することを特徴とする交通インフラストラクチャ探査データの利用システム。
    An electromagnetic wave radar that is mounted on a vehicle that travels on a target surface of a traffic infrastructure, receives an electromagnetic wave incident on the target surface, and receives a reflected wave reflected;
    A GNSS device mounted on the vehicle for detecting the current traveling location;
    A server that is connected to the electromagnetic wave radar and the GNSS device via a communication line, and receives reflected wave data from the electromagnetic wave radar and current position data from the GNSS device;
    The server
    An analysis program for analyzing the reflected wave data transmitted from the electromagnetic wave radar to detect deterioration of the target surface and under the target surface, damage and presence of an embedded object;
    Map data,
    A map data synchronization program for specifying on the map data, based on the position data, the location where deterioration, damage or buried objects are detected by the analysis program,
    The server discloses map data in which the location where deterioration, damage or buried objects are detected is disclosed on the Internet so as to be downloadable only to a specific accessor. Usage system.
  2.  前記解析プログラムは、
     異なる日時で、同じ場所に対する反射波データを受信した場合、異なる日時での反射波データから、劣化又は損傷の進行状況を算出する進行状況算出機能を有することを特徴とする請求項1記載の交通インフラストラクチャ探査データの利用システム。
    The analysis program is
    The traffic according to claim 1, further comprising a progress calculation function for calculating the progress of deterioration or damage from the reflected wave data at different dates and times when the reflected wave data for the same place is received at different dates and times. Infrastructure exploration data utilization system.
  3.  前記車両は、運輸企業、又は公共交通機関が所有する車両であることを特徴とする請求項1又は請求項2記載の交通インフラストラクチャ探査データの利用システム。

     
    The traffic infrastructure exploration data utilization system according to claim 1 or 2, wherein the vehicle is a vehicle owned by a transportation company or public transportation.

PCT/JP2018/002681 2017-03-14 2018-01-29 Utilization system for traffic infrastructure investigation data WO2018168224A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017048184 2017-03-14
JP2017-048184 2017-03-14
JP2018003963A JP2018151375A (en) 2017-03-14 2018-01-15 Traffic infrastructure exploration data utilization system
JP2018-003963 2018-01-15

Publications (1)

Publication Number Publication Date
WO2018168224A1 true WO2018168224A1 (en) 2018-09-20

Family

ID=63523527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002681 WO2018168224A1 (en) 2017-03-14 2018-01-29 Utilization system for traffic infrastructure investigation data

Country Status (1)

Country Link
WO (1) WO2018168224A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109084A (en) * 2002-09-20 2004-04-08 Ntt Infranet Co Ltd System, method and program for cable location information control
JP2008170415A (en) * 2007-07-11 2008-07-24 Earth Watch Corp Environmental measuring system
JP2014010116A (en) * 2012-07-02 2014-01-20 Osaka Gas Co Ltd Buried object survey system
JP2015090345A (en) * 2013-11-07 2015-05-11 株式会社環境総合テクノス Three-dimensional diagnostic system for deformation beneath road surface, and three-dimensional diagnostic method for deformation beneath road surface
JP2015225234A (en) * 2014-05-28 2015-12-14 ジオ・サーチ株式会社 Hierarchical risk display system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109084A (en) * 2002-09-20 2004-04-08 Ntt Infranet Co Ltd System, method and program for cable location information control
JP2008170415A (en) * 2007-07-11 2008-07-24 Earth Watch Corp Environmental measuring system
JP2014010116A (en) * 2012-07-02 2014-01-20 Osaka Gas Co Ltd Buried object survey system
JP2015090345A (en) * 2013-11-07 2015-05-11 株式会社環境総合テクノス Three-dimensional diagnostic system for deformation beneath road surface, and three-dimensional diagnostic method for deformation beneath road surface
JP2015225234A (en) * 2014-05-28 2015-12-14 ジオ・サーチ株式会社 Hierarchical risk display system

Similar Documents

Publication Publication Date Title
US9863928B1 (en) Road condition detection system
Al-Sobky et al. Traffic density determination and its applications using smartphone
US9747794B1 (en) Method and apparatus for implementing a vehicle inspection waiver program
US20080077312A1 (en) System, Method, and Apparatus, for Mobile Radar Assisted Traffic Enforcement
FR2937431A1 (en) METHOD AND SYSTEM FOR MONITORING THE RUNNING PHASE OF AN AIRCRAFT
MX2013001605A (en) System for ensuring all vehicles are gps registered.
US10951416B2 (en) Map information management system, map information management device, and map company exclusive application data management device
CA3163351C (en) Railway management system with brake calculation and related method
Gouda et al. Automated assessment of infrastructure preparedness for autonomous vehicles
Yen et al. Cost-benefit analysis of mobile terrestrial laser scanning applications for highway infrastructure
Iqbal et al. Legal and ethical implications of GPS vulnerabilities
JP2018151375A (en) Traffic infrastructure exploration data utilization system
WO2018168224A1 (en) Utilization system for traffic infrastructure investigation data
Pasha Ambulance management system using GIS
Auberlet et al. Data collection techniques
JP2004206510A (en) Vehicle traffic system
Raza et al. GNSS-RTN Role in Transportation Applications: An Outlook
McIntosh Utilization of LiDAR technology to assess vertical clearances of civil infrastructure
Kulathintekizhakethil Transportation system performance measures using internet of things data
Staniek RCT–a tool for continuous road pavement diagnostics
Log et al. Lessons Learned From Industrial Applications of Automated Trucks for Deployment on Public Roads
Chan Monitoring and improving roadway surface conditions for safe driving environment and sustainable infrastructure.
McCullouch et al. Automated Vehicle Location (AVL) for Road Condition Reporting
Taylor et al. Applying Vehicle Tracking and Palmtop Technology to Urban Freight Surveys
Barnes et al. Roadway Weather Information System and Automatic Vehicle Location (AVL) Coordination (FHWA-OK-09-03 2212)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768202

Country of ref document: EP

Kind code of ref document: A1