WO2018110402A1 - Device for predicting travel trajectory of preceding vehicle, and vehicle equipped with same - Google Patents

Device for predicting travel trajectory of preceding vehicle, and vehicle equipped with same Download PDF

Info

Publication number
WO2018110402A1
WO2018110402A1 PCT/JP2017/043936 JP2017043936W WO2018110402A1 WO 2018110402 A1 WO2018110402 A1 WO 2018110402A1 JP 2017043936 W JP2017043936 W JP 2017043936W WO 2018110402 A1 WO2018110402 A1 WO 2018110402A1
Authority
WO
WIPO (PCT)
Prior art keywords
preceding vehicle
vehicle
future
locus
travel locus
Prior art date
Application number
PCT/JP2017/043936
Other languages
French (fr)
Japanese (ja)
Inventor
一野瀬 昌則
茂規 早瀬
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018110402A1 publication Critical patent/WO2018110402A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a travel trajectory prediction apparatus that predicts the travel trajectory of a preceding vehicle that travels in front of the host vehicle, and a vehicle equipped with the travel trajectory prediction apparatus.
  • Patent Document 1 discloses that lateral movement is detected from temporal changes in the lateral position of a preceding vehicle using image information captured by a camera, and the preceding vehicle is approaching a white line drawn on the road surface.
  • a technique for determining to change lanes is disclosed.
  • the movement of the vehicle when changing lanes is as follows. First, when the steering of the vehicle is turned and an angle is applied to the front wheel, a lateral force is generated on the front wheel side and the vehicle body starts to rotate, and the rotation of the vehicle body also causes an angle on the rear wheel to generate a lateral force. As a result, centripetal force acts on the vehicle body and the vehicle body starts to turn, and as a result, lateral movement begins.
  • the lateral movement amount is ⁇ Y
  • the speed is V
  • the yaw angle of the vehicle body is ⁇
  • the side slip angle of the tire is ignored
  • the driver of the preceding vehicle cannot turn the steering wheel with the intention of changing the lane, change the direction of the vehicle, and start the lateral movement. For this reason, when the distance between the host vehicle and the preceding vehicle is short, the preceding vehicle has already approached when the lane change determination is made, and there is a possibility that the notification to the driver of the host vehicle will not be in time.
  • an object of the present invention is to provide a travel trajectory prediction device that predicts the behavior of a preceding vehicle earlier and a vehicle equipped with the travel trajectory prediction device.
  • a travel locus prediction apparatus for a preceding vehicle detects a direction of a vehicle body surface of a preceding vehicle using image information in front of the host vehicle captured by an imaging device. Using the information detection unit, the yaw rate calculation unit that calculates the yaw rate of the preceding vehicle from the change in the direction of the body surface of the preceding vehicle, the speed calculation unit that calculates the speed of the preceding vehicle, the yaw rate and the speed A preceding vehicle travel locus prediction unit that predicts a future travel locus of the preceding vehicle.
  • FIG. 1 is a functional block diagram of a vehicle equipped with a traveling locus prediction device for a preceding vehicle according to a first embodiment of the present invention. It is a figure which shows typically the image shown by the image information ahead of the own vehicle, and an example of the vehicle body surface of the preceding vehicle recognized in the said image. It is a figure which shows an example of the future traveling locus of the preceding vehicle predicted in the traveling locus prediction device of FIG. It is a figure which shows another example of the future driving
  • FIG. 1 is a functional block diagram of a vehicle equipped with a traveling locus prediction device for a preceding vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an image shown in image information ahead of the host vehicle and an example of a vehicle body surface of a preceding vehicle recognized in the image.
  • FIG. 3 is a diagram illustrating an example of a future travel locus of the preceding vehicle predicted by the travel locus prediction apparatus in FIG. 1, and illustrates an arcuate travel locus by turning at a radius R.
  • a host vehicle 100 as a vehicle includes a stereo camera 11 as an imaging device, a vehicle speed sensor 12, a yaw rate sensor 13, a display device 14, and an interference avoidance control device 15.
  • the travel locus prediction device 20 is mounted.
  • the stereo camera 11 is composed of two cameras.
  • the stereo camera 11 is fixedly attached to the front side of the vehicle body (not shown), for example, the upper part of the windshield, with a space in the left-right direction so that an image in front of the host vehicle 100 can be taken.
  • the stereo camera 11 transmits image information related to the captured image (parallax image) to the travel locus prediction apparatus 20 described later.
  • any device other than the stereo camera 11 may be used as long as it is an image pickup device that can pick up image information that can detect the direction and position of the vehicle body surface of the preceding vehicle.
  • the vehicle speed sensor 12 is attached to a transmission, each axle, and the like, detects the speed of the host vehicle 100 from its rotational speed, and transmits it to the travel locus prediction device 20.
  • the yaw rate sensor 13 is installed near the center of gravity of the vehicle body, detects the rotational speed around the vertical axis passing through the center of gravity, and transmits it to the travel locus prediction device 20.
  • the display device 14 is, for example, a liquid crystal display device disposed in the instrument panel of the host vehicle 100, a navigation display device embedded in the center portion of the dashboard, or the like. As shown in FIG. 3, the display device 14 displays a future travel locus K1 of the host vehicle 100 and a future travel locus K2 of the preceding vehicle 200 predicted by a travel locus prediction apparatus 20 described later.
  • the interference avoidance control device 15 is connected to, for example, a brake device of the host vehicle 100, and a future travel track K1 of the host vehicle 100 and a future travel track K2 of the preceding vehicle are detected by a travel track prediction device 20 described later.
  • a travel track prediction device 20 described later.
  • the speed of the host vehicle 100 is controlled to drive the brake device and avoid the interference.
  • the traveling locus prediction apparatus 20 includes a preceding vehicle information detection unit 21, a yaw rate calculation unit 22, a speed calculation unit 23, a preceding vehicle traveling locus prediction unit 24, a host vehicle traveling locus prediction unit 25, and an interference determination unit 26. , An interrupt warning unit 27, a rotation determination unit 28, and an abnormal behavior warning unit 29.
  • the preceding vehicle information detection unit 21 detects the direction of the vehicle body surface of the preceding vehicle using image information ahead of the host vehicle imaged by the imaging device. For example, the preceding vehicle information detection unit 21 receives image information in front of the host vehicle 100 imaged by the stereo camera 11 and analyzes the image information to analyze the vehicle body surface of the preceding vehicle 200 that is a three-dimensional object and its direction. In addition, the position of the preceding vehicle 200 may be detected.
  • the preceding vehicle information detection unit 21 first extracts a common feature point from these parallax images for the three-dimensional object shown in the left and right parallax images. This is a process of searching for common elements included in each of two parallax images. For example, one part of one image is cut out and compared with the other image, and a part with a high degree of matching of the feature amount is specified. To do.
  • an edge extraction process that highlights the outline or straight line portion of the object in the image may be performed in advance.
  • the preceding vehicle information detection unit 21 uses the triangulation method to determine the feature points in the three-dimensional object based on the optical geometric relationship such as the positional relationship between the common feature points, the positional relationship between the two cameras, and the focal length. Calculate the position.
  • the position of each feature point is a relative position from the reference position of the host vehicle 100 (for example, the center of the front surface of the vehicle body). In this specification, unless otherwise specified, “position” indicates this relative position.
  • position indicates this relative position.
  • the front surface of the vehicle body may be detected, that is, the body surface of the preceding vehicle 200 facing the own vehicle 100 side. Is detected.
  • the preceding vehicle information detection unit 21 detects the direction of the vehicle body surface of the preceding vehicle 200. Specifically, as shown in FIG. 2, the positions of the feature points belonging to the vehicle body rear surface 201 and the vehicle body side surface 202 are calculated by the triangulation method described above. The direction of the vehicle body surface can be calculated from the difference between the positions of the two feature points included in the vehicle body side surface 202. From the viewpoint of accuracy, it is desirable to select two feature points used as far as possible as the two feature points used for calculating the direction of the vehicle body surface.
  • the preceding vehicle information detection unit 21 detects the position of the preceding vehicle 200, for example, the center position of the front surface of the vehicle body, based on the positions of the vehicle body rear surface 201 and the vehicle body side surface 202.
  • a vehicle type passesenger car, truck, etc.
  • the position of the preceding vehicle 200 may be detected by estimating the width.
  • the yaw rate calculation unit 22 acquires the yaw angle of the preceding vehicle 200 from the direction of the vehicle body surface of the preceding vehicle 200 detected by the preceding vehicle information detection unit 21, and calculates the angular velocity, that is, the yaw rate, from the time change of the yaw angle.
  • the direction D2 of the vehicle body side surface 202 of the preceding vehicle 200 is also the direction D2 of the preceding vehicle 200, and indicates the yaw angle of the preceding vehicle 200. Further, the normal direction of the vehicle body rear surface 201 of the preceding vehicle 200 coincides with the direction D2 and indicates the yaw angle. Then, the preceding vehicle is obtained by dividing the angle changed from the direction D2 of the preceding vehicle 200 at the past time point to the direction D2 of the preceding vehicle 200 at the present time point by the time elapsed from the past time point to the current time point. 200 yaw rates can be calculated.
  • the direction D1 of the host vehicle 100 is a straight line extending forward in the traveling direction.
  • An angle ⁇ formed by the direction D1 of the host vehicle 100 and the direction D2 of the preceding vehicle 200 is a relative yaw angle of the preceding vehicle 200 with respect to the direction D1 of the host vehicle 100.
  • the yaw rate of the preceding vehicle 200 may be calculated using this relative yaw angle.
  • the speed calculation unit 23 detects the speed of the preceding vehicle. For example, the speed calculation unit 23 calculates the relative speed of the preceding vehicle 200 with respect to the host vehicle 100 from the time change of the position of the preceding vehicle 200 detected by the preceding vehicle information detection unit 21. Furthermore, the ground speed of the preceding vehicle 200 (hereinafter simply referred to as “the speed of the preceding vehicle 200”) can be calculated by adding the speed of the host vehicle 100 obtained by the vehicle speed sensor 12 to the relative speed.
  • the preceding vehicle travel locus prediction unit 24 predicts the future travel locus of the preceding vehicle using the yaw rate and speed. For example, the preceding vehicle travel locus prediction unit 24 is detected by the yaw rate of the preceding vehicle 200 calculated by the yaw rate calculation unit 22, the speed of the preceding vehicle 200 calculated by the speed calculation unit 23, and the preceding vehicle information detection unit 21. Based on the position of the preceding vehicle 200, the future travel locus K2 of the preceding vehicle 200 is predicted.
  • the traveling locus when the vehicle turns is to perform a circular motion at an angular velocity equivalent to the yaw rate if the side slip angle of the tire is ignored. That is, if the vehicle speed is V, the turning radius is R, and the yaw rate is ⁇ , the vehicle turns with a turning radius R expressed by the following equation (1).
  • the preceding vehicle traveling locus prediction unit 24 predicts the traveling locus on the assumption that the preceding vehicle 200 turns with the turning radius R from the current position. Specifically, the preceding vehicle travel locus prediction unit 24 applies the speed and yaw rate of the preceding vehicle 200 to the above equation (1), and sets the arc having the radius R starting from the current position of the preceding vehicle 200 in the future. Is calculated as a travel locus K2.
  • FIG. 3 shows an example of a future travel locus K2 of the preceding vehicle 200.
  • the travel locus K2w having the same width as the vehicle body rear surface 201 of the preceding vehicle 200 may be calculated using the travel locus K2 as a center line.
  • the own vehicle traveling locus prediction unit 25 predicts the future traveling locus of the own vehicle. For example, the host vehicle travel locus prediction unit 25 receives the speed and yaw rate of the host vehicle 100 detected by the vehicle speed sensor 12 and the yaw rate sensor 13, and determines the future travel locus K1 of the host vehicle 100 based on the speed and yaw rate. Predict. Similar to the preceding vehicle travel locus prediction unit 24, the own vehicle travel locus prediction unit 25 applies the speed and yaw rate of the own vehicle 100 to the above equation (1), and uses the current position of the own vehicle 100 as a starting point. The arc that becomes R is calculated as the future travel locus K1.
  • FIG. 3 shows an example of a future travel locus K1 of the host vehicle 100.
  • a travel locus K1 shown in FIG. 3 indicates a case where the yaw rate is 0, that is, the host vehicle is traveling straight.
  • the yaw rate of the host vehicle 100 is not 0, so the travel locus K1 of the host vehicle 100 is along the road.
  • a circular arc will be drawn.
  • the travel locus K1w having the vehicle width of the own vehicle 100 with the travel locus K1 as the center line may be calculated.
  • the interference determination unit 26 determines interference between the future travel locus of the host vehicle and the future travel locus of the preceding vehicle.
  • the interference determination unit 26 includes a future travel locus K1 of the host vehicle 100 predicted by the host vehicle travel track prediction unit 25, a future travel locus K2 of the preceding vehicle 200 predicted by the preceding vehicle travel track prediction unit 24, and Determine the interference.
  • the interference determination unit 26 may determine that when the future travel locus K1 of the host vehicle 100 and the future travel locus K2 of the preceding vehicle 200 intersect, they interfere.
  • the travel tracks K1w and K2w taking into consideration the width of the vehicle it can be determined that the vehicle has interfered not only when it intersects but also when it overlaps. It is also possible to determine the risk of
  • the interference determination unit 26 calculates the time until each vehicle reaches the intersection or overlap point from the distance to the intersection or overlap point of the travel trajectories K1 and K2 and the speed of the host vehicle 100 and the preceding vehicle 200, The interference may be determined in consideration of this time.
  • the host vehicle 100 and the preceding vehicle 200 are traveling at the same speed
  • the preceding vehicle 200 slightly turns the steering wheel and gradually approaches the host vehicle 100
  • the intersection of the traveling tracks K1 and K2 Since the vehicle is far away, the time until the collision or contact between the vehicles occurs becomes longer. Therefore, the driver of each vehicle may take an avoidance action before reaching a contact or the like.
  • the speed difference between the host vehicle 100 and the preceding vehicle 200 is large, the time taken to reach the intersection of the travel tracks K1 and K2 differs greatly between the preceding vehicle 200 and the host vehicle 100, and either one of the intersections first intersects. It is also assumed that no vehicles collide or contact with each other. Considering the time until interference in this way, it becomes possible to determine interference based on the degree of urgency and timing.
  • the interrupt warning unit 27 determines that the preceding vehicle 200 is in the vehicle 100 when the interference determining unit 26 determines that the future traveling track K1 of the host vehicle 100 interferes with the future traveling track K2 of the preceding vehicle 200.
  • An alarm is given to interrupt you.
  • “alarm” includes not only informing the driver by an alarm sound or voice, but also, for example, that the interrupt alarm unit 27 transmits an alarm signal for issuing an alarm in another device.
  • the display device 14 may receive this warning signal and display a message, a graphic (icon) or the like to notify the driver of an interruption of the preceding vehicle 200 (warning).
  • the rotation determination unit 28 determines the rotation of the preceding vehicle 200 around the vertical axis using the yaw rate. For example, the rotation determination unit 28 determines an abnormal rotation (spin) of the vehicle body of the preceding vehicle 200 based on the yaw rate of the preceding vehicle 200 calculated by the yaw rate calculation unit 22. The rotation determination unit 28 calculates a change in the yaw angle of the preceding vehicle 200 by integrating the yaw rate of the preceding vehicle 200, and the calculated change in the yaw angle is equal to or greater than the rotation determination angle (for example, 90 degrees (the vehicle body is sideways)). When the vehicle rotates excessively, it may be determined that the preceding vehicle 200 is rotating abnormally.
  • the rotation determination angle for example, 90 degrees (the vehicle body is sideways
  • the abnormal behavior warning unit 29 issues a warning that the preceding vehicle 200 is performing an abnormal behavior.
  • “alarm” includes notifying the driver by an alarm sound, voice, or the like, but also includes, for example, the abnormal behavior alarm unit 29 transmitting an alarm signal for issuing an alarm in another device.
  • the display device 14 may receive the warning signal, display a message, a graphic (icon), and the like to notify the driver of the abnormal behavior of the preceding vehicle 200 (warn).
  • the host vehicle 100 analyzes the parallax image captured by the stereo camera 11 to obtain the yaw rate, speed, and position of the preceding vehicle 200, and predicts the future travel locus K2 of the preceding vehicle 200 based on the yaw rate, speed, and position. To do. In parallel with this, the host vehicle 100 predicts a future travel locus K1 of the host vehicle 100 based on the speed and yaw rate of the host vehicle 100 detected by the vehicle speed sensor 12 and the yaw rate sensor 13. Then, the host vehicle 100 displays an image including the predicted future travel locus K1 of the own vehicle 100 and the future travel locus K2 of the preceding vehicle 200 as shown in FIG.
  • the host vehicle 100 determines interference between the future travel locus K1 of the own vehicle 100 and the future travel locus K2 of the preceding vehicle 200.
  • the own vehicle 100 determines that the travel loci K1 and K2 interfere with each other, the own vehicle 100 issues a warning that the preceding vehicle 200 interrupts in front of the own vehicle 100, and the interference avoidance control device 15 avoids the interference.
  • the speed of the host vehicle 100 is controlled.
  • the host vehicle 100 determines the abnormal rotation (spin) of the preceding vehicle 200 based on the yaw rate of the preceding vehicle 200. Then, when it is determined that the preceding vehicle 200 is rotating abnormally, the host vehicle 100 issues an alarm to the effect that the preceding vehicle 200 behaves abnormally.
  • the future travel locus K2 of the preceding vehicle 200 can be predicted using the yaw rate, position, and speed of the preceding vehicle 200.
  • the future travel locus K2 of the preceding vehicle 200 can be obtained before the preceding vehicle 200 starts lateral movement. Can be predicted. Therefore, the behavior of the preceding vehicle 200 can be predicted earlier.
  • the host vehicle 100 calculates the yaw angle that is the direction of the vehicle body surface of the preceding vehicle 200 and the yaw rate that changes with time using the image information captured by the stereo camera 11, and uses this yaw rate to calculate the travel locus K2. Can be predicted. Since it did in this way, the behavior change of the preceding vehicle 200 can be recognized early irrespective of the presence or absence of the white line of a road.
  • the host vehicle 100 can also predict the future travel locus K1 of the host vehicle 100, and determine the interference between the travel locus K1 and the future travel locus K2 of the preceding vehicle 200. Since it did in this way, the danger of the collision and the contact of the own vehicle 100 and the preceding vehicle 200 can be recognized in advance by determining the interference of the traveling tracks K1 and K2.
  • the host vehicle 100 may warn of an interruption of the preceding vehicle 200 when it is determined that the future traveling locus K1 of the own vehicle 100 and the future traveling locus K2 of the preceding vehicle 200 interfere with each other.
  • the driver can be accurately informed that the preceding vehicle 200 is interrupted in front of the host vehicle 100. .
  • the host vehicle 100 may display the future travel locus K1 of the host vehicle 100 and the future travel locus K2 of the preceding vehicle 200 on the display device 14. Since it did in this way, the behavior of the preceding vehicle 200 can be known in advance by displaying at least the future traveling locus of the preceding vehicle 200.
  • the own vehicle 100 controls the own vehicle 100 to avoid the interference. Good. Since it did in this way, the danger of the collision and contact with the own vehicle 100 and the preceding vehicle 200 can be reduced effectively.
  • the host vehicle 100 determines abnormal rotation around the vertical axis of the preceding vehicle 200 using the yaw rate, and when it is determined that the preceding vehicle 200 rotates abnormally around the vertical axis, the abnormality of the preceding vehicle 200 is determined.
  • the behavior may be alarmed. For this reason, for example, when a preceding vehicle spins on a snowy road or a wet road, the preceding vehicle 200 may continue to travel in the previous direction while rotating the vehicle body. It is possible to warn about abnormal behaviors that do not involve lateral movement.
  • the travel locus prediction apparatus 20 of the second embodiment has a configuration for calculating an S-shaped travel locus in which two arcs having a radius R are connected.
  • FIG. 4 is a diagram showing an example of a future travel locus of the preceding vehicle predicted by the preceding vehicle travel locus prediction apparatus according to the first embodiment of the present invention (an S-shape that repeats turns at a radius R alternately. Traveling trajectory).
  • the traveling locus by changing the lane as described above is the S-shaped traveling that connects two arcs with the same radius R and opposite directions. It will be a trajectory. From this, in the preceding vehicle travel locus predicting unit 24 in the present embodiment, assuming that the preceding vehicle 200 finally travels along the lane of the change destination, the S-shaped shape connecting two arcs. A travel locus J is generated.
  • the preceding vehicle travel locus prediction unit 24 has an S-shape that connects an arc-shaped first half travel locus and a second half travel locus obtained by rotating the first half travel locus by 180 degrees as a future travel locus of the preceding vehicle. Predict travel trajectory.
  • the preceding vehicle travel locus prediction unit 24 first calculates the first half travel locus Ja, which is the first half of the future travel locus J of the preceding vehicle 200.
  • This first-half traveling locus Ja applies the speed and yaw rate of the preceding vehicle 200 to the above equation (1) and starts from the current position of the preceding vehicle 200, and is between the position of the preceding vehicle 200 and the position of the host vehicle 100.
  • This is an arc having a radius R with the intermediate line L in the road width direction as the end point.
  • the end point of the first-half travel locus Ja may be the center line of the lane in which the host vehicle 100 is traveling.
  • the preceding vehicle travel locus prediction unit 24 uses the arc obtained by rotating the first half travel locus Ja by 180 degrees as the second half travel locus Jb, and connects the first half travel locus Ja to the second half travel locus Jb, thereby obtaining the S-shaped travel locus J. calculate.
  • the preceding vehicle traveling locus prediction unit 24 of the present embodiment can predict a more realistic traveling locus by reproducing such an S-shaped traveling locus J.
  • the traveling locus K2 of the preceding vehicle 200 intersects with the traveling locus K1 of the host vehicle 100, the vehicle continues to turn away thereafter. It becomes a trajectory. Therefore, in the first embodiment, the travel tracks K1 and K2 intersect at one point.
  • the first half travel track in which the preceding vehicle 200 turns by generating an S-shaped track. Since it is possible to generate the second-half travel locus Jb that remains in the travel lane of the host vehicle 100 after generating Ja, the travel locus K1 and the travel locus J overlap with each other, and interference determination that is more realistic can be performed.
  • the future traveling locus J of the preceding vehicle 200 the S-shaped connecting the arcuate first-half traveling locus Ja and the second-half traveling locus Jb obtained by rotating the first-half traveling locus Ja by 180 degrees. Since the traveling locus J is predicted, the behavior of the preceding vehicle 200 can be predicted at an early stage more realistically.
  • the travel locus prediction device 20 of the third embodiment of the present invention has a configuration that suppresses erroneous recognition of the wobbling of the preceding vehicle 200 as a lane change.
  • FIG. 5 is a graph showing an example of a change in the steering angle caused by the steering operation when the lane is changed.
  • FIG. 6 is a graph showing an example of yaw rate change at the time of lane change and wobbling.
  • the steering is turned to the side where the lane change is desired as shown in FIG.
  • the operation turns the steering wheel back. That is, when the lane change is performed, it is necessary to continue to operate the steering to the side where the lane change is desired over a predetermined period during the lane change operation. Therefore, even with respect to the yaw rate that is substantially proportional to the steering angle (steering angle), as shown by the broken line Y in FIG. 6, the yaw rate is generated in one direction and maintained for a predetermined period, and then the yaw rate in the reverse direction is It will be maintained for a predetermined period.
  • the yaw rate if attention is paid to the sign of the value (that is, a positive value or a negative value), in the case of vehicle wobble, the sign on the side generated at the rise of the yaw rate is not maintained over a predetermined period. A reverse code is detected in a short time. Therefore, in the interference determination unit 26 of the present embodiment, the yaw rate continues to be a positive value or a negative value for a predetermined period or longer, that is, the yaw rate detected in the preceding vehicle 200 has a predetermined interference determination period (for example, 0 .5 seconds) and may be used as a criterion for interference.
  • a predetermined interference determination period for example, 0 .5 seconds
  • the interference between the future travel locus K1 of the host vehicle 100 and the future travel locus K2 of the preceding vehicle 200 is reduced. Since it determines, it can suppress that the wobbling of a vehicle misdetermines that it is a lane change.
  • the interference determination unit 26 causes the yaw rate calculated by the yaw rate calculation unit 22 to approach the host vehicle 100 side.
  • this code is maintained over a predetermined interference determination period (for example, 1 second)
  • the future travel locus K1 of the host vehicle 100 and the future travel locus K2 of the preceding vehicle 200 interfere with each other. You may make it determine.
  • SYMBOLS 11 Stereo camera (imaging device), 12 ... Vehicle speed sensor, 13 ... Yaw rate sensor, 14 ... Display device, 15 ... Interference avoidance control device, 20 ... Running track prediction device, 21 ... Preceding vehicle information detection part, 22 ... Yaw rate calculation , 23... Speed calculation unit, 24... Preceding vehicle travel trajectory prediction unit, 25... Own vehicle travel trajectory prediction unit, 26... Interference determination unit, 27. Part, 100 ... own vehicle, 200 ... preceding vehicle, 201 ... rear surface of vehicle body, 202 ... side surface of vehicle body

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

The present invention provides: a travel trajectory prediction device that makes even earlier predictions of the behavior of a preceding vehicle; and a vehicle equipped with the device. This travel trajectory prediction device 20 installed in a host vehicle 100 detects the orientation of the vehicle body surfaces of a preceding vehicle 200 by analyzing a stereoscopic image captured by a stereo camera 11. In addition, the travel trajectory prediction device 20 calculates the yaw rate of the preceding vehicle 200 from changes in the orientation of the vehicle body surfaces of the preceding vehicle 200, calculates the speed of the preceding vehicle from changes in the position of the preceding vehicle 200, and predicts the future travel trajectory of the preceding vehicle 200 using the yaw rate and the speed of the preceding vehicle 200.

Description

先行車両の走行軌跡予測装置及びその搭載車両Traveling track prediction device for preceding vehicle and vehicle equipped with the same
 本発明は、自車両の前方を走行する先行車両の走行軌跡を予測する走行軌跡予測装置及びその搭載車両に関する。 The present invention relates to a travel trajectory prediction apparatus that predicts the travel trajectory of a preceding vehicle that travels in front of the host vehicle, and a vehicle equipped with the travel trajectory prediction apparatus.
 従来、先行車両の動きの変化を検出することにより先行車両の挙動を予測して自車両の安全性を高める技術の開発が行われている。例えば、特許文献1には、カメラで撮像した画像情報を用いて先行車両の横方向位置の時間的変化から横移動を検出し、先行車両が路面上に描かれた白線に接近しつつあるとき、車線変更をするものと判断する技術が開示されている。 Conventionally, a technology has been developed to increase the safety of the host vehicle by predicting the behavior of the preceding vehicle by detecting a change in the movement of the preceding vehicle. For example, Patent Document 1 discloses that lateral movement is detected from temporal changes in the lateral position of a preceding vehicle using image information captured by a camera, and the preceding vehicle is approaching a white line drawn on the road surface. A technique for determining to change lanes is disclosed.
特許第3747599号公報Japanese Patent No. 3747599
 車線変更時の車両の動きは次のようになる。まず車両のステアリングが切られて前輪に角度が付くと、前輪側に横力が発生して車体が回転を始め、この車体の回転により後輪にも角度が付いて横力が発生する。これにより車体に向心力が働いて車体が旋回を始め、結果として横移動が始まる。ここで、横移動量をΔY、速度をV、車体のヨー角をθと置き、タイヤの横滑り角を無視すれば、横移動量ΔYは次式で表される。 The movement of the vehicle when changing lanes is as follows. First, when the steering of the vehicle is turned and an angle is applied to the front wheel, a lateral force is generated on the front wheel side and the vehicle body starts to rotate, and the rotation of the vehicle body also causes an angle on the rear wheel to generate a lateral force. As a result, centripetal force acts on the vehicle body and the vehicle body starts to turn, and as a result, lateral movement begins. Here, if the lateral movement amount is ΔY, the speed is V, the yaw angle of the vehicle body is θ, and the side slip angle of the tire is ignored, the lateral movement amount ΔY is expressed by the following equation.
 ΔY=V・∫(sin(θ))dt ΔY = V · ∫ (sin (θ)) dt
 この式から、ステアリングを切ることにより車体が回転してヨー角が発生してから横移動量ΔYが増加するまでには時間遅れが発生することがわかる。 From this equation, it can be seen that there is a time delay from when the vehicle body rotates by turning the steering wheel to generate the yaw angle until the lateral movement amount ΔY increases.
 そして、上述の従来技術では、先行車両の運転者が車線変更の意思をもってステアリングを切り、車体が向きを変え、横移動を始めた状態にならなければ車線変更の判断をすることができない。そのため、自車両と先行車両との距離が近い場合、車線変更の判断をしたときには既に先行車両が接近してしまい、自車両の運転者への通知が間に合わないおそれがあった。 In the above-described prior art, the driver of the preceding vehicle cannot turn the steering wheel with the intention of changing the lane, change the direction of the vehicle, and start the lateral movement. For this reason, when the distance between the host vehicle and the preceding vehicle is short, the preceding vehicle has already approached when the lane change determination is made, and there is a possibility that the notification to the driver of the host vehicle will not be in time.
 本発明は、上記課題に鑑み、先行車両の挙動をより早期に予測する走行軌跡予測装置及びその搭載車両を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a travel trajectory prediction device that predicts the behavior of a preceding vehicle earlier and a vehicle equipped with the travel trajectory prediction device.
 上記目的を達成するため、本発明の一態様に係る先行車両の走行軌跡予測装置は撮像装置により撮像された自車両の前方の画像情報を用いて先行車両の車体面の向きを検出する先行車両情報検出部と、前記先行車両の車体面の向きの変化から前記先行車両のヨーレートを算出するヨーレート算出部と、前記先行車両の速度を算出する速度算出部と、前記ヨーレート及び前記速度を用いて前記先行車両の将来の走行軌跡を予測する先行車両走行軌跡予測部と、を有する。 In order to achieve the above object, a travel locus prediction apparatus for a preceding vehicle according to an aspect of the present invention detects a direction of a vehicle body surface of a preceding vehicle using image information in front of the host vehicle captured by an imaging device. Using the information detection unit, the yaw rate calculation unit that calculates the yaw rate of the preceding vehicle from the change in the direction of the body surface of the preceding vehicle, the speed calculation unit that calculates the speed of the preceding vehicle, the yaw rate and the speed A preceding vehicle travel locus prediction unit that predicts a future travel locus of the preceding vehicle.
本発明の第1実施形態に係る先行車両の走行軌跡予測装置を搭載した車両の機能ブロック図である。1 is a functional block diagram of a vehicle equipped with a traveling locus prediction device for a preceding vehicle according to a first embodiment of the present invention. 自車両の前方の画像情報に示される画像と当該画像内で認識される先行車両の車体面の一例とを模式的に示す図である。It is a figure which shows typically the image shown by the image information ahead of the own vehicle, and an example of the vehicle body surface of the preceding vehicle recognized in the said image. 図1の走行軌跡予測装置において予測された先行車両の将来の走行軌跡の一例を示す図である(半径Rでの旋回による円弧状の走行軌跡)。It is a figure which shows an example of the future traveling locus of the preceding vehicle predicted in the traveling locus prediction device of FIG. 本発明の第2実施形態に係る先行車両の走行軌跡予測装置において予測された先行車両の将来の走行軌跡の他の一例を示す図である(互い違いに半径Rでの旋回を繰り返すS字状の走行軌跡)。It is a figure which shows another example of the future driving | running track of the preceding vehicle predicted in the driving track prediction apparatus of the preceding vehicle which concerns on 2nd Embodiment of this invention (S-shape which repeats the turn by the radius R alternately. Travel trajectory). 車線変更時のステアリング操作による操舵角変化の一例を示すグラフである。It is a graph which shows an example of the steering angle change by steering operation at the time of lane change. 車線変更時とふらつき時のヨーレート変化の一例を示すグラフである。It is a graph which shows an example of the yaw rate change at the time of a lane change and a wobble.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同様の機能を有するものは、同一の符号を付け、その繰り返しの説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having similar functions are denoted by the same reference numerals, and repeated description thereof may be omitted.
 (第1実施形態)
  以下に本発明の第1実施形態に係る先行車両の走行軌跡予測装置を搭載した車両について、図1~図3を参照して説明する。
(First embodiment)
A vehicle equipped with a preceding vehicle travel locus prediction apparatus according to a first embodiment of the present invention will be described below with reference to FIGS.
 図1は、本発明の一実施形態に係る先行車両の走行軌跡予測装置を搭載した車両の機能ブロック図である。図2は、自車両の前方の画像情報に示される画像と当該画像内で認識される先行車両の車体面の一例とを模式的に示す図である。図3は、図1の走行軌跡予測装置において予測された先行車両の将来の走行軌跡の一例を示す図であり、半径Rでの旋回による円弧状の走行軌跡を示している。 FIG. 1 is a functional block diagram of a vehicle equipped with a traveling locus prediction device for a preceding vehicle according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing an image shown in image information ahead of the host vehicle and an example of a vehicle body surface of a preceding vehicle recognized in the image. FIG. 3 is a diagram illustrating an example of a future travel locus of the preceding vehicle predicted by the travel locus prediction apparatus in FIG. 1, and illustrates an arcuate travel locus by turning at a radius R.
 図1に示すように、本実施形態に係る車両としての自車両100は、撮像装置としてのステレオカメラ11と、車速センサ12と、ヨーレートセンサ13と、表示装置14と、干渉回避制御装置15と、走行軌跡予測装置20と、を搭載している。 As shown in FIG. 1, a host vehicle 100 as a vehicle according to the present embodiment includes a stereo camera 11 as an imaging device, a vehicle speed sensor 12, a yaw rate sensor 13, a display device 14, and an interference avoidance control device 15. The travel locus prediction device 20 is mounted.
 ステレオカメラ11は、2台のカメラで構成されている。ステレオカメラ11は、自車両100の前方の画像が撮像できるよう図示しない車体の前側、例えばフロントガラス上部などに2台のカメラが左右方向に間隔をあけて固定して取り付けられている。ステレオカメラ11は、撮像した画像(視差画像)に係る画像情報を後述する走行軌跡予測装置20に送信する。なお、先行車両の車体面の向き及び位置が検出できる画像情報を撮像できる撮像装置であれば、ステレオカメラ11以外を用いてもよい。 The stereo camera 11 is composed of two cameras. The stereo camera 11 is fixedly attached to the front side of the vehicle body (not shown), for example, the upper part of the windshield, with a space in the left-right direction so that an image in front of the host vehicle 100 can be taken. The stereo camera 11 transmits image information related to the captured image (parallax image) to the travel locus prediction apparatus 20 described later. Note that any device other than the stereo camera 11 may be used as long as it is an image pickup device that can pick up image information that can detect the direction and position of the vehicle body surface of the preceding vehicle.
 車速センサ12は、トランスミッションや各車軸などに取り付けられ、その回転速度から自車両100の速度を検知して、走行軌跡予測装置20に送信する。ヨーレートセンサ13は、車体の重心近くに設置され、この重心を通る鉛直軸周りの回転速度を検知して、走行軌跡予測装置20に送信する。 The vehicle speed sensor 12 is attached to a transmission, each axle, and the like, detects the speed of the host vehicle 100 from its rotational speed, and transmits it to the travel locus prediction device 20. The yaw rate sensor 13 is installed near the center of gravity of the vehicle body, detects the rotational speed around the vertical axis passing through the center of gravity, and transmits it to the travel locus prediction device 20.
 表示装置14は、例えば、自車両100のインストルメントパネル内に配設された液晶ディスプレイ装置や、ダッシュボードの中央部分に埋め込まれたナビゲーション用ディスプレイ装置などである。表示装置14は、図3に示すように、後述する走行軌跡予測装置20により予測された自車両100の将来の走行軌跡K1と先行車両200の将来の走行軌跡K2とを表示する。 The display device 14 is, for example, a liquid crystal display device disposed in the instrument panel of the host vehicle 100, a navigation display device embedded in the center portion of the dashboard, or the like. As shown in FIG. 3, the display device 14 displays a future travel locus K1 of the host vehicle 100 and a future travel locus K2 of the preceding vehicle 200 predicted by a travel locus prediction apparatus 20 described later.
 干渉回避制御装置15は、例えば、自車両100のブレーキ装置に接続されており、後述する走行軌跡予測装置20により、自車両100の将来の走行軌跡K1と先行車両の将来の走行軌跡K2との干渉が検出されたとき、ブレーキ装置を駆動して干渉を回避するよう自車両100の速度を制御する。 The interference avoidance control device 15 is connected to, for example, a brake device of the host vehicle 100, and a future travel track K1 of the host vehicle 100 and a future travel track K2 of the preceding vehicle are detected by a travel track prediction device 20 described later. When the interference is detected, the speed of the host vehicle 100 is controlled to drive the brake device and avoid the interference.
 走行軌跡予測装置20は、先行車両情報検出部21と、ヨーレート算出部22と、速度算出部23と、先行車両走行軌跡予測部24と、自車両走行軌跡予測部25と、干渉判定部26と、割込警報部27と、回転判定部28と、異常挙動警報部29と、を有している。 The traveling locus prediction apparatus 20 includes a preceding vehicle information detection unit 21, a yaw rate calculation unit 22, a speed calculation unit 23, a preceding vehicle traveling locus prediction unit 24, a host vehicle traveling locus prediction unit 25, and an interference determination unit 26. , An interrupt warning unit 27, a rotation determination unit 28, and an abnormal behavior warning unit 29.
 先行車両情報検出部21は、撮像装置により撮像された自車両の前方の画像情報を用いて先行車両の車体面の向きを検出する。例えば、先行車両情報検出部21は、ステレオカメラ11により撮像された自車両100の前方の画像情報を受信し、この画像情報を解析することにより立体物である先行車両200の車体面及びその向き、ならびに先行車両200の位置を検出してもよい。 The preceding vehicle information detection unit 21 detects the direction of the vehicle body surface of the preceding vehicle using image information ahead of the host vehicle imaged by the imaging device. For example, the preceding vehicle information detection unit 21 receives image information in front of the host vehicle 100 imaged by the stereo camera 11 and analyzes the image information to analyze the vehicle body surface of the preceding vehicle 200 that is a three-dimensional object and its direction. In addition, the position of the preceding vehicle 200 may be detected.
 具体的には、先行車両情報検出部21は、まず左右2枚の視差画像に写っている立体物について、これら視差画像から共通の特徴点を抽出する。これは2枚の視差画像のそれぞれに含まれる共通要素を探索する処理であり、例えば一方の画像の一部分の画素を切り出して他方の画像と比較し、その特徴量の一致度が高い部分を特定する。この特徴点の抽出に際して、前もって画像中の物体の輪郭や直線部分を際立たせるエッジ抽出処理が行われることもある。 Specifically, the preceding vehicle information detection unit 21 first extracts a common feature point from these parallax images for the three-dimensional object shown in the left and right parallax images. This is a process of searching for common elements included in each of two parallax images. For example, one part of one image is cut out and compared with the other image, and a part with a high degree of matching of the feature amount is specified. To do. When extracting the feature points, an edge extraction process that highlights the outline or straight line portion of the object in the image may be performed in advance.
 次に、先行車両情報検出部21は、共通の特徴点の位置関係及び2台のカメラの位置関係、焦点距離といった光学的な幾何関係をもとに三角測量法により立体物中の特徴点の位置を算出する。各特徴点の位置は、自車両100の基準位置(例えば車体前面の中央)からの相対位置である。本明細書において、特に断りがない限り「位置」とはこの相対位置を示す。これら特徴点群を近傍の点群でグルーピングすることで、それらの点群が属する立体物の面が抽出される。立体物が先行車両200の場合、図2に示す先行車両200の車体面である車体後面201及び車体側面202が検出される。なお、先行車両200の異常挙動により先行車両200が鉛直軸周りに異常回転(いわゆるスピン)した場合は車体前面が検出されることもあり、つまり、先行車両200における自車両100側を向く車体面が検出される。 Next, the preceding vehicle information detection unit 21 uses the triangulation method to determine the feature points in the three-dimensional object based on the optical geometric relationship such as the positional relationship between the common feature points, the positional relationship between the two cameras, and the focal length. Calculate the position. The position of each feature point is a relative position from the reference position of the host vehicle 100 (for example, the center of the front surface of the vehicle body). In this specification, unless otherwise specified, “position” indicates this relative position. By grouping these feature point groups with neighboring point groups, the surface of the three-dimensional object to which these point groups belong is extracted. When the three-dimensional object is the preceding vehicle 200, the vehicle body rear surface 201 and the vehicle body side surface 202, which are the vehicle body surfaces of the preceding vehicle 200 shown in FIG. Note that when the preceding vehicle 200 rotates abnormally around the vertical axis (so-called spin) due to the abnormal behavior of the preceding vehicle 200, the front surface of the vehicle body may be detected, that is, the body surface of the preceding vehicle 200 facing the own vehicle 100 side. Is detected.
 そして、先行車両情報検出部21は、先行車両200の車体面の向きを検出する。具体的には、図2に示すように、車体後面201及び車体側面202に属する上記特徴点の位置は前述の三角測量法によって算出されているので、先行車両情報検出部21は、車体後面201及び車体側面202に含まれる特徴点2点の位置の差分から、車体面の向きを算出することができる。車体面の向きを算出するために用いる特徴点2点はできるだけ離れた2点を選択することが、精度の観点から望ましい。 The preceding vehicle information detection unit 21 detects the direction of the vehicle body surface of the preceding vehicle 200. Specifically, as shown in FIG. 2, the positions of the feature points belonging to the vehicle body rear surface 201 and the vehicle body side surface 202 are calculated by the triangulation method described above. The direction of the vehicle body surface can be calculated from the difference between the positions of the two feature points included in the vehicle body side surface 202. From the viewpoint of accuracy, it is desirable to select two feature points used as far as possible as the two feature points used for calculating the direction of the vehicle body surface.
 また、先行車両情報検出部21は、車体後面201及び車体側面202の位置に基づき先行車両200の位置、例えば、車体前面の中央の位置を検出する。車体後面201及び車体側面202のいずれか一方のみしか検出できない場合は、検出した一方の車体面の幅から車種(乗用車、トラックなど)を推測し、当該推測した車種に応じて他方の車体面の幅を推測して、先行車両200の位置を検出するようにしてもよい。 Further, the preceding vehicle information detection unit 21 detects the position of the preceding vehicle 200, for example, the center position of the front surface of the vehicle body, based on the positions of the vehicle body rear surface 201 and the vehicle body side surface 202. When only one of the vehicle body rear surface 201 and the vehicle body side surface 202 can be detected, a vehicle type (passenger car, truck, etc.) is estimated from the detected width of the vehicle body surface, and the other vehicle body surface is detected according to the estimated vehicle type. The position of the preceding vehicle 200 may be detected by estimating the width.
 ヨーレート算出部22では、先行車両情報検出部21で検出された先行車両200の車体面の向きから先行車両200のヨー角を取得し、ヨー角の時間変化から角速度、すなわちヨーレートを算出する。 The yaw rate calculation unit 22 acquires the yaw angle of the preceding vehicle 200 from the direction of the vehicle body surface of the preceding vehicle 200 detected by the preceding vehicle information detection unit 21, and calculates the angular velocity, that is, the yaw rate, from the time change of the yaw angle.
 図2において、先行車両200の車体側面202の向きD2は、先行車両200の向きD2でもあり、先行車両200のヨー角を示している。また、先行車両200の車体後面201の法線方向は向きD2と一致し、ヨー角を示している。そして、過去の時点における先行車両200の向きD2から現在の時点における先行車両200の向きD2に至るまでに変化した角度を、過去の時点から現在の時点までに経過した時間で割ることにより先行車両200のヨーレートを算出することができる。 2, the direction D2 of the vehicle body side surface 202 of the preceding vehicle 200 is also the direction D2 of the preceding vehicle 200, and indicates the yaw angle of the preceding vehicle 200. Further, the normal direction of the vehicle body rear surface 201 of the preceding vehicle 200 coincides with the direction D2 and indicates the yaw angle. Then, the preceding vehicle is obtained by dividing the angle changed from the direction D2 of the preceding vehicle 200 at the past time point to the direction D2 of the preceding vehicle 200 at the present time point by the time elapsed from the past time point to the current time point. 200 yaw rates can be calculated.
 ステレオカメラ11は自車両100に固定されているので自車両100の向きD1は進行方向前方に延びる直線である。この自車両100の向きD1と先行車両200の向きD2とのなす角αは、自車両100の向きD1に対する先行車両200の相対ヨー角となる。この相対ヨー角を用いて先行車両200のヨーレートを算出してもよい。 Since the stereo camera 11 is fixed to the host vehicle 100, the direction D1 of the host vehicle 100 is a straight line extending forward in the traveling direction. An angle α formed by the direction D1 of the host vehicle 100 and the direction D2 of the preceding vehicle 200 is a relative yaw angle of the preceding vehicle 200 with respect to the direction D1 of the host vehicle 100. The yaw rate of the preceding vehicle 200 may be calculated using this relative yaw angle.
 速度算出部23は、先行車両の速度を検出する。例えば、速度算出部23は、先行車両情報検出部21で検出された先行車両200の位置の時間変化から自車両100に対する先行車両200の相対速度を算出する。さらにその相対速度に車速センサ12で得られた自車両100の速度を加算することで、先行車両200の対地速度(以下、単に「先行車両200の速度」という)を算出することができる。 The speed calculation unit 23 detects the speed of the preceding vehicle. For example, the speed calculation unit 23 calculates the relative speed of the preceding vehicle 200 with respect to the host vehicle 100 from the time change of the position of the preceding vehicle 200 detected by the preceding vehicle information detection unit 21. Furthermore, the ground speed of the preceding vehicle 200 (hereinafter simply referred to as “the speed of the preceding vehicle 200”) can be calculated by adding the speed of the host vehicle 100 obtained by the vehicle speed sensor 12 to the relative speed.
 先行車両走行軌跡予測部24は、ヨーレート及び速度を用いて前記先行車両の将来の走行軌跡を予測する。例えば、先行車両走行軌跡予測部24は、ヨーレート算出部22で算出された先行車両200のヨーレート、速度算出部23で算出された先行車両200の速度、及び、先行車両情報検出部21で検出された先行車両200の位置に基づき、当該先行車両200の将来の走行軌跡K2を予測する。 The preceding vehicle travel locus prediction unit 24 predicts the future travel locus of the preceding vehicle using the yaw rate and speed. For example, the preceding vehicle travel locus prediction unit 24 is detected by the yaw rate of the preceding vehicle 200 calculated by the yaw rate calculation unit 22, the speed of the preceding vehicle 200 calculated by the speed calculation unit 23, and the preceding vehicle information detection unit 21. Based on the position of the preceding vehicle 200, the future travel locus K2 of the preceding vehicle 200 is predicted.
 一般的に、車両が旋回走行するときの走行軌跡は、タイヤの横滑り角を無視すれば、ヨーレートと等価な角速度で円運動を行うと考えられる。すなわち、車両の速度をV、旋回半径をR、ヨーレートをγとすれば、車両は下記(1)式で示される旋回半径Rで旋回する。 Generally, it is considered that the traveling locus when the vehicle turns is to perform a circular motion at an angular velocity equivalent to the yaw rate if the side slip angle of the tire is ignored. That is, if the vehicle speed is V, the turning radius is R, and the yaw rate is γ, the vehicle turns with a turning radius R expressed by the following equation (1).
 R=V/γ ・・・(1) R = V / γ (1)
 特に車線変更時には比較的小さい横加速度での旋回運動となるため、タイヤの横滑り角は無視することができると考えられる。 Especially when the lane is changed, it is considered that the side slip angle of the tire can be ignored because of the turning motion with a relatively small lateral acceleration.
 そこで、先行車両走行軌跡予測部24は、先行車両200が、現在の位置から旋回半径Rの旋回をするものと仮定して走行軌跡を予測する。具体的には、先行車両走行軌跡予測部24は、上記(1)式に、先行車両200の速度及びヨーレートを当てはめて、現在の先行車両200の位置を起点にした半径Rとなる円弧を将来の走行軌跡K2として算出する。図3に先行車両200の将来の走行軌跡K2の一例を示す。また、この走行軌跡K2を中心線とし、先行車両200の車体後面201と同じ幅を持たせた走行軌跡K2wを算出してもよい。 Therefore, the preceding vehicle traveling locus prediction unit 24 predicts the traveling locus on the assumption that the preceding vehicle 200 turns with the turning radius R from the current position. Specifically, the preceding vehicle travel locus prediction unit 24 applies the speed and yaw rate of the preceding vehicle 200 to the above equation (1), and sets the arc having the radius R starting from the current position of the preceding vehicle 200 in the future. Is calculated as a travel locus K2. FIG. 3 shows an example of a future travel locus K2 of the preceding vehicle 200. Alternatively, the travel locus K2w having the same width as the vehicle body rear surface 201 of the preceding vehicle 200 may be calculated using the travel locus K2 as a center line.
 自車両走行軌跡予測部25は、自車両の将来の走行軌跡を予測する。例えば、自車両走行軌跡予測部25は、車速センサ12及びヨーレートセンサ13によって検出された自車両100の速度及びヨーレートを受信し、これら速度及びヨーレートに基づいて自車両100の将来の走行軌跡K1を予測する。自車両走行軌跡予測部25は、先行車両走行軌跡予測部24と同様に、上記(1)式に、自車両100の速度及びヨーレートを当てはめて、現在の自車両100の位置を起点にした半径Rとなる円弧を将来の走行軌跡K1として算出する。図3に自車両100の将来の走行軌跡K1の一例を示す。図3に示す走行軌跡K1は、ヨーレートが0、すなわち自車両が直線進行している場合を示している。道路がカーブしている場合などのように、道路に沿って自車両100のステアリングが切られている場合、自車両100のヨーレートが0でなくなるため、自車両100の走行軌跡K1は道路に沿った円弧を描くことになる。また、自車両100の車幅はあらかじめ知ることができるので、走行軌跡K1を中心線とし、自車両100の車幅を持たせた走行軌跡K1wを算出してもよい。 The own vehicle traveling locus prediction unit 25 predicts the future traveling locus of the own vehicle. For example, the host vehicle travel locus prediction unit 25 receives the speed and yaw rate of the host vehicle 100 detected by the vehicle speed sensor 12 and the yaw rate sensor 13, and determines the future travel locus K1 of the host vehicle 100 based on the speed and yaw rate. Predict. Similar to the preceding vehicle travel locus prediction unit 24, the own vehicle travel locus prediction unit 25 applies the speed and yaw rate of the own vehicle 100 to the above equation (1), and uses the current position of the own vehicle 100 as a starting point. The arc that becomes R is calculated as the future travel locus K1. FIG. 3 shows an example of a future travel locus K1 of the host vehicle 100. A travel locus K1 shown in FIG. 3 indicates a case where the yaw rate is 0, that is, the host vehicle is traveling straight. When the steering of the host vehicle 100 is turned along the road, such as when the road is curved, the yaw rate of the host vehicle 100 is not 0, so the travel locus K1 of the host vehicle 100 is along the road. A circular arc will be drawn. Further, since the vehicle width of the own vehicle 100 can be known in advance, the travel locus K1w having the vehicle width of the own vehicle 100 with the travel locus K1 as the center line may be calculated.
 干渉判定部26は、自車両の将来の走行軌跡と先行車両の将来の走行軌跡との干渉を判定する。例えば、干渉判定部26は、自車両走行軌跡予測部25により予測した自車両100の将来の走行軌跡K1と、先行車両走行軌跡予測部24により予測した先行車両200の将来の走行軌跡K2と、の干渉を判定する。本実施形態において、干渉判定部26は、自車両100の将来の走行軌跡K1と、先行車両200の将来の走行軌跡K2と、が交差したとき、これらが干渉するものと判定してもよい。なお、車両の幅を考慮した走行軌跡K1w、K2wを用いた場合には、交差するときのみならず重なったときも干渉したものと判定することができ、自車両100と先行車両200との接触の危険性を判定することも可能になる。 The interference determination unit 26 determines interference between the future travel locus of the host vehicle and the future travel locus of the preceding vehicle. For example, the interference determination unit 26 includes a future travel locus K1 of the host vehicle 100 predicted by the host vehicle travel track prediction unit 25, a future travel locus K2 of the preceding vehicle 200 predicted by the preceding vehicle travel track prediction unit 24, and Determine the interference. In the present embodiment, the interference determination unit 26 may determine that when the future travel locus K1 of the host vehicle 100 and the future travel locus K2 of the preceding vehicle 200 intersect, they interfere. In addition, when the travel tracks K1w and K2w taking into consideration the width of the vehicle are used, it can be determined that the vehicle has interfered not only when it intersects but also when it overlaps. It is also possible to determine the risk of
 また、干渉判定部26は、走行軌跡K1、K2の交点または重なり点までの距離と自車両100及び先行車両200の速度から、各車両が交点または重なり点まで到達するまでの時間を算出し、この時間を考慮して干渉を判定するようにしてもよい。 Further, the interference determination unit 26 calculates the time until each vehicle reaches the intersection or overlap point from the distance to the intersection or overlap point of the travel trajectories K1 and K2 and the speed of the host vehicle 100 and the preceding vehicle 200, The interference may be determined in consideration of this time.
 例えば、自車両100と先行車両200とが同様の速度で走行している場合に、先行車両200がわずかにステアリングを切って徐々に自車両100に寄ってきたとき、走行軌跡K1、K2の交点は遠方にあることから車両同士の衝突や接触が生じるまでの時間は長くなる。そのため、各車両の運転者は、接触等に至る前に回避行動をとる可能性もある。または、自車両100と先行車両200との速度差が大きい場合では、走行軌跡K1、K2の交点に達するまでの時間が先行車両200と自車両100とで大きく異なり、どちらか一方が先に交点を通過してしまい車両同士の衝突や接触が生じないことも想定される。このように干渉するまでの時間も考慮することで、緊急度やタイミングをふまえて干渉を判定することが可能になる。 For example, when the host vehicle 100 and the preceding vehicle 200 are traveling at the same speed, when the preceding vehicle 200 slightly turns the steering wheel and gradually approaches the host vehicle 100, the intersection of the traveling tracks K1 and K2 Since the vehicle is far away, the time until the collision or contact between the vehicles occurs becomes longer. Therefore, the driver of each vehicle may take an avoidance action before reaching a contact or the like. Alternatively, when the speed difference between the host vehicle 100 and the preceding vehicle 200 is large, the time taken to reach the intersection of the travel tracks K1 and K2 differs greatly between the preceding vehicle 200 and the host vehicle 100, and either one of the intersections first intersects. It is also assumed that no vehicles collide or contact with each other. Considering the time until interference in this way, it becomes possible to determine interference based on the degree of urgency and timing.
 割込警報部27は、干渉判定部26によって自車両100の将来の走行軌跡K1と先行車両200の将来の走行軌跡K2とが干渉するものと判定されたとき、先行車両200が自車両100の前に割り込んでくる旨の警報を行う。ここで「警報」とは、警報音や音声などによって運転者に知らせることに加え、例えば、割込警報部27が他の装置で警報を発するための警報信号を送信することを含む。表示装置14は、この警報信号を受信して、メッセージや図形(アイコン)などを表示して運転者に先行車両200の割り込みを知らせる(警報する)ようにしてもよい。 The interrupt warning unit 27 determines that the preceding vehicle 200 is in the vehicle 100 when the interference determining unit 26 determines that the future traveling track K1 of the host vehicle 100 interferes with the future traveling track K2 of the preceding vehicle 200. An alarm is given to interrupt you. Here, “alarm” includes not only informing the driver by an alarm sound or voice, but also, for example, that the interrupt alarm unit 27 transmits an alarm signal for issuing an alarm in another device. The display device 14 may receive this warning signal and display a message, a graphic (icon) or the like to notify the driver of an interruption of the preceding vehicle 200 (warning).
 回転判定部28は、ヨーレートを用いて先行車両200の鉛直軸周りの以上回転を判定する。例えば、回転判定部28は、ヨーレート算出部22によって算出された先行車両200のヨーレートに基づいて、先行車両200の車体の異常回転(スピン)を判定する。回転判定部28は、先行車両200のヨーレートを積分することにより先行車両200のヨー角の変化を算出し、この算出したヨー角の変化が回転判定角度(例えば90度(車体が横向き))以上に過剰に回転したとき、先行車両200が異常回転しているものと判定してもよい。 The rotation determination unit 28 determines the rotation of the preceding vehicle 200 around the vertical axis using the yaw rate. For example, the rotation determination unit 28 determines an abnormal rotation (spin) of the vehicle body of the preceding vehicle 200 based on the yaw rate of the preceding vehicle 200 calculated by the yaw rate calculation unit 22. The rotation determination unit 28 calculates a change in the yaw angle of the preceding vehicle 200 by integrating the yaw rate of the preceding vehicle 200, and the calculated change in the yaw angle is equal to or greater than the rotation determination angle (for example, 90 degrees (the vehicle body is sideways)). When the vehicle rotates excessively, it may be determined that the preceding vehicle 200 is rotating abnormally.
 異常挙動警報部29は、回転判定部28によって先行車両200が異常回転しているものと判定されたとき、先行車両200が異常な挙動をしている旨の警報を行う。ここでも「警報」とは、警報音や音声などによって運転者に知らせることに加え、例えば、異常挙動警報部29が他の装置で警報を発するための警報信号を送信することを含む。表示装置14は、この警報信号を受信して、メッセージや図形(アイコン)などを表示して運転者に先行車両200の異常挙動を知らせる(警報する)ようにしてもよい。 When the rotation determination unit 28 determines that the preceding vehicle 200 is rotating abnormally, the abnormal behavior warning unit 29 issues a warning that the preceding vehicle 200 is performing an abnormal behavior. Here, “alarm” includes notifying the driver by an alarm sound, voice, or the like, but also includes, for example, the abnormal behavior alarm unit 29 transmitting an alarm signal for issuing an alarm in another device. The display device 14 may receive the warning signal, display a message, a graphic (icon), and the like to notify the driver of the abnormal behavior of the preceding vehicle 200 (warn).
 次に、上述した自車両100の動作の一例について説明する。 Next, an example of the operation of the host vehicle 100 described above will be described.
 自車両100は、ステレオカメラ11により撮像された視差画像を解析して、先行車両200のヨーレート、速度及び位置を求め、これらヨーレート、速度及び位置に基づき先行車両200の将来の走行軌跡K2を予測する。これと並行して、自車両100は、車速センサ12及びヨーレートセンサ13により検出された自車両100の速度及びヨーレートに基づき自車両100の将来の走行軌跡K1を予測する。そして、自車両100は、図3に示すような、予測した自車両100の将来の走行軌跡K1及び先行車両200の将来の走行軌跡K2を含む画像を表示装置14に表示する。 The host vehicle 100 analyzes the parallax image captured by the stereo camera 11 to obtain the yaw rate, speed, and position of the preceding vehicle 200, and predicts the future travel locus K2 of the preceding vehicle 200 based on the yaw rate, speed, and position. To do. In parallel with this, the host vehicle 100 predicts a future travel locus K1 of the host vehicle 100 based on the speed and yaw rate of the host vehicle 100 detected by the vehicle speed sensor 12 and the yaw rate sensor 13. Then, the host vehicle 100 displays an image including the predicted future travel locus K1 of the own vehicle 100 and the future travel locus K2 of the preceding vehicle 200 as shown in FIG.
 また、自車両100は、自車両100の将来の走行軌跡K1と先行車両200の将来の走行軌跡K2との干渉を判定する。そして、自車両100は、これら走行軌跡K1、K2が干渉するものと判定したとき、先行車両200が自車両100の前に割り込む旨の警報を行うとともに、干渉回避制御装置15により、干渉を回避するように自車両100の速度を制御する。 Further, the host vehicle 100 determines interference between the future travel locus K1 of the own vehicle 100 and the future travel locus K2 of the preceding vehicle 200. When the own vehicle 100 determines that the travel loci K1 and K2 interfere with each other, the own vehicle 100 issues a warning that the preceding vehicle 200 interrupts in front of the own vehicle 100, and the interference avoidance control device 15 avoids the interference. Thus, the speed of the host vehicle 100 is controlled.
 さらに、自車両100は、先行車両200のヨーレートに基づき先行車両200の異常回転(スピン)を判定する。そして、自車両100は、先行車両200が異常回転しているものと判定したとき、先行車両200が異常な挙動をしている旨の警報を行う。 Furthermore, the host vehicle 100 determines the abnormal rotation (spin) of the preceding vehicle 200 based on the yaw rate of the preceding vehicle 200. Then, when it is determined that the preceding vehicle 200 is rotating abnormally, the host vehicle 100 issues an alarm to the effect that the preceding vehicle 200 behaves abnormally.
 以上より、本実施形態の自車両100によれば、先行車両200のヨーレート、位置及び速度を用いて当該先行車両200の将来の走行軌跡K2を予測できる。このようにしたことから、先行車両200が向きを変えたときに生じるヨー角の変化、すなわちヨーレートを用いることで、先行車両200が横移動を始める前に先行車両200の将来の走行軌跡K2を予測することができる。そのため、先行車両200の挙動をより早期に予測することができる。 As described above, according to the host vehicle 100 of the present embodiment, the future travel locus K2 of the preceding vehicle 200 can be predicted using the yaw rate, position, and speed of the preceding vehicle 200. Thus, by using the change in yaw angle that occurs when the preceding vehicle 200 changes its direction, that is, the yaw rate, the future travel locus K2 of the preceding vehicle 200 can be obtained before the preceding vehicle 200 starts lateral movement. Can be predicted. Therefore, the behavior of the preceding vehicle 200 can be predicted earlier.
 また、自車両100では、ステレオカメラ11により撮像された画像情報を用いて先行車両200の車体面の向きであるヨー角及びその時間変化であるヨーレートを算出し、このヨーレートを用いて走行軌跡K2を予測できる。このようにしたことから、道路の白線の有無にかかわらず早期に先行車両200の挙動変化を認識することができる。 In addition, the host vehicle 100 calculates the yaw angle that is the direction of the vehicle body surface of the preceding vehicle 200 and the yaw rate that changes with time using the image information captured by the stereo camera 11, and uses this yaw rate to calculate the travel locus K2. Can be predicted. Since it did in this way, the behavior change of the preceding vehicle 200 can be recognized early irrespective of the presence or absence of the white line of a road.
 また、自車両100は、自車両100の将来の走行軌跡K1も予測し、この走行軌跡K1と先行車両200の将来の走行軌跡K2との干渉を判定できる。このようにしたことから、走行軌跡K1、K2の干渉を判定することで、自車両100と先行車両200との衝突や接触の危険性を事前に認識することができる。 Further, the host vehicle 100 can also predict the future travel locus K1 of the host vehicle 100, and determine the interference between the travel locus K1 and the future travel locus K2 of the preceding vehicle 200. Since it did in this way, the danger of the collision and the contact of the own vehicle 100 and the preceding vehicle 200 can be recognized in advance by determining the interference of the traveling tracks K1 and K2.
 また、自車両100は、自車両100の将来の走行軌跡K1と先行車両200の将来の走行軌跡K2とが干渉するものと判定されたとき、先行車両200の割り込みを警報してもよい。このようにしたことから、運転者が先行車両200の車線変更の兆しを見落とした場合においても、先行車両200が自車両100の前に割り込んでくることを的確に運転者に知らしめることができる。 Further, the host vehicle 100 may warn of an interruption of the preceding vehicle 200 when it is determined that the future traveling locus K1 of the own vehicle 100 and the future traveling locus K2 of the preceding vehicle 200 interfere with each other. Thus, even when the driver overlooks the sign of the lane change of the preceding vehicle 200, the driver can be accurately informed that the preceding vehicle 200 is interrupted in front of the host vehicle 100. .
 また、自車両100は、表示装置14に、自車両100の将来の走行軌跡K1及び先行車両200の将来の走行軌跡K2を表示してもよい。このようにしたことから、少なくとも先行車両200の将来の走行軌跡を表示することで、先行車両200の挙動を前もって知ることができる。 Further, the host vehicle 100 may display the future travel locus K1 of the host vehicle 100 and the future travel locus K2 of the preceding vehicle 200 on the display device 14. Since it did in this way, the behavior of the preceding vehicle 200 can be known in advance by displaying at least the future traveling locus of the preceding vehicle 200.
 また、自車両100は、自車両100の将来の走行軌跡K1と先行車両200の将来の走行軌跡K2とが干渉するものと判定されたとき、干渉を回避するよう自車両100を制御してもよい。このようにしたことから、自車両100と先行車両200との衝突や接触の危険性を効果的に低減することができる。 Further, when it is determined that the future travel locus K1 of the own vehicle 100 and the future travel locus K2 of the preceding vehicle 200 interfere with each other, the own vehicle 100 controls the own vehicle 100 to avoid the interference. Good. Since it did in this way, the danger of the collision and contact with the own vehicle 100 and the preceding vehicle 200 can be reduced effectively.
 また、自車両100は、ヨーレートを用いて先行車両200の鉛直軸周りの異常回転を判定し、先行車両200が鉛直軸周りに異常回転しているものと判定されたとき、先行車両200の異常挙動を警報してもよい。このようにしたことから、例えば、積雪路や湿潤路などにおいて先行車両がスピンした場合、先行車両200は車体を回転させながらも継続して従前の進行方向に進んでいくこともあるが、このような横移動を伴わない異常な挙動についても警報することができる。 Further, the host vehicle 100 determines abnormal rotation around the vertical axis of the preceding vehicle 200 using the yaw rate, and when it is determined that the preceding vehicle 200 rotates abnormally around the vertical axis, the abnormality of the preceding vehicle 200 is determined. The behavior may be alarmed. For this reason, for example, when a preceding vehicle spins on a snowy road or a wet road, the preceding vehicle 200 may continue to travel in the previous direction while rotating the vehicle body. It is possible to warn about abnormal behaviors that do not involve lateral movement.
 (第2実施形態)
  上述した第1実施形態では、先行車両200の将来の走行軌跡K1として、現在の先行車両200の位置を起点にした半径Rとなる円弧を将来の走行軌跡として算出する構成であったが、第2実施形態の走行軌跡予測装置20では、図4に示すように、半径Rとなる円弧を2つ連ねたS字状の走行軌跡を算出する構成を有する。
(Second Embodiment)
In the first embodiment described above, as the future travel locus K1 of the preceding vehicle 200, an arc having a radius R starting from the current position of the preceding vehicle 200 is calculated as the future travel locus. As shown in FIG. 4, the travel locus prediction apparatus 20 of the second embodiment has a configuration for calculating an S-shaped travel locus in which two arcs having a radius R are connected.
 図4は、本発明の第実施形態に係る先行車両の走行軌跡予測装置において予測された先行車両の将来の走行軌跡の一例を示す図である(互い違いに半径Rでの旋回を繰り返すS字状の走行軌跡)。 FIG. 4 is a diagram showing an example of a future travel locus of the preceding vehicle predicted by the preceding vehicle travel locus prediction apparatus according to the first embodiment of the present invention (an S-shape that repeats turns at a radius R alternately. Traveling trajectory).
 例えば、一の道路から分岐した他の道路に進入するための右左折時を除き、道路を走行中の車両は、道路の曲率を超えて他の車両の前を横切るような旋回を維持し続けるということは通常起こりえない。そのため、先行車両200が、車線を逸脱するような旋回を始めた場合は、隣車線への車線変更を行うものと予想される。 For example, except when turning right or left to enter another road branched from one road, vehicles traveling on the road continue to maintain a turn that crosses the other vehicles beyond the curvature of the road That usually cannot happen. Therefore, when the preceding vehicle 200 starts turning that deviates from the lane, it is expected that the lane change to the adjacent lane is performed.
 そして、車線変更の際、車両の運転者は、変更先の車線側にステアリングを切り、その後逆方向にステアリングを切り返すような操作となる。このような操作では、通常、最初に切ったステアリング角とおおよそ同じ程度の角度及び速度で逆方向にもステアリングを切ることになる。このときタイヤの滑りがなければステアリング角と旋回半径は比例関係となるので、上記のような車線変更による走行軌跡は同じ半径Rで向きが逆となる2つの円弧を繋いだS字状の走行軌跡となると考えられる。このことから、本実施形態における先行車両走行軌跡予測部24では、先行車両200が最終的には変更先の車線に沿って走行することを想定して、2つの円弧を繋いだS字形状の走行軌跡Jを生成する。 When changing lanes, the driver of the vehicle turns the steering to the lane to be changed, and then turns the steering back in the opposite direction. In such an operation, the steering is usually turned in the reverse direction at an angle and speed approximately the same as the steering angle that was initially turned off. At this time, if there is no tire slip, the steering angle and the turning radius are proportional to each other. Therefore, the traveling locus by changing the lane as described above is the S-shaped traveling that connects two arcs with the same radius R and opposite directions. It will be a trajectory. From this, in the preceding vehicle travel locus predicting unit 24 in the present embodiment, assuming that the preceding vehicle 200 finally travels along the lane of the change destination, the S-shaped shape connecting two arcs. A travel locus J is generated.
 本実施形態において、先行車両走行軌跡予測部24は、先行車両の将来の走行軌跡として、円弧状の前半走行軌跡と当該前半走行軌跡を180度回転した後半走行軌跡とを連ねたS字状の走行軌跡を予測する。例えば、先行車両走行軌跡予測部24は、まず、先行車両200の将来の走行軌跡Jの前半部分である前半走行軌跡Jaとして算出する。この前半走行軌跡Jaは、上記(1)式に先行車両200の速度及びヨーレートを当てはめて、現在の先行車両200の位置を起点とし、先行車両200の位置と自車両100の位置との間の道路幅方向中間線Lを終点とした半径Rとなる円弧である。なお、前半走行軌跡Jaの終点を、自車両100が走行している車線の中央線としてもよい。 In the present embodiment, the preceding vehicle travel locus prediction unit 24 has an S-shape that connects an arc-shaped first half travel locus and a second half travel locus obtained by rotating the first half travel locus by 180 degrees as a future travel locus of the preceding vehicle. Predict travel trajectory. For example, the preceding vehicle travel locus prediction unit 24 first calculates the first half travel locus Ja, which is the first half of the future travel locus J of the preceding vehicle 200. This first-half traveling locus Ja applies the speed and yaw rate of the preceding vehicle 200 to the above equation (1) and starts from the current position of the preceding vehicle 200, and is between the position of the preceding vehicle 200 and the position of the host vehicle 100. This is an arc having a radius R with the intermediate line L in the road width direction as the end point. Note that the end point of the first-half travel locus Ja may be the center line of the lane in which the host vehicle 100 is traveling.
 そして、先行車両走行軌跡予測部24は、前半走行軌跡Jaを180度回転させた円弧を後半走行軌跡Jbとし、前半走行軌跡Jaに後半走行軌跡Jbを連ねることによりS字状の走行軌跡Jを算出する。 Then, the preceding vehicle travel locus prediction unit 24 uses the arc obtained by rotating the first half travel locus Ja by 180 degrees as the second half travel locus Jb, and connects the first half travel locus Ja to the second half travel locus Jb, thereby obtaining the S-shaped travel locus J. calculate.
 本実施形態の先行車両走行軌跡予測部24では、このようなS字状の走行軌跡Jを再現することで、より実際的な走行軌跡を予測することができる。上記第1実施形態で説明した1つの円弧による走行軌跡K2を予測する構成では、先行車両200の走行軌跡K2が自車両100の走行軌跡K1と交わったとしてもその後も旋回を続け離れていくような軌跡となる。そのため、上記第1実施形態では走行軌跡K1、K2は一点で交差することになるが、本実施形態によれば、S字形状の軌跡を生成することで、先行車両200が旋回する前半走行軌跡Jaを生成した後にさらに自車両100の走行車線内に留まる後半走行軌跡Jbを生成できることから、走行軌跡K1と走行軌跡Jとが線で重なり、より現実に即した干渉判定ができる。 The preceding vehicle traveling locus prediction unit 24 of the present embodiment can predict a more realistic traveling locus by reproducing such an S-shaped traveling locus J. In the configuration for predicting the traveling locus K2 by one arc described in the first embodiment, even if the traveling locus K2 of the preceding vehicle 200 intersects with the traveling locus K1 of the host vehicle 100, the vehicle continues to turn away thereafter. It becomes a trajectory. Therefore, in the first embodiment, the travel tracks K1 and K2 intersect at one point. However, according to the present embodiment, the first half travel track in which the preceding vehicle 200 turns by generating an S-shaped track. Since it is possible to generate the second-half travel locus Jb that remains in the travel lane of the host vehicle 100 after generating Ja, the travel locus K1 and the travel locus J overlap with each other, and interference determination that is more realistic can be performed.
 したがって、本実施形態によれば、先行車両200の将来の走行軌跡Jとして、円弧状の前半走行軌跡Jaと当該前半走行軌跡Jaを180度回転した後半走行軌跡Jbとを連ねたS字状の走行軌跡Jを予測するので、より現実に即して先行車両200の挙動を早期に予測することができる。 Therefore, according to the present embodiment, as the future traveling locus J of the preceding vehicle 200, the S-shaped connecting the arcuate first-half traveling locus Ja and the second-half traveling locus Jb obtained by rotating the first-half traveling locus Ja by 180 degrees. Since the traveling locus J is predicted, the behavior of the preceding vehicle 200 can be predicted at an early stage more realistically.
 (第3実施形態)
  本発明の第3実施形態の走行軌跡予測装置20は、先行車両200のふらつきを車線変更と誤認識してしまうことを抑制する構成を有している。
(Third embodiment)
The travel locus prediction device 20 of the third embodiment of the present invention has a configuration that suppresses erroneous recognition of the wobbling of the preceding vehicle 200 as a lane change.
 図5は、車線変更時のステアリング操作による操舵角変化の一例を示すグラフである。図6は、車線変更時とふらつき時のヨーレート変化の一例を示すグラフである。 FIG. 5 is a graph showing an example of a change in the steering angle caused by the steering operation when the lane is changed. FIG. 6 is a graph showing an example of yaw rate change at the time of lane change and wobbling.
 先の実施形態で説明したように、ドライバーが車線変更をしようとしてS字状の走行軌跡で走行をしようとする場合、図5のように車線変更をしたい側にステアリングを切り、その後逆方向にステアリングを切り返すような操作となる。すなわち、車線変更を行う場合は、車線変更動作中に所定期間にわたってステアリングを車線変更したい側へと操作し続ける必要がある。このことから、ステアリング角(操舵角)とほぼ比例関係にあるヨーレートに関しても、図6の破線Yで示すように、一方向にヨーレートが発生して所定期間にわたって維持され、その後逆方向のヨーレートが所定期間にわたって維持されることになる。 As explained in the previous embodiment, when the driver wants to change the lane and travels on the S-shaped traveling locus, the steering is turned to the side where the lane change is desired as shown in FIG. The operation turns the steering wheel back. That is, when the lane change is performed, it is necessary to continue to operate the steering to the side where the lane change is desired over a predetermined period during the lane change operation. Therefore, even with respect to the yaw rate that is substantially proportional to the steering angle (steering angle), as shown by the broken line Y in FIG. 6, the yaw rate is generated in one direction and maintained for a predetermined period, and then the yaw rate in the reverse direction is It will be maintained for a predetermined period.
 その一方で、例えばステアリングの誤操作や小さい路上物体や轍、路面の穴などを避けた場合などのように車線内で進路がぶれる、いわゆる車両のふらつきが生じた場合は、図6の実線Yfに示すように、ヨーレートの立ち上がりは同じように立ち上がったとしても、その後のヨーレートは一方向に安定して維持されず、すぐに逆向きのヨーレートが発生して車線内に留まろうとする。車両のふらつきの程度によっては、このようなヨーレートの振れが複数回繰り返されることもある。 On the other hand, when a so-called wobbling of the vehicle occurs, for example, when the steering path is misaligned, such as when steering operation is mistaken or when small road objects, traps, road surface holes, etc. are avoided, the solid line Yf in FIG. As shown, even if the rise of the yaw rate rises in the same manner, the subsequent yaw rate is not stably maintained in one direction, and a reverse yaw rate is immediately generated to try to stay in the lane. Depending on the degree of wobbling of the vehicle, such yaw rate fluctuation may be repeated a plurality of times.
 ここで、ヨーレートについて、値の符号(すなわち正の値または負の値)に着目すれば、車両のふらつきの場合は、ヨーレートの立ち上がり時に生じた側の符号が所定期間にわたって維持されることなく、短時間で逆向きの符号が検知されることになる。そのため、本実施形態の干渉判定部26では、ヨーレートが正の値または負の値を所定の期間以上継続、つまり、先行車両200において検出されたヨーレートの符号が所定の干渉判定期間(例えば、0.5秒)にわたって維持(継続)されることも加えて干渉の判定基準としてもよい。 Here, with regard to the yaw rate, if attention is paid to the sign of the value (that is, a positive value or a negative value), in the case of vehicle wobble, the sign on the side generated at the rise of the yaw rate is not maintained over a predetermined period. A reverse code is detected in a short time. Therefore, in the interference determination unit 26 of the present embodiment, the yaw rate continues to be a positive value or a negative value for a predetermined period or longer, that is, the yaw rate detected in the preceding vehicle 200 has a predetermined interference determination period (for example, 0 .5 seconds) and may be used as a criterion for interference.
 したがって、本実施形態によれば、ヨーレートが正の値または負の値を干渉判定期間以上継続した場合に自車両100の将来の走行軌跡K1と先行車両200の将来の走行軌跡K2との干渉を判定するので、車両のふらつきを車線変更と誤判定してしまうことを抑制することができる。 Therefore, according to the present embodiment, when the yaw rate continues a positive value or a negative value for the interference determination period or longer, the interference between the future travel locus K1 of the host vehicle 100 and the future travel locus K2 of the preceding vehicle 200 is reduced. Since it determines, it can suppress that the wobbling of a vehicle misdetermines that it is a lane change.
 または、先行車両200の将来の走行軌跡K2の向きとヨーレートの符号は一対一で対応することから、干渉判定部26は、ヨーレート算出部22によって算出されたヨーレートが、自車両100側に近づくことを示す符号でかつこの符号が所定の干渉判定期間(例えば1秒)にわたって維持されたときに、自車両100の将来の走行軌跡K1と先行車両200の将来の走行軌跡K2とが干渉するものと判定するようにしてもよい。 Alternatively, since the direction of the future traveling locus K2 of the preceding vehicle 200 and the sign of the yaw rate correspond one-to-one, the interference determination unit 26 causes the yaw rate calculated by the yaw rate calculation unit 22 to approach the host vehicle 100 side. When this code is maintained over a predetermined interference determination period (for example, 1 second), the future travel locus K1 of the host vehicle 100 and the future travel locus K2 of the preceding vehicle 200 interfere with each other. You may make it determine.
 上述した本発明の実施形態によれば、ヨーレートで自車両の走行軌跡と先行車両の走行軌跡との干渉を判定できるので、より簡易な構成で自車両100と先行車両200との衝突や接触の危険性を事前に認識することができる。 According to the above-described embodiment of the present invention, it is possible to determine the interference between the traveling locus of the own vehicle and the traveling locus of the preceding vehicle based on the yaw rate, so that the collision and contact between the own vehicle 100 and the preceding vehicle 200 can be performed with a simpler configuration. Risk can be recognized in advance.
 以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.
11…ステレオカメラ(撮像装置)、12…車速センサ、13…ヨーレートセンサ、14…表示装置、15…干渉回避制御装置、20…走行軌跡予測装置、21…先行車両情報検出部、22…ヨーレート算出部、23…速度算出部、24…先行車両走行軌跡予測部、25…自車両走行軌跡予測部、26…干渉判定部、27…割込警報部、28…回転判定部、29…異常挙動警報部、100…自車両、200…先行車両、201…車体後面、202…車体側面 DESCRIPTION OF SYMBOLS 11 ... Stereo camera (imaging device), 12 ... Vehicle speed sensor, 13 ... Yaw rate sensor, 14 ... Display device, 15 ... Interference avoidance control device, 20 ... Running track prediction device, 21 ... Preceding vehicle information detection part, 22 ... Yaw rate calculation , 23... Speed calculation unit, 24... Preceding vehicle travel trajectory prediction unit, 25... Own vehicle travel trajectory prediction unit, 26... Interference determination unit, 27. Part, 100 ... own vehicle, 200 ... preceding vehicle, 201 ... rear surface of vehicle body, 202 ... side surface of vehicle body

Claims (8)

  1.  撮像装置により撮像された自車両の前方の画像情報を用いて先行車両の車体面の向きを検出する先行車両情報検出部と、
     前記先行車両の車体面の向きの変化から前記先行車両のヨーレートを算出するヨーレート算出部と、
     前記先行車両の速度を算出する速度算出部と、
     前記ヨーレート及び前記速度を用いて前記先行車両の将来の走行軌跡を予測する先行車両走行軌跡予測部と、を有することを特徴とする先行車両の走行軌跡予測装置。
    A preceding vehicle information detection unit that detects the direction of the body surface of the preceding vehicle using image information in front of the host vehicle imaged by the imaging device;
    A yaw rate calculator that calculates the yaw rate of the preceding vehicle from a change in the direction of the vehicle body surface of the preceding vehicle;
    A speed calculation unit for calculating the speed of the preceding vehicle;
    A preceding vehicle traveling locus prediction unit that predicts a future traveling locus of the preceding vehicle using the yaw rate and the speed;
  2.  前記先行車両走行軌跡予測部が、前記先行車両の将来の走行軌跡として、円弧状の前半走行軌跡と当該前半走行軌跡を180度回転した後半走行軌跡とを連ねたS字状の走行軌跡を予測することを特徴とする請求項1に記載の先行車両の走行軌跡予測装置。 The preceding vehicle travel trajectory prediction unit predicts an S-shaped travel trajectory obtained by connecting an arc-shaped first half travel trajectory and a second half travel trajectory obtained by rotating the first half travel trajectory by 180 degrees as a future travel trajectory of the preceding vehicle. The traveling locus prediction apparatus for a preceding vehicle according to claim 1, wherein:
  3.  前記ヨーレートを用いて前記先行車両の鉛直軸周りの異常回転を判定する回転判定部と、
     前記回転判定部により前記先行車両が鉛直軸周りに異常回転しているものと判定されたとき、前記先行車両の異常挙動を警報する異常挙動警報部と、
    をさらに有することを特徴とする請求項1または請求項2に記載の先行車両の走行軌跡予測装置。
    A rotation determination unit that determines abnormal rotation around the vertical axis of the preceding vehicle using the yaw rate;
    An abnormal behavior warning unit that warns the abnormal behavior of the preceding vehicle when the rotation determining unit determines that the preceding vehicle is rotating abnormally around a vertical axis;
    The travel locus prediction apparatus for a preceding vehicle according to claim 1, further comprising:
  4.  前記自車両の将来の走行軌跡を予測する自車両走行軌跡予測部と、
     前記自車両の将来の走行軌跡と前記先行車両の将来の走行軌跡との干渉を判定する干渉判定部と、
    をさらに有することを特徴とする請求項1~請求項3のいずれか一項に記載の先行車両の走行軌跡予測装置。
    A host vehicle traveling locus prediction unit for predicting a future traveling locus of the host vehicle;
    An interference determination unit that determines interference between a future travel locus of the host vehicle and a future travel locus of the preceding vehicle;
    The traveling locus prediction apparatus for a preceding vehicle according to any one of claims 1 to 3, further comprising:
  5.  前記干渉判定部が、前記ヨーレートが正の値または負の値を干渉判定期間以上継続した場合に前記自車両の将来の走行軌跡と前記先行車両の将来の走行軌跡との干渉を判定することを特徴とする請求項4に記載の先行車両の走行軌跡予測装置。 The interference determination unit determines interference between a future travel locus of the host vehicle and a future travel locus of the preceding vehicle when the yaw rate continues a positive value or a negative value for an interference determination period or longer. The travel locus prediction apparatus for a preceding vehicle according to claim 4, wherein
  6.  前記干渉判定部により前記自車両の将来の走行軌跡と前記先行車両の将来の走行軌跡とが干渉するものと判定されたとき、前記先行車両の割り込みを警報する割込警報部と、
    をさらに有することを特徴とする請求項4または請求項5に記載の先行車両の走行軌跡予測装置。
    When it is determined by the interference determination unit that the future traveling locus of the host vehicle and the future traveling locus of the preceding vehicle interfere with each other, an interrupt warning unit that warns the interruption of the preceding vehicle;
    The travel locus prediction apparatus for a preceding vehicle according to claim 4, further comprising:
  7.  自車両の前方に向けて設置された撮像装置と、
     請求項1~請求項6のいずれか一項に記載の先行車両の走行軌跡予測装置と、
     前記先行車両の将来の走行軌跡を少なくとも表示する表示装置と、
    を有することを特徴とする車両。
    An imaging device installed in front of the host vehicle;
    A travel locus prediction device for a preceding vehicle according to any one of claims 1 to 6,
    A display device for displaying at least a future travel locus of the preceding vehicle;
    The vehicle characterized by having.
  8.  自車両の前方に向けて設置された撮像装置と、
     請求項4~請求項6のいずれか一項に記載の先行車両の走行軌跡予測装置と、
     前記干渉判定部により前記自車両の将来の走行軌跡と前記先行車両の将来の走行軌跡とが干渉するものと判定されたとき、干渉を回避するよう前記自車両を制御する干渉回避制御装置と、を有することを特徴とする車両。
    An imaging device installed in front of the host vehicle;
    A travel locus prediction device for a preceding vehicle according to any one of claims 4 to 6,
    An interference avoidance control device that controls the host vehicle to avoid interference when the interference determination unit determines that the future driving track of the host vehicle interferes with the future driving track of the preceding vehicle; The vehicle characterized by having.
PCT/JP2017/043936 2016-12-14 2017-12-07 Device for predicting travel trajectory of preceding vehicle, and vehicle equipped with same WO2018110402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-242065 2016-12-14
JP2016242065A JP6815856B2 (en) 2016-12-14 2016-12-14 Travel locus prediction device for preceding vehicles and vehicles equipped with them

Publications (1)

Publication Number Publication Date
WO2018110402A1 true WO2018110402A1 (en) 2018-06-21

Family

ID=62558431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043936 WO2018110402A1 (en) 2016-12-14 2017-12-07 Device for predicting travel trajectory of preceding vehicle, and vehicle equipped with same

Country Status (2)

Country Link
JP (1) JP6815856B2 (en)
WO (1) WO2018110402A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195822A1 (en) * 2019-03-27 2020-10-01 ソニー株式会社 Image capturing system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155991B2 (en) 2018-12-17 2022-10-19 トヨタ自動車株式会社 Notification device
DE102019105547A1 (en) * 2019-03-05 2020-09-10 Bayerische Motoren Werke Aktiengesellschaft Method and control unit for recognizing a vehicle entering or exiting
JP7250624B2 (en) * 2019-06-06 2023-04-03 日産自動車株式会社 VEHICLE TRIP CONTROL METHOD AND TRIP CONTROL DEVICE
KR102178585B1 (en) * 2019-07-02 2020-11-13 한국교통대학교산학협력단 Attitude estimation system of surrounding vehicles
JP7227112B2 (en) 2019-09-27 2023-02-21 日立Astemo株式会社 OBJECT DETECTION DEVICE, TRIP CONTROL SYSTEM, AND TRIP CONTROL METHOD
KR102460085B1 (en) * 2020-11-05 2022-10-28 한국교통대학교산학협력단 System for improving longitudinal response
WO2023047598A1 (en) * 2021-09-27 2023-03-30 株式会社Subaru Driving assistance device and recording medium on which computer program is recorded
JP2024035974A (en) * 2022-09-05 2024-03-15 日立Astemo株式会社 Vehicle control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332192A (en) * 2004-05-19 2005-12-02 Toyota Motor Corp Steering support system
JP2006024106A (en) * 2004-07-09 2006-01-26 Honda Motor Co Ltd Contact avoidance controller of vehicle
JP2011204124A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Course prediction device
JP2012053564A (en) * 2010-08-31 2012-03-15 Denso Corp Device and method for determining behavior abnormality, and information recording analyzer having the device
JP2014089505A (en) * 2012-10-29 2014-05-15 Daimler Ag Other-vehicle detection apparatus
JP2014182632A (en) * 2013-03-19 2014-09-29 Honda Motor Co Ltd Vehicle surroundings monitoring device
JP2015041238A (en) * 2013-08-21 2015-03-02 株式会社日本自動車部品総合研究所 Object estimation device and object estimation method
JP2016139163A (en) * 2015-01-26 2016-08-04 株式会社日立製作所 Vehicle travelling control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332192A (en) * 2004-05-19 2005-12-02 Toyota Motor Corp Steering support system
JP2006024106A (en) * 2004-07-09 2006-01-26 Honda Motor Co Ltd Contact avoidance controller of vehicle
JP2011204124A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Course prediction device
JP2012053564A (en) * 2010-08-31 2012-03-15 Denso Corp Device and method for determining behavior abnormality, and information recording analyzer having the device
JP2014089505A (en) * 2012-10-29 2014-05-15 Daimler Ag Other-vehicle detection apparatus
JP2014182632A (en) * 2013-03-19 2014-09-29 Honda Motor Co Ltd Vehicle surroundings monitoring device
JP2015041238A (en) * 2013-08-21 2015-03-02 株式会社日本自動車部品総合研究所 Object estimation device and object estimation method
JP2016139163A (en) * 2015-01-26 2016-08-04 株式会社日立製作所 Vehicle travelling control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195822A1 (en) * 2019-03-27 2020-10-01 ソニー株式会社 Image capturing system
US20220148432A1 (en) * 2019-03-27 2022-05-12 Sony Group Corporation Imaging system

Also Published As

Publication number Publication date
JP2018097644A (en) 2018-06-21
JP6815856B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2018110402A1 (en) Device for predicting travel trajectory of preceding vehicle, and vehicle equipped with same
JP6115576B2 (en) Vehicle travel control device
JP6507862B2 (en) Peripheral monitoring device and driving support device
JP6304272B2 (en) Vehicle alert device
JP4298577B2 (en) Vehicle alarm device
CN108622091A (en) Collision avoidance apparatuses
JP6485328B2 (en) Vehicle driving support device
JP4602277B2 (en) Collision determination device
JP5024255B2 (en) Driving assistance device
JP2008070999A (en) Obstacle detecting device for vehicle and automobile loaded with the same device
JP3918656B2 (en) Obstacle detection device for vehicle
US20160318512A1 (en) Vehicle travel control device
JP2008191781A (en) Collision avoidance system
JP2011210102A (en) Driving support device for vehicle
JP2004110394A (en) Obstacle detecting device for vehicle
JP2007133692A (en) Driving action evaluation device
JP2005182198A (en) Rear-end collision prevention device
JP6085958B2 (en) Parking assistance device
JP2018156290A (en) Collision avoidance device
JP4952938B2 (en) Vehicle travel support device
US11299162B2 (en) Vehicle control device
JP3672914B2 (en) Vehicle alarm device
JP2015014948A (en) Driving support device for vehicle
JP2003025937A (en) Traffic lane deviation warning device
JP2012081778A (en) Collision damage alleviation brake control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881784

Country of ref document: EP

Kind code of ref document: A1