WO2018127959A1 - Communication device, transmission control method, and wireless communication system - Google Patents

Communication device, transmission control method, and wireless communication system Download PDF

Info

Publication number
WO2018127959A1
WO2018127959A1 PCT/JP2017/000169 JP2017000169W WO2018127959A1 WO 2018127959 A1 WO2018127959 A1 WO 2018127959A1 JP 2017000169 W JP2017000169 W JP 2017000169W WO 2018127959 A1 WO2018127959 A1 WO 2018127959A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
measurement target
unit
target signal
communication device
Prior art date
Application number
PCT/JP2017/000169
Other languages
French (fr)
Japanese (ja)
Inventor
武志 芥川
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/000169 priority Critical patent/WO2018127959A1/en
Publication of WO2018127959A1 publication Critical patent/WO2018127959A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels

Definitions

  • the present invention relates to a communication device, a transmission control method, and a wireless communication system.
  • a multi-element antenna is used as a base station side antenna in a millimeter wave band such as 24 GHz to 40 GHz band or 66 GHz to 86 GHz band. Is done. However, when the number of antenna elements increases, not only the number of DL (Down Link) pilot signals measured by the mobile station, but also the measurement results such as CQI (Channel Quality Indicator) reported by the mobile station to the base station. The amount also increases.
  • CQI Channel Quality Indicator
  • the amount of measurement results reported by the mobile station to the base station by adopting TDD (Time Division Duplex) that can use the symmetry of the radio link between DL and UL (Up Link).
  • TDD Time Division Duplex
  • the base station measures the SIR (Signal to Interference Ratio) of the UL pilot signal from the mobile station, determines other MCS (Modulation and Coding Scheme) values corresponding to the measured SIR, and other information.
  • DL data signal transmission is controlled (transmission power setting, transmission frequency region position determination, phase setting between transmission antennas, etc.).
  • radio quality such as a UL radio interference state is different from radio quality such as a DL radio interference state.
  • the base station cannot ensure the communication quality of the DL data signal because the MCS value corresponding to the measurement SIR of the UL pilot signal does not reflect the actual radio quality of the DL.
  • the MCS value applied to the DL data signal to be transmitted is higher than the actual DL radio quality. As a result, the mobile station is likely to fail to receive the DL data signal.
  • An object of one aspect is to provide a communication device, a transmission control method, and a wireless communication system that can ensure communication characteristics suitable for actual wireless quality.
  • a communication apparatus transmits a plurality of first pilot signals using a plurality of frequencies in a radio signal to another communication apparatus, and uses the plurality of frequencies from the other communication apparatus.
  • a plurality of second pilot signals are received.
  • the communication device includes a request unit, a transmission unit, and a reception unit.
  • the requesting unit requests the other communication device to measure the radio quality before and after the output control of the designated first measurement target signal among the plurality of first pilot signals.
  • the transmission unit can control the output of the first measurement target signal, and transmits the first pilot signal including the first measurement target signal to the other communication device.
  • the receiving unit receives the wireless quality of the first measurement target signal measured by the other communication device.
  • communication characteristics suitable for the actual wireless quality can be secured.
  • FIG. 1 is an explanatory diagram of an example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a base station.
  • FIG. 3 is an explanatory diagram showing an example of a functional configuration of the first line control unit in the base station.
  • FIG. 4 is a block diagram illustrating an example of a mobile station.
  • FIG. 5 is an explanatory diagram showing an example of a functional configuration of the second line control unit in the mobile station.
  • FIG. 6 is an explanatory diagram illustrating an example of a resource block configuration of a subframe.
  • FIG. 7 is an explanatory diagram illustrating an example of a management table for identifying a measurement target signal in a subframe.
  • FIG. 1 is an explanatory diagram of an example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a base station.
  • FIG. 3 is an explanatory diagram showing an example of a functional configuration of the first line
  • FIG. 8 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process of the first embodiment.
  • FIG. 9 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process of the first embodiment.
  • FIG. 10 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process of the second embodiment.
  • FIG. 11 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process according to the second embodiment.
  • FIG. 12 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process according to the second embodiment.
  • FIG. 13 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process according to the second embodiment.
  • FIG. 14 is an explanatory diagram illustrating an example of a hardware configuration of a communication device that implements a base station.
  • FIG. 15 is an explanatory diagram illustrating an example of a hardware configuration of a communication device that implements a mobile station.
  • FIG. 1 is an explanatory diagram illustrating an example of a wireless communication system 1 according to the first embodiment.
  • a wireless communication system 1 illustrated in FIG. 1 includes a base station 2 and a plurality of mobile stations 3.
  • the base station 2 is a communication device that transmits and receives, for example, a TDD (Time Division Duplex) wireless signal to and from the mobile station 3.
  • the base station 2 transmits a DL (Down Link) signal of a radio signal to the mobile station 3.
  • the base station 2 receives a radio link UL (Up Link) signal from the mobile station 3.
  • TDD Time Division Duplex
  • FIG. 2 is a block diagram illustrating an example of the base station 2.
  • the base station 2 illustrated in FIG. 2 includes a communication antenna 11, a reception unit 12, a transmission unit 13, and a control unit 14.
  • the reception unit 12 includes a first reception unit 21, a reception multiple access processing unit 22, a first demodulation unit 23, a line quality extraction unit 24, and a transmission power extraction unit 25.
  • the line quality extraction unit 24 includes a first SIR measurement unit 24A and a first phase measurement unit 24B.
  • the first receiving unit 21 receives the UL signal from the mobile station 3 by the communication antenna 11.
  • the reception multiple access processing unit 22 executes multiple access processing for time-division of UL signals.
  • the first demodulator 23 demodulates and decodes the time-division UL signal to acquire reception data, and outputs the acquired reception data.
  • the line quality extraction unit 24 extracts the line quality of the UL signal.
  • the transmission power extraction unit 25 extracts the transmission power of the UL signal.
  • the first SIR measurement unit 24A measures the SIR of the UL signal.
  • the first phase measurement unit 24B measures the amplitude phase of the UL signal.
  • the transmission unit 13 includes a first transmission power control unit 31, a first modulation unit 32, a transmission multiple processing connection unit 33, a first transmission unit 34, a broadcast information generation unit 35, and a first pilot.
  • a generation unit 36 and a first control information generation unit 37 are included.
  • the first transmission power control unit 31 controls the transmission power of the DL signal that transmits the transmission data.
  • the first modulation unit 32 encodes and modulates transmission data after transmission power control.
  • the transmission multiple process connection unit 33 executes a multiple access process for time-division multiplexing modulated transmission data.
  • the first transmitter 34 wirelessly transmits time-division multiplexed transmission data from the communication antenna 11 to the mobile station 3 as a DL signal.
  • the broadcast information generation unit 35 generates broadcast information to be added to transmission data.
  • the first pilot generator 36 generates a DL pilot signal for the mobile station 3.
  • the first control information generation unit 37 generates control information to be added to transmission data.
  • the first control information generation unit 37 generates control information
  • the control unit 14 includes a first storage unit 41 and a first line control unit 42.
  • the first storage unit 41 is an area for storing various types of information.
  • the first line control unit 42 controls the entire base station 2.
  • FIG. 3 is an explanatory diagram illustrating an example of a functional configuration of the first line control unit 42.
  • the first line control unit 42 illustrated in FIG. 3 includes a report request unit 51, a report reception unit 52, a power control unit 53, and a first control unit 54.
  • the report request unit 51 uses the TDD control signal to request the mobile station 3 to measure the radio quality of the first measurement target signal among the plurality of DL pilot signals, and the first measurement target The mobile station 3 is requested to report the signal measurement result.
  • the first measurement target signal is a designated DL pilot signal that requires measurement of radio quality, for example, SIR and amplitude phase, among a plurality of DL pilot signals.
  • the first measurement target signal is, for example, designated DL pilot signals D1 and D5 shown in FIG.
  • the report request unit 51 requests the mobile station 3 to measure the DL side SIR at the normal power of the first measurement target signal D1 in the DL pilot signal and the DL side SIR at the zero power of the first measurement target signal D5. To do. In addition, the report request unit 51 moves the measurement of the DL side amplitude phase at the normal power of the first measurement target signal D1 and the DL side amplitude phase at the zero power of the first measurement target signal D5 in the DL pilot signal. Request to station 3.
  • the DL pilot signal D1 and the DL pilot signal D5 are exemplified as the first measurement target signal.
  • an arbitrary DL pilot signal can be designated from among a plurality of DL pilot signals.
  • the transmission power of the DL pilot signal D1 is normal power and the transmission power of the DL pilot signal D5 is zero power
  • the present invention is not limited to this, and the DL pilot signal D1 is zero power and the DL pilot signal D5 is normal power. And can be changed as appropriate.
  • the report receiving unit 52 receives from the mobile station 3 reports of measurement results of the first measurement target signals D1 and D5 of the DL pilot signal.
  • the measurement result of the first measurement target signal is the DL side SIR and DL side amplitude phase at the normal power of the first measurement target signal D1, and the DL side SIR and DL side at the zero power of the first measurement target signal D5. Amplitude phase.
  • the power control unit 53 controls the first transmission power control unit 31 to control ON / OFF of the transmission power of the first measurement target signals D1 and D5 in the DL pilot signal.
  • the power control unit 53 controls the transmission power of the first measurement target signal D1 to ON to control normal power, and controls the transmission power of the first measurement target signal D5 to OFF to zero power.
  • the first control unit 54 includes a first calculation unit 54A, a second calculation unit 54B, a first adjustment unit 54C, and a second adjustment unit 54D.
  • the first control unit 54 receives from the mobile station 3 information related to the radio quality of the first measurement target signal measured by the mobile station 3 and transmits to the mobile station 3 based on the radio quality.
  • Signal transmission is controlled (MCS determination, transmission power setting, transmission frequency region position determination, phase setting between transmission antennas, etc.).
  • the first calculation unit 54A compares the DL side SIR at the normal power of the first measurement target signal D1 with the DL side SIR at the zero power of the first measurement target signal D5 to calculate the DL side interference power. To do. Further, the first calculation unit 54A includes the UL side SIR and the second measurement target signal U5 at the normal power of the second measurement target signal U1 in the UL pilot signal measured by the first SIR measurement unit 24A. The UL side interference power is calculated by comparing with the UL side SIR at the time of zero power. The first SIR measurement unit 24A measures the UL side SIR at the normal power of the second measurement target signal U1 in the UL pilot signal and the UL side SIR at the zero power of the second measurement target signal U5. To do.
  • the UL pilot signal uses the same frequency as that of the DL pilot signal in a time multiplexed manner.
  • the DL pilot signal D1 and the UL pilot signal U1 shown in FIG. 6 have the same frequency.
  • the first calculation unit 54A calculates the adjusted SIR by comparing the DL side interference power and the UL side interference power. Further, the first calculation unit 54A acquires an MCS value corresponding to the adjustment SIR.
  • the second calculation unit 54B compares the DL side amplitude phase at the normal power of the first measurement target signal D1 and the DL side amplitude phase at the zero power of the first measurement target signal D5 to compare the DL side phase change. Calculate the amount. Furthermore, the second calculation unit 54B includes the UL-side amplitude phase and the second measurement target signal during normal power of the second measurement target signal U1 in the UL pilot signal measured by the first phase measurement unit 24B. The UL side phase change amount is calculated by comparing the UL side amplitude phase at zero power of U5.
  • the first phase measurement unit 24B includes the UL side amplitude phase at the normal power of the second measurement target signal U1 in the UL pilot signal and the UL side amplitude phase at the zero power of the second measurement target signal U5. Measure.
  • the second calculation unit 54B calculates the adjustment phase change amount by comparing the DL side phase change amount and the UL side phase change amount.
  • the first adjustment unit 54C adjusts the block size of the DL data signal, for example, based on the MCS value acquired by the first calculation unit 54A.
  • the second adjustment unit 54D adjusts the phase of the RF circuit, for example, based on the adjustment phase change amount calculated by the second calculation unit 54B.
  • FIG. 4 is a block diagram illustrating an example of the mobile station 3.
  • the mobile station 3 illustrated in FIG. 4 includes a terminal-side communication antenna 61, a terminal-side receiving unit 62, a terminal-side transmitting unit 63, and a terminal-side control unit 64.
  • the terminal side receiving unit 62 includes a second receiving unit 71, a reception orthogonal multiple access processing unit 72, a second demodulating unit 73, a system information extracting unit 74, a control information extracting unit 75, and a second line. And a quality extraction unit 76.
  • the second receiver 71 receives the DL signal from the base station 2 by the terminal-side communication antenna 61.
  • the reception multiple access processing unit 72 executes multiple access processing that time-divides the DL signal.
  • the second demodulator 73 demodulates and decodes the time-divided DL signal to acquire reception data, and outputs the acquired reception data.
  • the system information extraction unit 74 extracts system information in the received data.
  • the control information extraction unit 75 extracts a DL control signal.
  • the second line quality extraction unit 76 extracts the line quality of the DL signal.
  • the second line quality extraction unit 76 includes a second SIR measurement unit 76A and a second phase measurement unit 76B.
  • the second SIR measurement unit 76A measures the SIR of the DL signal.
  • the second phase measurement unit 76B measures the amplitude phase of the DL signal.
  • the terminal-side transmission unit 63 includes a second transmission power control unit 81, a second modulation unit 82, a transmission orthogonal multiple access processing unit 83, a second transmission unit 84, and a second control information generation unit 85. And a second pilot generation unit 86.
  • the second transmission power control unit 81 controls the transmission power of the UL signal that transmits the transmission data.
  • the second modulation unit 82 encodes and modulates transmission data after transmission power control.
  • the transmission multiple process connection unit 83 executes a multiple access process for time-division multiplexing modulated transmission data.
  • the second transmitter 84 wirelessly transmits time-division multiplexed transmission data from the terminal-side communication antenna 61 to the base station 2 as a UL signal.
  • the second control information generation unit 85 generates control information to be added to the transmission data.
  • the second pilot generation unit 86 generates a UL pilot signal for the base station 2.
  • the terminal-side control unit 64 includes a second storage unit 91, a terminal control unit 92, and a second line control unit 93.
  • the second storage unit 91 is an area for storing various information.
  • the second storage unit 91 is an area for storing, for example, the DL side SIR and the DL side amplitude phase.
  • the terminal control unit 92 controls the RF circuit in the mobile station 3.
  • the RF circuit includes, for example, a second reception unit 71, a reception orthogonal multiple access processing unit 72, a second demodulation unit 73, a second modulation unit 82, a transmission orthogonal multiple access processing unit 83, and a second transmission unit. 84 etc.
  • the second line control unit 93 controls the entire mobile station 3. FIG.
  • the second line control unit 93 illustrated in FIG. 5 includes a report unit 93A, a second power control unit 93B, and a second control unit 93C.
  • the second SIR measurement unit 76A determines the DL side SIR at the normal power of the first measurement target signal D1 and the DL side SIR at the zero power of the first measurement target signal D5 in response to the DL pilot signal measurement request. taking measurement.
  • the second phase measurement unit 76B responds to the DL pilot signal measurement request, and the DL side amplitude phase at the normal power of the first measurement target signal D1 and the DL side amplitude at the zero power of the first measurement target signal D5. Measure the phase.
  • the reporting unit 93A reports the DL pilot signal measurement result to the base station 2 using a UL pilot signal.
  • the measurement results include, for example, the DL side SIR at the normal power of the first measurement target signal D1 of the DL pilot signal and the zero power of the first measurement target signal D5, and the normal power of the first measurement target signal D1. And the DL side amplitude phase at the time of zero power of the first measurement target signal D5.
  • the second power control unit 93B controls the second transmission power control unit 81 so as to perform ON / OFF control of the transmission power of the second measurement target signals U1 and U5 of the UL pilot signal.
  • the second power control unit 93B controls the transmission power of the second measurement target signal U1 in the UL pilot signal to ON to control normal power, and controls the transmission power of the second measurement target signal U5 to OFF to zero power. To do.
  • the second control unit 93C controls the entire second line control unit 93.
  • FIG. 6 is an explanatory diagram showing an example of the configuration of resource blocks in a subframe.
  • the subframe illustrated in FIG. 6 is, for example, a self-contained TDD subframe.
  • the subframe shown in FIG. 6 time-divides the control signal, DL section, guard section, and UL section, and the control signal, DL section, and UL section use the same frequency band.
  • the control signal is an RB (Resource Block) used for transferring control information of Layer1.
  • the DL section is an RB used for transferring a DL pilot signal and a DL data signal.
  • the UL section is an RB used for transferring UL pilot signals and UL data signals.
  • the DL pilot signal is, for example, an RB on which DL pilot signals D1 to D8 are mounted using frequencies F1 to F16.
  • the DL pilot signal D1 is mounted on the frequencies F1 and F9
  • the DL pilot signal D2 is mounted on the frequencies F2 and F10
  • the DL pilot signal D3 is mounted on the frequencies F3 and F11
  • the DL pilot signal D4 is mounted on the frequencies F4 and F12.
  • DL pilot signal D5 is mounted on frequencies F5 and F13
  • DL pilot signal D6 is mounted on frequencies F6 and F14
  • DL pilot signal D7 is mounted on frequencies F7 and F15
  • DL pilot signal D8 is mounted on frequencies F8 and F16.
  • the UL pilot signal is, for example, an RB on which the UL pilot signals U1 to U8 are mounted using the same frequencies F1 to F16 as in the DL section.
  • the UL pilot signal U1 is mounted on the frequencies F1 and F9
  • the UL pilot signal U2 is mounted on the frequencies F2 and F10
  • the UL pilot signal U3 is mounted on the frequencies F3 and F11
  • the UL pilot signal U4 is mounted on the frequencies F4 and F12.
  • UL pilot signal U5 is mounted on frequencies F5 and F13
  • UL pilot signal U6 is mounted on frequencies F6 and F14
  • UL pilot signal U7 is mounted on frequencies F7 and F15
  • UL pilot signal U8 is mounted on frequencies F8 and F16.
  • the first measurement target signal includes the DL pilot signal D1 having the frequency F1, the DL pilot signal D5 having the frequency F5, and the second measurement target signal includes the UL pilot signal U1 having the frequency F1 and the frequency F5.
  • UL pilot signal U5 is designated.
  • FIG. 7 is an explanatory diagram showing an example of a management table for identifying measurement target signals in subframes.
  • the management table is a table for managing a 3-bit ID for identifying DL pilot signals of D1 to D8 of subframes. Note that the management table is stored in a partial area of the first storage unit 41.
  • the ID identifies the DL pilot signal by F1 to F8 used for the DL pilot signals D1 to D8 among the plurality of frequencies F1 to F16. It is assumed that the UL pilot signal similarly manages a 3-bit ID.
  • 8 and 9 are sequence diagrams illustrating an example of processing operations of the base station 2 and the mobile station 3 related to the transmission output control process of the first embodiment.
  • the report request unit 51 in the base station 2 generates control information for the mobile station 3 (step S11).
  • the control information includes position information of the first measurement target signal of the DL pilot signal, measurement request of the first measurement target signal, amplitude presence / absence information, report request, terminal setting information, report type, and the like.
  • the position information is information for identifying, for example, frequency positions of two first measurement target signals among the plurality of DL pilot signals D1 to D8 in the DL pilot signal.
  • the first measurement target signal is, for example, a DL pilot signal D1 mounted on the frequency F1 and a DL pilot signal D5 mounted on the frequency F5.
  • the measurement request is information that requests the mobile station 3 to measure the radio quality of the first measurement target signals D1 and D5, for example, SIR and amplitude phase.
  • the amplitude presence / absence information is information for setting the transmission power of the first measurement target signal D1 to normal power and the transmission power of the first measurement target signal D5 to zero power.
  • the report request is information requesting the mobile station 3 to report the radio quality measurement results of the first measurement target signals D1 and D5, for example, SIR and amplitude phase.
  • the terminal setting information is the setting contents of the mobile station 3, for example, the position information of the second measurement target signal of the UL pilot signal, the MCS value to be used, the transmission power amount output by the mobile station 3, and the like.
  • the report type is information for identifying report contents such as radio quality of the DL pilot signal, for example, CQI, SIR, amplitude phase and the like.
  • the report request unit 51 in the base station 2 stores the control information in the Layer-1 control signal (step S12), and transmits the control signal to the mobile station 3 (step S13).
  • the second control unit 93C in the mobile station 3 extracts the control information from the control signal (step S15), and sets the terminal setting in the extracted control information. Information is set (step S16).
  • the power control unit 53 in the base station 2 designates the first measurement target signal, and normal power is set as the transmission power of the designated first measurement target signal D1. Then, zero power is set as the transmission power of the first measurement target signal D5 (step S17).
  • the power control unit 53 in the base station 2 transmits a DL pilot signal to the mobile station 3 after setting the transmission power in step S17 (step S18).
  • the second phase measuring unit 76B in the mobile station 3 measures the DL side amplitude phase at the time of normal power and zero power (step S20).
  • the second phase measurement unit 76B measures the amplitude phase of the first measurement target signal D1 in the DL pilot signal as the DL side amplitude phase at the normal power, and the first measurement target in the DL pilot signal.
  • the amplitude phase of the frequency of the signal D5 is measured as the DL side amplitude phase at zero power.
  • the second SIR measurement unit 76A in the mobile station 3 measures the DL side SIR at the normal power and zero power of the first measurement target signal in the DL pilot signal (step S21).
  • the second SIR measurement unit 76A measures the SIR of the first measurement target signal D1 in the DL pilot signal as the DL side SIR at the normal power and sets the SIR of the first measurement target signal D5 to zero power. Measured as the DL side SIR of the hour.
  • the reporting unit 93A in the mobile station 3 stores the DL-side amplitude phase and the DL-side SIR at the normal power of the first measurement target signal D1 and the zero power of the first measurement target signal D5 in the second storage unit 91. Store (step S22).
  • the reporting unit 93A stores the DL side amplitude phase and the DL side SIR at the time of normal power and zero power in the UL pilot signal (step S23), and transmits the UL pilot signal to the base station 2 (step S24). .
  • the report receiving unit 52 in the base station 2 When receiving the UL pilot signal (step S25), the report receiving unit 52 in the base station 2 has the normal power of the first measurement target signal D1 and the zero power of the first measurement target signal D5 from the UL pilot signal. DL side amplitude phase and DL side SIR are extracted (step S26). The report receiving unit 52 stores the DL side amplitude phase and the DL side SIR at the time of normal power and zero power in the first storage unit 41 (step S27). Further, the report request unit 51 in the base station 2 generates control information including a UL amplitude request (step S28), stores the control information in the control signal (step S29), and transmits the control signal to the mobile station 3. (Step S30). The UL amplitude request is information for setting the transmission power of the second measurement target signal U1 to normal power and the transmission power of the second measurement target signal U5 to zero power among a plurality of groups in the UL pilot signal. .
  • the second power control unit 93B in the mobile station 3 when the second power control unit 93B in the mobile station 3 receives a control signal including a UL amplitude request from the base station 2 (step S31), the second power control unit 93B extracts the UL amplitude request from the control signal (step S32). .
  • the second power control unit 93B sets normal power to the transmission power of the second measurement target signal U1 of the UL pilot signal and zero power to the transmission power of the second measurement target signal U5 (step S33). Then, the second power control unit 93B in the mobile station 3 transmits the UL pilot signal after setting the transmission power in step S33 to the base station 2 (step S34).
  • the first phase measurement unit 24B in the base station 2 receives the UL pilot signal (step S35), the first measurement unit 24B at the normal power of the second measurement target signal U1 and the second measurement target signal U5 from the UL pilot signal.
  • the UL side amplitude phase at zero power is measured (step S36).
  • the first phase measurement unit 24B measures the UL side amplitude phase at the time of normal power of the second measurement target signal U1 in the UL pilot signal and the UL side amplitude phase at the time of zero power of the second measurement target signal U5. .
  • the first SIR measurement unit 24A in the base station 2 measures the UL side SIR at the normal power of the second measurement target signal U1 and the zero power of the second measurement target signal U5 from the UL pilot signal.
  • the first SIR measurement unit 24A measures the UL side SIR at the normal power of the second measurement target signal U1 in the UL pilot signal and the UL side SIR at the zero power of the second measurement target signal U5.
  • the report receiving unit 52 in the base station 2 stores the UL side amplitude phase and the UL side SIR in the first storage unit 41 (step S38).
  • the first calculation unit 54A in the base station 2 compares the UL side SIR at the normal power and the UL side SIR at the zero power to calculate the UL side interference power (step S39).
  • the second calculation unit 54B in the base station 2 compares the UL side amplitude phase during normal power and the UL side amplitude phase during zero power to calculate the UL side phase change amount (step S40).
  • the first calculation unit 54A in the base station 2 compares the DL side SIR at the normal power and the DL side SIR at the zero power to calculate the DL side interference power (step S41).
  • the second calculation unit 54B in the base station 2 compares the DL side amplitude phase at the time of normal power and the DL side amplitude phase at the time of zero power to calculate the DL side phase change amount (step S42).
  • the first calculation unit 54A in the base station 2 calculates the adjustment SIR obtained from the comparison result between the UL side interference power and the DL side interference power (step S43).
  • the second calculation unit 54B in the base station 2 calculates the adjustment phase change amount based on the difference between the UL side phase change amount and the DL side phase change amount (step S44).
  • the first calculation unit 54A in the base station 2 sets the MCS value corresponding to the adjustment SIR (step S45).
  • the first adjustment unit 54C in the base station 2 adjusts the block size of the DL data signal based on the set MCS value (step S46).
  • the second adjustment unit 54D in the base station 2 corrects the phase of the RF circuit (not shown) in the base station 2 based on the adjustment phase change amount (step S47), and ends the processing operation shown in FIG. To do.
  • the base station 2 requests the mobile station 3 to measure the DL pilot signal in which the transmission power of the first measurement target signal D1 is set to normal power and the transmission power of the first measurement target signal D5 is set to zero power.
  • the base station 2 transmits to the mobile station 3 a DL pilot signal in which the transmission power of the first measurement target signal D1 is set to normal power and the transmission power of the first measurement target signal D5 is set to zero power.
  • the mobile station 3 measures the SIR and the amplitude phase of the first measurement target signal D1 in the DL pilot signal at the normal power, and the SIR at the zero power of the first measurement target signal D5 in the DL pilot signal. The amplitude phase is measured, and the measurement result is reported to the base station 2.
  • the base station 2 requests the mobile station 3 to transmit a UL pilot signal in which the transmission power of the second measurement target signal U1 is set to normal power and the transmission power of the second measurement target signal U5 is set to zero power.
  • the mobile station 3 transmits to the base station 2 a UL pilot signal in which the transmission power of the second measurement target signal U1 is set to normal power and the transmission power of the second measurement target signal U5 is set to zero power.
  • the base station 2 measures the SIR and amplitude phase of the second measurement target signal U1 of the UL pilot signal at the normal power, and measures the SIR and amplitude phase of the second measurement target signal U5 at the time of zero power.
  • the base station 2 calculates the UL side interference power from the UL side SIR at the normal power and the UL side SIR at the zero power. Further, the base station 2 calculates the DL side interference power from the DL side SIR at the normal power and the DL side SIR at the zero power. Furthermore, the base station 2 calculates an adjustment SIR using the UL side interference power and the DL side interference power, acquires an MCS value corresponding to the adjustment SIR, and sets the block size of the DL data signal based on the acquired MCS value. adjust. As a result, by controlling the transmission output of the DL signal reflecting the UL side SIR and the DL side SIR, it is possible to ensure communication characteristics suitable for the actual radio quality.
  • the base station 2 calculates the UL phase change amount based on the amplitude phase of the UL pilot signal at normal power and the amplitude phase at zero power. Furthermore, the base station 2 calculates the DL side phase change amount based on the amplitude phase of the DL pilot signal during normal power and the amplitude phase at zero power. Further, the base station 2 calculates an adjustment phase change amount from the UL side phase change amount and the DL side phase change amount, and adjusts the phase of the RF circuit based on the adjustment phase change amount. As a result, by controlling the transmission output of the DL signal reflecting the phase change amount on the UL side and the phase change amount on the DL side, it is possible to ensure communication characteristics suitable for the actual radio quality.
  • DL pilot signals of at least two groups of DL pilot signals D1 and D5 are designated as the first measurement target signal.
  • the number may be three or more and can be changed as appropriate.
  • one group of pilot signals may be designated as the first measurement target signal, and an embodiment in that case will be described below as Example 2.
  • symbol is attached
  • the base station 2 designates the DL pilot signal D1 as the first measurement target signal, and measures the SIR and amplitude phase at the normal power of the first measurement target signal D1 and reports the measurement result to the mobile station 3. Request.
  • the mobile station 3 measures the DL side SIR and DL side amplitude phase of the first measurement target signal D1 at the normal power, and transmits the measurement result to the base station 2.
  • the base station 2 stores the DL side SIR and the DL side amplitude phase at the normal power of the first measurement target signal D1 in the first storage unit 41.
  • the base station 2 requests the mobile station 3 to measure the SIR and amplitude phase of the first measurement target signal D1 at zero power and report the measurement result.
  • the mobile station 3 measures the DL-side SIR and the DL-side amplitude phase at the time of zero power of the first measurement target signal D1, and transmits the measurement result to the base station 2. Then, the base station 2 stores the measurement result of the DL side SIR and the DL side amplitude phase at the time of zero power of the first measurement target signal D1 in the first storage unit 41.
  • the base station 2 receives the SIR and amplitude phase at the normal power and zero power of the first measurement target signal D1 from the mobile station 3, and then uses the UL pilot signal U1 at the normal power as the second measurement target signal. Request the mobile station 3 for transmission.
  • the mobile station 3 transmits the second measurement target signal U1 to the base station 2 with normal power.
  • the base station 2 measures the UL side SIR and the UL side amplitude phase of the second measurement target signal U1 at the normal power, and stores the measurement result in the first storage unit 41.
  • the base station 2 requests the mobile station 3 to transmit the UL pilot signal U1 at zero power as the second measurement target signal.
  • the mobile station 3 transmits the second measurement target signal U1 to the base station 2 with zero power.
  • the base station 2 measures the UL side SIR and the UL side amplitude phase of the second measurement target signal U1 at zero power, and stores the measurement result in the first storage unit 41.
  • the first calculation unit 54A in the first control unit 54 of the base station 2 compares the DL side SIR at the normal power and the DL side SIR at the zero power of the first measurement target signal D1 to compare the DL side SIR. Interference power is calculated. Furthermore, the first calculation unit 54A calculates the UL side interference power by comparing the UL side SIR at the normal power and the UL side SIR at the zero power of the second measurement target signal U1. The first calculation unit 54A calculates the adjusted SIR by comparing the DL side interference power and the UL side interference power. Further, the first calculation unit 54A acquires an MCS value corresponding to the adjustment SIR.
  • the second calculation unit 54B in the first control unit 54 compares the DL side amplitude phase at the normal power and the DL side amplitude phase at the zero power of the first measurement target signal D1 to change the DL side phase. Calculate the amount. Further, the second calculation unit 54B compares the UL side amplitude phase at the normal power of the second measurement target signal U1 with the UL side amplitude phase at the zero power to calculate the UL side phase change amount. The second calculation unit 54B calculates the adjustment phase change amount by comparing the DL side phase change amount and the UL side phase change amount.
  • the first adjustment unit 54C adjusts the block size of the DL data signal, for example, based on the MCS value acquired by the first calculation unit 54A.
  • the second adjustment unit 54D adjusts the phase of the RF circuit, for example, based on the adjustment phase change amount calculated by the second calculation unit 54B.
  • the report request unit 51 in the base station 2 generates control information for the mobile station 3 (step S51).
  • the position information of the first measurement target signal in the control information is information for identifying the frequency position of any one DL pilot signal, for example, the DL pilot signal D1, out of the plurality of DL pilot signals.
  • the report request unit 51 in the base station 2 stores the control information in the control signal (step S52) and transmits the control signal to the mobile station 3 (step S53).
  • the second control unit 93C in the mobile station 3 extracts the control information from the control signal (Step S55), and sets the terminal in the extracted control information. Information is set (step S56).
  • the power control unit 53 in the base station 2 specifies, for example, the first measurement target signal D1, and the normal power is set as the transmission power of the first measurement target signal D1. Is set (step S57).
  • the power control unit 53 transmits the DL pilot signal to the mobile station 3 after setting the transmission power in step S57 (step S58).
  • the second phase measuring unit 76B in the mobile station 3 measures the DL side amplitude phase at the normal power of the first measurement target signal D1 (step S60).
  • the second phase measurement unit 76B measures the amplitude phase of the first measurement target signal D1 in the DL pilot signal as the DL side amplitude phase at the time of normal power.
  • the second SIR measurement unit 76A in the mobile station 3 measures the DL-side SIR at the normal power of the first measurement target signal D1 (step S61).
  • the second SIR measurement unit 76A measures the SIR of the first measurement target signal D1 in the DL pilot signal as the DL side SIR at the normal power.
  • the reporting unit 93A in the mobile station 3 stores the DL side amplitude phase and the DL side SIR at the normal power of the first measurement target signal D1 in the second storage unit 81 (step S62). Then, the reporting unit 93A stores the DL side amplitude phase and DL side SIR at the normal power of the first measurement target signal D1 in the UL pilot signal (step S63), and transmits the UL pilot signal to the base station 2. (Step S64).
  • the report receiving unit 52 in the base station 2 When receiving the UL pilot signal (step S65), the report receiving unit 52 in the base station 2 extracts the DL side amplitude phase and the DL side SIR at the normal power of the first measurement target signal D1 from the UL pilot signal. (Step S66). The report receiving unit 52 stores the DL side amplitude phase and the DL side SIR in the first storage unit 41 (step S67). Further, the report request unit 51 in the base station 2 generates control information including a measurement request for requesting measurement of the wireless quality at the time of zero power of the first measurement target signal (step S68), and controls in the control signal. Information is stored (step S69), and a control signal is transmitted to the mobile station 3 (step S70).
  • the mobile station 3 When receiving the control signal (step S71), the mobile station 3 extracts the control information from the control signal (step S72), sets the terminal setting information in the extracted control information (step S73), and is shown in FIG. The processing operation is terminated.
  • the power control unit 53 in the base station 2 sets zero power to the transmission power of the first measurement target signal (step S81).
  • the power control unit 53 in the base station 2 transmits a DL pilot signal to the mobile station 3 after setting the transmission power in step S81 (step S82).
  • the second phase measuring unit 76B in the mobile station 3 measures the DL side amplitude phase at zero power of the first measurement target signal D1 (step S84).
  • the second phase measurement unit 76B measures the amplitude phase of the first measurement target signal D1 in the DL pilot signal as the DL side amplitude phase at zero power.
  • the second SIR measurement unit 76A in the mobile station 3 measures the DL side SIR at the time of zero power of the first measurement target signal D1 (step S85).
  • the second SIR measurement unit 76A measures the SIR of the first measurement target signal D1 in the DL pilot signal as the DL-side SIR at zero power.
  • the second control unit 93C in the mobile station 3 stores the DL side amplitude phase and the DL side SIR at the time of zero power of the first measurement target signal D1 in the second storage unit 91 (step S86).
  • the reporting unit 93A in the mobile station 3 stores the DL side amplitude phase and the DL side SIR at the time of zero power of the first measurement target signal D1 in the UL pilot signal (step S87), and the UL pilot signal is transmitted to the base station. Transmit to the station 2 (step S88).
  • the report receiving unit 52 in the base station 2 When receiving the UL pilot signal (step S89), the report receiving unit 52 in the base station 2 extracts the DL side amplitude phase and the DL side SIR at the time of zero power of the first measurement target signal D1 from the UL pilot signal. (Step S90). The report receiving unit 52 stores the DL side amplitude phase and the DL side SIR in the first storage unit 41 (step S91). Further, the report request unit 51 in the base station 2 generates control information including the UL amplitude request and the normal power setting of the second measurement target signal U1 (step S92), and stores the control information in the control signal ( In step S93, a control signal is transmitted to the mobile station 3 (step S94).
  • the UL amplitude request is information for requesting the radio quality during normal power of the second measurement target signal U1 of the UL pilot signal.
  • step S101 when the second power control unit 93B in the mobile station 3 receives a control signal including a UL amplitude request from the base station 2 (step S101), the control information is extracted from the control signal (step S102). Terminal setting information in the extracted control information is set (step S103).
  • the second power control unit 93B in the mobile station 3 extracts the UL amplitude request in the control information (step S104), and based on the extracted UL amplitude request, the transmission power of the second measurement target signal of the UL pilot signal The normal power is set to (step S105). Then, the second power control unit 93B transmits the UL pilot signal after setting the transmission power in step S105 to the base station 2 (step S106).
  • the first phase measurement unit 24B in the base station 2 receives the UL pilot signal (step S107)
  • the first phase measurement unit 24B measures the UL side amplitude phase of the second measurement target signal U1 at the normal power from the UL pilot signal (Ste S108).
  • the first phase measurement unit 24B measures the UL side amplitude phase of the second measurement target signal U1 as the UL side phase amplitude phase during normal power.
  • the first SIR measurement unit 24A in the base station 2 measures the UL side SIR at the normal power of the second measurement target signal U1 from the UL pilot signal (step S109).
  • the first SIR measurement unit 24A measures the UL side SIR of the second measurement target signal U1 as the UL side SIR during normal power.
  • the first control unit 54 in the base station 2 stores the UL side amplitude phase and the UL side SIR in the first storage unit 41 (step S110). Further, the report request unit 51 in the base station 2 generates control information including the UL amplitude request and zero power setting of the second measurement target signal U1 (step S111), and stores the control information in the control signal ( In step S112, a control signal is transmitted to the mobile station 3 (step S113).
  • the second power control unit 93B in the mobile station 3 when the second power control unit 93B in the mobile station 3 receives a control signal from the base station 2 (step S121), the second power control unit 93B extracts control information from the control signal (step S122). Terminal setting information is set (step S123). The second power control unit 93B in the mobile station 3 extracts the UL amplitude request in the control information (step S124), and based on the extracted UL amplitude request, the transmission power of the second measurement target signal of the UL pilot signal. Is set to zero power (step S125). Then, the second power control unit 93B in the mobile station 3 transmits the UL pilot signal after setting the transmission power in step S125 to the base station 2 (step S126).
  • the first phase measurement unit 24B in the base station 2 measures the UL side amplitude phase of the second measurement target signal U1 at zero power from the UL pilot signal (Ste S128).
  • the first phase measurement unit 24B measures the UL side amplitude phase of the second measurement target signal U1 as the UL side phase amplitude phase at zero power.
  • the first SIR measurement unit 24A in the base station 2 measures the UL side SIR at the time of zero power of the second measurement target signal U1 from the UL pilot signal (step S129).
  • the first SIR measurement unit 24A measures the UL side SIR of the second measurement target signal U1 as the UL side SIR at zero power.
  • the first control unit 54 in the base station 2 stores the UL side amplitude phase and the UL side SIR in the first storage unit 41 (step S130).
  • the first calculation unit 54A in the base station 2 compares the UL side SIR at the normal power and the UL side SIR at the zero power of the second measurement target signal U1 to calculate the UL side interference power (step). S131).
  • the second calculation unit 54B in the base station 2 calculates the UL-side phase change amount by comparing the UL-side amplitude phase at the normal power and the UL-side amplitude phase at the zero power of the second measurement target signal U1.
  • the first calculation unit 54A in the base station 2 calculates the DL side interference power by comparing the DL side SIR at the normal power and the DL side SIR at the zero power of the first measurement target signal D1.
  • the second calculation unit 54B in the base station 2 calculates the DL side phase change amount by comparing the DL side amplitude phase at the normal power and the DL side amplitude phase at the zero power of the first measurement target signal D1.
  • Step S134 The first calculation unit 54A in the base station 2 compares the UL side SIR at the
  • the first calculation unit 54A in the base station 2 calculates the adjustment SIR obtained from the comparison result between the UL side interference power and the DL side interference power (step S135).
  • the second calculation unit 54B in the base station 2 calculates the adjustment phase change amount based on the difference between the UL side phase change amount and the DL side phase change amount (step S136).
  • the first calculation unit 54A in the base station 2 sets the MCS value corresponding to the adjustment SIR (step S137).
  • the first adjustment unit 54C in the base station 2 adjusts the block size of the DL data signal based on the set MCS value (step S138).
  • the second adjustment unit 54D in the base station 2 corrects the phase of the RF circuit (not shown) in the base station 2 based on the adjustment phase change amount (step S139), and ends the processing operation shown in FIG. To do.
  • the base station 2 transmits to the mobile station 3 a DL pilot signal in which the transmission power of the first measurement target signal D1 is set to normal power.
  • the mobile station 3 measures the SIR and the amplitude phase at the normal power of the first measurement target signal D1, and reports the measurement result to the base station 2.
  • the base station 2 transmits a DL pilot signal in which the transmission power of the first measurement target signal D1 is set to zero power to the mobile station 3.
  • the mobile station 3 measures the SIR and amplitude phase of the first measurement target signal D1 at zero power, and reports the measurement result to the base station 2.
  • the mobile station 3 transmits to the base station 2 a UL pilot signal in which the transmission power of the second measurement target signal U1 is set to normal power.
  • the base station 2 measures the SIR and amplitude phase of the second measurement target signal U1 during normal power. Further, the mobile station 3 transmits to the base station 2 a UL pilot signal in which the transmission power of the second measurement target signal U1 is set to zero power. The base station 2 measures the SIR and amplitude phase at zero power of the second measurement target signal U1.
  • the base station 2 calculates the interference power on the UL side from the SIR at the normal power and the SIR at the zero power of the second measurement target signal U1. Further, the base station 2 calculates the DL side interference power from the SIR at the normal power and the SIR at the zero power of the first measurement target signal D1. Further, the base station 2 calculates an adjustment SIR with the interference power on the UL side and the interference power on the DL side, acquires an MCS value corresponding to the adjustment SIR, and blocks the DL data signal based on the acquired MCS value. Adjust the size. As a result, by controlling the transmission output of the DL signal reflecting the UL side SIR and the DL side SIR, it is possible to ensure communication characteristics suitable for the actual radio quality. Moreover, since the SIRs of the DL pilot signal and the UL pilot signal at the same frequency at normal power and zero power are compared, communication quality suitable for the actual radio quality compared to the first embodiment with high accuracy. Can be secured.
  • the base station 2 calculates the UL-side phase change amount from the amplitude phase at the normal power and the amplitude phase at the zero power of the second measurement target signal U1. Furthermore, the base station 2 calculates the phase change amount on the DL side based on the amplitude phase during normal power and the amplitude phase during zero power of the first measurement target signal D1. Further, the base station 2 calculates an adjustment phase change amount from the UL side phase change amount and the DL side phase change amount, and adjusts the phase of the RF circuit based on the adjustment phase change amount. As a result, by controlling the transmission output of the DL signal reflecting the phase change amount on the UL side and the phase change amount on the DL side, it is possible to ensure communication characteristics suitable for the actual radio quality. In addition, since the amplitude phases of the DL pilot signal and the UL pilot signal at the same frequency at normal power and zero power are compared, communication suitable for actual radio quality compared to the first embodiment with high accuracy. Quality can be ensured.
  • the DL pilot signal D1 is designated as the first measurement target signal
  • the UL pilot signal U1 is designated as the second measurement target signal
  • the DL pilot signal D3 may be designated as the first measurement target signal
  • the UL pilot signal U3 may be designated as the second measurement target signal, and can be changed as appropriate.
  • the DL pilot signal D1 may be designated as the first measurement target signal
  • the UL pilot signal D3 may be designated as the second measurement target signal, and can be changed as appropriate.
  • the base station 2 measures the SIR and amplitude phase at zero power after measuring the SIR and amplitude phase at the normal power of the first measurement target signal D1. However, after measuring the SIR and amplitude phase at zero power of the first measurement target signal D1, the SIR and amplitude phase at normal power may be measured and can be changed as appropriate.
  • the base station 2 recognizes the pure interference signal of the UL signal and the pure interference signal of the DL signal, and calculates an accurate SIR in a state not affected by the interference signal on the base station 2 side. it can. As a result, an MCS value reflecting the actual DL radio quality is acquired, and DL communication characteristics reflecting the actual radio quality can be secured based on the MCS value.
  • the base station 2 of the present embodiment uses the DL side SIR and DL side amplitude phases of the first measurement target signal of the DL pilot signal and the normal phase of the second measurement target signal of the UL pilot signal.
  • the UL side SIR and the UL side amplitude phase at the time of power and zero power are acquired.
  • the base station 2 then transmits the DL signal transmission output based on the DL side SIR and DL side amplitude phase during normal power and zero power, and the UL side SIR and UL side amplitude phase during normal power and zero power. Controlled.
  • the base station 2 may control the transmission output of the DL signal based on the DL side SIR and the DL side amplitude phase at the time of normal power and zero power without measuring the UL side SIR and the UL side amplitude phase. . In this case, it is possible to ensure DL communication characteristics reflecting the actual radio quality on the DL side.
  • the base station 2 does not acquire the DL side SIR and DL side amplitude phase at normal power and zero power of the DL pilot signal, and measures the UL side SIR and UL side amplitude phase at normal power and zero power. Then, the transmission output of the DL signal may be controlled based on the measurement result. In this case, DL communication characteristics reflecting the actual radio quality on the UL side can be ensured.
  • the base station 2 of the present embodiment has been described as an integrated device having a wireless function and a control function, the present invention is not limited to this, and the base station 2 is configured by separately setting the wireless device and the control device. You may do it.
  • the wireless device includes an antenna and an RF circuit
  • the control device includes a memory and a processor.
  • FIG. 14 is a diagram illustrating an example of hardware of the communication device 100 that implements the base station 2.
  • the communication device 100 illustrated in FIG. 14 includes, for example, an antenna 101, a wireless circuit 102, a communication interface circuit 103, a memory 104, and a processor 105.
  • the radio circuit 102 performs predetermined processing such as modulation on the signal output from the processor 105, and transmits the processed signal via the antenna 101.
  • the radio circuit 102 performs predetermined processing such as demodulation on the signal received via the antenna 101 and outputs the result to the processor 105.
  • the radio circuit 102 implements the functions of the receiving unit 12 and the transmitting unit 13, for example.
  • the communication interface circuit 103 is an interface for connecting to the core network or another base station 2 by wired connection.
  • the memory 104 includes a first reception unit 21, a reception multiple access processing unit 22, a first demodulation unit 23, a line quality extraction unit 24, a first SIR measurement unit 24 ⁇ / b> A, and a first phase measurement unit.
  • a program for realizing the functions of 24B and the transmission power extraction unit 25 is stored.
  • the memory 104 includes a first transmission power control unit 31, a first modulation unit 32, a transmission multiple access processing unit 33, a first transmission unit 34, a broadcast information generation unit 35, and a first pilot generation of the transmission unit 13.
  • a program for realizing the functions of the unit 36 and the first control information generation unit 37 is stored. Further, the memory 104 stores programs for realizing the functions of the first line control unit 42, the report request unit 51, the report reception unit 52, the power control unit 53, and the first control unit 54 of the control unit 14. Has been.
  • the processor 105 reads out the program stored in the memory 104 from the memory 104 and executes the program, whereby the first receiving unit 21, the reception multiple access processing unit 22, the first demodulating unit 23, and the line quality extraction of the receiving unit 12
  • the function of the unit 24 is realized.
  • the processor 105 implements the functions of the first SIR measurement unit 24A, the first phase measurement unit 24B, and the transmission power extraction unit 25 of the reception unit 12 by executing a program.
  • the processor 105 reads out the program stored in the memory 104 from the memory 104 and executes it, whereby the first transmission power control unit 31, the first modulation unit 32, the transmission multiple access processing unit 33 and the first transmission unit 13 of the transmission unit 13. 1 function of the transmission unit 34 is realized.
  • the processor 105 implement
  • the processor 105 reads out the program stored in the memory 104 from the memory 104 and executes it, whereby the first line control unit 42, the report requesting unit 51, the report receiving unit 52, the power control unit 53, and the first control unit 14 of the control unit 14 are executed. 1 function of the control unit 54 is realized.
  • FIG. 15 is a diagram illustrating an example of hardware of the communication device 200 that implements the mobile station 3.
  • a communication apparatus 200 illustrated in FIG. 15 includes an antenna 201, a wireless circuit 202, a memory 203, and a processor 204.
  • the radio circuit 202 performs predetermined processing such as modulation on the signal output from the processor 204, and transmits the processed signal via the antenna 201.
  • the radio circuit 202 performs predetermined processing such as demodulation on the signal received via the antenna 201 and outputs the result to the processor 204.
  • the radio circuit 202 realizes the functions of the terminal-side receiving unit 62 and the terminal-side transmitting unit 63, for example.
  • the memory 203 includes a second receiving unit 71, a reception orthogonal multiple access processing unit 72, a second demodulating unit 73, a system information extracting unit 74, a control information extracting unit 75, and a second line quality of the terminal side receiving unit 62.
  • a program for realizing the function of the extraction unit 76 is stored. Further, the memory 203 stores a program for realizing the functions of the second SIR measurement unit 76A and the second phase measurement unit 76B of the terminal side reception unit 62.
  • the memory 203 includes a second transmission power control unit 81, a second modulation unit 82, a transmission orthogonal multiple access processing unit 83, a second transmission unit 84, and a second control information extraction unit 85 of the terminal side transmission unit 63.
  • a program for realizing the function of the second pilot generation unit 86 is stored.
  • the memory 203 has a program for realizing the functions of the terminal control unit 92, the second line control unit 93, the report unit 93A, the second power control unit 93B, and the second control unit 93C of the terminal side control unit 64. Is stored.
  • the processor 204 reads out the program stored in the memory 203 from the memory 203 and executes it, whereby the second receiver 71, the reception orthogonal multiple access processor 72, the second demodulator 73, and the terminal-side receiver 62, The function of the system information extraction unit 74 is realized. Furthermore, the processor 204 executes the program, so that the control information extracting unit 75, the second line quality extracting unit 76, the second SIR measuring unit 76A, and the second phase measuring unit 76B of the terminal side receiving unit 62 are executed. Realize the function.
  • the processor 204 reads out the program stored in the memory 203 from the memory 203 and executes the program, whereby the second transmission power control unit 81, the second modulation unit 82, and the transmission orthogonal multiple access processing unit of the terminal-side transmission unit 63 83 functions are realized. Furthermore, the processor 204 implements the functions of the second transmission unit 84, the second control information extraction unit 85, and the second pilot generation unit 86 of the terminal-side transmission unit 63 by executing the program. The processor 204 reads out the program stored in the memory 203 from the memory 203 and executes it, whereby the terminal control unit 92, the second line control unit 93, the reporting unit 93A, and the second power control of the terminal-side control unit 64 are executed. The functions of the unit 93B and the second control unit 93C are realized.
  • each component of each part illustrated does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution / integration of each part is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in arbitrary units according to various loads and usage conditions. Can be configured.
  • each device is all or any part of it on a CPU (Central Processing Unit) (or a micro computer such as MPU (Micro Processing Unit) or MCU (Micro Controller Unit)). You may make it perform.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • MCU Micro Controller Unit
  • Various processing functions may be executed entirely or arbitrarily on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic. Needless to say.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A base station 2 transmits a plurality of downlink pilot signals to a mobile station 3 using a plurality of frequencies within a wireless signal and receives a plurality of uplink pilot signals from the mobile station 3 using a plurality of frequencies. The base station 2 has a report-requesting unit 51, a transmission unit 13, and a first control unit 54. The report-requesting unit 51 requests the mobile station 3 to measure the wireless quality of a first signal to be measured among the plurality of downlink pilot signals. The transmission unit 13 makes controllable the output of the first signal to be measured and transmits a downlink pilot signal including the first signal to be measured to the mobile station 3. The first control unit 54 receives the wireless quality of the first signal to be measured that was measured by the mobile station 3 and controls the transmission of a wireless signal to the mobile station 3 on the basis of the wireless quality.

Description

通信装置、送信制御方法及び無線通信システムCOMMUNICATION DEVICE, TRANSMISSION CONTROL METHOD, AND RADIO COMMUNICATION SYSTEM
 本発明は、通信装置、送信制御方法及び無線通信システムに関する。 The present invention relates to a communication device, a transmission control method, and a wireless communication system.
 3GPP(Third Generation Partnership Project)が仕様策定する第5世代移動体通信の無線通信システムでは、例えば、24GHz~40GHz帯や66GHz~86GHz帯等のミリ波帯で基地局側アンテナとして多素子アンテナが使用される。しかしながら、アンテナの素子数が多くなると、移動局が測定するDL(Down Link)パイロット信号の数は勿論のこと、移動局が基地局に報告する、例えばCQI(Channel Quality Indicator)等の測定結果の量も増える。そこで、無線通信システムでは、DLとUL(Up Link)との間で無線リンクの対称性が利用できるTDD(Time Division Duplex)を採用することで、移動局が基地局に報告する測定結果の量を少なくする方法が知られている。更に、基地局は、移動局からのULパイロット信号のSIR(Signal to Interference Ratio)を測定し、他の情報を併せ、測定SIRに対応したMCS(Modulation and Coding Scheme)値を決定し、更に、DLデータ信号の送信を制御する(送信電力設定、送信周波数領域の位置決定、送信アンテナ間の位相の設定等)。 In the 5th generation mobile communication wireless communication system defined by 3GPP (Third Generation Partnership Project), for example, a multi-element antenna is used as a base station side antenna in a millimeter wave band such as 24 GHz to 40 GHz band or 66 GHz to 86 GHz band. Is done. However, when the number of antenna elements increases, not only the number of DL (Down Link) pilot signals measured by the mobile station, but also the measurement results such as CQI (Channel Quality Indicator) reported by the mobile station to the base station. The amount also increases. Therefore, in the wireless communication system, the amount of measurement results reported by the mobile station to the base station by adopting TDD (Time Division Duplex) that can use the symmetry of the radio link between DL and UL (Up Link). There are known methods for reducing the above. Furthermore, the base station measures the SIR (Signal to Interference Ratio) of the UL pilot signal from the mobile station, determines other MCS (Modulation and Coding Scheme) values corresponding to the measured SIR, and other information. DL data signal transmission is controlled (transmission power setting, transmission frequency region position determination, phase setting between transmission antennas, etc.).
特開2016-105659号公報Japanese Unexamined Patent Publication No. 2016-105659 特開2016-115949号公報JP 2016-115949 A 国際公開第2008/146494号International Publication No. 2008/146494 特開2016-115949号公報JP 2016-115949 A
 しかしながら、TDD方式を採用した無線通信システムでは、ULの無線干渉状態等の無線品質と、DLの無線干渉状態等の無線品質とが異なる。その結果、基地局は、ULパイロット信号の測定SIRに対応したMCS値が実際のDLの無線品質を反映したものではないため、DLデータ信号の通信品質を確保できない。例えば、DLに比較してULの電波干渉が少ない環境下では、移動局が測定するDL側のSIRに比較して基地局が測定するUL側のSIRの方が良く、基地局が移動局に対して送信するDLデータ信号に適用するMCS値は実際のDL無線品質よりも高くなる。その結果、移動局は、DLデータ信号の受信に失敗する可能性が高くなる。 However, in a radio communication system employing the TDD scheme, radio quality such as a UL radio interference state is different from radio quality such as a DL radio interference state. As a result, the base station cannot ensure the communication quality of the DL data signal because the MCS value corresponding to the measurement SIR of the UL pilot signal does not reflect the actual radio quality of the DL. For example, in an environment where there is less UL radio interference compared to DL, the UL side SIR measured by the base station is better than the DL side SIR measured by the mobile station, and the base station becomes the mobile station. On the other hand, the MCS value applied to the DL data signal to be transmitted is higher than the actual DL radio quality. As a result, the mobile station is likely to fail to receive the DL data signal.
 一つの側面では、実際の無線品質に適した通信特性を確保できる通信装置、送信制御方法及び無線通信システムを提供することを目的とする。 An object of one aspect is to provide a communication device, a transmission control method, and a wireless communication system that can ensure communication characteristics suitable for actual wireless quality.
 一つの態様の通信装置は、他の通信装置に対して無線信号内の複数の周波数を用いて複数の第1のパイロット信号を送信すると共に、前記他の通信装置から前記複数の周波数を用いて複数の第2のパイロット信号を受信する。通信装置は、要求部と、送信部と、受信部とを有する。要求部は、前記複数の第1のパイロット信号の内、指定された第1の測定対象信号の出力制御前後の無線品質の測定を前記他の通信装置に要求する。送信部は、前記第1の測定対象信号の出力を制御可能にし、当該第1の測定対象信号を含む前記第1のパイロット信号を前記他の通信装置に送信する。受信部は、前記他の通信装置にて測定された前記第1の測定対象信号の無線品質を受信する。 A communication apparatus according to one aspect transmits a plurality of first pilot signals using a plurality of frequencies in a radio signal to another communication apparatus, and uses the plurality of frequencies from the other communication apparatus. A plurality of second pilot signals are received. The communication device includes a request unit, a transmission unit, and a reception unit. The requesting unit requests the other communication device to measure the radio quality before and after the output control of the designated first measurement target signal among the plurality of first pilot signals. The transmission unit can control the output of the first measurement target signal, and transmits the first pilot signal including the first measurement target signal to the other communication device. The receiving unit receives the wireless quality of the first measurement target signal measured by the other communication device.
 一つの態様では、実際の無線品質に適した通信特性を確保できる。 In one aspect, communication characteristics suitable for the actual wireless quality can be secured.
図1は、実施例1の無線通信システムの一例を示す説明図である。FIG. 1 is an explanatory diagram of an example of a wireless communication system according to the first embodiment. 図2は、基地局の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a base station. 図3は、基地局内の第1の回線制御部の機能構成の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a functional configuration of the first line control unit in the base station. 図4は、移動局の一例を示すブロック図である。FIG. 4 is a block diagram illustrating an example of a mobile station. 図5は、移動局内の第2の回線制御部の機能構成の一例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of a functional configuration of the second line control unit in the mobile station. 図6は、サブフレームのリソースブロック構成の一例を示す説明図である。FIG. 6 is an explanatory diagram illustrating an example of a resource block configuration of a subframe. 図7は、サブフレーム内の測定対象信号を識別する管理テーブルの一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of a management table for identifying a measurement target signal in a subframe. 図8は、実施例1の送信出力制御処理に関わる基地局及び移動局の処理動作の一例を示すシーケンス図である。FIG. 8 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process of the first embodiment. 図9は、実施例1の送信出力制御処理に関わる基地局及び移動局の処理動作の一例を示すシーケンス図である。FIG. 9 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process of the first embodiment. 図10は、実施例2の送信出力制御処理に関わる基地局及び移動局の処理動作の一例を示すシーケンス図である。FIG. 10 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process of the second embodiment. 図11は、実施例2の送信出力制御処理に関わる基地局及び移動局の処理動作の一例を示すシーケンス図である。FIG. 11 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process according to the second embodiment. 図12は、実施例2の送信出力制御処理に関わる基地局及び移動局の処理動作の一例を示すシーケンス図である。FIG. 12 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process according to the second embodiment. 図13は、実施例2の送信出力制御処理に関わる基地局及び移動局の処理動作の一例を示すシーケンス図である。FIG. 13 is a sequence diagram illustrating an example of processing operations of the base station and the mobile station related to the transmission output control process according to the second embodiment. 図14は、基地局を実現する通信装置のハードウェア構成の一例を示す説明図である。FIG. 14 is an explanatory diagram illustrating an example of a hardware configuration of a communication device that implements a base station. 図15は、移動局を実現する通信装置のハードウェア構成の一例を示す説明図である。FIG. 15 is an explanatory diagram illustrating an example of a hardware configuration of a communication device that implements a mobile station.
 以下、図面に基づいて、本願の開示する通信装置、送信制御方法及び無線通信システムの実施例を詳細に説明する。尚、各実施例により、開示技術が限定されるものではない。また、以下に示す各実施例は、矛盾を起こさない範囲で適宜組み合わせても良い。 Hereinafter, embodiments of a communication device, a transmission control method, and a wireless communication system disclosed in the present application will be described in detail based on the drawings. The disclosed technology is not limited by each embodiment. Moreover, you may combine suitably each Example shown below in the range which does not cause contradiction.
 図1は、実施例1の無線通信システム1の一例を示す説明図である。図1に示す無線通信システム1は、基地局2と、複数の移動局3とを有する。基地局2は、移動局3との間で、例えば、TDD(Time Division Duplex)方式の無線信号を送受信する通信装置である。基地局2は、無線信号のDL(Down Link)信号を移動局3に送信する。基地局2は、無線信号のUL(Up Link)信号を移動局3から受信する。 FIG. 1 is an explanatory diagram illustrating an example of a wireless communication system 1 according to the first embodiment. A wireless communication system 1 illustrated in FIG. 1 includes a base station 2 and a plurality of mobile stations 3. The base station 2 is a communication device that transmits and receives, for example, a TDD (Time Division Duplex) wireless signal to and from the mobile station 3. The base station 2 transmits a DL (Down Link) signal of a radio signal to the mobile station 3. The base station 2 receives a radio link UL (Up Link) signal from the mobile station 3.
 図2は、基地局2の一例を示すブロック図である。図2に示す基地局2は、通信アンテナ11と、受信部12と、送信部13と、制御部14とを有する。受信部12は、第1の受信部21と、受信多元接続処理部22と、第1の復調部23と、回線品質抽出部24と、送信電力抽出部25とを有する。回線品質抽出部24は、第1のSIR測定部24Aと、第1の位相測定部24Bとを有する。第1の受信部21は、通信アンテナ11で移動局3からのUL信号を受信する。受信多元接続処理部22は、UL信号を時分割する多元接続処理を実行する。第1の復調部23は、時分割したUL信号を復調・復号化して受信データを取得し、その取得した受信データを出力する。回線品質抽出部24は、UL信号の回線品質を抽出する。送信電力抽出部25は、UL信号の送信電力を抽出する。第1のSIR測定部24Aは、UL信号のSIRを測定する。第1の位相測定部24Bは、UL信号の振幅位相を測定する。 FIG. 2 is a block diagram illustrating an example of the base station 2. The base station 2 illustrated in FIG. 2 includes a communication antenna 11, a reception unit 12, a transmission unit 13, and a control unit 14. The reception unit 12 includes a first reception unit 21, a reception multiple access processing unit 22, a first demodulation unit 23, a line quality extraction unit 24, and a transmission power extraction unit 25. The line quality extraction unit 24 includes a first SIR measurement unit 24A and a first phase measurement unit 24B. The first receiving unit 21 receives the UL signal from the mobile station 3 by the communication antenna 11. The reception multiple access processing unit 22 executes multiple access processing for time-division of UL signals. The first demodulator 23 demodulates and decodes the time-division UL signal to acquire reception data, and outputs the acquired reception data. The line quality extraction unit 24 extracts the line quality of the UL signal. The transmission power extraction unit 25 extracts the transmission power of the UL signal. The first SIR measurement unit 24A measures the SIR of the UL signal. The first phase measurement unit 24B measures the amplitude phase of the UL signal.
 送信部13は、第1の送信電力制御部31と、第1の変調部32と、送信多元処理接続部33と、第1の送信部34と、報知情報生成部35と、第1のパイロット生成部36と、第1の制御情報生成部37とを有する。第1の送信電力制御部31は、送信データを伝送するDL信号の送信電力を制御する。第1の変調部32は、送信電力制御後の送信データを符号化・変調する。送信多元処理接続部33は、変調した送信データを時分割多重する多元接続処理を実行する。第1の送信部34は、時分割多重した送信データをDL信号として通信アンテナ11から移動局3に無線送信する。報知情報生成部35は、送信データに付加する報知情報を生成する。第1のパイロット生成部36は、移動局3に対するDLパイロット信号を生成する。第1の制御情報生成部37は、送信データに付加する制御情報を生成する。第1の制御情報生成部37は、要求を直接的にまたは間接的に指示するための制御情報を生成する。 The transmission unit 13 includes a first transmission power control unit 31, a first modulation unit 32, a transmission multiple processing connection unit 33, a first transmission unit 34, a broadcast information generation unit 35, and a first pilot. A generation unit 36 and a first control information generation unit 37 are included. The first transmission power control unit 31 controls the transmission power of the DL signal that transmits the transmission data. The first modulation unit 32 encodes and modulates transmission data after transmission power control. The transmission multiple process connection unit 33 executes a multiple access process for time-division multiplexing modulated transmission data. The first transmitter 34 wirelessly transmits time-division multiplexed transmission data from the communication antenna 11 to the mobile station 3 as a DL signal. The broadcast information generation unit 35 generates broadcast information to be added to transmission data. The first pilot generator 36 generates a DL pilot signal for the mobile station 3. The first control information generation unit 37 generates control information to be added to transmission data. The first control information generation unit 37 generates control information for instructing a request directly or indirectly.
 制御部14は、第1の記憶部41と、第1の回線制御部42とを有する。第1の記憶部41は、各種情報を記憶する領域である。第1の回線制御部42は、基地局2全体を制御する。図3は、第1の回線制御部42の機能構成の一例を示す説明図である。図3に示す第1の回線制御部42は、報告要求部51と、報告受信部52と、電力制御部53と、第1の制御部54とを有する。報告要求部51は、TDD方式の制御信号を使用して、複数のDLパイロット信号の内、第1の測定対象信号の無線品質の測定を移動局3に要求すると共に、その第1の測定対象信号の測定結果の報告を移動局3に要求する。第1の測定対象信号は、複数のDLパイロット信号の内、無線品質、例えば、SIR及び振幅位相の測定が要求される指定のDLパイロット信号である。尚、第1の測定対象信号は、例えば、図6に示す指定のDLパイロット信号D1及びD5である。報告要求部51は、DLパイロット信号内の第1の測定対象信号D1の通常電力時のDL側SIR及び第1の測定対象信号D5の零電力時のDL側SIRの測定を移動局3に要求する。また、報告要求部51は、DLパイロット信号内の第1の測定対象信号D1の通常電力時のDL側振幅位相及び第1の測定対象信号D5の零電力時のDL側振幅位相の測定を移動局3に要求する。尚、説明の便宜上、第1の測定対象信号としてDLパイロット信号D1及びDLパイロット信号D5を例示したが、複数のDLパイロット信号の内、任意のDLパイロット信号を指定できる。DLパイロット信号D1の送信電力を通常電力、DLパイロット信号D5の送信電力を零電力としたが、これに限定されるものではなく、DLパイロット信号D1を零電力、DLパイロット信号D5を通常電力としても良く、適宜変更可能である。 The control unit 14 includes a first storage unit 41 and a first line control unit 42. The first storage unit 41 is an area for storing various types of information. The first line control unit 42 controls the entire base station 2. FIG. 3 is an explanatory diagram illustrating an example of a functional configuration of the first line control unit 42. The first line control unit 42 illustrated in FIG. 3 includes a report request unit 51, a report reception unit 52, a power control unit 53, and a first control unit 54. The report request unit 51 uses the TDD control signal to request the mobile station 3 to measure the radio quality of the first measurement target signal among the plurality of DL pilot signals, and the first measurement target The mobile station 3 is requested to report the signal measurement result. The first measurement target signal is a designated DL pilot signal that requires measurement of radio quality, for example, SIR and amplitude phase, among a plurality of DL pilot signals. The first measurement target signal is, for example, designated DL pilot signals D1 and D5 shown in FIG. The report request unit 51 requests the mobile station 3 to measure the DL side SIR at the normal power of the first measurement target signal D1 in the DL pilot signal and the DL side SIR at the zero power of the first measurement target signal D5. To do. In addition, the report request unit 51 moves the measurement of the DL side amplitude phase at the normal power of the first measurement target signal D1 and the DL side amplitude phase at the zero power of the first measurement target signal D5 in the DL pilot signal. Request to station 3. For convenience of explanation, the DL pilot signal D1 and the DL pilot signal D5 are exemplified as the first measurement target signal. However, an arbitrary DL pilot signal can be designated from among a plurality of DL pilot signals. Although the transmission power of the DL pilot signal D1 is normal power and the transmission power of the DL pilot signal D5 is zero power, the present invention is not limited to this, and the DL pilot signal D1 is zero power and the DL pilot signal D5 is normal power. And can be changed as appropriate.
 報告受信部52は、DLパイロット信号の第1の測定対象信号D1及びD5の測定結果の報告を移動局3から受信する。第1の測定対象信号の測定結果は、第1の測定対象信号D1の通常電力時のDL側SIR及びDL側振幅位相、第1の測定対象信号D5の零電力時のDL側SIR及びDL側振幅位相である。電力制御部53は、DLパイロット信号内の第1の測定対象信号D1及びD5の送信電力のON/OFFを制御すべく、第1の送信電力制御部31を制御する。電力制御部53は、第1の測定対象信号D1の送信電力をON制御して通常電力、第1の測定対象信号D5の送信電力をOFF制御して零電力とする。第1の制御部54は、第1の算出部54Aと、第2の算出部54Bと、第1の調整部54Cと、第2の調整部54Dとを有する。第1の制御部54は、移動局3にて測定された第1の測定対象信号の無線品質に関する情報を移動局3から受信し、その無線品質に基づき、移動局3に対して送信する無線信号の送信を制御する(MCS決定、送信電力設定、送信周波数領域の位置決定、送信アンテナ間の位相の設定等)。 The report receiving unit 52 receives from the mobile station 3 reports of measurement results of the first measurement target signals D1 and D5 of the DL pilot signal. The measurement result of the first measurement target signal is the DL side SIR and DL side amplitude phase at the normal power of the first measurement target signal D1, and the DL side SIR and DL side at the zero power of the first measurement target signal D5. Amplitude phase. The power control unit 53 controls the first transmission power control unit 31 to control ON / OFF of the transmission power of the first measurement target signals D1 and D5 in the DL pilot signal. The power control unit 53 controls the transmission power of the first measurement target signal D1 to ON to control normal power, and controls the transmission power of the first measurement target signal D5 to OFF to zero power. The first control unit 54 includes a first calculation unit 54A, a second calculation unit 54B, a first adjustment unit 54C, and a second adjustment unit 54D. The first control unit 54 receives from the mobile station 3 information related to the radio quality of the first measurement target signal measured by the mobile station 3 and transmits to the mobile station 3 based on the radio quality. Signal transmission is controlled (MCS determination, transmission power setting, transmission frequency region position determination, phase setting between transmission antennas, etc.).
 第1の算出部54Aは、第1の測定対象信号D1の通常電力時のDL側SIRと第1の測定対象信号D5の零電力時のDL側SIRとを比較してDL側干渉電力を算出する。更に、第1の算出部54Aは、第1のSIR測定部24Aにて測定されたULパイロット信号内の第2の測定対象信号U1の通常電力時のUL側SIRと第2の測定対象信号U5の零電力時のUL側SIRとを比較してUL側干渉電力を算出する。尚、第1のSIR測定部24Aは、ULパイロット信号内の第2の測定対象信号U1の通常電力時のUL側SIR及び、第2の測定対象信号U5の零電力時のUL側SIRを測定する。尚、ULパイロット信号は、DLパイロット信号と同一周波数を時間多重で使用し、例えば、図6に示すDLパイロット信号D1及びULパイロット信号U1は同一周波数である。第1の算出部54Aは、DL側干渉電力とUL側干渉電力とを比較して調整SIRを算出する。更に、第1の算出部54Aは、調整SIRに対応したMCS値を取得する。 The first calculation unit 54A compares the DL side SIR at the normal power of the first measurement target signal D1 with the DL side SIR at the zero power of the first measurement target signal D5 to calculate the DL side interference power. To do. Further, the first calculation unit 54A includes the UL side SIR and the second measurement target signal U5 at the normal power of the second measurement target signal U1 in the UL pilot signal measured by the first SIR measurement unit 24A. The UL side interference power is calculated by comparing with the UL side SIR at the time of zero power. The first SIR measurement unit 24A measures the UL side SIR at the normal power of the second measurement target signal U1 in the UL pilot signal and the UL side SIR at the zero power of the second measurement target signal U5. To do. The UL pilot signal uses the same frequency as that of the DL pilot signal in a time multiplexed manner. For example, the DL pilot signal D1 and the UL pilot signal U1 shown in FIG. 6 have the same frequency. The first calculation unit 54A calculates the adjusted SIR by comparing the DL side interference power and the UL side interference power. Further, the first calculation unit 54A acquires an MCS value corresponding to the adjustment SIR.
 第2の算出部54Bは、第1の測定対象信号D1の通常電力時のDL側振幅位相と第1の測定対象信号D5の零電力時のDL側振幅位相とを比較してDL側位相変化量を算出する。更に、第2の算出部54Bは、第1の位相測定部24Bにて測定されたULパイロット信号内の第2の測定対象信号U1の通常電力時のUL側振幅位相と第2の測定対象信号U5の零電力時のUL側振幅位相とを比較してUL側位相変化量を算出する。尚、第1の位相測定部24Bは、ULパイロット信号内の第2の測定対象信号U1の通常電力時のUL側振幅位相及び、第2の測定対象信号U5の零電力時のUL側振幅位相を測定する。第2の算出部54Bは、DL側位相変化量とUL側位相変化量とを比較して調整位相変化量を算出する。 The second calculation unit 54B compares the DL side amplitude phase at the normal power of the first measurement target signal D1 and the DL side amplitude phase at the zero power of the first measurement target signal D5 to compare the DL side phase change. Calculate the amount. Furthermore, the second calculation unit 54B includes the UL-side amplitude phase and the second measurement target signal during normal power of the second measurement target signal U1 in the UL pilot signal measured by the first phase measurement unit 24B. The UL side phase change amount is calculated by comparing the UL side amplitude phase at zero power of U5. The first phase measurement unit 24B includes the UL side amplitude phase at the normal power of the second measurement target signal U1 in the UL pilot signal and the UL side amplitude phase at the zero power of the second measurement target signal U5. Measure. The second calculation unit 54B calculates the adjustment phase change amount by comparing the DL side phase change amount and the UL side phase change amount.
 第1の調整部54Cは、第1の算出部54Aにて取得したMCS値に基づき、例えば、DLデータ信号のブロックサイズを調整する。第2の調整部54Dは、第2の算出部54Bにて算出した調整位相変化量に基づき、例えば、RF回路の位相を調整する。 The first adjustment unit 54C adjusts the block size of the DL data signal, for example, based on the MCS value acquired by the first calculation unit 54A. The second adjustment unit 54D adjusts the phase of the RF circuit, for example, based on the adjustment phase change amount calculated by the second calculation unit 54B.
 図4は、移動局3の一例を示すブロック図である。図4に示す移動局3は、端末側通信アンテナ61と、端末側受信部62と、端末側送信部63と、端末側制御部64とを有する。端末側受信部62は、第2の受信部71と、受信直交多元接続処理部72と、第2の復調部73と、システム情報抽出部74と、制御情報抽出部75と、第2の回線品質抽出部76とを有する。第2の受信部71は、端末側通信アンテナ61で基地局2からのDL信号を受信する。受信多元接続処理部72は、DL信号を時分割する多元接続処理を実行する。第2の復調部73は、時分割したDL信号を復調・復号化して受信データを取得し、その取得した受信データを出力する。システム情報抽出部74は、受信データ内のシステム情報を抽出する。制御情報抽出部75は、DLの制御信号を抽出する。第2の回線品質抽出部76は、DL信号の回線品質を抽出する。第2の回線品質抽出部76は、第2のSIR測定部76Aと、第2の位相測定部76Bとを有する。第2のSIR測定部76Aは、DL信号のSIRを測定する。第2の位相測定部76Bは、DL信号の振幅位相を測定する。 FIG. 4 is a block diagram illustrating an example of the mobile station 3. The mobile station 3 illustrated in FIG. 4 includes a terminal-side communication antenna 61, a terminal-side receiving unit 62, a terminal-side transmitting unit 63, and a terminal-side control unit 64. The terminal side receiving unit 62 includes a second receiving unit 71, a reception orthogonal multiple access processing unit 72, a second demodulating unit 73, a system information extracting unit 74, a control information extracting unit 75, and a second line. And a quality extraction unit 76. The second receiver 71 receives the DL signal from the base station 2 by the terminal-side communication antenna 61. The reception multiple access processing unit 72 executes multiple access processing that time-divides the DL signal. The second demodulator 73 demodulates and decodes the time-divided DL signal to acquire reception data, and outputs the acquired reception data. The system information extraction unit 74 extracts system information in the received data. The control information extraction unit 75 extracts a DL control signal. The second line quality extraction unit 76 extracts the line quality of the DL signal. The second line quality extraction unit 76 includes a second SIR measurement unit 76A and a second phase measurement unit 76B. The second SIR measurement unit 76A measures the SIR of the DL signal. The second phase measurement unit 76B measures the amplitude phase of the DL signal.
 端末側送信部63は、第2の送信電力制御部81と、第2の変調部82と、送信直交多元接続処理部83と、第2の送信部84と、第2の制御情報生成部85と、第2のパイロット生成部86とを有する。第2の送信電力制御部81は、送信データを伝送するUL信号の送信電力を制御する。第2の変調部82は、送信電力制御後の送信データを符号化・変調する。送信多元処理接続部83は、変調した送信データを時分割多重する多元接続処理を実行する。第2の送信部84は、時分割多重した送信データをUL信号として端末側通信アンテナ61から基地局2に無線送信する。第2の制御情報生成部85は、送信データに付加する制御情報を生成する。第2のパイロット生成部86は、基地局2に対するULパイロット信号を生成する。 The terminal-side transmission unit 63 includes a second transmission power control unit 81, a second modulation unit 82, a transmission orthogonal multiple access processing unit 83, a second transmission unit 84, and a second control information generation unit 85. And a second pilot generation unit 86. The second transmission power control unit 81 controls the transmission power of the UL signal that transmits the transmission data. The second modulation unit 82 encodes and modulates transmission data after transmission power control. The transmission multiple process connection unit 83 executes a multiple access process for time-division multiplexing modulated transmission data. The second transmitter 84 wirelessly transmits time-division multiplexed transmission data from the terminal-side communication antenna 61 to the base station 2 as a UL signal. The second control information generation unit 85 generates control information to be added to the transmission data. The second pilot generation unit 86 generates a UL pilot signal for the base station 2.
 端末側制御部64は、第2の記憶部91と、端末制御部92と、第2の回線制御部93とを有する。第2の記憶部91は、各種情報を記憶する領域である。第2の記憶部91は、例えば、DL側SIR及びDL側振幅位相を記憶する領域である。端末制御部92は、移動局3内のRF回路を制御する。尚、RF回路は、例えば、第2の受信部71、受信直交多元接続処理部72、第2の復調部73、第2の変調部82、送信直交多元接続処理部83及び第2の送信部84等である。第2の回線制御部93は、移動局3全体を制御する。図5は、移動局3内の第2の回線制御部93の機能構成の一例を示す説明図である。図5に示す第2の回線制御部93は、報告部93Aと、第2の電力制御部93Bと、第2の制御部93Cとを有する。 The terminal-side control unit 64 includes a second storage unit 91, a terminal control unit 92, and a second line control unit 93. The second storage unit 91 is an area for storing various information. The second storage unit 91 is an area for storing, for example, the DL side SIR and the DL side amplitude phase. The terminal control unit 92 controls the RF circuit in the mobile station 3. The RF circuit includes, for example, a second reception unit 71, a reception orthogonal multiple access processing unit 72, a second demodulation unit 73, a second modulation unit 82, a transmission orthogonal multiple access processing unit 83, and a second transmission unit. 84 etc. The second line control unit 93 controls the entire mobile station 3. FIG. 5 is an explanatory diagram showing an example of a functional configuration of the second line control unit 93 in the mobile station 3. The second line control unit 93 illustrated in FIG. 5 includes a report unit 93A, a second power control unit 93B, and a second control unit 93C.
 第2のSIR測定部76Aは、DLパイロット信号の測定要求に応じて第1の測定対象信号D1の通常電力時のDL側SIR及び第1の測定対象信号D5の零電力時のDL側SIRを測定する。第2の位相測定部76Bは、DLパイロット信号の測定要求に応じて第1の測定対象信号D1の通常電力時のDL側振幅位相及び第1の測定対象信号D5の零電力時のDL側振幅位相を測定する。報告部93Aは、DLパイロット信号の測定結果をULパイロット信号で基地局2に報告する。測定結果は、例えば、DLパイロット信号の第1の測定対象信号D1の通常電力時及び第1の測定対象信号D5の零電力時のDL側SIRと、第1の測定対象信号D1の通常電力時及び第1の測定対象信号D5の零電力時のDL側振幅位相とである。 The second SIR measurement unit 76A determines the DL side SIR at the normal power of the first measurement target signal D1 and the DL side SIR at the zero power of the first measurement target signal D5 in response to the DL pilot signal measurement request. taking measurement. The second phase measurement unit 76B responds to the DL pilot signal measurement request, and the DL side amplitude phase at the normal power of the first measurement target signal D1 and the DL side amplitude at the zero power of the first measurement target signal D5. Measure the phase. The reporting unit 93A reports the DL pilot signal measurement result to the base station 2 using a UL pilot signal. The measurement results include, for example, the DL side SIR at the normal power of the first measurement target signal D1 of the DL pilot signal and the zero power of the first measurement target signal D5, and the normal power of the first measurement target signal D1. And the DL side amplitude phase at the time of zero power of the first measurement target signal D5.
 第2の電力制御部93Bは、ULパイロット信号の第2の測定対象信号U1及びU5の送信電力をON/OFF制御すべく、第2の送信電力制御部81を制御する。第2の電力制御部93Bは、ULパイロット信号内の第2の測定対象信号U1の送信電力をON制御して通常電力、第2の測定対象信号U5の送信電力をOFF制御して零電力とする。第2の制御部93Cは、第2の回線制御部93全体を制御する。 The second power control unit 93B controls the second transmission power control unit 81 so as to perform ON / OFF control of the transmission power of the second measurement target signals U1 and U5 of the UL pilot signal. The second power control unit 93B controls the transmission power of the second measurement target signal U1 in the UL pilot signal to ON to control normal power, and controls the transmission power of the second measurement target signal U5 to OFF to zero power. To do. The second control unit 93C controls the entire second line control unit 93.
 図6は、サブフレームのリソースブロックの構成の一例を示す説明図である。図6に示すサブフレームは、例えば、Self-ContainedのTDDサブフレームである。図6に示すサブフレームは、制御信号、DL区間、ガード区間、UL区間を時分割し、制御信号、DL区間及びUL区間は、同一周波数帯を使用する。制御信号は、Layer1の制御情報の転送に使用するRB(Resource Block)である。DL区間は、DLパイロット信号及びDLデータ信号の転送に使用するRBである。UL区間は、ULパイロット信号及びULデータ信号の転送に使用するRBである。DLパイロット信号は、例えば、周波数F1~F16を使用してDLパイロット信号D1~D8を搭載するRBである。例えば、周波数F1及びF9にDLパイロット信号D1、周波数F2及びF10にDLパイロット信号D2、周波数F3及びF11にDLパイロット信号D3、周波数F4及びF12にDLパイロット信号D4を搭載する。また、周波数F5及びF13にDLパイロット信号D5、周波数F6及びF14にDLパイロット信号D6、周波数F7及びF15にDLパイロット信号D7、周波数F8及びF16にDLパイロット信号D8を搭載する。ULパイロット信号は、例えば、DL区間と同一の周波数F1~F16を使用してULパイロット信号U1~U8を搭載するRBである。例えば、周波数F1及びF9にULパイロット信号U1、周波数F2及びF10にULパイロット信号U2、周波数F3及びF11にULパイロット信号U3、周波数F4及びF12にULパイロット信号U4を搭載する。周波数F5及びF13にULパイロット信号U5、周波数F6及びF14にULパイロット信号U6、周波数F7及びF15にULパイロット信号U7、周波数F8及びF16にULパイロット信号U8を搭載する。尚、説明の便宜上、第1の測定対象信号としては、周波数F1のDLパイロット信号D1、周波数F5のDLパイロット信号D5、第2の測定対象信号としては、周波数F1のULパイロット信号U1、周波数F5のULパイロット信号U5を指定している。 FIG. 6 is an explanatory diagram showing an example of the configuration of resource blocks in a subframe. The subframe illustrated in FIG. 6 is, for example, a self-contained TDD subframe. The subframe shown in FIG. 6 time-divides the control signal, DL section, guard section, and UL section, and the control signal, DL section, and UL section use the same frequency band. The control signal is an RB (Resource Block) used for transferring control information of Layer1. The DL section is an RB used for transferring a DL pilot signal and a DL data signal. The UL section is an RB used for transferring UL pilot signals and UL data signals. The DL pilot signal is, for example, an RB on which DL pilot signals D1 to D8 are mounted using frequencies F1 to F16. For example, the DL pilot signal D1 is mounted on the frequencies F1 and F9, the DL pilot signal D2 is mounted on the frequencies F2 and F10, the DL pilot signal D3 is mounted on the frequencies F3 and F11, and the DL pilot signal D4 is mounted on the frequencies F4 and F12. Also, DL pilot signal D5 is mounted on frequencies F5 and F13, DL pilot signal D6 is mounted on frequencies F6 and F14, DL pilot signal D7 is mounted on frequencies F7 and F15, and DL pilot signal D8 is mounted on frequencies F8 and F16. The UL pilot signal is, for example, an RB on which the UL pilot signals U1 to U8 are mounted using the same frequencies F1 to F16 as in the DL section. For example, the UL pilot signal U1 is mounted on the frequencies F1 and F9, the UL pilot signal U2 is mounted on the frequencies F2 and F10, the UL pilot signal U3 is mounted on the frequencies F3 and F11, and the UL pilot signal U4 is mounted on the frequencies F4 and F12. UL pilot signal U5 is mounted on frequencies F5 and F13, UL pilot signal U6 is mounted on frequencies F6 and F14, UL pilot signal U7 is mounted on frequencies F7 and F15, and UL pilot signal U8 is mounted on frequencies F8 and F16. For convenience of explanation, the first measurement target signal includes the DL pilot signal D1 having the frequency F1, the DL pilot signal D5 having the frequency F5, and the second measurement target signal includes the UL pilot signal U1 having the frequency F1 and the frequency F5. UL pilot signal U5 is designated.
 図7は、サブフレーム内の測定対象信号を識別する管理テーブルの一例を示す説明図である。管理テーブルは、サブフレームのD1~D8のDLパイロット信号を識別する3ビット構成のIDを管理するテーブルである。尚、管理テーブルは、第1の記憶部41の一部の領域に格納されるものとする。IDは、複数の周波数F1~F16の内、DLパイロット信号D1~D8に使用するF1~F8でDLパイロット信号を識別する。尚、ULパイロット信号も同様に3ビット構成のIDを管理しているものとする。 FIG. 7 is an explanatory diagram showing an example of a management table for identifying measurement target signals in subframes. The management table is a table for managing a 3-bit ID for identifying DL pilot signals of D1 to D8 of subframes. Note that the management table is stored in a partial area of the first storage unit 41. The ID identifies the DL pilot signal by F1 to F8 used for the DL pilot signals D1 to D8 among the plurality of frequencies F1 to F16. It is assumed that the UL pilot signal similarly manages a 3-bit ID.
 次に実施例1の無線通信システム1の動作について説明する。図8及び図9は、実施例1の送信出力制御処理に関わる基地局2及び移動局3の処理動作の一例を示すシーケンス図である。 Next, the operation of the wireless communication system 1 according to the first embodiment will be described. 8 and 9 are sequence diagrams illustrating an example of processing operations of the base station 2 and the mobile station 3 related to the transmission output control process of the first embodiment.
 図8において基地局2内の報告要求部51は、移動局3に対する制御情報を生成する(ステップS11)。尚、制御情報は、DLパイロット信号の第1の測定対象信号の位置情報、第1の測定対象信号の測定要求、振幅有無情報、報告要求、端末設定情報、報告種別等を含む。位置情報は、DLパイロット信号内の複数のDLパイロット信号D1~D8の内、例えば、2個の第1の測定対象信号の周波数位置を識別する情報である。第1の測定対象信号は、例えば、周波数F1に搭載するDLパイロット信号D1及び周波数F5に搭載するDLパイロット信号D5とする。測定要求は、第1の測定対象信号D1及びD5の無線品質、例えばSIR及び振幅位相の測定を移動局3に要求する情報である。振幅有無情報は、第1の測定対象信号D1の送信電力を通常電力、第1の測定対象信号D5の送信電力を零電力に設定する情報である。報告要求は、第1の測定対象信号D1及びD5の無線品質の測定結果、例えば、SIR及び振幅位相の報告を移動局3に要求する情報である。端末設定情報は、移動局3の設定内容、例えば、ULパイロット信号の第2の測定対象信号の位置情報、使用するMCS値や移動局3が出力する送信電力量等である。報告種別は、DLパイロット信号の無線品質、例えば、CQI、SIRや振幅位相等の報告内容を識別する情報である。 In FIG. 8, the report request unit 51 in the base station 2 generates control information for the mobile station 3 (step S11). The control information includes position information of the first measurement target signal of the DL pilot signal, measurement request of the first measurement target signal, amplitude presence / absence information, report request, terminal setting information, report type, and the like. The position information is information for identifying, for example, frequency positions of two first measurement target signals among the plurality of DL pilot signals D1 to D8 in the DL pilot signal. The first measurement target signal is, for example, a DL pilot signal D1 mounted on the frequency F1 and a DL pilot signal D5 mounted on the frequency F5. The measurement request is information that requests the mobile station 3 to measure the radio quality of the first measurement target signals D1 and D5, for example, SIR and amplitude phase. The amplitude presence / absence information is information for setting the transmission power of the first measurement target signal D1 to normal power and the transmission power of the first measurement target signal D5 to zero power. The report request is information requesting the mobile station 3 to report the radio quality measurement results of the first measurement target signals D1 and D5, for example, SIR and amplitude phase. The terminal setting information is the setting contents of the mobile station 3, for example, the position information of the second measurement target signal of the UL pilot signal, the MCS value to be used, the transmission power amount output by the mobile station 3, and the like. The report type is information for identifying report contents such as radio quality of the DL pilot signal, for example, CQI, SIR, amplitude phase and the like.
 基地局2内の報告要求部51は、制御情報をLayer-1制御信号に格納し(ステップS12)、制御信号を移動局3に送信する(ステップS13)。移動局3内の第2の制御部93Cは、基地局2からの制御信号を受信した場合(ステップS14)、制御信号から制御情報を抽出し(ステップS15)、抽出した制御情報内の端末設定情報を設定する(ステップS16)。また、基地局2内の電力制御部53は、ステップS13にて制御信号を送信した後、第1の測定対象信号を指定し、指定された第1の測定対象信号D1の送信電力に通常電力、第1の測定対象信号D5の送信電力に零電力を設定する(ステップS17)。 The report request unit 51 in the base station 2 stores the control information in the Layer-1 control signal (step S12), and transmits the control signal to the mobile station 3 (step S13). When receiving the control signal from the base station 2 (step S14), the second control unit 93C in the mobile station 3 extracts the control information from the control signal (step S15), and sets the terminal setting in the extracted control information. Information is set (step S16). In addition, after transmitting the control signal in step S13, the power control unit 53 in the base station 2 designates the first measurement target signal, and normal power is set as the transmission power of the designated first measurement target signal D1. Then, zero power is set as the transmission power of the first measurement target signal D5 (step S17).
 基地局2内の電力制御部53は、ステップS17の送信電力設定後、DLパイロット信号を移動局3に送信する(ステップS18)。移動局3内の第2の位相測定部76Bは、DLパイロット信号を受信した場合(ステップS19)、通常電力時及び零電力時のDL側振幅位相を測定する(ステップS20)。尚、第2の位相測定部76Bは、DLパイロット信号内の第1の測定対象信号D1の振幅位相を通常電力時のDL側振幅位相として測定すると共に、DLパイロット信号内の第1の測定対象信号D5の周波数の振幅位相を零電力時のDL側振幅位相として測定する。 The power control unit 53 in the base station 2 transmits a DL pilot signal to the mobile station 3 after setting the transmission power in step S17 (step S18). When receiving the DL pilot signal (step S19), the second phase measuring unit 76B in the mobile station 3 measures the DL side amplitude phase at the time of normal power and zero power (step S20). The second phase measurement unit 76B measures the amplitude phase of the first measurement target signal D1 in the DL pilot signal as the DL side amplitude phase at the normal power, and the first measurement target in the DL pilot signal. The amplitude phase of the frequency of the signal D5 is measured as the DL side amplitude phase at zero power.
 更に、移動局3内の第2のSIR測定部76Aは、DLパイロット信号内の第1の測定対象信号の通常電力時及び零電力時のDL側SIRを測定する(ステップS21)。尚、第2のSIR測定部76Aは、DLパイロット信号内の第1の測定対象信号D1のSIRを通常電力時のDL側SIRとして測定すると共に、第1の測定対象信号D5のSIRを零電力時のDL側SIRとして測定する。移動局3内の報告部93Aは、第1の測定対象信号D1の通常電力時及び第1の測定対象信号D5の零電力時のDL側振幅位相及びDL側SIRを第2の記憶部91に格納する(ステップS22)。そして、報告部93Aは、通常電力時及び零電力時のDL側振幅位相及びDL側SIRをULパイロット信号に格納し(ステップS23)、そのULパイロット信号を基地局2に送信する(ステップS24)。 Furthermore, the second SIR measurement unit 76A in the mobile station 3 measures the DL side SIR at the normal power and zero power of the first measurement target signal in the DL pilot signal (step S21). The second SIR measurement unit 76A measures the SIR of the first measurement target signal D1 in the DL pilot signal as the DL side SIR at the normal power and sets the SIR of the first measurement target signal D5 to zero power. Measured as the DL side SIR of the hour. The reporting unit 93A in the mobile station 3 stores the DL-side amplitude phase and the DL-side SIR at the normal power of the first measurement target signal D1 and the zero power of the first measurement target signal D5 in the second storage unit 91. Store (step S22). Then, the reporting unit 93A stores the DL side amplitude phase and the DL side SIR at the time of normal power and zero power in the UL pilot signal (step S23), and transmits the UL pilot signal to the base station 2 (step S24). .
 基地局2内の報告受信部52は、ULパイロット信号を受信した場合(ステップS25)、ULパイロット信号から第1の測定対象信号D1の通常電力時及び第1の測定対象信号D5の零電力時のDL側振幅位相及びDL側SIRを抽出する(ステップS26)。報告受信部52は、通常電力時及び零電力時のDL側振幅位相及びDL側SIRを第1の記憶部41に格納する(ステップS27)。更に、基地局2内の報告要求部51は、UL振幅要求を含む制御情報を生成し(ステップS28)、制御信号内に制御情報を格納し(ステップS29)、制御信号を移動局3に送信する(ステップS30)。尚、UL振幅要求は、ULパイロット信号内の複数グループの内、第2の測定対象信号U1の送信電力を通常電力、第2の測定対象信号U5の送信電力を零電力に設定する情報である。 When receiving the UL pilot signal (step S25), the report receiving unit 52 in the base station 2 has the normal power of the first measurement target signal D1 and the zero power of the first measurement target signal D5 from the UL pilot signal. DL side amplitude phase and DL side SIR are extracted (step S26). The report receiving unit 52 stores the DL side amplitude phase and the DL side SIR at the time of normal power and zero power in the first storage unit 41 (step S27). Further, the report request unit 51 in the base station 2 generates control information including a UL amplitude request (step S28), stores the control information in the control signal (step S29), and transmits the control signal to the mobile station 3. (Step S30). The UL amplitude request is information for setting the transmission power of the second measurement target signal U1 to normal power and the transmission power of the second measurement target signal U5 to zero power among a plurality of groups in the UL pilot signal. .
 図9において移動局3内の第2の電力制御部93Bは、基地局2からUL振幅要求を含む制御信号を受信した場合(ステップS31)、制御信号からUL振幅要求を抽出する(ステップS32)。第2の電力制御部93Bは、ULパイロット信号の第2の測定対象信号U1の送信電力に通常電力及び第2の測定対象信号U5の送信電力に零電力を設定する(ステップS33)。そして、移動局3内の第2の電力制御部93Bは、ステップS33にて送信電力設定後のULパイロット信号を基地局2に送信する(ステップS34)。 In FIG. 9, when the second power control unit 93B in the mobile station 3 receives a control signal including a UL amplitude request from the base station 2 (step S31), the second power control unit 93B extracts the UL amplitude request from the control signal (step S32). . The second power control unit 93B sets normal power to the transmission power of the second measurement target signal U1 of the UL pilot signal and zero power to the transmission power of the second measurement target signal U5 (step S33). Then, the second power control unit 93B in the mobile station 3 transmits the UL pilot signal after setting the transmission power in step S33 to the base station 2 (step S34).
 基地局2内の第1の位相測定部24Bは、ULパイロット信号を受信した場合(ステップS35)、ULパイロット信号から第2の測定対象信号U1の通常電力時及び第2の測定対象信号U5の零電力時のUL側振幅位相を測定する(ステップS36)。第1の位相測定部24Bは、ULパイロット信号内の第2の測定対象信号U1の通常電力時のUL側振幅位相、第2の測定対象信号U5の零電力時のUL側振幅位相を測定する。更に、基地局2内の第1のSIR測定部24Aは、ULパイロット信号から第2の測定対象信号U1の通常電力時及び第2の測定対象信号U5の零電力時のUL側SIRを測定する(ステップS37)。第1のSIR測定部24Aは、ULパイロット信号内の第2の測定対象信号U1の通常電力時のUL側SIR、第2の測定対象信号U5の零電力時のUL側SIRを測定する。基地局2内の報告受信部52は、UL側振幅位相及びUL側SIRを第1の記憶部41に格納する(ステップS38)。 When the first phase measurement unit 24B in the base station 2 receives the UL pilot signal (step S35), the first measurement unit 24B at the normal power of the second measurement target signal U1 and the second measurement target signal U5 from the UL pilot signal. The UL side amplitude phase at zero power is measured (step S36). The first phase measurement unit 24B measures the UL side amplitude phase at the time of normal power of the second measurement target signal U1 in the UL pilot signal and the UL side amplitude phase at the time of zero power of the second measurement target signal U5. . Further, the first SIR measurement unit 24A in the base station 2 measures the UL side SIR at the normal power of the second measurement target signal U1 and the zero power of the second measurement target signal U5 from the UL pilot signal. (Step S37). The first SIR measurement unit 24A measures the UL side SIR at the normal power of the second measurement target signal U1 in the UL pilot signal and the UL side SIR at the zero power of the second measurement target signal U5. The report receiving unit 52 in the base station 2 stores the UL side amplitude phase and the UL side SIR in the first storage unit 41 (step S38).
 基地局2内の第1の算出部54Aは、通常電力時のUL側SIRと零電力時のUL側SIRとを比較してUL側干渉電力を算出する(ステップS39)。基地局2内の第2の算出部54Bは、通常電力時のUL側振幅位相と零電力時のUL側振幅位相とを比較してUL側位相変化量を算出する(ステップS40)。更に、基地局2内の第1の算出部54Aは、通常電力時のDL側SIRと零電力時のDL側SIRとを比較してDL側干渉電力を算出する(ステップS41)。基地局2内の第2の算出部54Bは、通常電力時のDL側振幅位相と零電力時のDL側振幅位相とを比較してDL側位相変化量を算出する(ステップS42)。 The first calculation unit 54A in the base station 2 compares the UL side SIR at the normal power and the UL side SIR at the zero power to calculate the UL side interference power (step S39). The second calculation unit 54B in the base station 2 compares the UL side amplitude phase during normal power and the UL side amplitude phase during zero power to calculate the UL side phase change amount (step S40). Further, the first calculation unit 54A in the base station 2 compares the DL side SIR at the normal power and the DL side SIR at the zero power to calculate the DL side interference power (step S41). The second calculation unit 54B in the base station 2 compares the DL side amplitude phase at the time of normal power and the DL side amplitude phase at the time of zero power to calculate the DL side phase change amount (step S42).
 基地局2内の第1の算出部54Aは、UL側干渉電力とDL側干渉電力との比較結果で得た調整SIRを算出する(ステップS43)。基地局2内の第2の算出部54Bは、UL側位相変化量とDL側位相変化量との差分で調整位相変化量を算出する(ステップS44)。基地局2内の第1の算出部54Aは、調整SIRに対応したMCS値を設定する(ステップS45)。更に、基地局2内の第1の調整部54Cは、設定MCS値に基づき、DLデータ信号のブロックサイズを調整する(ステップS46)。更に、基地局2内の第2の調整部54Dは、調整位相変化量に基づき、基地局2内の図示せぬRF回路の位相を補正し(ステップS47)、図9に示す処理動作を終了する。 The first calculation unit 54A in the base station 2 calculates the adjustment SIR obtained from the comparison result between the UL side interference power and the DL side interference power (step S43). The second calculation unit 54B in the base station 2 calculates the adjustment phase change amount based on the difference between the UL side phase change amount and the DL side phase change amount (step S44). The first calculation unit 54A in the base station 2 sets the MCS value corresponding to the adjustment SIR (step S45). Further, the first adjustment unit 54C in the base station 2 adjusts the block size of the DL data signal based on the set MCS value (step S46). Further, the second adjustment unit 54D in the base station 2 corrects the phase of the RF circuit (not shown) in the base station 2 based on the adjustment phase change amount (step S47), and ends the processing operation shown in FIG. To do.
 基地局2は、第1の測定対象信号D1の送信電力を通常電力、第1の測定対象信号D5の送信電力を零電力に設定したDLパイロット信号の測定を移動局3に要求する。基地局2は、第1の測定対象信号D1の送信電力を通常電力、第1の測定対象信号D5の送信電力を零電力に設定したDLパイロット信号を移動局3に送信する。移動局3は、DLパイロット信号内の第1の測定対象信号D1の通常電力時のSIR及び振幅位相を測定すると共に、DLパイロット信号内の第1の測定対象信号D5の零電力時のSIR及び振幅位相を測定し、その測定結果を基地局2に報告する。更に、基地局2は、第2の測定対象信号U1の送信電力を通常電力、第2の測定対象信号U5の送信電力を零電力に設定したULパイロット信号の送信を移動局3に要求する。移動局3は、第2の測定対象信号U1の送信電力を通常電力、第2の測定対象信号U5の送信電力を零電力に設定したULパイロット信号を基地局2に送信する。基地局2は、ULパイロット信号の第2の測定対象信号U1の通常電力時のSIR及び振幅位相を測定すると共に、第2の測定対象信号U5の零電力時のSIR及び振幅位相を測定する。 The base station 2 requests the mobile station 3 to measure the DL pilot signal in which the transmission power of the first measurement target signal D1 is set to normal power and the transmission power of the first measurement target signal D5 is set to zero power. The base station 2 transmits to the mobile station 3 a DL pilot signal in which the transmission power of the first measurement target signal D1 is set to normal power and the transmission power of the first measurement target signal D5 is set to zero power. The mobile station 3 measures the SIR and the amplitude phase of the first measurement target signal D1 in the DL pilot signal at the normal power, and the SIR at the zero power of the first measurement target signal D5 in the DL pilot signal. The amplitude phase is measured, and the measurement result is reported to the base station 2. Further, the base station 2 requests the mobile station 3 to transmit a UL pilot signal in which the transmission power of the second measurement target signal U1 is set to normal power and the transmission power of the second measurement target signal U5 is set to zero power. The mobile station 3 transmits to the base station 2 a UL pilot signal in which the transmission power of the second measurement target signal U1 is set to normal power and the transmission power of the second measurement target signal U5 is set to zero power. The base station 2 measures the SIR and amplitude phase of the second measurement target signal U1 of the UL pilot signal at the normal power, and measures the SIR and amplitude phase of the second measurement target signal U5 at the time of zero power.
 基地局2は、通常電力時のUL側SIRと零電力時のUL側SIRとでUL側干渉電力を算出する。更に、基地局2は、通常電力時のDL側SIRと零電力時のDL側SIRとでDL側干渉電力を算出する。更に、基地局2は、UL側干渉電力とDL側干渉電力とで調整SIRを算出し、その調整SIRに対応したMCS値を取得し、取得したMCS値に基づき、DLデータ信号のブロックサイズを調整する。その結果、UL側SIR及びDL側SIRを反映したDL信号の送信出力を制御することで、実際の無線品質に適した通信特性を確保できる。 The base station 2 calculates the UL side interference power from the UL side SIR at the normal power and the UL side SIR at the zero power. Further, the base station 2 calculates the DL side interference power from the DL side SIR at the normal power and the DL side SIR at the zero power. Furthermore, the base station 2 calculates an adjustment SIR using the UL side interference power and the DL side interference power, acquires an MCS value corresponding to the adjustment SIR, and sets the block size of the DL data signal based on the acquired MCS value. adjust. As a result, by controlling the transmission output of the DL signal reflecting the UL side SIR and the DL side SIR, it is possible to ensure communication characteristics suitable for the actual radio quality.
 基地局2は、ULパイロット信号の通常電力時の振幅位相と零電力時の振幅位相とでUL側の位相変化量を算出する。更に、基地局2は、DLパイロット信号の通常電力時の振幅位相と零電力時の振幅位相とでDL側の位相変化量を算出する。更に、基地局2は、UL側の位相変化量とDL側の位相変化量とで調整位相変化量を算出し、調整位相変化量に基づき、RF回路の位相を調整する。その結果、UL側の位相変化量及びDL側の位相変化量を反映したDL信号の送信出力を制御することで、実際の無線品質に適した通信特性を確保できる。 The base station 2 calculates the UL phase change amount based on the amplitude phase of the UL pilot signal at normal power and the amplitude phase at zero power. Furthermore, the base station 2 calculates the DL side phase change amount based on the amplitude phase of the DL pilot signal during normal power and the amplitude phase at zero power. Further, the base station 2 calculates an adjustment phase change amount from the UL side phase change amount and the DL side phase change amount, and adjusts the phase of the RF circuit based on the adjustment phase change amount. As a result, by controlling the transmission output of the DL signal reflecting the phase change amount on the UL side and the phase change amount on the DL side, it is possible to ensure communication characteristics suitable for the actual radio quality.
 上記実施例1の基地局2では、第1の測定対象信号としてDLパイロット信号D1及びD5の少なくとも2グループのDLパイロット信号を指定したが、3個以上であっても良く、適宜変更可能である。また、例えば、第1の測定対象信号として1グループのパイロット信号を指定しても良く、その場合の実施の形態につき、実施例2として以下に説明する。尚、実施例1と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。 In the base station 2 of the first embodiment, DL pilot signals of at least two groups of DL pilot signals D1 and D5 are designated as the first measurement target signal. However, the number may be three or more and can be changed as appropriate. . Further, for example, one group of pilot signals may be designated as the first measurement target signal, and an embodiment in that case will be described below as Example 2. In addition, the same code | symbol is attached | subjected to the structure same as Example 1, and the description of the overlapping structure and operation | movement is abbreviate | omitted.
 基地局2は、第1の測定対象信号としてDLパイロット信号D1を指定し、第1の測定対象信号D1の通常電力時のSIR及び振幅位相の測定及び、その測定結果の報告を移動局3に要求する。移動局3は、第1の測定対象信号D1の通常電力時のDL側SIR及びDL側振幅位相を測定し、その測定結果を基地局2に送信する。そして、基地局2は、第1の測定対象信号D1の通常電力時のDL側SIR及びDL側振幅位相を第1の記憶部41に記憶する。更に、基地局2は、第1の測定対象信号D1の零電力時のSIR及び振幅位相の測定及び、その測定結果の報告を移動局3に要求する。移動局3は、第1の測定対象信号D1の零電力時のDL側SIR及びDL側振幅位相を測定し、その測定結果を基地局2に送信する。そして、基地局2は、第1の測定対象信号D1の零電力時のDL側SIR及びDL側振幅位相の測定結果を第1の記憶部41に記憶する。 The base station 2 designates the DL pilot signal D1 as the first measurement target signal, and measures the SIR and amplitude phase at the normal power of the first measurement target signal D1 and reports the measurement result to the mobile station 3. Request. The mobile station 3 measures the DL side SIR and DL side amplitude phase of the first measurement target signal D1 at the normal power, and transmits the measurement result to the base station 2. Then, the base station 2 stores the DL side SIR and the DL side amplitude phase at the normal power of the first measurement target signal D1 in the first storage unit 41. Furthermore, the base station 2 requests the mobile station 3 to measure the SIR and amplitude phase of the first measurement target signal D1 at zero power and report the measurement result. The mobile station 3 measures the DL-side SIR and the DL-side amplitude phase at the time of zero power of the first measurement target signal D1, and transmits the measurement result to the base station 2. Then, the base station 2 stores the measurement result of the DL side SIR and the DL side amplitude phase at the time of zero power of the first measurement target signal D1 in the first storage unit 41.
 基地局2は、第1の測定対象信号D1の通常電力時及び零電力時のSIR及び振幅位相を移動局3から受信した後、第2の測定対象信号として通常電力時のULパイロット信号U1の送信を移動局3に要求する。移動局3は、通常電力で第2の測定対象信号U1を基地局2に送信する。基地局2は、通常電力時の第2の測定対象信号U1のUL側SIR及びUL側振幅位相を測定し、その測定結果を第1の記憶部41に記憶する。更に、基地局2は、第2の測定対象信号として零電力時のULパイロット信号U1の送信を移動局3に要求する。移動局3は、零電力で第2の測定対象信号U1を基地局2に送信する。基地局2は、零電力時の第2の測定対象信号U1のUL側SIR及びUL側振幅位相を測定し、その測定結果を第1の記憶部41に記憶する。 The base station 2 receives the SIR and amplitude phase at the normal power and zero power of the first measurement target signal D1 from the mobile station 3, and then uses the UL pilot signal U1 at the normal power as the second measurement target signal. Request the mobile station 3 for transmission. The mobile station 3 transmits the second measurement target signal U1 to the base station 2 with normal power. The base station 2 measures the UL side SIR and the UL side amplitude phase of the second measurement target signal U1 at the normal power, and stores the measurement result in the first storage unit 41. Furthermore, the base station 2 requests the mobile station 3 to transmit the UL pilot signal U1 at zero power as the second measurement target signal. The mobile station 3 transmits the second measurement target signal U1 to the base station 2 with zero power. The base station 2 measures the UL side SIR and the UL side amplitude phase of the second measurement target signal U1 at zero power, and stores the measurement result in the first storage unit 41.
 基地局2の第1の制御部54内の第1の算出部54Aは、第1の測定対象信号D1の通常電力時のDL側SIRと零電力時のDL側SIRとを比較してDL側干渉電力を算出する。更に、第1の算出部54Aは、第2の測定対象信号U1の通常電力時のUL側SIRと零電力時のUL側SIRとを比較してUL側干渉電力を算出する。第1の算出部54Aは、DL側干渉電力とUL側干渉電力とを比較して調整SIRを算出する。更に、第1の算出部54Aは、調整SIRに対応したMCS値を取得する。 The first calculation unit 54A in the first control unit 54 of the base station 2 compares the DL side SIR at the normal power and the DL side SIR at the zero power of the first measurement target signal D1 to compare the DL side SIR. Interference power is calculated. Furthermore, the first calculation unit 54A calculates the UL side interference power by comparing the UL side SIR at the normal power and the UL side SIR at the zero power of the second measurement target signal U1. The first calculation unit 54A calculates the adjusted SIR by comparing the DL side interference power and the UL side interference power. Further, the first calculation unit 54A acquires an MCS value corresponding to the adjustment SIR.
 第1の制御部54内の第2の算出部54Bは、第1の測定対象信号D1の通常電力時のDL側振幅位相と零電力時のDL側振幅位相とを比較してDL側位相変化量を算出する。更に、第2の算出部54Bは、第2の測定対象信号U1の通常電力時のUL側振幅位相と零電力時のUL側振幅位相とを比較してUL側位相変化量を算出する。第2の算出部54Bは、DL側位相変化量とUL側位相変化量とを比較して調整位相変化量を算出する。 The second calculation unit 54B in the first control unit 54 compares the DL side amplitude phase at the normal power and the DL side amplitude phase at the zero power of the first measurement target signal D1 to change the DL side phase. Calculate the amount. Further, the second calculation unit 54B compares the UL side amplitude phase at the normal power of the second measurement target signal U1 with the UL side amplitude phase at the zero power to calculate the UL side phase change amount. The second calculation unit 54B calculates the adjustment phase change amount by comparing the DL side phase change amount and the UL side phase change amount.
 第1の調整部54Cは、第1の算出部54Aにて取得したMCS値に基づき、例えば、DLデータ信号のブロックサイズを調整する。第2の調整部54Dは、第2の算出部54Bにて算出した調整位相変化量に基づき、例えば、RF回路の位相を調整する。 The first adjustment unit 54C adjusts the block size of the DL data signal, for example, based on the MCS value acquired by the first calculation unit 54A. The second adjustment unit 54D adjusts the phase of the RF circuit, for example, based on the adjustment phase change amount calculated by the second calculation unit 54B.
 図10乃至図13は、実施例2の送信出力制御処理に関わる基地局2及び移動局3の処理動作の一例を示すシーケンス図である。図10において基地局2内の報告要求部51は、移動局3に対する制御情報を生成する(ステップS51)。尚、制御情報内の第1の測定対象信号の位置情報は、複数のDLパイロット信号の内、任意の1個のDLパイロット信号、例えばDLパイロット信号D1の周波数位置を識別する情報である。基地局2内の報告要求部51は、制御情報を制御信号に格納し(ステップS52)、制御信号を移動局3に送信する(ステップS53)。移動局3内の第2の制御部93Cは、基地局2からの制御信号を受信した場合(ステップS54)、制御信号から制御情報を抽出し(ステップS55)、抽出した制御情報内の端末設定情報を設定する(ステップS56)。 10 to 13 are sequence diagrams illustrating an example of processing operations of the base station 2 and the mobile station 3 related to the transmission output control process of the second embodiment. In FIG. 10, the report request unit 51 in the base station 2 generates control information for the mobile station 3 (step S51). The position information of the first measurement target signal in the control information is information for identifying the frequency position of any one DL pilot signal, for example, the DL pilot signal D1, out of the plurality of DL pilot signals. The report request unit 51 in the base station 2 stores the control information in the control signal (step S52) and transmits the control signal to the mobile station 3 (step S53). When receiving the control signal from the base station 2 (Step S54), the second control unit 93C in the mobile station 3 extracts the control information from the control signal (Step S55), and sets the terminal in the extracted control information. Information is set (step S56).
 また、基地局2内の電力制御部53は、ステップS53にて制御信号を送信した後、例えば、第1の測定対象信号D1を指定し、第1の測定対象信号D1の送信電力に通常電力を設定する(ステップS57)。電力制御部53は、ステップS57の送信電力設定後、DLパイロット信号を移動局3に送信する(ステップS58)。移動局3内の第2の位相測定部76Bは、DLパイロット信号を受信した場合(ステップS59)、第1の測定対象信号D1の通常電力時のDL側振幅位相を測定する(ステップS60)。尚、第2の位相測定部76Bは、DLパイロット信号内の第1の測定対象信号D1の振幅位相を通常電力時のDL側振幅位相として測定する。 Moreover, after transmitting the control signal in step S53, the power control unit 53 in the base station 2 specifies, for example, the first measurement target signal D1, and the normal power is set as the transmission power of the first measurement target signal D1. Is set (step S57). The power control unit 53 transmits the DL pilot signal to the mobile station 3 after setting the transmission power in step S57 (step S58). When receiving the DL pilot signal (step S59), the second phase measuring unit 76B in the mobile station 3 measures the DL side amplitude phase at the normal power of the first measurement target signal D1 (step S60). The second phase measurement unit 76B measures the amplitude phase of the first measurement target signal D1 in the DL pilot signal as the DL side amplitude phase at the time of normal power.
 更に、移動局3内の第2のSIR測定部76Aは、第1の測定対象信号D1の通常電力時のDL側SIRを測定する(ステップS61)。尚、第2のSIR測定部76Aは、DLパイロット信号内の第1の測定対象信号D1のSIRを通常電力時のDL側SIRとして測定する。移動局3内の報告部93Aは、第1の測定対象信号D1の通常電力時のDL側振幅位相及びDL側SIRを第2の記憶部81に格納する(ステップS62)。そして、報告部93Aは、第1の測定対象信号D1の通常電力時のDL側振幅位相及びDL側SIRをULパイロット信号に格納し(ステップS63)、そのULパイロット信号を基地局2に送信する(ステップS64)。 Furthermore, the second SIR measurement unit 76A in the mobile station 3 measures the DL-side SIR at the normal power of the first measurement target signal D1 (step S61). The second SIR measurement unit 76A measures the SIR of the first measurement target signal D1 in the DL pilot signal as the DL side SIR at the normal power. The reporting unit 93A in the mobile station 3 stores the DL side amplitude phase and the DL side SIR at the normal power of the first measurement target signal D1 in the second storage unit 81 (step S62). Then, the reporting unit 93A stores the DL side amplitude phase and DL side SIR at the normal power of the first measurement target signal D1 in the UL pilot signal (step S63), and transmits the UL pilot signal to the base station 2. (Step S64).
 基地局2内の報告受信部52は、ULパイロット信号を受信した場合(ステップS65)、ULパイロット信号から第1の測定対象信号D1の通常電力時のDL側振幅位相及びDL側SIRを抽出する(ステップS66)。報告受信部52は、これらのDL側振幅位相及びDL側SIRを第1の記憶部41に格納する(ステップS67)。更に、基地局2内の報告要求部51は、第1の測定対象信号の零電力時の無線品質の測定を要求する測定要求を含む制御情報を生成し(ステップS68)、制御信号内に制御情報を格納し(ステップS69)、制御信号を移動局3に送信する(ステップS70)。 When receiving the UL pilot signal (step S65), the report receiving unit 52 in the base station 2 extracts the DL side amplitude phase and the DL side SIR at the normal power of the first measurement target signal D1 from the UL pilot signal. (Step S66). The report receiving unit 52 stores the DL side amplitude phase and the DL side SIR in the first storage unit 41 (step S67). Further, the report request unit 51 in the base station 2 generates control information including a measurement request for requesting measurement of the wireless quality at the time of zero power of the first measurement target signal (step S68), and controls in the control signal. Information is stored (step S69), and a control signal is transmitted to the mobile station 3 (step S70).
 移動局3は、制御信号を受信した場合(ステップS71)、制御信号から制御情報を抽出し(ステップS72)、抽出した制御情報内の端末設定情報を設定し(ステップS73)、図10に示す処理動作を終了する。 When receiving the control signal (step S71), the mobile station 3 extracts the control information from the control signal (step S72), sets the terminal setting information in the extracted control information (step S73), and is shown in FIG. The processing operation is terminated.
 図11において基地局2内の電力制御部53は、ステップS70にて制御信号を送信した後、第1の測定対象信号の送信電力に零電力を設定する(ステップS81)。基地局2内の電力制御部53は、ステップS81の送信電力設定後、DLパイロット信号を移動局3に送信する(ステップS82)。移動局3内の第2の位相測定部76Bは、DLパイロット信号を受信した場合(ステップS83)、第1の測定対象信号D1の零電力時のDL側振幅位相を測定する(ステップS84)。尚、第2の位相測定部76Bは、DLパイロット信号内の第1の測定対象信号D1の振幅位相を零電力時のDL側振幅位相として測定する。 In FIG. 11, after transmitting the control signal in step S70, the power control unit 53 in the base station 2 sets zero power to the transmission power of the first measurement target signal (step S81). The power control unit 53 in the base station 2 transmits a DL pilot signal to the mobile station 3 after setting the transmission power in step S81 (step S82). When receiving the DL pilot signal (step S83), the second phase measuring unit 76B in the mobile station 3 measures the DL side amplitude phase at zero power of the first measurement target signal D1 (step S84). The second phase measurement unit 76B measures the amplitude phase of the first measurement target signal D1 in the DL pilot signal as the DL side amplitude phase at zero power.
 更に、移動局3内の第2のSIR測定部76Aは、第1の測定対象信号D1の零電力時のDL側SIRを測定する(ステップS85)。尚、第2のSIR測定部76Aは、DLパイロット信号内の第1の測定対象信号D1のSIRを零電力時のDL側SIRとして測定する。移動局3内の第2の制御部93Cは、第1の測定対象信号D1の零電力時のDL側振幅位相及びDL側SIRを第2の記憶部91に格納する(ステップS86)。そして、移動局3内の報告部93Aは、第1の測定対象信号D1の零電力時のDL側振幅位相及びDL側SIRをULパイロット信号に格納し(ステップS87)、そのULパイロット信号を基地局2に送信する(ステップS88)。 Further, the second SIR measurement unit 76A in the mobile station 3 measures the DL side SIR at the time of zero power of the first measurement target signal D1 (step S85). The second SIR measurement unit 76A measures the SIR of the first measurement target signal D1 in the DL pilot signal as the DL-side SIR at zero power. The second control unit 93C in the mobile station 3 stores the DL side amplitude phase and the DL side SIR at the time of zero power of the first measurement target signal D1 in the second storage unit 91 (step S86). Then, the reporting unit 93A in the mobile station 3 stores the DL side amplitude phase and the DL side SIR at the time of zero power of the first measurement target signal D1 in the UL pilot signal (step S87), and the UL pilot signal is transmitted to the base station. Transmit to the station 2 (step S88).
 基地局2内の報告受信部52は、ULパイロット信号を受信した場合(ステップS89)、ULパイロット信号から第1の測定対象信号D1の零電力時のDL側振幅位相及びDL側SIRを抽出する(ステップS90)。報告受信部52は、これらのDL側振幅位相及びDL側SIRを第1の記憶部41に格納する(ステップS91)。更に、基地局2内の報告要求部51は、第2の測定対象信号U1のUL振幅要求及び通常電力設定を含む制御情報を生成し(ステップS92)、制御信号内に制御情報を格納し(ステップS93)、制御信号を移動局3に送信する(ステップS94)。尚、UL振幅要求は、ULパイロット信号の第2の測定対象信号U1の通常電力時の無線品質を要求する情報である。 When receiving the UL pilot signal (step S89), the report receiving unit 52 in the base station 2 extracts the DL side amplitude phase and the DL side SIR at the time of zero power of the first measurement target signal D1 from the UL pilot signal. (Step S90). The report receiving unit 52 stores the DL side amplitude phase and the DL side SIR in the first storage unit 41 (step S91). Further, the report request unit 51 in the base station 2 generates control information including the UL amplitude request and the normal power setting of the second measurement target signal U1 (step S92), and stores the control information in the control signal ( In step S93, a control signal is transmitted to the mobile station 3 (step S94). The UL amplitude request is information for requesting the radio quality during normal power of the second measurement target signal U1 of the UL pilot signal.
 図12において移動局3内の第2の電力制御部93Bは、基地局2からUL振幅要求を含む制御信号を受信した場合(ステップS101)、制御信号から制御情報を抽出し(ステップS102)、抽出した制御情報内の端末設定情報を設定する(ステップS103)。移動局3内の第2の電力制御部93Bは、制御情報内のUL振幅要求を抽出し(ステップS104)、抽出したUL振幅要求に基づき、ULパイロット信号の第2の測定対象信号の送信電力に通常電力を設定する(ステップS105)。そして、第2の電力制御部93Bは、ステップS105にて送信電力設定後のULパイロット信号を基地局2に送信する(ステップS106)。 In FIG. 12, when the second power control unit 93B in the mobile station 3 receives a control signal including a UL amplitude request from the base station 2 (step S101), the control information is extracted from the control signal (step S102). Terminal setting information in the extracted control information is set (step S103). The second power control unit 93B in the mobile station 3 extracts the UL amplitude request in the control information (step S104), and based on the extracted UL amplitude request, the transmission power of the second measurement target signal of the UL pilot signal The normal power is set to (step S105). Then, the second power control unit 93B transmits the UL pilot signal after setting the transmission power in step S105 to the base station 2 (step S106).
 基地局2内の第1の位相測定部24Bは、ULパイロット信号を受信した場合(ステップS107)、ULパイロット信号から第2の測定対象信号U1の通常電力時のUL側振幅位相を測定する(ステップS108)。第1の位相測定部24Bは、第2の測定対象信号U1のUL側振幅位相を通常電力時のUL側位相振幅位相として測定する。更に、基地局2内の第1のSIR測定部24Aは、ULパイロット信号から第2の測定対象信号U1の通常電力時のUL側SIRを測定する(ステップS109)。第1のSIR測定部24Aは、第2の測定対象信号U1のUL側SIRを通常電力時のUL側SIRとして測定する。基地局2内の第1の制御部54は、UL側振幅位相及びUL側SIRを第1の記憶部41に格納する(ステップS110)。更に、基地局2内の報告要求部51は、第2の測定対象信号U1のUL振幅要求及び零電力設定を含む制御情報を生成し(ステップS111)、制御信号内に制御情報を格納し(ステップS112)、制御信号を移動局3に送信する(ステップS113)。 When the first phase measurement unit 24B in the base station 2 receives the UL pilot signal (step S107), the first phase measurement unit 24B measures the UL side amplitude phase of the second measurement target signal U1 at the normal power from the UL pilot signal ( Step S108). The first phase measurement unit 24B measures the UL side amplitude phase of the second measurement target signal U1 as the UL side phase amplitude phase during normal power. Further, the first SIR measurement unit 24A in the base station 2 measures the UL side SIR at the normal power of the second measurement target signal U1 from the UL pilot signal (step S109). The first SIR measurement unit 24A measures the UL side SIR of the second measurement target signal U1 as the UL side SIR during normal power. The first control unit 54 in the base station 2 stores the UL side amplitude phase and the UL side SIR in the first storage unit 41 (step S110). Further, the report request unit 51 in the base station 2 generates control information including the UL amplitude request and zero power setting of the second measurement target signal U1 (step S111), and stores the control information in the control signal ( In step S112, a control signal is transmitted to the mobile station 3 (step S113).
 図13において移動局3内の第2の電力制御部93Bは、基地局2から制御信号を受信した場合(ステップS121)、制御信号から制御情報を抽出し(ステップS122)、抽出した制御情報内の端末設定情報を設定する(ステップS123)。移動局3内の第2の電力制御部93Bは、制御情報内のUL振幅要求を抽出し(ステップS124)、抽出したUL振幅要求に基づき、ULパイロット信号の第2の測定対象信号の送信電力に零電力を設定する(ステップS125)。そして、移動局3内の第2の電力制御部93Bは、ステップS125にて送信電力設定後のULパイロット信号を基地局2に送信する(ステップS126)。 In FIG. 13, when the second power control unit 93B in the mobile station 3 receives a control signal from the base station 2 (step S121), the second power control unit 93B extracts control information from the control signal (step S122). Terminal setting information is set (step S123). The second power control unit 93B in the mobile station 3 extracts the UL amplitude request in the control information (step S124), and based on the extracted UL amplitude request, the transmission power of the second measurement target signal of the UL pilot signal. Is set to zero power (step S125). Then, the second power control unit 93B in the mobile station 3 transmits the UL pilot signal after setting the transmission power in step S125 to the base station 2 (step S126).
 基地局2内の第1の位相測定部24Bは、ULパイロット信号を受信した場合(ステップS127)、ULパイロット信号から第2の測定対象信号U1の零電力時のUL側振幅位相を測定する(ステップS128)。第1の位相測定部24Bは、第2の測定対象信号U1のUL側振幅位相を零電力時のUL側位相振幅位相として測定する。更に、基地局2内の第1のSIR測定部24Aは、ULパイロット信号から第2の測定対象信号U1の零電力時のUL側SIRを測定する(ステップS129)。第1のSIR測定部24Aは、第2の測定対象信号U1のUL側SIRを零電力時のUL側SIRとして測定する。基地局2内の第1の制御部54は、UL側振幅位相及びUL側SIRを第1の記憶部41に格納する(ステップS130)。 When receiving the UL pilot signal (step S127), the first phase measurement unit 24B in the base station 2 measures the UL side amplitude phase of the second measurement target signal U1 at zero power from the UL pilot signal ( Step S128). The first phase measurement unit 24B measures the UL side amplitude phase of the second measurement target signal U1 as the UL side phase amplitude phase at zero power. Further, the first SIR measurement unit 24A in the base station 2 measures the UL side SIR at the time of zero power of the second measurement target signal U1 from the UL pilot signal (step S129). The first SIR measurement unit 24A measures the UL side SIR of the second measurement target signal U1 as the UL side SIR at zero power. The first control unit 54 in the base station 2 stores the UL side amplitude phase and the UL side SIR in the first storage unit 41 (step S130).
 基地局2内の第1の算出部54Aは、第2の測定対象信号U1の通常電力時のUL側SIRと零電力時のUL側SIRとを比較してUL側干渉電力を算出する(ステップS131)。基地局2内の第2の算出部54Bは、第2の測定対象信号U1の通常電力時のUL側振幅位相と零電力時のUL側振幅位相とを比較してUL側位相変化量を算出する(ステップS132)。更に、基地局2内の第1の算出部54Aは、第1の測定対象信号D1の通常電力時のDL側SIRと零電力時のDL側SIRとを比較してDL側干渉電力を算出する(ステップS133)。基地局2内の第2の算出部54Bは、第1の測定対象信号D1の通常電力時のDL側振幅位相と零電力時のDL側振幅位相とを比較してDL側位相変化量を算出する(ステップS134)。 The first calculation unit 54A in the base station 2 compares the UL side SIR at the normal power and the UL side SIR at the zero power of the second measurement target signal U1 to calculate the UL side interference power (step). S131). The second calculation unit 54B in the base station 2 calculates the UL-side phase change amount by comparing the UL-side amplitude phase at the normal power and the UL-side amplitude phase at the zero power of the second measurement target signal U1. (Step S132). Further, the first calculation unit 54A in the base station 2 calculates the DL side interference power by comparing the DL side SIR at the normal power and the DL side SIR at the zero power of the first measurement target signal D1. (Step S133). The second calculation unit 54B in the base station 2 calculates the DL side phase change amount by comparing the DL side amplitude phase at the normal power and the DL side amplitude phase at the zero power of the first measurement target signal D1. (Step S134).
 基地局2内の第1の算出部54Aは、UL側干渉電力とDL側干渉電力との比較結果で得た調整SIRを算出する(ステップS135)。基地局2内の第2の算出部54Bは、UL側位相変化量とDL側位相変化量との差分で調整位相変化量を算出する(ステップS136)。基地局2内の第1の算出部54Aは、調整SIRに対応したMCS値を設定する(ステップS137)。基地局2内の第1の調整部54Cは、設定MCS値に基づき、DLデータ信号のブロックサイズを調整する(ステップS138)。更に、基地局2内の第2の調整部54Dは、調整位相変化量に基づき、基地局2内の図示せぬRF回路の位相を補正し(ステップS139)、図13に示す処理動作を終了する。 The first calculation unit 54A in the base station 2 calculates the adjustment SIR obtained from the comparison result between the UL side interference power and the DL side interference power (step S135). The second calculation unit 54B in the base station 2 calculates the adjustment phase change amount based on the difference between the UL side phase change amount and the DL side phase change amount (step S136). The first calculation unit 54A in the base station 2 sets the MCS value corresponding to the adjustment SIR (step S137). The first adjustment unit 54C in the base station 2 adjusts the block size of the DL data signal based on the set MCS value (step S138). Furthermore, the second adjustment unit 54D in the base station 2 corrects the phase of the RF circuit (not shown) in the base station 2 based on the adjustment phase change amount (step S139), and ends the processing operation shown in FIG. To do.
 基地局2は、第1の測定対象信号D1の送信電力を通常電力に設定したDLパイロット信号を移動局3に送信する。移動局3は、第1の測定対象信号D1の通常電力時のSIR及び振幅位相を測定し、その測定結果を基地局2に報告する。更に、基地局2は、第1の測定対象信号D1の送信電力を零電力に設定したDLパイロット信号を移動局3に送信する。移動局3は、第1の測定対象信号D1の零電力時のSIR及び振幅位相を測定し、その測定結果を基地局2に報告する。更に、移動局3は、第2の測定対象信号U1の送信電力を通常電力に設定したULパイロット信号を基地局2に送信する。基地局2は、第2の測定対象信号U1の通常電力時のSIR及び振幅位相を測定する。更に、移動局3は、第2の測定対象信号U1の送信電力を零電力に設定したULパイロット信号を基地局2に送信する。基地局2は、第2の測定対象信号U1の零電力時のSIR及び振幅位相を測定する。 The base station 2 transmits to the mobile station 3 a DL pilot signal in which the transmission power of the first measurement target signal D1 is set to normal power. The mobile station 3 measures the SIR and the amplitude phase at the normal power of the first measurement target signal D1, and reports the measurement result to the base station 2. Furthermore, the base station 2 transmits a DL pilot signal in which the transmission power of the first measurement target signal D1 is set to zero power to the mobile station 3. The mobile station 3 measures the SIR and amplitude phase of the first measurement target signal D1 at zero power, and reports the measurement result to the base station 2. Furthermore, the mobile station 3 transmits to the base station 2 a UL pilot signal in which the transmission power of the second measurement target signal U1 is set to normal power. The base station 2 measures the SIR and amplitude phase of the second measurement target signal U1 during normal power. Further, the mobile station 3 transmits to the base station 2 a UL pilot signal in which the transmission power of the second measurement target signal U1 is set to zero power. The base station 2 measures the SIR and amplitude phase at zero power of the second measurement target signal U1.
 基地局2は、第2の測定対象信号U1の通常電力時のSIRと零電力時のSIRとでUL側の干渉電力を算出する。更に、基地局2は、第1の測定対象信号D1の通常電力時のSIRと零電力時のSIRとでDL側の干渉電力を算出する。更に、基地局2は、UL側の干渉電力とDL側の干渉電力とで調整SIRを算出し、その調整SIRに対応したMCS値を取得し、取得したMCS値に基づき、DLデータ信号のブロックサイズを調整する。その結果、UL側SIR及びDL側SIRを反映したDL信号の送信出力を制御することで、実際の無線品質に適した通信特性を確保できる。しかも、DLパイロット信号及びULパイロット信号の同一周波数の通常電力時及び零電力時のSIR同士を比較することになるため、実施例1に比較して実際の無線品質に高精度に適した通信品質を確保できる。 The base station 2 calculates the interference power on the UL side from the SIR at the normal power and the SIR at the zero power of the second measurement target signal U1. Further, the base station 2 calculates the DL side interference power from the SIR at the normal power and the SIR at the zero power of the first measurement target signal D1. Further, the base station 2 calculates an adjustment SIR with the interference power on the UL side and the interference power on the DL side, acquires an MCS value corresponding to the adjustment SIR, and blocks the DL data signal based on the acquired MCS value. Adjust the size. As a result, by controlling the transmission output of the DL signal reflecting the UL side SIR and the DL side SIR, it is possible to ensure communication characteristics suitable for the actual radio quality. Moreover, since the SIRs of the DL pilot signal and the UL pilot signal at the same frequency at normal power and zero power are compared, communication quality suitable for the actual radio quality compared to the first embodiment with high accuracy. Can be secured.
 基地局2は、第2の測定対象信号U1の通常電力時の振幅位相と零電力時の振幅位相とでUL側位相変化量を算出する。更に、基地局2は、第1の測定対象信号D1の通常電力時の振幅位相と零電力時の振幅位相とでDL側の位相変化量を算出する。更に、基地局2は、UL側の位相変化量とDL側の位相変化量とで調整位相変化量を算出し、調整位相変化量に基づき、RF回路の位相を調整する。その結果、UL側の位相変化量及びDL側の位相変化量を反映したDL信号の送信出力を制御することで、実際の無線品質に適した通信特性を確保できる。しかも、DLパイロット信号及びULパイロット信号の同一周波数の通常電力時及び零電力時の振幅位相同士を比較することになるため、実施例1に比較して実際の無線品質に高精度に適した通信品質を確保できる。 The base station 2 calculates the UL-side phase change amount from the amplitude phase at the normal power and the amplitude phase at the zero power of the second measurement target signal U1. Furthermore, the base station 2 calculates the phase change amount on the DL side based on the amplitude phase during normal power and the amplitude phase during zero power of the first measurement target signal D1. Further, the base station 2 calculates an adjustment phase change amount from the UL side phase change amount and the DL side phase change amount, and adjusts the phase of the RF circuit based on the adjustment phase change amount. As a result, by controlling the transmission output of the DL signal reflecting the phase change amount on the UL side and the phase change amount on the DL side, it is possible to ensure communication characteristics suitable for the actual radio quality. In addition, since the amplitude phases of the DL pilot signal and the UL pilot signal at the same frequency at normal power and zero power are compared, communication suitable for actual radio quality compared to the first embodiment with high accuracy. Quality can be ensured.
 尚、実施例2の基地局2では、第1の測定対象信号としてDLパイロット信号D1、第2の測定対象信号としてULパイロット信号U1を指定した。しかしながら、例えば、第1の測定対象信号としてDLパイロット信号D3、第2の測定対象信号としてULパイロット信号U3を指定しても良く、適宜変更可能である。 In the base station 2 of the second embodiment, the DL pilot signal D1 is designated as the first measurement target signal, and the UL pilot signal U1 is designated as the second measurement target signal. However, for example, the DL pilot signal D3 may be designated as the first measurement target signal, and the UL pilot signal U3 may be designated as the second measurement target signal, and can be changed as appropriate.
 また、第1の測定対象信号としてDLパイロット信号D1、第2の測定対象信号としてULパイロット信号D3を指定しても良く、適宜変更可能である。 Also, the DL pilot signal D1 may be designated as the first measurement target signal, and the UL pilot signal D3 may be designated as the second measurement target signal, and can be changed as appropriate.
 また、基地局2は、第1の測定対象信号D1の通常電力時のSIR及び振幅位相を測定した後、零電力時のSIR及び振幅位相を測定した。しかしながら、第1の測定対象信号D1の零電力時のSIR及び振幅位相を測定した後、通常電力時のSIR及び振幅位相を測定しても良く、適宜変更可能である。 The base station 2 measures the SIR and amplitude phase at zero power after measuring the SIR and amplitude phase at the normal power of the first measurement target signal D1. However, after measuring the SIR and amplitude phase at zero power of the first measurement target signal D1, the SIR and amplitude phase at normal power may be measured and can be changed as appropriate.
 本実施例では、基地局2側でUL信号の純粋な干渉信号とDL信号の純粋な干渉信号とを認識し、干渉信号の影響を受けない状態での正確なSIRを基地局2側で算出できる。その結果、実際のDL無線品質を反映したMCS値を取得し、そのMCS値に基づき、実際の無線品質を反映したDLの通信特性を確保できる。 In this embodiment, the base station 2 recognizes the pure interference signal of the UL signal and the pure interference signal of the DL signal, and calculates an accurate SIR in a state not affected by the interference signal on the base station 2 side. it can. As a result, an MCS value reflecting the actual DL radio quality is acquired, and DL communication characteristics reflecting the actual radio quality can be secured based on the MCS value.
 本実施例の基地局2は、DLパイロット信号の第1の測定対象信号の通常電力時及び零電力時のDL側SIR及びDL側振幅位相と、ULパイロット信号の第2の測定対象信号の通常電力時及び零電力時のUL側SIR及びUL側振幅位相とを取得する。そして、基地局2は、通常電力時及び零電力時のDL側SIR及びDL側振幅位相と、通常電力時及び零電力時のUL側SIR及びUL側振幅位相とに基づき、DL信号の送信出力を制御した。しかしながら、基地局2は、UL側SIR及びUL側振幅位相を測定せず、通常電力時及び零電力時のDL側SIR及びDL側振幅位相に基づき、DL信号の送信出力を制御しても良い。この場合、DL側の実際の無線品質を反映したDLの通信特性を確保できる。 The base station 2 of the present embodiment uses the DL side SIR and DL side amplitude phases of the first measurement target signal of the DL pilot signal and the normal phase of the second measurement target signal of the UL pilot signal. The UL side SIR and the UL side amplitude phase at the time of power and zero power are acquired. The base station 2 then transmits the DL signal transmission output based on the DL side SIR and DL side amplitude phase during normal power and zero power, and the UL side SIR and UL side amplitude phase during normal power and zero power. Controlled. However, the base station 2 may control the transmission output of the DL signal based on the DL side SIR and the DL side amplitude phase at the time of normal power and zero power without measuring the UL side SIR and the UL side amplitude phase. . In this case, it is possible to ensure DL communication characteristics reflecting the actual radio quality on the DL side.
 また、基地局2は、DLパイロット信号の通常電力時及び零電力時のDL側SIR及びDL側振幅位相を取得せず、通常電力時及び零電力時のUL側SIR及びUL側振幅位相を測定し、その測定結果に基づき、DL信号の送信出力を制御しても良い。この場合、UL側の実際の無線品質を反映したDLの通信特性を確保できる。 Also, the base station 2 does not acquire the DL side SIR and DL side amplitude phase at normal power and zero power of the DL pilot signal, and measures the UL side SIR and UL side amplitude phase at normal power and zero power. Then, the transmission output of the DL signal may be controlled based on the measurement result. In this case, DL communication characteristics reflecting the actual radio quality on the UL side can be ensured.
 また、本実施例の基地局2は、無線機能及び制御機能を有する一体装置で説明したが、これに限定されるものではなく、無線装置と制御装置とを個別にして基地局2を構成するようにしても良い。この場合、無線装置は、アンテナ及びRF回路を内蔵し、制御装置は、メモリ及びプロセッサを内蔵するものとする。 Moreover, although the base station 2 of the present embodiment has been described as an integrated device having a wireless function and a control function, the present invention is not limited to this, and the base station 2 is configured by separately setting the wireless device and the control device. You may do it. In this case, the wireless device includes an antenna and an RF circuit, and the control device includes a memory and a processor.
 図14は、基地局2を実現する通信装置100のハードウェアの一例を示す図である。図14に示す通信装置100は、例えば、アンテナ101と、無線回路102と、通信インタフェース回路103と、メモリ104と、プロセッサ105とを有する。無線回路102は、プロセッサ105から出力された信号に変調等の所定の処理を施し、処理後の信号をアンテナ101を介して送信する。また、無線回路102は、アンテナ101を介して受信した信号に復調等の所定の処理を施してプロセッサ105へ出力する。無線回路102は、例えば受信部12及び送信部13の機能を実現する。通信インタフェース回路103は、有線接続によってコアネットワークや、他の基地局2に接続するためのインタフェースである。 FIG. 14 is a diagram illustrating an example of hardware of the communication device 100 that implements the base station 2. The communication device 100 illustrated in FIG. 14 includes, for example, an antenna 101, a wireless circuit 102, a communication interface circuit 103, a memory 104, and a processor 105. The radio circuit 102 performs predetermined processing such as modulation on the signal output from the processor 105, and transmits the processed signal via the antenna 101. The radio circuit 102 performs predetermined processing such as demodulation on the signal received via the antenna 101 and outputs the result to the processor 105. The radio circuit 102 implements the functions of the receiving unit 12 and the transmitting unit 13, for example. The communication interface circuit 103 is an interface for connecting to the core network or another base station 2 by wired connection.
 メモリ104には、受信部12の第1の受信部21、受信多元接続処理部22、第1の復調部23、回線品質抽出部24、第1のSIR測定部24A、第1の位相測定部24B及び送信電力抽出部25の機能を実現するためのプログラムが格納されている。メモリ104には、送信部13の第1の送信電力制御部31、第1の変調部32、送信多元接続処理部33、第1の送信部34、報知情報生成部35、第1のパイロット生成部36、第1の制御情報生成部37の機能を実現するためのプログラムが格納されている。また、メモリ104には、制御部14の第1の回線制御部42、報告要求部51、報告受信部52、電力制御部53及び第1の制御部54の機能を実現するためのプログラムが格納されている。 The memory 104 includes a first reception unit 21, a reception multiple access processing unit 22, a first demodulation unit 23, a line quality extraction unit 24, a first SIR measurement unit 24 </ b> A, and a first phase measurement unit. A program for realizing the functions of 24B and the transmission power extraction unit 25 is stored. The memory 104 includes a first transmission power control unit 31, a first modulation unit 32, a transmission multiple access processing unit 33, a first transmission unit 34, a broadcast information generation unit 35, and a first pilot generation of the transmission unit 13. A program for realizing the functions of the unit 36 and the first control information generation unit 37 is stored. Further, the memory 104 stores programs for realizing the functions of the first line control unit 42, the report request unit 51, the report reception unit 52, the power control unit 53, and the first control unit 54 of the control unit 14. Has been.
 プロセッサ105は、メモリ104に格納されたプログラムをメモリ104から読み出して実行することにより、受信部12の第1の受信部21、受信多元接続処理部22、第1の復調部23及び回線品質抽出部24の機能を実現する。更に、プロセッサ105は、プログラムを実行することで、受信部12の第1のSIR測定部24A、第1の位相測定部24B及び送信電力抽出部25の機能を実現する。プロセッサ105は、メモリ104に格納されたプログラムをメモリ104から読み出して実行することにより、送信部13の第1の送信電力制御部31、第1の変調部32、送信多元接続処理部33及び第1の送信部34の機能を実現する。更に、プロセッサ105は、プログラムを実行することで、送信部13の報知情報生成部35、第1のパイロット生成部36、第1の制御情報生成部37の機能を実現する。プロセッサ105は、メモリ104に格納されたプログラムをメモリ104から読み出して実行することにより、制御部14の第1の回線制御部42、報告要求部51、報告受信部52、電力制御部53及び第1の制御部54の機能を実現する。 The processor 105 reads out the program stored in the memory 104 from the memory 104 and executes the program, whereby the first receiving unit 21, the reception multiple access processing unit 22, the first demodulating unit 23, and the line quality extraction of the receiving unit 12 The function of the unit 24 is realized. Furthermore, the processor 105 implements the functions of the first SIR measurement unit 24A, the first phase measurement unit 24B, and the transmission power extraction unit 25 of the reception unit 12 by executing a program. The processor 105 reads out the program stored in the memory 104 from the memory 104 and executes it, whereby the first transmission power control unit 31, the first modulation unit 32, the transmission multiple access processing unit 33 and the first transmission unit 13 of the transmission unit 13. 1 function of the transmission unit 34 is realized. Furthermore, the processor 105 implement | achieves the function of the alerting | reporting information generation part 35 of the transmission part 13, the 1st pilot generation part 36, and the 1st control information generation part 37 by running a program. The processor 105 reads out the program stored in the memory 104 from the memory 104 and executes it, whereby the first line control unit 42, the report requesting unit 51, the report receiving unit 52, the power control unit 53, and the first control unit 14 of the control unit 14 are executed. 1 function of the control unit 54 is realized.
 図15は、移動局3を実現する通信装置200のハードウェアの一例を示す図である。図15に示す通信装置200は、アンテナ201と、無線回路202と、メモリ203と、プロセッサ204とを有する。無線回路202は、プロセッサ204から出力された信号に変調等の所定の処理を施し、処理後の信号をアンテナ201を介して送信する。また、無線回路202は、アンテナ201を介して受信した信号に復調等の所定の処理を施してプロセッサ204へ出力する。無線回路202は、例えば、端末側受信部62及び端末側送信部63の機能を実現する。 FIG. 15 is a diagram illustrating an example of hardware of the communication device 200 that implements the mobile station 3. A communication apparatus 200 illustrated in FIG. 15 includes an antenna 201, a wireless circuit 202, a memory 203, and a processor 204. The radio circuit 202 performs predetermined processing such as modulation on the signal output from the processor 204, and transmits the processed signal via the antenna 201. The radio circuit 202 performs predetermined processing such as demodulation on the signal received via the antenna 201 and outputs the result to the processor 204. The radio circuit 202 realizes the functions of the terminal-side receiving unit 62 and the terminal-side transmitting unit 63, for example.
 メモリ203には、端末側受信部62の第2の受信部71、受信直交多元接続処理部72、第2の復調部73、システム情報抽出部74、制御情報抽出部75、第2の回線品質抽出部76の機能を実現するためのプログラムが格納されている。更に、メモリ203には、端末側受信部62の第2のSIR測定部76A及び第2の位相測定部76Bの機能を実現するためのプログラムが格納されている。メモリ203には、端末側送信部63の第2の送信電力制御部81、第2の変調部82、送信直交多元接続処理部83、第2の送信部84、第2の制御情報抽出部85及び第2のパイロット生成部86の機能を実現するためのプログラムが格納されている。メモリ203には、端末側制御部64の端末制御部92、第2の回線制御部93、報告部93A、第2の電力制御部93B及び第2の制御部93Cの機能を実現するためのプログラムが格納されている。 The memory 203 includes a second receiving unit 71, a reception orthogonal multiple access processing unit 72, a second demodulating unit 73, a system information extracting unit 74, a control information extracting unit 75, and a second line quality of the terminal side receiving unit 62. A program for realizing the function of the extraction unit 76 is stored. Further, the memory 203 stores a program for realizing the functions of the second SIR measurement unit 76A and the second phase measurement unit 76B of the terminal side reception unit 62. The memory 203 includes a second transmission power control unit 81, a second modulation unit 82, a transmission orthogonal multiple access processing unit 83, a second transmission unit 84, and a second control information extraction unit 85 of the terminal side transmission unit 63. A program for realizing the function of the second pilot generation unit 86 is stored. The memory 203 has a program for realizing the functions of the terminal control unit 92, the second line control unit 93, the report unit 93A, the second power control unit 93B, and the second control unit 93C of the terminal side control unit 64. Is stored.
 プロセッサ204は、メモリ203に格納されたプログラムをメモリ203から読み出して実行することにより、端末側受信部62の第2の受信部71、受信直交多元接続処理部72、第2の復調部73及びシステム情報抽出部74の機能を実現する。更に、プロセッサ204は、プログラムを実行することで、端末側受信部62の制御情報抽出部75、第2の回線品質抽出部76、第2のSIR測定部76A及び第2の位相測定部76Bの機能を実現する。プロセッサ204は、メモリ203に格納されたプログラムをメモリ203から読み出して実行することにより、端末側送信部63の第2の送信電力制御部81、第2の変調部82及び送信直交多元接続処理部83の機能を実現する。更に、プロセッサ204は、プログラムを実行することで、端末側送信部63の第2の送信部84、第2の制御情報抽出部85及び第2のパイロット生成部86の機能を実現する。プロセッサ204は、メモリ203に格納されたプログラムをメモリ203から読み出して実行することにより、端末側制御部64の端末制御部92、第2の回線制御部93、報告部93A、第2の電力制御部93B及び第2の制御部93Cの機能を実現する。 The processor 204 reads out the program stored in the memory 203 from the memory 203 and executes it, whereby the second receiver 71, the reception orthogonal multiple access processor 72, the second demodulator 73, and the terminal-side receiver 62, The function of the system information extraction unit 74 is realized. Furthermore, the processor 204 executes the program, so that the control information extracting unit 75, the second line quality extracting unit 76, the second SIR measuring unit 76A, and the second phase measuring unit 76B of the terminal side receiving unit 62 are executed. Realize the function. The processor 204 reads out the program stored in the memory 203 from the memory 203 and executes the program, whereby the second transmission power control unit 81, the second modulation unit 82, and the transmission orthogonal multiple access processing unit of the terminal-side transmission unit 63 83 functions are realized. Furthermore, the processor 204 implements the functions of the second transmission unit 84, the second control information extraction unit 85, and the second pilot generation unit 86 of the terminal-side transmission unit 63 by executing the program. The processor 204 reads out the program stored in the memory 203 from the memory 203 and executes it, whereby the terminal control unit 92, the second line control unit 93, the reporting unit 93A, and the second power control of the terminal-side control unit 64 are executed. The functions of the unit 93B and the second control unit 93C are realized.
 また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。 In addition, each component of each part illustrated does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution / integration of each part is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in arbitrary units according to various loads and usage conditions. Can be configured.
 更に、各装置で行われる各種処理機能は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしても良い。また、各種処理機能は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしても良いことは言うまでもない。 Furthermore, the various processing functions performed by each device are all or any part of it on a CPU (Central Processing Unit) (or a micro computer such as MPU (Micro Processing Unit) or MCU (Micro Controller Unit)). You may make it perform. Various processing functions may be executed entirely or arbitrarily on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic. Needless to say.
1 無線通信システム
2 基地局
3 移動局
42 第1の回線制御部
51 報告要求部
52 報告受信部
53 電力制御部
54 第1の制御部
54A 第1の算出部
54B 第2の算出部
54C 第1の調整部
54D 第2の調整部
93 第2の回線制御部
93A 報告部
93B 第2の電力制御部
93C 第2の制御部
DESCRIPTION OF SYMBOLS 1 Radio | wireless communications system 2 Base station 3 Mobile station 42 1st line control part 51 Report request | requirement part 52 Report receiving part 53 Power control part 54 1st control part 54A 1st calculation part 54B 2nd calculation part 54C 1st Adjustment unit 54D second adjustment unit 93 second line control unit 93A reporting unit 93B second power control unit 93C second control unit

Claims (13)

  1.  他の通信装置に対して無線信号内の複数の周波数を用いて複数の第1のパイロット信号を送信すると共に、前記他の通信装置から前記複数の周波数を用いて複数の第2のパイロット信号を受信する通信装置であって、
     前記複数の第1のパイロット信号の内、指定された第1の測定対象信号の出力制御前後の無線品質の測定を前記他の通信装置に要求する要求部と、
     前記第1の測定対象信号の出力を制御可能にし、当該第1の測定対象信号を含む前記第1のパイロット信号を前記他の通信装置に送信する送信部と、
     前記他の通信装置にて測定された前記第1の測定対象信号の無線品質を受信する受信部とを有することを特徴とする通信装置。
    A plurality of first pilot signals are transmitted to other communication devices using a plurality of frequencies in a radio signal, and a plurality of second pilot signals are transmitted from the other communication devices using the plurality of frequencies. A communication device for receiving,
    A requesting unit that requests the other communication device to measure the radio quality before and after the output control of the designated first measurement target signal among the plurality of first pilot signals;
    A transmission unit configured to control the output of the first measurement target signal and to transmit the first pilot signal including the first measurement target signal to the other communication device;
    And a receiving unit that receives the wireless quality of the first measurement target signal measured by the other communication device.
  2.  前記複数の第2のパイロット信号の内、指定された第2の測定対象信号の出力を制御可能にし、当該第2の測定対象信号を含む前記第2のパイロット信号の送信を前記他の通信装置に要求する第1の要求部と、
     前記他の通信装置からの前記第2のパイロット信号内の前記第2の測定対象信号の無線品質を測定する測定部と、
     前記他の通信装置から受信した前記第1の測定対象信号の無線品質と、前記測定部にて測定された前記第2の測定対象信号の無線品質とに基づき、前記他の通信装置に対する前記無線信号の送信を制御する制御部と
     を有することを特徴とする請求項1に記載の通信装置。
    Among the plurality of second pilot signals, output of a designated second measurement target signal can be controlled, and transmission of the second pilot signal including the second measurement target signal is transmitted to the other communication device. A first requesting unit that requests
    A measurement unit for measuring radio quality of the second measurement target signal in the second pilot signal from the other communication device;
    Based on the radio quality of the first measurement target signal received from the other communication apparatus and the radio quality of the second measurement target signal measured by the measurement unit, the radio for the other communication apparatus The communication apparatus according to claim 1, further comprising: a control unit that controls transmission of the signal.
  3.  前記第1の測定対象信号の出力制御前の無線品質と前記第1の測定対象信号の出力制御後の無線品質とに基づき、前記他の通信装置に対する前記無線信号の送信を制御する制御部を有することを特徴とする請求項1又は2に記載の通信装置。 A control unit configured to control transmission of the radio signal to the other communication device based on radio quality before output control of the first measurement target signal and radio quality after output control of the first measurement target signal; The communication device according to claim 1, wherein the communication device is provided.
  4.  前記第1の測定対象信号内の一方の第1のパイロット信号の出力制御前の無線品質と、前記第1の測定対象信号内の他方の第1のパイロット信号の出力制御後の無線品質とに基づき、前記他の通信装置に対する前記無線信号の送信を制御する制御部を有することを特徴とする請求項1又は2に記載の通信装置。 Radio quality before output control of one first pilot signal in the first measurement target signal and radio quality after output control of the other first pilot signal in the first measurement target signal The communication device according to claim 1, further comprising a control unit that controls transmission of the wireless signal to the other communication device.
  5.  前記第1のパイロット信号と前記第2のパイロット信号とが同一周波数帯を使用する時分割多重方式の無線信号であることを特徴とする請求項1又は2に記載の通信装置。 The communication apparatus according to claim 1 or 2, wherein the first pilot signal and the second pilot signal are time division multiplexing radio signals using the same frequency band.
  6.  前記第1の測定対象信号の周波数と前記第2の測定対象信号の周波数とが同一周波数であることを特徴とする請求項2に記載の通信装置。 The communication apparatus according to claim 2, wherein the frequency of the first measurement target signal and the frequency of the second measurement target signal are the same frequency.
  7.  前記送信部は、
     前記第1の測定対象信号の送信電力を零電力に設定することが可能であることを特徴とする請求項1又は2に記載の通信装置。
    The transmitter is
    The communication apparatus according to claim 1, wherein the transmission power of the first measurement target signal can be set to zero power.
  8.  前記要求部は、
     前記第1のパイロット信号毎に識別する識別情報で前記第1の測定対象信号を前記他の通信装置に通知することを特徴とする請求項1又は2に記載の通信装置。
    The request unit includes:
    The communication apparatus according to claim 1 or 2, wherein the first measurement target signal is notified to the other communication apparatus by identification information that is identified for each of the first pilot signals.
  9.  他の通信装置に対して無線信号内の複数の周波数を用いて複数の第1のパイロット信号を送信すると共に、前記他の通信装置から前記複数の周波数を用いて複数の第2のパイロット信号を受信する通信装置であって、
     前記複数の第2のパイロット信号の内、指定された測定対象信号の出力を制御可能にし、当該測定対象信号を含む前記第2のパイロット信号の送信を前記他の通信装置に要求する要求部と、
     前記他の通信装置からの前記第2のパイロット信号内の前記測定対象信号の無線品質を測定する測定部と、
     前記測定部にて測定された前記測定対象信号の無線品質に基づき、前記他の通信装置に対する前記無線信号の送信を制御する制御部と
     を有することを特徴とする通信装置。
    A plurality of first pilot signals are transmitted to other communication devices using a plurality of frequencies in a radio signal, and a plurality of second pilot signals are transmitted from the other communication devices using the plurality of frequencies. A communication device for receiving,
    A requesting unit that makes it possible to control output of a designated measurement target signal from among the plurality of second pilot signals, and requests the other communication device to transmit the second pilot signal including the measurement target signal; ,
    A measurement unit for measuring radio quality of the measurement target signal in the second pilot signal from the other communication device;
    And a control unit that controls transmission of the radio signal to the other communication device based on the radio quality of the measurement target signal measured by the measurement unit.
  10.  他の通信装置に対して無線信号内の複数の周波数を用いて複数の第1のパイロット信号を送信すると共に、前記他の通信装置から前記複数の周波数を用いて複数の第2のパイロット信号を受信する通信装置が実行する送信制御方法であって、
     前記通信装置は、
     前記複数の第1のパイロット信号の内、指定された測定対象信号の出力制御前後の無線品質の測定を前記他の通信装置に要求し、
     前記他の通信装置にて測定された前記測定対象信号の無線品質を受信し、その無線品質に基づき、前記他の通信装置に対する前記無線信号の送信を制御する
     処理を実行することを特徴とする送信制御方法。
    A plurality of first pilot signals are transmitted to other communication devices using a plurality of frequencies in a radio signal, and a plurality of second pilot signals are transmitted from the other communication devices using the plurality of frequencies. A transmission control method executed by a receiving communication device,
    The communication device
    Requesting the other communication device to measure the radio quality before and after the output control of the designated measurement target signal among the plurality of first pilot signals,
    Receiving the radio quality of the signal to be measured measured by the other communication apparatus, and executing processing for controlling transmission of the radio signal to the other communication apparatus based on the radio quality Transmission control method.
  11.  他の通信装置から無線信号内の複数の周波数を用いて複数の第1のパイロット信号を受信すると共に、前記他の通信装置に対して前記複数の周波数を用いて複数の第2のパイロット信号を送信する通信装置であって、
     前記複数の第1のパイロット信号の内、指定された第1の測定対象信号の出力制御前後の無線品質の測定要求を受信した場合、前記他の通信装置から受信した前記第1の測定対象信号の無線品質を測定する測定部と、
     前記測定部にて測定された前記第1の測定対象信号の無線品質を前記第2のパイロット信号で前記他の通信装置に送信する送信部と
     を有することを特徴とする通信装置。
    A plurality of first pilot signals are received from other communication devices using a plurality of frequencies in a radio signal, and a plurality of second pilot signals are received from the other communication devices using the plurality of frequencies. A communication device for transmitting,
    The first measurement target signal received from the other communication device when receiving a wireless quality measurement request before and after output control of the designated first measurement target signal among the plurality of first pilot signals. A measurement unit for measuring the wireless quality of
    And a transmitter that transmits the radio quality of the first measurement target signal measured by the measurement unit to the other communication device using the second pilot signal.
  12.  前記送信部は、
     前記複数の第2のパイロット信号の内、指定された第2の測定対象信号の出力を制御可能にし、当該第2の測定対象信号を含む前記第2のパイロット信号の送信要求を前記他の通信装置から受信した場合、前記第2の測定対象信号の出力を制御した前記第2のパイロット信号を送信することを特徴とする請求項11に記載の通信装置。
    The transmitter is
    Among the plurality of second pilot signals, the output of the designated second measurement target signal can be controlled, and the transmission request for the second pilot signal including the second measurement target signal is set to the other communication. The communication device according to claim 11, wherein when receiving from the device, the second pilot signal in which an output of the second measurement target signal is controlled is transmitted.
  13.  第1の通信装置と第2の通信装置とを有し、第1の通信装置は、無線信号内の複数の周波数を用いて複数の第1のパイロット信号を送信すると共に、前記第2の通信装置から前記複数の周波数を用いて複数の第2のパイロット信号を受信する無線通信システムであって、
     前記第1の通信装置は、
     前記複数の第1のパイロット信号の内、指定された第1の測定対象信号の受信品質の測定を前記第2の通信装置に要求する制御情報を生成する要求部と、
     当該第1の測定対象信号を含む前記第1のパイロット信号と前記制御情報とを前記第2の通信装置に送信する第1の送信部と
    を有し、
     前記第2の通信装置は、
     前記第1の通信装置から受信する前記制御情報に応じて、前記第1の通信装置から受信した前記第1のパイロット信号内の前記第1の測定対象信号の受信品質を測定する測定部と、
     前記測定部にて測定された前記第1の測定対象信号の受信品質を示す情報と前記第2のパイロット信号を前記第1の通信装置に送信する第2の送信部と
    を有することを特徴とする無線通信システム。
    The first communication device includes a first communication device and a second communication device. The first communication device transmits a plurality of first pilot signals using a plurality of frequencies in a radio signal, and the second communication. A wireless communication system for receiving a plurality of second pilot signals from a device using the plurality of frequencies,
    The first communication device is:
    A request unit that generates control information for requesting the second communication device to measure the reception quality of the designated first measurement target signal among the plurality of first pilot signals;
    A first transmitter that transmits the first pilot signal including the first measurement target signal and the control information to the second communication device;
    The second communication device is:
    A measurement unit that measures reception quality of the first measurement target signal in the first pilot signal received from the first communication device according to the control information received from the first communication device;
    It has information which shows reception quality of the 1st measurement object signal measured by the measurement part, and the 2nd transmission part which transmits the 2nd pilot signal to the 1st communication device, Wireless communication system.
PCT/JP2017/000169 2017-01-05 2017-01-05 Communication device, transmission control method, and wireless communication system WO2018127959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000169 WO2018127959A1 (en) 2017-01-05 2017-01-05 Communication device, transmission control method, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000169 WO2018127959A1 (en) 2017-01-05 2017-01-05 Communication device, transmission control method, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2018127959A1 true WO2018127959A1 (en) 2018-07-12

Family

ID=62791018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000169 WO2018127959A1 (en) 2017-01-05 2017-01-05 Communication device, transmission control method, and wireless communication system

Country Status (1)

Country Link
WO (1) WO2018127959A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525044A (en) * 2003-02-24 2007-08-30 クゥアルコム・フラリオン・テクノロジーズ、インコーポレイテッド Pilot signal used in multi-sector cell
JP2011061464A (en) * 2009-09-09 2011-03-24 Fujitsu Ltd Communication apparatus and communication method
JP2013534392A (en) * 2010-08-16 2013-09-02 クゥアルコム・インコーポレイテッド ACK / NACK transmission for multi-carrier operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525044A (en) * 2003-02-24 2007-08-30 クゥアルコム・フラリオン・テクノロジーズ、インコーポレイテッド Pilot signal used in multi-sector cell
JP2011061464A (en) * 2009-09-09 2011-03-24 Fujitsu Ltd Communication apparatus and communication method
JP2013534392A (en) * 2010-08-16 2013-09-02 クゥアルコム・インコーポレイテッド ACK / NACK transmission for multi-carrier operation

Similar Documents

Publication Publication Date Title
TWI705717B (en) Method for default uplink beam determination and user equipment thereof
US11716156B2 (en) Method and apparatus for determining pathloss in wireless communication system
US10256883B2 (en) Reference signal reporting in a wireless communication system
US20220376965A1 (en) Switching Waveforms for Uplink Transmission in NR Network
CN111699635B (en) Method and apparatus for beam management
US10833744B2 (en) Network initiated reselection of transmitter and receiver configurations
CN115334566A (en) Method, device, equipment and storage medium for reporting beam measurement report
KR101980093B1 (en) Method and system for providing service in a next generation radio communication system
CN103875294A (en) Resource reconfiguration for up-link transmission
WO2014138189A1 (en) Distributed power control for d2d communications
US20050048975A1 (en) Method and apparatus for node B controlled scheduling in soft handover
US20150215957A1 (en) System and method for channel state information transmission on lte dual connectivity
US20150215847A1 (en) Apparatus for discovery signal transmission on lte small cell
US10172174B2 (en) Selection between cellular communication link and device-to-device (D2D) communication link using reference signals
CN114846760A (en) Method and apparatus for uplink transmission
EP3304997B1 (en) Classification of reporting entities for communication resource management
US20150208333A1 (en) Apparatus for on-off information transmission on lte small cell
US9178585B2 (en) Pilot channel configuration for MIMO network
WO2018127959A1 (en) Communication device, transmission control method, and wireless communication system
US11855722B2 (en) Mapping between beams and antenna panels
US20230023210A1 (en) Channel state information report for bundled downlink shared channel
CN116250329A (en) Downlink reception with multiple TCI states
US20240187060A1 (en) Mapping between beams and antenna panels
US20240088957A1 (en) Beamforming for backscatter radio
US20240172113A1 (en) Transmit power control commands for network power saving modes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP