WO2018154676A1 - Antenna and sector antenna - Google Patents

Antenna and sector antenna Download PDF

Info

Publication number
WO2018154676A1
WO2018154676A1 PCT/JP2017/006842 JP2017006842W WO2018154676A1 WO 2018154676 A1 WO2018154676 A1 WO 2018154676A1 JP 2017006842 W JP2017006842 W JP 2017006842W WO 2018154676 A1 WO2018154676 A1 WO 2018154676A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric member
distance
antenna
beam width
radiating element
Prior art date
Application number
PCT/JP2017/006842
Other languages
French (fr)
Japanese (ja)
Inventor
慎 水村
哲 洪
弘樹 萩原
小林 裕幸
剛 志村
林 宏行
秀晶 畠山
賢治 大久保
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to PCT/JP2017/006842 priority Critical patent/WO2018154676A1/en
Publication of WO2018154676A1 publication Critical patent/WO2018154676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device

Definitions

  • the present invention relates to an antenna and a sector antenna.
  • a mobile communication base station antenna base station antenna
  • a plurality of sector antennas that radiate radio waves for each sector set corresponding to the direction in which radio waves are radiated are used in combination.
  • an array antenna is used in which antennas each including a radiating element such as a dipole element are arranged in an array.
  • a beam control device for adjusting the horizontal azimuth angle or horizontal beam width of the mobile communication base station antenna which is configured to include a component with the drive control means for controlling the drive means.
  • Patent Document 2 includes an array antenna including a plurality of radiating elements, and a dielectric planar sheet provided in front of about half a wavelength from the radiating elements, and the dielectric planar sheet having a beam width in the azimuth direction.
  • a cellular antenna is described which is narrower than that without.
  • An object of the present invention is to provide an antenna or the like whose radiation characteristics can be adjusted in an installed state.
  • the antenna to which the present invention is applied is a radiating element, a reflector provided at a predetermined distance from the radiating element, and the radiating element on the opposite side of the radiating element.
  • a changing means for changing the distance between the radiating element and the dielectric member in the installed state In such an antenna, the dielectric member may be bent in a concave shape or a convex shape with respect to the radiating element.
  • the changing means is characterized in that the distance between the radiating element and the dielectric member is changed by moving the position of the dielectric member along a perpendicular line from the reflector toward the central portion of the radiating element. Can do.
  • the changing means may change the distance between the radiating element and the dielectric member by changing an opening angle between both end portions in the horizontal plane of the dielectric member.
  • the changing means can be characterized in that the position of the dielectric member relative to the radiating element can be changed from below in the vertical direction.
  • the sector antenna to which the present invention is applied is a radiating element, a reflecting plate provided at a predetermined distance from the radiating element, and the reflecting plate of the radiating element on the opposite side.
  • An antenna having a dielectric member provided to face the radiating element, and a changing unit that changes a distance between the radiating element and the dielectric member in the installed state, and a radome that covers the antenna.
  • FIG. 1 It is a figure which shows an example of the whole structure of the base station antenna for mobile communications to which 1st Embodiment is applied.
  • (A) is a bird's-eye view of a base station antenna
  • (b) is a figure explaining the example of installation of a base station antenna.
  • (A) is a graph in which the vertical axis represents the beam width and gain, and the horizontal axis represents the distance to the dielectric member, and (b) is a table showing the relationship between the beam width and gain and the distance to the dielectric member. . It is a figure explaining the influence which it has on the radiation characteristic by a dielectric material member. It is a figure explaining an example of a change mechanism.
  • (A) is a side view
  • (b) is a sectional view taken along line VIIIB-VIIIB in (a).
  • (A) is a side view
  • (b) is a sectional view taken along line IXB-IXB in (a).
  • (A) is a side view, and (b) is a cross-sectional view taken along line XB-XB in (a). It is a figure explaining another example of a change mechanism.
  • (A) is a side view, (b) is a sectional view taken along line XIB-XIB in (a), and (c) is another sectional view taken along line XIB-XIB in (a).
  • (A) is a case where the opening angle ⁇ is less than 180 °
  • (b) is a case where the opening angle ⁇ is more than 180 °.
  • (A) is a graph in which the vertical axis represents the beam width and gain, and the horizontal axis represents the distance to the dielectric member, and (b) is a table showing the relationship between the beam width and gain and the distance to the dielectric member.
  • (A) is a graph in which the vertical axis represents the beam width and the horizontal axis represents the opening angle of the dielectric member, and (b) is a table showing the relationship between the beam width and the opening angle of the dielectric member. It is a figure which shows the change of the beam width in a horizontal surface, and a gain at the time of changing the distance from a radiation element to a dielectric material in the dielectric material which made the opening angle 180 degrees.
  • (A) is a graph in which the vertical axis represents the beam width and gain, and the horizontal axis represents the distance to the dielectric member, and (b) is a table showing the relationship between the beam width and gain and the distance to the dielectric member. .
  • FIG. 1 is a diagram illustrating an example of an overall configuration of a mobile communication base station antenna 1 to which the first exemplary embodiment is applied.
  • FIG. 1A is a bird's-eye view of the base station antenna 1
  • FIG. 1B is a diagram illustrating an installation example of the base station antenna 1.
  • the base station antenna 1 includes a plurality of sector antennas 10-1 to 10-3 held by a steel tower 20, for example.
  • a range in which a radio wave (beam) from the base station antenna 1 reaches is assumed to be a cell 2.
  • a plurality of sectors 3-1 to 3-3 are configured by dividing the cell 2 by an angle in the horizontal direction (in the horizontal plane) with the base station antenna 1 as the center.
  • each sector antenna 10 is arranged so that the direction of the main lobe 11 faces a predetermined sector 3.
  • each sector antenna 10 is connected to a cable 31 to which a transmission / reception signal for radiating a beam is supplied and a cable 32 to which a control signal for driving a phase shifter described later is supplied.
  • These cables 31 and 32 are connected to a radio device (not shown) for generating a radio signal provided in a base station (not shown) and a control device (not shown) for controlling a phase shifter and the like. Yes.
  • a coaxial cable is usually used as the cable 31 to which the transmission / reception signal is supplied.
  • the base station antenna 1 shown in FIG. 1 is divided into three sectors 3. However, in consideration of interference with adjacent sectors 3, the sector antenna 10 has a beam width of 60 ° in a horizontal plane. Composed. Note that the number of sectors 3 (the number of sectors) may be six or other numbers. When the number of sectors is 6, a sector antenna having a beam width of 45 ° may be used.
  • the sector antenna 10 is configured to have a predetermined beam width in the horizontal plane (azimuth angle direction).
  • the beam width is represented by an angle (azimuth angle) in a horizontal plane where the gain is reduced by 3 dB from the maximum value. If the beams overlap between the sectors 3, interference occurs and communication quality deteriorates such as a decrease in communication speed. Therefore, the beam width is narrowed (thinned) so that the beams do not overlap. Conversely, if the beams are not overlapped between the sectors 3, there may be a range where the beams do not reach. For this reason, it may be good to set so that a beam may overlap. The range that the beam reaches is affected by the environment in which the buildings and mountains are installed.
  • the radiation characteristics such as the beam width can be adjusted for each sector antenna 10 in the installed state.
  • the radiation characteristic includes the case where the beam direction, the intensity of the side lobe, and the like are adjusted.
  • FIG. 2 is a diagram illustrating an example of the configuration of the sector antenna 10 to which the first exemplary embodiment is applied.
  • the sector antenna 10 includes an array antenna 40 in which a plurality of antenna units 100 are arranged, a dielectric member 50 provided so that the distance from the array antenna 40 can be changed, and an array antenna 40 (specifically, a dipole described later).
  • the change mechanism 60 which changes the distance of the element 110) and the dielectric material member 50, and the radome 80 which covers and accommodates these are provided.
  • the radome 80 is indicated by a one-dot chain line and the dielectric member 50 is indicated by a broken line so that the antenna unit 100 can be seen.
  • the change mechanism 60 is an example of a change unit.
  • the antenna unit 100 constituting the array antenna 40 transmits / receives ⁇ 45 ° polarized radio waves to / from a dipole element 111 that transmits / receives + 45 ° polarized radio waves in the vertical direction (perpendicular to the ground). And a dipole element 112. In the case where the dipole element 111 and the dipole element 112 are not distinguished from each other, they are referred to as a dipole element 110.
  • the dipole element 110 is an example of a radiating element.
  • the antenna unit 100 includes a reflector 120 provided at a predetermined distance from the dipole elements 111 and 112.
  • the dipole element 111 and the dipole element 112 are combined so that two dipole elements having the same shape intersect at 90 °.
  • a patch element may be used instead of the dipole element 110 (patch antenna).
  • the reflection plate 120 has four sides bent toward the dipole element 110 side. Note that the four sides of the reflector 120 need not be bent. Moreover, the reflecting plate 120 may be connected between the antenna units 100.
  • the radiating element of the antenna unit 100 radiates polarized waves in the direction of ⁇ 45 ° with respect to the vertical direction.
  • a ⁇ 45 ° polarization sharing antenna an antenna unit for horizontal polarization, vertical polarization, or horizontal / vertical polarization may be used.
  • the dielectric member 50 is a plate-like member made of a resin having a relative dielectric constant ⁇ r of 6.4, as will be described later.
  • the dielectric member 50 is provided to face the dipole element 110 on the side opposite to the reflecting plate 120 (opposite side).
  • the dielectric member 50 has a semi-cylindrical shape bent with a predetermined radius of curvature in the horizontal direction with the vertical direction as an axis.
  • the dielectric member 50 is bent so as to approach the dipole element 110 side as the distance from the vertical line standing at the center of the dipole element 110 from the reflecting plate 120 increases. That is, the dielectric member 50 is bent in a convex shape from the dipole element 110 side.
  • the dielectric member 50 is provided such that the distance from the dipole element 110 can be changed by the changing mechanism 60.
  • the dielectric member 50 as a whole moves (shifts) in a direction (forward direction) away from the dipole element 110 (forward direction).
  • the change mechanism 60 is connected to the dielectric member 50 and moves the dielectric member 50 in the front-rear direction to change the distance between the dipole element 110 and the dielectric member 50.
  • the changing mechanism 60 will be described later.
  • the radome 80 is made of a resin having high radio wave permeability.
  • the portion including the array antenna 40, the dielectric member 50, and the changing mechanism 60 is an antenna, but a single antenna unit 100 may be used instead of the array antenna 40.
  • the antenna housed in the radome 80 is referred to as a sector antenna 10.
  • FIG. 3 is a cross-sectional view of the array antenna 40 and the dielectric member 50 in the horizontal plane.
  • the wavelength D of the radio wave in free space is ⁇
  • the distance D between the reflector 120 and the dipole element 110 is set to about ⁇ / 4.
  • the lengths of the dipole elements 111 and 112 are set to about 1 ⁇ 2 ⁇ .
  • the horizontal width W of the dipole element 110 is about ⁇ 2 ⁇ / 4
  • the width RefW of the reflector 120 is about 0.9 ⁇
  • the curvature radius R of the dielectric member 50 is about 0.6 ⁇ .
  • the distance H is from the center of the dipole element 110 to the dielectric member 50.
  • the dielectric member 50 has a thickness t.
  • the dielectric constant epsilon r is the dielectric member 50 of 6.4
  • the relative dielectric constant epsilon r is described by taking the dielectric member 50 of 4.0 as an example.
  • a material of the dielectric member 50 having a relative dielectric constant ⁇ r of 6.4 for example, there is a polyester resin.
  • the dielectric member 50 having a relative dielectric constant ⁇ r of 4.0 includes, for example, an epoxy resin filled with silica or glass. Other relative permittivity ⁇ r may be used. In this case, a material corresponding to the relative permittivity ⁇ r may be selected as appropriate.
  • FIG. 4 is a diagram showing the directivity characteristics in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed.
  • This directivity characteristic was obtained by simulation in the 2 GHz band with the relative permittivity ⁇ r of the dielectric member 50 being 6.4 and the thickness t being 5 mm.
  • the beam width becomes narrower as the distance H increases from 0.50 ⁇ to 0.62 ⁇ . That is, by changing the distance H, the radiation characteristics of the sector antenna 10 such as the beam width can be changed.
  • FIG. 5 is a diagram showing changes in the beam width and gain in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed, and in particular, the thickness t of the dielectric member 50. Shows the change in beam width and gain due to. 5A is a graph in which the vertical axis indicates the beam width (°) and gain (dBi), and the horizontal axis indicates the distance H to the dielectric member 50.
  • FIG. 5B shows the beam width (°) and gain. It is a table
  • the beam width (°) and gain (dBi) were obtained by simulation when the thickness t of the dielectric member 50 was 5 mm and the relative dielectric constant ⁇ r was 6.4 and 4.0. As shown in FIG. 5, when the dielectric member 50 is not provided (no dielectric member), the beam width is 64.1 ° and the gain is 15.0 dBi.
  • the beam width is 65.7 wider than when the dielectric member 50 is not provided (no dielectric member). °.
  • the distance H is 0.53 ⁇ , it is 63.3 °, which is narrower than when the dielectric member 50 is not provided (no dielectric member).
  • the beam width continuously decreases from 65.7 ° to 57.9 °. That is, when the distance H is 0.50 ⁇ , the beam width is wider than when the dielectric member 50 is not provided (no dielectric member).
  • the beam width becomes narrower as the distance H increases.
  • the amount of change in beam width when the distance H is between 0.50 ⁇ and 0.62 ⁇ is 7.8 °.
  • the gain is 15.0 dBi, which is the same as when the dielectric member 50 is not provided (no dielectric member).
  • the amount of change in gain when the distance H is between 0.50 ⁇ and 0.62 ⁇ is ⁇ 0.5 dBi. This is because the gain increases as the beam width becomes narrower.
  • the beam width is 65.6 wider than when the dielectric member 50 is not provided (no dielectric member). °.
  • the beam width is narrower when the distance H is 0.53 ⁇ , which is 64.2 °, which is wider than when the dielectric member 50 is not provided (no dielectric member).
  • the beam width is 62.8 ° narrower than when the dielectric member 50 is not provided when the distance H is 0.56 ⁇ .
  • the beam width continuously decreases from 65.6 ° to 59.8 °.
  • the amount of change between the distance H between 0.50 ⁇ and 0.62 ⁇ is 5.8 °.
  • the gain is 15.0 dBi, which is the same as when the dielectric member 50 is not provided (no dielectric member).
  • the distance H increases from 0.50 ⁇ to 0.62 ⁇ , it continuously increases from 15.0 dBi to 15.4 dBi.
  • the amount of change between the distance H between 0.50 ⁇ and 0.62 ⁇ is ⁇ 0.4 dBi.
  • the provision of the dielectric member 50 makes the beam width wider or narrower than when the dielectric member 50 is not provided.
  • the dielectric member 50 is provided, if the distance H to the dielectric member 50 is increased, the beam width is continuously narrowed.
  • the gain increases continuously as the distance H to the dielectric member 50 is increased.
  • the relative dielectric constant ⁇ r of the dielectric member 50 is larger, the amount of change of the beam width and gain with respect to the distance H is larger.
  • FIG. 6 is a diagram showing changes in the beam width and gain in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed.
  • 6A is a graph in which the vertical axis indicates the beam width (°) and gain (dBi), and the horizontal axis indicates the distance H to the dielectric member 50.
  • FIG. 6B shows the beam width (°) and gain. It is a table
  • FIG. The beam width (°) and gain (dBi) were obtained by simulation when the relative permittivity ⁇ r was 6.4 and the thickness t of the dielectric member 50 was 5 mm and 3 mm.
  • the beam width is 64.1 ° and the gain is 15.0 dBi.
  • the thickness t of the dielectric member 50 is 5 mm, it is the same as the case where the relative dielectric constant ⁇ r shown in FIGS. 5A and 5B is 6.4.
  • the beam width is 65.9 ° which is wider than the case where the dielectric member 50 is not provided when the distance H to the dielectric member 50 is 0.50 ⁇ .
  • the beam width is narrower when the distance H is 0.53 ⁇ , but is 64.5 ° which is wider than when the dielectric member 50 is not provided.
  • the beam width continuously decreases from 65.9 ° to 59.7 °.
  • the amount of change between the distance H between 0.50 ⁇ and 0.62 ⁇ is 6.2 °.
  • the gain is 15.0 dBi when the distance H is 0.50 ⁇ , which is the same as when the dielectric member 50 is not provided (no dielectric member).
  • the distance H increases from 0.50 ⁇ to 0.62 ⁇ , it continuously increases from 15.0 dBi to 15.4 dBi.
  • the amount of change between the distance H between 0.50 ⁇ and 0.62 ⁇ is ⁇ 0.4 dBi.
  • the beam width and gain which are the radiation characteristics of the antenna are changed.
  • the base station antenna 1 is considered in consideration of surrounding terrain and building conditions, the communication method to be used, the beam width in the horizontal plane of the adjacent sector antenna 10, and the like.
  • the radiation characteristics of the base station antenna 1 can be adjusted to suit the installed environment.
  • FIG. 7 is a diagram for explaining the influence of the dielectric member 50 on the radiation characteristics.
  • the radio wave radiated from the dipole element 110 travels in various paths.
  • the radio wave ⁇ traveling forward passes through the dielectric member 50 as it is.
  • the radio wave ⁇ traveling obliquely forward is refracted when passing through the dielectric member 50 and is reflected at the interface between the dielectric member 50 and air.
  • the radio wave ⁇ traveling backward is reflected by the reflector 120 and proceeds to the dielectric member 50.
  • the light is refracted when passing through the dielectric member 50 and is reflected at the interface between the dielectric member 50 and air. Further, the radio wave ⁇ traveling backward is reflected by the reflecting plate 120 and diffracted at the edge (end) of the dielectric member 50. Further, the radio wave ⁇ traveling backward is reflected by the reflecting plate 120 and passes between the reflecting plate 120 and the dielectric member 50.
  • the radiation characteristic is the sum of these radio waves.
  • the radiation characteristic is changed.
  • FIG. 8 is a diagram for explaining an example of the changing mechanism 60.
  • 8A is a side view
  • FIG. 8B is a cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A.
  • the changing mechanism 60 includes a rotating rod 61 provided so as to penetrate the reflecting plate 120 from the central portion of the dielectric member 50.
  • the rotating rod 61 and the dielectric member 50 are connected so that the rotating rod 61 rotates freely regardless of the dielectric member 50 and moves integrally in the front-rear direction.
  • the rotating rod 61 is provided with, for example, a male screw 61 a at a portion that penetrates the radome 80. Further, the radome 80 is provided with a female screw 80a at a portion through which the rotating rod 61 passes. The male screw 61a and the female screw 80a are combined. And the knob 61b is provided in the outer part which penetrated the radome 80 of the rotating rod 61. As shown in FIG.
  • the guide rod 62 provided so as to penetrate the reflector 120 from the dielectric member 50, like the rotary rod 61. May be provided.
  • the guide member 62 moves (translates) in contact with the hole through which the guide rod 62 provided in the reflector 120 passes in accordance with the movement of the rotating rod 61, so that the dielectric member 50 can be moved stably.
  • the knob 61b at the other end of the rotating rod 61 may be changed to a motor. Then, a signal for rotating the motor may be transmitted from a base station or the like. By remote control from the base station, the distance between the dipole element 110 and the dielectric member 50 can be changed, that is, the radiation characteristic can be adjusted.
  • a signal for rotating the motor may be incorporated as an extended function in an electric remote tilt unit (RET) that remotely controls a phase shifter that adjusts the tilt angle of a radio wave (beam).
  • RET electric remote tilt unit
  • Beam radio wave
  • FIG. 9 is a diagram for explaining another example of the changing mechanism 60.
  • 9A is a side view
  • FIG. 9B is a cross-sectional view taken along line IXB-IXB in FIG. 9A.
  • the changing mechanism 60 includes a support bar 63 provided so as to penetrate the reflector 120 from the center of the dielectric member 50, and a rotating bar 64 that moves the support bar 63 in the front-rear direction.
  • One end of the support bar 63 is fixed to the dielectric member 50.
  • a rack 63 a that is geared in the longitudinal direction of the support bar 63 is provided at a portion that contacts the back side of the reflection plate 120.
  • a pinion (gear) 64a is provided at one end of the rotating rod 64 so as to be combined with the rack 63a.
  • the other end of the rotating rod 64 penetrates the bottom surface (lower surface) of the radome 80 and protrudes outside the sector antenna 10.
  • the hole through which the rotating rod 64 penetrates the bottom surface of the radome 80 is configured to rotate smoothly (slidably rotate) while the rotating rod 64 is in contact.
  • the knob 64b is provided at the other end of the rotating rod 64, and the pinion 64a rotates by turning the knob 64b.
  • the rotational motion of the pinion 64a is converted into a translational motion by the rack 63a, and the position of the dielectric member 50 with respect to the dipole element 110 is moved in the front-rear direction.
  • a guide provided so as to penetrate the reflector 120 from the dielectric member 50 in the same manner as the support bar 63.
  • a rod 65 may be provided. The movement of the dielectric member 50 is stabilized by moving (translating) the guide bar 65 in contact with the hole through which the guide bar 65 provided in the reflecting plate 120 passes in accordance with the movement of the support bar 63.
  • the operation unit (knob 64b) of the changing mechanism 60 is provided below the sector antenna 10, the radiation characteristics can be easily adjusted after the base station antenna 1 (sector antenna 10) is installed. Become.
  • the knob 64b at the other end of the rotating rod 64 may be changed to a motor. Then, a signal for rotating the motor may be transmitted from a base station or the like. By remote control from the base station, the distance between the dipole element 110 and the dielectric member 50 can be changed, that is, the radiation characteristic can be adjusted. In addition, by incorporating a signal for rotating the motor as an extended function of RET, it is possible to adjust the radiation characteristics as well as tilt control.
  • FIG. 10 is a diagram for explaining yet another example of the change mechanism 60.
  • 10A is a side view
  • FIG. 10B is a cross-sectional view taken along line XB-XB in FIG. 10A.
  • the changing mechanism 60 includes a rack 50a, 50b provided on the dielectric member 50, a rotating rod 66 having a pinion 66a combined with the rack 50a, and a pinion 67a combined with the rack 50b.
  • a rotating rod 67 having The racks 50a and 50b are provided in the center part in the vertical direction of the dielectric member 50 at a portion obtained by extending both ends in the horizontal plane.
  • the racks 50a and 50b are provided in parallel in the horizontal plane.
  • the rotating rod 66 is provided with a pinion 66a combined with the rack 50a at one end, and the other end passes through the bottom surface (lower surface) of the radome 80.
  • a knob 66 b is provided at the other end of the rotating rod 66.
  • the hole through which the rotating rod 66 penetrates the bottom surface of the radome 80 is configured to rotate smoothly (slidably rotate) while the rotating rod 66 is in contact.
  • the rotating rod 67 is provided with a pinion 67 a combined with the rack 50 b at one end, and the other end penetrates the bottom surface of the radome 80.
  • the hole through which the rotating rod 67 penetrates the bottom surface of the radome 80 is configured to rotate smoothly (slidably rotate) while the rotating rod 67 is in contact.
  • the operation unit (knobs 66b and 67b) of the changing mechanism 60 is provided below the sector antenna 10, after the base station antenna 1 (sector antenna 10) is installed, the radiation characteristics can be adjusted in the installed state. It becomes possible.
  • knobs 66b and 67b at the other end of the rotating rod 66 may be changed to motors. Then, a signal for rotating the motor may be transmitted from a base station or the like. By remote control from the base station, the distance between the dipole element 110 and the dielectric member 50 can be changed, that is, the radiation characteristic can be adjusted. In addition, by incorporating a signal for rotating the motor as an extended function of RET, it is possible to adjust the radiation characteristics as well as tilt control.
  • FIG. 11 is a diagram illustrating still another example of the changing mechanism 60.
  • 11A is a side view
  • FIG. 11B is a cross-sectional view taken along line XIB-XIB in FIG. 11A
  • FIG. 11C is taken along line XIB-XIB in FIG. It is other sectional drawing of.
  • the changing mechanism 60 includes guide pins 50c and 50d extending vertically from both ends in the vertical direction of the dielectric member 50, and guide holes 68a into which the guide pins 50c and 50d are inserted. And guide plates 68 and 69 provided with 69a.
  • the guide plate 68 is provided on the lower end side in the radome 80, and the guide plate 69 is provided on the upper end side in the radome 80.
  • One end of a rotating rod 70 provided on the bottom surface (lower surface) of the radome 80 is attached to the center of the guide plate 68.
  • a knob 70 a is provided at the other end of the rotating rod 70.
  • the guide plate 68 and the guide plate 69 are fixed so as to rotate together by rotating the knob 70a of the rotating rod 70.
  • the guide plates 68 and 69 are provided with arcuate guide holes 68a and 69a.
  • the guide holes 68a and 69a have the smallest distance H from the dipole element 110 to the dielectric member 50 when the guide pins 50c and 50d come to one end (see FIG. 11B), and the other end When the guide pins 50c and 50d come, the distance H from the dipole element 110 to the dielectric member 50 is the largest (see FIG. 11C).
  • the guide plates 68 and 69 are rotated.
  • the guide holes 68a and 69a move.
  • the guide pins 50c and 50d inserted into the guide holes 68a and 69a move along the guide holes 68a and 69a.
  • the position of the dielectric member 50 moves forward or backward relative to the dipole element 110.
  • the operation unit (knob 70a) of the changing mechanism 60 is provided below the sector antenna 10, the radiation characteristics can be easily adjusted after the base station antenna 1 (sector antenna 10) is installed. Become.
  • the knob 70a at the other end of the rotating rod 70 may be changed to a motor. Then, a signal for rotating the motor may be transmitted from a base station or the like. By remote control from the base station, the distance between the dipole element 110 and the dielectric member 50 can be changed, that is, the radiation characteristic can be adjusted. In addition, by incorporating a signal for rotating the motor as an extended function of RET, it is possible to adjust the radiation characteristics as well as tilt control.
  • the dielectric member 50 is formed in a cylindrical shape.
  • the dielectric member 50 is configured by connecting a plurality of dielectric plates using a plurality of hinges in a horizontal plane.
  • the shape of the body member 50 may be pseudo-cylindrical. If the radius of curvature of the dielectric member 50 is set in the initial design stage and the distance H of the dielectric member 50 having the preset radius of curvature is changed using the changing mechanism 60 shown in FIGS. Good.
  • the dielectric member 50 has a semi-cylindrical shape.
  • the dielectric member 50 is bent in a mountain shape in the horizontal plane.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts are described.
  • FIG. 12 is a diagram illustrating an example of the configuration of the sector antenna 10 to which the second exemplary embodiment is applied.
  • a portion facing the dipole element 110 is bent in a mountain shape.
  • FIG. 12 shows a case where an opening angle ⁇ described later is less than 180 °.
  • the dielectric member 50 has a portion that intersects the perpendicular line standing from the reflecting plate 120 at the center of the dipole element 110 at a distance farthest from the dipole element 110, and is closer to the distance in the horizontal direction in the horizontal plane. Become. That is, the dielectric member 50 is bent in a convex shape from the dipole element 110 side. The reverse is also possible. In this case, the dielectric member 50 is bent in a concave shape from the dipole element 110 side.
  • FIG. 13 is a cross-sectional view of the array antenna 40 and the dielectric member 50 in the horizontal plane.
  • FIG. 13A shows a case where the opening angle ⁇ is less than 180 °
  • FIG. 13B shows a case where the opening angle ⁇ exceeds 180 °.
  • the wavelength of the radio wave in the free space is ⁇
  • the distance D between the reflector 120 and the dipole element 110 and the width W of the dipole element 110 in the horizontal plane are the same as in the first embodiment.
  • the distance H is from the dipole element 110 to the central portion of the mountain shape of the dielectric member 50, and the angle of the mountain shape of the dielectric member 50 is the opening angle ⁇ .
  • FIG. 14 is a diagram showing changes in the beam width and gain in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed.
  • 14A is a graph in which the vertical axis indicates the beam width (°) and gain (dBi), and the horizontal axis indicates the distance H to the dielectric member 50.
  • FIG. 14B shows the beam width (°) and gain. It is a table
  • the beam width (°) and gain (dBi) were obtained by simulation with the thickness t of the dielectric member 50 being 5 mm, the opening angle ⁇ being 135 °, and the relative dielectric constant ⁇ r being 6.4. As shown in FIG. 14, when the dielectric member 50 is not provided (no dielectric member), the beam width is 64.1 ° and the gain is 15.0 dBi.
  • the beam width is narrower when the dielectric member 50 is provided than when the dielectric member 50 is not provided.
  • the beam width continuously decreases from 63.2 ° to 53.7 ° as the distance H to the dielectric member 50 increases from 0.50 ⁇ to 0.62 ⁇ .
  • the amount of change in beam width when the distance H is between 0.50 ⁇ and 0.62 ⁇ is 9.5 °.
  • the gain becomes higher when the dielectric member 50 is provided than when the dielectric member 50 is not provided.
  • the gain increases continuously from 15.2 dBi to 15.9 dBi as the distance H to the dielectric member 50 increases from 0.50 ⁇ to 0.62 ⁇ .
  • the amount of change in gain when the distance H is between 0.50 ⁇ and 0.62 ⁇ is ⁇ 0.7 dBi.
  • the beam width becomes narrower and the gain becomes higher than when the dielectric member 50 is not provided.
  • the beam width decreases and the gain increases.
  • the distance H from the dipole element 110 to the dielectric member 50 can be changed even if the mountain-shaped dielectric member 50 is provided instead of the semi-cylindrical dielectric member 50 described in the first embodiment.
  • the radiation characteristic of the sector antenna 10 is adjusted. Accordingly, the opening angle ⁇ of the dielectric member 50 is set in the initial design stage, and the dielectric member 50 having the preset opening angle ⁇ is set to the distance H using the changing mechanism 60 shown in FIGS. Can be changed.
  • FIG. 15 is a diagram showing a change in the beam width in the horizontal plane when the opening angle ⁇ of the dielectric member 50 is changed.
  • 15A is a graph in which the vertical axis indicates the beam width (°) and the horizontal axis indicates the opening angle ( ⁇ ) of the dielectric member 50.
  • FIG. 15B shows the beam width (°) and the dielectric member 50. It is a table
  • the beam width (°) was obtained by simulation with the thickness t of the dielectric member 50 being 5 mm and the relative dielectric constant ⁇ r being 6.4. As shown in FIG. 15, when the opening angle ⁇ is 90 ° and 120 °, the beam width is 64.8 °.
  • the beam width decreases from 61.5 ° to 49.5 °. That is, with the opening angle ⁇ of 120 ° or more, the beam width is continuously narrowed as the opening angle ⁇ increases, with the case of a plane having an opening angle ⁇ of 180 °.
  • the beam width which is the radiation characteristic of the sector antenna 10 is changed by disposing the dielectric member 50 in front of the dipole element 110 and changing the opening angle ⁇ with respect to the dipole element 110.
  • changing the opening angle ⁇ changes the distance between the dielectric member 50 and the dipole element 110.
  • the gain also changes as the beam width changes. Therefore, for example, two dielectric plates are connected by a hinge to form the dielectric member 50 so that the opening angle ⁇ can be changed, the position of the hinge is fixed, and both ends of the dielectric member 50 are fixed. What is necessary is just to change the distance of (the edge part which cross
  • the beam width is adjusted for each sector antenna 10 constituting the base station antenna 1 in the installed state so that it is suitable for the installed environment.
  • the radiation characteristics of the base station antenna 1 (sector antenna 10) can be adjusted.
  • the beam width and the gain can also be changed by changing the radius of curvature of the semicylindrical dielectric member 50.
  • a dielectric member 50 is configured by connecting a plurality of dielectric plates using a plurality of hinges in a horizontal plane, and the shape of the dielectric member 50 is made a pseudo-cylindrical shape and adjacent to each other.
  • the curvature radius is changed by adjusting the angle between the dielectric plates to be hinged, and the distance between the both end portions (end portions intersecting the horizontal plane) of the dielectric member 50 and the dipole element 110 may be changed. This can be dealt with by changing the changing mechanism 60 shown in FIGS.
  • FIG. 16 shows changes in the beam width and gain in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed in the dielectric member 50 having an opening angle ⁇ of 180 °.
  • FIG. 16A is a graph in which the vertical axis indicates the beam width (°) and gain (dBi), and the horizontal axis indicates the distance H to the dielectric member 50.
  • FIG. 16B shows the beam width (°) and gain. It is a table
  • the beam width (°) and gain (dBi) were obtained by simulation, assuming that the thickness t of the dielectric member 50 was 5 mm and the relative dielectric constant ⁇ r was 6.4.
  • the left axis is the beam width (°), and the right axis is the gain (dBi). Since the opening angle ⁇ is 180 °, the flat dielectric member 50 is disposed on the front surface of the dipole element 110. As shown in FIG. 16, when the dielectric member 50 is not provided (no dielectric member), the beam width is 64.1 ° and the gain is 15.0 dBi.
  • the beam width is narrower when the dielectric member 50 is provided than when the dielectric member 50 is not provided.
  • the beam width is 60.0 ° which is the maximum value when the distance H is 0.53 ⁇ , and the beam width becomes narrow regardless of whether the distance H is smaller or larger.
  • the amount of change in beam width when the distance H is between 0.50 ⁇ and 0.62 ⁇ is 12.0 °.
  • the gain becomes higher when the dielectric member 50 is provided than when the dielectric member 50 is not provided. Then, the gain becomes the minimum value of 15.3 dBi when the distance H to the dielectric member 50 is 0.50 ⁇ and 0.53 ⁇ , and as the distance H increases from 0.56 ⁇ to 0.62 ⁇ , 15. It continuously increases from 5 dBi to 16.2 dBi.
  • the amount of change in gain when the distance H is between 0.50 ⁇ and 0.62 ⁇ is ⁇ 0.9 dBi.
  • the dielectric member 50 shown in the first embodiment has a semi-cylindrical shape (see FIGS. 5 and 6) or when the dielectric member 50 shown in the second embodiment has a mountain shape ( In the case of FIGS. 14 and 15), the change in beam width is continuous compared to the case where the dielectric member 50 is flat, and it is easy to use for adjusting the radiation characteristics.
  • the dielectric member 50 is moved with respect to the dipole element 110, but the dipole element 110 may be moved with respect to the dielectric member 50.
  • the dipole element 110 that transmits and receives radio waves in the frequency band near 2 GHz has been described. The same applies to radio waves in other frequency bands.
  • SYMBOLS 1 Base station antenna, 2 ... Cell, 3-1, 3-1 to 3-6 ... Sector, 10, 10-1 to 10-6 ... Sector antenna, 11 ... Main lobe, 20 ... Steel tower, 40 ... Array antenna, 50 ... Dielectric member, 60 ... Change mechanism, 80 ... Radome, 100 ... Antenna unit, 110, 111, 112 ... Dipole element, 120 ... Reflector

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

This antenna is provided with: a dipole element 110; a reflecting plate 120 that is provided at a predetermined distance from the dipole element 110; a dielectric member 50 that is provided with respect to the dipole element 110, said dielectric member being on the dipole element 110 side reverse to the reflecting plate 120; and a changing mechanism 60 that changes, in a state wherein the antenna is installed, the distance between the dipole element 110 and the dielectric member 50.

Description

アンテナ及びセクタアンテナAntenna and sector antenna
 本発明は、アンテナ及びセクタアンテナに関する。 The present invention relates to an antenna and a sector antenna.
 移動体通信の基地局用のアンテナ(基地局アンテナ)には、電波が放射される方向に対応して設定されたセクタ毎に電波を放射するセクタアンテナが複数組み合わせて用いられている。セクタアンテナには、ダイポール素子などの放射素子を備えるアンテナをアレイ状に並べたアレイアンテナが用いられている。 As a mobile communication base station antenna (base station antenna), a plurality of sector antennas that radiate radio waves for each sector set corresponding to the direction in which radio waves are radiated are used in combination. As the sector antenna, an array antenna is used in which antennas each including a radiating element such as a dipole element are arranged in an array.
 特許文献1には、少なくとも1枚以上のアンテナ反射板と、前記アンテナ反射板を回転させるための回転手段と、前記回転手段を駆動させるための複数の駆動手段と、外部からの制御信号に応じて前記駆動手段を制御するための駆動制御手段との構成要素を有して構成された、移動通信基地局アンテナの水平方位角または水平ビーム幅を調整するためのビーム制御装置が記載されている。 According to Patent Document 1, at least one antenna reflector, rotation means for rotating the antenna reflector, a plurality of drive means for driving the rotation means, and a control signal from the outside And a beam control device for adjusting the horizontal azimuth angle or horizontal beam width of the mobile communication base station antenna, which is configured to include a component with the drive control means for controlling the drive means. .
 特許文献2には、複数の放射素子を備えたアレイアンテナと、放射素子から約半波長の前面に設けられた誘電性の平面シートとを備え、方位角方向におけるビーム幅を誘電性の平面シートを備えない場合より狭くしたセルラアンテナが記載されている。 Patent Document 2 includes an array antenna including a plurality of radiating elements, and a dielectric planar sheet provided in front of about half a wavelength from the radiating elements, and the dielectric planar sheet having a beam width in the azimuth direction. A cellular antenna is described which is narrower than that without.
特開2005-184769号公報JP 2005-184769 A 国際公開第2016/081515号International Publication No. 2016/081515
 ところで、移動体通信の基地局用のセクタアンテナでは、設置された状態において、設置場所や隣接するセクタとの関係などにおいて、ビーム幅などの放射特性が調整できることが求められることがある。これは、周囲の地形や建物の状況、使用する通信方式、隣接するセクタアンテナの水平面内におけるビーム幅などにより、最適なビーム幅が異なるためである。
 本発明の目的は、設置された状態において、放射特性が調整できるアンテナ等を提供することにある。
By the way, in the case of a sector antenna for a mobile communication base station, it is sometimes required that the radiation characteristics such as the beam width can be adjusted in the installed state and the relationship with the adjacent sector. This is because the optimum beam width differs depending on the surrounding terrain and building conditions, the communication method to be used, the beam width in the horizontal plane of the adjacent sector antenna, and the like.
An object of the present invention is to provide an antenna or the like whose radiation characteristics can be adjusted in an installed state.
 かかる目的のもと、本発明が適用されるアンテナは、放射素子と、放射素子から予め定められた距離に設けられた反射板と、放射素子の反射板とは逆側に、放射素子に対向して設けられた誘電体部材と、設置された状態において、放射素子と誘電体部材との距離を変更する変更手段とを備える。
 このようなアンテナにおいて、誘電体部材は、放射素子に対して凹状または凸状に屈曲していることを特徴とすることができる。
 また、変更手段は、反射板から放射素子の中央部に向かう垂線に沿って、誘電体部材の位置を移動させることで、放射素子と誘電体部材との距離を変更することを特徴とすることができる。
 さらに、変更手段は、誘電体部材の水平面内における両端部間の開き角を変更することで、放射素子と誘電体部材との距離を変更することを特徴としてもよい。
 そして、変更手段は、誘電体部材の放射素子に対する位置を鉛直方向下方から変更できるように構成されていることを特徴とすることができる。
For this purpose, the antenna to which the present invention is applied is a radiating element, a reflector provided at a predetermined distance from the radiating element, and the radiating element on the opposite side of the radiating element. And a changing means for changing the distance between the radiating element and the dielectric member in the installed state.
In such an antenna, the dielectric member may be bent in a concave shape or a convex shape with respect to the radiating element.
Further, the changing means is characterized in that the distance between the radiating element and the dielectric member is changed by moving the position of the dielectric member along a perpendicular line from the reflector toward the central portion of the radiating element. Can do.
Further, the changing means may change the distance between the radiating element and the dielectric member by changing an opening angle between both end portions in the horizontal plane of the dielectric member.
The changing means can be characterized in that the position of the dielectric member relative to the radiating element can be changed from below in the vertical direction.
 また、他の観点から捉えると、本発明が適用されるセクタアンテナは、放射素子と、放射素子から予め定められた距離に設けられた反射板と、放射素子の反射板とは逆側に、放射素子に対向して設けられた誘電体部材と、設置された状態において、放射素子と誘電体部材との距離を変更する変更手段と、を有するアンテナと、アンテナを覆うレドームとを備える。 From another viewpoint, the sector antenna to which the present invention is applied is a radiating element, a reflecting plate provided at a predetermined distance from the radiating element, and the reflecting plate of the radiating element on the opposite side. An antenna having a dielectric member provided to face the radiating element, and a changing unit that changes a distance between the radiating element and the dielectric member in the installed state, and a radome that covers the antenna.
 本発明によれば、設置された状態において、放射特性が調整できるアンテナ等を提供できる。 According to the present invention, it is possible to provide an antenna or the like whose radiation characteristics can be adjusted in the installed state.
第1の実施の形態が適用される移動通信用の基地局アンテナの全体構成の一例を示す図である。(a)は、基地局アンテナの鳥瞰図であり、(b)は、基地局アンテナの設置例を説明する図である。It is a figure which shows an example of the whole structure of the base station antenna for mobile communications to which 1st Embodiment is applied. (A) is a bird's-eye view of a base station antenna, (b) is a figure explaining the example of installation of a base station antenna. 第1の実施の形態が適用されるセクタアンテナの構成の一例を示す図である。It is a figure which shows an example of a structure of the sector antenna to which 1st Embodiment is applied. アレイアンテナと誘電体部材との水平面内の断面図である。It is sectional drawing in the horizontal surface of an array antenna and a dielectric material member. 放射素子から誘電体部材までの距離を変化させた場合の水平面内における指向特性を示す図である。It is a figure which shows the directional characteristic in the horizontal surface at the time of changing the distance from a radiation element to a dielectric material member. 放射素子から誘電体部材までの距離を変化させた場合の水平面内のビーム幅及び利得の変化を示す図であり、特に誘電体部材の厚さによるビーム幅及び利得の変化を示している。(a)は、縦軸をビーム幅及び利得、横軸を誘電体部材までの距離としたグラフ、(b)は、ビーム幅及び利得と誘電体部材までの距離との関係を示す表である。It is a figure which shows the change of the beam width and gain in a horizontal surface at the time of changing the distance from a radiation | emission element to a dielectric material, and has shown the change of the beam width and gain by the thickness of a dielectric material especially. (A) is a graph in which the vertical axis represents the beam width and gain, and the horizontal axis represents the distance to the dielectric member, and (b) is a table showing the relationship between the beam width and gain and the distance to the dielectric member. . 放射素子から誘電体部材までの距離を変化させた場合の水平面内のビーム幅及び利得の変化を示す図である。(a)は、縦軸をビーム幅及び利得、横軸を誘電体部材までの距離としたグラフ、(b)は、ビーム幅及び利得と誘電体部材までの距離との関係を示す表である。It is a figure which shows the change of the beam width and gain in a horizontal surface at the time of changing the distance from a radiation element to a dielectric material member. (A) is a graph in which the vertical axis represents the beam width and gain, and the horizontal axis represents the distance to the dielectric member, and (b) is a table showing the relationship between the beam width and gain and the distance to the dielectric member. . 誘電体部材による放射特性に与える影響を説明する図である。It is a figure explaining the influence which it has on the radiation characteristic by a dielectric material member. 変更機構の一例を説明する図である。(a)は、側面図、(b)は、(a)のVIIIB-VIIIB線での断面図である。It is a figure explaining an example of a change mechanism. (A) is a side view, (b) is a sectional view taken along line VIIIB-VIIIB in (a). 変更機構の他の一例を説明する図である。(a)は、側面図、(b)は、(a)のIXB-IXB線での断面図である。It is a figure explaining another example of a change mechanism. (A) is a side view, and (b) is a sectional view taken along line IXB-IXB in (a). 変更機構のさらに他の一例を説明する図である。(a)は、側面図、(b)は、(a)のXB-XB線での断面図である。It is a figure explaining another example of a change mechanism. (A) is a side view, and (b) is a cross-sectional view taken along line XB-XB in (a). 変更機構のさらに他の一例を説明する図である。(a)は、側面図、(b)は、(a)のXIB-XIB線での断面図、(c)は、(a)のXIB-XIB線での他の断面図である。It is a figure explaining another example of a change mechanism. (A) is a side view, (b) is a sectional view taken along line XIB-XIB in (a), and (c) is another sectional view taken along line XIB-XIB in (a). 第2の実施の形態が適用されるセクタアンテナの構成の一例を示す図である。It is a figure which shows an example of a structure of the sector antenna to which 2nd Embodiment is applied. アレイアンテナの水平面内の断面図である。(a)は、開き角θが180°未満の場合、(b)は、開き角θが180°超の場合である。It is sectional drawing in the horizontal surface of an array antenna. (A) is a case where the opening angle θ is less than 180 °, and (b) is a case where the opening angle θ is more than 180 °. 放射素子から誘電体部材までの距離を変化させた場合の水平面内のビーム幅及び利得の変化を示す図である。(a)は、縦軸をビーム幅及び利得、横軸を誘電体部材までの距離としたグラフ、(b)は、ビーム幅及び利得と誘電体部材までの距離との関係を示す表である。It is a figure which shows the change of the beam width and gain in a horizontal surface at the time of changing the distance from a radiation element to a dielectric material member. (A) is a graph in which the vertical axis represents the beam width and gain, and the horizontal axis represents the distance to the dielectric member, and (b) is a table showing the relationship between the beam width and gain and the distance to the dielectric member. . 誘電体部材の開き角を変化させた場合の水平面内のビーム幅の変化を示す図である。(a)は、縦軸をビーム幅、横軸を誘電体部材の開き角としたグラフ、(b)は、ビーム幅と誘電体部材の開き角との関係を示す表である。It is a figure which shows the change of the beam width in a horizontal surface at the time of changing the opening angle of a dielectric material member. (A) is a graph in which the vertical axis represents the beam width and the horizontal axis represents the opening angle of the dielectric member, and (b) is a table showing the relationship between the beam width and the opening angle of the dielectric member. 開き角を180°とした誘電体部材において、放射素子から誘電体部材までの距離を変化させた場合の水平面内のビーム幅及び利得の変化を示す図である。(a)は、縦軸をビーム幅及び利得、横軸を誘電体部材までの距離としたグラフ、(b)は、ビーム幅及び利得と誘電体部材までの距離との関係を示す表である。It is a figure which shows the change of the beam width in a horizontal surface, and a gain at the time of changing the distance from a radiation element to a dielectric material in the dielectric material which made the opening angle 180 degrees. (A) is a graph in which the vertical axis represents the beam width and gain, and the horizontal axis represents the distance to the dielectric member, and (b) is a table showing the relationship between the beam width and gain and the distance to the dielectric member. .
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[第1の実施の形態]
<基地局アンテナ1>
 図1は、第1の実施の形態が適用される移動通信用の基地局アンテナ1の全体構成の一例を示す図である。図1(a)は、基地局アンテナ1の鳥瞰図であり、図1(b)は、基地局アンテナ1の設置例を説明する図である。
 基地局アンテナ1は、図1(a)に示すように、例えば鉄塔20に保持された複数のセクタアンテナ10-1~10-3を備える。そして、移動通信においては、図1(b)に示すように、基地局アンテナ1からの電波(ビーム)が到達する範囲をセル2とする。そして、基地局アンテナ1を中心として、セル2を水平方向(水平面内)において角度で分割して複数のセクタ3-1~3-3が構成されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[First Embodiment]
<Base station antenna 1>
FIG. 1 is a diagram illustrating an example of an overall configuration of a mobile communication base station antenna 1 to which the first exemplary embodiment is applied. FIG. 1A is a bird's-eye view of the base station antenna 1, and FIG. 1B is a diagram illustrating an installation example of the base station antenna 1.
As shown in FIG. 1 (a), the base station antenna 1 includes a plurality of sector antennas 10-1 to 10-3 held by a steel tower 20, for example. In mobile communication, as shown in FIG. 1B, a range in which a radio wave (beam) from the base station antenna 1 reaches is assumed to be a cell 2. A plurality of sectors 3-1 to 3-3 are configured by dividing the cell 2 by an angle in the horizontal direction (in the horizontal plane) with the base station antenna 1 as the center.
 図1では、例として3個のセクタアンテナ10-1~10-3を備える。ここでは、セクタアンテナ10-1~10-3をそれぞれ区別しないときは、セクタアンテナ10と表記する。また、セクタ3-1~3-3をそれぞれ区別しないときは、セクタ3と表記する。他の用語についても同様である。
 それぞれのセクタアンテナ10は、図1(b)に示すように、メインローブ11の方向が予め定められたセクタ3に向くように配置されている。
In FIG. 1, three sector antennas 10-1 to 10-3 are provided as an example. Here, when the sector antennas 10-1 to 10-3 are not distinguished from each other, they are referred to as sector antennas 10. In addition, when the sectors 3-1 to 3-3 are not distinguished from each other, they are represented as sector 3. The same applies to other terms.
As shown in FIG. 1B, each sector antenna 10 is arranged so that the direction of the main lobe 11 faces a predetermined sector 3.
 さらに、それぞれのセクタアンテナ10には、ビームを放射するための送受信信号が供給されるケーブル31、及び、後述する移相器などを駆動する制御信号が供給されるケーブル32が接続されている。
 そして、これらのケーブル31、32は、基地局(不図示)内に設けられた無線信号を生成する無線装置(不図示)および移相器などを制御する制御装置(不図示)に接続されている。
 なお、送受信信号が供給されるケーブル31には、通常、同軸ケーブルが用いられる。
Further, each sector antenna 10 is connected to a cable 31 to which a transmission / reception signal for radiating a beam is supplied and a cable 32 to which a control signal for driving a phase shifter described later is supplied.
These cables 31 and 32 are connected to a radio device (not shown) for generating a radio signal provided in a base station (not shown) and a control device (not shown) for controlling a phase shifter and the like. Yes.
A coaxial cable is usually used as the cable 31 to which the transmission / reception signal is supplied.
 図1に示す基地局アンテナ1では3個のセクタ3に分割されているが、隣接するセクタ3との干渉などを考慮し、セクタアンテナ10は、水平面内におけるビーム幅が60°となるように構成される。なお、セクタ3の数(セクタ数)は、6個であってもよく、他の個数であってもよい。セクタ数が6個の場合には、ビーム幅が45°のセクタアンテナを用いればよい。 The base station antenna 1 shown in FIG. 1 is divided into three sectors 3. However, in consideration of interference with adjacent sectors 3, the sector antenna 10 has a beam width of 60 ° in a horizontal plane. Composed. Note that the number of sectors 3 (the number of sectors) may be six or other numbers. When the number of sectors is 6, a sector antenna having a beam width of 45 ° may be used.
 このようなセクタアンテナ10では、予め定められたセクタ3内にビームを放射することが好ましい。そこで、セクタアンテナ10は、水平面内(方位角方向)において予め定められたビーム幅を備えるように構成されている。なお、ビーム幅は、利得が最大値から3dB低下する水平面内の角度(方位角)で表される。
 もし、セクタ3間においてビームが重なると、干渉が発生して、通信速度の低下など通信品質が劣化する。そこで、ビーム幅を狭めて(細くして)ビームが重ならないようにする。
 逆に、セクタ3間においてビームを重ならないようにすると、ビームが届かない範囲が発生する場合がある。このため、ビームが重なるように設定することがよい場合もある。
 そして、ビームが届く範囲は、ビルや山などの設置された環境の影響を受ける。
In such a sector antenna 10, it is preferable to radiate a beam into a predetermined sector 3. Therefore, the sector antenna 10 is configured to have a predetermined beam width in the horizontal plane (azimuth angle direction). The beam width is represented by an angle (azimuth angle) in a horizontal plane where the gain is reduced by 3 dB from the maximum value.
If the beams overlap between the sectors 3, interference occurs and communication quality deteriorates such as a decrease in communication speed. Therefore, the beam width is narrowed (thinned) so that the beams do not overlap.
Conversely, if the beams are not overlapped between the sectors 3, there may be a range where the beams do not reach. For this reason, it may be good to set so that a beam may overlap.
The range that the beam reaches is affected by the environment in which the buildings and mountains are installed.
 そこで、基地局アンテナ1(セクタアンテナ10)が設置された後に、設置された状態において、セクタアンテナ10毎にビーム幅などの放射特性が調整できるとよい。
 以下では、放射特性として、ビーム幅を調整する場合を説明するが、放射特性としては、ビームの方向、サイドローブの強度などを調整する場合を含む。
Therefore, after the base station antenna 1 (sector antenna 10) is installed, the radiation characteristics such as the beam width can be adjusted for each sector antenna 10 in the installed state.
Hereinafter, the case where the beam width is adjusted as the radiation characteristic will be described, but the radiation characteristic includes the case where the beam direction, the intensity of the side lobe, and the like are adjusted.
<セクタアンテナ10>
 図2は、第1の実施の形態が適用されるセクタアンテナ10の構成の一例を示す図である。
 セクタアンテナ10は、複数のアンテナユニット100が配列されたアレイアンテナ40と、アレイアンテナ40との距離が変更可能に設けられた誘電体部材50と、アレイアンテナ40(具体的には、後述するダイポール素子110)と誘電体部材50との距離を変更する変更機構60と、これらを覆って収納するレドーム80とを備える。図2においては、アンテナユニット100が見えるように、レドーム80を一点鎖線で、誘電体部材50を破線で示している。変更機構60は、変更手段の一例である。
<Sector antenna 10>
FIG. 2 is a diagram illustrating an example of the configuration of the sector antenna 10 to which the first exemplary embodiment is applied.
The sector antenna 10 includes an array antenna 40 in which a plurality of antenna units 100 are arranged, a dielectric member 50 provided so that the distance from the array antenna 40 can be changed, and an array antenna 40 (specifically, a dipole described later). The change mechanism 60 which changes the distance of the element 110) and the dielectric material member 50, and the radome 80 which covers and accommodates these are provided. In FIG. 2, the radome 80 is indicated by a one-dot chain line and the dielectric member 50 is indicated by a broken line so that the antenna unit 100 can be seen. The change mechanism 60 is an example of a change unit.
 アレイアンテナ40を構成するアンテナユニット100は、鉛直方向(地面に対して垂直方向)に対して+45°の偏波の電波を送受信するダイポール素子111と、-45°の偏波の電波を送受信するダイポール素子112とを備える。なお、ダイポール素子111とダイポール素子112とを区別しない場合は、ダイポール素子110と表記する。ダイポール素子110は、放射素子の一例である。
 また、アンテナユニット100は、ダイポール素子111、112から予め定められた距離に設けられた反射板120を備える。
The antenna unit 100 constituting the array antenna 40 transmits / receives −45 ° polarized radio waves to / from a dipole element 111 that transmits / receives + 45 ° polarized radio waves in the vertical direction (perpendicular to the ground). And a dipole element 112. In the case where the dipole element 111 and the dipole element 112 are not distinguished from each other, they are referred to as a dipole element 110. The dipole element 110 is an example of a radiating element.
The antenna unit 100 includes a reflector 120 provided at a predetermined distance from the dipole elements 111 and 112.
 ダイポール素子111とダイポール素子112とは、二個の同じ形状のダイポール素子が90°で交差するように組み合わされている。ダイポール素子110の代わりにパッチ素子を用いてもよい(パッチアンテナ)。 The dipole element 111 and the dipole element 112 are combined so that two dipole elements having the same shape intersect at 90 °. A patch element may be used instead of the dipole element 110 (patch antenna).
 反射板120は、四辺がダイポール素子110側に折り曲げられている。なお、反射板120の四辺は折り曲げられてなくてもよい。また、反射板120は、アンテナユニット100間で繋がっていてもよい。 The reflection plate 120 has four sides bent toward the dipole element 110 side. Note that the four sides of the reflector 120 need not be bent. Moreover, the reflecting plate 120 may be connected between the antenna units 100.
 アンテナユニット100の放射素子は、鉛直方向に対して±45°方向の偏波を放射する。ここでは、±45°の偏波共用アンテナで説明するが、水平偏波、垂直偏波、又は、水平垂直偏波共用のアンテナユニットであってもよい。 The radiating element of the antenna unit 100 radiates polarized waves in the direction of ± 45 ° with respect to the vertical direction. Here, although explanation is made with a ± 45 ° polarization sharing antenna, an antenna unit for horizontal polarization, vertical polarization, or horizontal / vertical polarization may be used.
 誘電体部材50は、後述するように比誘電率εが6.4などの樹脂で構成された板状の部材である。誘電体部材50は、反射板120とは逆側(反対側)において、ダイポール素子110と対向するように設けられている。図2においては、誘電体部材50は、鉛直方向を軸として水平方向に予め定められた曲率半径で曲げられた半円筒状である。ここでは、誘電体部材50は、反射板120からダイポール素子110の中心に立てた垂線から水平方向に離れるにしたがって、ダイポール素子110側に近づくように屈曲している。すなわち、誘電体部材50は、ダイポール素子110側から凸状に屈曲している。
 そして、誘電体部材50は、変更機構60によって、ダイポール素子110との距離が変更可能に設けられている。図2では、誘電体部材50は、全体として、ダイポール素子110に対して遠ざかる方向(前方向)と近づく方向(後方向)に移動(シフト)する。
The dielectric member 50 is a plate-like member made of a resin having a relative dielectric constant ε r of 6.4, as will be described later. The dielectric member 50 is provided to face the dipole element 110 on the side opposite to the reflecting plate 120 (opposite side). In FIG. 2, the dielectric member 50 has a semi-cylindrical shape bent with a predetermined radius of curvature in the horizontal direction with the vertical direction as an axis. Here, the dielectric member 50 is bent so as to approach the dipole element 110 side as the distance from the vertical line standing at the center of the dipole element 110 from the reflecting plate 120 increases. That is, the dielectric member 50 is bent in a convex shape from the dipole element 110 side.
The dielectric member 50 is provided such that the distance from the dipole element 110 can be changed by the changing mechanism 60. In FIG. 2, the dielectric member 50 as a whole moves (shifts) in a direction (forward direction) away from the dipole element 110 (forward direction).
 変更機構60は、誘電体部材50に接続され、誘電体部材50を前後方向に移動させて、ダイポール素子110と誘電体部材50との距離を変更する。変更機構60については、後述する。 The change mechanism 60 is connected to the dielectric member 50 and moves the dielectric member 50 in the front-rear direction to change the distance between the dipole element 110 and the dielectric member 50. The changing mechanism 60 will be described later.
 レドーム80は、電波の透過性が高い樹脂にて構成されている。 The radome 80 is made of a resin having high radio wave permeability.
 ここでは、アレイアンテナ40、誘電体部材50及び変更機構60を備えた部分をアンテナとするが、アレイアンテナ40の代わりに、単体のアンテナユニット100であってもよい。
 そして、レドーム80にアンテナを収容したものをセクタアンテナ10と表記する。
Here, the portion including the array antenna 40, the dielectric member 50, and the changing mechanism 60 is an antenna, but a single antenna unit 100 may be used instead of the array antenna 40.
The antenna housed in the radome 80 is referred to as a sector antenna 10.
<ビーム幅の変化>
 変更機構60を説明する前に、ダイポール素子110と誘電体部材50との距離を変更した場合におけるビーム幅の変化を説明する。
 図3は、アレイアンテナ40と誘電体部材50との水平面内の断面図である。
 自由空間での電波の波長をλとするとき、反射板120とダイポール素子110との距離Dは、約λ/4に設定されているとする。そして、ダイポール素子111、112の長さは、約1/2λに設定されているとする。すると、ダイポール素子110の水平方向での幅Wは、約√2λ/4であり、反射板120の幅RefWは約0.9λ、誘電体部材50の曲率半径Rは約0.6λとする。
 そして、ダイポール素子110の中心から誘電体部材50までを距離Hとする。
 さらに、誘電体部材50は、厚さtであるとする。
<Change in beam width>
Before describing the changing mechanism 60, the change in the beam width when the distance between the dipole element 110 and the dielectric member 50 is changed will be described.
FIG. 3 is a cross-sectional view of the array antenna 40 and the dielectric member 50 in the horizontal plane.
Assume that the wavelength D of the radio wave in free space is λ, the distance D between the reflector 120 and the dipole element 110 is set to about λ / 4. The lengths of the dipole elements 111 and 112 are set to about ½λ. Then, the horizontal width W of the dipole element 110 is about √2λ / 4, the width RefW of the reflector 120 is about 0.9λ, and the curvature radius R of the dielectric member 50 is about 0.6λ.
The distance H is from the center of the dipole element 110 to the dielectric member 50.
Furthermore, it is assumed that the dielectric member 50 has a thickness t.
 なお、以下では、比誘電率εが6.4の誘電体部材50と、比誘電率εが4.0の誘電体部材50とを例に取り上げて説明する。比誘電率εが6.4の誘電体部材50の材料としては、例えばポリエステル樹脂がある。また、比誘電率εが4.0の誘電体部材50の材料としては、例えばシリカやガラスを充填したエポキシ樹脂がある。他の比誘電率εを用いてもよく、この場合には、比誘電率εに対応した材料を適宜選べばよい。 In the following, the dielectric constant epsilon r is the dielectric member 50 of 6.4, the relative dielectric constant epsilon r is described by taking the dielectric member 50 of 4.0 as an example. As a material of the dielectric member 50 having a relative dielectric constant ε r of 6.4, for example, there is a polyester resin. The dielectric member 50 having a relative dielectric constant ε r of 4.0 includes, for example, an epoxy resin filled with silica or glass. Other relative permittivity ε r may be used. In this case, a material corresponding to the relative permittivity ε r may be selected as appropriate.
 図4は、放射素子(ダイポール素子110)から誘電体部材50までの距離Hを変化させた場合の水平面内における指向特性を示す図である。この指向特性は、2GHz帯において、誘電体部材50の比誘電率εを6.4、厚さtを5mmとし、シミュレーションにより求めた。
 図4に示すように、距離Hが0.50λから0.62λに大きくなるにしたがいビーム幅が狭くなる。
 すなわち、距離Hを変更することで、ビーム幅などのセクタアンテナ10の放射特性が変更できる。
FIG. 4 is a diagram showing the directivity characteristics in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed. This directivity characteristic was obtained by simulation in the 2 GHz band with the relative permittivity ε r of the dielectric member 50 being 6.4 and the thickness t being 5 mm.
As shown in FIG. 4, the beam width becomes narrower as the distance H increases from 0.50λ to 0.62λ.
That is, by changing the distance H, the radiation characteristics of the sector antenna 10 such as the beam width can be changed.
 図5は、放射素子(ダイポール素子110)から誘電体部材50までの距離Hを変化させた場合の水平面内のビーム幅及び利得の変化を示す図であり、特に誘電体部材50の厚さtによるビーム幅及び利得の変化を示している。図5(a)は、縦軸をビーム幅(°)及び利得(dBi)、横軸を誘電体部材50までの距離Hとしたグラフ、図5(b)は、ビーム幅(°)及び利得(dBi)と誘電体部材50までの距離Hとの関係を示す表である。
 ビーム幅(°)及び利得(dBi)は、誘電体部材50の厚さtを5mmとし、比誘電率εが6.4の場合及び4.0の場合について、シミュレーションにより求めた。
 図5に示すように、誘電体部材50を設けない場合(誘電体部材なし)、ビーム幅は64.1°、利得は15.0dBiである。
FIG. 5 is a diagram showing changes in the beam width and gain in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed, and in particular, the thickness t of the dielectric member 50. Shows the change in beam width and gain due to. 5A is a graph in which the vertical axis indicates the beam width (°) and gain (dBi), and the horizontal axis indicates the distance H to the dielectric member 50. FIG. 5B shows the beam width (°) and gain. It is a table | surface which shows the relationship between (dBi) and the distance H to the dielectric material member 50. FIG.
The beam width (°) and gain (dBi) were obtained by simulation when the thickness t of the dielectric member 50 was 5 mm and the relative dielectric constant ε r was 6.4 and 4.0.
As shown in FIG. 5, when the dielectric member 50 is not provided (no dielectric member), the beam width is 64.1 ° and the gain is 15.0 dBi.
 比誘電率εが6.4において、ビーム幅は、誘電体部材50までの距離Hが0.50λであると、誘電体部材50を設けない場合(誘電体部材なし)より広い65.7°である。そして、距離Hが0.53λでは、誘電体部材50を設けない場合(誘電体部材なし)より狭い63.3°である。そして、距離Hが0.50λから0.62λへと大きくなるにしたがい、ビーム幅は65.7°から57.9°へと連続的に狭くなる。すなわち、距離Hが0.50λの場合に誘電体部材50を設けない場合(誘電体部材なし)よりビーム幅が広くなる。そして、誘電体部材50を設ける場合には、距離Hが大きいほど、ビーム幅が狭くなる。そして、距離Hが0.50λと0.62λとの間におけるビーム幅の変化量は、7.8°である。
 利得は、距離Hが0.50λのとき、誘電体部材50を設けない場合(誘電体部材なし)と同じ、15.0dBiである。そして、距離Hが0.50λから0.62λへと大きくなるにしたがい、15.0dBiから15.5dBiへと連続的に高くなる。そして、距離Hが0.50λと0.62λとの間における利得の変化量は、-0.5dBiである。これは、ビーム幅が狭くなることにより、利得が高くなることによる。
When the relative permittivity ε r is 6.4 and the distance H to the dielectric member 50 is 0.50λ, the beam width is 65.7 wider than when the dielectric member 50 is not provided (no dielectric member). °. When the distance H is 0.53λ, it is 63.3 °, which is narrower than when the dielectric member 50 is not provided (no dielectric member). Then, as the distance H increases from 0.50λ to 0.62λ, the beam width continuously decreases from 65.7 ° to 57.9 °. That is, when the distance H is 0.50λ, the beam width is wider than when the dielectric member 50 is not provided (no dielectric member). When the dielectric member 50 is provided, the beam width becomes narrower as the distance H increases. The amount of change in beam width when the distance H is between 0.50λ and 0.62λ is 7.8 °.
When the distance H is 0.50λ, the gain is 15.0 dBi, which is the same as when the dielectric member 50 is not provided (no dielectric member). As the distance H increases from 0.50λ to 0.62λ, it continuously increases from 15.0 dBi to 15.5 dBi. The amount of change in gain when the distance H is between 0.50λ and 0.62λ is −0.5 dBi. This is because the gain increases as the beam width becomes narrower.
 比誘電率εが4.0において、ビーム幅は、誘電体部材50までの距離Hが0.50λであると、誘電体部材50を設けない場合(誘電体部材なし)より広い65.6°である。そして、ビーム幅は、距離Hが0.53λで狭くなるが、誘電体部材50を設けない場合(誘電体部材なし)より広い64.2°である。そして、ビーム幅は、距離Hが0.56λでは、誘電体部材50を設けない場合より狭い62.8°である。そして、距離Hが0.50λから0.62λへと大きくなるにしたがい、ビーム幅は65.6°から59.8°へと連続的に狭くなる。そして、距離Hが0.50λと0.62λとの間の変化量は、5.8°である。
 利得は、距離Hが0.50λのとき、誘電体部材50を設けない場合(誘電体部材なし)と同じ、15.0dBiである。そして、距離Hが0.50λから0.62λへと大きくなるにしたがい、15.0dBiから15.4dBiへと連続的に高くなる。そして、距離Hが0.50λと0.62λとの間の変化量は、-0.4dBiである。
When the relative permittivity ε r is 4.0 and the distance H to the dielectric member 50 is 0.50λ, the beam width is 65.6 wider than when the dielectric member 50 is not provided (no dielectric member). °. The beam width is narrower when the distance H is 0.53λ, which is 64.2 °, which is wider than when the dielectric member 50 is not provided (no dielectric member). The beam width is 62.8 ° narrower than when the dielectric member 50 is not provided when the distance H is 0.56λ. As the distance H increases from 0.50λ to 0.62λ, the beam width continuously decreases from 65.6 ° to 59.8 °. The amount of change between the distance H between 0.50λ and 0.62λ is 5.8 °.
When the distance H is 0.50λ, the gain is 15.0 dBi, which is the same as when the dielectric member 50 is not provided (no dielectric member). As the distance H increases from 0.50λ to 0.62λ, it continuously increases from 15.0 dBi to 15.4 dBi. The amount of change between the distance H between 0.50λ and 0.62λ is −0.4 dBi.
 以上説明したように、誘電体部材50を設けることにより、ビーム幅は、誘電体部材50を設けない場合より広くも狭くもなる。
 そして、誘電体部材50を設ける場合に、誘電体部材50までの距離Hを大きくすると、ビーム幅は、連続的に狭くなる。一方、利得は、誘電体部材50までの距離Hを大きくすると、連続的に高くなる。
 そして、誘電体部材50の比誘電率εが大きいほど、ビーム幅及び利得の距離Hに対する変化量が大きい。
As described above, the provision of the dielectric member 50 makes the beam width wider or narrower than when the dielectric member 50 is not provided.
When the dielectric member 50 is provided, if the distance H to the dielectric member 50 is increased, the beam width is continuously narrowed. On the other hand, the gain increases continuously as the distance H to the dielectric member 50 is increased.
As the relative dielectric constant ε r of the dielectric member 50 is larger, the amount of change of the beam width and gain with respect to the distance H is larger.
 図6は、放射素子(ダイポール素子110)から誘電体部材50までの距離Hを変化させた場合の水平面内のビーム幅及び利得の変化を示す図である。図6(a)は、縦軸をビーム幅(°)及び利得(dBi)、横軸を誘電体部材50までの距離Hとしたグラフ、図6(b)は、ビーム幅(°)及び利得(dBi)と誘電体部材50までの距離Hとの関係を示す表である。
 ビーム幅(°)及び利得(dBi)は、比誘電率εを6.4とし、誘電体部材50の厚さtが5mmの場合及び3mmの場合について、シミュレーションにより求めた。
FIG. 6 is a diagram showing changes in the beam width and gain in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed. 6A is a graph in which the vertical axis indicates the beam width (°) and gain (dBi), and the horizontal axis indicates the distance H to the dielectric member 50. FIG. 6B shows the beam width (°) and gain. It is a table | surface which shows the relationship between (dBi) and the distance H to the dielectric material member 50. FIG.
The beam width (°) and gain (dBi) were obtained by simulation when the relative permittivity ε r was 6.4 and the thickness t of the dielectric member 50 was 5 mm and 3 mm.
 図6に示すように、誘電体部材50を設けない場合(誘電体部材なし)、ビーム幅は、64.1°、利得は、15.0dBiである。
 誘電体部材50の厚さtが5mmの場合は、図5(a)、(b)に示した比誘電率εが6.4の場合と同じである。
 厚さtが3mmの場合、ビーム幅は、誘電体部材50までの距離Hが0.50λであると、誘電体部材50を設けない場合より広い65.9°である。そして、ビーム幅は、距離Hが0.53λでは、狭くなるが、誘電体部材50を設けない場合より広い64.5°である。そして、距離Hが0.50λから0.62λへと大きくなるにしたがい、ビーム幅は65.9°から59.7°と連続的に狭くなる。そして、距離Hが0.50λと0.62λとの間の変化量は、6.2°である。
As shown in FIG. 6, when the dielectric member 50 is not provided (no dielectric member), the beam width is 64.1 ° and the gain is 15.0 dBi.
When the thickness t of the dielectric member 50 is 5 mm, it is the same as the case where the relative dielectric constant ε r shown in FIGS. 5A and 5B is 6.4.
When the thickness t is 3 mm, the beam width is 65.9 ° which is wider than the case where the dielectric member 50 is not provided when the distance H to the dielectric member 50 is 0.50λ. The beam width is narrower when the distance H is 0.53λ, but is 64.5 ° which is wider than when the dielectric member 50 is not provided. As the distance H increases from 0.50λ to 0.62λ, the beam width continuously decreases from 65.9 ° to 59.7 °. The amount of change between the distance H between 0.50λ and 0.62λ is 6.2 °.
 厚さtが3mmの場合、利得は、距離Hが0.50λであると、誘電体部材50を設けない場合(誘電体部材なし)と同じ、15.0dBiである。そして、距離Hが0.50λから0.62λへと大きくなるにしたがい、15.0dBiから15.4dBiへと連続的に高くなる。そして、距離Hが0.50λと0.62λとの間の変化量は、-0.4dBiである。 When the thickness t is 3 mm, the gain is 15.0 dBi when the distance H is 0.50λ, which is the same as when the dielectric member 50 is not provided (no dielectric member). As the distance H increases from 0.50λ to 0.62λ, it continuously increases from 15.0 dBi to 15.4 dBi. The amount of change between the distance H between 0.50λ and 0.62λ is −0.4 dBi.
 以上説明したように、比誘電率εが一定の場合、誘電体部材50の厚さtが厚いほど、距離Hに対するビーム幅及び利得の変化率が大きい。 As described above, when the relative permittivity ε r is constant, the rate of change of the beam width and the gain with respect to the distance H increases as the thickness t of the dielectric member 50 increases.
 以上説明したように、誘電体部材50をダイポール素子110の前面に配置し、ダイポール素子110と誘電体部材50との距離を変更することで、アンテナの放射特性であるビーム幅及び利得が変更される。すなわち、基地局アンテナ1(セクタアンテナ10)を設置した後に、周囲の地形や建物の状況、使用する通信方式、隣接するセクタアンテナ10の水平面内におけるビーム幅などを考慮して、基地局アンテナ1を構成するセクタアンテナ10毎にビーム幅などの放射特性を調整することにより、設置された環境に適するように、基地局アンテナ1(セクタアンテナ10)の放射特性を調整しうる。 As described above, by arranging the dielectric member 50 in front of the dipole element 110 and changing the distance between the dipole element 110 and the dielectric member 50, the beam width and gain which are the radiation characteristics of the antenna are changed. The That is, after the base station antenna 1 (sector antenna 10) is installed, the base station antenna 1 is considered in consideration of surrounding terrain and building conditions, the communication method to be used, the beam width in the horizontal plane of the adjacent sector antenna 10, and the like. By adjusting the radiation characteristics such as the beam width for each of the sector antennas 10 constituting the antenna, the radiation characteristics of the base station antenna 1 (sector antenna 10) can be adjusted to suit the installed environment.
 上述したように、ダイポール素子110と誘電体部材50との距離を変更することで、放射特性が変化する理由は、次のように考えられる。
 図7は、誘電体部材50による放射特性に与える影響を説明する図である。
 図7に示すように、ダイポール素子110から放射される電波は、様々な経路を進む。例えば、前方に進む電波αは、誘電体部材50をそのまま通過する。しかし、斜め前方に進む電波βは、誘電体部材50を通過する際に屈折するとともに、誘電体部材50と空気との界面で反射する。
 一方、後方に進む電波γは、反射板120で反射されて、誘電体部材50へと進む。このとき、誘電体部材50を通過する際に屈折するとともに、誘電体部材50と空気との界面で反射する。また、後方に進む電波δは、反射板120で反射して、誘電体部材50の縁(端)で回折する。さらに、後方に進む電波ζは、反射板120で反射して、反射板120と誘電体部材50との間を通過する。
As described above, the reason why the radiation characteristic is changed by changing the distance between the dipole element 110 and the dielectric member 50 is considered as follows.
FIG. 7 is a diagram for explaining the influence of the dielectric member 50 on the radiation characteristics.
As shown in FIG. 7, the radio wave radiated from the dipole element 110 travels in various paths. For example, the radio wave α traveling forward passes through the dielectric member 50 as it is. However, the radio wave β traveling obliquely forward is refracted when passing through the dielectric member 50 and is reflected at the interface between the dielectric member 50 and air.
On the other hand, the radio wave γ traveling backward is reflected by the reflector 120 and proceeds to the dielectric member 50. At this time, the light is refracted when passing through the dielectric member 50 and is reflected at the interface between the dielectric member 50 and air. Further, the radio wave δ traveling backward is reflected by the reflecting plate 120 and diffracted at the edge (end) of the dielectric member 50. Further, the radio wave ζ traveling backward is reflected by the reflecting plate 120 and passes between the reflecting plate 120 and the dielectric member 50.
 放射特性は、これらの電波などが足し合わされたものである。このように、ダイポール素子110の前方に誘電体部材50を設けることで、誘電体部材50を設けない場合と異なる放射特性が得られる。
 また、誘電体部材50のダイポール素子110に対する位置を移動させて、ダイポール素子110と誘電体部材50との距離を変更することで、誘電体部材50を通過する際に屈折する角度や、誘電体部材50と空気との界面で反射する角度などが変わるため、放射特性が変更される。
The radiation characteristic is the sum of these radio waves. As described above, by providing the dielectric member 50 in front of the dipole element 110, radiation characteristics different from the case where the dielectric member 50 is not provided can be obtained.
Further, by changing the position of the dielectric member 50 relative to the dipole element 110 and changing the distance between the dipole element 110 and the dielectric member 50, the angle of refraction when passing through the dielectric member 50, the dielectric Since the angle of reflection at the interface between the member 50 and the air changes, the radiation characteristic is changed.
 次に、ダイポール素子110と誘電体部材50との距離を変更する変更機構60について説明する。
 図8は、変更機構60の一例を説明する図である。図8(a)は、側面図、図8(b)は、図8(a)のVIIIB-VIIIB線での断面図である。
 図8(a)に示すように、変更機構60は、誘電体部材50の中央部から反射板120を貫くように設けられた回転棒61を備える。なお、回転棒61と誘電体部材50とは、回転棒61が誘電体部材50と関係なく自在に回転し、前後方向には一体となって移動するように接続されている。
 そして、回転棒61は、例えば、レドーム80を貫く部分に雄ネジ61aが設けられている。また、レドーム80は、回転棒61が通過する部分に雌ネジ80aが設けられている。そして、雄ネジ61aと雌ネジ80aとが組み合っている。そして、回転棒61のレドーム80を貫いた外側の部分につまみ61bが設けられている。
Next, the changing mechanism 60 that changes the distance between the dipole element 110 and the dielectric member 50 will be described.
FIG. 8 is a diagram for explaining an example of the changing mechanism 60. 8A is a side view, and FIG. 8B is a cross-sectional view taken along line VIIIB-VIIIB in FIG. 8A.
As shown in FIG. 8A, the changing mechanism 60 includes a rotating rod 61 provided so as to penetrate the reflecting plate 120 from the central portion of the dielectric member 50. The rotating rod 61 and the dielectric member 50 are connected so that the rotating rod 61 rotates freely regardless of the dielectric member 50 and moves integrally in the front-rear direction.
The rotating rod 61 is provided with, for example, a male screw 61 a at a portion that penetrates the radome 80. Further, the radome 80 is provided with a female screw 80a at a portion through which the rotating rod 61 passes. The male screw 61a and the female screw 80a are combined. And the knob 61b is provided in the outer part which penetrated the radome 80 of the rotating rod 61. As shown in FIG.
 回転棒61を前方に押し出す側につまみ61bを回すと、誘電体部材50が前方に移動する。回転棒61を後方に引き込める側につまみ61bを回すと、誘電体部材50が後方に移動する。 When the knob 61b is turned to the side where the rotating rod 61 is pushed forward, the dielectric member 50 moves forward. When the knob 61b is turned to the side where the rotary rod 61 can be retracted, the dielectric member 50 moves backward.
 なお、図8(a)に示すように、誘電体部材50の移動を安定に行うために、回転棒61と同様に、誘電体部材50から反射板120を貫くように設けられたガイド棒62を備えてもよい。ガイド棒62が、回転棒61の動きに合わせて、反射板120に設けたガイド棒62を通す穴に接して移動(並進)することで、誘電体部材50の移動が安定に行える。 As shown in FIG. 8A, in order to stably move the dielectric member 50, the guide rod 62 provided so as to penetrate the reflector 120 from the dielectric member 50, like the rotary rod 61. May be provided. The guide member 62 moves (translates) in contact with the hole through which the guide rod 62 provided in the reflector 120 passes in accordance with the movement of the rotating rod 61, so that the dielectric member 50 can be moved stably.
 また、回転棒61の他端部のつまみ61bをモータに変えてもよい。そして、モータを回転させる信号を基地局などから送信してもよい。基地局からの遠隔操作により、ダイポール素子110と誘電体部材50との距離の変更、すなわち放射特性の調整が可能になる。
 モータを回転させる信号を、電波(ビーム)のチルト角を調整する移相器を遠隔で制御する電動リモートチルトユニット(RET;Remote Electrical Tilt)に拡張機能として組み込んでもよい。RETの拡張機能として、モータを回転させる信号を組み込むことで、チルト制御とともに放射特性の調整が可能になる。
Further, the knob 61b at the other end of the rotating rod 61 may be changed to a motor. Then, a signal for rotating the motor may be transmitted from a base station or the like. By remote control from the base station, the distance between the dipole element 110 and the dielectric member 50 can be changed, that is, the radiation characteristic can be adjusted.
A signal for rotating the motor may be incorporated as an extended function in an electric remote tilt unit (RET) that remotely controls a phase shifter that adjusts the tilt angle of a radio wave (beam). By incorporating a signal for rotating the motor as an extended function of RET, it is possible to adjust the radiation characteristics as well as tilt control.
 図9は、変更機構60の他の一例を説明する図である。図9(a)は、側面図、図9(b)は、図9(a)のIXB-IXB線での断面図である。
 変更機構60は、誘電体部材50の中央部から反射板120を貫くように設けられた支持棒63と、支持棒63を前後方向に移動させる回転棒64とを備える。支持棒63の一端部は、誘電体部材50に固定されている。
 そして、支持棒63の他端部には、反射板120の裏側に当たる部分に、支持棒63の長手方向に歯切りされたラック63aが設けられている。そして、回転棒64の一端部には、このラック63aと組み合うように設けられたピニオン(歯車)64aが設けられている。そして、回転棒64の他端部がレドーム80の底面(下方の面)を貫いて、セクタアンテナ10の外側に飛び出している。レドーム80の底面の回転棒64が貫通する穴は、回転棒64が接触しながら滑らかに回転する(摺動回転する)ように構成されている。
FIG. 9 is a diagram for explaining another example of the changing mechanism 60. 9A is a side view, and FIG. 9B is a cross-sectional view taken along line IXB-IXB in FIG. 9A.
The changing mechanism 60 includes a support bar 63 provided so as to penetrate the reflector 120 from the center of the dielectric member 50, and a rotating bar 64 that moves the support bar 63 in the front-rear direction. One end of the support bar 63 is fixed to the dielectric member 50.
At the other end of the support bar 63, a rack 63 a that is geared in the longitudinal direction of the support bar 63 is provided at a portion that contacts the back side of the reflection plate 120. A pinion (gear) 64a is provided at one end of the rotating rod 64 so as to be combined with the rack 63a. The other end of the rotating rod 64 penetrates the bottom surface (lower surface) of the radome 80 and protrudes outside the sector antenna 10. The hole through which the rotating rod 64 penetrates the bottom surface of the radome 80 is configured to rotate smoothly (slidably rotate) while the rotating rod 64 is in contact.
 回転棒64の他端部につまみ64bを設け、つまみ64bを回すことで、ピニオン64aが回転する。ピニオン64aの回転運動がラック63aにより並進運動に転換され、誘電体部材50のダイポール素子110に対する位置を前後方向に移動する。 The knob 64b is provided at the other end of the rotating rod 64, and the pinion 64a rotates by turning the knob 64b. The rotational motion of the pinion 64a is converted into a translational motion by the rack 63a, and the position of the dielectric member 50 with respect to the dipole element 110 is moved in the front-rear direction.
 なお、図9(a)に示すように、誘電体部材50の位置の移動を安定に行うために、支持棒63と同様に、誘電体部材50から反射板120を貫くように設けられたガイド棒65を備えてもよい。ガイド棒65が、支持棒63の動きに合わせて、反射板120に設けたガイド棒65を通す穴に接して移動(並進)することで、誘電体部材50の移動が安定化する。 As shown in FIG. 9A, in order to stably move the position of the dielectric member 50, a guide provided so as to penetrate the reflector 120 from the dielectric member 50 in the same manner as the support bar 63. A rod 65 may be provided. The movement of the dielectric member 50 is stabilized by moving (translating) the guide bar 65 in contact with the hole through which the guide bar 65 provided in the reflecting plate 120 passes in accordance with the movement of the support bar 63.
 変更機構60の操作部(つまみ64b)がセクタアンテナ10の下方に設けられることから、基地局アンテナ1(セクタアンテナ10)が設置された後、設置された状態において、放射特性の調整が容易になる。 Since the operation unit (knob 64b) of the changing mechanism 60 is provided below the sector antenna 10, the radiation characteristics can be easily adjusted after the base station antenna 1 (sector antenna 10) is installed. Become.
 また、回転棒64の他端部のつまみ64bをモータに変えてもよい。そして、モータを回転させる信号を基地局などから送信してもよい。基地局からの遠隔操作により、ダイポール素子110と誘電体部材50との距離の変更、すなわち放射特性の調整が可能になる。
 また、RETの拡張機能として、モータを回転させる信号を組み込むことで、チルト制御とともに放射特性の調整が可能になる。
Further, the knob 64b at the other end of the rotating rod 64 may be changed to a motor. Then, a signal for rotating the motor may be transmitted from a base station or the like. By remote control from the base station, the distance between the dipole element 110 and the dielectric member 50 can be changed, that is, the radiation characteristic can be adjusted.
In addition, by incorporating a signal for rotating the motor as an extended function of RET, it is possible to adjust the radiation characteristics as well as tilt control.
 図10は、変更機構60のさらに他の一例を説明する図である。図10(a)は、側面図、図10(b)は、図10(a)のXB-XB線での断面図である。
 図10(a)に示すように、変更機構60は、誘電体部材50に設けられたラック50a、50bと、ラック50aと組み合わされるピニオン66aを有する回転棒66と、ラック50bと組み合わされるピニオン67aを有する回転棒67とを備える。
 ラック50a、50bは、誘電体部材50の鉛直方向における中央部において、水平面内の両端部を延長した部分に設けられている。そして、ラック50a、50bは、水平面内において平行に設けられている。
FIG. 10 is a diagram for explaining yet another example of the change mechanism 60. 10A is a side view, and FIG. 10B is a cross-sectional view taken along line XB-XB in FIG. 10A.
As shown in FIG. 10A, the changing mechanism 60 includes a rack 50a, 50b provided on the dielectric member 50, a rotating rod 66 having a pinion 66a combined with the rack 50a, and a pinion 67a combined with the rack 50b. And a rotating rod 67 having
The racks 50a and 50b are provided in the center part in the vertical direction of the dielectric member 50 at a portion obtained by extending both ends in the horizontal plane. The racks 50a and 50b are provided in parallel in the horizontal plane.
 回転棒66は、一端部にラック50aと組み合わされるピニオン66aが設けられ、他端部は、レドーム80の底面(下方の面)を貫通している。そして、回転棒66の他端部には、つまみ66bが設けられている。レドーム80の底面の回転棒66が貫通する穴は、回転棒66が接触しながら滑らかに回転する(摺動回転する)ように構成されている。
 回転棒67は、一端部にラック50bと組み合わされるピニオン67aが設けられ、他端部は、レドーム80の底面を貫通している。レドーム80の底面の回転棒67が貫通する穴は、回転棒67が接触しながら滑らかに回転する(摺動回転する)ように構成されている。
The rotating rod 66 is provided with a pinion 66a combined with the rack 50a at one end, and the other end passes through the bottom surface (lower surface) of the radome 80. A knob 66 b is provided at the other end of the rotating rod 66. The hole through which the rotating rod 66 penetrates the bottom surface of the radome 80 is configured to rotate smoothly (slidably rotate) while the rotating rod 66 is in contact.
The rotating rod 67 is provided with a pinion 67 a combined with the rack 50 b at one end, and the other end penetrates the bottom surface of the radome 80. The hole through which the rotating rod 67 penetrates the bottom surface of the radome 80 is configured to rotate smoothly (slidably rotate) while the rotating rod 67 is in contact.
 回転棒66のつまみ66b及び回転棒67のつまみ67b(図10(a)において紙面の奥側に位置する)を回転させると、ピニオン66a、67bが回転する。ピニオン66a、67bの回転運動は、ラック50a、50bの並進運動に変換されて、誘電体部材50がダイポール素子110に対して前方又は後方に移動する。 When the knob 66b of the rotating rod 66 and the knob 67b of the rotating rod 67 (located on the far side of the paper surface in FIG. 10A) are rotated, the pinions 66a and 67b are rotated. The rotational motion of the pinions 66a and 67b is converted into the translational motion of the racks 50a and 50b, and the dielectric member 50 moves forward or backward with respect to the dipole element 110.
 変更機構60の操作部(つまみ66b、67b)がセクタアンテナ10の下方に設けられることから、基地局アンテナ1(セクタアンテナ10)が設置された後、設置された状態において、放射特性の調整が可能となる。 Since the operation unit (knobs 66b and 67b) of the changing mechanism 60 is provided below the sector antenna 10, after the base station antenna 1 (sector antenna 10) is installed, the radiation characteristics can be adjusted in the installed state. It becomes possible.
 また、回転棒66の他端部のつまみ66b、67bをそれぞれモータに変えてもよい。そして、モータを回転させる信号を基地局などから送信してもよい。基地局からの遠隔操作により、ダイポール素子110と誘電体部材50との距離の変更、すなわち放射特性の調整が可能になる。
 また、RETの拡張機能として、モータを回転させる信号を組み込むことで、チルト制御とともに放射特性の調整が可能になる。
Further, the knobs 66b and 67b at the other end of the rotating rod 66 may be changed to motors. Then, a signal for rotating the motor may be transmitted from a base station or the like. By remote control from the base station, the distance between the dipole element 110 and the dielectric member 50 can be changed, that is, the radiation characteristic can be adjusted.
In addition, by incorporating a signal for rotating the motor as an extended function of RET, it is possible to adjust the radiation characteristics as well as tilt control.
 図11は、変更機構60のさらに他の一例を説明する図である。図11(a)は、側面図、図11(b)は、図11(a)のXIB-XIB線での断面図、図11(c)は、図11(a)のXIB-XIB線での他の断面図である。
 図11(a)に示すように、変更機構60は、誘電体部材50の鉛直方向の両端部から上下に張り出したガイドピン50c、50dと、ガイドピン50c、50dが挿入されたガイド穴68a、69aが設けられたガイドプレート68、69とを備える。
 ガイドプレート68は、レドーム80内の下端側に設けられ、ガイドプレート69は、レドーム80内の上端側に設けられている。そして、ガイドプレート68の中心部には、レドーム80の底面(下方の面)に設けられた回転棒70の一端部が取り付けられている。回転棒70の他端部には、つまみ70aが設けられている。
 そして、ガイドプレート68とガイドプレート69とは、回転棒70のつまみ70aを回転することにより、一体となって回転するように固定されている。
FIG. 11 is a diagram illustrating still another example of the changing mechanism 60. 11A is a side view, FIG. 11B is a cross-sectional view taken along line XIB-XIB in FIG. 11A, and FIG. 11C is taken along line XIB-XIB in FIG. It is other sectional drawing of.
As shown in FIG. 11A, the changing mechanism 60 includes guide pins 50c and 50d extending vertically from both ends in the vertical direction of the dielectric member 50, and guide holes 68a into which the guide pins 50c and 50d are inserted. And guide plates 68 and 69 provided with 69a.
The guide plate 68 is provided on the lower end side in the radome 80, and the guide plate 69 is provided on the upper end side in the radome 80. One end of a rotating rod 70 provided on the bottom surface (lower surface) of the radome 80 is attached to the center of the guide plate 68. A knob 70 a is provided at the other end of the rotating rod 70.
The guide plate 68 and the guide plate 69 are fixed so as to rotate together by rotating the knob 70a of the rotating rod 70.
 そして、ガイドプレート68、69には、円弧状のガイド穴68a、69aが設けられている。ガイド穴68a、69aは、一端部にガイドピン50c、50dが来た場合に、ダイポール素子110から誘電体部材50までの距離Hが最も小さくなり(図11(b)参照)、他端部にガイドピン50c、50dが来た場合に、ダイポール素子110から誘電体部材50までの距離Hが最も大きくなる(図11(c)参照)ように構成されている。 The guide plates 68 and 69 are provided with arcuate guide holes 68a and 69a. The guide holes 68a and 69a have the smallest distance H from the dipole element 110 to the dielectric member 50 when the guide pins 50c and 50d come to one end (see FIG. 11B), and the other end When the guide pins 50c and 50d come, the distance H from the dipole element 110 to the dielectric member 50 is the largest (see FIG. 11C).
 つまり、回転棒70のつまみ70aを回転させると、ガイドプレート68、69が回転する。ガイドプレート68、69の回転とともに、ガイド穴68a、69aが移動する。すると、ガイド穴68a、69aに挿入されたガイドピン50c、50dがガイド穴68a、69aに沿って移動する。これにより、誘電体部材50の位置がダイポール素子110に対して前方又は後方に移動する。 That is, when the knob 70a of the rotating rod 70 is rotated, the guide plates 68 and 69 are rotated. As the guide plates 68 and 69 rotate, the guide holes 68a and 69a move. Then, the guide pins 50c and 50d inserted into the guide holes 68a and 69a move along the guide holes 68a and 69a. As a result, the position of the dielectric member 50 moves forward or backward relative to the dipole element 110.
 変更機構60の操作部(つまみ70a)がセクタアンテナ10の下方に設けられることから、基地局アンテナ1(セクタアンテナ10)が設置された後、設置された状態において、放射特性の調整が容易になる。 Since the operation unit (knob 70a) of the changing mechanism 60 is provided below the sector antenna 10, the radiation characteristics can be easily adjusted after the base station antenna 1 (sector antenna 10) is installed. Become.
 回転棒70の他端部のつまみ70aをモータに変えてもよい。そして、モータを回転させる信号を基地局などから送信してもよい。基地局からの遠隔操作により、ダイポール素子110と誘電体部材50との距離の変更、すなわち放射特性の調整が可能になる。
 また、RETの拡張機能として、モータを回転させる信号を組み込むことで、チルト制御とともに放射特性の調整が可能となる。
The knob 70a at the other end of the rotating rod 70 may be changed to a motor. Then, a signal for rotating the motor may be transmitted from a base station or the like. By remote control from the base station, the distance between the dipole element 110 and the dielectric member 50 can be changed, that is, the radiation characteristic can be adjusted.
In addition, by incorporating a signal for rotating the motor as an extended function of RET, it is possible to adjust the radiation characteristics as well as tilt control.
 上記においては、誘電体部材50は円筒状に構成されているとしたが、例えば、水平面内において複数の誘電体板を複数の蝶番を用いて接続することで誘電体部材50を構成し、誘電体部材50の形状を疑似的に半円筒状にしてもよい。
 初期の設計段階において誘電体部材50の曲率半径を設定し、その予め設定された曲率半径を有する誘電体部材50を図8から図11に示した変更機構60を用いて距離Hを変更すればよい。
In the above description, the dielectric member 50 is formed in a cylindrical shape. However, for example, the dielectric member 50 is configured by connecting a plurality of dielectric plates using a plurality of hinges in a horizontal plane. The shape of the body member 50 may be pseudo-cylindrical.
If the radius of curvature of the dielectric member 50 is set in the initial design stage and the distance H of the dielectric member 50 having the preset radius of curvature is changed using the changing mechanism 60 shown in FIGS. Good.
[第2の実施の形態]
 第1の実施の形態では、誘電体部材50は、半円筒状であった。第2の実施の形態では、誘電体部材50は、水平面内において山形に折り曲げられている。第1の実施の形態と同じ部分は、同じ符号を付して説明を省略し、異なる部分を説明する。
 図12は、第2の実施の形態が適用されるセクタアンテナ10の構成の一例を示す図である。
 第2の実施の形態が適用されるセクタアンテナ10における誘電体部材50は、ダイポール素子110に対向する部分が山形に折り曲げられている。
 なお、図12には、後述する開き角θが180°未満である場合を示す。この場合、誘電体部材50は、反射板120からダイポール素子110の中央部に立てた垂線と交差する部分が最もダイポール素子110から遠い距離にあり、水平面内において左右方向にいくにしたがい近い距離になる。すなわち、誘電体部材50は、ダイポール素子110側から凸状に屈曲している。
 この逆であってもよい。この場合には、誘電体部材50は、ダイポール素子110側から凹状に屈曲している。
[Second Embodiment]
In the first embodiment, the dielectric member 50 has a semi-cylindrical shape. In the second embodiment, the dielectric member 50 is bent in a mountain shape in the horizontal plane. The same parts as those of the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different parts are described.
FIG. 12 is a diagram illustrating an example of the configuration of the sector antenna 10 to which the second exemplary embodiment is applied.
In the dielectric member 50 in the sector antenna 10 to which the second embodiment is applied, a portion facing the dipole element 110 is bent in a mountain shape.
FIG. 12 shows a case where an opening angle θ described later is less than 180 °. In this case, the dielectric member 50 has a portion that intersects the perpendicular line standing from the reflecting plate 120 at the center of the dipole element 110 at a distance farthest from the dipole element 110, and is closer to the distance in the horizontal direction in the horizontal plane. Become. That is, the dielectric member 50 is bent in a convex shape from the dipole element 110 side.
The reverse is also possible. In this case, the dielectric member 50 is bent in a concave shape from the dipole element 110 side.
<ビーム幅の変化>
 図13は、アレイアンテナ40と誘電体部材50との水平面内の断面図である。図13(a)は、開き角θが180°未満の場合、図13(b)は、開き角θが180°超の場合である。
 自由空間での電波の波長をλとするとき、反射板120とダイポール素子110との距離D及びダイポール素子110の水平面内での幅Wは第1の実施の形態と同様である。そして、ダイポール素子110から誘電体部材50の山形の中央部までを距離H、誘電体部材50の山形の角度を開き角θとする。
<Change in beam width>
FIG. 13 is a cross-sectional view of the array antenna 40 and the dielectric member 50 in the horizontal plane. FIG. 13A shows a case where the opening angle θ is less than 180 °, and FIG. 13B shows a case where the opening angle θ exceeds 180 °.
When the wavelength of the radio wave in the free space is λ, the distance D between the reflector 120 and the dipole element 110 and the width W of the dipole element 110 in the horizontal plane are the same as in the first embodiment. The distance H is from the dipole element 110 to the central portion of the mountain shape of the dielectric member 50, and the angle of the mountain shape of the dielectric member 50 is the opening angle θ.
 図14は、放射素子(ダイポール素子110)から誘電体部材50までの距離Hを変化させた場合の水平面内のビーム幅及び利得の変化を示す図である。図14(a)は、縦軸をビーム幅(°)及び利得(dBi)、横軸を誘電体部材50までの距離Hとしたグラフ、図14(b)は、ビーム幅(°)及び利得(dBi)と誘電体部材50までの距離Hとの関係を示す表である。
 ビーム幅(°)及び利得(dBi)は、誘電体部材50の厚さtを5mm、開き角θを135°、比誘電率εを6.4とし、シミュレーションにより求めた。
 図14に示すように、誘電体部材50を設けない場合(誘電体部材なし)に、ビーム幅は、64.1°、利得は、15.0dBiである。
FIG. 14 is a diagram showing changes in the beam width and gain in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed. 14A is a graph in which the vertical axis indicates the beam width (°) and gain (dBi), and the horizontal axis indicates the distance H to the dielectric member 50. FIG. 14B shows the beam width (°) and gain. It is a table | surface which shows the relationship between (dBi) and the distance H to the dielectric material member 50. FIG.
The beam width (°) and gain (dBi) were obtained by simulation with the thickness t of the dielectric member 50 being 5 mm, the opening angle θ being 135 °, and the relative dielectric constant ε r being 6.4.
As shown in FIG. 14, when the dielectric member 50 is not provided (no dielectric member), the beam width is 64.1 ° and the gain is 15.0 dBi.
 ビーム幅は、誘電体部材50を設けると、誘電体部材50を設けない場合より狭くなる。そして、ビーム幅は、誘電体部材50までの距離Hが0.50λから0.62λへと大きくなるにしたがい、63.2°から53.7°へと連続的に狭くなる。そして、距離Hが0.50λと0.62λとの間におけるビーム幅の変化量は、9.5°である。
 利得は、誘電体部材50を設けると、誘電体部材50を設けない場合より高くなる。そして、利得は、誘電体部材50までの距離Hが0.50λから0.62λへと大きくなるにしたがい、15.2dBiから15.9dBiへと連続的に高くなる。そして、距離Hが0.50λと0.62λとの間における利得の変化量は、-0.7dBiである。
The beam width is narrower when the dielectric member 50 is provided than when the dielectric member 50 is not provided. The beam width continuously decreases from 63.2 ° to 53.7 ° as the distance H to the dielectric member 50 increases from 0.50λ to 0.62λ. The amount of change in beam width when the distance H is between 0.50λ and 0.62λ is 9.5 °.
The gain becomes higher when the dielectric member 50 is provided than when the dielectric member 50 is not provided. The gain increases continuously from 15.2 dBi to 15.9 dBi as the distance H to the dielectric member 50 increases from 0.50λ to 0.62λ. The amount of change in gain when the distance H is between 0.50λ and 0.62λ is −0.7 dBi.
 すなわち、山形の誘電体部材50の場合、誘電体部材50を設けない場合より、ビーム幅が狭くなり、利得が高くなる。そして、誘電体部材50までの距離Hが大きくなるにしたがい、ビーム幅が狭くなるとともに、利得が高くなる。 That is, in the case of the mountain-shaped dielectric member 50, the beam width becomes narrower and the gain becomes higher than when the dielectric member 50 is not provided. As the distance H to the dielectric member 50 increases, the beam width decreases and the gain increases.
 すなわち、第1の実施の形態で説明した半円筒状の誘電体部材50の代わりに、山形の誘電体部材50を設けても、ダイポール素子110から誘電体部材50までの距離Hを変更することで、セクタアンテナ10の放射特性が調整される。
 したがって、初期の設計段階において誘電体部材50の開き角θを設定し、その予め設定された開き角θを有する誘電体部材50を図8から図11に示した変更機構60を用いて距離Hを変更すればよい。
That is, the distance H from the dipole element 110 to the dielectric member 50 can be changed even if the mountain-shaped dielectric member 50 is provided instead of the semi-cylindrical dielectric member 50 described in the first embodiment. Thus, the radiation characteristic of the sector antenna 10 is adjusted.
Accordingly, the opening angle θ of the dielectric member 50 is set in the initial design stage, and the dielectric member 50 having the preset opening angle θ is set to the distance H using the changing mechanism 60 shown in FIGS. Can be changed.
 図15は、誘電体部材50の開き角θを変化させた場合の水平面内のビーム幅の変化を示す図である。図15(a)は、縦軸をビーム幅(°)、横軸を誘電体部材50の開き角(θ)としたグラフ、図15(b)は、ビーム幅(°)と誘電体部材50の開き角(θ)との関係を示す表である。
 ビーム幅(°)は、誘電体部材50の厚さtを5mm、比誘電率εを6.4とし、シミュレーションにより求めた。
 図15に示すように、開き角θが90°の場合及び120°の場合には、ビーム幅は、64.8°である。開き角θが150°から270°に大きくなるにしたがい、ビーム幅は61.5°から49.5°へと狭くなる。つまり、開き角θが120°以上において、開き角θが180°である平面の場合を挟んで、ビーム幅は、開き角θが大きくなるにしたがい、連続的に狭くなる。
FIG. 15 is a diagram showing a change in the beam width in the horizontal plane when the opening angle θ of the dielectric member 50 is changed. 15A is a graph in which the vertical axis indicates the beam width (°) and the horizontal axis indicates the opening angle (θ) of the dielectric member 50. FIG. 15B shows the beam width (°) and the dielectric member 50. It is a table | surface which shows the relationship with the opening angle ((theta)).
The beam width (°) was obtained by simulation with the thickness t of the dielectric member 50 being 5 mm and the relative dielectric constant ε r being 6.4.
As shown in FIG. 15, when the opening angle θ is 90 ° and 120 °, the beam width is 64.8 °. As the opening angle θ increases from 150 ° to 270 °, the beam width decreases from 61.5 ° to 49.5 °. That is, with the opening angle θ of 120 ° or more, the beam width is continuously narrowed as the opening angle θ increases, with the case of a plane having an opening angle θ of 180 °.
 すなわち、誘電体部材50をダイポール素子110の前面に配置し、ダイポール素子110に対する開き角θを変更することで、セクタアンテナ10の放射特性であるビーム幅が変更される。なお、開き角θを変化させることは、誘電体部材50とダイポール素子110との距離を変更することになる。
 なお、ここでは示していないが、ビーム幅の変化に伴って、利得も変化する。
 したがって、例えば2枚の誘電体板を蝶番で接続して誘電体部材50を構成して、開き角θを変更可能な構造とし、蝶番の位置を固定したうえで、誘電体部材50の両端部(水平面と交差する端部)とダイポール素子110との距離を変更すればよい。これには、図8から図11に示した変更機構60を変更することで対応できる。
That is, the beam width which is the radiation characteristic of the sector antenna 10 is changed by disposing the dielectric member 50 in front of the dipole element 110 and changing the opening angle θ with respect to the dipole element 110. Note that changing the opening angle θ changes the distance between the dielectric member 50 and the dipole element 110.
Although not shown here, the gain also changes as the beam width changes.
Therefore, for example, two dielectric plates are connected by a hinge to form the dielectric member 50 so that the opening angle θ can be changed, the position of the hinge is fixed, and both ends of the dielectric member 50 are fixed. What is necessary is just to change the distance of (the edge part which cross | intersects a horizontal surface) and the dipole element 110. FIG. This can be dealt with by changing the changing mechanism 60 shown in FIGS.
 すなわち、基地局アンテナ1(セクタアンテナ10)を設置した後に、設置された状態において、基地局アンテナ1を構成するセクタアンテナ10毎にビーム幅を調整することにより、設置された環境に適するように、基地局アンテナ1(セクタアンテナ10)の放射特性を調整しうる。 That is, after the base station antenna 1 (sector antenna 10) is installed, the beam width is adjusted for each sector antenna 10 constituting the base station antenna 1 in the installed state so that it is suitable for the installed environment. The radiation characteristics of the base station antenna 1 (sector antenna 10) can be adjusted.
 また、第1の実施の形態において示した誘電体部材50が半円筒状である場合において、半円筒状の誘電体部材50の曲率半径を変更することによっても、ビーム幅及び利得を変更することができる。
 この場合、例えば、水平面内において複数の誘電体板を複数の蝶番を用いて接続することで誘電体部材50を構成し、誘電体部材50の形状を疑似的に半円筒状にするとともに、隣接する誘電体板間の角度を蝶番で調整することで、その曲率半径を変更し、誘電体部材50の両端部(水平面と交差する端部)とダイポール素子110との距離を変更すればよい。これには、図8から図11に示した変更機構60を変更することで対応できる。
Further, when the dielectric member 50 shown in the first embodiment is a semicylindrical shape, the beam width and the gain can also be changed by changing the radius of curvature of the semicylindrical dielectric member 50. Can do.
In this case, for example, a dielectric member 50 is configured by connecting a plurality of dielectric plates using a plurality of hinges in a horizontal plane, and the shape of the dielectric member 50 is made a pseudo-cylindrical shape and adjacent to each other. The curvature radius is changed by adjusting the angle between the dielectric plates to be hinged, and the distance between the both end portions (end portions intersecting the horizontal plane) of the dielectric member 50 and the dipole element 110 may be changed. This can be dealt with by changing the changing mechanism 60 shown in FIGS.
 図16は、開き角θを180°とした誘電体部材50において、放射素子(ダイポール素子110)から誘電体部材50までの距離Hを変化させた場合の水平面内のビーム幅及び利得の変化を示す図である。図16(a)は、縦軸をビーム幅(°)及び利得(dBi)、横軸を誘電体部材50までの距離Hとしたグラフ、図16(b)は、ビーム幅(°)及び利得(dBi)と誘電体部材50までの距離Hとの関係を示す表である。
 ビーム幅(°)及び利得(dBi)は、誘電体部材50の厚さtを5mm、比誘電率εを6.4とし、シミュレーションにより求めた。左側の軸は、ビーム幅(°)、右側の軸は、利得(dBi)である。開き角θが180°であるので、平坦な誘電体部材50をダイポール素子110の前面に配置した場合になる。
 図16に示すように、誘電体部材50を設けない場合(誘電体部材なし)に、ビーム幅は、64.1°、利得は、15.0dBiである。
FIG. 16 shows changes in the beam width and gain in the horizontal plane when the distance H from the radiating element (dipole element 110) to the dielectric member 50 is changed in the dielectric member 50 having an opening angle θ of 180 °. FIG. 16A is a graph in which the vertical axis indicates the beam width (°) and gain (dBi), and the horizontal axis indicates the distance H to the dielectric member 50. FIG. 16B shows the beam width (°) and gain. It is a table | surface which shows the relationship between (dBi) and the distance H to the dielectric material member 50. FIG.
The beam width (°) and gain (dBi) were obtained by simulation, assuming that the thickness t of the dielectric member 50 was 5 mm and the relative dielectric constant ε r was 6.4. The left axis is the beam width (°), and the right axis is the gain (dBi). Since the opening angle θ is 180 °, the flat dielectric member 50 is disposed on the front surface of the dipole element 110.
As shown in FIG. 16, when the dielectric member 50 is not provided (no dielectric member), the beam width is 64.1 ° and the gain is 15.0 dBi.
 ビーム幅は、誘電体部材50を設けると、誘電体部材50を設けない場合より狭くなる。そして、ビーム幅は、距離Hが0.53λにおいて最大値の60.0°となり、距離Hがこれより小さくても大きくても、ビーム幅は狭くなる。そして、距離Hが0.50λと0.62λとの間のビーム幅の変化量は、12.0°である。
 利得は、誘電体部材50を設けると、誘電体部材50を設けない場合より高くなる。そして、利得は、誘電体部材50までの距離Hが0.50λ、0.53λにおいて、最小値の15.3dBiとなり、距離Hが0.56λから0.62λへと大きくなるにしたがい、15.5dBiから16.2dBiへと連続的に高くなる。そして、距離Hが0.50λと0.62λとの間の利得の変化量は、-0.9dBiである。
The beam width is narrower when the dielectric member 50 is provided than when the dielectric member 50 is not provided. The beam width is 60.0 ° which is the maximum value when the distance H is 0.53λ, and the beam width becomes narrow regardless of whether the distance H is smaller or larger. The amount of change in beam width when the distance H is between 0.50λ and 0.62λ is 12.0 °.
The gain becomes higher when the dielectric member 50 is provided than when the dielectric member 50 is not provided. Then, the gain becomes the minimum value of 15.3 dBi when the distance H to the dielectric member 50 is 0.50λ and 0.53λ, and as the distance H increases from 0.56λ to 0.62λ, 15. It continuously increases from 5 dBi to 16.2 dBi. The amount of change in gain when the distance H is between 0.50λ and 0.62λ is −0.9 dBi.
 以上説明したように、平坦な誘電体部材50(開き角θ=180°)を用いても、ビーム幅及び利得を変化させることができる。しかし、第1の実施の形態で示した誘電体部材50が半円筒状である場合(図5、図6参照)や第2の実施の形態で示した誘電体部材50が山形である場合(図14、15参照)の場合の方が、誘電体部材50が平坦である場合に比べて、ビーム幅の変化が連続的であって、放射特性の調整に用いやすい。 As described above, the beam width and gain can be changed even when the flat dielectric member 50 (opening angle θ = 180 °) is used. However, when the dielectric member 50 shown in the first embodiment has a semi-cylindrical shape (see FIGS. 5 and 6) or when the dielectric member 50 shown in the second embodiment has a mountain shape ( In the case of FIGS. 14 and 15), the change in beam width is continuous compared to the case where the dielectric member 50 is flat, and it is easy to use for adjusting the radiation characteristics.
 以上においては、誘電体部材50をダイポール素子110に対して移動させたが、ダイポール素子110を誘電体部材50に対して移動させてもよい。 In the above, the dielectric member 50 is moved with respect to the dipole element 110, but the dipole element 110 may be moved with respect to the dielectric member 50.
 以上の説明では、2GHz付近の周波数帯域の電波を送受信するダイポール素子110について説明した。他の周波数帯の電波についても同様に適用しうる。 In the above description, the dipole element 110 that transmits and receives radio waves in the frequency band near 2 GHz has been described. The same applies to radio waves in other frequency bands.
 その他、本発明の趣旨に反しない限りにおいて様々な変形や実施の形態の組み合わせを行っても構わない。 In addition, various modifications and combinations of embodiments may be performed without departing from the spirit of the present invention.
1…基地局アンテナ、2…セル、3、3-1~3-6…セクタ、10、10-1~10-6…セクタアンテナ、11…メインローブ、20…鉄塔、40…アレイアンテナ、50…誘電体部材、60…変更機構、80…レドーム、100…アンテナユニット、110、111、112…ダイポール素子、120…反射板 DESCRIPTION OF SYMBOLS 1 ... Base station antenna, 2 ... Cell, 3-1, 3-1 to 3-6 ... Sector, 10, 10-1 to 10-6 ... Sector antenna, 11 ... Main lobe, 20 ... Steel tower, 40 ... Array antenna, 50 ... Dielectric member, 60 ... Change mechanism, 80 ... Radome, 100 ... Antenna unit, 110, 111, 112 ... Dipole element, 120 ... Reflector

Claims (6)

  1.  放射素子と、
     前記放射素子から予め定められた距離に設けられた反射板と、
     前記放射素子の前記反射板とは逆側に、当該放射素子に対向して設けられた誘電体部材と、
     設置された状態において、前記放射素子と前記誘電体部材との距離を変更する変更手段と
    を備えるアンテナ。
    A radiating element;
    A reflector provided at a predetermined distance from the radiating element;
    On the opposite side of the radiating element from the reflecting plate, a dielectric member provided to face the radiating element;
    An antenna comprising: changing means for changing a distance between the radiating element and the dielectric member in an installed state.
  2.  前記誘電体部材は、前記放射素子に対して凹状または凸状に屈曲していることを特徴とする請求項1に記載のアンテナ。 The antenna according to claim 1, wherein the dielectric member is bent concavely or convexly with respect to the radiating element.
  3.  前記変更手段は、前記反射板から前記放射素子の中央部に向かう垂線に沿って、前記誘電体部材の位置を移動させることで、当該放射素子と当該誘電体部材との距離を変更することを特徴とする請求項1又は2に記載のアンテナ。 The changing means changes the distance between the radiating element and the dielectric member by moving the position of the dielectric member along a perpendicular line from the reflector toward the center of the radiating element. The antenna according to claim 1 or 2, characterized in that
  4.  前記変更手段は、前記誘電体部材の水平面内における両端部間の開き角を変更することで、前記放射素子と当該誘電体部材との距離を変更することを特徴とする請求項2に記載のアンテナ。 The said change means changes the distance of the said radiation | emission element and the said dielectric member by changing the opening angle between the both ends in the horizontal surface of the said dielectric member, The said dielectric member is characterized by the above-mentioned. antenna.
  5.  前記変更手段は、前記誘電体部材の前記放射素子に対する位置を鉛直方向下方から変更できるように構成されていることを特徴とする請求項1乃至4のいずれか1項に記載のアンテナ。 The antenna according to any one of claims 1 to 4, wherein the changing unit is configured to change a position of the dielectric member with respect to the radiating element from below in a vertical direction.
  6.  放射素子と、
     前記放射素子から予め定められた距離に設けられた反射板と、
     前記放射素子の前記反射板とは逆側に、当該放射素子に対向して設けられた誘電体部材と、
     設置された状態において、前記放射素子と前記誘電体部材との距離を変更する変更手段と、
    を有するアンテナと、
     前記アンテナを覆うレドームと
    を備えるセクタアンテナ。
    A radiating element;
    A reflector provided at a predetermined distance from the radiating element;
    On the opposite side of the radiating element from the reflecting plate, a dielectric member provided to face the radiating element;
    In the installed state, changing means for changing the distance between the radiating element and the dielectric member;
    An antenna having
    A sector antenna comprising a radome covering the antenna.
PCT/JP2017/006842 2017-02-23 2017-02-23 Antenna and sector antenna WO2018154676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006842 WO2018154676A1 (en) 2017-02-23 2017-02-23 Antenna and sector antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006842 WO2018154676A1 (en) 2017-02-23 2017-02-23 Antenna and sector antenna

Publications (1)

Publication Number Publication Date
WO2018154676A1 true WO2018154676A1 (en) 2018-08-30

Family

ID=63253600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006842 WO2018154676A1 (en) 2017-02-23 2017-02-23 Antenna and sector antenna

Country Status (1)

Country Link
WO (1) WO2018154676A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297102A (en) * 1988-10-04 1990-04-09 Mitsubishi Electric Corp Plane antenna equipment
JPH09232858A (en) * 1996-02-21 1997-09-05 Anten Kk V/h polarized wave diversity antenna and its array antenna
JP2004015408A (en) * 2002-06-06 2004-01-15 Oki Electric Ind Co Ltd Slot array antenna
JP2007081554A (en) * 2005-09-12 2007-03-29 Fujitsu Ltd Glass antenna and manufacturing method thereof
JP2007201561A (en) * 2006-01-23 2007-08-09 Maspro Denkoh Corp Antenna
JP2007258902A (en) * 2006-03-22 2007-10-04 Denso Corp In-vehicle dielectric antenna and adjustment method of antenna element thereof
US20160009848A1 (en) * 2013-03-15 2016-01-14 Basf Se System And Method For Forming A Polyurethane Foam Including On Demand Introduction Of Additive To Resin Component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297102A (en) * 1988-10-04 1990-04-09 Mitsubishi Electric Corp Plane antenna equipment
JPH09232858A (en) * 1996-02-21 1997-09-05 Anten Kk V/h polarized wave diversity antenna and its array antenna
JP2004015408A (en) * 2002-06-06 2004-01-15 Oki Electric Ind Co Ltd Slot array antenna
JP2007081554A (en) * 2005-09-12 2007-03-29 Fujitsu Ltd Glass antenna and manufacturing method thereof
JP2007201561A (en) * 2006-01-23 2007-08-09 Maspro Denkoh Corp Antenna
JP2007258902A (en) * 2006-03-22 2007-10-04 Denso Corp In-vehicle dielectric antenna and adjustment method of antenna element thereof
US20160009848A1 (en) * 2013-03-15 2016-01-14 Basf Se System And Method For Forming A Polyurethane Foam Including On Demand Introduction Of Additive To Resin Component

Similar Documents

Publication Publication Date Title
EP3005481B1 (en) Lens antenna
US5629713A (en) Horizontally polarized antenna array having extended E-plane beam width and method for accomplishing beam width extension
US8068053B1 (en) Low-profile lens method and apparatus for mechanical steering of aperture antennas
US7847749B2 (en) Integrated waveguide cavity antenna and reflector RF feed
Kesavan et al. A dual-plane beam-sweeping millimeter-wave antenna using reconfigurable frequency selective surfaces
JP2000068738A (en) Antenna supporter
US9450304B1 (en) Beam switching antenna based on frequency selective surfaces
US20050003864A1 (en) Antenna system
US7006053B2 (en) Adjustable reflector system for fixed dipole antenna
KR20180121372A (en) Antenna device for vehicle
KR101111578B1 (en) Dual polarized antenna for bidirectional communication
JP5307651B2 (en) Antenna device
US9935365B2 (en) Slot array antenna with dielectric slab for electrical control of beam down-tilt
JP2006166404A (en) Antenna device
US20220216619A1 (en) Base station antenna including fabrey-perot cavities
WO2018154676A1 (en) Antenna and sector antenna
US10581152B2 (en) Biaxial antenna comprising a first fixed part, a second rotary part and a rotary joint
US10483651B2 (en) Transmit-array antenna comprising a mechanism for reorienting the direction of the beam
WO2015159871A1 (en) Antenna and sector antenna
JP2008028795A (en) Antenna apparatus
Mittra et al. Fixed-and Scanned-Beam Antenna Arrays for 5G Applications
US9966647B1 (en) Optically defined antenna
US7095383B2 (en) Field configurable radiation antenna device
WO2003017424A1 (en) Waveguide antennas
KR20110134004A (en) Omni antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP