WO2018146793A1 - Inverter control device and vehicle driving system - Google Patents

Inverter control device and vehicle driving system Download PDF

Info

Publication number
WO2018146793A1
WO2018146793A1 PCT/JP2017/004923 JP2017004923W WO2018146793A1 WO 2018146793 A1 WO2018146793 A1 WO 2018146793A1 JP 2017004923 W JP2017004923 W JP 2017004923W WO 2018146793 A1 WO2018146793 A1 WO 2018146793A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
command value
controller
demagnetization
voltage command
Prior art date
Application number
PCT/JP2017/004923
Other languages
French (fr)
Japanese (ja)
Inventor
敦明 横山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2018566720A priority Critical patent/JP6822493B2/en
Priority to PCT/JP2017/004923 priority patent/WO2018146793A1/en
Publication of WO2018146793A1 publication Critical patent/WO2018146793A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Definitions

  • the present invention relates to an inverter control device and a vehicle drive system.
  • the problem to be solved by the present invention is to provide an inverter control device and a vehicle drive system that can determine demagnetization even when the operating point of driving varies.
  • the present invention calculates a demagnetization determination threshold according to the rotation state of the motor, compares the torque voltage command value with the demagnetization determination threshold, and determines whether or not demagnetization of the magnet has occurred according to the comparison result.
  • the above-mentioned problem is solved by determining.
  • FIG. 1 is a block diagram of a vehicle drive system according to the present embodiment.
  • FIG. 2 is a block diagram of the drive system according to the present embodiment.
  • FIG. 3 is a block diagram of the inverter control apparatus according to the present embodiment.
  • FIG. 4 is a flowchart showing a control flow of demagnetization determination by the controller shown in FIG.
  • FIG. 5 is a flowchart showing a control flow of a controller of an inverter control device according to another embodiment of the present invention.
  • FIG. 6 is a block diagram of a vehicle drive system according to another embodiment of the present invention.
  • FIG. 7 is a block diagram of a vehicle drive system according to another embodiment of the present invention.
  • FIG. 8 is a block diagram of a vehicle drive system according to another embodiment of the present invention.
  • FIG. 1 is a block diagram showing a vehicle drive system including an inverter control device according to an embodiment of the present invention.
  • the inverter control device of the present example will be described with reference to an example in which the inverter control device is provided to an electric vehicle.
  • the inverter control device of the present example is a hybrid including at least a motor, such as a parallel type hybrid vehicle and a series type hybrid vehicle. It can also be applied to vehicles.
  • the vehicle control system including the inverter control device of the present example includes a battery 1, an inverter 2, a motor 3, a speed reducer 4, drive wheels 5, and a controller 100.
  • the vehicle drive system is not limited to the configuration shown in FIG. 1 and may include other configurations such as auxiliary devices.
  • the battery 1 is a vehicle power source and is a battery group in which a plurality of secondary batteries are connected in series or in parallel. A lithium ion battery etc. are used for a secondary battery.
  • the inverter 2 includes a plurality of switching elements such as IGBTs, and converts AC power output from the battery 1 into DC power by switching on and off the switching elements according to a switching signal from the controller 100. Further, the inverter 2 converts AC power generated by the regenerative operation of the motor 3 into DC power, and outputs the DC power to the battery 1.
  • a current sensor is connected between the inverter 2 and the motor 3. The current sensor detects the current flowing through the motor 3 and outputs the detected value to the controller 100.
  • the motor 3 is connected to the drive shaft of the vehicle and is a vehicle drive source that is driven by AC power from the inverter 2.
  • the motor 3 is an electric motor such as a permanent magnet synchronous motor.
  • a rotation angle sensor is connected to the motor 3, and a detection value of the rotation angle sensor is output to the controller 100.
  • the output shaft of the motor 3 is connected to the left and right drive wheels 5 via the speed reducer 4 and the left and right drive shafts.
  • the motor 3 regenerates energy by generating a regenerative driving force by the rotation of the drive wheels 5.
  • the controller 100 determines the vehicle state such as the accelerator opening, the vehicle speed and the gradient, the SOC of the battery 1, the chargeable / dischargeable power of the battery 1, the generated power of the motor 3, etc.
  • a drive torque (necessary torque) for outputting torque in response to a driver's request is commanded to the inverter 2.
  • the driver's request is determined by the accelerator operation and the brake operation.
  • the controller 100 controls the motor 3 via the inverter 2 while optimizing the efficiency of the drive system of the vehicle according to the driving state of the vehicle and the state of the battery 1.
  • one controller 100 is shown as a control part for controlling the vehicle, but the controller 100 may be a plurality of controllers such as a motor controller and an integrated controller. Various controllers are connected by a CAN communication network.
  • the controller 100 includes a memory 110, a CPU 120, and the like.
  • FIG. 2 is a block diagram of the drive system.
  • the inverter 2 includes upper arm elements 21, 23, and 25 that form an upper arm circuit, lower arm elements 22, 24, and 26 that form a lower knitting circuit, a smoothing capacitor 27, a discharge resistor 28, and a discharge switch 29. And a drive circuit 30.
  • the upper arm elements 21, 23, and 25 have a main configuration of a circuit in which switching elements Q1, Q3, and Q5 as power devices and diodes D1, D3, and D5 are connected in parallel.
  • the collector terminal of the switching element Q1 and the cathode terminal of the diode D1 are connected, and the collector terminal of the switching element Q1 and the anode terminal of the diode D1 are connected.
  • the lower arm elements 22, 24, and 26 are mainly configured by a circuit in which switching elements Q2, Q4, and Q6 as power devices and diodes D2, D4, and D6 are connected in parallel.
  • the connection between switching element Q2 to switching element Q6 and diodes D2 to D6 is the same as the connection between switching element Q1 and diode D1.
  • three pairs of circuits in which two switching elements Q1 to Q6 are connected in series are electrically connected to the battery 1 by being connected between the power supply line P and the power supply line N.
  • Each connection point for connecting the switching elements is electrically connected to the three-phase output portion of the three-phase motor 3.
  • the power line P is connected to the positive side of the battery 1
  • the power line N is connected to the negative side of the battery 1.
  • connection point between the emitter terminal of the switching element Q1 and the collector terminal of the switching element Q2 is a U-phase output
  • connection point between the emitter terminal of the switching element Q3 and the collector terminal of the switching element Q4 is a V-phase output
  • the connection point between the emitter terminal of Q5 and the collector terminal of the switching element Q6 is a W-phase output and is connected to the three-phase wiring of the motor 3.
  • the upper arm elements 21, 23, 25 and the lower arm elements 22, 24, 26 constitute a two-level three-phase inverter circuit 20.
  • the smoothing capacitor 27 is an element that is connected between the inverter circuit 20 and the battery 1 and smoothes the electric power from the battery 1.
  • the smoothing capacitor 27 is connected between the power supply lines P and N.
  • the discharge resistor 28 and the discharge switch 29 are connected in series, and the series circuit of the discharge resistor 28 and the discharge switch 29 is connected between the power supply lines P and N.
  • the discharge resistor 28 discharges the electric charge charged in the smoothing capacitor 27.
  • the controller 100 controls on / off of the discharge switch 29. When the discharge switch 29 is turned on, the smoothing capacitor 27 and the discharge resistor 28 are brought into conduction, and discharge is performed.
  • the drive circuit 30 has a function of switching on and off the switching elements S1 to S6 based on a switching signal transmitted from the controller 100.
  • the motor 3 is connected to the connection point of the switching elements Q1 and Q2, the connection point of the switching elements Q3 and Q4, and the connection point of the switching elements Q5 and Q6 in each phase of the inverter circuit.
  • the relay switch 7 is connected between the battery 1 and the smoothing capacitor 27 of the inverter 2.
  • the controller 100 is a controller for controlling the drive circuit 30. Based on the torque command value input from the outside, the phase current of the motor 3, and the rotation speed (rotation speed) of the motor 3, the controller 100 outputs the required torque of the torque command value from the motor 3. Calculate the current command value.
  • the phase current of the motor 3 is detected by a current sensor 8 connected between the inverter circuit 20 and the motor 3, and the rotational speed of the motor 3 is calculated from the detection value of the resolver 9 provided in the motor 3.
  • the controller 100 generates a switching signal for supplying the power required by the motor 3 and outputs it to the drive circuit 30. Then, the drive circuit 30 switches on and off each of the switching elements Q1 to Q6 based on the switching signal. Thereby, the controller 100 is controlling the inverter 2 by PWM control.
  • FIG. 3 is a block diagram of the inverter 2, the motor 3, and the controller 100.
  • the controller 100 includes a rotation speed controller 31, a current command value calculator 32, a current controller 33, a non-interference controller 34, a two-phase three-phase voltage converter 35, a rotation speed calculator 36, and a three-phase two-phase current converter. 37.
  • the rotation speed controller 31 matches the rotation speed detection value ( ⁇ G : motor rotation speed) output from the rotation speed calculator 36 with the rotation speed command value ( ⁇ G * ) of the motor 3 output from the controller 100. It is a PID controller that calculates the torque command value (T * ) of the motor 3 so that The rotational speed controller 31 receives the rotational speed command value ( ⁇ G * ) and the rotational speed detection value ( ⁇ G ) as inputs, calculates a torque command value (T * ) by the following equation (1), and obtains a current command value. The result is output to the calculator 32.
  • the rotational speed command value ( ⁇ G * ) is a target value calculated by the controller 100.
  • the controller 100 calculates the target torque according to the user's request according to the vehicle state, and calculates the rotation speed necessary for outputting the target torque as the rotation speed command value.
  • the current command value calculator 32 inputs the torque command value (T * ), the voltage (V dc ) of the battery 1, and the rotation speed detection value ( ⁇ G ) indicating the angular frequency of the motor 3.
  • the dq axis current command values (I d * , I q * ) are calculated and output to the current controller 33.
  • the dq axis represents the axis of the rotational coordinate system by the magnetic flux axis of the magnet and the axis orthogonal to the magnet axis.
  • the current command value calculator 32 receives the dq-axis current command values (I d * , I q * ) using the torque command value (T * ), the rotation speed detection value ( ⁇ G ), and the voltage (V dc ) as indices.
  • a map for output is stored in the memory 110. The map is an optimum command value that minimizes the loss of the motor 3 and the loss of the inverter 2 with respect to the input of the torque command value (T * ), the rotation speed detection value ( ⁇ G ), and the voltage (V dc ). Is output. Then, the current command value calculator 32 refers to the map and calculates the dq axis current command value (I d * , I q * ).
  • the current command value calculator 32 includes a dq-axis current based on the detected value of the current sensor 8 in addition to the torque command value (T * ), the voltage (V dc ) of the battery 1 and the rotation speed detection value ( ⁇ G ). (I d , I q ) and chargeable / dischargeable power (P in , P out ) of the battery 1 are input, and the current command value calculator 32 calculates the dq axis current command value.
  • the dq-axis current command value is a target value of the current of the motor 3, and includes an excitation current command value and a torque current command value.
  • the current controller 33 receives the dq-axis current command value (I d * , I q * ) and the dq-axis current (I d , I q ) as inputs, performs control calculation using the following equation (2),
  • the dq axis voltage command value (v d * , v q * ) is output.
  • the dq-axis voltage command values (v d * , v q * ) are target values of the motor 3 voltage, and include an excitation voltage command value and a torque voltage command value.
  • K pd and K pq indicate proportional gains
  • K id and K iq indicate integral gains.
  • the current controller 33 may calculate the dq axis voltage command values (v d * , v q * ) with reference to a map corresponding to the above equation (2).
  • the non-interference controller 34 calculates dq-axis non-interference voltages (v ddcpl , v qdcpl ) for canceling the generated interference voltage when current flows through the d-axis and q-axis of the motor 3.
  • the voltage equation of the motor 3 is generally expressed by the following equation (3) when expressed in dq coordinates.
  • L d is the d-axis inductance
  • L q is the q-axis inductance
  • Ra is the winding resistance of the motor 3
  • ⁇ re is the electrical angular velocity
  • ⁇ a is the magnetic flux density (torque constant)
  • p is the differential Indicates an operator.
  • equation (3) is transformed by Laplace transform for each component, it is expressed by the following equation.
  • the non-interference controller 34 has a non-interference voltage (v expressed by the following equation (6). ddcpl , vqdcpl ).
  • a subtractor is provided on the output side of the current controller 33 and the non-interference controller 34.
  • the non-interference voltage (v d * , v q * ) represented by the equation (6)
  • the interference term in equation (4) is canceled
  • the dq-axis current is expressed by the following equation (7).
  • the two-phase three-phase voltage converter 35 receives the dq axis voltage command values (v d * , v q * ) and the detected value ⁇ of the resolver 9 as input, and uses the following equation (8) to Converts dq-axis voltage command values (v d * , v q * ) to u, v, w-axis voltage command values (v u * , v v * , v w * ) in the fixed coordinate system and outputs them to inverter 2 To do.
  • the three-phase two-phase current converter 37 is a control unit that performs three-phase to two-phase conversion.
  • the phase current (I u , I v , I w ) and the detected value ⁇ of the magnetic pole position detector 52 are input as fixed coordinates.
  • the phase currents (I u , I v , I w ) of the system are converted into phase currents (I d , I q ) of the rotating coordinate system, and the current command value calculator 32, current controller 33, and non-interacting controller 34 are converted. Output to.
  • the current sensor 8 is provided for each of the U phase and the V phase, detects a phase current (I u , I v ), and outputs it to the three-phase two-phase current converter 37.
  • the w-phase current is not detected by the current sensor 8. Instead, the three-phase two-phase current converter 37 calculates the w-phase current based on the input phase currents (I u , I v ). .
  • a resolver (rotation sensor) 9 is a detector that is provided in the motor 3 and detects the position of the magnetic pole of the motor 3, and outputs a detection value ( ⁇ ) to the rotation speed calculator 36.
  • the resolver 9 detects the rotation state of the motor 3 at a predetermined cycle.
  • the rotation speed calculator 36 calculates a rotation speed detection value ( ⁇ G ) that is an angular frequency of the motor 3 from the detection value ( ⁇ ) of the resolver 9, and outputs it to the rotation speed controller 31 and the current command value calculator 32. .
  • the control device is controlled by a current control loop with a predetermined gain.
  • the inverter 2 generates a PWM control signal for switching on and off of the switching element based on the input voltage command values (v * u , v * v , v * w ) under the control of the current control loop. Based on the PWM control signal, the switching element is operated to convert electric power.
  • the determination threshold calculator 41 calculates a determination threshold (v qd * ) for determining demagnetization.
  • the demagnetization determination unit 42 compares the voltage command value (v q * ) with the determination threshold value (v qd * ), and based on the comparison result, whether or not demagnetization of the magnet included in the motor 3 has occurred. Determine. The determination of demagnetization by the determination threshold calculator 41 and the demagnetization determination unit 42 will be described later.
  • a strong magnet such as a neodymium magnet is used.
  • This magnet is magnetized to obtain a magnetic force, but if an excessive magnetic force is applied in the opposite direction, the magnetic force cannot be maintained. This phenomenon is demagnetization.
  • demagnetization occurs in the motor for driving the vehicle, the torque for driving the vehicle decreases because the magnetic force of the motor is weak despite the current flowing through the motor.
  • Demagnetization to influence the voltage command value (v q *), it is possible to determine the demagnetization from the change of the voltage command value (v q *).
  • the torque voltage (v q ) changes according to the rotation speed of the motor 3, so that the voltage command value (v q * ) also changes depending on the motor rotation speed.
  • the number of rotations of the motor varies depending on the state of the vehicle, the driving operation of the driver, and the like, and is not steady. Therefore, the voltage command value (v q * ) is not a steady value.
  • the decrease in the voltage command value (v q * ) is caused not only by demagnetization but also by a change in the motor rotation speed.
  • the following control is performed to determine demagnetization under a state where the operating point of operation varies.
  • FIG. 4 is a flowchart showing a control flow of demagnetization determination by the controller 100. Note that the control flow shown in FIG. 4 is repeatedly executed at a predetermined cycle.
  • the control cycle of the control flow may be a sufficiently small cycle (for example, a 1 / 10th cycle with respect to the driving cycle) with respect to the time during which the rotation speed varies (corresponding to the driving cycle of the vehicle).
  • step S1 the demagnetization determination unit 42 acquires a voltage command value (v q * ).
  • step S2 the demagnetization determination unit 42 calculates an average value (v q * AVE ) of the voltage command value (v q * ).
  • the average value of the voltage command value (v q *) (v q * AVE) including the voltage command value obtained immediately before the (v q *), a plurality of past times (e.g., last 5 times) voltage command component Calculation is performed using the value (v q * ).
  • the demagnetization determination unit 42 calculates the absolute value of the difference between the current voltage command value (v q * ) and the average value (v q * AVE ), and calculates the absolute value of the difference and a predetermined threshold ( Compare D 1) and.
  • the predetermined threshold value (D 1 ) is a threshold value indicating the fluctuation range of the voltage command value (v q * ), and is set in advance according to the allowable fluctuation range. Since the fluctuation of the voltage command value (v q * ) corresponds to the fluctuation of the motor rotation speed ( ⁇ G ), the threshold value (D 1 ) indicates the fluctuation width of the motor rotation speed ( ⁇ G ). . The lower the threshold (D 1 ), the higher the accuracy of excitation determination.
  • the demagnetization determination unit 42 determines that the fluctuation of the motor rotation speed is small, and executes the control in step S4.
  • the demagnetization determination unit 42 determines that the fluctuation of the motor rotation speed is large, and executes the control of step S11.
  • step S4 the demagnetization determination unit 42 increments the counter (A).
  • step S5 the demagnetization determination unit 42 compares the counter (A) with the threshold value (A th ).
  • the threshold value (A th ) represents the time during which the fluctuation range of the voltage command value (v q * ) is less than the threshold value (D 1 ). The higher the threshold value (A th ), the longer the time during which the rotational speed is stable.
  • the threshold value (A th ) is set to 100 times, for example.
  • the demagnetization determining unit 42 determines that the motor rotation speed stabilization time has continued for a predetermined time or more, and executes the control of step S6.
  • the control flow returns to step S1, and the demagnetization determination unit 42 executes the control of step S1.
  • the determination threshold value calculator 41 calculates a determination threshold value (v qd * ) corresponding to the motor rotation speed ( ⁇ G ).
  • the determination threshold value (v qd * ) is a threshold value for determining demagnetization, and is a value corresponding to the motor rotation speed ( ⁇ G ).
  • the memory 110 stores a map in which the motor rotation speed ( ⁇ G ) is associated with the determination threshold value (v qd * ). That is, when the motor rotation speed ( ⁇ G ) varies, the determination threshold value (v qd * ) indicated by the map also becomes a different value.
  • the determination threshold calculator 41 acquires the motor rotation speed ( ⁇ G )
  • the determination threshold calculator 41 identifies the determination threshold (v qd * ) corresponding to the current motor rotation speed ( ⁇ G ) on the map while referring to the map. .
  • step S7 the demagnetization determination unit 42 calculates the difference (v qd * ⁇ v q * ) between the determination threshold value (v qd * ) specified on the map and the current voltage command value (v q * ).
  • the calculated difference is compared with a predetermined threshold (D 2 ).
  • the predetermined threshold value (D 2 ) indicates a decrease amount of the voltage command value (v q * ) due to demagnetization, and is set in advance accordingly.
  • step S11 When the difference is larger than the threshold value (D 2 ), the demagnetization determination unit 42 determines that the voltage command value (v q * ) is lower than the normal value, and executes the control of step S8. On the other hand, when the difference is less than the threshold value (D 2 ), the demagnetization determination unit 42 determines that no demagnetization has occurred and the current voltage command value (v q * ) is normal, The control in step S11 is executed.
  • step S8 the demagnetization determination unit 42 increments the counter (B).
  • step S9 the demagnetization determination unit 42 compares the counter (B) with the threshold value (B th ).
  • the threshold value (B th ) indicates the number of determinations determined as abnormal, and is determined according to the determination accuracy of demagnetization.
  • the threshold value (B th ) is determined in advance, and is set to 3 times, for example.
  • step S10 the demagnetization determination unit 42 determines that demagnetization has occurred.
  • the controller 100 may notify the driver of the occurrence of demagnetization by displaying a lamp or the like. Then, the control flow ends.
  • the control flow ends.
  • step S11 If the absolute value of the difference between the voltage command value (v q * ) and the average value (v q * AVE ) is greater than or equal to the threshold value (D 1 ) in step S3, the demagnetization determination device 42 in step S11. Resets the counter (A). If the absolute value of the difference between the current voltage command value (v q * ) and the determination threshold value (v qd * ) is less than the threshold value (D 2 ) in step S7, the demagnetization determination device is determined in step S11. 42 resets the counter (A). Then, after the counter (A) is reset, the control flow ends.
  • the demagnetization determination unit 42 determines in step S11.
  • the counter (B) may be reset.
  • the determination threshold value (v qd * ) corresponding to the rotation state of the motor 3 is calculated, and the torque voltage command value (v q * ) is compared with the determination threshold value (v qd * ). In accordance with the comparison result, it is determined whether or not the magnet 3 of the motor 3 is demagnetized. Thus, demagnetization can be determined under the situation where the torque voltage command value (v q * ) varies like the motor 3.
  • the control flow from step S1 to step S5 adds that the fluctuation of the motor rotation speed is small.
  • the step is performed.
  • the control flow from S1 to step S5 may be omitted. That is, in the present embodiment, the determination threshold value (v qd * ) becomes a value corresponding to the fluctuation of the motor rotation speed by the calculation process in step S6. For this reason, when the motor rotation speed fluctuates, the determination threshold value (v qd * ) also fluctuates. Therefore, even when the torque voltage command value (v q * ) fluctuates due to fluctuations in the motor rotation speed, it can be accurately reduced. Can determine magnetism.
  • a state where the reverse magnetic field exceeds the knick point is a demagnetization state. And when a reverse magnetic field exceeds a nick point, magnetic force will reduce sharply. Therefore, demagnetization can be accurately determined if the determination threshold (v qd * ) can follow fluctuations in the motor rotation speed.
  • the mask condition is not limited to the fluctuation range of the motor rotation speed, and may include other elements such as a detection current.
  • the voltage command value or the motor speed may be an abnormal value due to an abnormality in the current sensor 8, the resolver 9, or the CPU 120. Therefore, if the detected current or the motor rotation speed is out of the predetermined range and the mask condition is not satisfied, the controller 100 may not execute the excitation determination control.
  • the determination threshold value calculator 41 may calculate, for example, a moving average value of the torque voltage command value (v q * ) as the determination threshold value (v qd * ) instead of the calculation process using the map.
  • the determination threshold value calculator 41 may calculate the determination threshold value (v qd * ) not only by the moving average but also by an arithmetic process using an arithmetic expression including at least the motor rotation number as a variable.
  • Second Embodiment An inverter control device according to another embodiment of the present invention will be described.
  • the calculation control of the determination threshold value (v qd * ) by the controller 100 is different from the first embodiment.
  • Other configurations and control methods are the same as those in the first embodiment described above, and the description thereof is incorporated.
  • the controller 100 calculates a torque voltage command value (v q * ) based on the motor rotation speed ( ⁇ G ) at a predetermined cycle, and associates the motor rotation speed ( ⁇ G ) with the torque voltage command value (v q * ). Then, it is stored in the memory 110 as a map. The controller 100, the current motor speed (omega G) to the newly torque voltage command value based (v q *) when calculating the current motor speed torque voltage command value corresponding to the ( ⁇ G) (v q * ) is specified on the map.
  • Controller 100 a torque voltage command value specified on the map (v q *) and the newly computed torque voltage command value (v q *) is compared with the smaller torque voltage command values (v q * ) Is set as a new determination threshold (v qd * ).
  • the controller 100 associates the newly set determination threshold value (v qd * ) with the motor rotation speed ( ⁇ G ) and stores it in the map.
  • the controller 100 when the controller 100 newly calculates the torque voltage command value (v q * ), the controller 100 newly stores the torque voltage command value (v q * ) stored as the determination threshold value (v qd * ) on the map, Then, select low with the calculated torque voltage command value (v q * ), set the lower torque voltage command value (v q * ) as the determination threshold value (v qd * ), and update the map.
  • FIG. 5 is a flowchart showing a control flow of an inverter control apparatus according to another embodiment of the present invention. Since the control flow of steps S1 to S11 is the same as the control flow of steps S1 to S11 according to the first embodiment, a description thereof will be omitted.
  • step S7 If the difference (v qd * ⁇ v q * ) between the current voltage command value (v q * ) and the determination threshold (v qd * ) is equal to or less than the threshold (D 2 ) in step S7, the process proceeds to step S12. Thus, the demagnetization determination unit 42 resets the counter (A).
  • step S13 the controller 100 specifies the determination threshold value (v qd * ) corresponding to the current motor rotation speed while referring to the map. The controller 100 compares the specified determination threshold value (v qd * ) with the current voltage command value (v q * ).
  • the controller 100 If the current voltage command value (v q * ) is lower than the specified determination threshold value (v qd * ), the controller 100 newly determines the current voltage command value (v q * ) in step S14. Set the threshold (v qd * ) and update the map. On the other hand, when the current voltage command value (v q * ) is equal to or greater than the specified determination threshold value (v qd * ), the controller 100 ends the control flow without updating the map.
  • the rotation state of the motor 3 detected by the resolver 9 and the calculated torque voltage command value (v q * ) are stored in the memory 110 in association with each other, and the current rotation state is obtained.
  • based torque voltage command value (v q *) is newly computed, the newly computed torque voltage command value (v q *) with the stored torque voltage command value to the memory 110 (v q *) and of The lower value is set as the determination threshold (v qd * ).
  • the determination threshold value (v qd * ) is updated while managing the decrease in the torque voltage command value (v q * ) due to the individual variation of the inverter 2 or the motor 3, the variation of the temperature characteristics of the inverter 2 or the motor 3, or the like. Therefore, the determination accuracy can be increased.
  • the controller 100 associates the motor rotation speed ( ⁇ G ) with the torque voltage command value (v q * ) and stores it in the memory 110 as a map at the initial stage of the vehicle.
  • the controller 100 The torque voltage command value (v q * ) may not be updated by select low.
  • the determination accuracy can be improved without updating the determination threshold value (v qd * ) by selecting low the torque voltage command value (v q * ).
  • FIG. 6 is a block diagram showing a vehicle drive system according to another embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that the presence or absence of demagnetization is determined while the clutch is disengaged.
  • Other configurations are the same as those in the first embodiment or the second embodiment described above, and the description thereof is incorporated as appropriate.
  • the vehicle drive system includes a clutch 50 in addition to the battery 1 and the like.
  • the clutch 50 connects and disconnects between the motor 3 and the speed reducer 4.
  • the controller 100 controls the clutch 50.
  • the clutch is disengaged, the motor 3 is not connected to the drive shaft of the vehicle. At this time, since the operation of the motor 3 does not depend on the driver's vehicle operation, the rotation speed of the motor 3 is stabilized.
  • the controller 100 disengages the clutch according to the driver's operation or the state of the vehicle. Then, the controller 100 determines whether or not demagnetization of the magnet included in the motor 3 has occurred while the clutch 50 is disengaged.
  • the method for determining demagnetization is the same as in the first embodiment. Thereby, demagnetization can be determined in a state where the rotation speed of the motor 3 is stable without affecting the driving request by the driver. As a result, the demagnetization determination accuracy can be increased.
  • the vehicle drive system according to the present embodiment is also applicable to a hybrid system as shown in FIG.
  • the hybrid vehicle is a parallel-type automobile that uses a plurality of power sources such as an internal combustion engine and a motor generator for driving the vehicle, and includes a battery 1, an inverter 2, a motor 3, left and right drive wheels 5, an internal combustion engine (hereinafter referred to as an engine). 10, a first clutch 11, a second clutch 12, a propeller shaft 13, a differential gear unit 14, a drive shaft 15, and an automatic transmission 17.
  • the first clutch 11 is interposed between the output shaft of the engine 10 and the rotation shaft of the motor 3, and connects and disconnects (ON / OFF) the power transmission between the engine 10 and the motor 3.
  • Examples of the first clutch 11 include a wet multi-plate clutch that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid.
  • the hydraulic pressure of the hydraulic unit is controlled based on a control signal from the controller 100, whereby the clutch plate of the first clutch 11 is engaged (including a slip state) or released.
  • a dry clutch may be adopted as the first clutch 11.
  • the automatic transmission 17 is a stepped transmission that switches the gear ratio such as 7 forward speeds and 1 reverse speed in stages, and automatically switches the gear ratios according to the vehicle speed, the accelerator opening, and the like.
  • the second clutch 12 may be obtained by diverting some of the frictional engagement elements among the plurality of frictional engagement elements that are engaged at each gear of the automatic transmission 17.
  • the second clutch 12 may be a dedicated clutch different from the automatic transmission 17.
  • the output shaft of the automatic transmission 17 is connected to the left and right drive wheels 5 via a propeller shaft 13, a differential gear unit 14, and left and right drive shafts 15.
  • reference numeral 5 denotes left and right steering front wheels.
  • the controller 100 connects the clutch 11 and disconnects the clutch 12 while the vehicle is stopped.
  • the controller 100 rotates the engine 10 with the driving force of the motor 3 and operates the auxiliary machinery by the rotation of the engine 10. At this time, since the motor 3 can be driven in a steady state, the rotation speed of the motor 3 is stabilized. Then, the controller 100 determines whether or not demagnetization of the magnet included in the motor 3 has occurred while the clutch 12 is disengaged. Thereby, the determination accuracy of demagnetization can be improved.
  • the magnet 12 included in the motor 3 is demagnetized while the rotation of the motor 3 is stabilized by disengaging the clutch 12 under the driving environment that does not affect the driving request by the driver. Determine whether it has occurred. Thereby, the determination accuracy of demagnetization can be improved.
  • FIG. 7 a rear-wheel drive hybrid vehicle is illustrated, but a front-wheel drive hybrid vehicle or a four-wheel drive hybrid vehicle may be used.
  • the hybrid system may be a series type.
  • the inverter control apparatus according to the first or second embodiment when applied to a vehicle drive system having a clutch as in this embodiment, excitation can be determined with a small fluctuation in the motor rotation speed.
  • the threshold value (D 1 ) or the threshold value (D 1 ) may be made smaller. Thereby, the determination accuracy of demagnetization can be improved.
  • FIG. 8 is a block diagram showing a vehicle drive system according to another embodiment of the present invention.
  • the inverter control system according to the first embodiment or the second embodiment is applied to a vehicle drive system provided with a continuously variable transmission.
  • the configuration and control of the inverter control system are the same as those in the first embodiment or the second embodiment, and the description thereof is incorporated as appropriate.
  • the vehicle drive system includes a continuously variable transmission (CVT) 70 in addition to the battery 1 and the like.
  • the CVT 70 is connected between the motor 3 and the speed reducer 4.
  • the CVT 70 has two pulleys and a belt.
  • the CVT 70 changes the position of the belt between the two pulleys to change the speed, thereby changing the rotation speed of the axle and suppressing fluctuations in the motor rotation speed.
  • demagnetization can be determined in the state where the fluctuation of motor rotation speed was controlled by applying the inverter control device like the 1st embodiment or the 2nd embodiment. Thereby, the determination accuracy of demagnetization can be improved.
  • excitation can be determined with a small fluctuation in the motor rotation speed.
  • the threshold value (D 1 ) or the threshold value (D 1 ) may be made smaller. Thereby, the determination accuracy of demagnetization can be improved.
  • Two-phase / three-phase voltage converter 36 ... Number-of-rotations calculator 37 ... Three-phase / two-phase current converter 41 ... Determination threshold Operation unit 42 ; Demagnetization determination unit 50 ... Clutch 52 ; Magnetic pole position detector 70 ... Continuously variable transmission 100 ... Controller 110 ... Memory 120 ... CP

Abstract

Provided is a control device for an inverter that drives a motor including a magnet, the control device including: a rotation sensor that detects the rotation state of the motor; a current sensor that detects the current in the motor; and a controller that controls the inverter, wherein the controller calculates a voltage instruction value for controlling the motor voltage on the basis of a torque instruction value, a detection value representing the rotation state detected by the rotation sensor, and a detected current detected by the current sensor, calculates a demagnetization determination threshold in accordance with the rotation state, compares a torque-voltage instruction value included in the voltage instruction value with the demagnetization determination threshold, and determines whether or not demagnetization of the magnet has occurred in accordance with the result of the comparison.

Description

インバータ制御装置及び車両駆動システムInverter control device and vehicle drive system
 本発明は、インバータ制御装置及び車両駆動システムに関するものである。 The present invention relates to an inverter control device and a vehicle drive system.
 電圧指令値Vqが所定のしきい値より低下したか否かを判定し、低下した場合にはさらにVqの挙動を監視し、Vqが定常的であればモータの減磁であると識別するモータ制御装置が知られている(特許文献1)。 It is determined whether or not the voltage command value Vq has decreased below a predetermined threshold value. If the voltage command value Vq has decreased, the behavior of Vq is further monitored, and if Vq is steady, the motor is identified as being demagnetized. A control device is known (Patent Document 1).
特開2011-259253号公報JP 2011-259253 A
 しかしながら、運転の動作点が変化する場合には、減磁を精度よく判定できないという問題があった。 However, there is a problem that demagnetization cannot be accurately determined when the operating point of operation changes.
 本発明が解決しようとする課題は、運転の動作点が変動する場合でも減磁を判定できるインバータ制御装置及び車両駆動システムを提供することである。 The problem to be solved by the present invention is to provide an inverter control device and a vehicle drive system that can determine demagnetization even when the operating point of driving varies.
 本発明は、モータの回転状態に応じた減磁判定閾値を演算し、トルク電圧指令値と減磁判定閾値とを比較し、比較結果に応じて磁石の減磁が発生しているか否かを判定することによって上記課題を解決する。 The present invention calculates a demagnetization determination threshold according to the rotation state of the motor, compares the torque voltage command value with the demagnetization determination threshold, and determines whether or not demagnetization of the magnet has occurred according to the comparison result. The above-mentioned problem is solved by determining.
 本発明によれば、運転の動作点が変動する場合でも減磁を判定できるという効果を奏する。 According to the present invention, there is an effect that demagnetization can be determined even when the operating point of driving varies.
図1は、本実施形態に係る車両駆動システムのブロック図である。FIG. 1 is a block diagram of a vehicle drive system according to the present embodiment. 図2は、本実施形態に係る駆動システムのブロック図である。FIG. 2 is a block diagram of the drive system according to the present embodiment. 図3は、本実施形態に係るインバータ制御装置のブロック図である。FIG. 3 is a block diagram of the inverter control apparatus according to the present embodiment. 図4は、図3に示すコントローラによる減磁判定の制御フローを示すフローチャートである。FIG. 4 is a flowchart showing a control flow of demagnetization determination by the controller shown in FIG. 図5は、本発明の他の実施形態に係るインバータ制御装置のコントローラの制御フローを示すフローチャートである。FIG. 5 is a flowchart showing a control flow of a controller of an inverter control device according to another embodiment of the present invention. 図6は、本発明の他の実施形態に係る車両駆動システムのブロック図である。FIG. 6 is a block diagram of a vehicle drive system according to another embodiment of the present invention. 図7は、本発明の他の実施形態に係る車両駆動システムのブロック図である。FIG. 7 is a block diagram of a vehicle drive system according to another embodiment of the present invention. 図8は、本発明の他の実施形態に係る車両駆動システムのブロック図である。FIG. 8 is a block diagram of a vehicle drive system according to another embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
《第1実施形態》
 図1は、本発明の実施形態に係るインバータ制御装置を含む車両駆動システムを示すブロック図である。以下、本例のインバータ制御装置を電気自動車に提供した例を挙げて説明するが、本例のインバータ制御装置は、例えばパラレル型のハイブリッド車両及びシリーズ型のハイブリッド車両等、少なくともモータを備えたハイブリッド車両にも適用可能である。
<< First Embodiment >>
FIG. 1 is a block diagram showing a vehicle drive system including an inverter control device according to an embodiment of the present invention. Hereinafter, the inverter control device of the present example will be described with reference to an example in which the inverter control device is provided to an electric vehicle. The inverter control device of the present example is a hybrid including at least a motor, such as a parallel type hybrid vehicle and a series type hybrid vehicle. It can also be applied to vehicles.
 図1に示すように、本例のインバータ制御装置を含む車両制御ステムは、バッテリ1と、インバータ2と、モータ3と、減速機4と、駆動輪5と、コントローラ100を備えている。なお、車両駆動システムは、図1に示す構成に限らず、補器類など他の構成を備えてもよい。 As shown in FIG. 1, the vehicle control system including the inverter control device of the present example includes a battery 1, an inverter 2, a motor 3, a speed reducer 4, drive wheels 5, and a controller 100. The vehicle drive system is not limited to the configuration shown in FIG. 1 and may include other configurations such as auxiliary devices.
 バッテリ1は、車両の電力源であり、複数の二次電池を直列又は並列に接続した電池群である。二次電池には、リチウムイオン電池等が使用される。インバータ2は、IGBT等のスイッチング素子を複数備え、コントローラ100からのスイッチング信号により当該スイッチング素子のオン及びオフを切り替えることで、バッテリ1から出力される交流電力を直流電力に変換する。また、インバータ2は、モータ3の回生動作により発生した交流電力を直流電力に変換し、直流電力をバッテリ1に出力する。インバータ2及びモータ3の間には、電流センサが接続されている。電流センサは、モータ3に流れる電流を検出し、検出値をコントローラ100に出力する。 The battery 1 is a vehicle power source and is a battery group in which a plurality of secondary batteries are connected in series or in parallel. A lithium ion battery etc. are used for a secondary battery. The inverter 2 includes a plurality of switching elements such as IGBTs, and converts AC power output from the battery 1 into DC power by switching on and off the switching elements according to a switching signal from the controller 100. Further, the inverter 2 converts AC power generated by the regenerative operation of the motor 3 into DC power, and outputs the DC power to the battery 1. A current sensor is connected between the inverter 2 and the motor 3. The current sensor detects the current flowing through the motor 3 and outputs the detected value to the controller 100.
 モータ3は、車両の駆動軸に連結され、インバータ2からの交流電力により駆動する車両の駆動源である。モータ3は、永久磁石同期電動機等の電動機である。またモータ3には、回転角センサが接続され、当該回転角センサの検出値はコントローラ100に出力される。モータ3の出力軸は、減速機4及び左右のドライブシャフトを介して、左右の駆動輪5に連結されている。またモータ3は、駆動輪5の回転により、回生駆動力を発生させることで、エネルギを回生する。 The motor 3 is connected to the drive shaft of the vehicle and is a vehicle drive source that is driven by AC power from the inverter 2. The motor 3 is an electric motor such as a permanent magnet synchronous motor. Further, a rotation angle sensor is connected to the motor 3, and a detection value of the rotation angle sensor is output to the controller 100. The output shaft of the motor 3 is connected to the left and right drive wheels 5 via the speed reducer 4 and the left and right drive shafts. The motor 3 regenerates energy by generating a regenerative driving force by the rotation of the drive wheels 5.
 コントローラ100は、運転者のアクセルペダルの操作量に応じてアクセル開度、車速及び勾配などの車両状態、バッテリ1のSOC、バッテリ1の充放電可能電力、モータ3の発電電力等に応じて、運転者の要求に応じてトルクを出力させるための駆動トルク(必要トルク)を、インバータ2に指令する。運転者の要求は、アクセル操作、ブレーキ操作により決まる。 The controller 100 determines the vehicle state such as the accelerator opening, the vehicle speed and the gradient, the SOC of the battery 1, the chargeable / dischargeable power of the battery 1, the generated power of the motor 3, etc. A drive torque (necessary torque) for outputting torque in response to a driver's request is commanded to the inverter 2. The driver's request is determined by the accelerator operation and the brake operation.
 コントローラ100は、車両の運転状態及びバッテリ1の状態に応じて、車両の駆動系の効率を最適化しつつ、インバータ2を介してモータ3を制御する。なお、図1では、車両を制御する制御部分として、1つのコントローラ100が図示されているが、コントローラ100は、モータコントローラ、統合コントローラ等の複数のコントローラとしてもよい。各種コントローラは、CAN通信網で接続されている。コントローラ100は、メモリ110、CPU120等を有している。 The controller 100 controls the motor 3 via the inverter 2 while optimizing the efficiency of the drive system of the vehicle according to the driving state of the vehicle and the state of the battery 1. In FIG. 1, one controller 100 is shown as a control part for controlling the vehicle, but the controller 100 may be a plurality of controllers such as a motor controller and an integrated controller. Various controllers are connected by a CAN communication network. The controller 100 includes a memory 110, a CPU 120, and the like.
 次に、車両の駆動システムについて、図2を用いて説明する。図2は、駆動システムのブロック図である。 Next, the vehicle drive system will be described with reference to FIG. FIG. 2 is a block diagram of the drive system.
 インバータ2は、上アーム回路を形成する上アーム素子21、23、25と、下編む回路を形成する下アーム素子22、24、26と、平滑コンデンサ27と、放電抵抗28と、放電用スイッチ29と、駆動回路30とを有している。 The inverter 2 includes upper arm elements 21, 23, and 25 that form an upper arm circuit, lower arm elements 22, 24, and 26 that form a lower knitting circuit, a smoothing capacitor 27, a discharge resistor 28, and a discharge switch 29. And a drive circuit 30.
 上アーム素子21、23、25は、パワーデバイスとしてのスイッチング素子Q1、Q3、Q5とダイオードD1、D3、D5とをそれぞれ並列に接続した回路を主要な構成としている。スイッチング素子Q1のコレクタ端子とダイオードD1のカソード端子が接続され、かつスイッチング素子Q1のコレクタ端子とダイオードD1のアノード端子が接続されている。下アーム素子22、24、26は、同じくパワーデバイスとしてのスイッチング素子Q2、Q4、Q6とダイオードD2、D4、D6とをそれぞれ並列に接続した回路を主要な構成とする。スイッチング素子Q2~スイッチング素子Q6とダイオードD2~D6の接続は、スイッチング素子Q1とダイオードD1の接続と同様である。 The upper arm elements 21, 23, and 25 have a main configuration of a circuit in which switching elements Q1, Q3, and Q5 as power devices and diodes D1, D3, and D5 are connected in parallel. The collector terminal of the switching element Q1 and the cathode terminal of the diode D1 are connected, and the collector terminal of the switching element Q1 and the anode terminal of the diode D1 are connected. Similarly, the lower arm elements 22, 24, and 26 are mainly configured by a circuit in which switching elements Q2, Q4, and Q6 as power devices and diodes D2, D4, and D6 are connected in parallel. The connection between switching element Q2 to switching element Q6 and diodes D2 to D6 is the same as the connection between switching element Q1 and diode D1.
 本実施形態では、2つのスイッチング素子Q1~Q6を直列に接続した3対の回路が、電源線Pと電源線Nの間に接続されることにより、バッテリ1に電気的に接続され、各対のスイッチング素子を接続する各接続点と、3相モータ3の三相の出力部とがそれぞれ電気的に接続されている。電源線Pはバッテリ1の正極側に接続され、電源線Nはバッテリ1の負極側に接続されている。 In the present embodiment, three pairs of circuits in which two switching elements Q1 to Q6 are connected in series are electrically connected to the battery 1 by being connected between the power supply line P and the power supply line N. Each connection point for connecting the switching elements is electrically connected to the three-phase output portion of the three-phase motor 3. The power line P is connected to the positive side of the battery 1, and the power line N is connected to the negative side of the battery 1.
 スイッチング素子Q1のエミッタ端子とスイッチング素子Q2のコレクタ端子との接続点はU相の出力となり、スイッチング素子Q3のエミッタ端子とスイッチング素子Q4のコレクタ端子との接続点はV相の出力となり、スイッチング素子Q5のエミッタ端子とスイッチング素子Q6のコレクタ端子との接続点はW相の出力となり、モータ3の三相配線に接続されている。そして、上アーム素子21、23、25及び下アーム素子22、24、26により2レベルの3相インバータ回路20が構成されている。 The connection point between the emitter terminal of the switching element Q1 and the collector terminal of the switching element Q2 is a U-phase output, and the connection point between the emitter terminal of the switching element Q3 and the collector terminal of the switching element Q4 is a V-phase output. The connection point between the emitter terminal of Q5 and the collector terminal of the switching element Q6 is a W-phase output and is connected to the three-phase wiring of the motor 3. The upper arm elements 21, 23, 25 and the lower arm elements 22, 24, 26 constitute a two-level three-phase inverter circuit 20.
 平滑コンデンサ27は、インバータ回路20と、バッテリ1との間に接続される、バッテリ1からの電力を平滑する素子である。平滑コンデンサ27は、電源線P、N間に接続されている。 The smoothing capacitor 27 is an element that is connected between the inverter circuit 20 and the battery 1 and smoothes the electric power from the battery 1. The smoothing capacitor 27 is connected between the power supply lines P and N.
 放電抵抗28及び放電用スイッチ29は直列に接続され、放電抵抗28及び放電用スイッチ29の直列回路は、電源線P、N間に接続されている。放電抵抗28は、平滑コンデンサ27にチャージされた電荷を放電する。コントローラ100は、放電用スイッチ29のオン、オフを制御する。放電用スイッチ29がオンになると、平滑コンデンサ27と放電抵抗28が導通し、放電が行われる。 The discharge resistor 28 and the discharge switch 29 are connected in series, and the series circuit of the discharge resistor 28 and the discharge switch 29 is connected between the power supply lines P and N. The discharge resistor 28 discharges the electric charge charged in the smoothing capacitor 27. The controller 100 controls on / off of the discharge switch 29. When the discharge switch 29 is turned on, the smoothing capacitor 27 and the discharge resistor 28 are brought into conduction, and discharge is performed.
 駆動回路30は、コントローラ100から送信されるスイッチング信号に基づいて、スイッチング素子S1~S6のオン及びオフを切り替える機能を備えている。  The drive circuit 30 has a function of switching on and off the switching elements S1 to S6 based on a switching signal transmitted from the controller 100. *
 モータ3は、インバータ回路の各相で、スイッチング素子Q1、Q2の接続点、スイッチング素子Q3、Q4の接続点及びスイッチング素子Q5、Q6の接続点にそれぞれ接続されている。 The motor 3 is connected to the connection point of the switching elements Q1 and Q2, the connection point of the switching elements Q3 and Q4, and the connection point of the switching elements Q5 and Q6 in each phase of the inverter circuit.
 リレースイッチ7は、バッテリ1とインバータ2の平滑コンデンサ27との間に接続されている。 The relay switch 7 is connected between the battery 1 and the smoothing capacitor 27 of the inverter 2.
 コントローラ100は、駆動回路30を制御するためのコントローラである。コントローラ100は、外部から入力されるトルク指令値、モータ3の相電流、モータ3の回転数(回転速度)に基づいて、トルク指令値の要求トルクをモータ3から出力させるための、インバータ2の電流指令値を演算する。なお、モータ3の相電流は、インバータ回路20とモータ3との間に接続された電流センサ8により検出され、モータ3の回転速度は、モータ3に設けられたレゾルバ9の検出値から算出される。 The controller 100 is a controller for controlling the drive circuit 30. Based on the torque command value input from the outside, the phase current of the motor 3, and the rotation speed (rotation speed) of the motor 3, the controller 100 outputs the required torque of the torque command value from the motor 3. Calculate the current command value. The phase current of the motor 3 is detected by a current sensor 8 connected between the inverter circuit 20 and the motor 3, and the rotational speed of the motor 3 is calculated from the detection value of the resolver 9 provided in the motor 3. The
 そして、コントローラ100は、モータ3が必要とする電力を供給するためのスイッチング信号を生成し、駆動回路30に出力する。そして、駆動回路30は当該スイッチング信号に基づいて、各スイッチング素子Q1~Q6のオン、オフを切り換える。これにより、コントローラ100は、インバータ2をPWM制御により制御している。 Then, the controller 100 generates a switching signal for supplying the power required by the motor 3 and outputs it to the drive circuit 30. Then, the drive circuit 30 switches on and off each of the switching elements Q1 to Q6 based on the switching signal. Thereby, the controller 100 is controlling the inverter 2 by PWM control.
 次に、図3を用いて、コントローラ100のうちインバータの制御に係る制御ブロックを説明する。図3は、インバータ2、モータ3、及びコントローラ100のブロック図である。コントローラ100は、回転数制御器31、電流指令値演算器32、電流制御器33、非干渉制御器34、二相三相電圧変換器35、回転数演算器36及び三相二相電流変換器37を有している。 Next, a control block related to inverter control in the controller 100 will be described with reference to FIG. FIG. 3 is a block diagram of the inverter 2, the motor 3, and the controller 100. The controller 100 includes a rotation speed controller 31, a current command value calculator 32, a current controller 33, a non-interference controller 34, a two-phase three-phase voltage converter 35, a rotation speed calculator 36, and a three-phase two-phase current converter. 37.
 回転数制御器31は、回転数演算器36から出力される回転数検出値(ω:モータ回転数)を、コントローラ100から出力されるモータ3の回転数指令値(ω )に一致させるように、モータ3のトルク指令値(T)を演算するPID制御器である。回転数制御器31は、回転数指令値(ω )及び回転数検出値(ω)を入力として、以下の式(1)によりトルク指令値(T)を演算し、電流指令値演算器32に出力する。
Figure JPOXMLDOC01-appb-M000001
 ただし、Kは比例ゲインを、Kは積分ゲインを、Kは微分ゲインを、Tは近似微分の時定数を、sはラプラス演算子を、ωは回転数検出値を、ω は回転数指令値を示す。回転数指令値(ω )は、コントローラ100により演算される目標値である。コントローラ100は、ユーザの要求に応じた目標トルクを車両状態に応じて演算し、目標トルクを出力するために必要な回転数を、回転数指令値として演算している。
The rotation speed controller 31 matches the rotation speed detection value (ω G : motor rotation speed) output from the rotation speed calculator 36 with the rotation speed command value (ω G * ) of the motor 3 output from the controller 100. It is a PID controller that calculates the torque command value (T * ) of the motor 3 so that The rotational speed controller 31 receives the rotational speed command value (ω G * ) and the rotational speed detection value (ω G ) as inputs, calculates a torque command value (T * ) by the following equation (1), and obtains a current command value. The result is output to the calculator 32.
Figure JPOXMLDOC01-appb-M000001
However, the K p is a proportional gain, the K I is an integral gain, the the K D derivative gain, the T D is the time constant of the approximate differentiation, s is a Laplace operator, the omega G the rotation speed detection value, omega G * indicates the rotational speed command value. The rotational speed command value (ω G * ) is a target value calculated by the controller 100. The controller 100 calculates the target torque according to the user's request according to the vehicle state, and calculates the rotation speed necessary for outputting the target torque as the rotation speed command value.
 電流指令値演算器32は、トルク指令値(T)、バッテリ1の電圧(Vdc)、及び、モータ3の角周波数を示す回転数検出値(ω)を入力して、モータ3のdq軸電流指令値(I 、I )を演算し、電流制御器33に出力する。dq軸は、磁石の磁束の軸と、磁石の軸と直交する軸による回転座標系の軸を表している。電流指令値演算器32には、トルク指令値(T)、回転数検出値(ω)、電圧(Vdc)を指標として、dq軸電流指令値(I 、I )を出力するためのマップがメモリ110に格納されている。当該マップは、トルク指令値(T)、回転数検出値(ω)及び電圧(Vdc)の入力に対して、モータ3の損失及びインバータ2の損失を最小限に抑える最適な指令値を出力するよう対応づけられている。そして、電流指令値演算器32は、当該マップを参照して、dq軸電流指令値(I 、I )を演算する。 The current command value calculator 32 inputs the torque command value (T * ), the voltage (V dc ) of the battery 1, and the rotation speed detection value (ω G ) indicating the angular frequency of the motor 3. The dq axis current command values (I d * , I q * ) are calculated and output to the current controller 33. The dq axis represents the axis of the rotational coordinate system by the magnetic flux axis of the magnet and the axis orthogonal to the magnet axis. The current command value calculator 32 receives the dq-axis current command values (I d * , I q * ) using the torque command value (T * ), the rotation speed detection value (ω G ), and the voltage (V dc ) as indices. A map for output is stored in the memory 110. The map is an optimum command value that minimizes the loss of the motor 3 and the loss of the inverter 2 with respect to the input of the torque command value (T * ), the rotation speed detection value (ω G ), and the voltage (V dc ). Is output. Then, the current command value calculator 32 refers to the map and calculates the dq axis current command value (I d * , I q * ).
 また電流指令値演算器32には、トルク指令値(T)、バッテリ1の電圧(Vdc)及び回転数検出値(ω)の他に、電流センサ8の検出値に基づくdq軸電流(I、I)及びバッテリ1の充放電可能電力(Pin、Pout)が入力され、電流指令値演算器32は、dq軸電流指令値を演算する。dq軸電流指令値は、モータ3の電流の目標値であって、励磁電流指令値及びトルク電流指令値を含む。 The current command value calculator 32 includes a dq-axis current based on the detected value of the current sensor 8 in addition to the torque command value (T * ), the voltage (V dc ) of the battery 1 and the rotation speed detection value (ω G ). (I d , I q ) and chargeable / dischargeable power (P in , P out ) of the battery 1 are input, and the current command value calculator 32 calculates the dq axis current command value. The dq-axis current command value is a target value of the current of the motor 3, and includes an excitation current command value and a torque current command value.
 電流制御器33は、dq軸電流指令値(I 、I )及びdq軸電流(I、I)を入力として、以下の式(2)を用いて、制御演算を行い、dq軸電圧指令値(v 、v )を出力する。dq軸電圧指令値(v 、v )は、モータ3の電圧の目標値であって、励磁電圧指令値及びトルク電圧指令値を含む。
Figure JPOXMLDOC01-appb-M000002
ただし、Kpd、Kpqは比例ゲインを、Kid、Kiqは積分ゲインを示す。
The current controller 33 receives the dq-axis current command value (I d * , I q * ) and the dq-axis current (I d , I q ) as inputs, performs control calculation using the following equation (2), The dq axis voltage command value (v d * , v q * ) is output. The dq-axis voltage command values (v d * , v q * ) are target values of the motor 3 voltage, and include an excitation voltage command value and a torque voltage command value.
Figure JPOXMLDOC01-appb-M000002
Here, K pd and K pq indicate proportional gains, and K id and K iq indicate integral gains.
 なお、電流制御器33は、上記式(2)に対応するマップを参照して、dq軸電圧指令値(v 、v )を演算してもよい。 The current controller 33 may calculate the dq axis voltage command values (v d * , v q * ) with reference to a map corresponding to the above equation (2).
 非干渉制御器34は、モータ3のd軸及びq軸に電流が流れた際に、発生する干渉電圧を打ち消すためのdq軸非干渉電圧(vddcpl、vqdcpl)を演算する。モータ3の電圧方程式は、dq座標で表すと、一般的に以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 ただし、Lはd軸インダクタンスを、Lはq軸インダクタンスを、Rはモータ3の巻線抵抗を、ωreは電気角速度を、φは磁束密度(トルク定数)を、pは微分演算子を示す。
The non-interference controller 34 calculates dq-axis non-interference voltages (v ddcpl , v qdcpl ) for canceling the generated interference voltage when current flows through the d-axis and q-axis of the motor 3. The voltage equation of the motor 3 is generally expressed by the following equation (3) when expressed in dq coordinates.
Figure JPOXMLDOC01-appb-M000003
Where L d is the d-axis inductance, L q is the q-axis inductance, Ra is the winding resistance of the motor 3, ω re is the electrical angular velocity, φ a is the magnetic flux density (torque constant), and p is the differential Indicates an operator.
 式(3)を各成分に分けてラプラス変換して変形すると、次式で表される。
Figure JPOXMLDOC01-appb-M000004
When equation (3) is transformed by Laplace transform for each component, it is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000004
 ただし、電流応答モデルGpはそれぞれ次式で表される。
Figure JPOXMLDOC01-appb-M000005
However, each of the current response models Gp is represented by the following equation.
Figure JPOXMLDOC01-appb-M000005
 式(3)に示されるように、dq軸間で干渉しあう速度起電力があり、これを打ち消すために非干渉制御器34は、以下の式(6)で表される非干渉電圧(vddcpl、vqdcpl)を演算する。
Figure JPOXMLDOC01-appb-M000006
As shown in the equation (3), there is a speed electromotive force that interferes between the dq axes, and in order to cancel this, the non-interference controller 34 has a non-interference voltage (v expressed by the following equation (6). ddcpl , vqdcpl ).
Figure JPOXMLDOC01-appb-M000006
 電流制御器33及び非干渉制御器34の出力側には減算器が設けられ、当該減算器において、電圧指令値(v 、v )から式(6)で示される非干渉電圧(vddcpl、vqdcpl)を減算することで、式(4)の干渉項が打ち消され、dq軸電流は、以下の式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
A subtractor is provided on the output side of the current controller 33 and the non-interference controller 34. In the subtracter, the non-interference voltage (v d * , v q * ) represented by the equation (6) ( By subtracting v ddcpl , v qdcpl ), the interference term in equation (4) is canceled, and the dq-axis current is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
 二相三相電圧変換器35は、dq軸電圧指令値(v 、v )及びレゾルバ9の検出値θを入力として、下記の式(8)を用いて、当該回転座標系のdq軸電圧指令値(v 、v )を固定座標系のu、v、w軸の電圧指令値(v 、v 、v )に変換し、インバータ2に出力する。
Figure JPOXMLDOC01-appb-M000008
The two-phase three-phase voltage converter 35 receives the dq axis voltage command values (v d * , v q * ) and the detected value θ of the resolver 9 as input, and uses the following equation (8) to Converts dq-axis voltage command values (v d * , v q * ) to u, v, w-axis voltage command values (v u * , v v * , v w * ) in the fixed coordinate system and outputs them to inverter 2 To do.
Figure JPOXMLDOC01-appb-M000008
 三相二相電流変換器37は、3相2相変換を行う制御部であり、相電流(I、I、I)及び磁極位置検出器52の検出値θを入力として、固定座標系の相電流(I、I、I)を回転座標系の相電流(I、I)に変換し、電流指令値演算器32、電流制御器33及び非干渉化制御器34に出力する。 The three-phase two-phase current converter 37 is a control unit that performs three-phase to two-phase conversion. The phase current (I u , I v , I w ) and the detected value θ of the magnetic pole position detector 52 are input as fixed coordinates. The phase currents (I u , I v , I w ) of the system are converted into phase currents (I d , I q ) of the rotating coordinate system, and the current command value calculator 32, current controller 33, and non-interacting controller 34 are converted. Output to.
 電流センサ8は、U相及びV相にそれぞれ設けられ、相電流(I、I)を検出し、三相二相電流変換器37に出力する。w相の電流は、電流センサ8により検出されず、代わりに、三相二相電流変換器37は、入力された相電流(I、I)に基づき、w相の相電流を演算する。 The current sensor 8 is provided for each of the U phase and the V phase, detects a phase current (I u , I v ), and outputs it to the three-phase two-phase current converter 37. The w-phase current is not detected by the current sensor 8. Instead, the three-phase two-phase current converter 37 calculates the w-phase current based on the input phase currents (I u , I v ). .
 レゾルバ(回転センサ)9はモータ3に設けられ、モータ3の磁極の位置を検出する検出器であり、検出値(θ)を回転数演算器36に出力する。レゾルバ9は、所定周期でモータ3の回転状態を検出している。回転数演算器36は、レゾルバ9の検出値(θ)からモータ3の角周波数である回転数検出値(ω)を演算し、回転数制御器31及び電流指令値演算器32に出力する。 A resolver (rotation sensor) 9 is a detector that is provided in the motor 3 and detects the position of the magnetic pole of the motor 3, and outputs a detection value (θ) to the rotation speed calculator 36. The resolver 9 detects the rotation state of the motor 3 at a predetermined cycle. The rotation speed calculator 36 calculates a rotation speed detection value (ω G ) that is an angular frequency of the motor 3 from the detection value (θ) of the resolver 9, and outputs it to the rotation speed controller 31 and the current command value calculator 32. .
 そして、当該相電流(I、I)が電流制御器33に入力されることにより、制御装置は所定のゲインの電流制御ループによる制御が行われる。またインバータ2は、電流制御ループによる制御の下、入力された電圧指令値(v 、v 、v )に基づき、スイッチング素子のオン及びオフを切り替えるPWM制御信号を生成し、当該PWM制御信号に基づいて、スイッチング素子を動作させて、電力を変換する。 Then, when the phase currents (I d , I q ) are input to the current controller 33, the control device is controlled by a current control loop with a predetermined gain. The inverter 2 generates a PWM control signal for switching on and off of the switching element based on the input voltage command values (v * u , v * v , v * w ) under the control of the current control loop. Based on the PWM control signal, the switching element is operated to convert electric power.
 判定閾値演算器41は、減磁を判定するための判定閾値(vqd )を演算する。減磁判定器42は、電圧指令値(v )と判定閾値(vqd )とを比較し、その比較結果に基づき、モータ3に含まれる磁石の減磁が発生しているか否かを判定する。なお、判定閾値演算器41及び減磁判定器42による、減磁の判定については後述する。 The determination threshold calculator 41 calculates a determination threshold (v qd * ) for determining demagnetization. The demagnetization determination unit 42 compares the voltage command value (v q * ) with the determination threshold value (v qd * ), and based on the comparison result, whether or not demagnetization of the magnet included in the motor 3 has occurred. Determine. The determination of demagnetization by the determination threshold calculator 41 and the demagnetization determination unit 42 will be described later.
 ところで、モータ3の永久磁石式同期電動機では、例えばネオジム磁石等強力な磁石が使われる。この磁石は着磁させて磁力を得るが、逆方向に過大な磁力をかけるとその磁力を保持できなくなる。この現象が減磁である。そして、車両の駆動用電動機で減磁が起こると、電動機には電流が流れているにもかかわらず、電動機の磁力が弱いので、車両を駆動するトルクが減少する。 By the way, in the permanent magnet type synchronous motor of the motor 3, for example, a strong magnet such as a neodymium magnet is used. This magnet is magnetized to obtain a magnetic force, but if an excessive magnetic force is applied in the opposite direction, the magnetic force cannot be maintained. This phenomenon is demagnetization. When demagnetization occurs in the motor for driving the vehicle, the torque for driving the vehicle decreases because the magnetic force of the motor is weak despite the current flowing through the motor.
 減磁は、電圧指令値(v )に影響を与えるため、電圧指令値(v )の変化から減磁を判定することができる。上記の式(3)に示すように、トルク電圧(v)はモータ3の回転数により応じて変化するため、電圧指令値(v )も、モータ回転数により変化する。モータの回転数は、車両の状態、運転者の運転操作等により変動しており、定常的なものではない。そのため、電圧指令値(v )も定常的な値ではない。電圧指令値(v )の低下は、減磁だけでなく、モータ回転数の変化によっても生じる。本実施形態では、運転の動作点が変動する状態の下で、減磁を判定するために以下の制御を行っている。 Demagnetization, to influence the voltage command value (v q *), it is possible to determine the demagnetization from the change of the voltage command value (v q *). As shown in the above equation (3), the torque voltage (v q ) changes according to the rotation speed of the motor 3, so that the voltage command value (v q * ) also changes depending on the motor rotation speed. The number of rotations of the motor varies depending on the state of the vehicle, the driving operation of the driver, and the like, and is not steady. Therefore, the voltage command value (v q * ) is not a steady value. The decrease in the voltage command value (v q * ) is caused not only by demagnetization but also by a change in the motor rotation speed. In the present embodiment, the following control is performed to determine demagnetization under a state where the operating point of operation varies.
 次に、図4を用いて、コントローラ100による減磁判定の制御を説明する。図4は、コントローラ100による減磁判定の制御フローを示すフローチャートである。なお、図4に示す制御フローは、所定の周期で繰り返し実行されている。制御フローの制御周期は、回転数が変動する時間(車両の運転周期に相当)に対して、十分に小さい周期(例えば、運転周期に対して10分の1分の周期)とすればよい。 Next, control of the demagnetization determination by the controller 100 will be described with reference to FIG. FIG. 4 is a flowchart showing a control flow of demagnetization determination by the controller 100. Note that the control flow shown in FIG. 4 is repeatedly executed at a predetermined cycle. The control cycle of the control flow may be a sufficiently small cycle (for example, a 1 / 10th cycle with respect to the driving cycle) with respect to the time during which the rotation speed varies (corresponding to the driving cycle of the vehicle).
 ステップS1にて、減磁判定器42は、電圧指令値(v )を取得する。ステップS2にて、減磁判定器42は、電圧指令値(v )の平均値(v AVE)を演算する。電圧指令値(v )の平均値(v AVE)は、直前に取得した電圧指令値(v )を含めて、過去の複数回(例えば、過去5回分)分の電圧指令値(v )を用いて演算される。 In step S1, the demagnetization determination unit 42 acquires a voltage command value (v q * ). In step S2, the demagnetization determination unit 42 calculates an average value (v q * AVE ) of the voltage command value (v q * ). The average value of the voltage command value (v q *) (v q * AVE) , including the voltage command value obtained immediately before the (v q *), a plurality of past times (e.g., last 5 times) voltage command component Calculation is performed using the value (v q * ).
 ステップS3にて、減磁判定器42は、現在の電圧指令値(v )と平均値(v AVE)との差分の絶対値を演算し、差分の絶対値と所定の閾値(D)とを比較する。所定の閾値(D)は、電圧指令値(v )の変動幅を示す閾値であって、変動の許容幅に応じて予め設定されている。なお、電圧指令値(v )の変動はモータ回転数(ω)の変動に対応しているため、閾値(D)は、モータ回転数(ω)の変動幅を示している。閾値(D)が低いほど、励磁判定の精度が高まる。 In step S3, the demagnetization determination unit 42 calculates the absolute value of the difference between the current voltage command value (v q * ) and the average value (v q * AVE ), and calculates the absolute value of the difference and a predetermined threshold ( Compare D 1) and. The predetermined threshold value (D 1 ) is a threshold value indicating the fluctuation range of the voltage command value (v q * ), and is set in advance according to the allowable fluctuation range. Since the fluctuation of the voltage command value (v q * ) corresponds to the fluctuation of the motor rotation speed (ω G ), the threshold value (D 1 ) indicates the fluctuation width of the motor rotation speed (ω G ). . The lower the threshold (D 1 ), the higher the accuracy of excitation determination.
 差分の絶対値が閾値(D)より小さい場合には、減磁判定器42は、モータの回転数の変動が小さいと判定し、ステップS4の制御を実行する。一方、差分の絶対値が閾値(D)以上である場合には、減磁判定器42は、モータの回転数の変動が大きいと判定し、ステップS11の制御を実行する。 When the absolute value of the difference is smaller than the threshold value (D 1 ), the demagnetization determination unit 42 determines that the fluctuation of the motor rotation speed is small, and executes the control in step S4. On the other hand, when the absolute value of the difference is equal to or greater than the threshold value (D 1 ), the demagnetization determination unit 42 determines that the fluctuation of the motor rotation speed is large, and executes the control of step S11.
 ステップS4にて、減磁判定器42はカウンタ(A)をインクリメントする。ステップS5にて、減磁判定器42はカウンタ(A)と閾値(Ath)とを比較する。閾値(Ath)は、電圧指令値(v )の変動幅が閾値(D)未満である状態の時間を表している。閾値(Ath)が高いほど、回転数が安定している時間が長いことになる。閾値(Ath)は、例えば100回に設定されている。カウンタ(A)が閾値(Ath)より大きい場合には、減磁判定器42は、モータ回転数の安定時間が所定時間以上継続していると判定し、ステップS6の制御を実行する。一方、カウンタ(A)が閾値(Ath)以下である場合には、制御フローはステップS1に戻り、減磁判定器42はステップS1の制御を実行する。 In step S4, the demagnetization determination unit 42 increments the counter (A). In step S5, the demagnetization determination unit 42 compares the counter (A) with the threshold value (A th ). The threshold value (A th ) represents the time during which the fluctuation range of the voltage command value (v q * ) is less than the threshold value (D 1 ). The higher the threshold value (A th ), the longer the time during which the rotational speed is stable. The threshold value (A th ) is set to 100 times, for example. When the counter (A) is larger than the threshold value (A th ), the demagnetization determining unit 42 determines that the motor rotation speed stabilization time has continued for a predetermined time or more, and executes the control of step S6. On the other hand, when the counter (A) is equal to or smaller than the threshold value (A th ), the control flow returns to step S1, and the demagnetization determination unit 42 executes the control of step S1.
 ステップS6にて、判定閾値演算器41は、モータ回転数(ω)に応じた判定閾値(vqd )を演算する。判定閾値(vqd )は、減磁を判定するための閾値であって、モータ回転数(ω)に応じた値である。メモリ110には、モータ回転数(ω)と判定閾値(vqd )とを対応させたマップが記憶されている。すなわち、モータ回転数(ω)が変動すると、マップで示される判定閾値(vqd )も異なる値となる。 In step S6, the determination threshold value calculator 41 calculates a determination threshold value (v qd * ) corresponding to the motor rotation speed (ω G ). The determination threshold value (v qd * ) is a threshold value for determining demagnetization, and is a value corresponding to the motor rotation speed (ω G ). The memory 110 stores a map in which the motor rotation speed (ω G ) is associated with the determination threshold value (v qd * ). That is, when the motor rotation speed (ω G ) varies, the determination threshold value (v qd * ) indicated by the map also becomes a different value.
 判定閾値演算器41は、モータ回転数(ω)を取得すると、マップを参照しつつ、マップ上で、現在のモータ回転数(ω)に対応する判定閾値(vqd )を特定する。 When the determination threshold calculator 41 acquires the motor rotation speed (ω G ), the determination threshold calculator 41 identifies the determination threshold (v qd * ) corresponding to the current motor rotation speed (ω G ) on the map while referring to the map. .
 ステップS7にて、減磁判定器42は、マップ上で特定された判定閾値(vqd )と、現在の電圧指令値(v )との差分(vqd -v )を演算し、演算した差分と所定の閾値(D)とを比較する。所定の閾値(D)は、減磁による、電圧指令値(v )の減少量を示しており、応じて予め設定されている。 In step S7, the demagnetization determination unit 42 calculates the difference (v qd * −v q * ) between the determination threshold value (v qd * ) specified on the map and the current voltage command value (v q * ). The calculated difference is compared with a predetermined threshold (D 2 ). The predetermined threshold value (D 2 ) indicates a decrease amount of the voltage command value (v q * ) due to demagnetization, and is set in advance accordingly.
 差分が閾値(D)より大きい場合には、減磁判定器42は、電圧指令値(v )が正常値より低下していると判定し、ステップS8の制御を実行する。一方、差分が閾値(D)未満である場合には、減磁判定器42は、減磁が発生しておらず、現在の電圧指令値(v )が正常であると判定し、ステップS11の制御を実行する。 When the difference is larger than the threshold value (D 2 ), the demagnetization determination unit 42 determines that the voltage command value (v q * ) is lower than the normal value, and executes the control of step S8. On the other hand, when the difference is less than the threshold value (D 2 ), the demagnetization determination unit 42 determines that no demagnetization has occurred and the current voltage command value (v q * ) is normal, The control in step S11 is executed.
 ステップS8にて、減磁判定器42はカウンタ(B)をインクリメントする。ステップS9にて、減磁判定器42はカウンタ(B)と閾値(Bth)とを比較する。閾値(Bth)は、異常と判定された判定回数を示しており、減磁の判定精度に応じて決まる。閾値(Bth)は、予め決まっており、例えば3回に設定されている。 In step S8, the demagnetization determination unit 42 increments the counter (B). In step S9, the demagnetization determination unit 42 compares the counter (B) with the threshold value (B th ). The threshold value (B th ) indicates the number of determinations determined as abnormal, and is determined according to the determination accuracy of demagnetization. The threshold value (B th ) is determined in advance, and is set to 3 times, for example.
 カウンタ(B)が閾値(Bth)より高い場合には、ステップS10にて、減磁判定器42は、減磁が発生していると判定する。コントローラ100は、減磁判定器42により励磁が発生していると判定した場合には、ランプの表示等により、減磁の発生を運転者に通知してもよい。そして制御フローは終了する。一方、カウンタ(B)が閾値(Bth)未満である場合には、制御フローは終了する。 If the counter (B) is higher than the threshold value (B th ), in step S10, the demagnetization determination unit 42 determines that demagnetization has occurred. When the controller 100 determines that excitation is generated by the demagnetization determination unit 42, the controller 100 may notify the driver of the occurrence of demagnetization by displaying a lamp or the like. Then, the control flow ends. On the other hand, when the counter (B) is less than the threshold value (B th ), the control flow ends.
 ステップS3において、電圧指令値(v )と平均値(v AVE)との差分の絶対値が閾値(D)以上である場合には、ステップS11にて、減磁判定器42はカウンタ(A)をリセットする。ステップS7において、現在の電圧指令値(v )と判定閾値(vqd )との差分の絶対値が閾値(D)未満である場合には、ステップS11にて、減磁判定器42はカウンタ(A)をリセットする。そして、カウンタ(A)のリセットの後、制御フローは終了する。なお、現在の電圧指令値(v )と判定閾値(vqd )との差分の絶対値が閾値(D)未満である場合には、ステップS11にて、減磁判定器42は、カウンタ(B)をリセットしてもよい。 If the absolute value of the difference between the voltage command value (v q * ) and the average value (v q * AVE ) is greater than or equal to the threshold value (D 1 ) in step S3, the demagnetization determination device 42 in step S11. Resets the counter (A). If the absolute value of the difference between the current voltage command value (v q * ) and the determination threshold value (v qd * ) is less than the threshold value (D 2 ) in step S7, the demagnetization determination device is determined in step S11. 42 resets the counter (A). Then, after the counter (A) is reset, the control flow ends. If the absolute value of the difference between the current voltage command value (v q * ) and the determination threshold value (v qd * ) is less than the threshold value (D 2 ), the demagnetization determination unit 42 determines in step S11. The counter (B) may be reset.
 上記のように、本実施形態では、モータ3の回転状態に応じた判定閾値(vqd )を演算し、トルク電圧指令値(v )と判定閾値(vqd )とを比較し、比較結果に応じて、モータ3の磁石の減磁が発生しているか否かを判定する。これにより、モータ3のように、トルク電圧指令値(v )が変動する状況下で、減磁を判定できる。 As described above, in the present embodiment, the determination threshold value (v qd * ) corresponding to the rotation state of the motor 3 is calculated, and the torque voltage command value (v q * ) is compared with the determination threshold value (v qd * ). In accordance with the comparison result, it is determined whether or not the magnet 3 of the motor 3 is demagnetized. Thus, demagnetization can be determined under the situation where the torque voltage command value (v q * ) varies like the motor 3.
 なお、本実施形態では、マスク条件として、ステップS1からステップS5の制御フローにて、モータ回転数の変動が小さいことを条件に加えたが、要求される減磁の判定精度に応じて、ステップS1からステップS5の制御フローを省いてもよい。すなわち、本実施形態では、ステップS6の演算処理により、判定閾値(vqd )がモータ回転数の変動に対応した値となる。そのため、モータ回転数が変動した場合には、判定閾値(vqd )も変動するため、モータ回転数の変動により、トルク電圧指令値(v )が変動する状況下でも、精度よく減磁を判定できる。磁石減磁のメカニズムとして、逆磁界がクニック点を超えた状態が、減磁の状態となる。そして、逆磁界がクニック点を超えると、磁力は急峻に減少する。そのため、判定閾値(vqd )がモータ回転数の変動に追随できれば、減磁を精度よく判定できる。 In the present embodiment, as a mask condition, the control flow from step S1 to step S5 adds that the fluctuation of the motor rotation speed is small. However, depending on the required demagnetization determination accuracy, the step is performed. The control flow from S1 to step S5 may be omitted. That is, in the present embodiment, the determination threshold value (v qd * ) becomes a value corresponding to the fluctuation of the motor rotation speed by the calculation process in step S6. For this reason, when the motor rotation speed fluctuates, the determination threshold value (v qd * ) also fluctuates. Therefore, even when the torque voltage command value (v q * ) fluctuates due to fluctuations in the motor rotation speed, it can be accurately reduced. Can determine magnetism. As a mechanism of magnet demagnetization, a state where the reverse magnetic field exceeds the knick point is a demagnetization state. And when a reverse magnetic field exceeds a nick point, magnetic force will reduce sharply. Therefore, demagnetization can be accurately determined if the determination threshold (v qd * ) can follow fluctuations in the motor rotation speed.
 またマスク条件は、モータ回転数の変動幅に限らず、例えば検出電流等の他の要素を含めてもよい。例えば、検出電流又はモータ回転数が所定の範囲外である場合には、電流センサ8、レゾルバ9又はCPU120の異常により、電圧指令値又はモータ回転数が異常値になっている可能性がある。そのため、検出電流又はモータ回転数が所定の範囲外となることで、マスク条件を満たさない場合には、コントローラ100は、励磁判定の制御を実行しなくてもよい。 Further, the mask condition is not limited to the fluctuation range of the motor rotation speed, and may include other elements such as a detection current. For example, when the detected current or the motor speed is outside a predetermined range, the voltage command value or the motor speed may be an abnormal value due to an abnormality in the current sensor 8, the resolver 9, or the CPU 120. Therefore, if the detected current or the motor rotation speed is out of the predetermined range and the mask condition is not satisfied, the controller 100 may not execute the excitation determination control.
 また、判定閾値演算器41は、マップによる演算処理の代わりに、例えば、トルク電圧指令値(v )の移動平均値を判定閾値(vqd )として演算してもよい。判定閾値演算器41は、移動平均に限らず、少なくともモータ回転数を変数として含む演算式を用いた演算処理により、判定閾値(vqd )を演算してもよい。 Further, the determination threshold value calculator 41 may calculate, for example, a moving average value of the torque voltage command value (v q * ) as the determination threshold value (v qd * ) instead of the calculation process using the map. The determination threshold value calculator 41 may calculate the determination threshold value (v qd * ) not only by the moving average but also by an arithmetic process using an arithmetic expression including at least the motor rotation number as a variable.
《第2実施形態》
 本発明の他の実施形態に係るインバータ制御装置を説明する。本実施形態では、第1実施形態に対して、コントローラ100による判定閾値(vqd )の演算制御が異なる。これ以外の構成及び制御方法は上述した第1実施形態と同じであり、その記載を援用する。
<< Second Embodiment >>
An inverter control device according to another embodiment of the present invention will be described. In the present embodiment, the calculation control of the determination threshold value (v qd * ) by the controller 100 is different from the first embodiment. Other configurations and control methods are the same as those in the first embodiment described above, and the description thereof is incorporated.
 コントローラ100は、モータ回転数(ω)に基づくトルク電圧指令値(v )を所定の周期で演算し、モータ回転数(ω)とトルク電圧指令値(v )とを対応づけて、マップとしてメモリ110に記憶する。またコントローラ100は、現在のモータ回転数(ω)に基づき新たにトルク電圧指令値(v )を演算した時に、現在のモータ回転数(ω)に対応するトルク電圧指令値(v )をマップ上で特定する。コントローラ100は、マップ上で特定されたトルク電圧指令値(v )と、新たに演算されたトルク電圧指令値(v )とを比較し、小さい方のトルク電圧指令値(v )を新たな判定閾値(vqd )として設定する。コントローラ100は、新たに設定した判定閾値(vqd )をモータ回転数(ω)と対応させた上で、マップに記憶する。 The controller 100 calculates a torque voltage command value (v q * ) based on the motor rotation speed (ω G ) at a predetermined cycle, and associates the motor rotation speed (ω G ) with the torque voltage command value (v q * ). Then, it is stored in the memory 110 as a map. The controller 100, the current motor speed (omega G) to the newly torque voltage command value based (v q *) when calculating the current motor speed torque voltage command value corresponding to the (ω G) (v q * ) is specified on the map. Controller 100, a torque voltage command value specified on the map (v q *) and the newly computed torque voltage command value (v q *) is compared with the smaller torque voltage command values (v q * ) Is set as a new determination threshold (v qd * ). The controller 100 associates the newly set determination threshold value (v qd * ) with the motor rotation speed (ω G ) and stores it in the map.
 すなわち、コントローラ100は、新たにトルク電圧指令値(v )を演算した場合に、マップ上に判定閾値(vqd )として記憶されているトルク電圧指令値(v )と、新たに演算されたトルク電圧指令値(v )とのセレクトローをとり、より低い方のトルク電圧指令値(v )を判定閾値(vqd )に設定し、マップを更新する。 That is, when the controller 100 newly calculates the torque voltage command value (v q * ), the controller 100 newly stores the torque voltage command value (v q * ) stored as the determination threshold value (v qd * ) on the map, Then, select low with the calculated torque voltage command value (v q * ), set the lower torque voltage command value (v q * ) as the determination threshold value (v qd * ), and update the map.
 次に、インバータ制御装置の制御フローを説明する。図5は、本発明の他の実施形態に係るインバータ制御装置の制御フローを示すフローチャートである。ステップS1~S11の制御フローは、第1実施形態に係るステップS1~S11の制御フローと同様であるため説明を省略する。 Next, the control flow of the inverter control device will be described. FIG. 5 is a flowchart showing a control flow of an inverter control apparatus according to another embodiment of the present invention. Since the control flow of steps S1 to S11 is the same as the control flow of steps S1 to S11 according to the first embodiment, a description thereof will be omitted.
 ステップS7において、現在の電圧指令値(v )と判定閾値(vqd )との差分(vqd -v )が閾値(D)以下である場合には、ステップS12にて、減磁判定器42はカウンタ(A)をリセットする。ステップS13にて、コントローラ100は、マップを参照しつつ、現在のモータ回転数に対応する判定閾値(vqd )を特定する。コントローラ100は、特定された判定閾値(vqd )と、現在の電圧指令値(v )とを比較する。現在の電圧指令値(v )が特定された判定閾値(vqd )より低い場合には、ステップS14にて、コントローラ100は、現在の電圧指令値(v )を新たに判定閾値(vqd )に設定しマップを更新する。一方、現在の電圧指令値(v )が特定された判定閾値(vqd )以上である場合には、コントローラ100は、マップを更新することなく、制御フローを終了させる。 If the difference (v qd * −v q * ) between the current voltage command value (v q * ) and the determination threshold (v qd * ) is equal to or less than the threshold (D 2 ) in step S7, the process proceeds to step S12. Thus, the demagnetization determination unit 42 resets the counter (A). In step S13, the controller 100 specifies the determination threshold value (v qd * ) corresponding to the current motor rotation speed while referring to the map. The controller 100 compares the specified determination threshold value (v qd * ) with the current voltage command value (v q * ). If the current voltage command value (v q * ) is lower than the specified determination threshold value (v qd * ), the controller 100 newly determines the current voltage command value (v q * ) in step S14. Set the threshold (v qd * ) and update the map. On the other hand, when the current voltage command value (v q * ) is equal to or greater than the specified determination threshold value (v qd * ), the controller 100 ends the control flow without updating the map.
 上記のように本実施形態では、レゾルバ9により検出されたモータ3の回転状態と、演算されたトルク電圧指令値(v )とを対応づけてメモリ110に記憶し、現在の回転状態に基づき、トルク電圧指令値(v )を新たに演算し、新たに演算されたトルク電圧指令値(v )とメモリ110に記憶されたトルク電圧指令値(v )とのうち低い方の値を、判定閾値(vqd )として設定する。これにより、インバータ2又はモータ3の個体バラツキ、インバータ2又はモータ3の温度特性のバラツキ等によるトルク電圧指令値(v )の低下を管理しつつ、判定閾値(vqd )を更新するため、判定精度を高めることができる。 As described above, in the present embodiment, the rotation state of the motor 3 detected by the resolver 9 and the calculated torque voltage command value (v q * ) are stored in the memory 110 in association with each other, and the current rotation state is obtained. based torque voltage command value (v q *) is newly computed, the newly computed torque voltage command value (v q *) with the stored torque voltage command value to the memory 110 (v q *) and of The lower value is set as the determination threshold (v qd * ). As a result, the determination threshold value (v qd * ) is updated while managing the decrease in the torque voltage command value (v q * ) due to the individual variation of the inverter 2 or the motor 3, the variation of the temperature characteristics of the inverter 2 or the motor 3, or the like. Therefore, the determination accuracy can be increased.
 なお、本実施形態において、コントローラ100は、車両の初期状態の段階で、モータ回転数(ω)とトルク電圧指令値(v )とを対応づけて、マップとしてメモリ110に記憶する。そして、運転領域の全ての範囲内で、各モータ回転数(ω)に対応するトルク電圧指令値(v )が演算され、対応関係がメモリ110に記憶された場合には、コントローラ100は、トルク電圧指令値(v )のセレクトローによる更新を行わなくてもよい。逆磁界がクニック点を超えると磁力は急峻に減少する。そのため、トルク電圧指令値(v )のセレクトローによって判定閾値(vqd )を更新しなくても、判定精度を高めることができる。 In the present embodiment, the controller 100 associates the motor rotation speed (ω G ) with the torque voltage command value (v q * ) and stores it in the memory 110 as a map at the initial stage of the vehicle. When the torque voltage command value (v q * ) corresponding to each motor rotation number (ω G ) is calculated and the corresponding relationship is stored in the memory 110 within the entire operation range, the controller 100 The torque voltage command value (v q * ) may not be updated by select low. When the reverse magnetic field exceeds the knick point, the magnetic force decreases sharply. Therefore, the determination accuracy can be improved without updating the determination threshold value (v qd * ) by selecting low the torque voltage command value (v q * ).
《第3実施形態》
 図6は、本発明の他の実施形態に係る車両駆動システムを示すブロック図である。本実施形態では、第1実施形態に対して、クラッチを切断した状態で、減磁の有無を判定する点が異なる。これ以外の構成は上述した第1実施形態又は第2実施形態と同じであり、その記載を適宜、援用する。
<< Third Embodiment >>
FIG. 6 is a block diagram showing a vehicle drive system according to another embodiment of the present invention. The present embodiment is different from the first embodiment in that the presence or absence of demagnetization is determined while the clutch is disengaged. Other configurations are the same as those in the first embodiment or the second embodiment described above, and the description thereof is incorporated as appropriate.
 図6に示すように、車両駆動システムは、バッテリ1等の他にクラッチ50を備えている。クラッチ50は、モータ3と減速機4との間を断接する。コントローラ100はクラッチ50を制御する。クラッチが切断状態のときには、モータ3は車両の駆動軸とつながらない状態となる。この時、モータ3の動作は、運転者の車両操作に依存しないため、モータ3の回転数が安定する。 As shown in FIG. 6, the vehicle drive system includes a clutch 50 in addition to the battery 1 and the like. The clutch 50 connects and disconnects between the motor 3 and the speed reducer 4. The controller 100 controls the clutch 50. When the clutch is disengaged, the motor 3 is not connected to the drive shaft of the vehicle. At this time, since the operation of the motor 3 does not depend on the driver's vehicle operation, the rotation speed of the motor 3 is stabilized.
 コントローラ100は、運転者の操作又は車両の状態に応じて、クラッチを切断する。そして、コントローラ100は、クラッチ50が切断した状態で、モータ3に含まれる磁石の減磁が発生しているか否かを判定する。減磁の判定方法は、第1実施形態と同様である。これにより、運転者による運転要求に影響を及ぼすことなく、モータ3の回転数が安定した状態で減磁を判定できる。その結果として、減磁の判定精度を高めることができる。 The controller 100 disengages the clutch according to the driver's operation or the state of the vehicle. Then, the controller 100 determines whether or not demagnetization of the magnet included in the motor 3 has occurred while the clutch 50 is disengaged. The method for determining demagnetization is the same as in the first embodiment. Thereby, demagnetization can be determined in a state where the rotation speed of the motor 3 is stable without affecting the driving request by the driver. As a result, the demagnetization determination accuracy can be increased.
 なお、本実施形態に係る車両駆動システムは、図7に示すようなハイブリッドシステムにも適用可能である。ハイブリッド車両は、内燃機関と電動発電機といった複数の動力源を車両の駆動に使用するパラレル方式自動車であり、バッテリ1、インバータ2、モータ3、左右の駆動輪5、内燃機関(以下、エンジン)10、第1クラッチ11、第2クラッチ12、プロペラシャフト13、ディファレンシャルギアユニット14、ドライブシャフト15、および自動変速機17を備える。 Note that the vehicle drive system according to the present embodiment is also applicable to a hybrid system as shown in FIG. The hybrid vehicle is a parallel-type automobile that uses a plurality of power sources such as an internal combustion engine and a motor generator for driving the vehicle, and includes a battery 1, an inverter 2, a motor 3, left and right drive wheels 5, an internal combustion engine (hereinafter referred to as an engine). 10, a first clutch 11, a second clutch 12, a propeller shaft 13, a differential gear unit 14, a drive shaft 15, and an automatic transmission 17.
 第1クラッチ11は、エンジン10の出力軸とモータ3の回転軸との間に介装され、エンジン10とモータ3との間の動力伝達を断接(ON/OFF)する。第1クラッチ11としては、比例ソレノイドで油流量および油圧を連続的に制御できる湿式多板クラッチなどを例示することができる。第1クラッチ11において、コントローラ100からの制御信号に基づいて油圧ユニットの油圧が制御され、これにより第1クラッチ11のクラッチ板が締結(スリップ状態も含む。)又は解放する。なお、第1クラッチ11に乾式クラッチを採用してもよい。 The first clutch 11 is interposed between the output shaft of the engine 10 and the rotation shaft of the motor 3, and connects and disconnects (ON / OFF) the power transmission between the engine 10 and the motor 3. Examples of the first clutch 11 include a wet multi-plate clutch that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid. In the first clutch 11, the hydraulic pressure of the hydraulic unit is controlled based on a control signal from the controller 100, whereby the clutch plate of the first clutch 11 is engaged (including a slip state) or released. A dry clutch may be adopted as the first clutch 11.
 自動変速機17は、前進7速、後退1速などといった変速比を段階的に切り換える有段式変速機であり、車速やアクセル開度等に応じて変速比を自動的に切り換える。 The automatic transmission 17 is a stepped transmission that switches the gear ratio such as 7 forward speeds and 1 reverse speed in stages, and automatically switches the gear ratios according to the vehicle speed, the accelerator opening, and the like.
 第2クラッチ12は、自動変速機17の各変速段にて締結される複数の摩擦締結要素のうち、いくつかの摩擦締結要素を流用したものとすることができる。またこれに代えて第2クラッチ12を自動変速機17とは別の専用のクラッチとしてもよい。 The second clutch 12 may be obtained by diverting some of the frictional engagement elements among the plurality of frictional engagement elements that are engaged at each gear of the automatic transmission 17. Alternatively, the second clutch 12 may be a dedicated clutch different from the automatic transmission 17.
 自動変速機17の出力軸は、プロペラシャフト13、ディファレンシャルギアユニット14、および左右のドライブシャフト15を介して、左右の駆動輪5に連結されている。なお、図1において5は左右の操舵前輪である。 The output shaft of the automatic transmission 17 is connected to the left and right drive wheels 5 via a propeller shaft 13, a differential gear unit 14, and left and right drive shafts 15. In FIG. 1, reference numeral 5 denotes left and right steering front wheels.
 コントローラ100は、車両の停車中、クラッチ11をつなげて、クラッチ12を切断する。コントローラ100は、モータ3の駆動力でエンジン10を回転させて、エンジン10の回転により補機類を動作させる。このとき、モータ3は定常状態で駆動できるため、モータ3の回転数が安定する。そしてコントローラ100は、クラッチ12が切断した状態で、モータ3に含まれる磁石の減磁が発生しているか否かを判定する。これにより、減磁の判定精度を高めることができる。 The controller 100 connects the clutch 11 and disconnects the clutch 12 while the vehicle is stopped. The controller 100 rotates the engine 10 with the driving force of the motor 3 and operates the auxiliary machinery by the rotation of the engine 10. At this time, since the motor 3 can be driven in a steady state, the rotation speed of the motor 3 is stabilized. Then, the controller 100 determines whether or not demagnetization of the magnet included in the motor 3 has occurred while the clutch 12 is disengaged. Thereby, the determination accuracy of demagnetization can be improved.
 このように、本実施形態では、運転者による運転要求に影響しない運転環境のもと、クラッチ12を切断することで、モータ3の回転を安定にしつつ、モータ3に含まれる磁石の減磁が発生しているか否かを判定する。これにより、減磁の判定精度を高めることができる。 As described above, in the present embodiment, the magnet 12 included in the motor 3 is demagnetized while the rotation of the motor 3 is stabilized by disengaging the clutch 12 under the driving environment that does not affect the driving request by the driver. Determine whether it has occurred. Thereby, the determination accuracy of demagnetization can be improved.
 なお、図7においては、後輪駆動のハイブリッド車両を例示したが、前輪駆動のハイブリッド車両や四輪駆動のハイブリッド車両とすることも可能である。ハイブリッドシステムは、シリーズ型でもよい。 In FIG. 7, a rear-wheel drive hybrid vehicle is illustrated, but a front-wheel drive hybrid vehicle or a four-wheel drive hybrid vehicle may be used. The hybrid system may be a series type.
 なお、第1又は第2実施形態に係るインバータ制御装置を、本実施形態のように、クラッチを有する車両駆動システムに適用した場合には、モータ回転数の変動が小さい状態で励磁を判定できるため、閾値(D)又は閾値(D)をより小さくしてもよい。これにより、減磁の判定精度を高めることができる。 In addition, when the inverter control apparatus according to the first or second embodiment is applied to a vehicle drive system having a clutch as in this embodiment, excitation can be determined with a small fluctuation in the motor rotation speed. The threshold value (D 1 ) or the threshold value (D 1 ) may be made smaller. Thereby, the determination accuracy of demagnetization can be improved.
《第4実施形態》
 図8は、本発明の他の実施形態に係る車両駆動システムを示すブロック図である。本実施形態では、無段変速機を備えた車両駆動システムに対して、第1実施形態又は第2実施形態に係るインバータ制御システムを適用する。インバータ制御システムの構成及び制御は、第1実施形態又は第2実施形態と同じであり、その記載を適宜、援用する。
<< 4th Embodiment >>
FIG. 8 is a block diagram showing a vehicle drive system according to another embodiment of the present invention. In the present embodiment, the inverter control system according to the first embodiment or the second embodiment is applied to a vehicle drive system provided with a continuously variable transmission. The configuration and control of the inverter control system are the same as those in the first embodiment or the second embodiment, and the description thereof is incorporated as appropriate.
 図8に示すように、車両駆動システムは、バッテリ1等の他に無段変速機(CVT)70を備えている。CVT70は、モータ3と減速機4との間に接続されている。CVT70は、2つのプーリー及びベルトを有している。CVT70は、2つのプーリーの間のベルトの位置を変えて変速することで、車軸の回転速度を変えつつ、モータ回転数の変動を抑制する。 As shown in FIG. 8, the vehicle drive system includes a continuously variable transmission (CVT) 70 in addition to the battery 1 and the like. The CVT 70 is connected between the motor 3 and the speed reducer 4. The CVT 70 has two pulleys and a belt. The CVT 70 changes the position of the belt between the two pulleys to change the speed, thereby changing the rotation speed of the axle and suppressing fluctuations in the motor rotation speed.
 例えば、車両の走行中、運転者がブレーキ操作を行い、車速が徐々に減少するシーンを説明する。本実施形態と異なり、CVT70が設けられておらず、モータ3が直接、車軸に連結している場合には、車速の減少と共にモータ回転数も減少する。モータ3が有段変速機を介して車軸に連結されている場合も同様である。一方、本実施形態のように、モータ3がCVT70を介して車軸に連結されている場合には、モータ3が直接、車軸に連結している場合、又は、モータ3が有段変速機を介して車軸に連結されている場合と比較して、モータ回転数の変動が抑制される。 For example, a scene in which the driver performs a brake operation while the vehicle is running and the vehicle speed gradually decreases will be described. Unlike the present embodiment, when the CVT 70 is not provided and the motor 3 is directly connected to the axle, the motor speed decreases as the vehicle speed decreases. The same applies when the motor 3 is connected to the axle via a stepped transmission. On the other hand, when the motor 3 is coupled to the axle via the CVT 70 as in the present embodiment, the motor 3 is coupled directly to the axle, or the motor 3 is coupled via the stepped transmission. As compared with the case where the motor is connected to the axle, fluctuations in the motor rotation speed are suppressed.
 そして、CVT70を備えた車両駆動システムにおいて、第1実施形態又は第2実施形態のようなインバータ制御装置を適用することで、モータ回転数の変動が抑制された状態で減磁を判定できる。これにより、減磁の判定精度を高めることができる。 And in a vehicle drive system provided with CVT70, demagnetization can be determined in the state where the fluctuation of motor rotation speed was controlled by applying the inverter control device like the 1st embodiment or the 2nd embodiment. Thereby, the determination accuracy of demagnetization can be improved.
 なお、第1又は第2実施形態に係るインバータ制御装置を、本実施形態のように、CVT70を有する車両駆動システムに適用した場合には、モータ回転数の変動が小さい状態で励磁を判定できるため、閾値(D)又は閾値(D)をより小さくしてもよい。これにより、減磁の判定精度を高めることができる。 When the inverter control device according to the first or second embodiment is applied to a vehicle drive system having the CVT 70 as in the present embodiment, excitation can be determined with a small fluctuation in the motor rotation speed. The threshold value (D 1 ) or the threshold value (D 1 ) may be made smaller. Thereby, the determination accuracy of demagnetization can be improved.
1…バッテリ
2…インバータ
3…モータ
4…減速機
5…駆動輪
7…リレースイッチ
8…電流センサ
9…レゾルバ
10…エンジン
11…第1クラッチ
12…第2クラッチ
13…プロペラシャフト
14…ディファレンシャルギアユニット
15…ドライブシャフト
17…自動変速機
20…インバータ回路
21、23、25…上アーム素子
22、24、26…下アーム素子
27…平滑コンデンサ
28…放電抵抗
29…放電用スイッチ
30…駆動回路
31…回転数制御器
32…電流指令値演算器
33…電流制御器
34…非干渉制御器
35…二相三相電圧変換器
36…回転数演算器
37…三相二相電流変換器
41…判定閾値演算器
42…減磁判定器
50…クラッチ
52…磁極位置検出器
70…無段変速機
100…コントローラ
110…メモリ
120…CPU
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Inverter 3 ... Motor 4 ... Reduction gear 5 ... Drive wheel 7 ... Relay switch 8 ... Current sensor 9 ... Resolver 10 ... Engine 11 ... 1st clutch 12 ... 2nd clutch 13 ... Propeller shaft 14 ... Differential gear unit DESCRIPTION OF SYMBOLS 15 ... Drive shaft 17 ... Automatic transmission 20 ... Inverter circuit 21, 23, 25 ... Upper arm element 22, 24, 26 ... Lower arm element 27 ... Smoothing capacitor 28 ... Discharge resistor 29 ... Discharge switch 30 ... Drive circuit 31 ... Number-of-rotations controller 32 ... Current command value calculator 33 ... Current controller 34 ... Non-interference controller 35 ... Two-phase / three-phase voltage converter 36 ... Number-of-rotations calculator 37 ... Three-phase / two-phase current converter 41 ... Determination threshold Operation unit 42 ... Demagnetization determination unit 50 ... Clutch 52 ... Magnetic pole position detector 70 ... Continuously variable transmission 100 ... Controller 110 ... Memory 120 ... CP

Claims (4)

  1.  磁石を含むモータを駆動させるインバータの制御装置において、
     前記モータの回転状態を検出する回転センサと、
     前記モータの電流を検出する電流センサと、
     インバータを制御するコントローラとを備え、
    前記コントローラは、
     トルク指令値、前記回転センサにより検出される回転状態の検出値、及び前記電流センサにより検出される検出電流に基づき、前記モータの電圧を制御する電圧指令値を演算し、
     前記回転状態に応じた減磁判定閾値を演算し、
     前記電圧指令値に含まれるトルク電圧指令値と前記減磁判定閾値とを比較し、比較結果に応じて、前記磁石の減磁が発生しているか否かを判定するインバータ制御装置。
    In an inverter control device for driving a motor including a magnet,
    A rotation sensor for detecting a rotation state of the motor;
    A current sensor for detecting the current of the motor;
    A controller for controlling the inverter,
    The controller is
    Based on the torque command value, the detection value of the rotation state detected by the rotation sensor, and the detection current detected by the current sensor, a voltage command value for controlling the voltage of the motor is calculated,
    Calculate a demagnetization determination threshold according to the rotation state,
    An inverter control device that compares a torque voltage command value included in the voltage command value with the demagnetization determination threshold value and determines whether or not demagnetization of the magnet has occurred according to a comparison result.
  2.  請求項1記載のインバータ制御装置において、
    前記コントローラは、
     前記回転センサにより検出された前記回転状態と、演算された前記電圧指令値とを対応づけてメモリに記憶し、
     現在の回転状態に基づき、前記電圧指令値を新たに演算し、
     新たに演算された前記電圧指令値と前記メモリに記憶された前記電圧指令値とのうち低い方の値を、前記減磁判定閾値として設定するインバータ制御装置。
    The inverter control device according to claim 1,
    The controller is
    The rotation state detected by the rotation sensor and the calculated voltage command value are stored in a memory in association with each other,
    Based on the current rotation state, the voltage command value is newly calculated,
    An inverter control device that sets a lower value of the newly calculated voltage command value and the voltage command value stored in the memory as the demagnetization determination threshold value.
  3.  請求項1又は2記載のインバータ制御装置を備える車両駆動システムにおいて、
     前記モータと車両の車軸との間をつなげるクラッチを備え
    前記コントローラは、前記クラッチが切断した状態で、前記磁石の減磁が発生しているか否かを判定する車両駆動システム。
    In a vehicle drive system provided with the inverter control device according to claim 1 or 2,
    A vehicle drive system comprising a clutch connecting between the motor and a vehicle axle, wherein the controller determines whether or not demagnetization of the magnet is occurring in a state where the clutch is disconnected.
  4.  請求項1~3のいずれか一項に記載のインバータ制御装置を備える車両駆動システムにおいて、
     前記モータと車両の車軸との間をつなげる無段変速機を備え
    前記コントローラは、前記無段変速機を制御する車両駆動システム。
    A vehicle drive system comprising the inverter control device according to any one of claims 1 to 3,
    A vehicle drive system comprising a continuously variable transmission that connects between the motor and a vehicle axle, wherein the controller controls the continuously variable transmission.
PCT/JP2017/004923 2017-02-10 2017-02-10 Inverter control device and vehicle driving system WO2018146793A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018566720A JP6822493B2 (en) 2017-02-10 2017-02-10 Inverter control device and vehicle drive system
PCT/JP2017/004923 WO2018146793A1 (en) 2017-02-10 2017-02-10 Inverter control device and vehicle driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004923 WO2018146793A1 (en) 2017-02-10 2017-02-10 Inverter control device and vehicle driving system

Publications (1)

Publication Number Publication Date
WO2018146793A1 true WO2018146793A1 (en) 2018-08-16

Family

ID=63108280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004923 WO2018146793A1 (en) 2017-02-10 2017-02-10 Inverter control device and vehicle driving system

Country Status (2)

Country Link
JP (1) JP6822493B2 (en)
WO (1) WO2018146793A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113261196A (en) * 2019-02-01 2021-08-13 株式会社日立产机系统 Power conversion device and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051892A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Motor driving device
JP2013001185A (en) * 2011-06-14 2013-01-07 Denso Corp Demagnetization detecting device of rotary machine
JP2016037156A (en) * 2014-08-07 2016-03-22 富士重工業株式会社 Rotary electric machine temperature estimation device of engine electric hybrid vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3593929B2 (en) * 1999-09-03 2004-11-24 日本電気株式会社 Moving picture coding method and moving picture coding apparatus
JP4126971B2 (en) * 2002-06-27 2008-07-30 トヨタ自動車株式会社 INTERNAL COMBUSTION ENGINE OPERATED BY COMPRESSED SELF-IGNITION OF MIXED AIR AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE
US8869519B2 (en) * 2009-02-18 2014-10-28 Sumitomo Heavy Industries, Ltd. Hybrid-type shovel
JP5598244B2 (en) * 2010-10-15 2014-10-01 株式会社デンソー Rotating machine control device
JP6052034B2 (en) * 2013-04-16 2016-12-27 トヨタ自動車株式会社 Drive control apparatus for hybrid vehicle
JP2015216584A (en) * 2014-05-13 2015-12-03 富士通株式会社 Base station device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051892A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Motor driving device
JP2013001185A (en) * 2011-06-14 2013-01-07 Denso Corp Demagnetization detecting device of rotary machine
JP2016037156A (en) * 2014-08-07 2016-03-22 富士重工業株式会社 Rotary electric machine temperature estimation device of engine electric hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113261196A (en) * 2019-02-01 2021-08-13 株式会社日立产机系统 Power conversion device and control method thereof

Also Published As

Publication number Publication date
JP6822493B2 (en) 2021-01-27
JPWO2018146793A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US7151355B2 (en) Electric motor driving system, electric four-wheel drive vehicle, and hybrid vehicle
US7443117B2 (en) Control apparatus for electric vehicles
US7605552B2 (en) Control apparatus for electric vehicles
US7808194B2 (en) Control apparatus for electric vehicles
US7880412B2 (en) Control apparatus for electric vehicles
EP1832466A1 (en) Controller for an electric vehicle and driving apparatus for the electric vehicle
US10348188B2 (en) Vehicle and control method therefor
JP5076530B2 (en) Power supply device and vehicle driving force control device
JP6950755B2 (en) Inverter control method and inverter control device
KR100623745B1 (en) An invertor control system of 4 wheel drive hybrid electric vehicle and method thereof
JP2005080437A (en) Vehicular motor drive device
WO2018146793A1 (en) Inverter control device and vehicle driving system
CN113261199B (en) Motor control device
JP2018137908A (en) Automobile
JP6269328B2 (en) Synchronous motor control device and vehicle control system including the same
JP7069858B2 (en) Inverter control method and inverter control device
WO2015072296A1 (en) Electric motor drive device and vehicle drive system
JP6658576B2 (en) Inverter control device
JP6708843B2 (en) Drive
JP2020089054A (en) Electric vehicle
JPH10248105A (en) Controller for electric vehicle
JP2009207268A (en) Wheel drive system
JP2019088081A (en) Power supply unit
JP2017073926A (en) Automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566720

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895609

Country of ref document: EP

Kind code of ref document: A1