WO2018146717A1 - Power supply system, control device for power supply system, program for power supply system, and control method for power supply system - Google Patents

Power supply system, control device for power supply system, program for power supply system, and control method for power supply system Download PDF

Info

Publication number
WO2018146717A1
WO2018146717A1 PCT/JP2017/004360 JP2017004360W WO2018146717A1 WO 2018146717 A1 WO2018146717 A1 WO 2018146717A1 JP 2017004360 W JP2017004360 W JP 2017004360W WO 2018146717 A1 WO2018146717 A1 WO 2018146717A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
storage device
natural energy
generation device
Prior art date
Application number
PCT/JP2017/004360
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 安見
靖弘 小倉
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2017/004360 priority Critical patent/WO2018146717A1/en
Publication of WO2018146717A1 publication Critical patent/WO2018146717A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present embodiment relates to a power supply system having a power storage device provided in a natural energy power generation device, a power supply system control device, a power supply system program, and a power supply system control method.
  • electric power generated by an electric power supply system different from the electric power company's power generation equipment may be output to the electric power system.
  • This type of power supply system is characterized by including a natural energy power generation device.
  • the power company is in a direction to provide regulations so that the combined output does not exceed the upper limit of the specified change rate to the power system by combining the natural energy power generation device and the storage battery on the business side.
  • the amount of power generated by the natural energy power generation device may change rapidly depending on the weather.
  • it is necessary to limit the electric power generated by natural energy and output it to the electric power system, which may waste electric power generated by the natural energy power generation device. It is contrary to promotion of introduction of natural energy to waste power generated by such a natural energy power generation device.
  • the sales amount of the electric power generated by the natural energy power generation device is under pressure, which will harm the economic benefits of the natural energy power generation company.
  • An object of the present invention is to provide a program for a power supply system and a control method for the power supply system.
  • the power supply system of this embodiment is characterized by having the following configuration.
  • (3-1) A predicted generated power output from the natural energy power generation apparatus and a predicted time at which the predicted generated power is output are calculated.
  • the electric power system starts discharging electric power before the predicted time when the calculated predicted generated power is output, and is output from the output power of the natural energy power generation device and the power storage device
  • the charge / discharge of the power storage device is controlled so that the sum of the discharge or charge power increases or decreases with time at a predetermined rate of change.
  • the power supply system control device, the power supply system program, and the power supply system control method used in the power supply system are also one aspect of the present embodiment.
  • the figure which shows the structure of the electric power supply system concerning 1st Embodiment The figure which shows the control apparatus structure of the electric power supply system concerning 1st Embodiment.
  • the figure which shows the output of the solar power generation device when the amount of solar radiation changes in steps The figure which shows the output of the electrical storage apparatus when the amount of solar radiation changes in steps.
  • the figure which shows the desirable output of an electrical storage apparatus when the amount of solar radiation changes in steps The figure which shows the output improvement rate of the electric power supply system when the amount of solar radiation changes in steps.
  • the figure which shows the output of the solar power generation device when the amount of solar radiation changes in the shape of a slope The figure which shows the output of the electrical storage device when the amount of solar radiation changes in a slope shape
  • the figure which shows the desirable output of an electrical storage device when the amount of solar radiation changes in the shape of a slope The figure which shows the output improvement rate of the power supply system when the amount of solar radiation changes in a slope shape
  • the figure which shows the structure of the electric power supply system which provided the DC converter concerning other embodiment in the solar power generation device The figure which shows the structure of the electric power supply system using a hydrogen fuel cell system as an electrical storage apparatus concerning other embodiment.
  • the present power supply system includes a solar power generation device 1, a power storage device 2, an information collection device 3, a control device 4, a power supply line 5, and a communication line 8.
  • the solar power generation device 1 corresponds to the natural energy power generation device in the claims.
  • the following data is input, output, transmitted / received, or stored.
  • a1. Information on weather information, amount of sunlight, and power generated by other solar power generation devices b1.
  • the solar power generation device 1 outputs electric power generated by sunlight.
  • the solar power generation device 1 is connected to the power system and the power storage device 2 via the power supply line 5. Further, the solar power generation device 1 is monitored by the control device 4 for the amount of power generation.
  • the solar power generation device 1 outputs power to the power system via the power supply line 5 or to the power storage device 2 via the power supply line 5.
  • the solar power generation device 1 is installed outdoors managed by a solar power generation company.
  • the solar power generation device 1 has a solar panel 1A and an AC / DC converter 1B.
  • the solar panel 1A is sunny outdoors and is arranged near the AC / DC converter 1B.
  • the solar panel 1A receives sunlight to generate power and supplies power to the AC / DC converter 1B.
  • the AC / DC converter 1B is configured by an inverter that converts DC power into AC power.
  • the AC / DC converter 1B is installed in the vicinity of the solar panel 1A.
  • the AC / DC converter 1 ⁇ / b> B converts the DC power generated by the solar panel 1 ⁇ / b> A into AC power, and outputs the AC power to the power system or the power storage device 2 via the power supply line 5. Further, the AC / DC converter 1 ⁇ / b> B outputs b ⁇ b> 1 data related to the current, voltage, and power of the power output from the solar power generation device 1 to the control device 4.
  • the power storage device 2 is a chargeable / dischargeable power storage device that inputs and outputs stored power.
  • the power storage device 2 is connected to the power system and the solar power generation device 1 via the power supply line 5.
  • the power storage device 2 is controlled by the control device 4 to discharge power and charge power.
  • the power storage device 2 discharges power to the power system via the power supply line 5.
  • the power storage device 2 charges power from the solar power generation device 1 or the power system via the power supply line 5.
  • the power storage device 2 is installed indoors or outdoors managed by a photovoltaic power generation company.
  • the power storage device 2 includes a storage battery 2A and an AC / DC converter 2B.
  • Storage battery 2A is a storage battery composed of a chargeable / dischargeable battery such as a lithium secondary battery.
  • the storage battery 2A is indoors or outdoors, such as a power management room, and is disposed in the vicinity of the AC / DC converter 2B.
  • the storage battery 2A discharges the stored power, supplies power to the AC / DC converter 2B, and is charged by the power supplied from the AC / DC converter 2B.
  • the AC / DC converter 2B includes a bidirectional inverter (also referred to as a converter) that converts DC power into AC power and AC power into DC power.
  • the AC / DC converter 2B is installed in the vicinity of the storage battery 2A.
  • the AC / DC converter 2 ⁇ / b> B converts the DC power discharged by the storage battery 2 ⁇ / b> A into AC power, and outputs the AC power to the power system via the power supply line 5.
  • the AC / DC converter 2B converts the AC power from the photovoltaic power generation device 1 or the power system into DC power via the power supply line 5, and charges the storage battery 2A.
  • the AC / DC converter 2B receives the data c1 transmitted from the controller 4.
  • the discharge power output from the AC / DC converter 2B is controlled by the data of c1.
  • the AC / DC converter 2 ⁇ / b> B receives the data c ⁇ b> 2 transmitted from the control device 4.
  • the charging power of the power charged in the AC / DC converter 2B is controlled by the data of c2.
  • the AC / DC converter 2B outputs the remaining charge of the power storage device 2 to the control device 4 as data of c3.
  • the information collection device 3 provides a1 data collected from a site on the Internet.
  • the information collecting device 3 is connected to the control device 4 via the Internet line.
  • the data a1 is used by the control device 4 to calculate the predicted generated power and the predicted time of the solar power generation device 1.
  • the power supply line 5 is an electric circuit connected to the solar power generation device 1, the power storage device 2, and the power system.
  • the power supply line 5 is supplied with power from the solar power generation device 1 and the power storage device 2. Also, charging power from the solar power generation device 1 or the power system is supplied to the power storage device 2 via the power supply line 5.
  • the power supply line 5 is connected to the power system of the power company.
  • the control device 4 is configured by a personal computer or the like.
  • the control device 4 is disposed in a control room or the like that performs power monitoring control.
  • the control device 4 outputs a1. “Meteorological information, amount of sunlight, and information related to power generated by other solar power generation devices” are input.
  • the control device 4 uses the data a1 from the information collection device 3 to execute d1. “Predicted power generation of solar power generation device 1” and d2. The “predicted time when the photovoltaic power generation apparatus 1 outputs the predicted generated power” is calculated. Control device 4 calculates d3 “discharge start time of power storage device 2” based on the data of d1 and d2, and supplies c1 “discharge power of power storage device 2” and c2 “charge power of power storage device 2” to power storage device 2. Instruct.
  • the control device 4 includes a data acquisition unit 41, a first transmission / reception unit 42 (hereinafter collectively referred to as a transmission / reception unit 42), a second transmission / reception unit 43 (hereinafter collectively referred to as a transmission / reception unit 43), a calculation unit 44, and an operation unit. 45, a storage unit 46, and an output unit 47.
  • the data acquisition unit 41 is configured by an internet transmission / reception circuit.
  • the data acquisition unit 41 has an input side connected to the information collection device 3 that provides information via the Internet line, and an output side connected to the calculation unit 44.
  • the data acquisition unit 41 receives a1 data provided from the information collection device 3.
  • the data acquisition unit 41 outputs the data of a1 to the calculation unit 44.
  • the transmission / reception unit 42 includes a transmission / reception circuit.
  • One of the transmission / reception units 42 is connected to the photovoltaic power generator 1 via the communication line 8 a and the other is connected to the calculation unit 44.
  • the transmission / reception unit 42 receives the data of b ⁇ b> 1 from the solar power generation device 1 and outputs it to the calculation unit 44.
  • the transmission / reception unit 43 has the same configuration as that of the transmission / reception unit 42, and one is connected to the power storage device 2 via the communication line 8 b and the other is connected to the calculation unit 44.
  • the transmission / reception unit 43 is controlled by the calculation unit 44 to instruct the power storage device 2 about the data c1 and the data c2.
  • the transmission / reception unit 43 receives the data of c3 from the power storage device 2 and outputs the data to the calculation unit 44.
  • the calculation unit 44 is configured by a calculation device such as a microcomputer.
  • the calculation unit 44 incorporates a computer program and the like.
  • the calculation unit 44 is connected to the data acquisition unit 41, the transmission / reception unit 42, the transmission / reception unit 43, the calculation unit 44, the storage unit 45, the operation unit 46, and the output unit 47.
  • the calculation unit 44 performs the following calculation and control.
  • (A) Control with respect to the data acquisition part 41 The data acquisition part 41 is controlled and the following data are acquired sequentially. a1. Information on weather information, amount of sunlight, and power generated by other solar power generation devices
  • B Control on transmission / reception unit 42
  • the transmission / reception unit 42 is controlled to receive the following data from the solar power generation device 1. b1.
  • Control on Output Power Information (C) Transmission / Reception Unit 43 Regarding Photovoltaic Power Generation Device 1
  • the transmission / reception unit 43 is controlled to transmit the following data to the power storage device 2. c1.
  • Charge power of power storage device 2 Controls transmission / reception unit 43 to receive the following data from power storage device 2. c3.
  • Calculation of remaining charge (D) of power storage device 2 The following data is calculated in the calculation unit 44.
  • d1. Predicted generated power of the solar power generator 1 d2.
  • Control of discharge start time (E) operation unit 45 of power storage device 2 The following data is acquired from operation unit 45. e1.
  • Allowable output change rate is a change rate per unit time of the power that can be output to the power system, and is indicated by a ratio of the output power of the photovoltaic power plant to the rating.
  • e1 “allowable output change rate” is a change rate of the sum of the output power of the solar power generation device 1 and the discharge power or charge power output from the power storage device 2 (output of the power supply system).
  • (F) Control for the storage unit 46 The following data is stored in the storage unit 45. Each data of a1, b1, c1 to c3, d1 to d3, e1.
  • G Control for the output unit 47 The output unit 47 outputs the following data. Each data of a1, b1, c1 to c3, d1 to d3, e1.
  • the operation unit 45 includes an input device such as a keyboard.
  • the operation unit 45 is connected to the calculation unit 44.
  • the operation unit 45 is preliminarily input with e1 data by the operator. Based on the data of e1, the calculation unit 44 calculates the data of c1, c2, and d3.
  • the storage unit 46 is configured by a storage medium such as a semiconductor memory or a hard disk.
  • the storage unit 46 is controlled by the arithmetic unit 44 to write and read data.
  • the storage unit 46 stores the data a1, b1, c1 to c3, d1 to d3, and e1.
  • the output unit 47 includes a display device such as a liquid crystal display, a printer, and the like.
  • the display of the output unit 47 is controlled by the calculation unit 44.
  • the output unit 47 displays the data a1, b1, c1 to c3, d1 to d3, and e1.
  • Step S01 Acquisition of e1 “allowable output change rate”
  • the calculation unit 44 of the control device 4 acquires e1 “allowable output change rate” data input by the operator via the operation unit 45.
  • e1 “allowable output change rate” is a change rate per unit time of power that can be output to the power system.
  • e1 “allowable output change rate” is the change rate of the sum of the output power of the solar power generation device 1 and the discharge power or charge power output from the power storage device 2 (output of the power supply system).
  • e1 “allowable output change rate” is assumed to be 1% / min as an example.
  • the “allowable output change rate”, which is a change rate that can be allowed by the power system, is defined by a power company as a change rate that can ensure power quality such as voltage and frequency.
  • Step S02 acquisition of a1 “meteorological information, amount of sunlight, information on power generated by other solar power generation devices”
  • the calculation unit 44 of the control device 4 acquires a1 “meteorological information, amount of sunshine, and information on power generated by other solar power generation devices” from the information collection device 3 via the data acquisition unit 41.
  • the information collection device 3 provides weather information such as future weather, temperature, humidity, and solar altitude, and prediction data for the amount of sunlight from a site on the Internet. Also, it provides “information on the power generated by other solar power generation devices” collected from the power generation efficiency, power generation efficiency, etc. of the solar power generation devices installed in other areas.
  • Step S03 calculation of d1 “predicted power generation of solar power generation device 1”, d2 “predicted time of output of predicted power generation of solar power generation device 1”
  • the calculation unit 44 of the control device 4 uses d1 “predicted generated power of the solar power generation device 1” of the solar power generation device 1 and d2 “solar” corresponding to the d1 data based on the data of a1 acquired in step S02. “Predicted time to output predicted generated power of photovoltaic device 1” is calculated.
  • Calculation of d1 and d2 is performed based on the weather, weather, temperature, solar altitude, and amount of sunlight in the data of a1.
  • D1 “Predicted generated power of the solar power generation apparatus 1” is predicted and calculated at 1-minute intervals in this embodiment. Therefore, d2 corresponds to d1 and has an interval of 1 minute.
  • Step S04 calculation of c1 “discharge power of power storage device 2”, c2 “charge power of power storage device 2”, d3 “discharge start time of power storage device 2”)
  • the calculation unit 44 of the control device 4 performs c1 “discharge power of the power storage device 2” and c2 “charge of the power storage device 2” based on the d1, d2 and e1 data of the solar power generation device 1 calculated in step S03. “Power” and d3 “Discharge start time of power storage device 2” are calculated.
  • the rate of increase or decrease of the sum of “predicted power generation power of solar power generation device 1” is e1 “allowable output change rate”. It is calculated to be 1% / min or less.
  • the data of c3 is acquired from the power storage device 2 via the transmission / reception unit 43. The calculation method will be described later.
  • the calculation unit 44 of the control device 4 calculates d3 “discharge start time of the power storage device 2”.
  • d3 is a time at which discharge is started so that the increase rate or decrease rate of the sum of the output power of the solar power generation device 1 and the discharge or charging power output from the power storage device 2 is within e1 “allowable output change rate”. Calculated.
  • the power storage device 2 is charged with the surplus of the generated power output from the solar power generation device 1 And d3 are calculated so as to be equal to each other.
  • the amount of discharge discharged from the power storage device 2 is the integrated power discharged from the power storage device 2, and the amount of charge charged to the power storage device 2 is the integrated power charged to the power storage device 2.
  • Step S05 Determination of whether time is d3 “discharge start time of power storage device 2”
  • the calculation unit 44 of the control device 4 determines whether the current time is d3 “the discharge start time of the power storage device 2”.
  • the process proceeds to step S06.
  • it is determined not to be updated (“NO” in S05)
  • the process waits.
  • Step S06 Instruct c1 “discharge power of power storage device 2” to power storage device 2
  • step S05 When it is determined in step S05 that the current time is d3 “discharge start time of power storage device 2”, calculation unit 44 of control device 4 performs power storage based on c1 “discharge power of power storage device 2”. 2 is instructed.
  • the instruction by the data of c1 is performed every minute which is a unit time.
  • the instruction based on the data of c1 is given to the power storage device 2 so that the rate of change of the sum of the discharged power of the power storage device 2 and the generated power of the solar power generation device 1 increases by 1% / min or less.
  • Step S07 “Output of Power Supply System (Sum of Output Power of Solar Power Generation Device 1 and Power Output from Power Storage Device 2)” ⁇ Judgment of “Output Power of Solar Power Generation Device 1”)
  • the calculation unit 44 of the control device 4 determines whether the output power of the solar power generation device 1 is equal to or higher than the output of the power supply system.
  • the output of the power supply system refers to the sum of the output power of the solar power generation device 1 and the power output from the power storage device 2.
  • the output power of the solar power generation device 1 is acquired from the solar power generation device 1 via the transmission / reception unit 42 to the calculation unit 44 as b1 data.
  • step S08 If the calculation unit 44 determines that the output power of the photovoltaic power generation apparatus 1 has become equal to or greater than the output of the power supply system (“YES” in S07), the process proceeds to step S08. On the other hand, when it is not determined that the output power of the solar power generation device 1 has become equal to or greater than the output of the power supply system (“NO” in S07), the instruction of c1 “discharge power of the power storage device 2” to the power storage device 2 is continued. .
  • Step S08 Instruct c2 “charge amount of power storage device 2” to power storage device 2)
  • the output power of the solar power generation device 1 has become equal to or greater than the output of the power supply system (the sum of the output power of the solar power generation device 1 and the power output from the power storage device 2).
  • the calculation unit 44 of the device 4 instructs the power storage device 2 to perform charging based on c2 “charging power of the power storage device 2”.
  • the instruction by the data of c2 is performed every minute which is a unit time.
  • the instruction c2 is given to the power storage device 2 so that the value obtained by subtracting the charging power of the power storage device 2 from the predicted generated power of the solar power generation device 1 is increased by 1% / min or less.
  • Step S09 Determination of completion of charging of power storage device 2
  • the calculation unit 44 of the control device 4 determines the end of charging of the power storage device 2. This determination is made based on whether the value of c2 “charging power of power storage device 2” has changed from positive to zero or negative.
  • the calculation unit 44 determines that the charging of the power storage device 2 is finished (“YES” in S09)
  • the program is finished.
  • it is determined not to end the charging of the power storage device 2 (“NO” in S09)
  • the instruction of c2 “charging power of the power storage device 2” to the power storage device 2 is continued.
  • the power supply system according to the present embodiment is not used. In this case, it is necessary to increase the output power from 0% to ⁇ % in ⁇ minutes at an increase rate of output power of 1% / min as in Qm0 in FIG.
  • Wh is used as the unit of the normal electric energy, but for convenience of explanation, “%” is used instead of “W”, “min” is used instead of “h”, and the electric energy is “%”.
  • the power storage device 2 is charged with the output power of the solar power generation device 1.
  • the power storage device 2 is charged with the output power of the solar power generation device 1 so that the output power from the solar power generation device 1 to the system has an increase rate of 1% / min.
  • Qm13 [ ⁇ - ⁇ ] ⁇ [ ⁇ - ⁇ ] / 2 (%) (4)
  • the loss amount of power QL0 generated when the power supply system according to the present embodiment is not used is not generated.
  • Qm13 does not cause a loss like the above-mentioned QmL. Even if the power storage device 2 is stopped from being discharged and the power storage device 2 is not charged by the surplus of the output power of the solar power generation device 1, the loss of power is suppressed to Qm13 ( ⁇ QmL). It is done.
  • Tn ( ⁇ ⁇ ⁇ ) / ( ⁇ ) (min) (11)
  • Pn ( ⁇ ⁇ ⁇ ) / ( ⁇ ) (%)
  • Qn13 does not cause a loss like the above-described QnL.
  • the power storage device 2 is not charged with the surplus of the output power of the solar power generation device 1 after the discharge of the power storage device 2 is stopped, the amount of lost power is suppressed to Qn13 ( ⁇ QnL). It is done.
  • the change rate of the sum of the output power of the photovoltaic power generation device 1 and the discharge or charging power output from the power storage device 2 is equal to or less than e1 “allowable output change rate”, and the power storage device 2 is discharged.
  • the sum of the power output from the solar power generation device 1 and the discharge or charging power output from the power storage device 2 increases and decreases with time at a predetermined rate of change. Since the power storage device 2 is controlled to be discharged or charged, the power quality such as the voltage and frequency of the power generation equipment is easily secured.
  • the electric power discharge from the power storage device 2 is started before the time when the predicted generated power output from the solar power generation device 1 is output. Even when the output of power at a predetermined moderate increase rate is required until the generated power of the solar power generation device 1 is reached, the output power from the power supply system is output from the power storage device 2. Therefore, it is possible to reduce waste of power output from the solar power generation device 1.
  • the discharge amount discharged from the power storage device 2 and the charge amount for charging the power storage device 2 with the generated power output from the solar power generation device 1 are equal. Since the power storage device 2 is charged and discharged, the charge amount and the discharge amount of the power storage device 2 coincide with each other, and it is economical to reduce waste of power.
  • the calculation accuracy of the power generation prediction of the solar power generation device 1 can be improved.
  • the natural energy power generation device was the solar power generation device 1, a natural energy power generation device is not restricted to this.
  • the natural energy power generation apparatus may be another natural energy power generation apparatus such as a wind power generation apparatus, a biomass power generation apparatus, or a solar thermal power generation apparatus.
  • the electrical storage place 2A of the electrical storage apparatus 2 is connected with the solar panel 1A via AC / DC converter 2B, 1B, and the solar panel once converted into alternating current by AC / DC converter 1B
  • the electric power from 1A is charged to the storage battery 2A
  • the direct current power from the solar panel 1A may be charged to the storage battery 2A without going through the AC / DC converters 2B and 1B.
  • a bidirectional DC-DC converter 2D for converting the voltage level of a DC voltage is provided in the power storage device 2, and the power of the photovoltaic power generator 1 is passed through the DC-DC converter 2D. May be charged in the power storage device 2. Charging / discharging of the battery 2A is performed by the control device 4 controlling the voltage level and current direction of the DC-DC converter 2D.
  • a DC-DC converter 1D for converting the voltage level of a DC voltage is provided in the solar power generator 1, and the solar power generator 1 is connected via the DC-DC converter 1D.
  • the power storage device 2 may be charged with electric power. Charging / discharging of the battery 2A is performed by the control device 4 controlling the voltage level of the DC / DC converter 1D and controlling the AC / DC converter 6.
  • the power loss and the power storage device 2 are charged when the power of the solar power generation device 1 is converted from direct current to alternating current. No power loss occurs when the power to be converted from AC to DC.
  • the power storage device 2 is a lithium secondary battery, but the power storage device is not limited to this.
  • the power storage device 2 may be another battery such as a nickel-cadmium battery or a sodium-sulfur battery, or may be another energy storage device using a flywheel or pumped-storage power generation.
  • the power storage device 2 may be a hydrogen fuel cell system 7 as shown in FIG. 14, for example.
  • the hydrogen fuel cell system 7 includes a fuel cell 7A, a hydrogen production device 7B, and a hydrogen tank 7C.
  • the fuel cell 7A When the discharge is necessary, the fuel cell 7A generates electric power and supplies electric power using the hydrogen controlled by the control device 4 and stored in the hydrogen tank 7C.
  • hydrogen is produced in the hydrogen production device 7B using the electric power output from the solar power generation device 1, and hydrogen is stored in the hydrogen tank 7C.
  • electric power can be stored in the state of hydrogen instead of electricity, and loss due to storage can be reduced.
  • the power storage device 2 may be a device in which a plurality of energy storage devices such as a hydrogen fuel cell system 7 and a storage battery 2A such as a lithium secondary battery are connected in parallel.
  • a plurality of energy storage devices such as a hydrogen fuel cell system 7 and a storage battery 2A such as a lithium secondary battery are connected in parallel.
  • the information collection device 3 collects information from a site on the Internet.
  • the information collection device 3 individually detects the weather information, the amount of sunlight, and the power generated by other solar power generation devices. It may be a detection device.
  • the weather information, the amount of sunlight, and the information related to the power generated by other solar power generation devices are acquired.
  • the present invention is not limited to this. More information may be acquired, or at least one of them may be acquired.
  • it is not restricted to the information regarding the electric power generated by other solar power generation devices, The information regarding the electric power generated by other natural energy power generation devices may be sufficient.
  • the data acquisition unit 41 is an Internet transmission / reception circuit.
  • the data acquisition unit 41 may be a transmission / reception circuit that supports communication using a telephone line or a dedicated line or a radio wave.
  • e1 “allowable output change rate” is 1% / min.
  • e1 “allowable output change rate” is not limited to this.
  • d1 and d2 are calculated at 1-minute intervals, but the time interval is not limited to this. For example, it may be 30 seconds or 15 minutes.
  • step 09 the determination of whether or not the charging in step 09 is completed is made based on whether the value of c2 “charging power of power storage device 2” is positive, zero, or negative. It is good also as what is performed based on whether the charging current to the apparatus 2 is zero.
  • the power storage device 2 after stopping the discharge of the power storage device 2, the power storage device 2 is charged with the excess output power of the solar power generation device 1. It may be performed other than the surplus of the output power of the solar power generation device 1 as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a power supply system, a control device for a power supply system, a program for a power supply system, and a control method for a power supply system, in which the waste of power generated by a natural energy generation device is suppressed, and the sales volume of the power generated by the natural energy generation device is not easily affected. The present invention is provided with: a natural energy generation device 1 that supplies power to a power system; a power storage device 2 that is connected in parallel to the natural energy generation device 1 and charges or discharges the power; and a control device 4 that controls the charging or discharging of the power storage device 2. The control device 4 calculates a predicted generated power to be output from the natural energy generation device 1 and a predicted time when the predicted generated power is to be output, and controls the power storage device 2 so as to start discharging power to the power system before the predicted time when the calculated predicted generated power is to be output, and so as to perform discharging so that the discharge power increases with time.

Description

電力供給システム、電力供給システム用制御装置、電力供給システム用プログラムおよび電力供給システムの制御方法Power supply system, control device for power supply system, program for power supply system, and control method for power supply system
 本実施形態は、自然エネルギー発電装置に併設された蓄電装置を有する電力供給システム、電力供給システム用制御装置、電力供給システム用プログラムおよび電力供給システムの制御方法に関する。 The present embodiment relates to a power supply system having a power storage device provided in a natural energy power generation device, a power supply system control device, a power supply system program, and a power supply system control method.
 昨今の電力自由化に伴い、電力会社の発電設備とは別の電力供給システムにて発電された電力が、電力系統に出力される場合がある。この種の電力供給システムは、自然エネルギー発電装置を含むことを特徴としている。 With the recent liberalization of electric power, electric power generated by an electric power supply system different from the electric power company's power generation equipment may be output to the electric power system. This type of power supply system is characterized by including a natural energy power generation device.
特開2011-78168公報JP 2011-78168 A
 電力会社の発電設備とは別に設けられた電力供給システムとして、自然エネルギーにて発電された電力を供給する電力供給システムが普及している。自然エネルギー発電装置は、日射量や気温などの気象条件により、発電量が大きく変動する。 As a power supply system provided separately from the power generation facilities of electric power companies, power supply systems that supply power generated by natural energy have become widespread. The amount of power generated by a natural energy power generation device varies greatly depending on weather conditions such as solar radiation and temperature.
 自然エネルギー発電装置により発電された電力が、直接電力供給線を介して電力系統に出力された場合、急激な発電量の変動により電力系統全体として電圧および周波数の変動が発生する。このため、電力系統全体として迅速な電圧および周波数の制御が必要とされるが、電力会社が所有する発電設備によっては、迅速に発電量の制御が行われにくい場合がある。その結果、電圧や周波数等の電力品質が確保されにくくなる恐れがあった。 When the electric power generated by the natural energy generator is directly output to the electric power system via the electric power supply line, the voltage and frequency fluctuate as a whole of the electric power system due to the sudden fluctuation of the power generation amount. For this reason, rapid voltage and frequency control is required for the entire power system, but depending on the power generation equipment owned by the power company, it may be difficult to quickly control the amount of power generation. As a result, power quality such as voltage and frequency may be difficult to be secured.
 このため、自然エネルギー発電装置により発電された電力を電力系統に出力する場合、電力系統へ出力する電力の急峻な変化を避け、電力系統へ変化の小さい電力を出力することが望ましい。 For this reason, when the electric power generated by the natural energy power generation apparatus is output to the electric power system, it is desirable to avoid a sharp change in the electric power output to the electric power system and output electric power with a small change to the electric power system.
 電力事業者は、事業者側で自然エネルギー発電装置と蓄電池等を組み合わせるなどして合成出力が電力系統への指定した変化速度の上限を越えないよう規定を設ける方向である。 The power company is in a direction to provide regulations so that the combined output does not exceed the upper limit of the specified change rate to the power system by combining the natural energy power generation device and the storage battery on the business side.
 しかしながら、自然エネルギー発電装置による発電量は、天候により急激に変化する場合がある。電力系統への変化速度を抑える場合、自然エネルギーによる電力を制限して電力系統へ出力することが必要とされ、自然エネルギー発電装置により発電された電力を無駄にしてしまう恐れがある。かかる自然エネルギー発電装置により発電された電力を無駄にすることは、自然エネルギー導入促進に反する。また、自然エネルギー発電装置により発電された電力の販売量が圧迫され、自然エネルギー発電事業者の経済的利益を害することにもなる。 However, the amount of power generated by the natural energy power generation device may change rapidly depending on the weather. In order to suppress the rate of change to the electric power system, it is necessary to limit the electric power generated by natural energy and output it to the electric power system, which may waste electric power generated by the natural energy power generation device. It is contrary to promotion of introduction of natural energy to waste power generated by such a natural energy power generation device. In addition, the sales amount of the electric power generated by the natural energy power generation device is under pressure, which will harm the economic benefits of the natural energy power generation company.
 本実施形態は、自然エネルギー発電装置により発電された電力が無駄になることを抑制するとともに、自然エネルギー発電装置により発電された電力の販売量を圧迫しにくい電力供給システム、電力供給システム用制御装置、電力供給システム用プログラムおよび電力供給システムの制御方法を提供することを目的とする。 This embodiment suppresses that the electric power generated by the natural energy power generation device is wasted, and makes it difficult to press the sales amount of the power generated by the natural energy power generation device, and the control device for the power supply system An object of the present invention is to provide a program for a power supply system and a control method for the power supply system.
 本実施形態の電力供給システムは次のような構成を有することを特徴とする。
(1)電力系統に電力を供給する自然エネルギー発電装置。
(2)前記自然エネルギー発電装置と並列に接続され、電力の充電または放電を行う蓄電装置。
(3)以下を特徴とする前記蓄電装置の充電または放電の制御を行う制御装置。
(3-1)自然エネルギー発電装置から出力される予測発電電力および前記予測発電電力が出力される予測時刻と、を算出する。
(3-2)前記算出された前記予測発電電力が出力される前記予測時刻前に前記電力系統に対し電力の放電を開始し、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される放電または充電電力の総和が、予め定められた変化率で時刻とともに増加、減少するように前記蓄電装置の充放電を制御する。
The power supply system of this embodiment is characterized by having the following configuration.
(1) A natural energy power generation apparatus that supplies power to an electric power system.
(2) A power storage device connected in parallel with the natural energy power generation device to charge or discharge electric power.
(3) A control device that controls charging or discharging of the power storage device, characterized by the following.
(3-1) A predicted generated power output from the natural energy power generation apparatus and a predicted time at which the predicted generated power is output are calculated.
(3-2) The electric power system starts discharging electric power before the predicted time when the calculated predicted generated power is output, and is output from the output power of the natural energy power generation device and the power storage device The charge / discharge of the power storage device is controlled so that the sum of the discharge or charge power increases or decreases with time at a predetermined rate of change.
 また、上記電力供給システムに使用される電力供給システム用制御装置、電力供給システム用プログラムおよび電力供給システムの制御方法も本実施形態の一態様である。 In addition, the power supply system control device, the power supply system program, and the power supply system control method used in the power supply system are also one aspect of the present embodiment.
第1実施形態にかかる電力供給システムの構成を示す図The figure which shows the structure of the electric power supply system concerning 1st Embodiment. 第1実施形態にかかる電力供給システムの制御装置構成を示す図The figure which shows the control apparatus structure of the electric power supply system concerning 1st Embodiment. 第1実施形態にかかる電力供給システムのプログラムフローを示す図The figure which shows the program flow of the electric power supply system concerning 1st Embodiment. 日射量がステップ状に変化した場合の太陽光発電装置の出力を示す図The figure which shows the output of the solar power generation device when the amount of solar radiation changes in steps 日射量がステップ状に変化した場合の蓄電装置の出力を示す図The figure which shows the output of the electrical storage apparatus when the amount of solar radiation changes in steps 日射量がステップ状に変化した場合の蓄電装置の望ましい出力を示す図The figure which shows the desirable output of an electrical storage apparatus when the amount of solar radiation changes in steps 日射量がステップ状に変化した場合の電力供給システムの出力改善率を示す図The figure which shows the output improvement rate of the electric power supply system when the amount of solar radiation changes in steps 日射量がスロープ状に変化した場合の太陽光発電装置の出力を示す図The figure which shows the output of the solar power generation device when the amount of solar radiation changes in the shape of a slope 日射量がスロープ状に変化した場合の蓄電装置の出力を示す図The figure which shows the output of the electrical storage device when the amount of solar radiation changes in a slope shape 日射量がスロープ状に変化した場合の蓄電装置の望ましい出力を示す図The figure which shows the desirable output of an electrical storage device when the amount of solar radiation changes in the shape of a slope 日射量がスロープ状に変化した場合の電力供給システムの出力改善率を示す図The figure which shows the output improvement rate of the power supply system when the amount of solar radiation changes in a slope shape 他の実施形態にかかる直流変換装置を蓄電装置に設けた電力供給システムの構成を示す図The figure which shows the structure of the electric power supply system which provided the DC converter concerning other embodiment in the electrical storage apparatus. 他の実施形態にかかる直流変換装置を太陽光発電装置に設けた電力供給システムの構成を示す図The figure which shows the structure of the electric power supply system which provided the DC converter concerning other embodiment in the solar power generation device. 他の実施形態にかかる蓄電装置として水素燃料電池システムを用いた電力供給システムの構成を示す図The figure which shows the structure of the electric power supply system using a hydrogen fuel cell system as an electrical storage apparatus concerning other embodiment. 他の実施形態にかかる蓄電装置として水素燃料電池システムと2次電池を並列にしたものを用いた電力供給システムの構成を示す図The figure which shows the structure of the electric power supply system using what combined the hydrogen fuel cell system and the secondary battery in parallel as an electrical storage apparatus concerning other embodiment.
[第1実施形態]
[1-1.構成]
(1.システムの全体構成)
 図1を参照し、本実施形態の一例である、自然エネルギー発電装置として太陽光発電装置を用いた電力供給システムについて説明する。
[First Embodiment]
[1-1. Constitution]
(1. Overall system configuration)
With reference to FIG. 1, a power supply system using a solar power generation device as a natural energy power generation device, which is an example of the present embodiment, will be described.
 本電力供給システムは、太陽光発電装置1、蓄電装置2、情報収集装置3、制御装置4、電力供給線5、通信線8を有する。太陽光発電装置1が請求項における自然エネルギー発電装置に相当する。 The present power supply system includes a solar power generation device 1, a power storage device 2, an information collection device 3, a control device 4, a power supply line 5, and a communication line 8. The solar power generation device 1 corresponds to the natural energy power generation device in the claims.
 本電力供給システムにおいて、以下のデータが、入力、出力、送受信または記憶される。
   a1.気象情報、日照量、他の太陽光発電装置によりに発電された電力に関する情報
   b1.太陽光発電装置1に関する出力電力情報
   c1.蓄電装置2の放電電力
   c2.蓄電装置2の充電電力
   c3.蓄電装置2の充電残量
   d1.太陽光発電装置1の予測発電電力
   d2.太陽光発電装置1の予測発電電力を出力する予測時刻
   d3.蓄電装置2の放電開始時刻
   e1.許容出力変化率
なお、e1「許容出力変化率」が請求項中の予め定められた変化率に相当する。
In the power supply system, the following data is input, output, transmitted / received, or stored.
a1. Information on weather information, amount of sunlight, and power generated by other solar power generation devices b1. Output power information regarding the solar power generation device 1 c1. Discharge power of power storage device c2. Charging power of power storage device 2 c3. Charge remaining amount of power storage device 2 d1. Predicted generated power of the solar power generator 1 d2. Predicted time for outputting the predicted generated power of the solar power generator 1 d3. Discharge start time of power storage device 2 e1. Allowable Output Change Rate Note that e1 “allowable output change rate” corresponds to a predetermined change rate in the claims.
(2.太陽光発電装置1の構成)
 太陽光発電装置1は、太陽光により発電された電力を出力する。太陽光発電装置1は、電力供給線5を介し電力系統および蓄電装置2に接続される。また、太陽光発電装置1は、制御装置4に発電量を監視される。太陽光発電装置1は、電力供給線5を介し電力系統へ、または電力供給線5を介し蓄電装置2に電力を出力する。太陽光発電装置1は、太陽光発電事業者により管理される屋外に設置される。太陽光発電装置1は、太陽光パネル1Aおよび交直変換装置1Bを有する。
(2. Configuration of the solar power generation device 1)
The solar power generation device 1 outputs electric power generated by sunlight. The solar power generation device 1 is connected to the power system and the power storage device 2 via the power supply line 5. Further, the solar power generation device 1 is monitored by the control device 4 for the amount of power generation. The solar power generation device 1 outputs power to the power system via the power supply line 5 or to the power storage device 2 via the power supply line 5. The solar power generation device 1 is installed outdoors managed by a solar power generation company. The solar power generation device 1 has a solar panel 1A and an AC / DC converter 1B.
 太陽光パネル1Aは、日当たりのよい屋外であり交直変換装置1Bの近傍に配置される。太陽光パネル1Aは、太陽光を受け発電し、交直変換装置1Bに電力を供給する。 The solar panel 1A is sunny outdoors and is arranged near the AC / DC converter 1B. The solar panel 1A receives sunlight to generate power and supplies power to the AC / DC converter 1B.
 交直変換装置1Bは、直流電力を交流電力に変換するインバータにより構成される。交直変換装置1Bは、太陽光パネル1Aの近傍に設置される。交直変換装置1Bは、太陽光パネル1Aにより発電された直流電力を交流電力に変換し、電力供給線5を介し、電力系統または蓄電装置2に出力する。また、交直変換装置1Bは、太陽光発電装置1から出力される電力の電流、電圧、電力に関するb1のデータを制御装置4に出力する。 The AC / DC converter 1B is configured by an inverter that converts DC power into AC power. The AC / DC converter 1B is installed in the vicinity of the solar panel 1A. The AC / DC converter 1 </ b> B converts the DC power generated by the solar panel 1 </ b> A into AC power, and outputs the AC power to the power system or the power storage device 2 via the power supply line 5. Further, the AC / DC converter 1 </ b> B outputs b <b> 1 data related to the current, voltage, and power of the power output from the solar power generation device 1 to the control device 4.
(3.蓄電装置2の構成)
 蓄電装置2は、蓄電された電力を入出力する充放電可能な蓄電装置である。蓄電装置2は、電力供給線5を介し電力系統および太陽光発電装置1に接続される。また、蓄電装置2は、制御装置4に放電電力および充電電力を制御される。蓄電装置2は、電力供給線5を介し電力系統へ電力を放電する。蓄電装置2は、電力供給線5を介し太陽光発電装置1または電力系統からの電力を充電する。蓄電装置2は、太陽光発電事業者により管理される屋内または屋外に設置される。蓄電装置2は、蓄電池2Aおよび交直変換装置2Bを有する。
(3. Configuration of power storage device 2)
The power storage device 2 is a chargeable / dischargeable power storage device that inputs and outputs stored power. The power storage device 2 is connected to the power system and the solar power generation device 1 via the power supply line 5. In addition, the power storage device 2 is controlled by the control device 4 to discharge power and charge power. The power storage device 2 discharges power to the power system via the power supply line 5. The power storage device 2 charges power from the solar power generation device 1 or the power system via the power supply line 5. The power storage device 2 is installed indoors or outdoors managed by a photovoltaic power generation company. The power storage device 2 includes a storage battery 2A and an AC / DC converter 2B.
 蓄電池2Aは、リチウム2次電池のような充放電可能な電池で構成された蓄電池である。蓄電池2Aは、電力管理室のような屋内または屋外であって交直変換装置2Bの近傍に配置される。蓄電池2Aは、蓄えられた電力を放電し、交直変換装置2Bに電力を供給するとともに、交直変換装置2Bから供給される電力により充電される。 Storage battery 2A is a storage battery composed of a chargeable / dischargeable battery such as a lithium secondary battery. The storage battery 2A is indoors or outdoors, such as a power management room, and is disposed in the vicinity of the AC / DC converter 2B. The storage battery 2A discharges the stored power, supplies power to the AC / DC converter 2B, and is charged by the power supplied from the AC / DC converter 2B.
 交直変換装置2Bは、直流電力を交流電力に、交流電力を直流電力に変換する双方向のインバータ(コンバータと称される場合もある)により構成される。交直変換装置2Bは、蓄電池2Aの近傍に設置される。交直変換装置2Bは、蓄電池2Aにより放電された直流電力を交流電力に変換し、電力供給線5を介し、電力系統に出力する。また交直変換装置2Bは、電力供給線5を介し太陽光発電装置1または電力系統からの交流電力を直流電力に変換し、蓄電池2Aを充電する。 The AC / DC converter 2B includes a bidirectional inverter (also referred to as a converter) that converts DC power into AC power and AC power into DC power. The AC / DC converter 2B is installed in the vicinity of the storage battery 2A. The AC / DC converter 2 </ b> B converts the DC power discharged by the storage battery 2 </ b> A into AC power, and outputs the AC power to the power system via the power supply line 5. Moreover, the AC / DC converter 2B converts the AC power from the photovoltaic power generation device 1 or the power system into DC power via the power supply line 5, and charges the storage battery 2A.
 交直変換装置2Bは、制御装置4から送信されるc1のデータを受信する。このc1のデータにより、交直変換装置2Bから出力される放電電力が制御される。また、交直変換装置2Bは、制御装置4から送信されるc2のデータを受信する。このc2のデータにより、交直変換装置2Bに充電される電力の充電電力が制御される。また、交直変換装置2Bは、蓄電装置2の充電残量をc3のデータとして制御装置4に出力する。 The AC / DC converter 2B receives the data c1 transmitted from the controller 4. The discharge power output from the AC / DC converter 2B is controlled by the data of c1. Further, the AC / DC converter 2 </ b> B receives the data c <b> 2 transmitted from the control device 4. The charging power of the power charged in the AC / DC converter 2B is controlled by the data of c2. Moreover, the AC / DC converter 2B outputs the remaining charge of the power storage device 2 to the control device 4 as data of c3.
(4.情報収集装置3)
 情報収集装置3は、インターネット上のサイトから収集したa1のデータを提供する。情報収集装置3は、インターネット回線を介し制御装置4に接続される。これらのa1のデータは、制御装置4による、太陽光発電装置1の予測発電電力および予測時刻の算出に用いられる。
(4. Information collection device 3)
The information collection device 3 provides a1 data collected from a site on the Internet. The information collecting device 3 is connected to the control device 4 via the Internet line. The data a1 is used by the control device 4 to calculate the predicted generated power and the predicted time of the solar power generation device 1.
(5.電力供給線5)
 電力供給線5は、太陽光発電装置1、蓄電装置2および電力系統に接続された電路である。電力供給線5には、太陽光発電装置1および蓄電装置2からの電力が供給される。また、太陽光発電装置1または電力系統からの充電用の電力が、電力供給線5を介し蓄電装置2に供給される。なお、電力供給線5は、電力会社の電力系統に接続される。
(5. Power supply line 5)
The power supply line 5 is an electric circuit connected to the solar power generation device 1, the power storage device 2, and the power system. The power supply line 5 is supplied with power from the solar power generation device 1 and the power storage device 2. Also, charging power from the solar power generation device 1 or the power system is supplied to the power storage device 2 via the power supply line 5. The power supply line 5 is connected to the power system of the power company.
(6.制御装置4の構成)
 制御装置4は、パーソナルコンピュータ等により構成される。制御装置4は、電力の監視制御を行う制御室等に配置される。制御装置4は、情報収集装置3から出力されたa1.「気象情報、日照量、他の太陽光発電装置によりに発電された電力に関する情報」が入力される。
(6. Configuration of the control device 4)
The control device 4 is configured by a personal computer or the like. The control device 4 is disposed in a control room or the like that performs power monitoring control. The control device 4 outputs a1. “Meteorological information, amount of sunlight, and information related to power generated by other solar power generation devices” are input.
 制御装置4は、情報収集装置3からのa1のデータに基づきd1.「太陽光発電装置1の予測発電電力」およびd2.「太陽光発電装置1が予測発電電力を出力する予測時刻」を算出する。制御装置4は、d1およびd2のデータに基づきd3「蓄電装置2の放電開始時刻」を算出し、c1「蓄電装置2の放電電力」およびc2「蓄電装置2の充電電力」を蓄電装置2に指示する。 The control device 4 uses the data a1 from the information collection device 3 to execute d1. “Predicted power generation of solar power generation device 1” and d2. The “predicted time when the photovoltaic power generation apparatus 1 outputs the predicted generated power” is calculated. Control device 4 calculates d3 “discharge start time of power storage device 2” based on the data of d1 and d2, and supplies c1 “discharge power of power storage device 2” and c2 “charge power of power storage device 2” to power storage device 2. Instruct.
 制御装置4は、データ取得部41、第1の送受信部42(以下、送受信部42と総称する)、第2の送受信部43(以下、送受信部43と総称する)、演算部44、操作部45、記憶部46、出力部47を有する。 The control device 4 includes a data acquisition unit 41, a first transmission / reception unit 42 (hereinafter collectively referred to as a transmission / reception unit 42), a second transmission / reception unit 43 (hereinafter collectively referred to as a transmission / reception unit 43), a calculation unit 44, and an operation unit. 45, a storage unit 46, and an output unit 47.
 データ取得部41は、インターネット送受信回路により構成される。データ取得部41は、入力側がインターネット回線を介し情報を提供する情報収集装置3に、出力側が演算部44に接続される。データ取得部41は、情報収集装置3から提供されるa1のデータが入力される。データ取得部41は、a1のデータを演算部44に出力する。 The data acquisition unit 41 is configured by an internet transmission / reception circuit. The data acquisition unit 41 has an input side connected to the information collection device 3 that provides information via the Internet line, and an output side connected to the calculation unit 44. The data acquisition unit 41 receives a1 data provided from the information collection device 3. The data acquisition unit 41 outputs the data of a1 to the calculation unit 44.
 送受信部42は、送受信回路により構成される。送受信部42は、一方が通信線8aを介し太陽光発電装置1に、他方が演算部44に接続される。送受信部42は、太陽光発電装置1からb1のデータを受信し、演算部44に出力する。 The transmission / reception unit 42 includes a transmission / reception circuit. One of the transmission / reception units 42 is connected to the photovoltaic power generator 1 via the communication line 8 a and the other is connected to the calculation unit 44. The transmission / reception unit 42 receives the data of b <b> 1 from the solar power generation device 1 and outputs it to the calculation unit 44.
 送受信部43は、送受信部42と同様の構成を有し、一方が通信線8bを介し蓄電装置2に、他方が演算部44に接続される。送受信部43は、演算部44に制御され蓄電装置2に対しc1のデータおよびc2のデータを指示する。送受信部43は、蓄電装置2からc3のデータを受信し演算部44に出力する。 The transmission / reception unit 43 has the same configuration as that of the transmission / reception unit 42, and one is connected to the power storage device 2 via the communication line 8 b and the other is connected to the calculation unit 44. The transmission / reception unit 43 is controlled by the calculation unit 44 to instruct the power storage device 2 about the data c1 and the data c2. The transmission / reception unit 43 receives the data of c3 from the power storage device 2 and outputs the data to the calculation unit 44.
 演算部44は、マイクロコンピュータのような演算装置により構成される。演算部44は、コンピュータプログラムなどを内蔵する。演算部44は、データ取得部41、送受信部42、送受信部43、演算部44、記憶部45、操作部46、出力部47に接続される。演算部44は、以下の演算および制御を行う。
(A)データ取得部41に対する制御
 データ取得部41を制御し以下のデータを逐次取得する。
  a1.気象情報、日照量、他の太陽光発電装置によりに発電された電力に関する情報
(B)送受信部42に対する制御
 送受信部42を制御し以下のデータを太陽光発電装置1から受信する。
  b1.太陽光発電装置1に関する出力電力情報
(C)送受信部43に対する制御
 送受信部43を制御し以下のデータを蓄電装置2に送信する。
  c1.蓄電装置2の放電電力
  c2.蓄電装置2の充電電力
 送受信部43を制御し以下のデータを蓄電装置2から受信する。
  c3.蓄電装置2の充電残量
(D)算出演算
 演算部44内で以下のデータの算出を行う。
   d1.太陽光発電装置1の予測発電電力
   d2.太陽光発電装置1の予測発電電力を出力する予測時刻
   d3.蓄電装置2の放電開始時刻
(E)操作部45に対する制御
 操作部45から以下のデータを取得する。
   e1.許容出力変化率
ここでe1「許容出力変化率」とは、電力系統に出力することができる電力の単位時間当たりの変化率であり、太陽光発電所の出力電力の定格に対する割合で示される。本実施形態においてe1「許容出力変化率」は、太陽光発電装置1の出力電力および蓄電装置2から出力される放電電力または充電電力の総和(電力供給システムの出力)の変化率である。
(F)記憶部46に対する制御
 記憶部45に以下のデータを記憶させる。
 a1,b1,c1~c3,d1~d3,e1の各データ。
(G)出力部47に対する制御
 出力部47に以下のデータを出力させる。
 a1,b1,c1~c3,d1~d3,e1の各データ。
The calculation unit 44 is configured by a calculation device such as a microcomputer. The calculation unit 44 incorporates a computer program and the like. The calculation unit 44 is connected to the data acquisition unit 41, the transmission / reception unit 42, the transmission / reception unit 43, the calculation unit 44, the storage unit 45, the operation unit 46, and the output unit 47. The calculation unit 44 performs the following calculation and control.
(A) Control with respect to the data acquisition part 41 The data acquisition part 41 is controlled and the following data are acquired sequentially.
a1. Information on weather information, amount of sunlight, and power generated by other solar power generation devices (B) Control on transmission / reception unit 42 The transmission / reception unit 42 is controlled to receive the following data from the solar power generation device 1.
b1. Control on Output Power Information (C) Transmission / Reception Unit 43 Regarding Photovoltaic Power Generation Device 1 The transmission / reception unit 43 is controlled to transmit the following data to the power storage device 2.
c1. Discharge power of power storage device c2. Charge power of power storage device 2 Controls transmission / reception unit 43 to receive the following data from power storage device 2.
c3. Calculation of remaining charge (D) of power storage device 2 The following data is calculated in the calculation unit 44.
d1. Predicted generated power of the solar power generator 1 d2. Predicted time for outputting the predicted generated power of the solar power generator 1 d3. Control of discharge start time (E) operation unit 45 of power storage device 2 The following data is acquired from operation unit 45.
e1. Allowable output change rate Here, e1 “allowable output change rate” is a change rate per unit time of the power that can be output to the power system, and is indicated by a ratio of the output power of the photovoltaic power plant to the rating. In the present embodiment, e1 “allowable output change rate” is a change rate of the sum of the output power of the solar power generation device 1 and the discharge power or charge power output from the power storage device 2 (output of the power supply system).
(F) Control for the storage unit 46 The following data is stored in the storage unit 45.
Each data of a1, b1, c1 to c3, d1 to d3, e1.
(G) Control for the output unit 47 The output unit 47 outputs the following data.
Each data of a1, b1, c1 to c3, d1 to d3, e1.
 操作部45は、キーボード等の入力装置により構成される。操作部45は、演算部44に接続される。操作部45は、作業者によりe1のデータが予め入力される。このe1のデータに基づき、c1,c2,d3のデータが演算部44により算出される。 The operation unit 45 includes an input device such as a keyboard. The operation unit 45 is connected to the calculation unit 44. The operation unit 45 is preliminarily input with e1 data by the operator. Based on the data of e1, the calculation unit 44 calculates the data of c1, c2, and d3.
 記憶部46は、半導体メモリやハードディスクのような記憶媒体にて構成される。記憶部46は、演算部44によりデータの書込みおよび読出しが制御される。記憶部46は、上記のa1,b1,c1~c3,d1~d3,e1の各データを記憶する。 The storage unit 46 is configured by a storage medium such as a semiconductor memory or a hard disk. The storage unit 46 is controlled by the arithmetic unit 44 to write and read data. The storage unit 46 stores the data a1, b1, c1 to c3, d1 to d3, and e1.
 出力部47は、液晶表示器等の表示装置やプリンタなどにより構成される。出力部47は、演算部44により表示が制御される。出力部47は、上記のa1,b1,c1~c3,d1~d3,e1の各データを表示する。 The output unit 47 includes a display device such as a liquid crystal display, a printer, and the like. The display of the output unit 47 is controlled by the calculation unit 44. The output unit 47 displays the data a1, b1, c1 to c3, d1 to d3, and e1.
[1-2.作用]
 次に、本実施形態の電力供給システム動作の概要を、制御装置4の演算部44の動作を中心に図1~10に基づき説明する。
[1-2. Action]
Next, an outline of the operation of the power supply system of the present embodiment will be described based on FIGS. 1 to 10, focusing on the operation of the calculation unit 44 of the control device 4. FIG.
(ステップS01:e1「許容出力変化率」の取得)
 制御装置4の演算部44は、操作部45を介し作業者により入力されたe1「許容出力変化率」のデータを取得する。ここでe1「許容出力変化率」とは、電力系統に出力することができる電力の単位時間当たりの変化率である。e1「許容出力変化率」は、太陽光発電装置1の出力電力および蓄電装置2から出力される放電電力または充電電力の総和(電力供給システムの出力)の変化率である。本実施形態では、一例としてe1「許容出力変化率」は1%/分であるものとする。電力系統が許容できる変化速度である「許容出力変化率」は、電圧や周波数等の電力品質が確保されうる変化率として電力事業者により規定される。
(Step S01: Acquisition of e1 “allowable output change rate”)
The calculation unit 44 of the control device 4 acquires e1 “allowable output change rate” data input by the operator via the operation unit 45. Here, e1 “allowable output change rate” is a change rate per unit time of power that can be output to the power system. e1 “allowable output change rate” is the change rate of the sum of the output power of the solar power generation device 1 and the discharge power or charge power output from the power storage device 2 (output of the power supply system). In the present embodiment, e1 “allowable output change rate” is assumed to be 1% / min as an example. The “allowable output change rate”, which is a change rate that can be allowed by the power system, is defined by a power company as a change rate that can ensure power quality such as voltage and frequency.
(ステップS02:a1「気象情報、日照量、他の太陽光発電装置によりに発電された電力に関する情報」の取得)
 次に、制御装置4の演算部44は、データ取得部41を介し情報収集装置3からa1「気象情報、日照量、他の太陽光発電装置によりに発電された電力に関する情報」を取得する。情報収集装置3はインターネット上のサイトから、今後の天候、温度、湿度、太陽高度等の気象情報、日照量の予測データを提供する。また、別の地域に設置された太陽光発電装置の発電量、発電効率等から収集した「他の太陽光発電装置によりに発電された電力に関する情報」を提供する。
(Step S02: acquisition of a1 “meteorological information, amount of sunlight, information on power generated by other solar power generation devices”)
Next, the calculation unit 44 of the control device 4 acquires a1 “meteorological information, amount of sunshine, and information on power generated by other solar power generation devices” from the information collection device 3 via the data acquisition unit 41. The information collection device 3 provides weather information such as future weather, temperature, humidity, and solar altitude, and prediction data for the amount of sunlight from a site on the Internet. Also, it provides “information on the power generated by other solar power generation devices” collected from the power generation efficiency, power generation efficiency, etc. of the solar power generation devices installed in other areas.
(ステップS03:d1「太陽光発電装置1の予測発電電力」、d2「太陽光発電装置1の予測発電電力を出力する予測時刻」の算出)
 次に、制御装置4の演算部44は、ステップS02で取得したa1のデータに基づき太陽光発電装置1のd1「太陽光発電装置1の予測発電電力」およびd1のデータに対応したd2「太陽光発電装置1の予測発電電力を出力する予測時刻」を算出する。d1およびd2の算出は、a1のデータ中の天候、天候、温度、太陽高度、日照量に基づき行われる。
(Step S03: calculation of d1 “predicted power generation of solar power generation device 1”, d2 “predicted time of output of predicted power generation of solar power generation device 1”)
Next, the calculation unit 44 of the control device 4 uses d1 “predicted generated power of the solar power generation device 1” of the solar power generation device 1 and d2 “solar” corresponding to the d1 data based on the data of a1 acquired in step S02. “Predicted time to output predicted generated power of photovoltaic device 1” is calculated. Calculation of d1 and d2 is performed based on the weather, weather, temperature, solar altitude, and amount of sunlight in the data of a1.
 また、太陽光発電装置1の近傍に設置された、他の太陽光発電装置の発電量や発電効率に基づき、天候や発電効率が予測されd1およびd2の算出が行われる。 Also, based on the power generation amount and power generation efficiency of other solar power generation devices installed in the vicinity of the solar power generation device 1, weather and power generation efficiency are predicted, and d1 and d2 are calculated.
 d1「太陽光発電装置1の予測発電電力」は、本実施形態では1分間隔で予測算出される。従ってd2は、d1に対応し、1分間隔となる。 D1 “Predicted generated power of the solar power generation apparatus 1” is predicted and calculated at 1-minute intervals in this embodiment. Therefore, d2 corresponds to d1 and has an interval of 1 minute.
(ステップS04:c1「蓄電装置2の放電電力」、c2「蓄電装置2の充電電力」、d3「蓄電装置2の放電開始時刻」の算出)
 次に、制御装置4の演算部44は、ステップS03で算出された太陽光発電装置1のd1,d2およびe1のデータに基づきc1「蓄電装置2の放電電力」、c2「蓄電装置2の充電電力」およびd3「蓄電装置2の放電開始時刻」を算出する。
(Step S04: calculation of c1 “discharge power of power storage device 2”, c2 “charge power of power storage device 2”, d3 “discharge start time of power storage device 2”)
Next, the calculation unit 44 of the control device 4 performs c1 “discharge power of the power storage device 2” and c2 “charge of the power storage device 2” based on the d1, d2 and e1 data of the solar power generation device 1 calculated in step S03. “Power” and d3 “Discharge start time of power storage device 2” are calculated.
 c1「蓄電装置2の放電電力」およびc2「蓄電装置2の充電電力」は、「太陽光発電装置1の予測発電電力」との総和の増加率または減少率が、e1「許容出力変化率」である1%/分以下となるように算出される。c3のデータは、送受信部43を介し蓄電装置2から取得される。算出方法については後述する。 For c1 “discharge power of power storage device 2” and c2 “charge power of power storage device 2”, the rate of increase or decrease of the sum of “predicted power generation power of solar power generation device 1” is e1 “allowable output change rate”. It is calculated to be 1% / min or less. The data of c3 is acquired from the power storage device 2 via the transmission / reception unit 43. The calculation method will be described later.
 また、制御装置4の演算部44は、d3「蓄電装置2の放電開始時刻」を算出する。d3は、太陽光発電装置1の出力電力および蓄電装置2から出力される放電または充電電力の総和の増加率または減少率が、e1「許容出力変化率」以内となるよう放電を開始する時刻として算出される。 In addition, the calculation unit 44 of the control device 4 calculates d3 “discharge start time of the power storage device 2”. d3 is a time at which discharge is started so that the increase rate or decrease rate of the sum of the output power of the solar power generation device 1 and the discharge or charging power output from the power storage device 2 is within e1 “allowable output change rate”. Calculated.
 また、太陽光発電装置1の出力電力および蓄電装置2から出力される電力の総和(電力供給システムの出力)に、太陽光発電装置1から出力される発電電力が達するまでに、蓄電装置2から放電される放電量と、電力の総和に太陽光発電装置1から出力される発電電力が達した後に、太陽光発電装置1が出力した発電電力の余剰分により蓄電装置2が充電される充電量と、が等しくなるように、d3の時刻が算出される。なお、蓄電装置2から放電された放電量とは、蓄電装置2から放電された積算電力であり、蓄電装置2が充電される充電量とは、蓄電装置2が充電される積算電力である。 Further, from the power storage device 2 until the generated power output from the solar power generation device 1 reaches the sum of the output power of the solar power generation device 1 and the power output from the power storage device 2 (output of the power supply system). After the generated power output from the solar power generation device 1 reaches the total amount of discharge and the total amount of power, the power storage device 2 is charged with the surplus of the generated power output from the solar power generation device 1 And d3 are calculated so as to be equal to each other. The amount of discharge discharged from the power storage device 2 is the integrated power discharged from the power storage device 2, and the amount of charge charged to the power storage device 2 is the integrated power charged to the power storage device 2.
(ステップS05:時刻はd3「蓄電装置2の放電開始時刻」になったかの判断)
 次に、制御装置4の演算部44は、現在時刻がd3「蓄電装置2の放電開始時刻」になったか判断を行う。演算部44により現在時刻がd3「蓄電装置2の放電開始時刻」になったと判断された場合(S05の「YES」)、ステップS06に移行する。一方、更新されないと判断された場合(S05の「NO」)、待ち状態となる。
(Step S05: Determination of whether time is d3 “discharge start time of power storage device 2”)
Next, the calculation unit 44 of the control device 4 determines whether the current time is d3 “the discharge start time of the power storage device 2”. When the calculation unit 44 determines that the current time is d3 “discharge start time of power storage device 2” (“YES” in S05), the process proceeds to step S06. On the other hand, when it is determined not to be updated (“NO” in S05), the process waits.
(ステップS06:c1「蓄電装置2の放電電力」を蓄電装置2に指示)
 ステップS05で現在時刻がd3「蓄電装置2の放電開始時刻」になったと判断されたとき、制御装置4の演算部44は、c1「蓄電装置2の放電電力」に基づき放電を行うよう蓄電装置2に指示する。このc1のデータによる指示は、単位時間である1分毎に行われる。このc1のデータによる指示は、蓄電装置2の放電電力と太陽光発電装置1の発電電力との総和の変化率が、1%/分以下の増加となるように蓄電装置2に対し行われる。
(Step S06: Instruct c1 “discharge power of power storage device 2” to power storage device 2)
When it is determined in step S05 that the current time is d3 “discharge start time of power storage device 2”, calculation unit 44 of control device 4 performs power storage based on c1 “discharge power of power storage device 2”. 2 is instructed. The instruction by the data of c1 is performed every minute which is a unit time. The instruction based on the data of c1 is given to the power storage device 2 so that the rate of change of the sum of the discharged power of the power storage device 2 and the generated power of the solar power generation device 1 increases by 1% / min or less.
(ステップS07:「電力供給システムの出力(太陽光発電装置1の出力電力および蓄電装置2から出力される電力の総和)」≦「太陽光発電装置1の出力電力」になったかの判断)
 次に、制御装置4の演算部44は、太陽光発電装置1の出力電力が、電力供給システムの出力以上となったかの判断を行う。電力供給システムの出力とは太陽光発電装置1の出力電力および蓄電装置2から出力される電力の総和をいう。太陽光発電装置1の出力電力は、b1のデータとして、太陽光発電装置1から送受信部42を介し演算部44に取得される。
(Step S07: “Output of Power Supply System (Sum of Output Power of Solar Power Generation Device 1 and Power Output from Power Storage Device 2)” ≦ Judgment of “Output Power of Solar Power Generation Device 1”)
Next, the calculation unit 44 of the control device 4 determines whether the output power of the solar power generation device 1 is equal to or higher than the output of the power supply system. The output of the power supply system refers to the sum of the output power of the solar power generation device 1 and the power output from the power storage device 2. The output power of the solar power generation device 1 is acquired from the solar power generation device 1 via the transmission / reception unit 42 to the calculation unit 44 as b1 data.
 演算部44により太陽光発電装置1の出力電力が、電力供給システムの出力以上となったと判断された場合(S07の「YES」)、ステップS08に移行する。一方、太陽光発電装置1の出力電力が、電力供給システムの出力以上になったと判断されない場合(S07の「NO」)、蓄電装置2に対するc1「蓄電装置2の放電電力」の指示を継続する。 If the calculation unit 44 determines that the output power of the photovoltaic power generation apparatus 1 has become equal to or greater than the output of the power supply system (“YES” in S07), the process proceeds to step S08. On the other hand, when it is not determined that the output power of the solar power generation device 1 has become equal to or greater than the output of the power supply system (“NO” in S07), the instruction of c1 “discharge power of the power storage device 2” to the power storage device 2 is continued. .
(ステップS08:c2「蓄電装置2の充電量」を蓄電装置2に指示)
 ステップS07で太陽光発電装置1の出力電力が、電力供給システムの出力(太陽光発電装置1の出力電力および蓄電装置2から出力される電力の総和)以上にとなったと判断されたとき、制御装置4の演算部44は、c2「蓄電装置2の充電電力」に基づき充電を行うよう蓄電装置2に指示する。このc2のデータによる指示は、単位時間である1分毎に行われる。このc2の指示は、太陽光発電装置1の予測発電電力から蓄電装置2の充電電力を減算した値が、1%/分以下の増加となるように蓄電装置2に対し行われる。
(Step S08: Instruct c2 “charge amount of power storage device 2” to power storage device 2)
When it is determined in step S07 that the output power of the solar power generation device 1 has become equal to or greater than the output of the power supply system (the sum of the output power of the solar power generation device 1 and the power output from the power storage device 2). The calculation unit 44 of the device 4 instructs the power storage device 2 to perform charging based on c2 “charging power of the power storage device 2”. The instruction by the data of c2 is performed every minute which is a unit time. The instruction c2 is given to the power storage device 2 so that the value obtained by subtracting the charging power of the power storage device 2 from the predicted generated power of the solar power generation device 1 is increased by 1% / min or less.
(ステップS09:蓄電装置2の充電終了の判断)
 次に、制御装置4の演算部44は、蓄電装置2の充電終了の判断を行う。この判断は、c2「蓄電装置2の充電電力」の値が正からゼロまたは負になったかに基づき行われる。演算部44により蓄電装置2の充電終了と判断された場合(S09の「YES」)、プログラムを終了する。一方、蓄電装置2の充電を終了しないと判断された場合(S09の「NO」)、蓄電装置2に対するc2「蓄電装置2の充電電力」の指示を継続する。
(Step S09: Determination of completion of charging of power storage device 2)
Next, the calculation unit 44 of the control device 4 determines the end of charging of the power storage device 2. This determination is made based on whether the value of c2 “charging power of power storage device 2” has changed from positive to zero or negative. When the calculation unit 44 determines that the charging of the power storage device 2 is finished (“YES” in S09), the program is finished. On the other hand, when it is determined not to end the charging of the power storage device 2 (“NO” in S09), the instruction of c2 “charging power of the power storage device 2” to the power storage device 2 is continued.
[1-2-2.c1「蓄電装置2の放電電力」およびc2「蓄電装置2の充電電力」の算出]
 次に、本実施形態の電力供給システムにおけるc1「蓄電装置2の放電電力」およびc2「蓄電装置2の充電電力」の算出原理につき、図4~11に基づき説明する。
[1-2-2. Calculation of c1 “discharge power of power storage device 2” and c2 “charge power of power storage device 2”]
Next, the calculation principle of c1 “discharge power of power storage device 2” and c2 “charge power of power storage device 2” in the power supply system of the present embodiment will be described with reference to FIGS.
(1.日射量がステップ状に変化した場合)
 最初に、図4に示すように日射量が、ステップ状に変化した場合の、c1「蓄電装置2の放電電力」、c2「蓄電装置2の充電電力」、d3「蓄電装置2の放電開始時刻」の関係につき説明する。
(1. When the amount of solar radiation changes in steps)
First, as shown in FIG. 4, c1 “discharge power of power storage device 2”, c2 “charge power of power storage device 2”, d3 “discharge start time of power storage device 2” when the amount of solar radiation changes stepwise. Will be described.
 図4に示すように、日射量が増加し、時刻T=0に太陽光発電装置1の出力電力が、ステップ状に発電所の出力電力定格の0%からα%まで変化するものとする。 As shown in FIG. 4, it is assumed that the amount of solar radiation increases and the output power of the photovoltaic power generator 1 changes from 0% to α% of the output power rating of the power plant in a stepped manner at time T = 0.
 仮に本実施形態による電力供給システムを用いない場合を仮定する。この場合、図4のQm0のように1%/分の出力電力の増加率で、α分で出力電力を0%からα%まで上昇させることが必要とされる。 Suppose that the power supply system according to the present embodiment is not used. In this case, it is necessary to increase the output power from 0% to α% in α minutes at an increase rate of output power of 1% / min as in Qm0 in FIG.
 この場合にT=0からT=αまでの損失となる電力量QmLは、次式のようになる
  QmL=[α×α]/2  (%分)     ・・・(1)
なお、通常電力量の単位として「Wh」が用いられるが、説明の便宜のため、「W」に代え「%」を、「h」に代え「分」を用い、電力量を「%分」で表す。図4に示したα=80の場合3,200(%分)の電力量の損失となる。
In this case, the amount of power QmL resulting in a loss from T = 0 to T = α is expressed by the following equation: QmL = [α × α] / 2 (%) (1)
Note that “Wh” is used as the unit of the normal electric energy, but for convenience of explanation, “%” is used instead of “W”, “min” is used instead of “h”, and the electric energy is “%”. Represented by When α = 80 shown in FIG. 4, the power loss is 3,200 (%).
 T=0からT=αまでの系統への出力電力量Qm0は、次式のようになる
  Qm0=[α×α]/2  (%分)      ・・・(2)
図4に示したα=80の場合Q0=3,200(%分)となる。
The output power amount Qm0 to the system from T = 0 to T = α is expressed by the following equation: Qm0 = [α × α] / 2 (%) (2)
When α = 80 shown in FIG. 4, Q0 = 3,200 (%).
 次に本実施形態による電力供給システムを用いた場合について説明する。時刻T=0に太陽光発電装置1の出力電力が、ステップ状に発電所の出力電力定格の0%からα%まで変化すると予測する。
 時刻T=0のβ分前であるT=-βから1%/分の増加率の放電電力で蓄電設備2から放電を開始する。時刻T=0の時点では、蓄電装置2から出力される電力はβ%となる。
(d1=,d2=0,d3=-β)
Next, a case where the power supply system according to the present embodiment is used will be described. It is predicted that the output power of the photovoltaic power generator 1 will change from 0% to α% of the output power rating of the power plant in a stepped manner at time T = 0.
Discharge is started from the power storage facility 2 with a discharge power at an increase rate of 1% / min from T = -β which is β minutes before time T = 0. At time T = 0, the power output from the power storage device 2 is β%.
(D1 =, d2 = 0, d3 = −β)
 時刻T=0において、蓄電装置2の放電を停止し、充電を開始する。蓄電装置2の充電は太陽光発電装置1の出力電力にて行われるようにする。太陽光発電装置1から系統への出力電力が1%/分の増加率となるように、太陽光発電装置1の出力電力で蓄電装置2の充電を行う。 At time T = 0, discharging of the power storage device 2 is stopped and charging is started. The power storage device 2 is charged with the output power of the solar power generation device 1. The power storage device 2 is charged with the output power of the solar power generation device 1 so that the output power from the solar power generation device 1 to the system has an increase rate of 1% / min.
 T=-βからT=0までの放電量Qm12は、次式のようになる。
  Qm12=[β×β]/2  (%分)   ・・・(3)
The discharge amount Qm12 from T = −β to T = 0 is expressed by the following equation.
Qm12 = [β × β] / 2 (%) (3)
 T=0からT=αまでの余剰分Qm13は、次式のようになる。
  Qm13=[α-β]×[α-β]/2  (%分)   ・・・(4)
本実施形態による電力供給システムを用いない場合に発生した、損失となる電力量QL0は発生しない。
The surplus Qm13 from T = 0 to T = α is expressed by the following equation.
Qm13 = [α-β] × [α-β] / 2 (%) (4)
The loss amount of power QL0 generated when the power supply system according to the present embodiment is not used is not generated.
 T=0からT=αまでの系統への出力電力量Qm1は、次式のようになる
  Qm1=Qm0+QmL-Qm13  (%分)      ・・・(5)
QmL>Qm13であり系統への出力電力量Qm1は従来の運用方法を用いた場合のQm0より多くなる。例えば、図4に示したα=80、β=60の場合Q1=6,200(%分)となりQm0に比べ、系統への出力電力量が約2倍まで増加する。
The output power amount Qm1 to the system from T = 0 to T = α is as follows: Qm1 = Qm0 + QmL−Qm13 (%) (5)
QmL> Qm13 and the output power amount Qm1 to the system is larger than Qm0 when the conventional operation method is used. For example, in the case of α = 80 and β = 60 shown in FIG. 4, Q1 = 6,200 (%), and the amount of output power to the system is increased to about twice that of Qm0.
 太陽光発電装置1から出力された余剰分Qm13に相当する電力量を、蓄電装置2に充電すれば、Qm13は前述のQmLのような損失とはならない。なお、仮に蓄電装置2の放電を停止したのち、蓄電装置2の充電を太陽光発電装置1の出力電力の余剰分にて行わない場合でも、損失となる電力量はQm13(<QmL)に抑えられる。 If the power storage device 2 is charged with the amount of power corresponding to the surplus Qm13 output from the solar power generation device 1, Qm13 does not cause a loss like the above-mentioned QmL. Even if the power storage device 2 is stopped from being discharged and the power storage device 2 is not charged by the surplus of the output power of the solar power generation device 1, the loss of power is suppressed to Qm13 (<QmL). It is done.
 T=0からT=α-βまで、太陽光発電装置1で発電しながら系統に出力できない余剰分Qm13のうちT=-βからT=0までの放電量Qm12を超えない分は蓄電池に充電することにより有効に活用され損失とはならないと考えるとT=0からT=αまでの系統への実質の出力電力量Qm3は、次式のようになる。
  Qm3=Qm0+QmL-Qm13-Qm12+min(Qm13,Qm12)
 (%分)  ・・・(6)
From T = 0 to T = α−β, among the surplus Qm13 that cannot be output to the system while generating power with the solar power generation device 1, the amount that does not exceed the discharge amount Qm12 from T = −β to T = 0 is charged to the storage battery Therefore, if it is considered that it is effectively utilized and does not cause a loss, the actual output power amount Qm3 to the system from T = 0 to T = α is expressed by the following equation.
Qm3 = Qm0 + QmL−Qm13−Qm12 + min (Qm13, Qm12)
(%) (6)
 出力電力を0%からα%まで上昇させるための時間をα分とし、時刻T=-βに蓄電装置2からの放電を開始する時、αとβの比をkとする。
  k=β/α                    ・・・(7)
また、本実施形態による電力供給システムを用いた場合の実質の出力電力量Qm3の従来の運用方法を用いた場合の系統への出力電力量Qm0に対する改善率をλとすると、λは次式のようになる。
  λ=Qm3/Qm0                 ・・・(8)
この関係をグラフに表すと図7のようになる。
The time for increasing the output power from 0% to α% is α minutes, and when the discharge from the power storage device 2 is started at time T = −β, the ratio of α and β is k.
k = β / α (7)
Further, assuming that the improvement rate for the output power amount Qm0 to the system when the conventional operation method of the actual output power amount Qm3 when the power supply system according to the present embodiment is used is λ, λ is expressed by the following equation: It becomes like this.
λ = Qm3 / Qm0 (8)
This relationship is represented in a graph as shown in FIG.
 k=0.5(α=β/2)の時に、λ=1.75となり実質の出力電力量Qm3を最大にすることができる。つまり図6に示すように、Qm12=Qm13となり、蓄電装置2の放電量と充電量が等しくなるようにした時に実質の出力電力量Qm3を最大にすることができる。 When k = 0.5 (α = β / 2), λ = 1.75 and the actual output power Qm3 can be maximized. That is, as shown in FIG. 6, Qm12 = Qm13, and the substantial output power amount Qm3 can be maximized when the discharge amount and the charge amount of the power storage device 2 are made equal.
(2.日射量がスロープ状に変化した場合)
 次に、図8に示すように日射量が、スロープ状に変化した場合の、c1「蓄電装置2の放電電力」、c2「蓄電装置2の充電電力」、d3「蓄電装置2の放電開始時刻」の関係につき説明する。
(2. When the amount of solar radiation changes to a slope)
Next, as shown in FIG. 8, c1 “discharge power of power storage device 2”, c2 “charge power of power storage device 2”, d3 “discharge start time of power storage device 2” when the amount of solar radiation changes in a slope shape. Will be described.
 図8に示すように、日射量が増加し、時刻T=0からT=τかけて太陽光発電装置1の出力電力が、スロープ状に0%からα%まで変化するものとする。ただしα>τである。 As shown in FIG. 8, it is assumed that the amount of solar radiation increases and the output power of the photovoltaic power generator 1 changes from 0% to α% in a slope shape from time T = 0 to T = τ. However, α> τ.
 仮に本実施形態による電力供給システムを用いない場合を仮定する。この場合、図8のQ0のように1%/分の出力電力の増加率で、α分で出力電力を0%からα%まで上昇させることが必要とされる。T=0からT=αまでの損失となる電力量QnLは、次式のようになる
  QnL=[(α-τ)×α]/2  (%分)    ・・・(9)
図8に示したα=80、τ=40の場合1,600(%分)の電力量の損失となる。
Assume that the power supply system according to the present embodiment is not used. In this case, it is necessary to increase the output power from 0% to α% in α minutes at an increase rate of the output power of 1% / min as in Q0 of FIG. The amount of power QnL resulting in a loss from T = 0 to T = α is expressed by the following equation: QnL = [(α−τ) × α] / 2 (%) (9)
When α = 80 and τ = 40 shown in FIG. 8, the power loss is 1,600 (%).
 T=0からT=αまでの系統への出力電力量Qn0は、次式のようになる
  Qn0=[α×α]/2  (%分)       ・・・(10)
図8に示したα=80の場合Q0=3,200(%分)となる。
The output power amount Qn0 to the system from T = 0 to T = α is expressed by the following equation: Qn0 = [α × α] / 2 (%) (10)
When α = 80 shown in FIG. 8, Q0 = 3,200 (%).
 次に本実施形態による電力供給システムを用いた場合について説明する。図9に示すように、日射量が増加し、時刻T=0からT=τかけて太陽光発電装置1の出力電力が、スロープ状に0%からα%まで変化すると予測する。時刻T=0のβ分前であるT=-βから1%/分の増加率の放電電力で蓄電設備2から放電を開始する。時刻T=0の時点では、蓄電装置2から出力される電力はβ%となる。(d1=,d2=0,d3=-β) Next, the case where the power supply system according to the present embodiment is used will be described. As shown in FIG. 9, it is predicted that the amount of solar radiation increases, and the output power of the photovoltaic power generator 1 changes from 0% to α% in a slope shape from time T = 0 to T = τ. Discharge is started from the power storage facility 2 with a discharge power at an increase rate of 1% / min from T = -β which is β minutes before time T = 0. At time T = 0, the power output from the power storage device 2 is β%. (D1 =, d2 = 0, d3 = −β)
 太陽光発電装置1の出力電力および蓄電装置2から出力される放電電力の総和の電力と、太陽光発電装置1の出力電力が一致する時刻Tnは、次式のようになる。
  Tn=(τ×β)/(α-τ)     (分)     ・・・(11)
また、その時の太陽光発電装置1の出力電力および蓄電装置2から出力される放電電力の総和の電力Pnは、次式のようになる。
  Pn=(α×β)/(α-τ)     (%)     ・・・(12)
The time Tn at which the sum of the output power of the solar power generation device 1 and the discharge power output from the power storage device 2 matches the output power of the solar power generation device 1 is expressed by the following equation.
Tn = (τ × β) / (α−τ) (min) (11)
Moreover, the electric power Pn of the sum total of the output electric power of the solar power generation device 1 at that time and the discharge electric power output from the electrical storage apparatus 2 becomes like following Formula.
Pn = (α × β) / (α−τ) (%) (12)
 時刻T=-βからT=0までは、放電電力が時刻とともに増加するように蓄電装置2を制御する。時刻T=0からT=Tnまでは、放電電力が時刻とともに減少するように蓄電装置2を制御する。 From time T = −β to T = 0, the power storage device 2 is controlled so that the discharge power increases with time. From time T = 0 to T = Tn, power storage device 2 is controlled so that the discharge power decreases with time.
 時刻T=Tnにおいて、蓄電装置2の放電を停止し、充電を開始する。蓄電装置2の充電は太陽光発電装置1の出力電力にて行われるようにする。太陽光発電装置1から系統への出力電力が1%/分の増加率となるように、太陽光発電装置1の出力電力で蓄電装置2の充電を行う。 At time T = Tn, discharging of the power storage device 2 is stopped and charging is started. The power storage device 2 is charged with the output power of the solar power generation device 1. The power storage device 2 is charged with the output power of the solar power generation device 1 so that the output power from the solar power generation device 1 to the system has an increase rate of 1% / min.
 T=-βからT=Tnまでの放電量Qn12は、次式のようになる。
  Qn12=(Pn×β)/2  (%分)
      =(α×β×β)/[(α-τ)×2]  (%分)  ・・・(13)
The discharge amount Qn12 from T = −β to T = Tn is expressed by the following equation.
Qn12 = (Pn × β) / 2 (%)
= (Α × β × β) / [(α−τ) × 2] (%) (13)
 T=Tnから充電完了時まで太陽光発電装置1で発電しながら系統に出力できない余剰分Qn13は、次式のようになる。
  Qn13=(α-β-τ)×(α-Pn)/2
=[(α-β-τ)×(α-β-τ)×α]/[(α-τ)×2]
(%分)  ・・・(14)
本実施形態による電力供給システムを用いない場合に発生した、損失となる電力量QnLは発生しない。
The surplus Qn13 that cannot be output to the system while generating power with the solar power generation device 1 from T = Tn until the completion of charging is expressed by the following equation.
Qn13 = (α−β−τ) × (α−Pn) / 2
= [(Α−β−τ) × (α−β−τ) × α] / [(α−τ) × 2]
(%) (14)
There is no loss of power QnL that occurs when the power supply system according to the present embodiment is not used.
 T=0からT=αまでの系統への出力電力量Qn1は、次式のようになる
  Qn1=Qn0+QnL-Qn13  (%分)
     =[α×(2×α-τ)/2]-[(α-β-τ)×(α-β-τ)×α]
       /[(α-τ)×2]               ・・・(15)
QnL>Qn13であり系統への出力電力量Qn1は従来の運用方法を用いた場合のQn0より多くなる。例えば、図9に示したα=80、β=60、τ=40の場合Q1=4,700(%分)となりQn0に比べ、系統への出力電力量が約1.5倍まで増加する。
The output power amount Qn1 to the system from T = 0 to T = α is as follows: Qn1 = Qn0 + QnL−Qn13 (for%)
= [Α × (2 × α−τ) / 2] − [(α−β−τ) × (α−β−τ) × α]
/ [(Α−τ) × 2] (15)
QnL> Qn13 and the output power amount Qn1 to the system is larger than Qn0 when the conventional operation method is used. For example, when α = 80, β = 60, and τ = 40 shown in FIG. 9, Q1 = 4,700 (%), and the amount of output power to the system increases to about 1.5 times that of Qn0.
 太陽光発電装置1から出力された余剰分Qn13に相当する電力量を、蓄電装置2に充電すれば、Qn13は前述のQnLのような損失とはならない。なお、仮に蓄電装置2の放電を停止したのち、蓄電装置2の充電を太陽光発電装置1の出力電力の余剰分にて行わない場合でも、損失となる電力量はQn13(<QnL)に抑えられる。 If the power storage device 2 is charged with the amount of power corresponding to the surplus Qn13 output from the solar power generation device 1, Qn13 does not cause a loss like the above-described QnL. In addition, even if the power storage device 2 is not charged with the surplus of the output power of the solar power generation device 1 after the discharge of the power storage device 2 is stopped, the amount of lost power is suppressed to Qn13 (<QnL). It is done.
 T=Tnから充電完了時まで、太陽光発電装置1で発電しながら系統に出力できない余剰分Qm13のうちT=-βからT=Tnまでの放電量Qm12を超えない分は蓄電池に充電することにより有効に活用され損失とはならないと考えるとT=0からT=αまでの系統への実質の出力電力量Qn3は、次式のようになる。
  Qn3=Qn0+QnL-Qn13-Qn12+min(Qn13,Qn12)  
    (%分)・・・(16)
From T = Tn until the completion of charging, the remaining amount Qm13 that cannot be output to the system while generating power with the solar power generator 1 is charged to the storage battery for the amount not exceeding the discharge amount Qm12 from T = −β to T = Tn. Therefore, the actual output power amount Qn3 to the system from T = 0 to T = α is expressed by the following equation.
Qn3 = Qn0 + QnL-Qn13-Qn12 + min (Qn13, Qn12)
(%) ... (16)
 太陽光発電装置1の出力電力が時刻T=τにα%に上昇すると予測算出され時刻T=-βに蓄電装置2からの放電を開始する時、αとβの比をkとする。
 また、本実施形態による電力供給システムを用いた場合の実質の出力電力量Qn3の従来の運用方法を用いた場合の系統への出力電力量Qn0に対する改善率をλとすると、λは次式のようになる。
  λ=Qn3/Qn0                 ・・・(17)
kと、λの関係をm=(τ/α)をパラメータとして表すと、図11に示すグラフのようになる。
When the output power of the solar power generation device 1 is predicted to increase to α% at time T = τ and discharge from the power storage device 2 is started at time T = −β, the ratio of α and β is k.
Further, assuming that the improvement rate for the output power amount Qn0 to the system when the conventional operation method of the actual output power amount Qn3 when the power supply system according to the present embodiment is used is λ, λ is expressed by the following equation: It becomes like this.
λ = Qn3 / Qn0 (17)
When the relationship between k and λ is expressed using m = (τ / α) as a parameter, a graph shown in FIG. 11 is obtained.
 パラメータm=(τ/α)の条件で上記の改善率λが、最大となるkの値からc1「蓄電装置2の放電電力」、c2「蓄電装置2の充電電力」およびd3「蓄電装置2の放電開始時刻」が、算出される。つまり図10に示すように、Qn12=Qn13となり、蓄電装置2の放電量と充電量が等しくなるようにした時に実質の出力電力量Qn3を最大にすることができる。 From the value of k at which the improvement rate λ reaches the maximum under the condition of parameter m = (τ / α), c1 “discharge power of power storage device 2”, c2 “charge power of power storage device 2”, and d3 “power storage device 2”. The “discharge start time” is calculated. That is, as shown in FIG. 10, Qn12 = Qn13, and when the discharge amount and the charge amount of the power storage device 2 are made equal, the actual output power amount Qn3 can be maximized.
 上記のように、太陽光発電装置1の出力電力および蓄電装置2から出力される放電または充電電力の総和の変化率がe1「許容出力変化率」以下であり、かつ蓄電装置2から放電された放電量と、太陽光発電装置1の出力電力による充電量が等しくなるように、c1「蓄電装置2の放電電力」、c2「蓄電装置2の充電電力」およびd3「蓄電装置2の放電開始時刻」が、算出される。 As described above, the change rate of the sum of the output power of the photovoltaic power generation device 1 and the discharge or charging power output from the power storage device 2 is equal to or less than e1 “allowable output change rate”, and the power storage device 2 is discharged. C1 “Discharge power of power storage device 2”, c2 “Charge power of power storage device 2”, and d3 “Discharge start time of power storage device 2” so that the amount of discharge and the charge amount by the output power of solar power generation device 1 are equal. Is calculated.
[1-3.効果]
(1)本実施形態によれば、太陽光発電装置1から出力される電力および蓄電装置2から出力される放電または充電電力の総和が、予め定められた変化率で時刻とともに増加、減少するように蓄電装置2が放電または充電するよう制御されるので、発電設備の電圧や周波数等の電力品質が確保されやすい。
[1-3. effect]
(1) According to the present embodiment, the sum of the power output from the solar power generation device 1 and the discharge or charging power output from the power storage device 2 increases and decreases with time at a predetermined rate of change. Since the power storage device 2 is controlled to be discharged or charged, the power quality such as the voltage and frequency of the power generation equipment is easily secured.
(2)本実施形態によれば、太陽光発電装置1から出力される予測発電電力が出力される時刻前に、蓄電装置2から電力の放電が開始される。太陽光発電装置1の発電電力に達するまで、予め定められた緩やかな増加率での電力の出力が要求される場合であっても、電力供給システムからの出力電力は、蓄電装置2から出力される放電電力または充電電力にて調整されるので、太陽光発電装置1から出力される電力を無駄にすることを軽減することができる。 (2) According to the present embodiment, the electric power discharge from the power storage device 2 is started before the time when the predicted generated power output from the solar power generation device 1 is output. Even when the output of power at a predetermined moderate increase rate is required until the generated power of the solar power generation device 1 is reached, the output power from the power supply system is output from the power storage device 2. Therefore, it is possible to reduce waste of power output from the solar power generation device 1.
(3)本実施形態によれば、蓄電装置2の放電による電力が、太陽光発電装置1から出力された発電電力で充電されるので、太陽光発電装置1から出力される電力を無駄にすることを軽減することができる。 (3) According to this embodiment, since the electric power generated by the discharge of the power storage device 2 is charged with the generated power output from the solar power generation device 1, the power output from the solar power generation device 1 is wasted. That can be reduced.
(4)本実施形態によれば、蓄電装置2から放電された放電量と、太陽光発電装置1から出力された発電電力で、蓄電装置2を充電する充電量と、が等しくなるように、蓄電装置2を充電および放電するので、蓄電装置2の充電量と放電量が一致し、電力を無駄にすることが軽減され経済的である。 (4) According to the present embodiment, the discharge amount discharged from the power storage device 2 and the charge amount for charging the power storage device 2 with the generated power output from the solar power generation device 1 are equal. Since the power storage device 2 is charged and discharged, the charge amount and the discharge amount of the power storage device 2 coincide with each other, and it is economical to reduce waste of power.
(5)本実施形態によれば、日射量、気温、前記発電装置に関する情報に基づき予測発電量が算出されるので、太陽光発電装置1の発電予測の算出の精度をよくすることができる。 (5) According to the present embodiment, since the predicted power generation amount is calculated based on the amount of solar radiation, the temperature, and the information related to the power generation device, the calculation accuracy of the power generation prediction of the solar power generation device 1 can be improved.
[他の実施形態]
 上記に実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。以下は、その一例である。
[Other Embodiments]
Although embodiments have been described above, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention. The following is an example.
(1)上記実施形態では、自然エネルギー発電装置は、太陽光発電装置1としたが、自然エネルギー発電装置はこれに限られない。自然エネルギー発電装置は、風力発電装置、バイオマス発電装置、太陽熱発電装置等の他の自然エネルギー発電装置であってもよい。 (1) In the said embodiment, although the natural energy power generation device was the solar power generation device 1, a natural energy power generation device is not restricted to this. The natural energy power generation apparatus may be another natural energy power generation apparatus such as a wind power generation apparatus, a biomass power generation apparatus, or a solar thermal power generation apparatus.
(2)上記実施形態では、蓄電装置2の蓄電地2Aは、交直変換装置2B,1Bを介し太陽光パネル1Aと接続されており、一旦交直変換装置1Bにて交流に変換された太陽光パネル1Aからの電力が、蓄電地2Aに充電されるようにしたが、交直変換装置2B,1Bを介さずに太陽光パネル1Aからの直流電力が、蓄電地2Aに充電されるようにしてもよい。 (2) In the said embodiment, the electrical storage place 2A of the electrical storage apparatus 2 is connected with the solar panel 1A via AC / DC converter 2B, 1B, and the solar panel once converted into alternating current by AC / DC converter 1B Although the electric power from 1A is charged to the storage battery 2A, the direct current power from the solar panel 1A may be charged to the storage battery 2A without going through the AC / DC converters 2B and 1B. .
 例えば、図12に示すように、直流電圧の電圧レベルを変換する双方向の直流-直流変換装置2Dを蓄電装置2に設け、この直流-直流変換装置2Dを介し、太陽光発電装置1の電力が蓄電装置2に充電されるようにしてもよい。蓄電地2Aの充放電は、制御装置4が直流-直流変換装置2Dの電圧レベルおよび電流方向を制御することにより行われる。 For example, as shown in FIG. 12, a bidirectional DC-DC converter 2D for converting the voltage level of a DC voltage is provided in the power storage device 2, and the power of the photovoltaic power generator 1 is passed through the DC-DC converter 2D. May be charged in the power storage device 2. Charging / discharging of the battery 2A is performed by the control device 4 controlling the voltage level and current direction of the DC-DC converter 2D.
 また、例えば、図13に示すように、直流電圧の電圧レベルを変換する直流-直流変換装置1Dを太陽光発電装置1に設け、この直流-直流変換装置1Dを介し、太陽光発電装置1の電力が蓄電装置2に充電されるようにしてもよい。蓄電地2Aの充放電は、制御装置4が直流-直流変換装置1Dの電圧レベルを制御するとともに、交直変換装置6を制御することにより行われる。 Further, for example, as shown in FIG. 13, a DC-DC converter 1D for converting the voltage level of a DC voltage is provided in the solar power generator 1, and the solar power generator 1 is connected via the DC-DC converter 1D. The power storage device 2 may be charged with electric power. Charging / discharging of the battery 2A is performed by the control device 4 controlling the voltage level of the DC / DC converter 1D and controlling the AC / DC converter 6.
 このように太陽光発電装置1の電力が直流にて、蓄電装置2に充電されるので、太陽光発電装置1の電力が直流から交流に変換されるときの電力損失および蓄電装置2に充電される電力が交流から直流に変換されるときの電力損失が発生しない。 Thus, since the power of the solar power generation device 1 is charged to the power storage device 2 by direct current, the power loss and the power storage device 2 are charged when the power of the solar power generation device 1 is converted from direct current to alternating current. No power loss occurs when the power to be converted from AC to DC.
(3)上記実施形態では、蓄電装置2はリチウム2次電池としたが、蓄電装置はこれに限られない。蓄電装置2は、ニッカド電池やナトリウム硫黄電池等の他の電池でもよいし、フライホイールや、揚水発電を用いた他のエネルギー貯蔵装置であってもよい。 (3) In the above embodiment, the power storage device 2 is a lithium secondary battery, but the power storage device is not limited to this. The power storage device 2 may be another battery such as a nickel-cadmium battery or a sodium-sulfur battery, or may be another energy storage device using a flywheel or pumped-storage power generation.
 また、蓄電装置2は例えば図14に示すように水素燃料電池システム7であってもよい。水素燃料電池システム7は、燃料電池7A、水素製造装置7B、水素タンク7Cを有する。放電が必要な時には、制御装置4に制御され水素タンク7Cに貯蔵された水素を用いて燃料電池7Aが発電し電力供給を行う。充電が必要な時には、太陽光発電装置1から出力された電力を用いて水素製造装置7Bにて水素が製造され、水素タンク7Cに水素が貯蔵される。このように水素燃料電池システム7を用いることで、電力を電気ではなく水素の状態で貯蔵することができ、貯蔵による損失を軽減することができる。 Further, the power storage device 2 may be a hydrogen fuel cell system 7 as shown in FIG. 14, for example. The hydrogen fuel cell system 7 includes a fuel cell 7A, a hydrogen production device 7B, and a hydrogen tank 7C. When the discharge is necessary, the fuel cell 7A generates electric power and supplies electric power using the hydrogen controlled by the control device 4 and stored in the hydrogen tank 7C. When charging is necessary, hydrogen is produced in the hydrogen production device 7B using the electric power output from the solar power generation device 1, and hydrogen is stored in the hydrogen tank 7C. Thus, by using the hydrogen fuel cell system 7, electric power can be stored in the state of hydrogen instead of electricity, and loss due to storage can be reduced.
 また、蓄電装置2は例えば図15に示すように水素燃料電池システム7とリチウム2次電池のような蓄電池2Aなどの複数のエネルギー貯蔵装置が並列に接続されたものであってもよい。水素燃料電池システム7とリチウム2次電池のような蓄電池2Aが並列に接続されることにより、両者の電池の特性を生かした充放電を行うことができる。水素燃料電池システム7は電力の貯蔵損失が少なく、大容量の貯蔵を行うことができる。一方、リチウム2次電池のような蓄電池2Aは、急峻な充放電が可能である。このように水素燃料電池システム7とリチウム2次電池のような蓄電池2Aが並列に接続されることにより、よりフレキシブルな充放電を行うことができる。 Further, for example, as shown in FIG. 15, the power storage device 2 may be a device in which a plurality of energy storage devices such as a hydrogen fuel cell system 7 and a storage battery 2A such as a lithium secondary battery are connected in parallel. By connecting the hydrogen fuel cell system 7 and the storage battery 2A such as a lithium secondary battery in parallel, charging / discharging utilizing the characteristics of both batteries can be performed. The hydrogen fuel cell system 7 has a small power storage loss and can store a large capacity. On the other hand, the storage battery 2A such as a lithium secondary battery can be rapidly charged and discharged. As described above, the hydrogen fuel cell system 7 and the storage battery 2A such as a lithium secondary battery are connected in parallel, so that more flexible charge and discharge can be performed.
(4)上記実施形態では、情報収集装置3は、インターネット上のサイトから情報収集を行うとしたが、気象情報、日照量、他の太陽光発電装置によりに発電された電力を個々に検出する検出装置であってもよい。また上記実施形態では気象情報、日照量、他の太陽光発電装置によりに発電された電力に関する情報の3つを取得するものとしたが、これに限られない。取得される情報はこれより多くてもよいし、このうち少なくとも1つでもよい。また、他の太陽光発電装置によりに発電された電力に関する情報に限られず他の自然エネルギー発電装置によりに発電された電力に関する情報であってもよい。 (4) In the above embodiment, the information collection device 3 collects information from a site on the Internet. However, the information collection device 3 individually detects the weather information, the amount of sunlight, and the power generated by other solar power generation devices. It may be a detection device. In the above embodiment, the weather information, the amount of sunlight, and the information related to the power generated by other solar power generation devices are acquired. However, the present invention is not limited to this. More information may be acquired, or at least one of them may be acquired. Moreover, it is not restricted to the information regarding the electric power generated by other solar power generation devices, The information regarding the electric power generated by other natural energy power generation devices may be sufficient.
(5)上記実施形態では、データ取得部41は、インターネット送受信回路としたが、電話回線、専用線による通信、無線電波に対応した送受信回路であってもよい。 (5) In the above embodiment, the data acquisition unit 41 is an Internet transmission / reception circuit. However, the data acquisition unit 41 may be a transmission / reception circuit that supports communication using a telephone line or a dedicated line or a radio wave.
(6)上記実施形態では、e1「許容出力変化率」は1%/分であるものとしたが、e1「許容出力変化率」は、これに限られない。 (6) In the above embodiment, e1 “allowable output change rate” is 1% / min. However, e1 “allowable output change rate” is not limited to this.
(7)上記実施形態ではd1,d2は1分間隔で算出されるものとしたが、時刻の間隔はこれに限られない。例えば30秒や15分であってもよい。 (7) In the above embodiment, d1 and d2 are calculated at 1-minute intervals, but the time interval is not limited to this. For example, it may be 30 seconds or 15 minutes.
(8)上記実施形態では、ステップ09における充電が完了したかの判断は、c2「蓄電装置2の充電電力」の値が正からゼロまたは負であるかに基づき行われるものとしたが、蓄電装置2への充電電流がゼロであるかに基づき行われるものとしてもよい。 (8) In the above embodiment, the determination of whether or not the charging in step 09 is completed is made based on whether the value of c2 “charging power of power storage device 2” is positive, zero, or negative. It is good also as what is performed based on whether the charging current to the apparatus 2 is zero.
(9)上記実施形態では蓄電装置2の放電を停止したのち、蓄電装置2の充電を太陽光発電装置1の出力電力の余剰分にて行うものとしたが、蓄電装置2の充電を電力系統のような太陽光発電装置1の出力電力の余剰分以外で行ってもよいものとする。 (9) In the above embodiment, after stopping the discharge of the power storage device 2, the power storage device 2 is charged with the excess output power of the solar power generation device 1. It may be performed other than the surplus of the output power of the solar power generation device 1 as described above.
1・・・太陽光発電装置
1A・・・太陽光パネル
1B,2B,6・・・交直変換装置
1D,2D・・・直流-直流変換装置
2・・・蓄電装置
2A・・・蓄電池
3・・・情報収集装置
4・・・制御装置
5・・・電力供給線
7・・・水素燃料電池システム
7A・・・燃料電池
7B・・・水素製造装置
7C・・・水素タンク
8a,8b・・・通信線
41・・・データ取得部
42,43・・・送受信部
44・・・演算部
45・・・操作部
46・・・記憶部
47・・・出力部

 
DESCRIPTION OF SYMBOLS 1 ... Solar power generation device 1A ... Solar power panels 1B, 2B, 6 ... AC / DC conversion devices 1D, 2D ... DC-DC conversion device 2 ... Power storage device 2A ... Storage battery 3 Information collecting device 4 ... Control device 5 ... Power supply line 7 ... Hydrogen fuel cell system 7A ... Fuel cell 7B ... Hydrogen production device 7C ... Hydrogen tanks 8a, 8b ... -Communication line 41 ... Data acquisition unit 42, 43 ... Transmission / reception unit 44 ... Calculation unit 45 ... Operation unit 46 ... Storage unit 47 ... Output unit

Claims (15)

  1.  電力系統に電力を供給する自然エネルギー発電装置と、
     前記自然エネルギー発電装置と並列に接続され、電力の充電または放電を行う蓄電装置と、
     前記蓄電装置の充電または放電の制御を行う制御装置と、を備え、
     前記制御装置は、前記自然エネルギー発電装置から出力される予測発電電力および前記予測発電電力が出力される予測時刻と、を算出し、
     前記算出された前記予測発電電力が出力される前記予測時刻前に前記電力系統に対し電力の放電を開始し、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される放電または充電電力の総和が、予め定められた増加率で時刻とともに増加するように放電または充電するように前記蓄電装置を制御する
     電力供給システム。
    A natural energy generator for supplying power to the power system;
    A power storage device connected in parallel with the natural energy power generation device to charge or discharge electric power;
    A control device for controlling charging or discharging of the power storage device,
    The control device calculates a predicted generated power output from the natural energy power generation device and a predicted time at which the predicted generated power is output,
    Before the predicted time at which the calculated predicted generated power is output, discharge of power to the power system is started, and the output power of the natural energy power generation device and the discharge or charge power output from the power storage device An electric power supply system that controls the power storage device to discharge or charge so that a sum increases with time at a predetermined increase rate.
  2.  前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達するまで放電を行い、
     前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達した後に、前記自然エネルギー発電装置から出力された発電電力で充電するように、
    前記蓄電装置を制御する請求項1記載の電力供給システム。
    Discharge until the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device,
    The generated power output from the natural energy power generation device is charged with the generated power output from the natural energy power generation device after reaching the sum of the output power of the natural energy power generation device and the power output from the power storage device. Like
    The power supply system according to claim 1, wherein the power storage device is controlled.
  3.  前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達するまで前記蓄電装置から放電された放電量と、
     前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達した後に、前記自然エネルギー発電装置から出力された発電電力で、前記蓄電装置を充電する充電量と、
      が等しくなるように、前記蓄電装置の充電および放電を制御する請求項2記載の電力供給システム。
    The amount of discharge discharged from the power storage device until the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device;
    After the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device, the generated power output from the natural energy power generation device, A charge amount for charging the power storage device;
    The power supply system according to claim 2, wherein charging and discharging of the power storage device are controlled so as to be equal.
  4.  前記蓄電装置の充電は、前記自然エネルギー発電装置から出力された直流電力、または前記自然エネルギー発電装置から出力され交流返還された交流電力により行われる、
      請求項2または3に記載の電力供給システム。
    Charging the power storage device is performed by direct current power output from the natural energy power generation device, or alternating current power output from the natural energy power generation device and returned to the alternating current,
    The power supply system according to claim 2 or 3.
  5.  前記制御装置は、気象情報、日照量、他の自然エネルギー発電装置によりに発電された電力のうち少なくとも一つのデータを取得するデータ取得部を有し、前記予測発電電力および前記予測時刻の算出は、前記データ取得部により取得された前記データに基づき行われる、請求項1乃至4のいずれか1項記載の電力供給システム。 The control device includes a data acquisition unit that acquires at least one data among weather information, amount of sunlight, and power generated by another natural energy power generation device, and the calculation of the predicted generated power and the predicted time is performed. The power supply system according to claim 1, wherein the power supply system is performed based on the data acquired by the data acquisition unit.
  6.  前記蓄電装置は、水素燃料電池システムを含む、請求項1乃至5のいずれか1項記載の電力供給システム。 The power storage system according to any one of claims 1 to 5, wherein the power storage device includes a hydrogen fuel cell system.
  7.  電力系統に電力を供給する自然エネルギー発電装置から出力される予測発電電力および前記予測発電電力が出力される予測時刻と、を算出し、
     前記自然エネルギー発電装置と並列に接続され、電力の充電または放電を行う蓄電装置に、
    前記算出された前記予測発電電力が出力される前記予測時刻前に前記電力系統に対し電力の放電を開始し、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される放電または充電電力の総和が、予め定められた増加率で時刻とともに増加するように放電または充電するように前記蓄電装置を制御する
     電力供給システム用制御装置。
    Calculating a predicted generated power output from a natural energy power generator that supplies power to the power system and a predicted time at which the predicted generated power is output;
    A power storage device connected in parallel with the natural energy power generation device to charge or discharge electric power,
    Before the predicted time at which the calculated predicted generated power is output, discharge of power to the power system is started, and the output power of the natural energy power generation device and the discharge or charge power output from the power storage device A power supply system control device that controls the power storage device so that the sum is discharged or charged so as to increase with time at a predetermined increase rate.
  8.  前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達するまで放電を行い、
     前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達した後に、前記自然エネルギー発電装置から出力された発電電力で充電するように、
    前記蓄電装置を制御する請求項7記載の電力供給システム制御装置。
    Discharge until the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device,
    The generated power output from the natural energy power generation device is charged with the generated power output from the natural energy power generation device after reaching the sum of the output power of the natural energy power generation device and the power output from the power storage device. Like
    The power supply system control device according to claim 7, wherein the power storage device is controlled.
  9.  前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達するまで前記蓄電装置から放電された放電量と、
     前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達した後に、前記自然エネルギー発電装置から出力された発電電力で、前記蓄電装置を充電する充電量と、
      が等しくなるように、前記蓄電装置の充電および放電を制御する請求項8記載の電力供給システム制御装置。
    The amount of discharge discharged from the power storage device until the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device;
    After the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device, the generated power output from the natural energy power generation device, A charge amount for charging the power storage device;
    The power supply system control device according to claim 8, wherein charging and discharging of the power storage device are controlled so as to be equal to each other.
  10.  電力系統に電力を供給する自然エネルギー発電装置から出力される予測発電電力および前記予測発電電力が出力される予測時刻と、を算出し、
     前記自然エネルギー発電装置と並列に接続され、電力の充電または放電を行う蓄電装置に、
    前記算出された前記予測発電電力が出力される前記予測時刻前に前記電力系統に対し電力の放電を開始し、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される放電または充電電力の総和が、予め定められた増加率で時刻とともに増加するように放電または充電するように前記蓄電装置を制御する
     電力供給システム用プログラム。
    Calculating a predicted generated power output from a natural energy power generator that supplies power to the power system and a predicted time at which the predicted generated power is output;
    A power storage device connected in parallel with the natural energy power generation device to charge or discharge electric power,
    Before the predicted time at which the calculated predicted generated power is output, discharge of power to the power system is started, and the output power of the natural energy power generation device and the discharge or charge power output from the power storage device A program for an electric power supply system that controls the power storage device to discharge or charge so that the sum increases with time at a predetermined increase rate.
  11.  前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達するまで放電を行い、
     前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達した後に、前記自然エネルギー発電装置から出力された発電電力で充電するように、
    前記蓄電装置を制御する請求項10記載の電力供給システムプログラム。
    Discharge until the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device,
    The generated power output from the natural energy power generation device is charged with the generated power output from the natural energy power generation device after reaching the sum of the output power of the natural energy power generation device and the power output from the power storage device. Like
    The power supply system program according to claim 10, wherein the power storage device is controlled.
  12.  前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達するまで前記蓄電装置から放電された放電量と、
     前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達した後に、前記自然エネルギー発電装置から出力された発電電力で、前記蓄電装置を充電する充電量と、
      が等しくなるように、前記蓄電装置の充電および放電を制御する請求項11記載の電力供給システムプログラム。
    The amount of discharge discharged from the power storage device until the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device;
    After the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device, the generated power output from the natural energy power generation device, A charge amount for charging the power storage device;
    The power supply system program according to claim 11, wherein charging and discharging of the power storage device are controlled so as to be equal.
  13.  電力系統に電力を供給する自然エネルギー発電装置から出力される予測発電電力および前記予測発電電力が出力される予測時刻と、を算出し、
     前記自然エネルギー発電装置と並列に接続され、電力の充電または放電を行う蓄電装置に、
    前記算出された前記予測発電電力が出力される前記予測時刻前に前記電力系統に対し電力の放電を開始し、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される放電または充電電力の総和が、予め定められた増加率で時刻とともに増加するように放電または充電するように前記蓄電装置を制御する
     電力供給システムの制御方法。
    Calculating a predicted generated power output from a natural energy power generator that supplies power to the power system and a predicted time at which the predicted generated power is output;
    A power storage device connected in parallel with the natural energy power generation device to charge or discharge electric power,
    Before the predicted time at which the calculated predicted generated power is output, discharge of power to the power system is started, and the output power of the natural energy power generation device and the discharge or charge power output from the power storage device A method for controlling an electric power supply system, wherein the power storage device is controlled such that a total sum is discharged or charged so as to increase with time at a predetermined rate of increase.
  14.  前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達するまで放電を行い、
     前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達した後に、前記自然エネルギー発電装置から出力された発電電力で充電するように、
    前記蓄電装置を制御する請求項13記載の電力供給システムの制御方法。
    Discharge until the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device,
    The generated power output from the natural energy power generation device is charged with the generated power output from the natural energy power generation device after reaching the sum of the output power of the natural energy power generation device and the power output from the power storage device. Like
    The power supply system control method according to claim 13, wherein the power storage device is controlled.
  15.  前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達するまで前記蓄電装置から放電された放電量と、
     前記自然エネルギー発電装置から出力される発電電力が、前記自然エネルギー発電装置の出力電力および前記蓄電装置から出力される電力の総和に達した後に、前記自然エネルギー発電装置から出力された発電電力で、前記蓄電装置を充電する充電量と、
      が等しくなるように、前記蓄電装置の充電および放電を制御する請求項14記載の電力供給システムの制御方法。

     
    The amount of discharge discharged from the power storage device until the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device;
    After the generated power output from the natural energy power generation device reaches the sum of the output power of the natural energy power generation device and the power output from the power storage device, the generated power output from the natural energy power generation device, A charge amount for charging the power storage device;
    The control method of the power supply system according to claim 14, wherein charging and discharging of the power storage device are controlled so as to be equal to each other.

PCT/JP2017/004360 2017-02-07 2017-02-07 Power supply system, control device for power supply system, program for power supply system, and control method for power supply system WO2018146717A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004360 WO2018146717A1 (en) 2017-02-07 2017-02-07 Power supply system, control device for power supply system, program for power supply system, and control method for power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004360 WO2018146717A1 (en) 2017-02-07 2017-02-07 Power supply system, control device for power supply system, program for power supply system, and control method for power supply system

Publications (1)

Publication Number Publication Date
WO2018146717A1 true WO2018146717A1 (en) 2018-08-16

Family

ID=63108031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004360 WO2018146717A1 (en) 2017-02-07 2017-02-07 Power supply system, control device for power supply system, program for power supply system, and control method for power supply system

Country Status (1)

Country Link
WO (1) WO2018146717A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP2014150641A (en) * 2013-01-31 2014-08-21 Toshiba Corp Energy management system, energy management method, program, and server device
JP2015042102A (en) * 2013-08-23 2015-03-02 株式会社 日立産業制御ソリューションズ Photovoltaic power generation system and control method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP2014150641A (en) * 2013-01-31 2014-08-21 Toshiba Corp Energy management system, energy management method, program, and server device
JP2015042102A (en) * 2013-08-23 2015-03-02 株式会社 日立産業制御ソリューションズ Photovoltaic power generation system and control method therefor

Similar Documents

Publication Publication Date Title
Jaramillo et al. Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads
EP3206276B1 (en) Energy storage system and management method thereof
JP6156919B2 (en) Storage battery system, storage battery control device, and storage battery system control method
KR101146670B1 (en) Energy management system and method for controlling thereof
JP5882156B2 (en) Power control device
US20130245850A1 (en) Electric power supply-and-demand control apparatus
KR20130104771A (en) Energy storage system and control method thereof
Bao et al. Battery charge and discharge control for energy management in EV and utility integration
Menniti et al. A method to improve microgrid reliability by optimal sizing PV/Wind plants and storage systems
JP2015192566A (en) Power system and dc power transmission method
JP6166338B2 (en) Energy storage system
JP2010259303A (en) Distributed power generation system
Ananda-Rao et al. Battery energy storage system assessment in a designed battery controller for load leveling and peak shaving applications
Garces et al. Optimal operation of distributed energy storage units for minimizing energy losses
Wee et al. Design of a renewable—Hybrid energy storage power scheme for short-term power dispatch
WO2019193837A1 (en) Power generating system and its control method
JP2021057180A (en) Power supply system
WO2018146717A1 (en) Power supply system, control device for power supply system, program for power supply system, and control method for power supply system
JP7252116B2 (en) Renewable energy power generation system
JP6055968B2 (en) Power system
Vo et al. Amsterdam ArenA stadium: Real-time smart battery energy storage system coordination for voltage support
Gong et al. Research on scheduling of wind solar energy storage microgrid considering new energy consumption
Xiong et al. Power management of a residential hybrid photovoltaic inverter with battery energy storage system
Bampoulas et al. A novel dynamic demand control of an electric vehicle integrated in a solar nanogrid with energy storage
Mindra et al. Combined peak shaving/time shifting strategy for microgrid controlled renewable energy efficiency optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP