WO2018146940A1 - Composition for electrostatic spray and electrostatic spray device - Google Patents

Composition for electrostatic spray and electrostatic spray device Download PDF

Info

Publication number
WO2018146940A1
WO2018146940A1 PCT/JP2017/044761 JP2017044761W WO2018146940A1 WO 2018146940 A1 WO2018146940 A1 WO 2018146940A1 JP 2017044761 W JP2017044761 W JP 2017044761W WO 2018146940 A1 WO2018146940 A1 WO 2018146940A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
electrode
spray
electrostatic spraying
tip
Prior art date
Application number
PCT/JP2017/044761
Other languages
French (fr)
Japanese (ja)
Inventor
亜丘子 原田
バン タン ダウ
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2018146940A1 publication Critical patent/WO2018146940A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D9/00Chemical paint or ink removers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds

Definitions

  • the present invention relates to a composition for electrostatic spraying and an electrostatic spraying apparatus.
  • an electrostatic spraying device using electrohydrodynamics (EHD) is used.
  • EHD electrohydrodynamics
  • compositions are known as a composition containing an arbitrary active ingredient sprayed by such an electrostatic spraying apparatus (see Patent Documents 1 and 2).
  • composition of Patent Document 1 has specific electrical conductivity, viscosity, and surface tension.
  • composition of Patent Document 2 includes a solvent and an electrolyte having a specific dissociation constant.
  • Japanese Patent Publication Japanese Unexamined Patent Application Publication No. 2014-018363 (Released on February 3, 2014)”
  • the present invention has been made in view of this point.
  • the objective of this invention is providing the composition for electrostatic spraying which can suppress formation of the foreign material in the 1st electrode of an electrostatic spraying apparatus, even when it is a case where it sprays for a long time with an electrostatic spraying apparatus. is there.
  • composition for electrostatic spraying which concerns on 1 aspect of this invention applies a voltage by the voltage application part between the 1st electrode and 2nd electrode of an electrostatic spraying apparatus, and from the front-end
  • the number of charges provided from the composition to the first electrode is represented by the following formula (2).
  • the voltage application The number of charges provided from the portion to the second electrode is represented by the following formula (3).
  • the formation of foreign matter in the first electrode of the electrostatic spraying device can be suppressed even when used for a long time by the electrostatic spraying device. There is an effect.
  • FIG. It is a functional block diagram which shows the structure of the principal part of the electrostatic spraying apparatus which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the external appearance of the electrostatic spraying apparatus of FIG. It is a figure for demonstrating a spray electrode and a reference electrode. It is a figure which shows the compounding example of each component of a composition as a comparative example and Example of Embodiment 2.
  • FIG. It is an enlarged view of the front-end
  • FIG. It is an enlarged view of the front-end
  • FIG. It is a figure which shows the compounding example of each component of a composition as a comparative example and Example of Embodiment 2.
  • FIG. It is a figure which shows the evaluation result of the influence which the said composition has on a Taylor corn when the composition which concerns on FIG. 8 is sprayed for a long period of time.
  • FIG. It is a figure which shows the evaluation result of the influence which the said composition has on a Taylor corn when the composition which concerns on FIG. 10 is sprayed for a long period of time.
  • the electrodes (specifically, the first electrode and the second electrode) used in the electrostatic spraying device are sprayed every time a certain amount of the composition is sprayed (in other words, in order to maintain good spraying performance). , every time it was used, it was replaced with a new electrode.
  • the inventors tried spraying a larger amount of the composition with the same electrode than before or using the same electrode for a longer period of time than the conventional one in consideration of environmental load. It has been found that foreign matter is formed on the electrode (in other words, the first electrode) to which the object is sprayed.
  • FIG. 12 is a schematic diagram for explaining the cause of the occurrence of foreign matter at the tip of the first electrode.
  • the first electrode is made of SUS will be described as an example, but the first electrode is not limited to SUS.
  • a voltage is applied by a voltage application unit between the first electrode and the second electrode so that the first electrode is at a higher potential than the second electrode, whereby the first electrode is connected to the second electrode. Electrons (e ⁇ ) move to
  • the iron ions combine with oxygen in the air, and iron oxide adheres to the tip of the first electrode.
  • the iron oxide accumulates at the tip of the first electrode along with spraying a certain amount of the composition and using the electrostatic spraying device for a certain period.
  • An example of the iron oxide accumulated at the tip of the first electrode is shown in FIG.
  • FIG. 14 shows a method of detecting a part of the composition that does not diffuse into the air using oil sensitive paper when the composition is sprayed using the first electrode shown in FIG. Specifically, the oil sensitive paper is exposed about 15 cm vertically below the first electrode while the composition is sprayed in the horizontal direction using the first electrode shown in FIG. Among the sprayed composition, a part of the composition (particles) that cannot be suspended (diffused) in the air falls on the oil-sensitive paper. The fallen composition is represented as black dots on the oil sensitive paper.
  • FIG. 15 shows the oil sensitive paper obtained by the method shown in FIG.
  • the particle size of the composition is large. Accordingly, from FIGS. 13 to 15, when the composition is sprayed using the first electrode with the metal oxide attached to the tip, the particle size of the sprayed composition cannot be controlled, and as a result, the large particle size It was found that a part of the composition was also sprayed. This is thought to be because the Taylor Cone formed at the tip of the first electrode becomes unstable when the composition is sprayed due to the metal oxide adhering to the tip of the first electrode. It is done.
  • the inventors have intensively studied to solve the above problems (in other words, problems).
  • the ratio (k) of the number of charges provided from the composition to the first electrode and the number of charges provided from the voltage application unit to the second electrode is in a desired range, that is, 0.01 ⁇ k ⁇ 50. It became clear that the above problems can be solved by satisfying the above. Hereinafter, an embodiment of the present invention will be described.
  • Embodiment 1 the electrostatic spraying apparatus 100 according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
  • the electrostatic spraying apparatus 100 is an apparatus used for spraying aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning chemicals, etc., and includes a spray electrode (first electrode) 1 and a reference electrode ( 2nd electrode) 2 and the power supply device 3 are provided.
  • FIG. 2 is a view for explaining the external appearance of the electrostatic spraying device 100.
  • the electrostatic spraying device 100 may have a rectangular shape.
  • a spray electrode 1 and a reference electrode 2 are disposed on one surface of the electrostatic spraying device 100.
  • the spray electrode 1 is located in the vicinity of the reference electrode 2.
  • An annular opening 11 is formed so as to surround the spray electrode 1, and an annular opening 12 is formed so as to surround the reference electrode 2.
  • a voltage is applied between the spray electrode 1 and the reference electrode 2, whereby an electric field is formed between the spray electrode 1 and the reference electrode 2.
  • positively charged droplets in other words, a composition
  • the reference electrode 2 ionizes the air near the electrode by negatively charging the air near the electrode.
  • the negatively charged air moves away from the reference electrode 2 by the repulsive force between the electric field formed between the electrodes and the negatively charged air particles. This movement generates a flow of air (hereinafter also referred to as an ion flow), and the positively charged droplets are sprayed away from the electrostatic spraying device 100 by the ion flow.
  • the electrostatic spraying device 100 may have other shapes instead of a rectangular shape. Moreover, the opening 11 and the opening 12 may have a shape different from the annular shape, and the opening dimensions thereof may be adjusted as appropriate.
  • FIG. 3 is a view for explaining the spray electrode 1 and the reference electrode 2.
  • the spray electrode 1 has a conductive conduit such as a metal capillary (for example, 304 type stainless steel, copper, aluminum, titanium, nickel, etc.) and a tip 5 that is a tip.
  • the spray electrode 1 is electrically connected to the reference electrode 2 via the power supply device 3.
  • a spray substance (in other words, the composition described herein, hereinafter also referred to as “liquid”) is present in the conductive conduit, and the spray substance is sprayed from the tip 5.
  • the spray electrode 1 has an inclined surface 9 that is inclined with respect to the axial center of the spray electrode 1, and the tip is narrower and sharper toward the tip 5.
  • the reference electrode 2 is made of a conductive rod such as a metal pin (for example, 304 type steel pin, copper, aluminum, titanium, nickel, etc.).
  • the spray electrode 1 and the reference electrode 2 are spaced apart from each other at a predetermined interval and are arranged in parallel to each other.
  • the spray electrode 1 and the reference electrode 2 are arranged, for example, at an interval of 8 mm from each other.
  • the power supply device 3 applies a high voltage between the spray electrode 1 and the reference electrode 2.
  • the power supply device 3 applies a high voltage (for example, 3 to 7 kV) between 1 to 30 kV between the spray electrode 1 and the reference electrode 2.
  • a high voltage for example, 3 to 7 kV
  • an electric field is formed between the electrodes, and an electric dipole is generated inside the dielectric 10.
  • the spray electrode 1 is positively charged and the reference electrode 2 is negatively charged (or vice versa).
  • negative dipoles are generated on the surface of the dielectric 10 closest to the positive spray electrode 1
  • positive dipoles are generated on the surface of the dielectric 10 closest to the negative reference electrode 2. Are emitted by the spray electrode 1 and the reference electrode 2.
  • the charge generated in the reference electrode 2 is a charge having a polarity opposite to the polarity of the liquid. Accordingly, the charge of the liquid is balanced by the charge generated at the reference electrode 2. Therefore, the electrostatic spraying device 100 can achieve spray stability based on the principle of charge balance.
  • the electrostatic spraying device 100 is configured to spray the liquid from the tip (tip portion 5) of the spray electrode 1 by applying a voltage between the spray electrode 1 and the reference electrode 2. .
  • the dielectric 10 is made of a dielectric material such as nylon (for example, nylon 6, nylon 11, nylon 12, and nylon 66), polypropylene, or a polyacetyl-polytetrafluoroethylene mixture.
  • the dielectric 10 supports the spray electrode 1 at the spray electrode mounting portion 6 and supports the reference electrode 2 at the reference electrode mounting portion 7.
  • FIG. 1 is a functional block diagram illustrating a configuration of a main part of the electrostatic spraying apparatus 100.
  • the power supply device 3 includes a power supply 21, a high voltage generator (voltage application unit) 22, and a control circuit (control unit) 24.
  • the high voltage generator 22 may be referred to as a PU (Power Unit).
  • the power source 21 supplies power necessary for the operation of the electrostatic spraying device 100.
  • the power source 21 may be a well-known power source and includes a main power source or one or more batteries.
  • the power source 21 is preferably a low voltage power source or a direct current (DC) power source, and is configured by combining one or more dry batteries, for example. The number of batteries depends on the required voltage level and the power consumption of the power source.
  • the power source 21 supplies DC power (in other words, DC current and DC voltage) to the oscillator 221 of the high voltage generator 22.
  • the high voltage generator 22 includes an oscillator 221, a transformer 222, and a converter circuit 223.
  • the oscillator 221 converts DC power (in other words, DC current and DC voltage) into AC power (in other words, AC current and AC voltage).
  • a transformer 222 is connected to the oscillator 221.
  • the transformer 222 converts the magnitude of the alternating current voltage (or the magnitude of the alternating current).
  • a converter circuit 223 is connected to the transformer 222.
  • Converter circuit 223 generates a desired voltage and converts AC power (in other words, AC current and AC voltage) into DC power (in other words, DC current and DC voltage).
  • the converter circuit 223 includes a charge pump and a rectifier circuit.
  • a typical converter circuit is a Cockloft-Walton circuit.
  • the control circuit 24 outputs a PWM (Pulse Width Modulation) signal set to a constant value to the oscillator 221.
  • PWM is a method of controlling current and / or voltage by changing the time (pulse width) for outputting a pulse signal.
  • the pulse signal is an electric signal that repeats ON and OFF.
  • the pulse signal is represented by a rectangular wave
  • the pulse width that is the voltage output time is represented by the horizontal axis of the rectangular wave.
  • a timer time switch that operates at a fixed period
  • the pulse width is controlled by setting the position at which the pulse signal is turned ON in this timer.
  • the ratio at which the pulse signal is turned on in a certain period is called “duty cycle” (also referred to as “duty ratio”).
  • the control circuit 24 includes a microprocessor 241 to cope with various applications.
  • the microprocessor 241 may be designed to further adjust the duty cycle of the PWM signal based on the feedback information (ambient environment information) 25.
  • the feedback information 25 includes environmental conditions (temperature, humidity, and / or atmospheric pressure), liquid amount, arbitrary settings by the user, and the like. Such information is given to the microprocessor 241 as analog information or digital information, and is processed by the microprocessor 241.
  • the microprocessor 241 is designed to be able to compensate to improve the quality and stability of the spray by changing either the spray interval, the time to turn on the spray, or the applied voltage based on the input information. May be.
  • “spray” intends to spray the composition.
  • the power supply device 3 includes a temperature detection element such as a thermistor used for temperature compensation. At this time, the power supply device 3 changes the spray interval according to the change in temperature detected by the temperature detection element.
  • the spray interval is a liquid spray interval in which the electrostatic spraying apparatus 100 sprays the liquid and stops the spraying as one cycle. For example, spraying is turned on for 35 seconds (while the power source is applied with a high voltage between the first electrode and the second electrode during spraying) and spraying is stopped (off) for 145 seconds (the power source is stopped during spraying).
  • the spray interval can be changed by software built in the microprocessor 241 of the power source.
  • the spray interval may be controlled to increase from the set point when the temperature increases and to decrease from the set point when the temperature decreases.
  • the increase and decrease of the spray interval preferably follow a predetermined index determined by the characteristics of the liquid to be sprayed.
  • the compensation change amount of the spray interval may be limited so that the spray interval changes only between 0 to 60 ° C. (for example, 10 to 45 ° C.). As such, extreme temperatures detected and recorded by the temperature sensing element are considered errors and are not considered, and for high and low temperatures, an acceptable but not optimal spray interval is set.
  • the measurement result of the temperature sensor 251, the measurement result of the humidity sensor 252, the measurement result of the pressure sensor 253, and the information 254 on the contents of the liquid for example, the liquid storage amount is measured with a level meter Information indicating measurement results), measurement results of voltage and current sensor 255, and the like.
  • the information 254 related to the contents of the liquid may include information indicating the viscosity of the liquid (for example, information indicating the result of measuring the viscosity of the liquid with a viscosity sensor (not shown)).
  • ambient environment information information indicating the surrounding environment of the electrostatic spraying apparatus 100
  • Feedback information 25 may be used as the surrounding environment information.
  • the ambient environment information may include information on at least one of the ambient temperature (temperature), humidity, and atmospheric pressure around the electrostatic spraying device 100.
  • the ambient environment information includes (i) information (temperature information) indicating the temperature around the electrostatic spraying device 100, and (ii) information (humidity) indicating the humidity around the electrostatic spraying device 100. Information) is included as an example.
  • control circuit 24 includes an output port for outputting information from the microprocessor 241, and outputs a PWM signal to the oscillator 221 via the output port.
  • the spray duty cycle and spray interval may also be controlled via the same output port that outputs the PWM signal. While the electrostatic spraying device 100 sprays liquid, a PWM signal is output from the control circuit 24 to the oscillator 221.
  • the control circuit 24 controls the output voltage of the high voltage generator 22 by controlling the amplitude, frequency, duty cycle, or voltage on-off time (or a combination thereof) of the alternating current in the oscillator 221. It may be possible to control.
  • the electrostatic spraying device 100 includes the spray electrode (first electrode) 1, the reference electrode (second electrode) 2, and the power supply device 3. This makes it possible to form an electric field between the spray electrode 1 and the reference electrode 2. And by using the said electric field, it becomes possible to spray the composition containing arbitrary active ingredients from the front-end
  • the composition according to Embodiment 2 applies a voltage between a spray electrode (first electrode) and a reference electrode (second electrode) of an electrostatic spraying device by a high voltage generator (voltage application unit), It is a composition for electrostatic spraying for spraying from the tip of the spray electrode.
  • the composition contains (a) an active ingredient and (b) an antioxidant ingredient, and is represented by the following formula (1).
  • (a) active ingredient may be referred to as “(a) ingredient” or “(a)”.
  • antioxidant component may be referred to as “(b) component” or “(b)”.
  • the Avogadro constant adopts the 2014 recommended value published by the Committee on Data for Science and Technology (CODATA). Specifically, the Avogadro constant is 6.02140857 (74) ⁇ 10 23 mol ⁇ 1 .
  • the recommended value for 2014 published by the Science and Technology Data Committee is adopted as the elementary electric quantity.
  • the elementary electric charge is 1.6021766208 (98) ⁇ 10 ⁇ 19 C.
  • the number in parentheses indicates the uncertainty of the last two digits of 1.6021766208.
  • the value of the Avogadro constant and the elementary electric quantity can be different from the above values as a result of further scientific accuracy obtained in the process of obtaining the Avogadro constant and the elementary electric quantity. If the Avogadro constant and the elementary electric charge become different values in the future, the desirable value of k may be changed based on the new value.
  • composition according to Embodiment 2 is preferably sprayed by the electrostatic spraying device 100.
  • the spray electrode, the reference electrode, and the high voltage generator according to the second embodiment can be the spray electrode, the reference electrode, and the high voltage generator according to the first embodiment.
  • k satisfies 0.01 ⁇ k ⁇ 50.
  • k is more preferably 0.01 ⁇ k ⁇ 15, further preferably 0.01 ⁇ k ⁇ 13, and particularly preferably 0.03 ⁇ k ⁇ 10.
  • k is less than 0.01, foreign matter adheres to the tip of the spray electrode of the electrostatic spraying device due to the spraying of the composition over a long period of time, thereby forming a stable Taylor cone at the tip of the spray electrode. No longer formed.
  • an antioxidant component in the composition is deposited on the tip of the spray electrode of the electrostatic spraying device by spraying the composition over a long period of time.
  • Taylor cone refers to a cone-shaped region (in other words, a cone shape) formed from the composition at the tip of the spray electrode of the electrostatic spraying device when the composition is sprayed.
  • a stable Taylor corn refers to a Taylor corn that is always kept in a certain shape from the beginning to the end of spraying the composition.
  • the current flowing from the second electrode to the first electrode is preferably 0.01 ⁇ C / s to 1000 ⁇ C / s, more preferably 0.1 ⁇ C / s to 100 ⁇ C / s, and 0.2 ⁇ C / s to 20 ⁇ C / s. Is more preferable, and 0.5 ⁇ C / s to 5 ⁇ C / s is particularly preferable.
  • the current is in the above range, there is an advantage that the formation of foreign matters on the spray electrode of the electrostatic spraying apparatus after spraying the composition can be suppressed, and the Taylor cone is stable over a long period of time.
  • An active ingredient intends an active ingredient required when performing a desired process to a process target (object to be processed).
  • an active ingredient it is possible to select any ingredient according to the purpose of treatment.
  • the active ingredient (a) include, but are not limited to, a fragrance, an insecticide, an air cleaning agent and the like.
  • the active ingredient (a) may be hydrophilic or oily.
  • fragrance and the air cleaning agent include the fragrance and the air cleaning agent described in JP2012-149231A.
  • insecticides include the insecticides described in International Publication No. 2014/0888050.
  • the composition according to Embodiment 2 preferably contains (a) the active ingredient in an amount of 0.1 to 30 w / w%, more preferably 0.1 to 28 w / w% based on the total amount of the composition. Preferably, it contains 0.3 to 25 w / w%, more preferably 0.5 to 20 w / w%. If (a) the active ingredient is within the above range, the effect of (a) the active ingredient can be sufficiently exerted, and (a) even if the active ingredient is oily, There is no risk of the composition separating.
  • the antioxidant component is not particularly limited, but is preferably at least one selected from the group consisting of ascorbic acid, sodium ascorbate, tocopherol, dibutylhydroxytoluene, butylhydroxyanisole and tert-butylhydroquinone. Two or more antioxidant components may be selected from the group described above.
  • tocopherol examples include ⁇ -tocopherol, ⁇ -tocopherol, and ⁇ -tocopherol.
  • the composition according to Embodiment 2 preferably contains (b) an antioxidant component in an amount of 0.0001 to 1 w / w%, and 0.0001 to 0.8 w / w% based on the total amount of the composition. More preferably, 0.0001 to 0.5 w / w% is more preferable, and 0.0005 to 0.3 w / w% is particularly preferable.
  • the composition contains the antioxidant component (b) in the above range with respect to the total amount of the composition, there is an advantage that the formation of foreign matters in the spray electrode of the electrostatic spraying device after use of the composition can be suppressed .
  • the composition according to Embodiment 2 has an evaporation rate of 0.4 or more (c) alcohol, preferably an evaporation rate of 0.6 or more (c) alcohol, more preferably an evaporation rate of 0.8 or more. It is preferable that (c) alcohol is included.
  • the evaporation rate is a relative value when the evaporation rate of butyl acetate is 1.
  • the evaporation rate can be measured by the method of ASTM D3539-87.
  • the composition can increase the evaporation rate of the composition by containing (c) alcohol having an evaporation rate of 0.4 or more.
  • the (c) alcohol-containing composition having an evaporation rate of 0.4 or more has an advantage of being able to suppress dropping before the particles are diffused without being reduced in particle size after being sprayed.
  • (c) alcohol having an evaporation rate of 0.4 or more may be referred to as “(c) alcohol”, “(c) component”, or “(c)”.
  • the content of (c) alcohol contained in the composition can be appropriately set in consideration of the following points: (1) Physical properties of (a) and (b) contained in the composition; (2) The composition should be a uniform liquid.
  • the composition according to Embodiment 2 includes (c) an alcohol having an evaporation rate of 0.4 or more
  • the composition preferably includes water at the same time. If it is a mixture in which water and alcohol coexist, the boiling point of the mixture can be lowered by an azeotropic phenomenon. That is, with this configuration, by increasing the evaporation rate of the composition, the particles of the sprayed composition become smaller particles earlier in the air, and as a result, the active ingredient diffuses more widely into the air. Therefore, the composition having the above-described configuration has an advantage that it is possible to better prevent the particles from falling before being diffused without being reduced in particle size after being sprayed.
  • the composition according to Embodiment 2 preferably contains 5 to 50 w / w% of water and (c) alcohol having an evaporation rate of 0.4 or more based on the total amount of the composition.
  • the composition according to Embodiment 2 is such that the total amount of water and (c) alcohol having an evaporation rate of 0.4 or more is 5 to 50 w / w% with respect to the total amount of the composition.
  • the composition preferably contains 5 to 47 w / w% of water and (c) alcohol, more preferably 5 to 45 w / w%, more preferably 6 to 40 w / w, based on the total amount of the composition. It is particularly preferable that it contains w%.
  • composition according to Embodiment 2 may contain (d) other components as long as the effects caused by the components (a), (b) and (c), and the physical properties of these components are not affected.
  • examples of (d) other components include an electrolyte, a dispersant, an emulsifier, a vaporization accelerator, a surface tension adjusting component, and a viscosity adjusting component.
  • (d) other components may be referred to as “(d) component” or simply “(d)”.
  • the composition according to Embodiment 2 may contain a solvent that is liquid at room temperature in addition to the components (a) to (d).
  • “normal temperature” refers to a range of 5 ° C. or more and 35 ° C. or less (20 ⁇ 15 ° C.) defined by JIS Z 8703 (standard state of test place).
  • the solvent is not particularly limited as long as it does not affect the effects of the components (a) to (d) or the physical properties of the components (a) to (d). Specific examples of such a solvent include the solvents described in JP2012-149231A.
  • the composition according to Embodiment 2 contains (a) an active component and (b) an antioxidant component, and includes the number of charges provided from the composition to the first electrode, and the voltage application unit.
  • the ratio (k) to the number of charges provided to the two electrodes satisfies 0.01 ⁇ k ⁇ 50.
  • the method for spraying the composition according to Embodiment 3 is as follows: [1] A voltage is applied between the spray electrode (first electrode) and the reference electrode (second electrode) of the electrostatic spraying device by a high voltage generator (voltage application unit), thereby the spray electrode (first electrode).
  • a method for spraying a composition for electrostatic spraying comprising a step of spraying a composition for electrostatic spraying from the tip of an electrode), wherein the composition comprises (a) an active ingredient, (b) an antioxidant ingredient,
  • k represented by the following formula (1) satisfies 0.01 ⁇ k ⁇ 50, and the charge provided from the composition to the first electrode in the following formula (1)
  • the number is represented by the following formula (2).
  • the number of charges provided from the voltage application unit to the second electrode is represented by the following formula (3).
  • a method of spraying a composition of: k (number of charges provided from the composition to the first electrode) / (number of charges provided from the voltage application unit to the second electrode)
  • Number of charges donated from the composition to the first electrode molar concentration of the antioxidant component (mol / l) ⁇ number of electrons donated from one molecule of the antioxidant component to the first electrode ⁇ spray amount (l / s) X Avogadro constant (mol -1 )
  • Number of charges supplied from the voltage application unit to the second electrode current (C / s) / elementary electric charge (C) (3).
  • composition spraying method according to Embodiment 3 is preferably sprayed with the composition according to Embodiment 2.
  • the method for spraying a composition according to Embodiment 3 is preferably performed using the electrostatic spraying apparatus according to Embodiment 1.
  • composition spraying method according to an embodiment of the present invention may further have the following configuration.
  • the composition contains water and (c) alcohol having an evaporation rate of 0.4 or more in a total amount of 5 to 50 w / w% with respect to the total amount of the composition.
  • the spraying method according to any one of [1] to [3], wherein the speed is a relative value when the evaporation rate of butyl acetate is 1.
  • the antioxidant component (b) is at least one selected from the group consisting of ascorbic acid, sodium ascorbate, tocopherol, dibutylhydroxytoluene, butylhydroxyanisole and tert-butylhydroquinone.
  • the spraying method according to any one of [4].
  • the composition according to the first aspect of the present invention is for spraying from the tip of the first electrode by applying a voltage by a voltage application unit between the first electrode and the second electrode of the electrostatic spraying device.
  • the composition for electrostatic spraying wherein the composition contains (a) an active component and (b) an antioxidant component, and k represented by the following formula (1) is 0.01 ⁇ k ⁇ 50.
  • the number of charges provided from the composition to the first electrode is expressed by the following formula (2).
  • the second voltage is applied from the voltage application unit.
  • composition according to aspect 2 of the present invention may include the above-mentioned (a) active ingredient in an amount of 0.1 to 30 w / w% based on the total amount of the composition.
  • composition according to Embodiment 3 of the present invention may include 0.0001 to 1 w / w% of the above-mentioned (b) antioxidant component with respect to the total amount of the composition.
  • composition according to aspect 4 of the present invention contains water and (c) alcohol having an evaporation rate of 0.4 or more in a total amount of 5 to 50 w / w% with respect to the total amount of the composition.
  • the evaporation rate may be a relative value when the evaporation rate of butyl acetate is 1.
  • the composition having the above configuration can prevent the particles from falling before being diffused without being reduced in particle size after being sprayed.
  • the antioxidant component (b) is at least one selected from the group consisting of ascorbic acid, sodium ascorbate, tocopherol, dibutylhydroxytoluene, butylhydroxyanisole and tert-butylhydroquinone. It may be one.
  • the electrostatic spraying device according to aspect 6 of the present invention may spray the composition according to any one of the above aspects 1 to 5.
  • FIG. 4 is a diagram showing a blending example of each component of the composition.
  • FIG. 5 is an enlarged view of the tip of the spray electrode of the electrostatic spraying device after spraying the composition according to FIG. 4 for a long period of time.
  • compositions of Comparative Examples 1 and 2 and Examples 1 to 4 contain (a) peach flavor as an active ingredient. Further, the compositions of Comparative Example 2 and Examples 1 to 4 contain ascorbic acid as an antioxidant component (b).
  • FIG. 6 is a diagram showing a blending example of each component of the composition.
  • FIG. 7 is an enlarged view of the tip of the spray electrode of the electrostatic spray device after the composition according to FIG. 6 has been sprayed for a long time under various conditions.
  • the compositions of Comparative Example 3 and Example 5 include (a) a floral flavor as an active ingredient.
  • the composition of Example 5 contains ascorbic acid as an antioxidant component (b).
  • various conditions for spraying the composition are as follows. -Temperature ... as described in the figure (15 ° C, 25 ° C, or 35 ° C).
  • FIG. 8 is a diagram showing a blending example of each component of the composition.
  • FIG. 9 is a diagram showing an evaluation result of the influence of the composition on the Taylor cone when the composition according to FIG. 8 is sprayed for a long time.
  • compositions of Comparative Example 4 and Examples 6-18 included (a) floral fragrance as the active ingredient, and the compositions of Comparative Examples 5 and 19 were (a) active ingredient. Contains marine fragrance.
  • compositions of Examples 6 to 19 were prepared by using (b) sodium ascorbate, dibutylhydroxytoluene (BHT), butylhydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), or D- ⁇ as an antioxidant component.
  • BHT dibutylhydroxytoluene
  • BHA butylhydroxyanisole
  • TBHQ tert-butylhydroquinone
  • D- ⁇ antioxidant component
  • -Tocopherols are each included in the amounts described in the formulation example of FIG.
  • the various conditions for spraying the composition are as follows. ⁇ Temperature: room temperature ⁇ Amount of spray: 7.7 ⁇ 10 ⁇ 8 (l / s), 3 days (total 20 g) Current: 2.00 ⁇ 10 ⁇ 6 (C /
  • FIG. 9 the influence which a composition has on a Taylor cone was specifically evaluated as follows. Using the electrostatic spraying apparatus after spraying 20 g of the composition according to FIG. 8, the composition is sprayed again, and while spraying, the tip of the spray electrode of the electrostatic spraying apparatus is discharged from the tip. A Taylor cone composed of the composition was observed at 200 times using a microscope. At this time, evaluation was performed based on the following criteria. ... Foreign matter is not attached to the tip of the spray electrode, and a Taylor cone similar to the initial operation of the spray electrode (in other words, before spraying the composition for a long period of time) is formed. X: A foreign cone adheres to the tip of the spray electrode, so that a Taylor cone different from the initial operation is formed.
  • the Taylor cone observed in the initial stage of operation includes generation of a single jet in which the composition is sprayed from only one position at the tip of the spray electrode.
  • generation of multi-jets in which the composition is sprayed from a plurality of locations at the tip of the spray electrode can be mentioned.
  • FIG. 16 shows the composition sprayed from the tip of the spray electrode (in other words, the Taylor cone formed) when the composition is sprayed using the spray electrode having a foreign substance attached to the tip. .
  • k 0, in other words, (b) the composition containing no antioxidant component was confirmed regardless of the (a) active ingredient contained: (1) the composition After spraying for a long time, foreign matter was formed at the tip of the spray electrode; and (2) After spraying the composition for a long time, a Taylor cone different from the initial operation was formed by the foreign matter. Further, from FIG. 9, the composition in which k is 0.01 ⁇ k ⁇ 50 confirmed the following regardless of the types and amounts of (a) active component and (b) antioxidant component: 1) After spraying the composition for a long time, no foreign matter was formed at the tip of the spray electrode; and (2) After spraying the composition for a long time, That formed.
  • composition which concerns on Example 7 contains 0.10 w / w% of (a) component, after spraying a composition, it is confirmed that a floral fragrance is filled in space, (a) It was confirmed that such an effect was sufficiently exhibited.
  • composition according to Example 8 containing 30.00 w / w% of an oily floral fragrance as the component (a), and 49.9945 w / w% of water and (c) alcohol, separation of the component (a) Neither precipitation of the component (b) nor separation of the composition was confirmed.
  • FIG. 10 is a diagram showing a blending example of each component of the composition.
  • FIG. 11 is a diagram showing an evaluation result of the influence of the composition on the Taylor cone when the composition according to FIG. 10 is sprayed for a long period of time.
  • compositions of Examples 20 to 22 contain (a) floral fragrance as an active ingredient and (b) sodium ascorbate as an antioxidant ingredient. Moreover, ethanol, isopropyl alcohol, or 1-butanol is included as (d) component.
  • various conditions for spraying the composition are as follows. ⁇ Temperature: room temperature ⁇ Amount of spray: 7.7 ⁇ 10 ⁇ 8 (l / s), 3 days (total 20 g) Current: 2.00 ⁇ 10 ⁇ 6 (C / s) Moreover, in FIG. 11, the influence which the composition has on the Taylor corn used the same method as the evaluation method and evaluation criteria of the Taylor corn in FIG.
  • the inventors prepared a composition not containing water and (c) alcohol, and evaluated the evaporation rate of the composition and the compositions of Examples 20 to 22. Specifically, a fixed amount (0.2 ml) of the composition was placed in a petri dish and left at room temperature for 30 minutes, and the weight of the composition before and after being left was measured. As a result, it was found that 0% of the composition containing no water and (c) alcohol and 15% of the compositions of Examples 20 to 22 were evaporated. From the above results, it was found that the composition containing water and (c) alcohol evaporates faster than the composition containing no water and (c) alcohol.
  • composition containing no water and (c) alcohol was prepared, and the composition and the compositions of Examples 20 to 22 were sprayed with an electrostatic spraying apparatus as shown in FIG. A composition that falls without diffusing into it was detected using oil sensitive paper.
  • the composition containing no water and (c) alcohol clearly observed more black spots derived from the composition on the oil-sensitive paper than the compositions of Examples 20-22. From the above results, it was found that the composition containing water and (c) alcohol diffused more widely in the air than the composition containing no water and (c) alcohol.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Insects & Arthropods (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

The present invention addresses the problem of providing a composition for an electrostatic spray device which is capable of preventing formation of contaminants on a first electrode of an electrostatic spray device even when sprayed with the electrostatic spray device for a long time. Provided is a composition for an electrostatic spray device which contains (a) an active component and (b) an antioxidant component, and satisfies 0.01 ≤ k ≤ 50, wherein (k) is the ratio between the number of charges provided from the composition to the first electrode and the number of charges provided from a voltage application unit to a second electrode.

Description

静電噴霧用の組成物および静電噴霧装置Composition for electrostatic spraying and electrostatic spraying device
 本発明は、静電噴霧用の組成物および静電噴霧装置に関する。 The present invention relates to a composition for electrostatic spraying and an electrostatic spraying apparatus.
 従来、任意の活性成分を空間中に噴霧するため、電気流体力学(EHD:Electro Hydrodynamics)を利用した静電噴霧装置が用いられている。このような静電噴霧装置で噴霧される、任意の活性成分を含む組成物としては、様々な組成物が知られている(特許文献1および2参照)。 Conventionally, in order to spray an arbitrary active ingredient into a space, an electrostatic spraying device using electrohydrodynamics (EHD) is used. Various compositions are known as a composition containing an arbitrary active ingredient sprayed by such an electrostatic spraying apparatus (see Patent Documents 1 and 2).
 例えば、特許文献1の組成物は、特定の電気伝導率、粘度、および表面張力を有しているものである。 For example, the composition of Patent Document 1 has specific electrical conductivity, viscosity, and surface tension.
 また、特許文献2の組成物は、溶媒、および特定の解離定数を有する電解質を含んでいるものである。 The composition of Patent Document 2 includes a solvent and an electrolyte having a specific dissociation constant.
日本国公開特許公報「特開2014-018363号(2014年2月3日公開)」Japanese Patent Publication “Japanese Unexamined Patent Application Publication No. 2014-018363 (Released on February 3, 2014)” 日本国公開特許公報「特開2012-149231号(2012年8月9日公開)」Japanese Patent Publication “JP 2012-149231 (released on August 9, 2012)”
 しかしながら、従来の組成物を静電噴霧装置によって長期間噴霧した場合、使用条件に依存して静電噴霧装置の第1電極(スプレー電極)に異物の形成が生じうる。 However, when a conventional composition is sprayed for a long time by an electrostatic spraying device, foreign matter may be formed on the first electrode (spray electrode) of the electrostatic spraying device depending on the use conditions.
 本発明は、かかる点を鑑みてなされたものである。本発明の目的は、静電噴霧装置によって長期間噴霧された場合であっても、静電噴霧装置の第1電極における異物の形成を抑制できる、静電噴霧用の組成物を提供することにある。 The present invention has been made in view of this point. The objective of this invention is providing the composition for electrostatic spraying which can suppress formation of the foreign material in the 1st electrode of an electrostatic spraying apparatus, even when it is a case where it sprays for a long time with an electrostatic spraying apparatus. is there.
 本発明の一態様に係る静電噴霧用の組成物は、静電噴霧装置の第1電極と第2電極との間に電圧印加部によって電圧を印加することにより、当該第1電極の先端から噴霧するための、静電噴霧用の組成物であり、上記組成物は、(a)活性成分と(b)酸化防止成分とを含有し、下記式(1)で表されるkが0.01≦k≦50を満たし、下記式(1)において、上記組成物から上記第1電極へ供与される電荷数は、下記式(2)で表され、下記式(1)において、上記電圧印加部から上記第2電極へ供与される電荷数は、下記式(3)で表される。 The composition for electrostatic spraying which concerns on 1 aspect of this invention applies a voltage by the voltage application part between the 1st electrode and 2nd electrode of an electrostatic spraying apparatus, and from the front-end | tip of the said 1st electrode. A composition for spraying for spraying, wherein the composition contains (a) an active component and (b) an antioxidant component, and k represented by the following formula (1) is 0.00. In the following formula (1), the number of charges provided from the composition to the first electrode is represented by the following formula (2). In the following formula (1), the voltage application The number of charges provided from the portion to the second electrode is represented by the following formula (3).
 k=(組成物から第1電極へ供与される電荷数)/(電圧印加部から第2電極へ供与される電荷数)・・・式(1)
 組成物から第1電極へ供与される電荷数=酸化防止成分のモル濃度(mol/l)×酸化防止成分の1分子から第1電極へ供与される電子の数×噴霧量(l/s)×アボガドロ定数(mol-1)・・・式(2)
 電圧印加部から第2電極へ供与される電荷数=電流(C/s)/電気素量(C)・・・式(3)
k = (number of charges provided from the composition to the first electrode) / (number of charges provided from the voltage application unit to the second electrode) Formula (1)
Number of charges donated from the composition to the first electrode = molar concentration of the antioxidant component (mol / l) × number of electrons donated from one molecule of the antioxidant component to the first electrode × spray amount (l / s) X Avogadro constant (mol -1 ) Formula (2)
Number of charges provided from the voltage application unit to the second electrode = current (C / s) / elementary electric charge (C) (3)
 本発明の一態様に係る静電噴霧用の組成物によれば、静電噴霧装置によって長期間使用された場合であっても、静電噴霧装置の第1電極における異物の形成を抑制できる、という効果を奏する。 According to the composition for electrostatic spraying according to one aspect of the present invention, the formation of foreign matter in the first electrode of the electrostatic spraying device can be suppressed even when used for a long time by the electrostatic spraying device. There is an effect.
実施形態1に係る静電噴霧装置の要部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the principal part of the electrostatic spraying apparatus which concerns on Embodiment 1. FIG. 図1の静電噴霧装置の外観を説明するための図である。It is a figure for demonstrating the external appearance of the electrostatic spraying apparatus of FIG. スプレー電極、および基準電極を説明するための図である。It is a figure for demonstrating a spray electrode and a reference electrode. 実施形態2の比較例および実施例として、組成物の各成分の配合例を示す図である。It is a figure which shows the compounding example of each component of a composition as a comparative example and Example of Embodiment 2. FIG. 静電噴霧装置のスプレー電極の先端の拡大図である。It is an enlarged view of the front-end | tip of the spray electrode of an electrostatic spraying apparatus. 実施形態2の比較例および実施例として、組成物の各成分の配合例を示す図である。It is a figure which shows the compounding example of each component of a composition as a comparative example and Example of Embodiment 2. FIG. 静電噴霧装置のスプレー電極の先端の拡大図である。It is an enlarged view of the front-end | tip of the spray electrode of an electrostatic spraying apparatus. 実施形態2の比較例および実施例として、組成物の各成分の配合例を示す図である。It is a figure which shows the compounding example of each component of a composition as a comparative example and Example of Embodiment 2. FIG. 図8に係る組成物を長期間噴霧した場合に当該組成物がテイラーコーンへ与える影響、の評価結果を示す図である。It is a figure which shows the evaluation result of the influence which the said composition has on a Taylor corn when the composition which concerns on FIG. 8 is sprayed for a long period of time. 実施形態2の実施例として、組成物の各成分の配合例を示す図である。It is a figure which shows the example of a mixing | blending of each component of a composition as an Example of Embodiment 2. FIG. 図10に係る組成物を長期間噴霧した場合に当該組成物がテイラーコーンへ与える影響、の評価結果を示す図である。It is a figure which shows the evaluation result of the influence which the said composition has on a Taylor corn when the composition which concerns on FIG. 10 is sprayed for a long period of time. 第1電極の先端に異物が発生する原因を説明する概略図である。It is the schematic explaining the cause which a foreign material generate | occur | produces at the front-end | tip of a 1st electrode. 第1電極の先端に蓄積した鉄酸化物の一例を示す図である。It is a figure which shows an example of the iron oxide accumulate | stored in the front-end | tip of a 1st electrode. 図13に示した第1電極を用いて組成物を噴霧した場合に空気中に拡散しない組成物の一部を感油紙を用いて検出する方法を示す図である。It is a figure which shows the method of detecting a part of composition which does not spread | diffuse in air when a composition is sprayed using the 1st electrode shown in FIG. 13 using oil sensitive paper. 図14に示した方法で得られた感油紙を示す図である。It is a figure which shows the oil sensitive paper obtained by the method shown in FIG. 先端に異物が付着しているスプレー電極を用いて組成物を噴霧するときの、スプレー電極の先端部から噴霧される組成物を示す図である。It is a figure which shows the composition sprayed from the front-end | tip part of a spray electrode when spraying a composition using the spray electrode which the foreign material has adhered to the front-end | tip.
 〔本願発明の着想〕
 発明者らは、従来の組成物を静電噴霧装置によって長期間噴霧した場合、使用条件に依存して静電噴霧装置の第1電極(スプレー電極)に異物の形成が生じうることに着目した。そして発明者らは、第1電極に異物が形成されると、静電噴霧装置の噴霧性能が低下することを確認した。
[Concept of the Invention of the Present Application]
The inventors have noted that when a conventional composition is sprayed for a long time by an electrostatic spraying device, foreign matter can be formed on the first electrode (spray electrode) of the electrostatic spraying device depending on the use conditions. . And the inventors confirmed that the spraying performance of the electrostatic spraying device deteriorates when foreign matter is formed on the first electrode.
 一般的に、静電噴霧装置で使用される電極(具体的には、第1電極および第2電極)は、良好な噴霧性能を保つために、組成物を一定量噴霧するごとに(言い換えれば、一定期間使用されるごとに)、新しい電極と取り換えられていた。発明者らは、環境負荷への考慮から、従来よりも多量の組成物を同一の電極を用いて噴霧すること、または従来よりも長い期間同一の電極を使用すること、を試したところ、組成物が噴霧される電極(換言すれば第1電極)に異物の形成が生じることを見出した。 In general, the electrodes (specifically, the first electrode and the second electrode) used in the electrostatic spraying device are sprayed every time a certain amount of the composition is sprayed (in other words, in order to maintain good spraying performance). , Every time it was used, it was replaced with a new electrode. The inventors tried spraying a larger amount of the composition with the same electrode than before or using the same electrode for a longer period of time than the conventional one in consideration of environmental load. It has been found that foreign matter is formed on the electrode (in other words, the first electrode) to which the object is sprayed.
 第1電極に異物が形成される原因を明らかにするため、発明者らが上記異物を解析したところ、異物の主な成分は、第1電極の成分由来の金属酸化物であることが判明した。この結果に基づき、発明者らは、以下の(1)~(6)のステップにて異物が発生すると仮定した。図12を参照して、具体的に以下のとおり説明する。図12は、第1電極の先端に異物が発生する原因を説明する概略図である。なお、下記では、第1電極がSUS製である場合を例示して記載するが、第1電極はSUSには限らない。 In order to clarify the cause of the formation of foreign matter on the first electrode, the inventors analyzed the foreign matter and found that the main component of the foreign matter is a metal oxide derived from the component of the first electrode. . Based on this result, the inventors assumed that foreign matters are generated in the following steps (1) to (6). With reference to FIG. 12, it demonstrates concretely as follows. FIG. 12 is a schematic diagram for explaining the cause of the occurrence of foreign matter at the tip of the first electrode. In the following, a case where the first electrode is made of SUS will be described as an example, but the first electrode is not limited to SUS.
 (1)第1電極と第2電極との間に、第1電極が第2電極に比べて高電位となるように、電圧印加部によって電圧を印加することによって、第1電極から第2電極へ、電子(e)が移動する。 (1) A voltage is applied by a voltage application unit between the first electrode and the second electrode so that the first electrode is at a higher potential than the second electrode, whereby the first electrode is connected to the second electrode. Electrons (e ) move to
 (2)第1電極から放出される電子は、組成物由来の電子であるため、第1電極からは+(正)に帯電した組成物が噴霧される。一方、第1電極から放出された電子、および電圧印加部から供与される電子、が第2電極の先端から放出される。 (2) Since the electrons emitted from the first electrode are electrons derived from the composition, a positively charged composition is sprayed from the first electrode. On the other hand, electrons emitted from the first electrode and electrons provided from the voltage application unit are emitted from the tip of the second electrode.
 (3)第1電極からの第2電極への電子の放出において、組成物から第1電極へ電子が十分供与できない場合には、第1電極そのものを構成している金属(主に鉄)から電子が放出されることとなる。 (3) In the emission of electrons from the first electrode to the second electrode, when electrons cannot be sufficiently supplied from the composition to the first electrode, from the metal (mainly iron) constituting the first electrode itself Electrons will be emitted.
 (4)鉄からの電子の放出は、鉄のイオン化(Fe→Fe2++2e、言い換えれば鉄の酸化)を生じる(なお鉄に比べれば少量だが、鉄以外の金属(例えばマンガン)の酸化も生じる)。 (4) The emission of electrons from iron causes ionization of iron (Fe → Fe 2+ + 2e , in other words, oxidation of iron) (which is a small amount compared to iron, but also oxidation of metals other than iron (eg manganese)). Occur).
 (5)上記鉄イオンが空気中の酸素と結合し、鉄酸化物が第1電極の先端に付着する。 (5) The iron ions combine with oxygen in the air, and iron oxide adheres to the tip of the first electrode.
 (6)当該鉄酸化物は、一定量の組成物の噴霧および静電噴霧装置の一定期間の使用と共に、第1電極の先端に蓄積する。第1電極の先端に蓄積した鉄酸化物の一例を図13に示す。 (6) The iron oxide accumulates at the tip of the first electrode along with spraying a certain amount of the composition and using the electrostatic spraying device for a certain period. An example of the iron oxide accumulated at the tip of the first electrode is shown in FIG.
 図13で示したような、先端に金属酸化物が付着した第1電極を用いて、組成物を噴霧した場合には、空気中に浮遊(拡散)できず、落下する粒子(換言すれば組成物)が存在する。そのような組成物の存在は、図14に図示した方法などによって、確認することができる。図14は、図13に示した第1電極を用いて組成物を噴霧した場合に、空気中に拡散しない組成物の一部を感油紙を用いて検出する方法を示している。具体的には、図13で示した第1電極を用いて組成物を水平方向に噴霧する間、第1電極の約15cm鉛直下方に感油紙を晒す。噴霧された組成物のうち、空気中に浮遊(拡散)できなかった組成物(粒子)の一部は、感油紙上に落下する。落下した組成物は、感油紙上で黒い点として表される。図15は、図14で示した方法で得られた感油紙を示している。 When the composition is sprayed using the first electrode with the metal oxide attached to the tip as shown in FIG. 13, particles that cannot fall (diffuse) in the air and fall (in other words, the composition There is a thing). The presence of such a composition can be confirmed by the method illustrated in FIG. FIG. 14 shows a method of detecting a part of the composition that does not diffuse into the air using oil sensitive paper when the composition is sprayed using the first electrode shown in FIG. Specifically, the oil sensitive paper is exposed about 15 cm vertically below the first electrode while the composition is sprayed in the horizontal direction using the first electrode shown in FIG. Among the sprayed composition, a part of the composition (particles) that cannot be suspended (diffused) in the air falls on the oil-sensitive paper. The fallen composition is represented as black dots on the oil sensitive paper. FIG. 15 shows the oil sensitive paper obtained by the method shown in FIG.
 噴霧された組成物が空気中に浮遊できない理由としては、当該組成物の粒子サイズが大きいことがあげられる。従って、図13~15から、先端に金属酸化物が付着した第1電極を用いて組成物を噴霧する場合には、噴霧される組成物の粒子サイズをコントロールできず、その結果、大きな粒子サイズの組成物も一部噴霧されていることがわかった。これは、第1電極の先端に金属酸化物が付着することによって、組成物を噴霧するときに第1電極の先端に形成されるテイラーコーン(Taylor cone)が不安定になるためであると考えられる。 The reason why the sprayed composition cannot float in the air is that the particle size of the composition is large. Accordingly, from FIGS. 13 to 15, when the composition is sprayed using the first electrode with the metal oxide attached to the tip, the particle size of the sprayed composition cannot be controlled, and as a result, the large particle size It was found that a part of the composition was also sprayed. This is thought to be because the Taylor Cone formed at the tip of the first electrode becomes unstable when the composition is sprayed due to the metal oxide adhering to the tip of the first electrode. It is done.
 発明者らは、上記問題点(言い換えれば課題)を解決するために、鋭意検討を行った。その結果、組成物から第1電極へ供与される電荷数と、電圧印加部から第2電極へ供与される電荷数との比(k)が、所望の範囲、すなわち0.01≦k≦50を満たすことにより、上記課題を解決できることが明らかになった。以下に、本発明の一実施形態について説明する。 The inventors have intensively studied to solve the above problems (in other words, problems). As a result, the ratio (k) of the number of charges provided from the composition to the first electrode and the number of charges provided from the voltage application unit to the second electrode is in a desired range, that is, 0.01 ≦ k ≦ 50. It became clear that the above problems can be solved by satisfying the above. Hereinafter, an embodiment of the present invention will be described.
 〔実施形態1〕
 以下、図1~図3を参照し、実施形態1に係る静電噴霧装置100について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付している。それらの名称および機能も同じである。従って、それらについての詳細な説明は繰り返さない。
Embodiment 1
Hereinafter, the electrostatic spraying apparatus 100 according to the first embodiment will be described with reference to FIGS. 1 to 3. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 〔静電噴霧装置100〕
 静電噴霧装置100は、芳香油、農産物用化学物質、医薬品、農薬、殺虫剤、空気清浄化薬剤等の噴霧等に用いられる装置であり、スプレー電極(第1電極)1と、基準電極(第2電極)2と、電源装置3とを備える。
[Electrostatic spray device 100]
The electrostatic spraying apparatus 100 is an apparatus used for spraying aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning chemicals, etc., and includes a spray electrode (first electrode) 1 and a reference electrode ( 2nd electrode) 2 and the power supply device 3 are provided.
 まず、静電噴霧装置100の外観を図2により説明する。図2は、静電噴霧装置100の外観を説明するための図である。 First, the external appearance of the electrostatic spraying device 100 will be described with reference to FIG. FIG. 2 is a view for explaining the external appearance of the electrostatic spraying device 100.
 図示するように、静電噴霧装置100は、直方形状でありうる。静電噴霧装置100の一面に、スプレー電極1および基準電極2が配設されている。スプレー電極1は、基準電極2の近傍に位置する。また、スプレー電極1を取り囲むように環状の開口11が、基準電極2を取り囲むように環状の開口12が、それぞれ形成されている。 As shown in the figure, the electrostatic spraying device 100 may have a rectangular shape. A spray electrode 1 and a reference electrode 2 are disposed on one surface of the electrostatic spraying device 100. The spray electrode 1 is located in the vicinity of the reference electrode 2. An annular opening 11 is formed so as to surround the spray electrode 1, and an annular opening 12 is formed so as to surround the reference electrode 2.
 スプレー電極1と基準電極2との間には電圧が印加され、それによりスプレー電極1と基準電極2との間に電場が形成される。スプレー電極1からは正帯電した液滴(換言すれば組成物)が噴霧される。基準電極2は、電極近傍の空気を負帯電させることによって電極近傍の空気をイオン化する。そして、負帯電された空気は、電極間に形成された電場と負帯電された空気粒子間との反発力とによって基準電極2から遠ざかる動きをする。この動きが空気の流れ(以下、イオン流と称する場合もある)を生み、このイオン流によって、正帯電した液滴が静電噴霧装置100から離れる方向へと噴霧される。 A voltage is applied between the spray electrode 1 and the reference electrode 2, whereby an electric field is formed between the spray electrode 1 and the reference electrode 2. From the spray electrode 1, positively charged droplets (in other words, a composition) are sprayed. The reference electrode 2 ionizes the air near the electrode by negatively charging the air near the electrode. The negatively charged air moves away from the reference electrode 2 by the repulsive force between the electric field formed between the electrodes and the negatively charged air particles. This movement generates a flow of air (hereinafter also referred to as an ion flow), and the positively charged droplets are sprayed away from the electrostatic spraying device 100 by the ion flow.
 静電噴霧装置100は、直方形状ではなく、他の形状であってもよい。また、開口11、および開口12は、環状とは異なる形状であってよく、その開口寸法も適宜調整されうる。 The electrostatic spraying device 100 may have other shapes instead of a rectangular shape. Moreover, the opening 11 and the opening 12 may have a shape different from the annular shape, and the opening dimensions thereof may be adjusted as appropriate.
 〔スプレー電極1、基準電極2〕
 スプレー電極1、および基準電極2を図3により説明する。図3は、スプレー電極1、および基準電極2を説明するための図である。
[Spray electrode 1, reference electrode 2]
The spray electrode 1 and the reference electrode 2 will be described with reference to FIG. FIG. 3 is a view for explaining the spray electrode 1 and the reference electrode 2.
 スプレー電極1は、金属製キャピラリ(例えば、304型ステンレス鋼、銅、アルミ、チタン、ニッケルなど)等の導電性導管と、先端部である先端部5とを有する。スプレー電極1は、電源装置3を介して基準電極2と電気的に接続される。導電性導管内には噴霧物質(換言すれば本明細書に記載される組成物であり、以下、「液体」とも称する)が存在し、当該噴霧物質が先端部5から噴霧される。スプレー電極1は、スプレー電極1の軸心に対して傾斜する傾斜面9を有し、先端部5に向かうほど先端が細く、尖った形状である。 The spray electrode 1 has a conductive conduit such as a metal capillary (for example, 304 type stainless steel, copper, aluminum, titanium, nickel, etc.) and a tip 5 that is a tip. The spray electrode 1 is electrically connected to the reference electrode 2 via the power supply device 3. A spray substance (in other words, the composition described herein, hereinafter also referred to as “liquid”) is present in the conductive conduit, and the spray substance is sprayed from the tip 5. The spray electrode 1 has an inclined surface 9 that is inclined with respect to the axial center of the spray electrode 1, and the tip is narrower and sharper toward the tip 5.
 基準電極2は、金属ピン(例えば、304型スチールピン、銅、アルミ、チタン、ニッケルなど)等の導電性ロッドからなる。スプレー電極1および基準電極2は、一定の間隔をあけて離間し、互いに平行に配置されている。スプレー電極1および基準電極2は、例えば、互いに8mmの間隔をあけて配置される。 The reference electrode 2 is made of a conductive rod such as a metal pin (for example, 304 type steel pin, copper, aluminum, titanium, nickel, etc.). The spray electrode 1 and the reference electrode 2 are spaced apart from each other at a predetermined interval and are arranged in parallel to each other. The spray electrode 1 and the reference electrode 2 are arranged, for example, at an interval of 8 mm from each other.
 電源装置3は、スプレー電極1と基準電極2との間に高電圧を印加する。例えば、電源装置3は、スプレー電極1と基準電極2との間に1~30kVの間の高電圧(例えば、3~7kV)を印加する。高電圧が印加されると電極間に電場が形成され、誘電体10の内部に電気双極子が生じる。このとき、スプレー電極1は正に帯電し、基準電極2は負に帯電する(その逆でもよい)。そして、負の双極子が正のスプレー電極1に最も近い誘電体10の表面に生じ、正の双極子が負の基準電極2に最も近い誘電体10の表面に生じ、帯電したガスおよび物質種が、スプレー電極1および基準電極2によって放出される。ここで、上述したように、基準電極2において生成される電荷は、液体の極性とは逆の極性の電荷である。従って、液体の電荷は、基準電極2において生成される電荷によって平衡化される。それゆえ、静電噴霧装置100は、電荷平衡の原理に基づき、噴霧の安定性を図ることができる。 The power supply device 3 applies a high voltage between the spray electrode 1 and the reference electrode 2. For example, the power supply device 3 applies a high voltage (for example, 3 to 7 kV) between 1 to 30 kV between the spray electrode 1 and the reference electrode 2. When a high voltage is applied, an electric field is formed between the electrodes, and an electric dipole is generated inside the dielectric 10. At this time, the spray electrode 1 is positively charged and the reference electrode 2 is negatively charged (or vice versa). Then, negative dipoles are generated on the surface of the dielectric 10 closest to the positive spray electrode 1, and positive dipoles are generated on the surface of the dielectric 10 closest to the negative reference electrode 2. Are emitted by the spray electrode 1 and the reference electrode 2. Here, as described above, the charge generated in the reference electrode 2 is a charge having a polarity opposite to the polarity of the liquid. Accordingly, the charge of the liquid is balanced by the charge generated at the reference electrode 2. Therefore, the electrostatic spraying device 100 can achieve spray stability based on the principle of charge balance.
 このように、静電噴霧装置100は、スプレー電極1と基準電極2との間に電圧を印加することにより、スプレー電極1の先端(先端部5)から液体を噴霧できるように構成されている。 As described above, the electrostatic spraying device 100 is configured to spray the liquid from the tip (tip portion 5) of the spray electrode 1 by applying a voltage between the spray electrode 1 and the reference electrode 2. .
 誘電体10は、例えばナイロン(例えば、ナイロン6、ナイロン11、ナイロン12および、ナイロン66)、ポリプロピレン、またはポリアセチル-ポリテトラフルオロエチレン混合物などの誘電体材料からなる。誘電体10は、スプレー電極1をスプレー電極取付部6において支持し、基準電極2を基準電極取付部7において支持する。 The dielectric 10 is made of a dielectric material such as nylon (for example, nylon 6, nylon 11, nylon 12, and nylon 66), polypropylene, or a polyacetyl-polytetrafluoroethylene mixture. The dielectric 10 supports the spray electrode 1 at the spray electrode mounting portion 6 and supports the reference electrode 2 at the reference electrode mounting portion 7.
 〔電源装置3〕
 電源装置3を図1により説明する。図1は、静電噴霧装置100の要部の構成を示す機能ブロック図である。
[Power supply 3]
The power supply device 3 will be described with reference to FIG. FIG. 1 is a functional block diagram illustrating a configuration of a main part of the electrostatic spraying apparatus 100.
 電源装置3は、電源21と、高電圧発生装置(電圧印加部)22と、制御回路(制御部)24とを備える。高電圧発生装置22は、PU(Power Unit)と称されてもよい。 The power supply device 3 includes a power supply 21, a high voltage generator (voltage application unit) 22, and a control circuit (control unit) 24. The high voltage generator 22 may be referred to as a PU (Power Unit).
 電源21は、静電噴霧装置100の運転に必要な電源を供給する。電源21は、周知の電源であってよく、主電源または1つ以上のバッテリーを含む。電源21は、低電圧電源、直流(DC)電源が好ましく、例えば、1つ以上の乾電池を組み合わせて構成される。電池の個数は、必要な電圧レベルと電源の消費電力とによって決まる。電源21は、高電圧発生装置22の発振器221に直流電力(換言すれば、直流電流および直流電圧)を供給する。 The power source 21 supplies power necessary for the operation of the electrostatic spraying device 100. The power source 21 may be a well-known power source and includes a main power source or one or more batteries. The power source 21 is preferably a low voltage power source or a direct current (DC) power source, and is configured by combining one or more dry batteries, for example. The number of batteries depends on the required voltage level and the power consumption of the power source. The power source 21 supplies DC power (in other words, DC current and DC voltage) to the oscillator 221 of the high voltage generator 22.
 高電圧発生装置22は、発振器221と、変圧器222と、コンバータ回路223とを備える。発振器221は、直流電力(換言すれば、直流電流および直流電圧)を交流電力(換言すれば、交流電流および交流電圧)に変換する。発振器221には変圧器222が接続される。変圧器222は、交流電流の電圧の大きさ(または交流電流の大きさ)を変換する。変圧器222にはコンバータ回路223が接続される。コンバータ回路223は、所望の電圧を生成し、かつ、交流電力(換言すれば、交流電流および交流電圧)を直流電力(換言すれば、直流電流および直流電圧)に変換する。通常、コンバータ回路223は、チャージポンプと整流回路とを備える。典型的なコンバータ回路は、コックロフト・ウォルトン回路である。 The high voltage generator 22 includes an oscillator 221, a transformer 222, and a converter circuit 223. The oscillator 221 converts DC power (in other words, DC current and DC voltage) into AC power (in other words, AC current and AC voltage). A transformer 222 is connected to the oscillator 221. The transformer 222 converts the magnitude of the alternating current voltage (or the magnitude of the alternating current). A converter circuit 223 is connected to the transformer 222. Converter circuit 223 generates a desired voltage and converts AC power (in other words, AC current and AC voltage) into DC power (in other words, DC current and DC voltage). Usually, the converter circuit 223 includes a charge pump and a rectifier circuit. A typical converter circuit is a Cockloft-Walton circuit.
 制御回路24は、一定の値に設定されたPWM(Pulse Width Modulation,パルス幅変調)信号を発振器221に出力する。PWMとは、パルス信号を出力する時間(パルス幅)を変更することで電流および/または電圧を制御する方式のことである。パルス信号とは、ON、OFFを繰り返す電気信号のことであり、例えば、パルス信号は矩形波で表され、電圧の出力時間であるパルス幅は矩形波の横軸で表される。 The control circuit 24 outputs a PWM (Pulse Width Modulation) signal set to a constant value to the oscillator 221. PWM is a method of controlling current and / or voltage by changing the time (pulse width) for outputting a pulse signal. The pulse signal is an electric signal that repeats ON and OFF. For example, the pulse signal is represented by a rectangular wave, and the pulse width that is the voltage output time is represented by the horizontal axis of the rectangular wave.
 PWM方式では、一定周期で動作するタイマ(タイムスイッチ)を利用する。このタイマにパルス信号をONにする位置を設定することによって、パルス幅を制御する。一定周期の中でパルス信号をONにしている比率のことを「デューティーサイクル」(「デューティー比」とも称される)と言う。 In the PWM method, a timer (time switch) that operates at a fixed period is used. The pulse width is controlled by setting the position at which the pulse signal is turned ON in this timer. The ratio at which the pulse signal is turned on in a certain period is called “duty cycle” (also referred to as “duty ratio”).
 制御回路24は、様々な用途に対応するために、マイクロプロセッサ241を備える。マイクロプロセッサ241は、フィードバック情報(周囲環境情報)25に基づいて、PWM信号のデューティーサイクルをさらに調整できるように設計されていてもよい。 The control circuit 24 includes a microprocessor 241 to cope with various applications. The microprocessor 241 may be designed to further adjust the duty cycle of the PWM signal based on the feedback information (ambient environment information) 25.
 フィードバック情報25には、環境条件(気温、湿度、および/または、大気圧)、液体量、ユーザによる任意の設定などが含まれる。それらの情報は、アナログ情報またはデジタル情報としてマイクロプロセッサ241に与えられ、マイクロプロセッサ241により処理される。マイクロプロセッサ241は、入力情報に基づいて、スプレー間隔、スプレーをオンにする時間、または印加電圧の何れかを変更することでスプレーの品質および安定性を高めるための補償を行うことも可能に設計されていてもよい。なお、本明細書において「スプレー」とは、組成物の噴霧を意図する。 The feedback information 25 includes environmental conditions (temperature, humidity, and / or atmospheric pressure), liquid amount, arbitrary settings by the user, and the like. Such information is given to the microprocessor 241 as analog information or digital information, and is processed by the microprocessor 241. The microprocessor 241 is designed to be able to compensate to improve the quality and stability of the spray by changing either the spray interval, the time to turn on the spray, or the applied voltage based on the input information. May be. In this specification, “spray” intends to spray the composition.
 一例として、電源装置3は、温度補償のために使用されるサーミスタなどの温度検知素子を備える。このとき、電源装置3は、温度検知素子により検知された温度の変化に従ってスプレー間隔を変化させる。スプレー間隔は、静電噴霧装置100が液体を噴霧する時間および噴霧を停止する時間を一サイクルとする、液体の噴霧間隔である。例えば、35秒間噴霧(オン)とし(噴霧の間、電源は第1電極と第2電極との間に高電圧を印加する)、145秒間噴霧停止(オフ)とする(噴霧停止の間、電源は第1電極と第2電極との間に高電圧を印加しない)周期的なスプレー間隔の場合を考える。この場合、スプレー間隔は、35秒+145秒=180秒である。 As an example, the power supply device 3 includes a temperature detection element such as a thermistor used for temperature compensation. At this time, the power supply device 3 changes the spray interval according to the change in temperature detected by the temperature detection element. The spray interval is a liquid spray interval in which the electrostatic spraying apparatus 100 sprays the liquid and stops the spraying as one cycle. For example, spraying is turned on for 35 seconds (while the power source is applied with a high voltage between the first electrode and the second electrode during spraying) and spraying is stopped (off) for 145 seconds (the power source is stopped during spraying). Consider the case of periodic spray intervals (no high voltage is applied between the first and second electrodes). In this case, the spray interval is 35 seconds + 145 seconds = 180 seconds.
 スプレー間隔は、電源のマイクロプロセッサ241に内蔵されたソフトウエアにより変更することができる。スプレー間隔は、温度が上昇すると設定点から増加し、温度が低下すると設定点から短縮するように制御されてよい。スプレー間隔の増加および短縮は、噴霧される液体の特性によって定まる所定の指標に従うことが好ましい。便宜上、スプレー間隔の補償変化量は、スプレー間隔が0~60℃(例えば、10~45℃)の間でのみ変化するよう制限されていてもよい。そのため、温度検知素子によって検知および記録された極端な温度は誤りとみなされ、考慮されず、高温および低温に対しては、最適ではないものの容認しうるスプレー間隔が設定される。 The spray interval can be changed by software built in the microprocessor 241 of the power source. The spray interval may be controlled to increase from the set point when the temperature increases and to decrease from the set point when the temperature decreases. The increase and decrease of the spray interval preferably follow a predetermined index determined by the characteristics of the liquid to be sprayed. For convenience, the compensation change amount of the spray interval may be limited so that the spray interval changes only between 0 to 60 ° C. (for example, 10 to 45 ° C.). As such, extreme temperatures detected and recorded by the temperature sensing element are considered errors and are not considered, and for high and low temperatures, an acceptable but not optimal spray interval is set.
 フィードバック情報25として、図1で示すように、温度センサ251の測定結果、湿度センサ252の測定結果、圧力センサ253の測定結果、液体の内容物に関する情報254(例えば、液体貯留量をレベル計で測定した結果を示す情報)、電圧および電流センサ255の測定結果などが挙げられる。また、液体の内容物に関する情報254には、液体の粘度を示す情報(例:液体の粘度を粘度センサ(不図示)で測定した結果を示す情報)が含まれていてもよい。 As the feedback information 25, as shown in FIG. 1, the measurement result of the temperature sensor 251, the measurement result of the humidity sensor 252, the measurement result of the pressure sensor 253, and the information 254 on the contents of the liquid (for example, the liquid storage amount is measured with a level meter Information indicating measurement results), measurement results of voltage and current sensor 255, and the like. Further, the information 254 related to the contents of the liquid may include information indicating the viscosity of the liquid (for example, information indicating the result of measuring the viscosity of the liquid with a viscosity sensor (not shown)).
 ここで、静電噴霧装置100の周囲環境を示す情報を、周囲環境情報と称する。周囲環境情報としては、フィードバック情報25が用いられてよい。 Here, information indicating the surrounding environment of the electrostatic spraying apparatus 100 is referred to as ambient environment information. Feedback information 25 may be used as the surrounding environment information.
 一例として、周囲環境情報には、静電噴霧装置100の周囲の気温(温度)、湿度、および気圧の少なくとも1つに関する情報が含まれていてよい。実施形態1では、周囲環境情報に、(i)静電噴霧装置100の周囲の気温を示す情報(温度情報)、および、(ii)当該静電噴霧装置100の周囲の湿度を示す情報(湿度情報)が含まれている場合を例示して説明を行う。 As an example, the ambient environment information may include information on at least one of the ambient temperature (temperature), humidity, and atmospheric pressure around the electrostatic spraying device 100. In the first embodiment, the ambient environment information includes (i) information (temperature information) indicating the temperature around the electrostatic spraying device 100, and (ii) information (humidity) indicating the humidity around the electrostatic spraying device 100. Information) is included as an example.
 通常、制御回路24は、マイクロプロセッサ241からの情報を出力するための出力ポートを備えており、当該出力ポートを介して発振器221に対してPWM信号を出力する。スプレー・デューティーサイクルおよびスプレー間隔もまた、PWM信号を出力する出力ポートと同じ出力ポートを介して制御されてよい。静電噴霧装置100が液体を噴霧する間、制御回路24からPWM信号が発振器221に対して出力される。 Usually, the control circuit 24 includes an output port for outputting information from the microprocessor 241, and outputs a PWM signal to the oscillator 221 via the output port. The spray duty cycle and spray interval may also be controlled via the same output port that outputs the PWM signal. While the electrostatic spraying device 100 sprays liquid, a PWM signal is output from the control circuit 24 to the oscillator 221.
 制御回路24は、発振器221における交流電流の振幅の大きさ、周波数、デューティーサイクル、もしくは電圧のオン-オフ時間(または、これらの組み合わせ)を制御することにより、高電圧発生装置22の出力電圧を制御することが可能であってよい。 The control circuit 24 controls the output voltage of the high voltage generator 22 by controlling the amplitude, frequency, duty cycle, or voltage on-off time (or a combination thereof) of the alternating current in the oscillator 221. It may be possible to control.
 〔実施形態1の変形例〕
 上述の実施形態1では、説明の簡略化のために、従来のフィードバック制御(例:電流フィードバック制御、電圧フィードバック制御、電流/電圧フィードバック制御、および出力電力フィードバック制御)を用いない静電噴霧装置の構成を例示した。但し、本発明の一態様に係る静電噴霧装置において、従来のフィードバック制御を適用し、噴霧安定性をさらに向上させてもよい。
[Modification of Embodiment 1]
In the first embodiment described above, for the sake of simplification of description, an electrostatic spray device that does not use conventional feedback control (eg, current feedback control, voltage feedback control, current / voltage feedback control, and output power feedback control) is used. The configuration is illustrated. However, in the electrostatic spraying apparatus according to one aspect of the present invention, conventional feedback control may be applied to further improve spray stability.
 〔静電噴霧装置100の効果〕
 以上の様に、実施形態1の静電噴霧装置100は、スプレー電極(第1電極)1と、基準電極(第2電極)2と、電源装置3とを備える。これによって、スプレー電極1と基準電極2との間に電場を形成することが可能となる。そして、当該電場を利用することによって、スプレー電極1の先端から、任意の活性成分を含む組成物を噴霧する(言い換えれば霧化して噴射する)ことが可能となる。
[Effect of electrostatic spraying device 100]
As described above, the electrostatic spraying device 100 according to the first embodiment includes the spray electrode (first electrode) 1, the reference electrode (second electrode) 2, and the power supply device 3. This makes it possible to form an electric field between the spray electrode 1 and the reference electrode 2. And by using the said electric field, it becomes possible to spray the composition containing arbitrary active ingredients from the front-end | tip of the spray electrode 1 (in other words, it atomizes and injects).
 〔実施形態2〕
 〔組成物〕
 以下実施形態2に係る組成物について、説明する。実施形態2に係る組成物は、静電噴霧装置のスプレー電極(第1電極)と基準電極(第2電極)との間に高電圧発生装置(電圧印加部)によって電圧を印加することにより、当該スプレー電極の先端から噴霧するための、静電噴霧用の組成物であり、上記組成物は、(a)活性成分と(b)酸化防止成分とを含有し、下記式(1)で表されるkが0.01≦k≦50を満たし、下記式(1)において、組成物から第1電極へ供与される電荷数は、下記式(2)で表され、下記式(1)において、電圧印加部から第2電極へ供与される電荷数は、下記式(3)で表される、静電噴霧用の組成物である:
 k=(組成物から第1電極へ供与される電荷数)/(電圧印加部から第2電極へ供与される電荷数)・・・式(1)
 組成物から第1電極へ供与される電荷数=酸化防止成分のモル濃度(mol/l)×酸化防止成分の1分子から第1電極へ供与される電子の数×噴霧量(l/s)×アボガドロ定数(mol-1)・・・式(2)
 電圧印加部から第2電極へ供与される電荷数=電流(C/s)/電気素量(C)・・・式(3)。
[Embodiment 2]
〔Composition〕
Hereinafter, the composition according to Embodiment 2 will be described. The composition according to Embodiment 2 applies a voltage between a spray electrode (first electrode) and a reference electrode (second electrode) of an electrostatic spraying device by a high voltage generator (voltage application unit), It is a composition for electrostatic spraying for spraying from the tip of the spray electrode. The composition contains (a) an active ingredient and (b) an antioxidant ingredient, and is represented by the following formula (1). K satisfies 0.01 ≦ k ≦ 50, and in the following formula (1), the number of charges provided from the composition to the first electrode is represented by the following formula (2), and in the following formula (1): The number of charges provided from the voltage application unit to the second electrode is a composition for electrostatic spraying represented by the following formula (3):
k = (number of charges provided from the composition to the first electrode) / (number of charges provided from the voltage application unit to the second electrode) Formula (1)
Number of charges donated from the composition to the first electrode = molar concentration of the antioxidant component (mol / l) × number of electrons donated from one molecule of the antioxidant component to the first electrode × spray amount (l / s) X Avogadro constant (mol -1 ) Formula (2)
Number of charges supplied from the voltage application unit to the second electrode = current (C / s) / elementary electric charge (C) (3).
 本明細書では、「(a)活性成分」を、「(a)成分」または「(a)」と称する場合もある。本明細書では、「(b)酸化防止成分」を、「(b)成分」または「(b)」と称する場合もある。 In this specification, “(a) active ingredient” may be referred to as “(a) ingredient” or “(a)”. In this specification, “(b) antioxidant component” may be referred to as “(b) component” or “(b)”.
 本明細書では、アボガドロ定数は科学技術データ委員会(Committee on Data for Science and Technology: CODATA)が公表している2014年の推奨値を採用している。アボガドロ定数は、具体的には、6.022140857(74)×1023mol-1である。カッコ内の数字、言い換えれば74、は、6.022140857の最後の二けた、言い換えれば57、の不確かさを示している。 In this specification, the Avogadro constant adopts the 2014 recommended value published by the Committee on Data for Science and Technology (CODATA). Specifically, the Avogadro constant is 6.02140857 (74) × 10 23 mol −1 . The number in parentheses, in other words 74, indicates the uncertainty of the last two digits of 6.002140857, in other words 57.
 本明細書では、電気素量は科学技術データ委員会が公表している2014年の推奨値を採用している。電気素量は、具体的には、1.6021766208(98)×10-19Cである。カッコ内の数字は、1.6021766208の最後の二けたの不確かさを示している。 In this specification, the recommended value for 2014 published by the Science and Technology Data Committee is adopted as the elementary electric quantity. Specifically, the elementary electric charge is 1.6021766208 (98) × 10 −19 C. The number in parentheses indicates the uncertainty of the last two digits of 1.6021766208.
 アボガドロ定数および電気素量の値は、アボガドロ定数および電気素量を求める過程において、更に科学的精度を求めた結果として、上記値と異なる値となり得る。将来的にアボガドロ定数および電気素量が異なる値となった場合には、新しい値に基づき、kの望ましい値が変更されてもよい。 The value of the Avogadro constant and the elementary electric quantity can be different from the above values as a result of further scientific accuracy obtained in the process of obtaining the Avogadro constant and the elementary electric quantity. If the Avogadro constant and the elementary electric charge become different values in the future, the desirable value of k may be changed based on the new value.
 なお、電流の単位「C/s」は、単位「A」(アンペア)に読み替えられてもよい。1C/s=1Aであるためである。 The unit of current “C / s” may be read as the unit “A” (ampere). This is because 1C / s = 1A.
 実施形態2に係る組成物は、静電噴霧装置100によって噴霧されるものであることが好ましい。 The composition according to Embodiment 2 is preferably sprayed by the electrostatic spraying device 100.
 実施形態2に係るスプレー電極、基準電極、および高電圧発生装置は、実施形態1に係るスプレー電極、基準電極、および高電圧発生装置でありうる。 The spray electrode, the reference electrode, and the high voltage generator according to the second embodiment can be the spray electrode, the reference electrode, and the high voltage generator according to the first embodiment.
 実施形態2に係る組成物は、上記kが0.01≦k≦50を満たすものである。kは、0.01≦k≦15がより好ましく、0.01≦k≦13がさらに好ましく、0.03≦k≦10が特に好ましい。kが0.01未満の場合には、当該組成物の長期間におよぶ噴霧により、静電噴霧装置のスプレー電極の先端に異物が付着し、これにより、スプレー電極の先端に安定なテイラーコーンが形成されなくなる。kが50よりも大きい場合には、当該組成物の長期間におよぶ噴霧により、静電噴霧装置のスプレー電極の先端に組成物中の(b)酸化防止成分が析出し、これにより、スプレー電極の先端において安定なテイラーコーンの形成が阻害される。ここで、テイラーコーンとは、組成物を噴霧するときに、静電噴霧装置のスプレー電極の先端において組成物から形成される、コーン状(換言すれば円錐形状)の領域を指す。安定なテイラーコーンとは、組成物の噴霧の初期から終期まで常に、一定の形状に保たれているテイラーコーンを指す。 In the composition according to Embodiment 2, k satisfies 0.01 ≦ k ≦ 50. k is more preferably 0.01 ≦ k ≦ 15, further preferably 0.01 ≦ k ≦ 13, and particularly preferably 0.03 ≦ k ≦ 10. When k is less than 0.01, foreign matter adheres to the tip of the spray electrode of the electrostatic spraying device due to the spraying of the composition over a long period of time, thereby forming a stable Taylor cone at the tip of the spray electrode. No longer formed. When k is larger than 50, (b) an antioxidant component in the composition is deposited on the tip of the spray electrode of the electrostatic spraying device by spraying the composition over a long period of time. The formation of a stable Taylor cone at the tip of the is inhibited. Here, the Taylor cone refers to a cone-shaped region (in other words, a cone shape) formed from the composition at the tip of the spray electrode of the electrostatic spraying device when the composition is sprayed. A stable Taylor corn refers to a Taylor corn that is always kept in a certain shape from the beginning to the end of spraying the composition.
 第1電極と第2電極との間に、第1電極が第2電極に比べて高電位となるように、電圧印加部によって電圧を印加する場合を考える。この場合、第2電極から第1電極へ、流れる電流は、0.01μC/s~1000μC/sが好ましく、0.1μC/s~100μC/sがより好ましく、0.2μC/s~20μC/sがさらに好ましく、0.5μC/s~5μC/sが特に好ましい。電流が上記範囲であれば、組成物噴霧後の静電噴霧装置のスプレー電極における異物の形成を抑制でき、テイラーコーンが長期にわたり安定するという利点を有する。 Consider a case in which a voltage is applied by the voltage application unit between the first electrode and the second electrode so that the first electrode has a higher potential than the second electrode. In this case, the current flowing from the second electrode to the first electrode is preferably 0.01 μC / s to 1000 μC / s, more preferably 0.1 μC / s to 100 μC / s, and 0.2 μC / s to 20 μC / s. Is more preferable, and 0.5 μC / s to 5 μC / s is particularly preferable. When the current is in the above range, there is an advantage that the formation of foreign matters on the spray electrode of the electrostatic spraying apparatus after spraying the composition can be suppressed, and the Taylor cone is stable over a long period of time.
 <(a)活性成分>
 (a)活性成分とは、処理対象(被処理物)に所望の処理を施す上で必要な有効成分を意図する。(a)活性成分としては、処理目的に応じた任意の成分を選択することが可能である。このような(a)活性成分としては、香料、殺虫剤、空気清浄化薬剤等を例示することができるが、これらに限定されない。また(a)活性成分は、親水性であってもよく、油性であってもよい。
<(A) Active ingredient>
(A) An active ingredient intends an active ingredient required when performing a desired process to a process target (object to be processed). (A) As an active ingredient, it is possible to select any ingredient according to the purpose of treatment. Examples of the active ingredient (a) include, but are not limited to, a fragrance, an insecticide, an air cleaning agent and the like. The active ingredient (a) may be hydrophilic or oily.
 上記香料および空気清浄化薬剤の具体例および好ましい例としては、特開2012-149231に記載の香料および空気清浄化薬剤をあげることができる。 Specific examples and preferred examples of the fragrance and the air cleaning agent include the fragrance and the air cleaning agent described in JP2012-149231A.
 上記殺虫剤の具体例および好ましい例としては、国際公開公報2014/088050に記載の殺虫剤をあげることができる。 Specific examples and preferred examples of the insecticide include the insecticides described in International Publication No. 2014/0888050.
 実施形態2に係る組成物は、(a)活性成分を当該組成物全体量に対して0.1~30w/w%含むものであることが好ましく、0.1~28w/w%含むものであることがより好ましく、0.3~25w/w%含むものであることがさらに好ましく、0.5~20w/w%含むものであることが特に好ましい。(a)活性成分が上記範囲内であれば、(a)活性成分の効果を十分に発揮することが可能となり、また、(a)活性成分が油性である場合でも、(a)活性成分によって組成物が分離するおそれがない。 The composition according to Embodiment 2 preferably contains (a) the active ingredient in an amount of 0.1 to 30 w / w%, more preferably 0.1 to 28 w / w% based on the total amount of the composition. Preferably, it contains 0.3 to 25 w / w%, more preferably 0.5 to 20 w / w%. If (a) the active ingredient is within the above range, the effect of (a) the active ingredient can be sufficiently exerted, and (a) even if the active ingredient is oily, There is no risk of the composition separating.
 <(b)酸化防止成分>
 (b)酸化防止成分は、特に限定されないが、アスコルビン酸、アスコルビン酸ナトリウム、トコフェロール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソールおよびtert-ブチルヒドロキノンからなる群から選択される少なくとも1つであることが好ましい。酸化防止成分は、上述した群から選択される2つ以上であってもよい。
<(B) Antioxidant component>
(B) The antioxidant component is not particularly limited, but is preferably at least one selected from the group consisting of ascorbic acid, sodium ascorbate, tocopherol, dibutylhydroxytoluene, butylhydroxyanisole and tert-butylhydroquinone. Two or more antioxidant components may be selected from the group described above.
 上記トコフェロールとしては、α-トコフェロール、β-トコフェロール、またはγ-トコフェロールなどがあげられる。 Examples of the tocopherol include α-tocopherol, β-tocopherol, and γ-tocopherol.
 実施形態2に係る組成物は、(b)酸化防止成分を当該組成物全体量に対して0.0001~1w/w%含むものであることが好ましく、0.0001~0.8w/w%含むものであることがより好ましく、0.0001~0.5w/w%含むものであることがさらに好ましく、0.0005~0.3w/w%含むものであることが特に好ましい。組成物が(b)酸化防止成分を当該組成物全体量に対して上記範囲で含む場合には、組成物使用後の静電噴霧装置のスプレー電極における異物の形成を抑制できる、という利点を有する。 The composition according to Embodiment 2 preferably contains (b) an antioxidant component in an amount of 0.0001 to 1 w / w%, and 0.0001 to 0.8 w / w% based on the total amount of the composition. More preferably, 0.0001 to 0.5 w / w% is more preferable, and 0.0005 to 0.3 w / w% is particularly preferable. When the composition contains the antioxidant component (b) in the above range with respect to the total amount of the composition, there is an advantage that the formation of foreign matters in the spray electrode of the electrostatic spraying device after use of the composition can be suppressed .
 <(c)アルコール>
 実施形態2に係る組成物は、蒸発速度が0.4以上である(c)アルコール、好ましくは蒸発速度が0.6以上である(c)アルコール、より好ましくは蒸発速度が0.8以上である(c)アルコールを含むものであることが好ましい。ここで、上記蒸発速度は、酢酸ブチルの蒸発速度を1とした場合の相対値である。蒸発速度は、ASTM D3539―87の方法によって測定されうる。組成物は、上記蒸発速度が0.4以上である(c)アルコールを含むことによって、組成物の蒸発速度を高くすることができる。組成物の蒸発速度が高いことによって、噴霧された組成物の粒子は空気中で徐々に体積が減少していき、より早く小さい粒子となる。これによって、組成物中に含まれる活性成分は広く空気中へ拡散する。従って、蒸発速度が0.4以上である(c)アルコールを含む組成物は、噴霧された後に粒子サイズが小さくならずに粒子が拡散される前に落下してしまうこと、を抑制できるという利点を有する。
<(C) Alcohol>
The composition according to Embodiment 2 has an evaporation rate of 0.4 or more (c) alcohol, preferably an evaporation rate of 0.6 or more (c) alcohol, more preferably an evaporation rate of 0.8 or more. It is preferable that (c) alcohol is included. Here, the evaporation rate is a relative value when the evaporation rate of butyl acetate is 1. The evaporation rate can be measured by the method of ASTM D3539-87. The composition can increase the evaporation rate of the composition by containing (c) alcohol having an evaporation rate of 0.4 or more. Due to the high evaporation rate of the composition, the sprayed composition particles gradually decrease in volume in the air and become smaller particles earlier. As a result, the active ingredient contained in the composition diffuses widely into the air. Therefore, the (c) alcohol-containing composition having an evaporation rate of 0.4 or more has an advantage of being able to suppress dropping before the particles are diffused without being reduced in particle size after being sprayed. Have
 本明細書では、「蒸発速度が0.4以上である(c)アルコール」を、「(c)アルコール」、「(c)成分」または「(c)」と称する場合もある。 In this specification, “(c) alcohol having an evaporation rate of 0.4 or more” may be referred to as “(c) alcohol”, “(c) component”, or “(c)”.
 (c)アルコールは、特に限定されないが、エタノール(蒸発速度=1.5)、イソプロピルアルコール(蒸発速度=1.5)、および1-ブタノール(蒸発速度=0.47)などが挙げられる。これらの中でも、蒸発速度の観点からエタノールおよびイソプロピルアルコールが好ましい。 (C) The alcohol is not particularly limited, and examples thereof include ethanol (evaporation rate = 1.5), isopropyl alcohol (evaporation rate = 1.5), and 1-butanol (evaporation rate = 0.47). Among these, ethanol and isopropyl alcohol are preferable from the viewpoint of evaporation rate.
 組成物に含まれる(c)アルコールの含有量は、以下のような点を考慮したうえで、適宜設定され得る:(1)組成物に含まれる(a)および(b)の物理的性質;(2)組成物が均一な液剤となること。 The content of (c) alcohol contained in the composition can be appropriately set in consideration of the following points: (1) Physical properties of (a) and (b) contained in the composition; (2) The composition should be a uniform liquid.
 実施形態2に係る組成物は、蒸発速度が0.4以上の(c)アルコールを含む場合、同時に水を含むものであることが好ましい。水とアルコールとが共存する混合物であれば、共沸現象により、混合物の沸点を下げることができる。つまり、当該構成であれば、組成物の蒸発速度をより高めることによって、噴霧された組成物の粒子は空気中でより早く小さな粒子となり、結果として活性成分がより広く空気中へ拡散する。従って、上記構成を有する組成物は、噴霧された後に粒子サイズが小さくならずに粒子が拡散される前に落下してしまうこと、をよりよく抑制できるという利点を有する。 When the composition according to Embodiment 2 includes (c) an alcohol having an evaporation rate of 0.4 or more, the composition preferably includes water at the same time. If it is a mixture in which water and alcohol coexist, the boiling point of the mixture can be lowered by an azeotropic phenomenon. That is, with this configuration, by increasing the evaporation rate of the composition, the particles of the sprayed composition become smaller particles earlier in the air, and as a result, the active ingredient diffuses more widely into the air. Therefore, the composition having the above-described configuration has an advantage that it is possible to better prevent the particles from falling before being diffused without being reduced in particle size after being sprayed.
 実施形態2に係る組成物は、水および、蒸発速度が0.4以上の(c)アルコールを、当該組成物全体量に対して5~50w/w%含むものであることが好ましい。言い換えれば、実施形態2に係る組成物は、水および、蒸発速度が0.4以上の(c)アルコールの合計量が、当該組成物全体量に対して5~50w/w%であるものであることが好ましい。組成物は、水および(c)アルコールを当該組成物全体量に対して、5~47w/w%含むものであることがより好ましく、5~45w/w%含むものであることがさらに好ましく、6~40w/w%含むものであることが特に好ましい。組成物が水および(c)アルコールを当該組成物全体量に対して上記範囲で含む場合には、(b)成分が析出するおそれ、および(a)成分によって組成物が分離するおそれ、がないという利点を有する。 The composition according to Embodiment 2 preferably contains 5 to 50 w / w% of water and (c) alcohol having an evaporation rate of 0.4 or more based on the total amount of the composition. In other words, the composition according to Embodiment 2 is such that the total amount of water and (c) alcohol having an evaporation rate of 0.4 or more is 5 to 50 w / w% with respect to the total amount of the composition. Preferably there is. The composition preferably contains 5 to 47 w / w% of water and (c) alcohol, more preferably 5 to 45 w / w%, more preferably 6 to 40 w / w, based on the total amount of the composition. It is particularly preferable that it contains w%. When the composition contains water and (c) alcohol in the above range with respect to the total amount of the composition, there is no fear that the component (b) is precipitated and the composition is separated by the component (a). Has the advantage.
 <(d)その他の成分および溶媒>
 実施形態2に係る組成物は、(a)成分、(b)成分および(c)成分によってもたらされる効果、およびそれら成分の物性に影響を与えない限り、(d)その他の成分を含んでもよい。(d)その他の成分としては、例えば、電解質、分散剤、乳化剤、気化促進剤、表面張力調節成分、および粘度調節成分などが挙げられる。
<(D) Other components and solvent>
The composition according to Embodiment 2 may contain (d) other components as long as the effects caused by the components (a), (b) and (c), and the physical properties of these components are not affected. . Examples of (d) other components include an electrolyte, a dispersant, an emulsifier, a vaporization accelerator, a surface tension adjusting component, and a viscosity adjusting component.
 本明細書では、「(d)その他の成分」を、「(d)成分」または単に「(d)」と称する場合もある。 In this specification, “(d) other components” may be referred to as “(d) component” or simply “(d)”.
 実施形態2に係る組成物は、上記(a)~(d)の各成分以外に、常温で液体である溶媒を含むものであってもよい。本明細書において「常温」とは、JIS Z 8703(試験場所の標準状態)で定められる5℃以上、35℃以下の範囲(20±15℃)を指している。溶媒としては、上記(a)~(d)の各成分による効果、または(a)~(d)の各成分の物性に影響を与えない限り特に限定されない。かかる溶媒の具体例としては、特開2012-149231に記載の溶媒をあげることができる。 The composition according to Embodiment 2 may contain a solvent that is liquid at room temperature in addition to the components (a) to (d). In this specification, “normal temperature” refers to a range of 5 ° C. or more and 35 ° C. or less (20 ± 15 ° C.) defined by JIS Z 8703 (standard state of test place). The solvent is not particularly limited as long as it does not affect the effects of the components (a) to (d) or the physical properties of the components (a) to (d). Specific examples of such a solvent include the solvents described in JP2012-149231A.
 〔実施形態2の効果〕
 以上の様に、実施形態2に係る組成物は、(a)活性成分と(b)酸化防止成分とを含有し、組成物から第1電極へ供与される電荷数と、電圧印加部から第2電極へ供与される電荷数との比(k)が、0.01≦k≦50を満たす。これによって、(1)被処理物を目的に応じて処理することが可能となり、かつ、(2)静電噴霧装置によって組成物を長期間使用した場合であっても、第1電極における、第1電極由来の異物、および/または(b)成分由来の異物、の形成を抑制できる、静電噴霧装置用の組成物を提供することが可能となる。
[Effect of Embodiment 2]
As described above, the composition according to Embodiment 2 contains (a) an active component and (b) an antioxidant component, and includes the number of charges provided from the composition to the first electrode, and the voltage application unit. The ratio (k) to the number of charges provided to the two electrodes satisfies 0.01 ≦ k ≦ 50. As a result, (1) it is possible to treat the object to be treated according to the purpose, and (2) even when the composition is used for a long time by the electrostatic spraying device, It is possible to provide a composition for an electrostatic spraying device that can suppress the formation of foreign matters derived from one electrode and / or foreign matters derived from component (b).
 〔実施形態3〕
 以下、実施形態3に係る組成物の噴霧方法について、説明する。
[Embodiment 3]
Hereinafter, the spraying method of the composition which concerns on Embodiment 3 is demonstrated.
 実施形態3に係る組成物の噴霧方法は、
 〔1〕静電噴霧装置のスプレー電極(第1電極)と基準電極(第2電極)との間に高電圧発生装置(電圧印加部)によって電圧を印加することにより、当該スプレー電極(第1電極)の先端から、静電噴霧用の組成物を噴霧する工程を含む、静電噴霧用組成物の噴霧方法であり、上記組成物は、(a)活性成分と(b)酸化防止成分とを含有し、上記組成物は、下記式(1)で表されるkが0.01≦k≦50を満たし、下記式(1)において、上記組成物から上記第1電極へ供与される電荷数は、下記式(2)で表され、下記式(1)において、上記電圧印加部から上記第2電極へ供与される電荷数は、下記式(3)で表される、静電噴霧用の組成物の噴霧方法、である:
k=(組成物から第1電極へ供与される電荷数)/(電圧印加部から第2電極へ供与される電荷数)・・・式(1)
組成物から第1電極へ供与される電荷数=酸化防止成分のモル濃度(mol/l)×酸化防止成分の1分子から第1電極へ供与される電子の数×噴霧量(l/s)×アボガドロ定数(mol-1)・・・式(2)
電圧印加部から第2電極へ供与される電荷数=電流(C/s)/電気素量(C)・・・式(3)。
The method for spraying the composition according to Embodiment 3 is as follows:
[1] A voltage is applied between the spray electrode (first electrode) and the reference electrode (second electrode) of the electrostatic spraying device by a high voltage generator (voltage application unit), thereby the spray electrode (first electrode). A method for spraying a composition for electrostatic spraying, comprising a step of spraying a composition for electrostatic spraying from the tip of an electrode), wherein the composition comprises (a) an active ingredient, (b) an antioxidant ingredient, In the composition, k represented by the following formula (1) satisfies 0.01 ≦ k ≦ 50, and the charge provided from the composition to the first electrode in the following formula (1) The number is represented by the following formula (2). In the following formula (1), the number of charges provided from the voltage application unit to the second electrode is represented by the following formula (3). A method of spraying a composition of:
k = (number of charges provided from the composition to the first electrode) / (number of charges provided from the voltage application unit to the second electrode) Formula (1)
Number of charges donated from the composition to the first electrode = molar concentration of the antioxidant component (mol / l) × number of electrons donated from one molecule of the antioxidant component to the first electrode × spray amount (l / s) X Avogadro constant (mol -1 ) Formula (2)
Number of charges supplied from the voltage application unit to the second electrode = current (C / s) / elementary electric charge (C) (3).
 実施形態3に係る組成物の噴霧方法は、実施形態2に係る組成物を噴霧することが好ましい。 The composition spraying method according to Embodiment 3 is preferably sprayed with the composition according to Embodiment 2.
 実施形態3に係る組成物の噴霧方法は、実施形態1に係る静電噴霧装置を用いて行われることが好ましい。 The method for spraying a composition according to Embodiment 3 is preferably performed using the electrostatic spraying apparatus according to Embodiment 1.
 本発明の一実施形態に係る組成物の噴霧方法は、さらに、以下のような構成であってもよい。 The composition spraying method according to an embodiment of the present invention may further have the following configuration.
 〔2〕上記組成物は、上記(a)活性成分を当該組成物全体量に対して0.1~30w/w%含むものである、〔1〕に記載の噴霧方法。 [2] The spraying method according to [1], wherein the composition contains 0.1 to 30 w / w% of the active ingredient (a) with respect to the total amount of the composition.
 〔3〕上記組成物は、上記(b)酸化防止成分を当該組成物全体量に対して0.0001~1w/w%含むものである、〔1〕または〔2〕に記載の噴霧方法。 [3] The spray method according to [1] or [2], wherein the composition contains 0.0001 to 1 w / w% of the antioxidant component (b) with respect to the total amount of the composition.
 〔4〕上記組成物は、水および、蒸発速度が0.4以上の(c)アルコールを、当該組成物全体量に対して、合計量として5~50w/w%含むものであり、上記蒸発速度は、酢酸ブチルの蒸発速度を1とした場合の相対値である、〔1〕から〔3〕のいずれか1つに記載の噴霧方法。 [4] The composition contains water and (c) alcohol having an evaporation rate of 0.4 or more in a total amount of 5 to 50 w / w% with respect to the total amount of the composition. The spraying method according to any one of [1] to [3], wherein the speed is a relative value when the evaporation rate of butyl acetate is 1.
 〔5〕上記(b)酸化防止成分が、アスコルビン酸、アスコルビン酸ナトリウム、トコフェロール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソールおよびtert-ブチルヒドロキノンからなる群から選択される少なくとも1つである、〔1〕から〔4〕のいずれか1つに記載の噴霧方法。 [5] The antioxidant component (b) is at least one selected from the group consisting of ascorbic acid, sodium ascorbate, tocopherol, dibutylhydroxytoluene, butylhydroxyanisole and tert-butylhydroquinone. [4] The spraying method according to any one of [4].
 〔まとめ〕
 本発明の態様1に係る組成物は、静電噴霧装置の第1電極と第2電極との間に電圧印加部によって電圧を印加することにより、当該第1電極の先端から噴霧するための、静電噴霧用の組成物であり、上記組成物は、(a)活性成分と(b)酸化防止成分とを含有し、下記式(1)で表されるkが0.01≦k≦50を満たし、下記式(1)において、上記組成物から上記第1電極へ供与される電荷数は、下記式(2)で表され、下記式(1)において、上記電圧印加部から上記第2電極へ供与される電荷数は、下記式(3)で表される、静電噴霧用の組成物:
 k=(組成物から第1電極へ供与される電荷数)/(電圧印加部から第2電極へ供与される電荷数)・・・式(1)
 組成物から第1電極へ供与される電荷数=酸化防止成分のモル濃度(mol/l)×酸化防止成分の1分子から第1電極へ供与される電子の数×噴霧量(l/s)×アボガドロ定数(mol-1)・・・式(2)
 電圧印加部から第2電極へ供与される電荷数=電流(C/s)/電気素量(C)・・・式(3)。
[Summary]
The composition according to the first aspect of the present invention is for spraying from the tip of the first electrode by applying a voltage by a voltage application unit between the first electrode and the second electrode of the electrostatic spraying device. The composition for electrostatic spraying, wherein the composition contains (a) an active component and (b) an antioxidant component, and k represented by the following formula (1) is 0.01 ≦ k ≦ 50. In the following formula (1), the number of charges provided from the composition to the first electrode is expressed by the following formula (2). In the following formula (1), the second voltage is applied from the voltage application unit. The number of charges provided to the electrode is represented by the following formula (3): a composition for electrostatic spraying:
k = (number of charges provided from the composition to the first electrode) / (number of charges provided from the voltage application unit to the second electrode) Formula (1)
Number of charges donated from the composition to the first electrode = molar concentration of the antioxidant component (mol / l) × number of electrons donated from one molecule of the antioxidant component to the first electrode × spray amount (l / s) X Avogadro constant (mol -1 ) Formula (2)
Number of charges supplied from the voltage application unit to the second electrode = current (C / s) / elementary electric charge (C) (3).
 上記の構成によれば、静電噴霧装置によって組成物を長期間噴霧した場合であっても、第1電極における、第1電極由来の異物、および/または(b)成分由来の異物、の形成を抑制できる、静電噴霧用の組成物を提供することが可能となる。 According to said structure, even if it is a case where a composition is sprayed for a long time with an electrostatic spraying apparatus, in the 1st electrode, formation of the foreign material derived from the 1st electrode and / or the foreign material derived from (b) component It becomes possible to provide the composition for electrostatic spraying which can suppress this.
 本発明の態様2に係る組成物は、上記(a)活性成分を当該組成物全体量に対して0.1~30w/w%含むものであってもよい。 The composition according to aspect 2 of the present invention may include the above-mentioned (a) active ingredient in an amount of 0.1 to 30 w / w% based on the total amount of the composition.
 上記の構成によれば、(a)活性成分の効果を十分に発揮し、かつ、(a)活性成分による組成物の分離を抑制することが可能となる。 According to the above configuration, (a) the effect of the active ingredient can be sufficiently exerted, and (a) the separation of the composition by the active ingredient can be suppressed.
 本発明の態様3に係る組成物は、上記(b)酸化防止成分を当該組成物全体量に対して0.0001~1w/w%含むものであってもよい。 The composition according to Embodiment 3 of the present invention may include 0.0001 to 1 w / w% of the above-mentioned (b) antioxidant component with respect to the total amount of the composition.
 上記の構成によれば、静電噴霧装置によって組成物を長期間噴霧した場合であっても、第1電極における、第1電極由来の異物および/または(b)成分由来の異物、の形成をより効果的に抑制できる、組成物を提供することが可能となる。 According to said structure, even when it is a case where a composition is sprayed for a long time with an electrostatic spraying apparatus, in the 1st electrode, the formation of the foreign material derived from the 1st electrode and / or the foreign material derived from (b) component is formed. It becomes possible to provide a composition that can be more effectively suppressed.
 本発明の態様4に係る組成物は、水、および、蒸発速度が0.4以上の(c)アルコールを、当該組成物全体量に対して、合計量として5~50w/w%含むものであり、上記蒸発速度は、酢酸ブチルの蒸発速度を1とした場合の相対値であってもよい。 The composition according to aspect 4 of the present invention contains water and (c) alcohol having an evaporation rate of 0.4 or more in a total amount of 5 to 50 w / w% with respect to the total amount of the composition. Yes, the evaporation rate may be a relative value when the evaporation rate of butyl acetate is 1.
 上記の構成によれば、組成物の蒸発速度が高いので、噴霧された組成物の粒子は空気中でより早く小さな粒子となり、結果として活性成分がより広く空気中へ拡散する。従って、上記構成を有する組成物は、噴霧された後に粒子サイズが小さくならずに粒子が拡散される前に落下してしまうこと、を抑制することが可能となる。 According to the above configuration, since the evaporation rate of the composition is high, the sprayed composition particles become smaller particles earlier in the air, and as a result, the active ingredient diffuses more widely into the air. Therefore, the composition having the above configuration can prevent the particles from falling before being diffused without being reduced in particle size after being sprayed.
 本発明の態様5に係る組成物では、上記(b)酸化防止成分が、アスコルビン酸、アスコルビン酸ナトリウム、トコフェロール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソールおよびtert-ブチルヒドロキノンからなる群から選択される少なくとも1つであってもよい。 In the composition according to aspect 5 of the present invention, the antioxidant component (b) is at least one selected from the group consisting of ascorbic acid, sodium ascorbate, tocopherol, dibutylhydroxytoluene, butylhydroxyanisole and tert-butylhydroquinone. It may be one.
 上記の構成によれば、静電噴霧装置によって組成物を長期間噴霧した場合であっても、第1電極における、第1電極由来の異物および/または(b)成分由来の異物、の形成をより効果的に抑制できる、組成物を提供することが可能となる。 According to said structure, even when it is a case where a composition is sprayed for a long time with an electrostatic spraying apparatus, in the 1st electrode, the formation of the foreign material derived from the 1st electrode and / or the foreign material derived from (b) component is formed. It becomes possible to provide a composition that can be more effectively suppressed.
 本発明の態様6に係る静電噴霧装置は、上記態様1から上記態様5のいずれかの一態様に係る組成物を噴霧するものであってもよい。 The electrostatic spraying device according to aspect 6 of the present invention may spray the composition according to any one of the above aspects 1 to 5.
 上記の構成によれば、組成物を長期間噴霧した場合であっても、第1電極における、第1電極由来の異物、および/または(b)成分由来の異物、の形成を抑制できる、静電噴霧装置を提供することが可能となる。 According to said structure, even if it is a case where a composition is sprayed for a long time, formation of the foreign material derived from the 1st electrode and / or the foreign material derived from (b) component in a 1st electrode can be suppressed, static An electrospray apparatus can be provided.
 〔kの数値範囲の検討〕
 図4~9を参照して、kの好ましい数値範囲について具体的に説明する。
[Examination of numerical range of k]
With reference to FIGS. 4 to 9, a preferable numerical range of k will be specifically described.
 <アスコルビン酸について>
 図4は、組成物の各成分の配合例を示す図である。図5は、図4に係る組成物を長期間噴霧した後の、静電噴霧装置のスプレー電極の先端の拡大図である。
<Ascorbic acid>
FIG. 4 is a diagram showing a blending example of each component of the composition. FIG. 5 is an enlarged view of the tip of the spray electrode of the electrostatic spraying device after spraying the composition according to FIG. 4 for a long period of time.
 図4に示すように、比較例1および2、ならびに実施例1~4の組成物は、(a)活性成分としてピーチ香料を含む。また、比較例2および実施例1~4の組成物は、(b)酸化防止成分としてアスコルビン酸を含む。 As shown in FIG. 4, the compositions of Comparative Examples 1 and 2 and Examples 1 to 4 contain (a) peach flavor as an active ingredient. Further, the compositions of Comparative Example 2 and Examples 1 to 4 contain ascorbic acid as an antioxidant component (b).
 図5において、組成物を噴霧するための各種条件は以下のとおりである。
・温度・・・室温
・噴霧量・・・7.8×10-8(l/s)で、3日間(合計20g)
・電流・・・0.86×10-6(C/s)。
また、図5において、静電噴霧装置のスプレー電極の先端は、マイクロスコープを使用して、200倍で観察した。
In FIG. 5, various conditions for spraying the composition are as follows.
・ Temperature: room temperature ・ Amount of spray: 7.8 × 10 −8 (l / s) for 3 days (20 g in total)
Current: 0.86 × 10 −6 (C / s).
Moreover, in FIG. 5, the tip of the spray electrode of the electrostatic spraying apparatus was observed at 200 times using a microscope.
 図5より、k=0となる(言い換えれば(b)酸化防止成分を含まない)組成物またはk=0.005となる(言い換えれば(b)酸化防止成分を所望の量含まない)組成物、を長期間噴霧した後の静電噴霧装置のスプレー電極の先端には、異物が付着していることが確認された。また、図5より、k=0.01以上9.4以下となるようにアスコルビン酸((b)酸化防止成分)を含む組成物を長期間噴霧した後の静電噴霧装置のスプレー電極の先端には、異物が付着していないことが確認された。これらの結果から、kは0.01以上であることが好ましいことが確認された。 From FIG. 5, k = 0 (in other words, (b) a composition that does not contain an antioxidant component) or k = 0.005 (in other words, (b) a composition that does not contain a desired amount of the antioxidant component). It was confirmed that foreign matter was attached to the tip of the spray electrode of the electrostatic spraying apparatus after spraying for a long time. Moreover, from FIG. 5, the tip of the spray electrode of the electrostatic spraying apparatus after spraying a composition containing ascorbic acid ((b) antioxidant component) for a long period of time so that k = 0.01 or more and 9.4 or less. In this case, it was confirmed that no foreign matter was attached. From these results, it was confirmed that k is preferably 0.01 or more.
 <様々な周囲環境における、(b)酸化防止成分の効果について>
 図6は、組成物の各成分の配合例を示す図である。図7は、図6に係る組成物を、様々な条件下で長期間噴霧した後の、静電噴霧装置のスプレー電極の先端の拡大図である。図6に示すように、比較例3および実施例5の組成物は、(a)活性成分としてフローラル香料を含む。また、実施例5の組成物は、(b)酸化防止成分としてアスコルビン酸を含む。図7において、組成物を噴霧するための各種条件は以下のとおりである。
・温度・・・図に記載のとおり(15℃、25℃、または35℃)。
・湿度・・・図に記載のとおり(35%RH(Relative Humidity,相対湿度)、55%RH、または75%RH)。
・噴霧量・・・7.9×10-8(l/s)で、3日間(合計20g)
・電流・・・2.00×10-6(C/s)。
また、図7において、静電噴霧装置のスプレー電極の先端は、マイクロスコープを使用して、拡大倍率200倍で観察した。
<About the effect of (b) antioxidant component in various surrounding environments>
FIG. 6 is a diagram showing a blending example of each component of the composition. FIG. 7 is an enlarged view of the tip of the spray electrode of the electrostatic spray device after the composition according to FIG. 6 has been sprayed for a long time under various conditions. As shown in FIG. 6, the compositions of Comparative Example 3 and Example 5 include (a) a floral flavor as an active ingredient. Moreover, the composition of Example 5 contains ascorbic acid as an antioxidant component (b). In FIG. 7, various conditions for spraying the composition are as follows.
-Temperature ... as described in the figure (15 ° C, 25 ° C, or 35 ° C).
Humidity: As described in the figure (35% RH (Relative Humidity, relative humidity), 55% RH, or 75% RH).
・ Amount of spray: 7.9 × 10 −8 (l / s), 3 days (20 g in total)
Current: 2.00 × 10 −6 (C / s)
Moreover, in FIG. 7, the tip of the spray electrode of the electrostatic spraying device was observed at a magnification of 200 times using a microscope.
 図7より、次のことが確認された:(1)比較例3の組成物(k=0)は、条件1(15℃、35%RH)、条件2(25℃、55%RH)、および条件3(35℃、75%RH)の何れの環境下において長期間噴霧された場合であっても、静電噴霧装置のスプレー電極の先端への異物の付着を引き起こしていた;(2)実施例5の組成物(k=0.41)は、条件1、条件2、および条件3の何れの環境下において長期間噴霧された場合であっても、静電噴霧装置のスプレー電極の先端への異物の付着を抑制していた。 From FIG. 7, it was confirmed that: (1) The composition of Comparative Example 3 (k = 0) had a condition 1 (15 ° C., 35% RH), a condition 2 (25 ° C., 55% RH), And even when sprayed for a long time in any environment of condition 3 (35 ° C., 75% RH), it caused adhesion of foreign matter to the tip of the spray electrode of the electrostatic spraying device; (2) Even when the composition of Example 5 (k = 0.41) was sprayed for a long period of time under any of the conditions 1, 2 and 3, the tip of the spray electrode of the electrostatic spraying device To prevent foreign matter from adhering to the surface.
 <様々な(a)活性成分および(b)酸化防止成分について>
 図8は、組成物の各成分の配合例を示す図である。図9は、図8に係る組成物を長期間噴霧した場合に当該組成物がテイラーコーンへ与える影響、の評価結果を示す図である。
<Various (a) Active Components and (b) Antioxidant Components>
FIG. 8 is a diagram showing a blending example of each component of the composition. FIG. 9 is a diagram showing an evaluation result of the influence of the composition on the Taylor cone when the composition according to FIG. 8 is sprayed for a long time.
 図8に示すように、比較例4および実施例6~18の組成物は、(a)活性成分としてフローラル香料を含み、比較例5および実施例19の組成物は、(a)活性成分としてマリン香料を含む。また、実施例6~19の組成物は、(b)酸化防止成分として、アスコルビン酸ナトリウム、ジブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)、tert-ブチルヒドロキノン(TBHQ)、またはD-α-トコフェロールを、それぞれ図8の配合例に記載の量で含む。図9において、組成物を噴霧するための各種条件は以下のとおりである。
・温度・・・室温
・噴霧量・・・7.7×10-8(l/s)で、3日間(合計20g)
・電流・・・2.00×10-6(C/s)。
As shown in FIG. 8, the compositions of Comparative Example 4 and Examples 6-18 included (a) floral fragrance as the active ingredient, and the compositions of Comparative Examples 5 and 19 were (a) active ingredient. Contains marine fragrance. In addition, the compositions of Examples 6 to 19 were prepared by using (b) sodium ascorbate, dibutylhydroxytoluene (BHT), butylhydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), or D-α as an antioxidant component. -Tocopherols are each included in the amounts described in the formulation example of FIG. In FIG. 9, the various conditions for spraying the composition are as follows.
・ Temperature: room temperature ・ Amount of spray: 7.7 × 10 −8 (l / s), 3 days (total 20 g)
Current: 2.00 × 10 −6 (C / s)
 また、図9において、組成物がテイラーコーンへ与える影響は、具体的に次のように評価した。図8に係る組成物を20g噴霧した後の静電噴霧装置を用いて、当該組成物を再び噴霧し、噴霧している間、静電噴霧装置のスプレー電極の先端、および先端から放出される組成物から成るテイラーコーンを、マイクロスコープを使用して、200倍で観察した。このとき、以下の基準に基づき、評価した。
○・・・スプレー電極の先端に異物が付着しておらず、かつ、スプレー電極の稼働初期(言い換えれば、組成物を長期間噴霧する前)と同様のテイラーコーンが形成されている。×・・・スプレー電極の先端に異物が付着することによって、稼働初期と異なるテイラーコーンが形成されている。
ここで、稼働初期に観察されるテイラーコーンとしては、組成物がスプレー電極の先端の1か所からのみ噴霧される、シングルジェットの発生があげられる。一方、「稼働初期と異なるテイラーコーン」の具体例としては、図16に図示されたように、組成物がスプレー電極の先端の複数のか所から噴霧される、マルチジェットの発生があげられる。図16は、先端に異物が付着しているスプレー電極を用いて組成物を噴霧するときの、スプレー電極の先端部から噴霧される組成物(換言すれば形成されたテイラーコーン)を示している。
Moreover, in FIG. 9, the influence which a composition has on a Taylor cone was specifically evaluated as follows. Using the electrostatic spraying apparatus after spraying 20 g of the composition according to FIG. 8, the composition is sprayed again, and while spraying, the tip of the spray electrode of the electrostatic spraying apparatus is discharged from the tip. A Taylor cone composed of the composition was observed at 200 times using a microscope. At this time, evaluation was performed based on the following criteria.
... Foreign matter is not attached to the tip of the spray electrode, and a Taylor cone similar to the initial operation of the spray electrode (in other words, before spraying the composition for a long period of time) is formed. X: A foreign cone adheres to the tip of the spray electrode, so that a Taylor cone different from the initial operation is formed.
Here, the Taylor cone observed in the initial stage of operation includes generation of a single jet in which the composition is sprayed from only one position at the tip of the spray electrode. On the other hand, as a specific example of “Taylor cone different from the initial stage of operation”, as shown in FIG. 16, generation of multi-jets in which the composition is sprayed from a plurality of locations at the tip of the spray electrode can be mentioned. FIG. 16 shows the composition sprayed from the tip of the spray electrode (in other words, the Taylor cone formed) when the composition is sprayed using the spray electrode having a foreign substance attached to the tip. .
 図9より、k=0となる、言い換えれば(b)酸化防止成分を含まない組成物は、含有する(a)活性成分に関わらず、以下のことが確認された:(1)当該組成物を長期間噴霧した後、スプレー電極の先端に異物が形成されたこと;および(2)当該組成物を長期間噴霧した後、当該異物により、稼働初期と異なるテイラーコーンが形成されたこと。また図9より、kが0.01≦k≦50となる組成物は、(a)活性成分および(b)酸化防止成分の種類並びに配合量に関わらず、以下のことが確認された:(1)当該組成物を長期間噴霧した後に、スプレー電極の先端に異物が形成されなかったこと;および(2)当該組成物を長期間噴霧した後に、スプレー電極の稼働初期と同様のテイラーコーンが形成されたこと。また、実施例7に係る組成物は、(a)成分を0.10w/w%含むため、組成物を噴霧した後、空間にフローラルの香りが充満することが確認され、(a)成分に係る効果が十分に発揮されていることが確認された。また、油性であるフローラル香料を(a)成分として30.00w/w%含み、水および(c)アルコールを49.9945w/w%含む実施例8に係る組成物において、(a)成分の分離、(b)成分の析出、および組成物の分離はいずれも確認されなかった。 From FIG. 9, k = 0, in other words, (b) the composition containing no antioxidant component was confirmed regardless of the (a) active ingredient contained: (1) the composition After spraying for a long time, foreign matter was formed at the tip of the spray electrode; and (2) After spraying the composition for a long time, a Taylor cone different from the initial operation was formed by the foreign matter. Further, from FIG. 9, the composition in which k is 0.01 ≦ k ≦ 50 confirmed the following regardless of the types and amounts of (a) active component and (b) antioxidant component: 1) After spraying the composition for a long time, no foreign matter was formed at the tip of the spray electrode; and (2) After spraying the composition for a long time, That formed. Moreover, since the composition which concerns on Example 7 contains 0.10 w / w% of (a) component, after spraying a composition, it is confirmed that a floral fragrance is filled in space, (a) It was confirmed that such an effect was sufficiently exhibited. In addition, in the composition according to Example 8 containing 30.00 w / w% of an oily floral fragrance as the component (a), and 49.9945 w / w% of water and (c) alcohol, separation of the component (a) Neither precipitation of the component (b) nor separation of the composition was confirmed.
 〔様々な(d)アルコールについて〕
 図10は、組成物の各成分の配合例を示す図である。図11は、図10に係る組成物を長期間噴霧した場合に当該組成物がテイラーコーンへ与える影響、の評価結果を示す図である。
[Various (d) alcohols]
FIG. 10 is a diagram showing a blending example of each component of the composition. FIG. 11 is a diagram showing an evaluation result of the influence of the composition on the Taylor cone when the composition according to FIG. 10 is sprayed for a long period of time.
 図10に示すように、実施例20~22の組成物は、(a)活性成分としてフローラル香料を、(b)酸化防止成分としてアスコルビン酸ナトリウムを含む。また、(d)成分としてエタノール、イソプロピルアルコール、または1-ブタノールを含む。図11において、組成物を噴霧するための各種条件は以下のとおりである。
・温度・・・室温
・噴霧量・・・7.7×10-8(l/s)で、3日間(合計20g)
・電流・・・2.00×10-6(C/s)。
また、図11において、組成物がテイラーコーンへ与える影響は、図9におけるテイラーコーンの評価方法および評価基準と同様の方法を用いた。
As shown in FIG. 10, the compositions of Examples 20 to 22 contain (a) floral fragrance as an active ingredient and (b) sodium ascorbate as an antioxidant ingredient. Moreover, ethanol, isopropyl alcohol, or 1-butanol is included as (d) component. In FIG. 11, various conditions for spraying the composition are as follows.
・ Temperature: room temperature ・ Amount of spray: 7.7 × 10 −8 (l / s), 3 days (total 20 g)
Current: 2.00 × 10 −6 (C / s)
Moreover, in FIG. 11, the influence which the composition has on the Taylor corn used the same method as the evaluation method and evaluation criteria of the Taylor corn in FIG.
 図11より、kが0.01≦k≦50となる組成物は、(d)エタノールの種類に関わらず、以下のことが確認された:(1)当該組成物を長期間噴霧した後に、スプレー電極の先端に異物が形成されなかったこと;および(2)当該組成物を長期間噴霧した後に、スプレー電極の稼働初期と同様のテイラーコーンが形成されたこと。 From FIG. 11, it was confirmed that the composition in which k is 0.01 ≦ k ≦ 50 (d) regardless of the type of ethanol: (1) After spraying the composition for a long period of time, No foreign matter was formed at the tip of the spray electrode; and (2) After spraying the composition for a long time, a Taylor cone similar to the initial operation of the spray electrode was formed.
 また、発明者らは、水および(c)アルコールを含まない組成物を作成し、当該組成物と、実施例20~22の組成物について、組成物の蒸発速度を評価した。具体的には、一定量(0.2ml)の組成物をシャーレに入れ、室温に30分間放置するとともに、放置前後の組成物の重量を測定した。その結果、水および(c)アルコールを含まない組成物は0%、実施例20~22の組成物は15%が、蒸発したことが分かった。以上の結果から、水および(c)アルコールを含む組成物は、水および(c)アルコールを含まない組成物と比較して早く蒸散することが分かった。また、水および(c)アルコールを含まない組成物を作成し、当該組成物と、実施例20~22の組成物について、図14に示したように、静電噴霧装置で噴霧した後に、空気中に拡散しないで落下する組成物を、感油紙を用いて検出した。その結果、水および(c)アルコールを含まない組成物は、実施例20~22の組成物に比べて、感油紙上に明らかにより多くの組成物由来の黒点を観察した。以上の結果から、水および(c)アルコールを含む組成物は、水および(c)アルコールを含まない組成物と比較してより広く空気中に拡散することが分かった。 In addition, the inventors prepared a composition not containing water and (c) alcohol, and evaluated the evaporation rate of the composition and the compositions of Examples 20 to 22. Specifically, a fixed amount (0.2 ml) of the composition was placed in a petri dish and left at room temperature for 30 minutes, and the weight of the composition before and after being left was measured. As a result, it was found that 0% of the composition containing no water and (c) alcohol and 15% of the compositions of Examples 20 to 22 were evaporated. From the above results, it was found that the composition containing water and (c) alcohol evaporates faster than the composition containing no water and (c) alcohol. Further, a composition containing no water and (c) alcohol was prepared, and the composition and the compositions of Examples 20 to 22 were sprayed with an electrostatic spraying apparatus as shown in FIG. A composition that falls without diffusing into it was detected using oil sensitive paper. As a result, the composition containing no water and (c) alcohol clearly observed more black spots derived from the composition on the oil-sensitive paper than the compositions of Examples 20-22. From the above results, it was found that the composition containing water and (c) alcohol diffused more widely in the air than the composition containing no water and (c) alcohol.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意図する。 In addition, all of the academic literatures and patent literatures described in this specification are incorporated as references in this specification. Unless otherwise specified in this specification, “A to B” indicating a numerical range is intended to be “A or more and B or less”.
 1 スプレー電極(第1電極)
 2 基準電極(第2電極)
 22 高電圧発生装置(電圧印加部)
 100 静電噴霧装置
1 Spray electrode (first electrode)
2 Reference electrode (second electrode)
22 High voltage generator (voltage application unit)
100 Electrostatic spraying device

Claims (6)

  1.  静電噴霧装置の第1電極と第2電極との間に電圧印加部によって電圧を印加することにより、当該第1電極の先端から噴霧するための、静電噴霧用の組成物であり、
     上記組成物は、(a)活性成分と(b)酸化防止成分とを含有し、
     下記式(1)で表されるkが0.01≦k≦50を満たし、
     下記式(1)において、上記組成物から上記第1電極へ供与される電荷数は、下記式(2)で表され、
     下記式(1)において、上記電圧印加部から上記第2電極へ供与される電荷数は、下記式(3)で表される、静電噴霧用の組成物。
     k=(組成物から第1電極へ供与される電荷数)/(電圧印加部から第2電極へ供与される電荷数)・・・式(1)
     組成物から第1電極へ供与される電荷数=酸化防止成分のモル濃度(mol/l)×酸化防止成分の1分子から第1電極へ供与される電子の数×噴霧量(l/s)×アボガドロ定数(mol-1)・・・式(2)
     電圧印加部から第2電極へ供与される電荷数=電流(C/s)/電気素量(C)・・・式(3)
    A composition for electrostatic spraying for spraying from the tip of the first electrode by applying a voltage between the first electrode and the second electrode of the electrostatic spraying device by a voltage application unit,
    The composition contains (a) an active ingredient and (b) an antioxidant ingredient,
    K represented by the following formula (1) satisfies 0.01 ≦ k ≦ 50,
    In the following formula (1), the number of charges provided from the composition to the first electrode is represented by the following formula (2),
    In the following formula (1), the number of charges provided from the voltage application unit to the second electrode is a composition for electrostatic spraying represented by the following formula (3).
    k = (number of charges provided from the composition to the first electrode) / (number of charges provided from the voltage application unit to the second electrode) Formula (1)
    Number of charges donated from the composition to the first electrode = molar concentration of the antioxidant component (mol / l) × number of electrons donated from one molecule of the antioxidant component to the first electrode × spray amount (l / s) X Avogadro constant (mol -1 ) Formula (2)
    Number of charges provided from the voltage application unit to the second electrode = current (C / s) / elementary electric charge (C) (3)
  2.  上記組成物は、上記(a)活性成分を当該組成物全体量に対して0.1~30w/w%含むものである、請求項1に記載の組成物。 The composition according to claim 1, wherein the composition contains 0.1 to 30 w / w% of the active ingredient (a) with respect to the total amount of the composition.
  3.  上記組成物は、上記(b)酸化防止成分を当該組成物全体量に対して0.0001~1w/w%含むものである、請求項1または2に記載の組成物。 3. The composition according to claim 1, wherein the composition contains 0.0001 to 1 w / w% of the antioxidant component (b) with respect to the total amount of the composition.
  4.  上記組成物は、水、および、蒸発速度が0.4以上の(c)アルコールを、当該組成物全体量に対して、合計量として5~50w/w%含むものであり、
     上記蒸発速度は、酢酸ブチルの蒸発速度を1とした場合の相対値である、請求項1から3のいずれか1項に記載の組成物。
    The composition contains water and (c) an alcohol having an evaporation rate of 0.4 or more in a total amount of 5 to 50 w / w% with respect to the total amount of the composition.
    The composition according to any one of claims 1 to 3, wherein the evaporation rate is a relative value when the evaporation rate of butyl acetate is 1.
  5.  上記(b)酸化防止成分が、アスコルビン酸、アスコルビン酸ナトリウム、トコフェロール、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソールおよびtert-ブチルヒドロキノンからなる群から選択される少なくとも1つである、請求項1から4のいずれか1項に記載の組成物。 The antioxidant component (b) is at least one selected from the group consisting of ascorbic acid, sodium ascorbate, tocopherol, dibutylhydroxytoluene, butylhydroxyanisole and tert-butylhydroquinone. The composition according to claim 1.
  6.  請求項1から5のいずれか1項に記載の組成物を噴霧する、静電噴霧装置。 An electrostatic spraying device for spraying the composition according to any one of claims 1 to 5.
PCT/JP2017/044761 2017-02-13 2017-12-13 Composition for electrostatic spray and electrostatic spray device WO2018146940A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023933 2017-02-13
JP2017023933 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018146940A1 true WO2018146940A1 (en) 2018-08-16

Family

ID=63108146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044761 WO2018146940A1 (en) 2017-02-13 2017-12-13 Composition for electrostatic spray and electrostatic spray device

Country Status (2)

Country Link
TW (1) TW201829711A (en)
WO (1) WO2018146940A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165815A (en) * 1992-11-30 1994-06-14 Noritomo Matsukawa Deodorant composition of domestic animal excreta
JPH07100194A (en) * 1993-10-12 1995-04-18 Mitsubishi Materials Corp Multipurpose deodorant
JP2000044417A (en) * 1998-08-03 2000-02-15 Kenko Hyakunijussai:Kk Germicidal liquid containing iron ion
JP2006129707A (en) * 2004-11-02 2006-05-25 Kanae Kagaku Kogyo Kk Freshness preservative or deodorant composition, and method for using the same
JP2007229047A (en) * 2006-02-28 2007-09-13 Kenko Hyakunijussai:Kk Air cleaner
WO2009107513A1 (en) * 2008-02-26 2009-09-03 パナソニック電工株式会社 Electrostatic atomizer
WO2014141798A1 (en) * 2013-03-15 2014-09-18 住友化学株式会社 Electrostatic spraying device and method for controlling electrostatic spraying device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165815A (en) * 1992-11-30 1994-06-14 Noritomo Matsukawa Deodorant composition of domestic animal excreta
JPH07100194A (en) * 1993-10-12 1995-04-18 Mitsubishi Materials Corp Multipurpose deodorant
JP2000044417A (en) * 1998-08-03 2000-02-15 Kenko Hyakunijussai:Kk Germicidal liquid containing iron ion
JP2006129707A (en) * 2004-11-02 2006-05-25 Kanae Kagaku Kogyo Kk Freshness preservative or deodorant composition, and method for using the same
JP2007229047A (en) * 2006-02-28 2007-09-13 Kenko Hyakunijussai:Kk Air cleaner
WO2009107513A1 (en) * 2008-02-26 2009-09-03 パナソニック電工株式会社 Electrostatic atomizer
WO2014141798A1 (en) * 2013-03-15 2014-09-18 住友化学株式会社 Electrostatic spraying device and method for controlling electrostatic spraying device

Also Published As

Publication number Publication date
TW201829711A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
KR101942124B1 (en) Electrostatic atomizer, and method for electrostatically atomizing by use of the same
AU2014221964B2 (en) Electrostatic spraying apparatus, and current control method for electrostatic spraying apparatus
AU2014232067B2 (en) Electrostatic spraying device and method for controlling electrostatic spraying device
US20090179093A1 (en) Electrostatically atomizing device
JP5149095B2 (en) Electrostatic atomizer and air conditioner using the same
EP2974749B1 (en) Active ingredient generating device
WO2018146940A1 (en) Composition for electrostatic spray and electrostatic spray device
Si et al. Characterization of electrical current and liquid droplets deposition area in a capillary electrospray
JP2007313460A (en) Electrostatic atomizer
JP2011031184A (en) Electrostatic atomizer
Gamero-Castano et al. On the current emitted by Taylor cone-jets of electrolytes in vacuo: Implications for liquid metal ion sources
Nyström et al. Fabrication and characterization of drug particles produced by electrospraying into reduced pressure
JP2007313461A (en) Electrostatic atomization apparatus
CN109641223B (en) Electrostatic spraying device
WO2012043231A1 (en) Static spraying appratus
JP2009268944A (en) Electrostatic atomizing device
JP6212504B2 (en) Electrostatic spraying equipment
Lee Electrical sterilization of Escherichia coli by electrostatic atomization
JP5265997B2 (en) Electrostatic atomizer
JP2007313463A (en) Electrostatic atomizer
Kobara et al. Features and advantages of electrospray in an insulating liquid
JP2014233667A (en) Electrostatic sprayer and control method for the same
JPH0416201A (en) Acceleration of volatilization by discharge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP