WO2018110292A1 - Flapping device - Google Patents

Flapping device Download PDF

Info

Publication number
WO2018110292A1
WO2018110292A1 PCT/JP2017/043022 JP2017043022W WO2018110292A1 WO 2018110292 A1 WO2018110292 A1 WO 2018110292A1 JP 2017043022 W JP2017043022 W JP 2017043022W WO 2018110292 A1 WO2018110292 A1 WO 2018110292A1
Authority
WO
WIPO (PCT)
Prior art keywords
cord
support
wing
axis
flapping apparatus
Prior art date
Application number
PCT/JP2017/043022
Other languages
French (fr)
Japanese (ja)
Inventor
濱本 将樹
秀樹 江藤
中村 和敬
佐藤 朝彦
Original Assignee
シャープ株式会社
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 株式会社村田製作所 filed Critical シャープ株式会社
Publication of WO2018110292A1 publication Critical patent/WO2018110292A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C33/00Ornithopters
    • B64C33/02Wings; Actuating mechanisms therefor

Definitions

  • the present disclosure relates to a flapping apparatus.
  • the present application is based on priority based on Japanese Patent Application No. 2016-243319, which is a Japanese patent application filed on December 15, 2016, and Japanese Patent Application No. 2017-117362, which is a Japanese patent application filed on June 15, 2017. Claim priority based on issue. All the descriptions described in the Japanese patent application are incorporated herein by reference.
  • a rocker arm is assembled at the base end of a mast to which a wing is attached, and output from a rotary motor as a drive source.
  • the rotary motion is converted into a reciprocating linear motion by the crank so that the rocker arm is periodically pushed and pulled, and the mast is driven by the rocker arm so that the wings swing in the front-rear direction.
  • a flapping device is disclosed.
  • the fluid force of the left and right wings is controlled to produce a steering torque of yaw, roll, and pitch.
  • a mast structure is provided on the inner edge of the wing body, and the root portion of the mast structure is rotated about three axes.
  • an object of the present disclosure is to solve the above-described problem, and to provide a flapping apparatus in which a mechanism for realizing various flight forms is obtained with a simple configuration.
  • a flapping apparatus includes a casing, an actuator mounted on the casing, a pair of wings that have flexibility and generate levitation force by swinging back and forth, a casing, and a pair of And a linear body suspended between the wings.
  • the wing body operates behind the front edge portion to which the swing motion is input from the actuator and the swing motion input from the actuator to the front edge portion, and the linear body is connected. And a trailing edge.
  • the flapping apparatus includes a support unit that supports the linear body on the housing side, and a position adjustment mechanism unit that variably adjusts the position of the support unit by moving the support unit.
  • FIG. 2 is a perspective view for explaining the operation of the wing body in the flapping apparatus in FIG. 1.
  • FIG. 2 is a cross-sectional view continuously showing the operation of the left wing in the flapping apparatus in FIG. 1.
  • FIG. 32 is a top view for explaining a method of adjusting the cord length in the cord support in FIGS. 30 and 31.
  • FIG. 32 is a top view for explaining a method of adjusting the cord length in the cord support in FIGS. 30 and 31.
  • FIG. 32 is a front view showing a first modification of the cord support in FIGS. 30 and 31.
  • FIG. 32 is a top view showing a second modification of the cord support in FIGS. 30 and 31.
  • FIG. 37 is a top view showing the cord support in FIG. 36. It is a front view which shows partially the flapping apparatus in Embodiment 5 of this indication. It is a top view which shows partially the flapping apparatus in Embodiment 6 of this indication.
  • FIG. 1 and 2 are perspective views illustrating a flapping apparatus according to Embodiment 1 of the present disclosure.
  • FIG. 1 shows a flapping apparatus viewed from the front side
  • FIG. 2 shows a flapping apparatus viewed from the rear side.
  • flapping apparatus 1 ⁇ / b> A uses a housing 10, a main rotary motor 20 as a power source assembled to housing 10, and the power generated by main rotary motor 20.
  • a power transmission mechanism 30 that transmits power, a left mast 39L and a right mast 39R connected to the power transmission mechanism 30, a left wing 40L to which a swing motion is input from the power transmission mechanism 30 through the left mast 39L and the right mast 39R, and
  • the right wing 40R and a battery (not shown) for supplying power to the main rotary motor 20 are provided.
  • mast 39 When the left mast 39L and the right mast 39R are not particularly distinguished, they are simply referred to as “mast 39”. When the left wing 40L and the right wing 40R are not particularly distinguished, they are simply referred to as “wings 40”.
  • an X axis (roll axis), a Y axis (pitch axis), and a Z axis (yaw axis) are taken on the front, rear, left, and right of the flapping apparatus 1A, respectively, and the front side viewed from the flapping apparatus 1A and
  • the direction toward the rear side is defined as + X direction and ⁇ X direction, respectively, and the direction toward the left side and right side as viewed from the flapping apparatus 1A is defined as + Y direction and ⁇ Y direction, respectively.
  • the directions toward the upper side and the lower side as viewed from the apparatus 1A are defined as + Z direction and ⁇ Z direction, respectively, and the following description will be made using these axes and directions.
  • the housing 10 is a member constituting the main body of the flapping apparatus 1A, and is assembled with various components for realizing the flight of the flapping apparatus 1A.
  • the casing 10 is configured by a framework in which a plurality of frame-shaped members are combined, and may include a cover (not shown) that covers the framework in addition to this.
  • the housing 10 includes a lower frame 11, an upper frame 12, an intermediate frame 13, and a plurality of stems 15.
  • the stem 15 extends in a rod shape in the Z-axis direction.
  • the plurality of stems 15 are arranged in parallel to each other. As shown in the figure, in the present embodiment, a total of four stems 15 are used, and these four stems 15 are respectively located on the right front, right rear, left front and left rear of the flapping apparatus 1A. Has been placed.
  • the lower frame 11, the upper frame 12, and the intermediate frame 13 are arranged in the XY plane.
  • the lower frame 11, the upper frame 12, and the intermediate frame 13 are supported by the plurality of stems 15 by being installed on the plurality of stems 15, and the lower frame 11, the upper frame 12, and the intermediate frame 13 are Z-axis Arranged at different positions. More specifically, the upper frame 12 and the lower frame 11 are vertically arranged with a distance in the Z-axis direction.
  • the intermediate frame 13 is disposed between the upper frame 12 and the lower frame 11 in the Z-axis direction.
  • the plurality of stems 15 are preferably made of carbon fiber rod-shaped members, and the lower frame 11, the upper frame 12, and the intermediate frame 13 are preferably made of resin members. . By comprising in this way, flapping apparatus 1A can be reduced in weight, ensuring high rigidity.
  • the lower frame 11, the upper frame 12, and the intermediate frame 13 are preferably provided with holes, cutouts, and the like while ensuring necessary rigidity for weight reduction.
  • FIG. 3 is a perspective view showing the main rotating motor and the power transmission mechanism.
  • FIG. 4 is a side view showing the main rotary motor and the power transmission mechanism.
  • the housing 10 is shown, but in FIG. 4, only the upper frame 12 of the housing 10 is shown.
  • the main rotating motor 20 and the power transmission mechanism 30 constitute an actuator that inputs a swing motion to the wing body 40.
  • the main rotary motor 20 and the power transmission mechanism 30 are mounted on the housing 10.
  • the main rotating motor 20 is mounted on the housing 10 by being fixed to the intermediate frame 13.
  • the main rotating motor 20 is disposed between the intermediate frame 13 and the lower frame 11 in the Z-axis direction.
  • the main rotary motor 20 has an output shaft 20a (see FIG. 4) that outputs rotational motion, and the output shaft 20a is disposed so as to extend along the Z-axis direction.
  • a gear 20b is fixed to the tip of the output shaft 20a. The gear 20b rotates with the output shaft 20a as the output shaft 20a rotates about the axis.
  • the operation of the main rotary motor 20 is controlled by a user or a control unit to which a control instruction is given by an automated algorithm.
  • the control unit variably adjusts the electric power supplied from the above-described battery (not shown) to the main rotary electric motor 20, thereby controlling the output (that is, the rotation speed) of the main rotary electric motor 20.
  • the above-described operation control of the main rotating motor 20 is a conventionally known general method, and thus detailed description thereof is omitted here.
  • the power transmission mechanism 30 includes a rotary motion transmission unit 30A and a motion conversion unit 30B.
  • the rotary motion transmitting unit 30A is mounted on the housing 10 by being fixed to the intermediate frame 13.
  • the rotational motion transmitting unit 30A is provided from between the intermediate frame 13 and the lower frame 11 to between the upper frame 12 and the intermediate frame 13 in the Z-axis direction.
  • Rotational motion transmission unit 30A includes a first transmission member 31 and a second transmission member 32. Both the first transmission member 31 and the second transmission member 32 are rotatably supported by the housing 10.
  • the first transmission member 31 includes a first connection rod 31a extending along the Z-axis direction, a gear 31b fixed to the first connection rod 31a, and a gear 31c fixed to the first connection rod 31a. . Both the gear 31b and the gear 31c rotate around the axis of the first connecting rod 31a together with the first connecting rod 31a.
  • the second transmission member 32 includes a second connection rod 32a extending along the Z-axis direction, a gear 32b fixed to the second connection rod 32a, and a disk 32c fixed to the second connection rod 32a. . Both the gear 32b and the disk 32c rotate around the axis of the second connection rod 32a together with the second connection rod 32a.
  • the gear 31b fixed to the first connecting rod 31a meshes with the gear 20b fixed to the output shaft 20a.
  • the gear 32b fixed to the second connecting rod 32a meshes with the gear 31c fixed to the first connecting rod 31a.
  • the rotational motion generated on the output shaft 20a of the main rotary electric motor 20 is transmitted to the first transmission member 31 and the second transmission member 32 in the rotational motion, and as a result, the disk 32c is transmitted. It will rotate around the axis of the second connecting rod 32a. That is, the disk 32c rotates around a central axis 201 (see FIG. 5 described later) extending in a direction parallel to the extending direction of the second connecting rod 32a (that is, the Z-axis direction).
  • the first transmission member 31 and the second transmission member 32 function as a speed reducer by adjusting the number of teeth of the gears 31b, 31c, and 32b.
  • FIG. 5 is a top view showing a motion conversion unit in the power transmission mechanism.
  • the motion conversion unit 30B is mounted on the housing 10 by being fixed to the upper frame 12.
  • the motion conversion unit 30B is provided between the intermediate frame 13 and the upper frame 12 in the Z-axis direction.
  • the motion converting unit 30B includes a crank arm 33, a crank pin 34a and a crank pin 34b, a slider 35, a slide guide 16a and a slide guide 16b, an elastic belt 36, a left side rotating body 37L and a right side rotating body 37R, and a left side. It has a guide shaft 18L and a right guide shaft 18R, and a left mast support 38L and a right mast support 38R.
  • left rotating bodies 37 When the left rotating body 37L and the right rotating body 37R are not particularly distinguished, they are simply referred to as “rotating bodies 37”. When the left guide shaft 18L and the right guide shaft 18R are not particularly distinguished, they are simply referred to as “guide shaft 18”. When the left mast support 38L and the right mast support 38R are not particularly distinguished, they are simply referred to as “mast support 38”.
  • the slider 35 is configured by a rectangular frame-shaped member, and is disposed above the second transmission member 32 of the rotational motion transmission unit 30A.
  • the slider 35 is movably supported by slide guides 16 a and 16 b supported by the upper frame 12. More specifically, the slide guides 16 a and 16 b are arranged side by side in the Y-axis direction so as to extend along the X-axis direction, and the slide guides 16 a and 16 b are disposed at predetermined positions of the slider 35. There are provided a plurality of through holes through which are inserted. By inserting the slide guides 16a and 16b through the plurality of through holes, the slider 35 is provided so as to be movable in the X-axis direction.
  • the disk 32 c of the second transmission member 32 and the slider 35 are connected by a crank arm 33.
  • the crank arm 33 is disposed in the XY plane.
  • the crank arm 33 extends in an arm shape between the disk 32 c and the slider 35.
  • crank arm 33 One end of the crank arm 33 is rotatably connected to an eccentric position of the disk 32c of the second transmission member 32 by a crank pin 34a.
  • the other end of the crank arm 33 is rotatably connected to the front end portion of the slider 35 in the X-axis direction by a crank pin 34b.
  • the disk 32c of the second transmission member 32 rotates about the central axis 201
  • the one end of the crank arm 33 connected to the disk 32c moves in the circumferential direction about the central axis 201.
  • the slider 35 is periodically pushed and pulled by the crank arm 33, and reciprocates linearly in the X-axis direction, which is the extending direction of the slide guides 16a and 16b.
  • the rotating body 37 is arranged in the same XY plane as the slider 35.
  • the rotating body 37 is provided adjacent to the slider 35 in the Y-axis direction. More specifically, the left side rotator 37L is provided adjacent to the left side of the slider 35, and the right side rotator 37R is provided adjacent to the right side of the slider 35.
  • the left rotating body 37L and the right rotating body 37R are provided at a distance from the slider 35 in the Y-axis direction.
  • the rotating body 37 is configured by a substantially cylindrical member, and is disposed so that the outer peripheral surface thereof faces the slider 35.
  • a gear groove is provided on the outer peripheral surface of the rotating body 37.
  • the guide shaft 18 extends in a rod shape along a central axis 202 (see FIG. 5) parallel to the Z axis.
  • the guide shaft 18 is supported by the upper frame 12 and the intermediate frame 13 at both ends extending in a rod shape.
  • the rotating body 37 is supported by the guide shaft 18 so as to be rotatable about the central axis 202. More specifically, the left rotating body 37L is supported by the left guide shaft 18L so as to be rotatable about the center axis 202, and the right rotating body 37R is supported by the right guide shaft 18R so as to be rotatable about the center axis 202. Has been.
  • the elastic belt 36 is composed of a toothed belt.
  • the elastic belt 36 may be made of any material as long as it exhibits elasticity, but is preferably made of resin or rubber.
  • the elastic belt 36 is suspended between the slider 35, the left rotating body 37L, and the right rotating body 37R.
  • the elastic belt 36 is fixed to the front end portion of the slider 35 in the X-axis direction, and extends from the front end portion of the slider 35 toward the left rotating body 37L.
  • the elastic belt 36 is wound around the left rotating body 37L around the central axis 202 while meshing with a gear groove provided on the outer peripheral surface of the left rotating body 37L.
  • the elastic belt 36 extends from the left rotating body 37L toward the rear end of the slider 35 in the X-axis direction.
  • the elastic belt 36 is fixed to the rear end portion of the slider 35 in the X-axis direction, and extends from the rear end portion of the slider 35 toward the right rotating body 37R.
  • the elastic belt 36 is wound around the right rotating body 37R around the central axis 202 while meshing with a gear groove provided on the outer peripheral surface of the right rotating body 37R.
  • the elastic belt 36 extends from the right rotating body 37R toward the front end of the slider 35 in the X-axis direction.
  • the elastic belt 36 of the portion wound around the left side rotating body 37L and the right side rotating body 37R in accordance with the reciprocating linear motion of the slider 35 along the X-axis direction described above causes the left side rotating body 37L and right side to rotate.
  • the left rotating body 37L and the right rotating body 37R reciprocate in the rotating direction about the center axis 202 as a rotation center.
  • the left mast support 38L and the right mast support 38R are attached to the left rotator 37L and the right rotator 37R, respectively.
  • the left mast support 38L and the right mast support 38R are integrated with the left rotator 37L and the right rotator 37R, respectively, and reciprocate in the rotation direction around the central axis 202.
  • the left mast 39L and the right mast 39R are connected to the left mast support 38L and the right mast support 38R, respectively.
  • the left mast 39L extends linearly from the left mast support 38L along the + Y direction.
  • the right mast 39R extends linearly along the ⁇ Y direction from the right mast support 38R.
  • a left wing 40L and a right wing 40R are attached to the left mast 39L and the right mast 39R, respectively.
  • the left rotating body 37L and the right rotating body 37R reciprocate synchronously in the rotation direction around the central axis 202, so that the left rotating body 40L and the right rotating body 40R move around the central axis 202. It swings in the front-rear direction (X-axis direction) as the center of rotation.
  • the wing 40 has flexibility.
  • the left wing 40L as a whole has a shape extending in the + Y direction from the left mast support 38L.
  • the right wing 40R as a whole has a shape extending in the ⁇ Y direction from the right mast support 38R.
  • the left wing 40L and the right wing 40R have a symmetrical shape.
  • the wing body 40 has a front edge portion 41, a rear edge portion 42, a root portion 43, and a tip portion 44 as its constituent parts.
  • the wing surface of the wing body 40 is formed in a region surrounded by the front edge portion 41, the rear edge portion 42, the root portion 43, and the tip end portion 44.
  • the root portion 43 is provided in a position closest to the swing center (the central axis 202 in FIG. 5) of the wing 40 in the wing 40.
  • the distal end portion 44 is located away from the root portion 43.
  • the tip 44 is provided at the tip of the wing 40 that extends from the mast support 38 in the Y-axis direction.
  • the front edge portion 41 extends between the base portion 43 and the tip portion 44.
  • the front edge portion 41 extends linearly between the base portion 43 and the tip portion 44.
  • the front edge portion 41 extends in the Y-axis direction between the base portion 43 and the tip portion 44.
  • the mast 39 is provided along the front edge portion 41.
  • the front edge portion 41 is supported rotatably about the mast 39. A swinging motion is input to the front edge portion 41 through the mast 39.
  • the rear edge portion 42 extends between the base portion 43 and the tip portion 44.
  • the rear edge portion 42 extends between the base portion 43 and the tip portion 44 while being bent and / or curved.
  • the front edge portion 41 and the rear edge portion 42 face each other in the vertical direction (Z-axis direction) across the wing surface formed by the wing body 40.
  • the rear edge portion 42 is disposed below the front edge portion 41.
  • the wing body 40 hangs up and down between the front edge portion 41 and the rear edge portion 42.
  • the wing body 40 is a long and narrow direction in which the direction connecting the base portion 43 and the tip portion 44 (Y-axis direction) is the longitudinal direction, and the direction in which the front edge portion 41 and the rear edge portion 42 are opposed (Z-axis direction) is the short direction.
  • Y-axis direction the direction connecting the base portion 43 and the tip portion 44
  • Z-axis direction the direction in which the front edge portion 41 and the rear edge portion 42 are opposed
  • the flapping apparatus 1A further includes a left cord 47L and a right cord 47R, and a left cord support 53L and a right cord support 53R.
  • code 47 When the left code 47L and the right code 47R are not particularly distinguished, they are simply referred to as “code 47”. When the left cord support 53L and the right cord support 53R are not particularly distinguished, they are simply referred to as “cord support 53”.
  • the cord 47 is composed of a flexible linear body.
  • the cord 47 may be composed of a member that can be expanded and contracted in the linearly extending direction.
  • the cord 47 is made of rubber or polyurethane rubber, for example.
  • the left cord 47L is suspended between the housing 10 and the left wing 40L.
  • the right cord 47R is suspended between the housing 10 and the right wing 40R.
  • the left cord 47L and the right cord 47R are provided symmetrically with respect to the casing 10.
  • the cord 47 is connected to the rear edge 42 of the wing 40. More specifically, a clip member 46 is attached to the rear edge portion 42 of the wing body 40. The clip member 46 is configured to be able to hold the wing body 40 from its thickness direction. The cord 47 is connected to the rear edge portion 42 via the clip member 46.
  • the left cord support 53L is configured to support the left cord 47L on the housing 10 side.
  • the end of the left cord 47L opposite to the end connected to the rear edge portion 42 of the left wing 40L is connected to the left cord support 53L.
  • the right cord support 53R is configured to support the right cord 47R on the housing 10 side.
  • the end of the right cord 47R opposite to the end connected to the rear edge portion 42 of the right wing 40R is connected to the right cord support 53R.
  • the left cord support 53L is provided below the position of the rear edge portion 42 of the left wing 40L to which the left cord 47L is connected and closer to the right wing 40R in the Y-axis direction.
  • the right cord support 53R is provided below the position of the rear edge portion 42 of the right wing 40R to which the right cord 47R is connected and closer to the left wing 40L in the Y-axis direction.
  • the cord 47 is provided so as to hang obliquely downward from the rear edge portion 42 of the wing body 40 toward the cord support 53.
  • the front edge portion 41 freely passively rotates about the mast 39, while the operation of the rear edge portion 42 is restrained by the cord 47.
  • FIG. 6 is a perspective view for explaining the operation of the wing body in the flapping apparatus in FIG. 7 is a cross-sectional view continuously showing the operation of the left wing body in the flapping apparatus in FIG. 7 representatively shows the operation of the left wing 40L, but the left wing 40L and the right wing 40R operate symmetrically.
  • FIG. 7 the operation of the left wing 40L in the cross section (virtual curved surface 210 in FIG. 6) in the vicinity of 3/4 of the wing length of the left wing 40L that generates representative aerodynamics is the rotation of the left wing 40L.
  • a cylindrical coordinate system around the center (center axis 202) is shown expanded in a plane.
  • the cross section of the left wing 40L is shown from a circle indicating the front edge portion 41 and a straight line indicating the wing surface.
  • the deformation of the left wing 40L is ignored.
  • the front edge portion 41 of the wing body 40 is moved forward with respect to the center position (positions a and f) as the wing body 40 swings (position d). ) And the backward turning position (position i). During this time, the front edge portion 41 of the wing body 40 moves in a first plane 211 that is an XY plane (horizontal plane).
  • the front edge 41 of the wing 40 is located at position a ⁇ position b ⁇ position c (above, front stroke diagram) ⁇ position d.
  • (Front stroke diagram and rear stroke diagram) ⁇ Position e ⁇ Position f ⁇ Position g ⁇ Position h (End stroke diagram) ⁇ Position i (Back stroke diagram and forward stroke diagram) ⁇ Position j ⁇ Position a (End, forward Move the stroke diagram in order.
  • Position d is the rocking end of the front edge 41 in the + X direction, and is the front turning position of the front edge 41.
  • the position i is the swing end of the front edge portion 41 in the ⁇ X direction, and is the rear turning position of the front edge portion 41.
  • Position a and position f are the center positions of the swing angle of the front edge portion 41 with the center axis 202 as the center.
  • the time when the front edge 41 moves from the rear turn-back position (position i) toward the front turn-back position (position d) is referred to as “front stroke of the wing 40”, and the front edge 41 is moved forward (position d).
  • To the rear turning position (position i) is referred to as “rear stroke of the wing 40”.
  • FIG. 7 the front stroke of the wing body 40 and the rear stroke of the wing body 40 are illustrated separately for the sake of simplicity of illustration, but in reality, the wing body 40 has the same space. Work within.
  • the wing surface of the wing body 40 has a moving speed with respect to the surrounding fluid, and fluid force is applied to the wing surface as a reaction.
  • the wing body 40 moves forward (+ X direction) while the angle of attack changes as shown in FIG. As a result, lift is generated (position a to position c).
  • the wings 40 perform a symmetrical operation with respect to the operation from the position b to the position e in the period from the position g to the position j. Thereby, the upward fluid force can be obtained continuously except for the front and rear turning positions. Since the movement of the wing body 40 is symmetric in the front-rear direction, the average levitation force is directed downward ( ⁇ Z direction).
  • FIG. 8 is a top view showing the moving direction of the cord support by the position adjusting mechanism.
  • the position adjustment mechanism unit 50 adjusts the position of the cord support 53 variably by moving the cord support 53 (left cord support 53L, right cord support 53R).
  • the position adjustment mechanism unit 50 is supported by the housing 10 (more specifically, the lower frame 11).
  • the position adjustment mechanism unit 50 is disposed below the main rotary electric motor 20 and the power transmission mechanism 30.
  • the position adjusting mechanism unit 50 includes a left first moving mechanism unit 60L, a right first moving mechanism unit 60R, and a second moving mechanism unit 70.
  • first moving mechanism 60 When the left first moving mechanism 60L and the right first moving mechanism 60R are not particularly distinguished, they are simply referred to as “first moving mechanism 60”.
  • the left first moving mechanism 60L and the right first moving mechanism 60R are connected to the left cord support 53L and the right cord support 53R, respectively.
  • the first moving mechanism unit 60 is located in a second plane 213 parallel to the first plane 211, and the front turning position (position d) in the axial direction (X-axis direction) of the roll axis.
  • the first position position of the cord support 53 shown in FIG. 7 that is equidistant from the rear turning position (position i) and the axial direction of the roll axis (X-axis direction).
  • the cord support 53 is moved in a range including a third position (position of the cord support 53 shown in FIG. 15 described later) that is closer to the rear turning position (position i) than the position d).
  • the cord support 53 When the cord support 53 is in the first position, the cord support 53 is positioned in the vertical surface 212 including the position a and the position f which are the center positions of the front edge portion 41.
  • the left first moving mechanism 60L is configured to swing the left cord support 53L about a central axis 206 (first axis) parallel to the Z axis (yaw axis). ing.
  • the right first moving mechanism 60R is configured to swing the right cord support 53R about the central axis 206.
  • the left first moving mechanism 60L is configured to swing the left cord support 53L independently of the right first moving mechanism 60R.
  • the right first moving mechanism 60R is configured to swing the right cord support 53R independently of the left first moving mechanism 60L.
  • the second moving mechanism unit 70 is connected to the left cord support 53L and the right cord support 53R.
  • the second moving mechanism unit 70 moves the cord support 53 so that the tension of the cord 47 between the housing 10 and the wing 40 changes.
  • the second moving mechanism unit 70 is configured to move the left cord support 53L and the right cord support 53R in the Y-axis direction (the axial direction of the pitch axis).
  • the second moving mechanism unit 70 is configured to move the left cord support 53L and the right cord support 53R together.
  • FIGS. 8 to 10 are perspective views showing the first moving mechanism (left side). Referring to FIGS. 8 to 10, left first moving mechanism 60L and right first moving mechanism 60R have a symmetrical structure.
  • the first moving mechanism 60 includes a first sub-rotary electric motor 61, a base 62, a cylindrical worm 63, a gear unit 64, a worm wheel 65, an arm member 66, and a shaft 67.
  • the base portion 62 has a plate shape extending in the XY plane, and is disposed below the lower frame 11 in the Z-axis direction.
  • the first sub-rotary motor 61 is mounted on the base portion 62.
  • the first sub-rotary motor 61 is provided such that its output shaft rotates around a central axis 221 extending in the X-axis direction.
  • the first sub-rotary motor 61 is composed of a servo motor capable of controlling the rotation angle (position) of the motor by a position command from the control unit.
  • a cylindrical worm 63 is connected to the output shaft of the first auxiliary rotating motor 61.
  • the cylindrical worm 63 rotates around the central shaft 221 when power is transmitted from the first sub-rotary electric motor 61.
  • the gear unit 64 includes a worm wheel 64a and a cylindrical worm 64b.
  • the worm wheel 64a and the cylindrical worm 64b are provided side by side on the axis of the central axis 222 extending in the Y-axis direction.
  • the worm wheel 64a and the cylindrical worm 64b are supported so as to be rotatable about a central axis 222.
  • the worm wheel 64 a is provided so as to mesh with the cylindrical worm 63.
  • the worm wheel 64a and the cylindrical worm 64b rotate around the central axis 222 when power is transmitted from the cylindrical worm 63 to the worm wheel 64a.
  • the worm wheel 65 is supported so as to be rotatable about a central axis 206 that is the center of oscillation of the cord support 53.
  • the worm wheel 65 is provided so as to mesh with the cylindrical worm 64b.
  • the worm wheel 65 rotates around the central axis 206 when power is transmitted from the cylindrical worm 64b.
  • the arm member 66 is supported so as to be rotatable about the central axis 206.
  • the arm member 66 extends from the central axis 206 in an arm shape in the radial direction of the central axis 206.
  • a cord support 53 is connected to the tip end of the arm member 66 extending in an arm shape via a shaft 67.
  • the arm member 66 is connected to the worm wheel 65 on the axis of the central axis 206.
  • the cord support 53 is swung in the front-rear direction around the central axis 206 by transmitting the rotation in the forward direction and the reverse direction from the first sub-rotary electric motor 61 toward the arm member 66. Can be moved.
  • the cord 47 is supported by the cord support 53 so as to be rotatable about a central axis 207 (second axis) parallel to the yaw axis.
  • the flapping apparatus 1 ⁇ / b> A further includes a bearing 54.
  • the bearing 54 is interposed between the shaft 67 and the cord support 53. Since the inner ring of the bearing 54 is fixed to the shaft 67 and the outer ring of the bearing 54 is fixed to the cord support 53, the shaft 67 and the cord support 53 are provided to be relatively rotatable around the central axis 207. ing.
  • the direction in which the cord 47 is pulled out from the cord support 53 changes in the front-rear direction.
  • energy efficiency can be improved in the actuator for swinging the wing body 40, Durability can be improved.
  • FIGS. 11 and 12 are perspective views showing the second moving mechanism.
  • second moving mechanism unit 70 includes a support plate 51, a second auxiliary rotary electric motor 71, a gear unit 73, and a nut 74.
  • the left cord support 53L and the right cord support 53R are integrally supported by the support plate 51. More specifically, the support plate 51 has a plate shape arranged in the XY plane, and extends with the Y-axis direction as the longitudinal direction. At both ends of the support plate 51 extending in the Y-axis direction, an arm member 66 that supports the left cord support 53L and an arm member 66 that supports the right cord support 53R are connected.
  • the second sub-rotation motor 71 is disposed below the lower frame 11 in the Z-axis direction.
  • the second sub rotary motor 71 is supported by the lower frame 11.
  • the second sub-rotary motor 71 is arranged such that its output shaft 71a rotates around a central shaft 223 extending in the Y-axis direction.
  • the second auxiliary rotary motor 71 is composed of a servo motor capable of controlling the rotation angle (position) of the motor by a position command from the control unit.
  • the gear unit 73 includes a spur gear 73a and a feed screw 73b.
  • the spur gear 73a and the feed screw 73b are provided side by side on the central axis 224 extending in the Y-axis direction.
  • the spur gear 73a and the feed screw 73b are supported so as to be rotatable about the central shaft 224.
  • the spur gear 73a is connected to the output shaft 71a of the second auxiliary rotary electric motor 71 through a plurality of gears (not shown).
  • the spur gear 73a and the feed screw 73b rotate around the central shaft 224 when power is transmitted from the second auxiliary rotary electric motor 71 to the spur gear 73a.
  • the nut 74 is screwed to the feed screw 73b.
  • a support plate 51 is connected to the nut 74.
  • the cord support 53 (the left cord support 53L and the right cord support 53R) is connected to the nut 74 via the support plate 51 and the arm member 66.
  • the rotation of the forward direction and the reverse direction is transmitted from the second auxiliary rotating motor 71 toward the feed screw 73b, whereby the nut 74 moves in the left-right direction.
  • the cord support 53 (left cord support 53L, right cord support 53R) can be moved in the Y-axis direction (the axial direction of the pitch axis).
  • FIG. 13 is a table summarizing the operation control of the flapping apparatus by the position adjusting mechanism.
  • the operation of the flapping apparatus 1A around the yaw axis, roll axis and pitch axis is shown with the right screw direction as + and the left screw direction as-, and
  • FIG. 15 is a diagram illustrating the operation of the left wing during backward deflection flapping.
  • FIGS. 14 and 15 and later in FIGS. 16 and 17 the operation of the left wing body 40L at the time of the basic flapping shown in FIG. 7 is indicated by a dotted line.
  • the first moving mechanism 60 swings the cord support 53 around the central axis 206, thereby moving the cord support 53 forward (+ X direction).
  • the operation of 40 is called “forward deflection flapping”.
  • the inclination of the flapping surface of the left wing 40L shown in FIG. 14 is shifted in the clockwise direction in the flapping device 1A as viewed from above, compared with the basic flapping, except for the position c and the position h. ing.
  • the average levitation force obtained by the swing motion of the left wing body 40L also rotates clockwise in the top view of the flapping device 1A, so that a propulsive force component in the backward direction ( ⁇ X direction) is generated.
  • the first moving mechanism 60 swings the cord support 53 around the central axis 206 to move the cord support 53 backward ( ⁇ X direction).
  • the operation of the body 40 is referred to as “backward deflection flapping”.
  • FIG. 16 is a diagram showing the operation of the left wing when the cord is relaxed.
  • FIG. 17 is a diagram illustrating the operation of the left wing during cord tension.
  • FIG. 18 shows the angle of attack of the wings.
  • FIG. 19 is a graph showing the relationship between the angle of attack of a wing and the force coefficient of thrust and drag.
  • the thrust increases monotonously as the angle of attack increases until the angle of attack is close to 40 °.
  • the magnitude of the thrust can generally be controlled by moving the cord 47 left and right. That is, the thrust decreases when the cord support 53 approaches the wing 40 in the Y-axis direction, and the thrust increases when the cord support 53 moves away from the wing 40 in the Y-axis direction.
  • 20 to 25 are perspective views showing various flight modes of the flapping apparatus.
  • the flow of the surrounding fluid that is caused by the swinging motion of the wing body 40 and its size are indicated by the direction of the arrow and the size of the arrow, respectively.
  • the cord support 53 left cord support 53L, right cord support 53R
  • the levitation force of the left wing 40L increases.
  • the levitation force of the right wing 40R decreases.
  • a rotational motion in the right screw direction (X +) occurs around the axis of the X axis (roll axis).
  • the flapping device 1A rotates around the vertical axis and moves in the left-right direction. Since the movement in the front-rear direction is realized, the flapping apparatus 1A can be moved to an arbitrary position in the space.
  • the flapping apparatus 1A includes a casing 10, an actuator mounted on the casing 10, and flexibility. And a pair of wings 40 that generate a levitation force by swinging back and forth, a housing 10, and a cord 47 as a linear body suspended between the pair of wings 40. .
  • the wing body 40 is operated later than the front edge portion 41 with respect to the front edge portion 41 to which the swing motion is input from the actuator and the swing motion input from the actuator to the front edge portion 41, and the cord 47 is And a trailing edge 42 to be connected.
  • the flapping apparatus 1A includes a cord support 53 as a support for supporting the cord 47 on the housing 10 side, and a position adjustment mechanism 50 that variably adjusts the position of the cord support 53 by moving the cord support 53. Is further provided.
  • various flight modes (rotation around the vertical axis, movement in the left-right direction, and movement in the front-rear direction) can be performed with a simple configuration.
  • a mechanism for realizing (movement) can be obtained.
  • FIG. 26 is a perspective view illustrating a flapping apparatus according to Embodiment 2 of the present disclosure.
  • FIG. 27 is a top view showing a position adjustment mechanism part provided in the flapping apparatus in FIG.
  • the flapping apparatus 1B in the present embodiment basically has the same structure as the flapping apparatus 1A in the first embodiment. Hereinafter, the description of the overlapping structure will not be repeated.
  • one cord 47 is suspended over left wing 40L, housing 10 and right wing 40R.
  • Flapping apparatus 1B replaces left cord support 53L and right cord support 53R in Embodiment 1, with left cord support guide 81L (first support portion) and right cord support guide 81R (second support portion); A cord support 82 (third support portion).
  • left cord support guide 81L and the right cord support guide 81R are not particularly distinguished, they are simply referred to as “cord support guide 81”.
  • the cord support guide 81 is provided at the tip of an arm member 66 that extends from the central axis 206 in an arm shape in the radial direction.
  • the left cord support guide 81L is provided so as to support the cord 47 that is fed from the housing 10 side toward the left wing 40L.
  • the right cord support guide 81R is provided so as to support the cord 47 that is fed from the housing 10 side toward the right wing 40R.
  • the cord support guide 81 supports the cord 47 so that the cord 47 can move along the extending direction.
  • the cord support 82 is provided so as to support the cord 47 between the left cord support guide 81L and the right cord support guide 81R.
  • the cord support 82 is provided so as to support the cord 47 between the central shaft 206 that is the swing center of the left cord support guide 81L and the central shaft 206 that is the swing center of the right cord support guide 81R. Yes.
  • the cord 47 is connected to the cord support 82.
  • the flapping apparatus 1B includes a left third movement mechanism 86L, a right third movement mechanism 86R, and a fourth movement mechanism 87 as the position adjustment mechanism 50.
  • a left third moving mechanism 86L and the right third moving mechanism 86R are not particularly distinguished, they are simply referred to as “third moving mechanism 86”.
  • Left side third moving mechanism part 86L and right side third moving mechanism part 86R have structures similar to left side first moving mechanism part 60L and right side first moving mechanism part 60R in the first embodiment, respectively. That is, the left third movement mechanism 86L is configured to swing the left cord support guide 81L around a central axis 206 (third axis) parallel to the Z axis (yaw axis). The right third movement mechanism 86R is configured to swing the right cord support guide 81R about the central axis 206 (third axis).
  • the fourth moving mechanism 87 is connected to the cord support 82.
  • the fourth moving mechanism unit 87 is configured to move the cord support 82 in the Y-axis direction (the axial direction of the pitch axis).
  • the fourth moving mechanism unit 87 is configured to move the cord support 82 on the support plate 51.
  • the cord support 82 When the cord support 82 is moved in the + Y direction by the fourth moving mechanism 87, the cord length between the left cord support guide 81L and the left wing 40L becomes long and the cord 47 is loosened. Further, when the cord support 82 is moved in the ⁇ Y direction by the fourth moving mechanism 87, the cord length between the right cord support guide 81R and the right wing 40R becomes longer and the cord 47 becomes loose.
  • the flapping apparatus 1B further includes a guide member 83.
  • the guide member 83 is provided so as to support the cord 47 in the vicinity of the central axis 206 that is the center of oscillation of the cord support guide 81.
  • the guide member 83 is provided so as to support the cord 47 that is fed from the cord support 82 toward the left cord support guide 81L and the right cord support guide 81R.
  • the guide member 83 is composed of a pair of rotatable rollers, and is provided so as to sandwich the cord 47.
  • 28 and 29 are top views showing the movement of the cord support guide in the front-rear direction and the movement of the cord support in the left-right direction.
  • the flapping apparatus 1B is moved in the space by moving the left and right cord support guides 81 in the front-rear direction and moving the cord support 82 in the left-right direction. It can be moved to any position.
  • the cord support guide 81 is used to make the cord support guide 81 match the center axis 206 that is the swing center of the cord support 53 and the center axis 202 that is the swing center of the wing body 40.
  • the distance to the position (clip member 46) of the rear edge portion 42 to which 47 is connected does not change as the cord support guide 81 moves in the front-rear direction. For this reason, the independence of the steering torque of the yaw axis, roll axis, and pitch axis can be enhanced.
  • FIG. 30 is a front view partially showing the flapping apparatus according to the third embodiment of the present disclosure.
  • FIG. 30 shows the cord support 301 and the fourth moving mechanism 87 when the flapping apparatus is viewed from the front side.
  • FIG. 31 is a top view showing the cord support in FIG.
  • the flapping apparatus in the present embodiment has basically the same structure. Hereinafter, the description of the overlapping structure will not be repeated.
  • the flapping apparatus in the present embodiment has a cord support 301 in place of the cord support 82 in the second embodiment.
  • the left cord 47L is suspended between the housing 10 and the left wing 40L
  • the right cord 47R is suspended between the housing 10 and the right wing 40R.
  • the left cord 47L and the right cord 47R are connected to the cord support 301.
  • the fourth moving mechanism unit 87 is configured to move the cord support 301 in the Y-axis direction.
  • the cord support 301 has a cord length adjustment mechanism 310 as a linear body length adjustment mechanism.
  • the cord length adjustment mechanism unit 310 is configured to variably adjust the length of the cord 47 suspended between the casing 10 and the wing 40.
  • the cord length adjusting mechanism 310 variably adjusts the length of the left cord 47L suspended between the housing 10 and the left wing 40L, and the right cord 47R suspended between the housing 10 and the right wing 40R. It is configured to variably adjust the length.
  • the cord length adjusting mechanism 310 determines the length of the left cord 47L suspended between the housing 10 and the left wing 40L and the length of the right cord 47R suspended between the housing 10 and the right wing 40R. It is configured to adjust independently of each other.
  • the structure of the cord length adjusting mechanism 310 will be specifically described.
  • the cord support 301 is provided with a left cord guide 313L and a right cord guide 313R.
  • code guide 313 When the left code guide 313L and the right code guide 313R are not particularly distinguished, they are simply referred to as “code guide 313”.
  • the cord guide 313 is configured by a hole through which the cord 47 can be inserted.
  • the code guide 313 extends on the XY plane.
  • the cord guide 313 passes through the cord support 301 between a first position on the outer peripheral surface of the cord support 301 and a second position on the outer peripheral surface of the cord support 301 that is shifted from the first position. ing.
  • the left cord 47L and the right cord 47R are inserted into the left cord guide 313L and the right cord guide 313R, respectively.
  • the cord support 301 is provided with a left screw 314L and a right screw 314R for fastening the cord 47 to the cord support 301.
  • the left screw 314L and the right screw 314R are not particularly distinguished, they are simply referred to as “screws 314”.
  • the left screw 314L is provided such that the tip thereof reaches the left code guide 313L.
  • the right screw 314R is provided such that the tip thereof reaches the right code guide 313R.
  • the left cord 47L inserted through the left cord guide 313L is connected to the cord support 301 by being sandwiched between the tip of the left screw 314L and the inner wall of the left cord guide 313L.
  • the right cord 47R inserted through the right cord guide 313R is connected to the cord support 301 by being sandwiched between the tip of the right screw 314R and the inner wall of the right cord guide 313R.
  • the left screw 314L is loosened and the left cord 47L is moved in the linearly extending direction to change the position at which the left cord 47L is supported by the cord support 301, and thereby the housing 10 and
  • the length of the left cord 47L suspended between the left wings 40L can be variably adjusted. While loosening the right screw 314R and moving the right cord 47R in the linearly extending direction to change the position where the right cord 47R is supported by the cord support 301, the space between the housing 10 and the right wing 40R is changed. It is possible to variably adjust the length of the right cord 47R suspended on the cable.
  • the cord support 301 may not be provided with the cord guide 313.
  • the cord 47 is connected to the cord support 301 by being sandwiched between the head of the screw 314 and the cord support 301.
  • the torque for changing the posture of the flapping device changes due to the influence of the shape and elasticity of the wing 40 in addition to the cord length.
  • the shape, elasticity, and the like of the wing body 40 change with time.
  • a slight change in the shape or elasticity of the wing body 40 changes the torque for changing the posture of the flapping device, so that the posture of the flapping device (for example, a posture that maintains neutrality in the left and right directions) is maintained. Will fluctuate.
  • the left and right cord lengths can be adjusted independently.
  • the user can adjust the torque, and as a result, the posture of the flapping apparatus can be stabilized.
  • FIGS. 30 and 31 are top views for explaining a method of adjusting the cord length in the cord support in FIGS. 30 and 31.
  • FIG. 32 and FIG. 33 the support end of the cord 47 in the wing body 40 is shown by a clip member 46.
  • the left wing 40L has a small angle of attack (close to horizontal) even when the cord support 301 is in the same position by changing the shape and elasticity of the left wing 40L. (Angle) is assumed. In this case, since the levitation force of the left wing 40L changes, the torque determined by the balance between the levitation force of the left wing 40L and the levitation force of the right wing 40R also changes.
  • the left screw 314L is loosened and moved so that the left cord 47L is pulled into the left cord guide 313L. After the position for supporting the left cord 47L is determined, the left screw 314L is tightened. By shortening the length of the left cord 47L suspended between the casing 10 and the left wing 40L, the angle of attack of the left wing 40L can be increased, and as a result, the balance of torque can be adjusted. Become.
  • the left and right cord lengths can be adjusted independently, even when various changes occur in the levitation force due to changes over time in the left wing 40L and the right wing 40R.
  • the torque balance can be adjusted appropriately.
  • the cord support 301 is provided with a cord guide 313 for guiding the cord 47.
  • a cord guide 313 for guiding the cord 47.
  • FIG. 34 is a front view showing a first modification of the cord support in FIGS. 30 and 31.
  • FIG. 35 is a top view showing a second modification of the cord support in FIGS. 30 and 31. 34 and 35 correspond to FIGS. 30 and 31, respectively.
  • the cord support 301 has a bottom surface 301b.
  • the cord support 301 is provided so that the bottom surface 301 b faces the fourth moving mechanism portion 87.
  • the cord support 301 is detachably attached to the fourth moving mechanism portion 87.
  • the cord guide 313 is provided on the bottom surface 301b of the cord support 301.
  • the code guide 313 has a groove shape that is recessed from the bottom surface 301b.
  • the cord 47 inserted through the cord guide 313 is connected to the cord support 301 by being sandwiched between the tip end portion of the screw 314 and the fourth moving mechanism portion 87.
  • the cord support 301 is provided with an excess cord holding portion 321.
  • the surplus cord holding portion 321 is configured to hold the surplus cord 47 (surplus cord 47) extending from the cord guide 313 on the cord support 301.
  • the surplus cord holding portion 321 has a slit shape that opens to the outer peripheral surface of the cord support 301.
  • the surplus cord 47 extending from the cord guide 313 is held on the cord support 301 by being press-fitted into the surplus cord holding portion 321.
  • FIG. 36 is a front view partially showing the flapping apparatus according to the fourth embodiment of the present disclosure.
  • FIG. 36 shows the cord support 331 and the fourth moving mechanism 87 when the flapping apparatus is viewed from the front side thereof.
  • FIG. 37 is a top view showing the cord support in FIG.
  • the flapping apparatus in the present embodiment has basically the same structure. Hereinafter, the description of the overlapping structure will not be repeated.
  • the flapping apparatus in the present embodiment has a left cord support 331L and a right cord support 331R in place of cord support 301 in the third embodiment.
  • cord support 331 When the left cord support 331L and the right cord support 331R are not particularly distinguished, they are simply referred to as “cord support 331”.
  • the left cord 47L is connected to the left cord support 331L
  • the right cord 47R is connected to the right cord support 331R.
  • the cord 47 is connected to the cord support 331 by adhesion, for example.
  • the fourth movement mechanism unit 87 is configured to move the cord support 331 in the Y-axis direction.
  • the left cord support 331L and the right cord support 331R are overlapped with each other in the vertical direction (Z-axis direction).
  • the right cord support 331R is superimposed on the left cord support 331L from above.
  • the left cord support 331L and the right cord support 331R are combined so as to be slidable in the Y-axis direction.
  • the left cord support 331L and the right cord support 331R are detachably attached to the fourth moving mechanism portion 87.
  • the cord support 331 has a cord length adjustment mechanism 340 instead of the cord length adjustment mechanism 310 in the third embodiment.
  • a screw insertion hole 342 is provided in the right cord support 331R.
  • the screw insertion hole 342 passes through the right cord support 331R in the up-down direction, and opens on the mating surface with the left cord support 331L.
  • the screw insertion hole 342 has a long hole shape whose longitudinal direction is the Y-axis direction.
  • the screw 341 is provided on the cord support 331.
  • the screw 341 is inserted into the screw insertion hole 342 and is screwed to the left cord support 331L.
  • the right cord support 331R and the left cord support 331L are integrated with each other by a screw 341.
  • the screw 341 is loosened and the left cord support 331L is moved in the Y-axis direction to change the distance between the left cord support 331L and the left wing 40L.
  • the length of the left cord 47L suspended between the bodies 40L can be variably adjusted.
  • the suspension is suspended between the housing 10 and the right wing 40R.
  • the length of the right cord 47R can be adjusted variably.
  • FIG. 38 is a front view partially showing the flapping apparatus according to the fifth embodiment of the present disclosure.
  • FIG. 38 shows a cord support 351 when the flapping device is viewed from the front side thereof.
  • the flapping apparatus in the present embodiment has basically the same structure. Hereinafter, the description of the overlapping structure will not be repeated.
  • the flapping apparatus in the present embodiment has a cord support 351 instead of cord support 301 in the third embodiment.
  • the left cord 47L and the right cord 47R are connected to the cord support 351.
  • the cord 47 is connected to the cord support 351 by adhesion, for example.
  • the fourth moving mechanism unit 87 is configured to move the cord support 351 in the Y-axis direction.
  • the cord support 351 has a cord length adjustment mechanism 350 instead of the cord length adjustment mechanism 310 in the third embodiment.
  • the cord support 351 is provided with a left screw 361L and a right screw 361R.
  • the left screw 361L and the right screw 361R are provided side by side in the Y-axis direction.
  • the screw 361 is screwed to the cord support 351 so as to be rotatable in both the forward and reverse directions.
  • the left cord 47L is wound around the left screw 361L.
  • the right cord 47R is wound around the right screw 361R.
  • the cord 47 is wound around the screw 361 before the connection end to the cord support 351.
  • the left screw 361L is rotated in the forward and reverse directions to change the length of the left cord 47L wound around the left screw 361L, thereby being suspended between the housing 10 and the left wing 40L.
  • the length of the left cord 47L can be variably adjusted.
  • the length of the right cord 47R suspended between the housing 10 and the right wing 40R is changed by rotating the right screw 361R in the forward and reverse directions and changing the length of the right cord 47R wound around the right screw 361R.
  • the thickness can be adjusted variably.
  • FIG. 39 is a top view partially illustrating the flapping apparatus according to the sixth embodiment of the present disclosure.
  • FIG. 39 shows the cord support 53 according to the first embodiment.
  • the cord support 53 includes a cord length adjustment mechanism 410 serving as a linear body length adjustment mechanism.
  • the cord length adjusting mechanism 410 is configured to variably adjust the length of the cord 47 suspended between the housing 10 and the wing 40.
  • the structure of the cord length adjusting mechanism 410 will be specifically described.
  • the cord support 53 is provided with a cord guide 411.
  • the code guide 411 includes a hole through which the code 47 can be inserted.
  • the cord guide 411 extends in the circumferential direction around a central axis 207 that is the center of rotation of the cord support 53. A cord 47 is inserted through the cord guide 411.
  • the cord support 53 is provided with a screw 412 for fastening the cord 47 to the cord support 53.
  • the screw 412 is provided so that the tip portion thereof reaches the code guide 411.
  • the cord 47 inserted through the cord guide 411 is connected to the cord support 53 by being sandwiched between the tip of the screw 412 and the inner wall of the cord guide 411.
  • the screw 412 is loosened, the cord 47 is moved in the linearly extending direction, and the position where the cord 47 is supported by the cord support 53 is changed.
  • the length of the cord 47 suspended between the two can be variably adjusted.
  • the left cord support 53L and the right cord support 53R have the cord length adjustment mechanism 410 described above in common, and in this embodiment, the housing 10 and the left wing 40L
  • the length of the left cord 47L suspended between and the length of the right cord 47R suspended between the housing 10 and the right wing 40R can be adjusted independently of each other.
  • a sensor that detects a change in the torque generation state is provided, and the cord length adjustment mechanism unit automatically adjusts the cord length based on the detection result of the sensor.
  • a sensor for detecting a change in the torque generation state for example, an angular acceleration sensor, a posture sensor, a sensor for detecting the inclination of the wings, or the like can be used. According to such a configuration, it is possible to correct the torque deviation due to the temporal change of the wing without the user's effort.
  • a flapping apparatus includes a casing, an actuator mounted on the casing, a pair of wings that have flexibility and generate levitation force by swinging back and forth, a casing, and a pair of And a linear body suspended between the wings.
  • the wing body operates behind the front edge portion to which the swing motion is input from the actuator and the swing motion input from the actuator to the front edge portion, and the linear body is connected. And a trailing edge.
  • the flapping apparatus includes a support unit that supports the linear body on the housing side, and a position adjustment mechanism unit that variably adjusts the position of the support unit by moving the support unit.
  • the wing body swings back and forth while taking a posture inclined with respect to the moving direction of the wing body between the front edge portion and the rear edge portion, Get the thrust needed for flight.
  • the support portion is moved by the position adjusting mechanism portion, the degree and / or timing at which the operation of the rear edge portion is restrained by the linear body changes.
  • the flight form of the flapping apparatus can be controlled by variably adjusting the position of the support portion. Therefore, according to the present disclosure, a mechanism for realizing various flight modes can be obtained with a simple configuration.
  • the front edge portion reciprocates between the front turning position and the rear turning position in the first plane including the roll axis and the pitch axis in accordance with the swinging motion of the wing body.
  • the position adjusting mechanism is in a second plane parallel to the first plane, and in the axial direction of the roll axis, the first position is equidistant from the front turning position and the rear turning position, and in the axial direction of the roll axis.
  • the support unit is moved in a range including a second position closer to the front turning position than the rear turning position and a third position closer to the rear turning position than the front turning position in the axial direction of the roll shaft. 1 moving mechanism part is included.
  • the first moving mechanism section swings the support section about a first axis parallel to the yaw axis.
  • the flight form of the flapping apparatus can be controlled mainly by intentionally changing the timing at which the movement of the trailing edge is restrained by the linear body.
  • the first axis coincides with the swing center axis of the wing. According to the flapping apparatus configured as described above, the influence of the movement of the support portion by the first moving mechanism portion on the steering torque of the roll can be reduced.
  • the position adjusting mechanism includes a second moving mechanism that moves the support so that the tension of the linear body between the housing and the wing changes.
  • the second moving mechanism unit moves the support unit in the axial direction of the pitch axis.
  • the flight form of the flapping apparatus can be controlled mainly by intentionally changing the degree of restraint of the operation of the trailing edge by the linear body.
  • the support portion supports the linear body so as to be rotatable about a second axis parallel to the yaw axis.
  • the energy efficiency of the actuator can be increased, and the durability of the linear body can be improved.
  • the linear body is suspended over one of the pair of wings, the housing, and the other of the pair of wings.
  • the 1st support part which supports the linear body extended toward one side of a pair of wings from a housing side, and the linear body extended toward the other of a pair of wings from a housing side are supported.
  • a second support part and a third support part for supporting the linear body between the first support part and the second support part are provided.
  • the position adjustment mechanism includes a third moving mechanism that swings the first support and the second support around a third axis that is parallel to the yaw axis, and the third support that extends in the axial direction of the pitch axis.
  • a fourth moving mechanism unit to be moved.
  • the flight form of the flapping apparatus can be controlled by changing the degree and timing at which the movement of the trailing edge is restrained by the linear body.
  • the support section has a linear body length adjustment mechanism that variably adjusts the length of the linear body suspended between the housing and the wing.
  • the flapping apparatus configured in this way, even if various changes occur in the levitation force due to the aging of the wings, the length of the linear body suspended between the skeleton and the wings, Adjustments can be made to obtain the desired flight configuration.
  • the present disclosure is mainly applied to a flapping apparatus that obtains a levitation force by a wing swinging motion.
  • 1A, 1B device 10 housing, 11 lower frame, 12 upper frame, 13 intermediate frame, 15 stem, 16a, 16b slide guide, 18 guide shaft, 18L left guide shaft, 18R right guide shaft, 20 main rotary motor, 20a output Shaft, 20b, 31b, 31c, 32b gear, 30 power transmission mechanism, 30A rotational motion transmission unit, 30B motion conversion unit, 31 first transmission member, 31a first connection rod, 32 second transmission member, 32a second connection rod , 32c disk, 33 crank arm, 34a, 34b crank pin, 35 slider, 36 elastic belt, 37 rotor, 37L left rotor, 37R right rotor, 38 mast support, 38L left mast support, 38R right mast Holding body, 39 mast, 39L left mast, 39R right mast, 40 wing, 40L left wing, 40R right wing, 41 front edge, 42 rear edge, 43 root, 44 tip, 46 clip member, 47 cord, 47L left cord, 47R right cord, 50 position adjustment mechanism, 51 support plate, 53, 82 cord support, 53L left

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

A flapping device (1A) is provided with a frame (10), an actuator installed on the frame (10), a pair of flexible wings (40) that generate lift by longitudinal oscillating movement, and cords (47) extended between the frame (10) and the pair of wings (40). Each of the wings (40) includes a leading edge (41) to which the oscillating movement is inputted from the actuator, and a trailing edge (42) that actuates later than the leading edge (41) with respect to the input of oscillating movement from the actuator to the leading edge (41), the cords (47) being connected to the trailing edges (42). The flapping device (1A) is furthermore provided with cord supports (53) that support the cords (47) on the frame (10) side, and a position adjustment mechanism (50) that variably adjusts the positions of the cord supports (53) by moving the cord supports (53). Due to such a configuration, there is provided a flapping device in which a mechanism for achieving various forms of flight is obtained by means of a simple configuration.

Description

羽ばたき装置Flapping equipment
 本開示は、羽ばたき装置に関する。本出願は、2016年12月15日に出願した日本特許出願である特願2016-243319号に基づく優先権、および、2017年6月15日に出願した日本特許出願である特願2017-117362号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a flapping apparatus. The present application is based on priority based on Japanese Patent Application No. 2016-243319, which is a Japanese patent application filed on December 15, 2016, and Japanese Patent Application No. 2017-117362, which is a Japanese patent application filed on June 15, 2017. Claim priority based on issue. All the descriptions described in the Japanese patent application are incorporated herein by reference.
 従来の羽ばたき装置に関して、たとえば、特表2012-529398号公報(特許文献1)には、羽体が取り付けられたマストの基端にロッカーアームが組み付けられ、駆動源としての回転電動機から出力される回転運動がクランクによって往復直線運動に変換されることでロッカーアームが周期的に押し引きされ、これによりロッカーアームによってマストが駆動されることで羽体が前後方向に揺動するように構成された羽ばたき装置が開示されている。ここで、羽体の前縁と内縁とがなす角度を変化させることによって、左右の羽体の流体力を制御し、ヨー・ロール・ピッチの操舵トルクを生み出している。より具体的には、羽体の内縁にマスト構造を設け、そのマスト構造の根元部を3軸で回転させる。 Regarding a conventional flapping device, for example, in Japanese Translation of PCT International Publication No. 2012-529398 (Patent Document 1), a rocker arm is assembled at the base end of a mast to which a wing is attached, and output from a rotary motor as a drive source. The rotary motion is converted into a reciprocating linear motion by the crank so that the rocker arm is periodically pushed and pulled, and the mast is driven by the rocker arm so that the wings swing in the front-rear direction. A flapping device is disclosed. Here, by changing the angle formed by the front edge and the inner edge of the wing, the fluid force of the left and right wings is controlled to produce a steering torque of yaw, roll, and pitch. More specifically, a mast structure is provided on the inner edge of the wing body, and the root portion of the mast structure is rotated about three axes.
特表2012-529398号公報Special table 2012-529398 gazette
 上述の特許文献1に開示されるように、羽体が前後に揺動運動することにより浮上力を得る羽ばたき装置に知られている。このような羽ばたき装置においては、各種の飛行形態を実現するための機構が、簡易な構成により得られることが求められている。 As disclosed in Patent Document 1 described above, a flapping apparatus that obtains a levitation force by a wing body swinging back and forth is known. In such a flapping apparatus, it is required that a mechanism for realizing various flight forms be obtained with a simple configuration.
 そこで本開示の目的は、上記の課題を解決することであり、各種の飛行形態を実現するための機構が、簡易な構成により得られる羽ばたき装置を提供することである。 Therefore, an object of the present disclosure is to solve the above-described problem, and to provide a flapping apparatus in which a mechanism for realizing various flight forms is obtained with a simple configuration.
 本開示に従った羽ばたき装置は、躯体と、躯体に搭載されるアクチュエータと、可撓性を有し、前後に揺動運動することによって浮上力を発生する一対の羽体と、躯体と、一対の羽体との間で懸架される線状体とを備える。羽体は、アクチュエータから揺動運動が入力される前縁部と、アクチュエータから前縁部への揺動運動の入力に対して前縁部よりも遅れて動作し、線状体が接続される後縁部とを含む。羽ばたき装置は、躯体側で線状体を支持する支持部と、支持部を移動させることにより支持部の位置を可変に調整する位置調整機構部とを備える。 A flapping apparatus according to the present disclosure includes a casing, an actuator mounted on the casing, a pair of wings that have flexibility and generate levitation force by swinging back and forth, a casing, and a pair of And a linear body suspended between the wings. The wing body operates behind the front edge portion to which the swing motion is input from the actuator and the swing motion input from the actuator to the front edge portion, and the linear body is connected. And a trailing edge. The flapping apparatus includes a support unit that supports the linear body on the housing side, and a position adjustment mechanism unit that variably adjusts the position of the support unit by moving the support unit.
 本開示に従えば、各種の飛行形態を実現するための機構が、簡易な構成により得られる羽ばたき装置を提供することができる。 According to the present disclosure, it is possible to provide a flapping apparatus in which mechanisms for realizing various flight forms are obtained with a simple configuration.
本開示の実施の形態1における羽ばたき装置を示す斜視図(前方側)である。It is a perspective view (front side) which shows the flapping apparatus in Embodiment 1 of this indication. 本開示の実施の形態1における羽ばたき装置を示す斜視図(後方側)である。It is a perspective view (back side) which shows the flapping apparatus in Embodiment 1 of this indication. 主回転電動機および動力伝達機構を示す斜視図である。It is a perspective view which shows a main rotary motor and a power transmission mechanism. 主回転電動機および動力伝達機構を示す側面図である。It is a side view which shows a main rotary motor and a power transmission mechanism. 動力伝達機構のうちの運動変換部を示す上面図である。It is a top view which shows the motion conversion part of a power transmission mechanism. 図1中の羽ばたき装置において、羽体の動作を説明するための斜視図である。FIG. 2 is a perspective view for explaining the operation of the wing body in the flapping apparatus in FIG. 1. 図1中の羽ばたき装置において、左側羽体の動作を連続的に示した断面図である。FIG. 2 is a cross-sectional view continuously showing the operation of the left wing in the flapping apparatus in FIG. 1. 位置調整機構部によるコード支持体の移動方向を示す上面図である。It is a top view which shows the moving direction of the code | cord | chord support body by a position adjustment mechanism part. (左側)第1移動機構部を示す斜視図である。(Left side) It is a perspective view which shows a 1st moving mechanism part. (左側)第1移動機構部を示す斜視図である。(Left side) It is a perspective view which shows a 1st moving mechanism part. 第2移動機構部を示す斜視図である。It is a perspective view which shows a 2nd moving mechanism part. 第2移動機構部を示す斜視図である。It is a perspective view which shows a 2nd moving mechanism part. 位置調整機構部による羽ばたき装置の動作制御をまとめた表である。It is the table | surface which put together the operation control of the flapping apparatus by the position adjustment mechanism part. 前方偏向羽ばたき時における左側羽体の動作を示す図である。It is a figure which shows operation | movement of the left side wing | wing body at the time of a forward deflection flapping. 後方偏向羽ばたき時における左側羽体の動作を示す図である。It is a figure which shows operation | movement of the left side wing | wing at the time of back deflection flapping. コード弛緩時の左側羽体の動作を示す図である。It is a figure which shows operation | movement of the left side wing | wing at the time of code | seat relaxation. コード緊張時の左側羽体の動作を示す図である。It is a figure which shows operation | movement of the left side wing | wing at the time of a cord tension. 羽体の迎え角を示す図である。It is a figure which shows the angle of attack of a wing. 羽体の迎え角(angle of attack)と、推力および抗力の力係数(force coefficient)との関係を示すグラフである。It is a graph which shows the relationship between the angle of attack of a wing and the force coefficient of thrust and drag. 羽ばたき装置の各種飛行形態を示す斜視図である。It is a perspective view which shows the various flight forms of a flapping apparatus. 羽ばたき装置の各種飛行形態を示す斜視図である。It is a perspective view which shows the various flight forms of a flapping apparatus. 羽ばたき装置の各種飛行形態を示す斜視図である。It is a perspective view which shows the various flight forms of a flapping apparatus. 羽ばたき装置の各種飛行形態を示す斜視図である。It is a perspective view which shows the various flight forms of a flapping apparatus. 羽ばたき装置の各種飛行形態を示す斜視図である。It is a perspective view which shows the various flight forms of a flapping apparatus. 羽ばたき装置の各種飛行形態を示す斜視図である。It is a perspective view which shows the various flight forms of a flapping apparatus. 本開示の実施の形態2における羽ばたき装置を示す斜視図である。It is a perspective view which shows the flapping apparatus in Embodiment 2 of this indication. 図26中の羽ばたき装置が備える位置調整機構部を示す上面図である。It is a top view which shows the position adjustment mechanism part with which the flapping apparatus in FIG. 26 is provided. コード支持ガイドの前後方向への移動と、コード支持体の左右方向への移動とを示す上面図である。It is a top view which shows the movement to the front-back direction of a cord support guide, and the movement to the left-right direction of a code support body. コード支持ガイドの前後方向への移動と、コード支持体の左右方向への移動とを示す上面図である。It is a top view which shows the movement to the front-back direction of a cord support guide, and the movement to the left-right direction of a code support body. 本開示の実施の形態3における羽ばたき装置を部分的に示す前面図である。It is a front view which shows partially the flapping apparatus in Embodiment 3 of this indication. 図30中のコード支持体を示す上面図である。It is a top view which shows the cord support body in FIG. 図30および図31中のコード支持体において、コード長を調整する方法を説明するための上面図である。FIG. 32 is a top view for explaining a method of adjusting the cord length in the cord support in FIGS. 30 and 31. 図30および図31中のコード支持体において、コード長を調整する方法を説明するための上面図である。FIG. 32 is a top view for explaining a method of adjusting the cord length in the cord support in FIGS. 30 and 31. 図30および図31中のコード支持体の第1変形例を示す前面図である。FIG. 32 is a front view showing a first modification of the cord support in FIGS. 30 and 31. 図30および図31中のコード支持体の第2変形例を示す上面図である。FIG. 32 is a top view showing a second modification of the cord support in FIGS. 30 and 31. 本開示の実施の形態4における羽ばたき装置を部分的に示す前面図である。It is a front view which shows partially the flapping apparatus in Embodiment 4 of this indication. 図36中のコード支持体を示す上面図である。FIG. 37 is a top view showing the cord support in FIG. 36. 本開示の実施の形態5における羽ばたき装置を部分的に示す前面図である。It is a front view which shows partially the flapping apparatus in Embodiment 5 of this indication. 本開示の実施の形態6における羽ばたき装置を部分的に示す上面図である。It is a top view which shows partially the flapping apparatus in Embodiment 6 of this indication.
 本開示の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。 Embodiments of the present disclosure will be described with reference to the drawings. In the drawings referred to below, the same or corresponding members are denoted by the same reference numerals.
 (実施の形態1)
 図1および図2は、本開示の実施の形態1における羽ばたき装置を示す斜視図である。図1中には、前方側から見た羽ばたき装置が示され、図2中には、後方側から見た羽ばたき装置が示されている。
(Embodiment 1)
1 and 2 are perspective views illustrating a flapping apparatus according to Embodiment 1 of the present disclosure. FIG. 1 shows a flapping apparatus viewed from the front side, and FIG. 2 shows a flapping apparatus viewed from the rear side.
 図1および図2を参照して、本実施の形態における羽ばたき装置1Aは、躯体10と、躯体10に組み付けられた動力源としての主回転電動機20と、主回転電動機20にて発生した動力を伝達する動力伝達機構30と、動力伝達機構30に接続される左側マスト39Lおよび右側マスト39Rと、動力伝達機構30から左側マスト39Lおよび右側マスト39Rを通じて揺動運動が入力される左側羽体40Lおよび右側羽体40Rと、主回転電動機20に電力を供給するためのバッテリ(不図示)とを有する。 Referring to FIGS. 1 and 2, flapping apparatus 1 </ b> A according to the present embodiment uses a housing 10, a main rotary motor 20 as a power source assembled to housing 10, and the power generated by main rotary motor 20. A power transmission mechanism 30 that transmits power, a left mast 39L and a right mast 39R connected to the power transmission mechanism 30, a left wing 40L to which a swing motion is input from the power transmission mechanism 30 through the left mast 39L and the right mast 39R, and The right wing 40R and a battery (not shown) for supplying power to the main rotary motor 20 are provided.
 左側マスト39Lおよび右側マスト39Rを特に区別しない場合には、単に「マスト39」という。左側羽体40Lおよび右側羽体40Rを特に区別しない場合には、単に「羽体40」という。 When the left mast 39L and the right mast 39R are not particularly distinguished, they are simply referred to as “mast 39”. When the left wing 40L and the right wing 40R are not particularly distinguished, they are simply referred to as “wings 40”.
 図中に示すように、羽ばたき装置1Aの前後、左右および上下にそれぞれX軸(ロール軸)、Y軸(ピッチ軸)およびZ軸(ヨー軸)をとり、羽ばたき装置1Aから見た前方側および後方側に向けての方向をそれぞれ+X方向および-X方向と定義し、羽ばたき装置1Aから見た左方側および右方側に向けての方向をそれぞれ+Y方向および-Y方向と定義し、羽ばたき装置1Aから見た上方側および下方側に向けての方向をそれぞれ+Z方向および-Z方向と定義し、以下においては、これら軸および方向を用いて説明を行なう。 As shown in the figure, an X axis (roll axis), a Y axis (pitch axis), and a Z axis (yaw axis) are taken on the front, rear, left, and right of the flapping apparatus 1A, respectively, and the front side viewed from the flapping apparatus 1A and The direction toward the rear side is defined as + X direction and −X direction, respectively, and the direction toward the left side and right side as viewed from the flapping apparatus 1A is defined as + Y direction and −Y direction, respectively. The directions toward the upper side and the lower side as viewed from the apparatus 1A are defined as + Z direction and −Z direction, respectively, and the following description will be made using these axes and directions.
 躯体10は、羽ばたき装置1Aの本体部を構成する部材であり、羽ばたき装置1Aの飛行を実現するための各種部品が組み付けられてなるものである。躯体10は、複数のフレーム状の部材が組み合わされた骨組みにて構成されており、これに加えて当該骨組みを覆う図示しないカバーを含んでもよい。 The housing 10 is a member constituting the main body of the flapping apparatus 1A, and is assembled with various components for realizing the flight of the flapping apparatus 1A. The casing 10 is configured by a framework in which a plurality of frame-shaped members are combined, and may include a cover (not shown) that covers the framework in addition to this.
 より具体的には、躯体10は、下フレーム11、上フレーム12および中間フレーム13と、複数のステム15とを有する。 More specifically, the housing 10 includes a lower frame 11, an upper frame 12, an intermediate frame 13, and a plurality of stems 15.
 ステム15は、Z軸方向に棒状に延びている。複数のステム15は、互いに平行に配置されている。図示するように、本実施の形態においては、合計で4本のステム15が用いられており、これら4本のステム15が、それぞれ羽ばたき装置1Aの右前部、右後部、左前部および左後部に配置されている。 The stem 15 extends in a rod shape in the Z-axis direction. The plurality of stems 15 are arranged in parallel to each other. As shown in the figure, in the present embodiment, a total of four stems 15 are used, and these four stems 15 are respectively located on the right front, right rear, left front and left rear of the flapping apparatus 1A. Has been placed.
 下フレーム11、上フレーム12および中間フレーム13は、X-Y平面内に配置されている。下フレーム11、上フレーム12および中間フレーム13は、複数のステム15に架設されることで当該複数のステム15によって支持されており、これら下フレーム11、上フレーム12および中間フレーム13は、Z軸方向の異なる位置に配置されている。より具体的には、上フレーム12および下フレーム11は、Z軸方向に距離を隔てて上下に配置されている。中間フレーム13は、Z軸方向において、上フレーム12および下フレーム11の間に配置されている。 The lower frame 11, the upper frame 12, and the intermediate frame 13 are arranged in the XY plane. The lower frame 11, the upper frame 12, and the intermediate frame 13 are supported by the plurality of stems 15 by being installed on the plurality of stems 15, and the lower frame 11, the upper frame 12, and the intermediate frame 13 are Z-axis Arranged at different positions. More specifically, the upper frame 12 and the lower frame 11 are vertically arranged with a distance in the Z-axis direction. The intermediate frame 13 is disposed between the upper frame 12 and the lower frame 11 in the Z-axis direction.
 複数のステム15は、炭素繊維製の棒状部材にて構成されていることが好ましく、下フレーム11、上フレーム12および中間フレーム13は、いずれも樹脂製の部材にて構成されていることが好ましい。このように構成することにより、高い剛性を確保しつつ、羽ばたき装置1Aを軽量化することができる。なお、下フレーム11、上フレーム12および中間フレーム13には、軽量化のために、必要な剛性を確保した上で孔や切り欠き等が設けられていることが好ましい。 The plurality of stems 15 are preferably made of carbon fiber rod-shaped members, and the lower frame 11, the upper frame 12, and the intermediate frame 13 are preferably made of resin members. . By comprising in this way, flapping apparatus 1A can be reduced in weight, ensuring high rigidity. The lower frame 11, the upper frame 12, and the intermediate frame 13 are preferably provided with holes, cutouts, and the like while ensuring necessary rigidity for weight reduction.
 図3は、主回転電動機および動力伝達機構を示す斜視図である。図4は、主回転電動機および動力伝達機構を示す側面図である。図3中では、躯体10が示されているが、図4中では、躯体10のうちの上フレーム12のみが示されている。 FIG. 3 is a perspective view showing the main rotating motor and the power transmission mechanism. FIG. 4 is a side view showing the main rotary motor and the power transmission mechanism. In FIG. 3, the housing 10 is shown, but in FIG. 4, only the upper frame 12 of the housing 10 is shown.
 図1から図4を参照して、主回転電動機20および動力伝達機構30は、羽体40に対して揺動運動を入力するアクチュエータを構成している。主回転電動機20および動力伝達機構30は、躯体10に搭載されている。 1 to 4, the main rotating motor 20 and the power transmission mechanism 30 constitute an actuator that inputs a swing motion to the wing body 40. The main rotary motor 20 and the power transmission mechanism 30 are mounted on the housing 10.
 主回転電動機20は、中間フレーム13に固定されることで躯体10に搭載されている。主回転電動機20は、Z軸方向において、中間フレーム13および下フレーム11の間に配置されている。 The main rotating motor 20 is mounted on the housing 10 by being fixed to the intermediate frame 13. The main rotating motor 20 is disposed between the intermediate frame 13 and the lower frame 11 in the Z-axis direction.
 主回転電動機20は、回転運動を出力する出力シャフト20a(図4を参照)を有し、当該出力シャフト20aは、Z軸方向に沿って延在するように配置されている。出力シャフト20aの先端には、ギヤ20bが固定されている。ギヤ20bは、出力シャフト20aの軸線回りの回転に伴って出力シャフト20aとともに回転する。 The main rotary motor 20 has an output shaft 20a (see FIG. 4) that outputs rotational motion, and the output shaft 20a is disposed so as to extend along the Z-axis direction. A gear 20b is fixed to the tip of the output shaft 20a. The gear 20b rotates with the output shaft 20a as the output shaft 20a rotates about the axis.
 主回転電動機20は、使用者もしくは自動化されたアルゴリズムにより制御指示が与えられる制御部によってその動作が制御される。具体的には、当該制御部により、上述した図示しないバッテリから主回転電動機20に供給される電力が可変に調節され、これによって主回転電動機20の出力(すなわち、回転数)が制御される。なお、上述した主回転電動機20の動作制御は、従来公知の一般的な手法であるため、ここではその詳細な説明は省略する。 The operation of the main rotary motor 20 is controlled by a user or a control unit to which a control instruction is given by an automated algorithm. Specifically, the control unit variably adjusts the electric power supplied from the above-described battery (not shown) to the main rotary electric motor 20, thereby controlling the output (that is, the rotation speed) of the main rotary electric motor 20. The above-described operation control of the main rotating motor 20 is a conventionally known general method, and thus detailed description thereof is omitted here.
 動力伝達機構30は、回転運動伝達部30Aおよび運動変換部30Bから構成されている。まず、回転運動伝達部30Aの構造について説明すると、回転運動伝達部30Aは、中間フレーム13に固定されることで躯体10に搭載されている。回転運動伝達部30Aは、Z軸方向において、中間フレーム13および下フレーム11の間から、上フレーム12および中間フレーム13の間に渡って設けられている。 The power transmission mechanism 30 includes a rotary motion transmission unit 30A and a motion conversion unit 30B. First, the structure of the rotary motion transmitting unit 30A will be described. The rotary motion transmitting unit 30A is mounted on the housing 10 by being fixed to the intermediate frame 13. The rotational motion transmitting unit 30A is provided from between the intermediate frame 13 and the lower frame 11 to between the upper frame 12 and the intermediate frame 13 in the Z-axis direction.
 回転運動伝達部30Aは、第1伝達部材31および第2伝達部材32を有する。第1伝達部材31および第2伝達部材32は、いずれも躯体10によって回転可能に支持されている。 Rotational motion transmission unit 30A includes a first transmission member 31 and a second transmission member 32. Both the first transmission member 31 and the second transmission member 32 are rotatably supported by the housing 10.
 第1伝達部材31は、Z軸方向に沿って延在する第1接続ロッド31aと、第1接続ロッド31aに固定されたギヤ31bと、第1接続ロッド31aに固定されたギヤ31cとを有する。ギヤ31bおよびギヤ31cは、いずれも第1接続ロッド31aとともに第1接続ロッド31aの軸線周りに回転する。 The first transmission member 31 includes a first connection rod 31a extending along the Z-axis direction, a gear 31b fixed to the first connection rod 31a, and a gear 31c fixed to the first connection rod 31a. . Both the gear 31b and the gear 31c rotate around the axis of the first connecting rod 31a together with the first connecting rod 31a.
 第2伝達部材32は、Z軸方向に沿って延在する第2接続ロッド32aと、第2接続ロッド32aに固定されたギヤ32bと、第2接続ロッド32aに固定されたディスク32cとを有する。ギヤ32bおよびディスク32cは、いずれも第2接続ロッド32aとともに第2接続ロッド32aの軸線周りに回転する。 The second transmission member 32 includes a second connection rod 32a extending along the Z-axis direction, a gear 32b fixed to the second connection rod 32a, and a disk 32c fixed to the second connection rod 32a. . Both the gear 32b and the disk 32c rotate around the axis of the second connection rod 32a together with the second connection rod 32a.
 第1接続ロッド31aに固定されたギヤ31bは、出力シャフト20aに固定されたギヤ20bと噛み合っている。第2接続ロッド32aに固定されたギヤ32bは、第1接続ロッド31aに固定されたギヤ31cと噛み合っている。 The gear 31b fixed to the first connecting rod 31a meshes with the gear 20b fixed to the output shaft 20a. The gear 32b fixed to the second connecting rod 32a meshes with the gear 31c fixed to the first connecting rod 31a.
 このような構成により、主回転電動機20の出力シャフト20aに生じた回転運動が、第1伝達部材31および第2伝達部材32へ回転運動のまま伝達されることになり、その結果、ディスク32cが第2接続ロッド32aの軸線周りに回転運動することになる。すなわち、ディスク32cは、第2接続ロッド32aの延在方向と平行な方向(すなわちZ軸方向)に延在する中心軸201(後出の図5を参照)を回転中心として回転する。なお、第1伝達部材31および第2伝達部材32は、ギヤ31b,31c,32bの歯数が調節されることにより、減速機として機能する。 With such a configuration, the rotational motion generated on the output shaft 20a of the main rotary electric motor 20 is transmitted to the first transmission member 31 and the second transmission member 32 in the rotational motion, and as a result, the disk 32c is transmitted. It will rotate around the axis of the second connecting rod 32a. That is, the disk 32c rotates around a central axis 201 (see FIG. 5 described later) extending in a direction parallel to the extending direction of the second connecting rod 32a (that is, the Z-axis direction). The first transmission member 31 and the second transmission member 32 function as a speed reducer by adjusting the number of teeth of the gears 31b, 31c, and 32b.
 図5は、動力伝達機構のうちの運動変換部を示す上面図である。図1から図5を参照して、次に、運動変換部30Bの構造について説明すると、運動変換部30Bは、上フレーム12に固定されることで躯体10に搭載されている。運動変換部30Bは、Z軸方向において、中間フレーム13および上フレーム12の間に設けられている。 FIG. 5 is a top view showing a motion conversion unit in the power transmission mechanism. Next, the structure of the motion conversion unit 30B will be described with reference to FIGS. 1 to 5. The motion conversion unit 30B is mounted on the housing 10 by being fixed to the upper frame 12. The motion conversion unit 30B is provided between the intermediate frame 13 and the upper frame 12 in the Z-axis direction.
 運動変換部30Bは、クランクアーム33と、クランクピン34aおよびクランクピン34bと、スライダ35と、スライドガイド16aおよびスライドガイド16bと、弾性ベルト36と、左側回転体37Lおよび右側回転体37Rと、左側ガイドシャフト18Lおよび右側ガイドシャフト18Rと、左側マスト支持体38Lおよび右側マスト支持体38Rとを有する。 The motion converting unit 30B includes a crank arm 33, a crank pin 34a and a crank pin 34b, a slider 35, a slide guide 16a and a slide guide 16b, an elastic belt 36, a left side rotating body 37L and a right side rotating body 37R, and a left side. It has a guide shaft 18L and a right guide shaft 18R, and a left mast support 38L and a right mast support 38R.
 左側回転体37Lおよび右側回転体37Rを特に区別しない場合には、単に「回転体37」という。左側ガイドシャフト18Lおよび右側ガイドシャフト18Rを特に区別しない場合には、単に「ガイドシャフト18」という。左側マスト支持体38Lおよび右側マスト支持体38Rを特に区別しない場合には、単に「マスト支持体38」という。 When the left rotating body 37L and the right rotating body 37R are not particularly distinguished, they are simply referred to as “rotating bodies 37”. When the left guide shaft 18L and the right guide shaft 18R are not particularly distinguished, they are simply referred to as “guide shaft 18”. When the left mast support 38L and the right mast support 38R are not particularly distinguished, they are simply referred to as “mast support 38”.
 スライダ35は、矩形枠状の部材にて構成されており、回転運動伝達部30Aの第2伝達部材32の上方に配置されている。スライダ35は、上フレーム12により支持されるスライドガイド16a,16bによって移動可能に支持されている。より具体的には、スライドガイド16a,16bは、X軸方向に沿って延在するようにY軸方向に並んで配設されており、スライダ35の所定位置には、当該スライドガイド16a,16bが挿通される複数の貫通孔が設けられている。当該複数の貫通孔にスライドガイド16a,16bが挿通されることにより、スライダ35は、X軸方向に移動可能に設けられている。 The slider 35 is configured by a rectangular frame-shaped member, and is disposed above the second transmission member 32 of the rotational motion transmission unit 30A. The slider 35 is movably supported by slide guides 16 a and 16 b supported by the upper frame 12. More specifically, the slide guides 16 a and 16 b are arranged side by side in the Y-axis direction so as to extend along the X-axis direction, and the slide guides 16 a and 16 b are disposed at predetermined positions of the slider 35. There are provided a plurality of through holes through which are inserted. By inserting the slide guides 16a and 16b through the plurality of through holes, the slider 35 is provided so as to be movable in the X-axis direction.
 第2伝達部材32のディスク32cと、スライダ35とは、クランクアーム33により連結されている。クランクアーム33は、X-Y平面内に配置されている。クランクアーム33は、ディスク32cおよびスライダ35の間でアーム状に延在している。 The disk 32 c of the second transmission member 32 and the slider 35 are connected by a crank arm 33. The crank arm 33 is disposed in the XY plane. The crank arm 33 extends in an arm shape between the disk 32 c and the slider 35.
 クランクアーム33の一端は、クランクピン34aによって、第2伝達部材32のディスク32cの偏心位置に回転可能に接続されている。クランクアーム33の他端は、クランクピン34bによって、X軸方向におけるスライダ35の前端部に回転可能に接続されている。 One end of the crank arm 33 is rotatably connected to an eccentric position of the disk 32c of the second transmission member 32 by a crank pin 34a. The other end of the crank arm 33 is rotatably connected to the front end portion of the slider 35 in the X-axis direction by a crank pin 34b.
 第2伝達部材32のディスク32cが、中心軸201を中心に回転運動することにより、ディスク32cに接続されたクランクアーム33の上記一端が、中心軸201を中心に周方向に移動することになる。これに伴い、スライダ35は、クランクアーム33によって周期的に押し引きされることになり、スライドガイド16a,16bの延在方向であるX軸方向に往復直線運動することになる。 When the disk 32c of the second transmission member 32 rotates about the central axis 201, the one end of the crank arm 33 connected to the disk 32c moves in the circumferential direction about the central axis 201. . Accordingly, the slider 35 is periodically pushed and pulled by the crank arm 33, and reciprocates linearly in the X-axis direction, which is the extending direction of the slide guides 16a and 16b.
 回転体37は、スライダ35と同じX-Y平面内に配置されている。回転体37は、Y軸方向においてスライダ35と隣り合って設けられている。より具体的には、左側回転体37Lは、スライダ35の左側に隣り合って設けられ、右側回転体37Rは、スライダ35の右側に隣り合って設けられている。左側回転体37Lおよび右側回転体37Rは、スライダ35からY軸方向に距離を隔てて設けられている。回転体37は、略円柱状の部材にて構成されており、その外周面がスライダ35に対向するように配置されている。回転体37の外周面には、ギヤ溝が設けられている。 The rotating body 37 is arranged in the same XY plane as the slider 35. The rotating body 37 is provided adjacent to the slider 35 in the Y-axis direction. More specifically, the left side rotator 37L is provided adjacent to the left side of the slider 35, and the right side rotator 37R is provided adjacent to the right side of the slider 35. The left rotating body 37L and the right rotating body 37R are provided at a distance from the slider 35 in the Y-axis direction. The rotating body 37 is configured by a substantially cylindrical member, and is disposed so that the outer peripheral surface thereof faces the slider 35. A gear groove is provided on the outer peripheral surface of the rotating body 37.
 ガイドシャフト18は、Z軸に平行な中心軸202(図5を参照)に沿って棒状に延びている。ガイドシャフト18は、その棒状に延びる両端において、それぞれ、上フレーム12および中間フレーム13により支持されている。 The guide shaft 18 extends in a rod shape along a central axis 202 (see FIG. 5) parallel to the Z axis. The guide shaft 18 is supported by the upper frame 12 and the intermediate frame 13 at both ends extending in a rod shape.
 回転体37は、ガイドシャフト18によって中心軸202を中心に回転可能に支持されている。より具体的には、左側回転体37Lは、左側ガイドシャフト18Lによって中心軸202を中心に回転可能に支持され、右側回転体37Rは、右側ガイドシャフト18Rによって中心軸202を中心に回転可能に支持されている。 The rotating body 37 is supported by the guide shaft 18 so as to be rotatable about the central axis 202. More specifically, the left rotating body 37L is supported by the left guide shaft 18L so as to be rotatable about the center axis 202, and the right rotating body 37R is supported by the right guide shaft 18R so as to be rotatable about the center axis 202. Has been.
 弾性ベルト36は、歯付きベルトから構成されている。弾性ベルト36は、弾性を呈する限りにおいてはどのような材質のものであっても構わないが、樹脂製またはゴム製であることが好ましい。 The elastic belt 36 is composed of a toothed belt. The elastic belt 36 may be made of any material as long as it exhibits elasticity, but is preferably made of resin or rubber.
 弾性ベルト36は、スライダ35、左側回転体37Lおよび右側回転体37Rの間で懸架されている。 The elastic belt 36 is suspended between the slider 35, the left rotating body 37L, and the right rotating body 37R.
 より具体的には、弾性ベルト36は、X軸方向におけるスライダ35の前端部に固定され、スライダ35の前端部から左側回転体37Lに向けて延びている。弾性ベルト36は、左側回転体37Lの外周面に設けられたギヤ溝に噛み合いながら、中心軸202を中心に左側回転体37Lに巻き回されている。弾性ベルト36は、左側回転体37Lから、X軸方向におけるスライダ35の後端部に向けて延びている。弾性ベルト36は、X軸方向におけるスライダ35の後端部に固定され、スライダ35の後端部から右側回転体37Rに向けて延びている。弾性ベルト36は、右側回転体37Rの外周面に設けられたギヤ溝に噛み合いながら、中心軸202を中心に右側回転体37Rに巻き回されている。弾性ベルト36は、右側回転体37Rから、X軸方向におけるスライダ35の前端部に向けて延びている。 More specifically, the elastic belt 36 is fixed to the front end portion of the slider 35 in the X-axis direction, and extends from the front end portion of the slider 35 toward the left rotating body 37L. The elastic belt 36 is wound around the left rotating body 37L around the central axis 202 while meshing with a gear groove provided on the outer peripheral surface of the left rotating body 37L. The elastic belt 36 extends from the left rotating body 37L toward the rear end of the slider 35 in the X-axis direction. The elastic belt 36 is fixed to the rear end portion of the slider 35 in the X-axis direction, and extends from the rear end portion of the slider 35 toward the right rotating body 37R. The elastic belt 36 is wound around the right rotating body 37R around the central axis 202 while meshing with a gear groove provided on the outer peripheral surface of the right rotating body 37R. The elastic belt 36 extends from the right rotating body 37R toward the front end of the slider 35 in the X-axis direction.
 このような構成により、上述したスライダ35のX軸方向に沿った往復直線運動に伴い、左側回転体37Lおよび右側回転体37Rに巻回された部分の弾性ベルト36がそれぞれ左側回転体37Lおよび右側回転体37Rの回転方向に沿って送られることになり、これに伴って左側回転体37Lおよび右側回転体37Rが、中心軸202を回転中心として回転方向に往復運動することになる。 With such a configuration, the elastic belt 36 of the portion wound around the left side rotating body 37L and the right side rotating body 37R in accordance with the reciprocating linear motion of the slider 35 along the X-axis direction described above causes the left side rotating body 37L and right side to rotate. As a result, the left rotating body 37L and the right rotating body 37R reciprocate in the rotating direction about the center axis 202 as a rotation center.
 左側マスト支持体38Lおよび右側マスト支持体38Rは、それぞれ、左側回転体37Lおよび右側回転体37Rに取り付けられている。左側マスト支持体38Lおよび右側マスト支持体38Rは、それぞれ、左側回転体37Lおよび右側回転体37Rと一体となって、中心軸202を回転中心として回転方向に往復運動する。 The left mast support 38L and the right mast support 38R are attached to the left rotator 37L and the right rotator 37R, respectively. The left mast support 38L and the right mast support 38R are integrated with the left rotator 37L and the right rotator 37R, respectively, and reciprocate in the rotation direction around the central axis 202.
 左側マスト支持体38Lおよび右側マスト支持体38Rには、それぞれ、左側マスト39Lおよび右側マスト39Rが接続されている。左側マスト39Lは、左側マスト支持体38Lから+Y方向に沿って直線状に延びている。右側マスト39Rは、右側マスト支持体38Rから-Y方向に沿って直線状に延びている。左側マスト39Lおよび右側マスト39Rには、それぞれ、左側羽体40Lおよび右側羽体40Rが取り付けられている。 The left mast 39L and the right mast 39R are connected to the left mast support 38L and the right mast support 38R, respectively. The left mast 39L extends linearly from the left mast support 38L along the + Y direction. The right mast 39R extends linearly along the −Y direction from the right mast support 38R. A left wing 40L and a right wing 40R are attached to the left mast 39L and the right mast 39R, respectively.
 このような構成により、左側回転体37Lおよび右側回転体37Rが中心軸202を回転中心として回転方向に同期的に往復運動することにより、左側羽体40Lおよび右側羽体40Rが、中心軸202を回転中心として前後方向(X軸方向)に揺動運動することになる。 With such a configuration, the left rotating body 37L and the right rotating body 37R reciprocate synchronously in the rotation direction around the central axis 202, so that the left rotating body 40L and the right rotating body 40R move around the central axis 202. It swings in the front-rear direction (X-axis direction) as the center of rotation.
 図1および図2を参照して、羽体40は、可撓性を有する。左側羽体40Lは、全体として、左側マスト支持体38Lから+Y方向に延出する形状を有する。右側羽体40Rは、全体として、右側マスト支持体38Rから-Y方向に延出する形状を有する。左側羽体40Lおよび右側羽体40Rは、左右対称の形状を有する。 Referring to FIGS. 1 and 2, the wing 40 has flexibility. The left wing 40L as a whole has a shape extending in the + Y direction from the left mast support 38L. The right wing 40R as a whole has a shape extending in the −Y direction from the right mast support 38R. The left wing 40L and the right wing 40R have a symmetrical shape.
 羽体40は、その構成部位として、前縁部41と、後縁部42と、付け根部43と、先端部44とを有する。前縁部41と、後縁部42と、付け根部43と、先端部44とに囲まれた領域に、羽体40の羽面が形成されている。 The wing body 40 has a front edge portion 41, a rear edge portion 42, a root portion 43, and a tip portion 44 as its constituent parts. The wing surface of the wing body 40 is formed in a region surrounded by the front edge portion 41, the rear edge portion 42, the root portion 43, and the tip end portion 44.
 付け根部43は、羽体40のうちで、羽体40の揺動中心(図5中の中心軸202)に最も近い位置に設けられている。先端部44は、付け根部43から離れて位置する。先端部44は、マスト支持体38からY軸方向に延出する羽体40の先端に設けられている。 The root portion 43 is provided in a position closest to the swing center (the central axis 202 in FIG. 5) of the wing 40 in the wing 40. The distal end portion 44 is located away from the root portion 43. The tip 44 is provided at the tip of the wing 40 that extends from the mast support 38 in the Y-axis direction.
 前縁部41は、付け根部43および先端部44の間で延びている。前縁部41は、付け根部43および先端部44の間で直線状に延びている。前縁部41は、付け根部43および先端部44の間でY軸方向に延びている。マスト39は、前縁部41に沿って設けられている。前縁部41は、マスト39を軸として回転可能に支持されている。前縁部41には、マスト39を通じて揺動運動が入力される。 The front edge portion 41 extends between the base portion 43 and the tip portion 44. The front edge portion 41 extends linearly between the base portion 43 and the tip portion 44. The front edge portion 41 extends in the Y-axis direction between the base portion 43 and the tip portion 44. The mast 39 is provided along the front edge portion 41. The front edge portion 41 is supported rotatably about the mast 39. A swinging motion is input to the front edge portion 41 through the mast 39.
 後縁部42は、付け根部43および先端部44の間で延びている。後縁部42は、付け根部43および先端部44の間で、屈曲および/または湾曲しながら延びている。 The rear edge portion 42 extends between the base portion 43 and the tip portion 44. The rear edge portion 42 extends between the base portion 43 and the tip portion 44 while being bent and / or curved.
 羽体40の停止時、前縁部41および後縁部42は、羽体40が形成する羽面を挟んで上下方向(Z軸方向)に対向している。後縁部42は、前縁部41の下方に配置されている。羽体40は、前縁部41および後縁部42の間で上下に垂れ下がっている。羽体40は、付け根部43および先端部44を結ぶ方向(Y軸方向)が長手方向となり、前縁部41および後縁部42が対向する方向(Z軸方向)が短手方向となる細長い形状を有する。羽体40の揺動運動時、後縁部42は、前縁部41への揺動運動の入力に対して前縁部41よりも遅れて動作する。 When the wing 40 is stopped, the front edge portion 41 and the rear edge portion 42 face each other in the vertical direction (Z-axis direction) across the wing surface formed by the wing body 40. The rear edge portion 42 is disposed below the front edge portion 41. The wing body 40 hangs up and down between the front edge portion 41 and the rear edge portion 42. The wing body 40 is a long and narrow direction in which the direction connecting the base portion 43 and the tip portion 44 (Y-axis direction) is the longitudinal direction, and the direction in which the front edge portion 41 and the rear edge portion 42 are opposed (Z-axis direction) is the short direction. Has a shape. During the swinging motion of the wing body 40, the rear edge portion 42 operates later than the front edge portion 41 with respect to the input of the swinging motion to the front edge portion 41.
 羽ばたき装置1Aは、左側コード47Lおよび右側コード47Rと、左側コード支持体53Lおよび右側コード支持体53Rとをさらに有する。 The flapping apparatus 1A further includes a left cord 47L and a right cord 47R, and a left cord support 53L and a right cord support 53R.
 左側コード47Lおよび右側コード47Rを特に区別しない場合には、単に「コード47」という。左側コード支持体53Lおよび右側コード支持体53Rを特に区別しない場合には、単に「コード支持体53」という。 When the left code 47L and the right code 47R are not particularly distinguished, they are simply referred to as “code 47”. When the left cord support 53L and the right cord support 53R are not particularly distinguished, they are simply referred to as “cord support 53”.
 コード47は、柔軟な線状体から構成されている。コード47は、その線状に延びる方向において伸縮可能な部材から構成されてもよい。コード47は、たとえば、ゴムまたはポリウレタンゴムから構成されている。 The cord 47 is composed of a flexible linear body. The cord 47 may be composed of a member that can be expanded and contracted in the linearly extending direction. The cord 47 is made of rubber or polyurethane rubber, for example.
 左側コード47Lは、躯体10および左側羽体40Lの間で懸架されている。右側コード47Rは、躯体10および右側羽体40Rの間で懸架されている。左側コード47Lおよび右側コード47Rは、躯体10を挟んで左右対称に設けられている。 The left cord 47L is suspended between the housing 10 and the left wing 40L. The right cord 47R is suspended between the housing 10 and the right wing 40R. The left cord 47L and the right cord 47R are provided symmetrically with respect to the casing 10.
 コード47は、羽体40の後縁部42に接続されている。より具体的には、羽体40の後縁部42には、クリップ部材46が取り付けられている。クリップ部材46は、羽体40をその厚み方向から挟持可能なように構成されている。コード47は、クリップ部材46を介して後縁部42に接続されている。 The cord 47 is connected to the rear edge 42 of the wing 40. More specifically, a clip member 46 is attached to the rear edge portion 42 of the wing body 40. The clip member 46 is configured to be able to hold the wing body 40 from its thickness direction. The cord 47 is connected to the rear edge portion 42 via the clip member 46.
 左側コード支持体53Lは、躯体10側で左側コード47Lを支持するように構成されている。左側羽体40Lの後縁部42に接続された端部とは反対側の左側コード47Lの端部が、左側コード支持体53Lに接続されている。右側コード支持体53Rは、躯体10側で右側コード47Rを支持するように構成されている。右側羽体40Rの後縁部42に接続された端部とは反対側の右側コード47Rの端部が、右側コード支持体53Rに接続されている。 The left cord support 53L is configured to support the left cord 47L on the housing 10 side. The end of the left cord 47L opposite to the end connected to the rear edge portion 42 of the left wing 40L is connected to the left cord support 53L. The right cord support 53R is configured to support the right cord 47R on the housing 10 side. The end of the right cord 47R opposite to the end connected to the rear edge portion 42 of the right wing 40R is connected to the right cord support 53R.
 左側コード支持体53Lは、左側コード47Lが接続される左側羽体40Lの後縁部42の位置よりも、下方であって、Y軸方向において右側羽体40Rに近い側に設けられている。右側コード支持体53Rは、右側コード47Rが接続される右側羽体40Rの後縁部42の位置よりも、下方であって、Y軸方向において左側羽体40Lに近い側に設けられている。コード47は、羽体40の後縁部42からコード支持体53に向けて斜め下方向に垂れ下がるように設けられている。 The left cord support 53L is provided below the position of the rear edge portion 42 of the left wing 40L to which the left cord 47L is connected and closer to the right wing 40R in the Y-axis direction. The right cord support 53R is provided below the position of the rear edge portion 42 of the right wing 40R to which the right cord 47R is connected and closer to the left wing 40L in the Y-axis direction. The cord 47 is provided so as to hang obliquely downward from the rear edge portion 42 of the wing body 40 toward the cord support 53.
 このような構成により、羽体40の揺動運動時、前縁部41は、マスト39を軸として自由に受動回転する一方で、後縁部42の動作は、コード47によって拘束される。 With such a configuration, during the swinging motion of the wing body 40, the front edge portion 41 freely passively rotates about the mast 39, while the operation of the rear edge portion 42 is restrained by the cord 47.
 図6は、図1中の羽ばたき装置において、羽体の動作を説明するための斜視図である。図7は、図1中の羽ばたき装置において、左側羽体の動作を連続的に示した断面図である。なお、図7中には、代表的に左側羽体40Lの動作が示されているが、左側羽体40Lおよび右側羽体40Rは、左右対称に動作する。 FIG. 6 is a perspective view for explaining the operation of the wing body in the flapping apparatus in FIG. 7 is a cross-sectional view continuously showing the operation of the left wing body in the flapping apparatus in FIG. FIG. 7 representatively shows the operation of the left wing 40L, but the left wing 40L and the right wing 40R operate symmetrically.
 図7中には、代表的な空力を生み出す左側羽体40Lの羽長の3/4近傍の断面(図6中の仮想曲面210)における左側羽体40Lの動作が、左側羽体40Lの回転中心(中心軸202)周りの円筒座標系が平面に展開されて示されている。左側羽体40Lの断面は、前縁部41を示す丸と、羽面を示す直線とから示されている。ここでは、説明を簡略化するため、左側羽体40Lの変形を無視することとする。 In FIG. 7, the operation of the left wing 40L in the cross section (virtual curved surface 210 in FIG. 6) in the vicinity of 3/4 of the wing length of the left wing 40L that generates representative aerodynamics is the rotation of the left wing 40L. A cylindrical coordinate system around the center (center axis 202) is shown expanded in a plane. The cross section of the left wing 40L is shown from a circle indicating the front edge portion 41 and a straight line indicating the wing surface. Here, in order to simplify the description, the deformation of the left wing 40L is ignored.
 図6および図7を参照して、羽体40の前縁部41は、羽体40の揺動運動に伴って、中央位置(ポジションa,f)を中心にして、前方切り返し位置(ポジションd)および後方切り返し位置(ポジションi)の間で往復移動する。この間、羽体40の前縁部41は、X-Y平面(水平面)である第1平面211内で移動する。 6 and 7, the front edge portion 41 of the wing body 40 is moved forward with respect to the center position (positions a and f) as the wing body 40 swings (position d). ) And the backward turning position (position i). During this time, the front edge portion 41 of the wing body 40 moves in a first plane 211 that is an XY plane (horizontal plane).
 前方ストローク図のポジションaから順に羽体40の前縁部41の移動を見ると、羽体40の前縁部41は、ポジションa→ポジションb→ポジションc(以上、前方ストローク図)→ポジションd(前方ストローク図および後方ストローク図)→ポジションe→ポジションf→ポジションg→ポジションh(以上、後方ストローク図)→ポジションi(後方ストローク図および前方ストローク図)→ポジションj→ポジションa(以上、前方ストローク図)を順に移動する。 Looking at the movement of the front edge 41 of the wing 40 in order from the position a in the front stroke diagram, the front edge 41 of the wing 40 is located at position a → position b → position c (above, front stroke diagram) → position d. (Front stroke diagram and rear stroke diagram) → Position e → Position f → Position g → Position h (End stroke diagram) → Position i (Back stroke diagram and forward stroke diagram) → Position j → Position a (End, forward Move the stroke diagram in order.
 ポジションdが、+X方向における前縁部41の揺動端であり、前縁部41の前方切り返し位置である。ポジションiが、-X方向における前縁部41の揺動端であり、前縁部41の後方切り返し位置である。ポジションaおよびポジションfが、中心軸202を中心とする前縁部41の揺動角度の中央位置である。前縁部41が後方切り返し位置(ポジションi)から前方切り返し位置(ポジションd)に向けて移動する時を、「羽体40の前方ストローク」といい、前縁部41が前方切り返し位置(ポジションd)から後方切り返し位置(ポジションi)に向けて移動する時を、「羽体40の後方ストローク」という。 Position d is the rocking end of the front edge 41 in the + X direction, and is the front turning position of the front edge 41. The position i is the swing end of the front edge portion 41 in the −X direction, and is the rear turning position of the front edge portion 41. Position a and position f are the center positions of the swing angle of the front edge portion 41 with the center axis 202 as the center. The time when the front edge 41 moves from the rear turn-back position (position i) toward the front turn-back position (position d) is referred to as “front stroke of the wing 40”, and the front edge 41 is moved forward (position d). ) To the rear turning position (position i) is referred to as “rear stroke of the wing 40”.
 なお、図7中では、図示を簡便化するため、羽体40の前方ストロークと、羽体40の後方ストロークとが分離して描かれているが、実際には、羽体40は、同一空間内で動作する。 In FIG. 7, the front stroke of the wing body 40 and the rear stroke of the wing body 40 are illustrated separately for the sake of simplicity of illustration, but in reality, the wing body 40 has the same space. Work within.
 まず、前方ストロークの中央付近では、周囲流体に対して、羽体40の羽面が移動速度を持ち、この反作用として羽面に流体力が加わる。この際、後縁部42は、コード47によって拘束されているため、迎え角が図7中に示すように変化しながら、羽体40が前方(+X方向)に移動する。これにより、揚力が発生する(ポジションa~ポジションc)。 First, near the center of the front stroke, the wing surface of the wing body 40 has a moving speed with respect to the surrounding fluid, and fluid force is applied to the wing surface as a reaction. At this time, since the trailing edge portion 42 is restrained by the cord 47, the wing body 40 moves forward (+ X direction) while the angle of attack changes as shown in FIG. As a result, lift is generated (position a to position c).
 次に、前縁部41が前方切り返し位置に達すると、前縁部41の移動速度が低下するため、流体力と、羽体40自体の慣性力とによって、羽体40の羽面が受動的に回転を開始する(ポジションd)。(この過程でコード47に撓みが生じるが、不規則な現象であるため、考察から除外する。)
 切り返し後、前方ストロークにより生じた流体流れによって、羽体40の羽面がさらに回転する(ポジションe)。後方ストロークの中央付近において、羽体40は、コード47による拘束によりポジションaと前後対称の姿勢となる(ポジションf)。羽体40は、ポジションgからポジションjまでの間において、上記のポジションbからポジションeまでの動作と前後対称の動作をなす。これにより、前後の切り返し位置を除いて継続的に上向きの流体力を得ることができる。この羽体40の動作は、前後対称であるため、平均浮上力は、真下方向(-Z方向)を向く。
Next, when the front edge portion 41 reaches the front turning position, the moving speed of the front edge portion 41 decreases, so that the wing surface of the wing body 40 becomes passive due to the fluid force and the inertia force of the wing body 40 itself. Starts to rotate (position d). (Bending occurs in the cord 47 during this process, but it is an irregular phenomenon and is excluded from consideration.)
After turning back, the wing surface of the wing 40 is further rotated by the fluid flow generated by the forward stroke (position e). In the vicinity of the center of the rear stroke, the wing body 40 assumes a posture symmetrical with respect to the position a due to the restraint by the cord 47 (position f). The wings 40 perform a symmetrical operation with respect to the operation from the position b to the position e in the period from the position g to the position j. Thereby, the upward fluid force can be obtained continuously except for the front and rear turning positions. Since the movement of the wing body 40 is symmetric in the front-rear direction, the average levitation force is directed downward (−Z direction).
 続いて、羽ばたき装置1Aが備える位置調整機構部50の構造について詳細に説明する。図8は、位置調整機構部によるコード支持体の移動方向を示す上面図である。 Subsequently, the structure of the position adjustment mechanism 50 provided in the flapping apparatus 1A will be described in detail. FIG. 8 is a top view showing the moving direction of the cord support by the position adjusting mechanism.
 図1、図2および図8を参照して、羽ばたき装置1Aは、位置調整機構部50をさらに有する。位置調整機構部50は、コード支持体53(左側コード支持体53L,右側コード支持体53R)を移動させることにより、コード支持体53の位置を可変に調節する。位置調整機構部50は、躯体10(より具体的には、下フレーム11)により支持されている。位置調整機構部50は、主回転電動機20および動力伝達機構30の下方に配置されている。 1, 2, and 8, flapping apparatus 1 </ b> A further includes a position adjustment mechanism unit 50. The position adjustment mechanism unit 50 adjusts the position of the cord support 53 variably by moving the cord support 53 (left cord support 53L, right cord support 53R). The position adjustment mechanism unit 50 is supported by the housing 10 (more specifically, the lower frame 11). The position adjustment mechanism unit 50 is disposed below the main rotary electric motor 20 and the power transmission mechanism 30.
 位置調整機構部50は、左側第1移動機構部60Lおよび右側第1移動機構部60Rと、第2移動機構部70とから構成されている。左側第1移動機構部60Lおよび右側第1移動機構部60Rを特に区別しない場合には、単に「第1移動機構部60」という。 The position adjusting mechanism unit 50 includes a left first moving mechanism unit 60L, a right first moving mechanism unit 60R, and a second moving mechanism unit 70. When the left first moving mechanism 60L and the right first moving mechanism 60R are not particularly distinguished, they are simply referred to as “first moving mechanism 60”.
 左側第1移動機構部60Lおよび右側第1移動機構部60Rは、それぞれ、左側コード支持体53Lおよび右側コード支持体53Rに連結されている。 The left first moving mechanism 60L and the right first moving mechanism 60R are connected to the left cord support 53L and the right cord support 53R, respectively.
 図7中に示すように、第1移動機構部60は、第1平面211に平行な第2平面213内であって、ロール軸の軸方向(X軸方向)において、前方切り返し位置(ポジションd)および後方切り返し位置(ポジションi)から等距離にある第1位置(図7中に示すコード支持体53の位置)と、ロール軸の軸方向(X軸方向)において、後方切り返し位置(ポジションi)よりも前方切り返し位置(ポジションd)に寄った第2位置(後出の図14中に示すコード支持体53の位置)と、ロール軸(X軸方向)の軸方向において、前方切り返し位置(ポジションd)よりも後方切り返し位置(ポジションi)に寄った第3位置(後出の図15中に示すコード支持体53の位置)とを含む範囲で、コード支持体53を移動させる。 As shown in FIG. 7, the first moving mechanism unit 60 is located in a second plane 213 parallel to the first plane 211, and the front turning position (position d) in the axial direction (X-axis direction) of the roll axis. ) And the first position (position of the cord support 53 shown in FIG. 7) that is equidistant from the rear turning position (position i) and the axial direction of the roll axis (X-axis direction). ) In the axial direction of the second position (the position of the cord support 53 shown in FIG. 14 described later) closer to the forward turning position (position d) and the roll shaft (X-axis direction) than The cord support 53 is moved in a range including a third position (position of the cord support 53 shown in FIG. 15 described later) that is closer to the rear turning position (position i) than the position d).
 コード支持体53は、上記第1位置にある時、前縁部41の中央位置であるポジションaおよびポジションfを含む鉛直面212内に位置決めされる。 When the cord support 53 is in the first position, the cord support 53 is positioned in the vertical surface 212 including the position a and the position f which are the center positions of the front edge portion 41.
 特に本実施の形態では、左側第1移動機構部60Lは、Z軸(ヨー軸)に平行な中心軸206(第1軸)を中心に、左側コード支持体53Lを揺動させるように構成されている。右側第1移動機構部60Rは、中心軸206を中心に、右側コード支持体53Rを揺動させるように構成されている。 In particular, in the present embodiment, the left first moving mechanism 60L is configured to swing the left cord support 53L about a central axis 206 (first axis) parallel to the Z axis (yaw axis). ing. The right first moving mechanism 60R is configured to swing the right cord support 53R about the central axis 206.
 左側第1移動機構部60Lは、右側第1移動機構部60Rから独立して、左側コード支持体53Lを揺動させるように構成されている。右側第1移動機構部60Rは、左側第1移動機構部60Lから独立して、右側コード支持体53Rを揺動させるように構成されている。 The left first moving mechanism 60L is configured to swing the left cord support 53L independently of the right first moving mechanism 60R. The right first moving mechanism 60R is configured to swing the right cord support 53R independently of the left first moving mechanism 60L.
 第2移動機構部70は、左側コード支持体53Lおよび右側コード支持体53Rに連結されている。第2移動機構部70は、躯体10および羽体40の間におけるコード47の張力が変化するように、コード支持体53を移動させる。 The second moving mechanism unit 70 is connected to the left cord support 53L and the right cord support 53R. The second moving mechanism unit 70 moves the cord support 53 so that the tension of the cord 47 between the housing 10 and the wing 40 changes.
 特に本実施の形態では、第2移動機構部70は、Y軸方向(ピッチ軸の軸方向)に、左側コード支持体53Lおよび右側コード支持体53Rを移動させるように構成されている。第2移動機構部70は、左側コード支持体53Lおよび右側コード支持体53Rを一体に移動させるように構成されている。 Particularly in the present embodiment, the second moving mechanism unit 70 is configured to move the left cord support 53L and the right cord support 53R in the Y-axis direction (the axial direction of the pitch axis). The second moving mechanism unit 70 is configured to move the left cord support 53L and the right cord support 53R together.
 図9および図10は、(左側)第1移動機構部を示す斜視図である。図8から図10を参照して、左側第1移動機構部60Lおよび右側第1移動機構部60Rは、左右対称の構造を有する。 9 and 10 are perspective views showing the first moving mechanism (left side). Referring to FIGS. 8 to 10, left first moving mechanism 60L and right first moving mechanism 60R have a symmetrical structure.
 第1移動機構部60は、第1副回転電動機61と、ベース部62と、円筒ウォーム63と、ギヤユニット64と、ウォームホイール65と、アーム部材66と、シャフト67とを有する。 The first moving mechanism 60 includes a first sub-rotary electric motor 61, a base 62, a cylindrical worm 63, a gear unit 64, a worm wheel 65, an arm member 66, and a shaft 67.
 ベース部62は、X-Y平面で延在するプレート形状を有し、Z軸方向において下フレーム11の下方に配置されている。第1副回転電動機61は、ベース部62に搭載されている。第1副回転電動機61は、その出力シャフトが、X軸方向に延びる中心軸221を中心に回転するように設けられている。第1副回転電動機61は、制御部からの位置指令により、モータの回転角度(位置)を制御することが可能なサーボモータから構成されている。 The base portion 62 has a plate shape extending in the XY plane, and is disposed below the lower frame 11 in the Z-axis direction. The first sub-rotary motor 61 is mounted on the base portion 62. The first sub-rotary motor 61 is provided such that its output shaft rotates around a central axis 221 extending in the X-axis direction. The first sub-rotary motor 61 is composed of a servo motor capable of controlling the rotation angle (position) of the motor by a position command from the control unit.
 第1副回転電動機61の出力シャフトには、円筒ウォーム63が接続されている。円筒ウォーム63は、第1副回転電動機61から動力が伝達されることにより、中心軸221を中心に回転する。 A cylindrical worm 63 is connected to the output shaft of the first auxiliary rotating motor 61. The cylindrical worm 63 rotates around the central shaft 221 when power is transmitted from the first sub-rotary electric motor 61.
 ギヤユニット64は、ウォームホイール64aおよび円筒ウォーム64bから構成されている。ウォームホイール64aおよび円筒ウォーム64bは、Y軸方向に延びる中心軸222の軸上に並んで設けられている。ウォームホイール64aおよび円筒ウォーム64bは、中心軸222を中心に回転可能に支持されている。ウォームホイール64aは、円筒ウォーム63に噛み合って設けられている。ウォームホイール64aおよび円筒ウォーム64bは、円筒ウォーム63からウォームホイール64aに動力が伝達されることにより、中心軸222を中心に回転する。 The gear unit 64 includes a worm wheel 64a and a cylindrical worm 64b. The worm wheel 64a and the cylindrical worm 64b are provided side by side on the axis of the central axis 222 extending in the Y-axis direction. The worm wheel 64a and the cylindrical worm 64b are supported so as to be rotatable about a central axis 222. The worm wheel 64 a is provided so as to mesh with the cylindrical worm 63. The worm wheel 64a and the cylindrical worm 64b rotate around the central axis 222 when power is transmitted from the cylindrical worm 63 to the worm wheel 64a.
 ウォームホイール65は、コード支持体53の揺動中心である中心軸206を中心に回転可能に支持されている。ウォームホイール65は、円筒ウォーム64bに噛み合って設けられている。ウォームホイール65は、円筒ウォーム64bから動力が伝達されることによって、中心軸206を中心に回転する。 The worm wheel 65 is supported so as to be rotatable about a central axis 206 that is the center of oscillation of the cord support 53. The worm wheel 65 is provided so as to mesh with the cylindrical worm 64b. The worm wheel 65 rotates around the central axis 206 when power is transmitted from the cylindrical worm 64b.
 アーム部材66は、中心軸206を中心に回転可能に支持されている。アーム部材66は、中心軸206から、中心軸206の半径方向にアーム状に延びている。そのアーム状に延びるアーム部材66の先端には、シャフト67を介してコード支持体53が接続されている。アーム部材66は、中心軸206の軸上においてウォームホイール65に連結されている。 The arm member 66 is supported so as to be rotatable about the central axis 206. The arm member 66 extends from the central axis 206 in an arm shape in the radial direction of the central axis 206. A cord support 53 is connected to the tip end of the arm member 66 extending in an arm shape via a shaft 67. The arm member 66 is connected to the worm wheel 65 on the axis of the central axis 206.
 このような構成により、第1副回転電動機61からアーム部材66に向けて正方向および逆方向の回転が伝達されることによって、コード支持体53を、中心軸206を中心にして前後方向に揺動させることができる。 With such a configuration, the cord support 53 is swung in the front-rear direction around the central axis 206 by transmitting the rotation in the forward direction and the reverse direction from the first sub-rotary electric motor 61 toward the arm member 66. Can be moved.
 コード47は、コード支持体53により、ヨー軸に平行な中心軸207(第2軸)を中心に回動可能に支持されている。より具体的には、羽ばたき装置1Aは、ベアリング54をさらに有する。ベアリング54は、シャフト67およびコード支持体53の間に介挿されている。ベアリング54の内輪がシャフト67に固定され、ベアリング54の外輪がコード支持体53に固定されることによって、シャフト67およびコード支持体53が、中心軸207を中心に相対的に回転可能に設けられている。 The cord 47 is supported by the cord support 53 so as to be rotatable about a central axis 207 (second axis) parallel to the yaw axis. More specifically, the flapping apparatus 1 </ b> A further includes a bearing 54. The bearing 54 is interposed between the shaft 67 and the cord support 53. Since the inner ring of the bearing 54 is fixed to the shaft 67 and the outer ring of the bearing 54 is fixed to the cord support 53, the shaft 67 and the cord support 53 are provided to be relatively rotatable around the central axis 207. ing.
 羽体40の揺動運動に伴って、コード支持体53からのコード47の引き出し方向が前後方向に変化する。この際、コード支持体53から引き出されるコード47の位置を、コード47の引き出し方向に合わせて変化させることによって、羽体40を揺動運動させるためのアクチュエータにおいてエネルギー効率を高めたり、コード47の耐久性を向上させたりすることができる。 As the wing body 40 swings, the direction in which the cord 47 is pulled out from the cord support 53 changes in the front-rear direction. At this time, by changing the position of the cord 47 pulled out from the cord support 53 in accordance with the direction in which the cord 47 is pulled out, energy efficiency can be improved in the actuator for swinging the wing body 40, Durability can be improved.
 図11および図12は、第2移動機構部を示す斜視図である。図8、図11および図12を参照して、第2移動機構部70は、支持プレート51と、第2副回転電動機71と、ギヤユニット73と、ナット74とを有する。 FIGS. 11 and 12 are perspective views showing the second moving mechanism. Referring to FIGS. 8, 11, and 12, second moving mechanism unit 70 includes a support plate 51, a second auxiliary rotary electric motor 71, a gear unit 73, and a nut 74.
 左側コード支持体53Lおよび右側コード支持体53Rは、支持プレート51により互いに一体に支持されている。より具体的には、支持プレート51は、X-Y平面内に配置されるプレート形状を有し、Y軸方向を長手方向にして延びている。そのY軸方向に延びる支持プレート51の両端には、左側コード支持体53Lを支持するアーム部材66と、右側コード支持体53Rを支持するアーム部材66とが接続されている。 The left cord support 53L and the right cord support 53R are integrally supported by the support plate 51. More specifically, the support plate 51 has a plate shape arranged in the XY plane, and extends with the Y-axis direction as the longitudinal direction. At both ends of the support plate 51 extending in the Y-axis direction, an arm member 66 that supports the left cord support 53L and an arm member 66 that supports the right cord support 53R are connected.
 第2副回転電動機71は、Z軸方向において、下フレーム11の下方に配置されている。第2副回転電動機71は、下フレーム11により支持されている。第2副回転電動機71は、その出力軸71aがY軸方向に延びる中心軸223を中心に回転するように配置されている。第2副回転電動機71は、制御部からの位置指令により、モータの回転角度(位置)を制御することが可能なサーボモータから構成されている。 The second sub-rotation motor 71 is disposed below the lower frame 11 in the Z-axis direction. The second sub rotary motor 71 is supported by the lower frame 11. The second sub-rotary motor 71 is arranged such that its output shaft 71a rotates around a central shaft 223 extending in the Y-axis direction. The second auxiliary rotary motor 71 is composed of a servo motor capable of controlling the rotation angle (position) of the motor by a position command from the control unit.
 ギヤユニット73は、スパーギヤ73aおよび送りねじ73bから構成されている。スパーギヤ73aおよび送りねじ73bは、Y軸方向に延びる中心軸224の軸上に並んで設けられている。スパーギヤ73aおよび送りねじ73bは、中心軸224を中心に回転可能に支持されている。スパーギヤ73aは、複数のギヤ(不図示)を介して第2副回転電動機71の出力軸71aに接続されている。スパーギヤ73aおよび送りねじ73bは、第2副回転電動機71からスパーギヤ73aに動力が伝達されることによって、中心軸224を中心に回転する。 The gear unit 73 includes a spur gear 73a and a feed screw 73b. The spur gear 73a and the feed screw 73b are provided side by side on the central axis 224 extending in the Y-axis direction. The spur gear 73a and the feed screw 73b are supported so as to be rotatable about the central shaft 224. The spur gear 73a is connected to the output shaft 71a of the second auxiliary rotary electric motor 71 through a plurality of gears (not shown). The spur gear 73a and the feed screw 73b rotate around the central shaft 224 when power is transmitted from the second auxiliary rotary electric motor 71 to the spur gear 73a.
 ナット74は、送りねじ73bに螺合されている。ナット74には、支持プレート51が接続されている。すなわち、ナット74には、支持プレート51およびアーム部材66を介して、コード支持体53(左側コード支持体53L,右側コード支持体53R)が接続されている。 The nut 74 is screwed to the feed screw 73b. A support plate 51 is connected to the nut 74. In other words, the cord support 53 (the left cord support 53L and the right cord support 53R) is connected to the nut 74 via the support plate 51 and the arm member 66.
 このような構成により、第2副回転電動機71から送りねじ73bに向けて正方向および逆方向の回転が伝達されることによって、ナット74が左右方向に移動する。これに伴って、コード支持体53(左側コード支持体53L,右側コード支持体53R)をY軸方向(ピッチ軸の軸方向)に移動させることができる。 With such a configuration, the rotation of the forward direction and the reverse direction is transmitted from the second auxiliary rotating motor 71 toward the feed screw 73b, whereby the nut 74 moves in the left-right direction. Along with this, the cord support 53 (left cord support 53L, right cord support 53R) can be moved in the Y-axis direction (the axial direction of the pitch axis).
 図13は、位置調整機構部による羽ばたき装置の動作制御をまとめた表である。図13中では、右ねじ方向を+、左ねじ方向を-として、ヨー軸、ロール軸およびピッチ軸の各軸周りにおける羽ばたき装置1Aの動作が示されている、図14は、前方偏向羽ばたき時における左側羽体の動作を示す図である。図15は、後方偏向羽ばたき時における左側羽体の動作を示す図である。 FIG. 13 is a table summarizing the operation control of the flapping apparatus by the position adjusting mechanism. In FIG. 13, the operation of the flapping apparatus 1A around the yaw axis, roll axis and pitch axis is shown with the right screw direction as + and the left screw direction as-, and FIG. It is a figure which shows operation | movement of the left side wing | blade in FIG. FIG. 15 is a diagram illustrating the operation of the left wing during backward deflection flapping.
 図14および図15中と、後出の図16および図17中とでは、図7中に示す基本羽ばたき時の左側羽体40Lの動作が、点線により示されている。 In FIGS. 14 and 15 and later in FIGS. 16 and 17, the operation of the left wing body 40L at the time of the basic flapping shown in FIG. 7 is indicated by a dotted line.
 図14を参照して、第1移動機構部60により中心軸206を中心にコード支持体53を揺動させることによって、コード支持体53を前方(+X方向)に移動させた状態での羽体40の動作を、「前方偏向羽ばたき」という。 Referring to FIG. 14, the first moving mechanism 60 swings the cord support 53 around the central axis 206, thereby moving the cord support 53 forward (+ X direction). The operation of 40 is called “forward deflection flapping”.
 この前方偏向羽ばたき時、図14中に示す左側羽体40Lの羽面の傾きは、ポジションcおよびポジションhを除いて、基本羽ばたき時よりも、羽ばたき装置1Aの上面視において時計回り方向にシフトしている。これにより、左側羽体40Lの揺動運動によって得られる平均浮上力も羽ばたき装置1Aの上面視において時計回りに回転するため、後方(-X方向)への推進力成分が生じる。 At the time of forward flapping, the inclination of the flapping surface of the left wing 40L shown in FIG. 14 is shifted in the clockwise direction in the flapping device 1A as viewed from above, compared with the basic flapping, except for the position c and the position h. ing. As a result, the average levitation force obtained by the swing motion of the left wing body 40L also rotates clockwise in the top view of the flapping device 1A, so that a propulsive force component in the backward direction (−X direction) is generated.
 図15を参照して、第1移動機構部60により中心軸206を中心にコード支持体53を揺動させることによって、コード支持体53を後方(-X方向)に移動させた状態での羽体40の動作を、「後方偏向羽ばたき」という。 Referring to FIG. 15, the first moving mechanism 60 swings the cord support 53 around the central axis 206 to move the cord support 53 backward (−X direction). The operation of the body 40 is referred to as “backward deflection flapping”.
 この後方偏向羽ばたき時、図15中に示す左側羽体40Lの羽面の傾きは、ポジションcおよびポジションhを除いて、基本羽ばたき時よりも、羽ばたき装置1Aの上面視において反時計回り方向にシフトしている。これにより、左側羽体40Lの揺動運動によって得られる平均浮上力も羽ばたき装置1Aの上面視において反時計回りに回転するため、前方(+X方向)への推進力成分が生じる。 At the time of this backward deflection flapping, the inclination of the wing surface of the left wing 40L shown in FIG. 15 is shifted in the counterclockwise direction in the top view of the flapping device 1A than at the basic flapping, except for the position c and the position h. is doing. As a result, the average levitation force obtained by the swinging motion of the left wing body 40L also rotates counterclockwise in the top view of the flapping device 1A, so that a propulsive force component forward (+ X direction) is generated.
 図16は、コード弛緩時の左側羽体の動作を示す図である。図17は、コード緊張時の左側羽体の動作を示す図である。図18は、羽体の迎え角を示す図である。図19は、羽体の迎え角(angle of attack)と、推力および抗力の力係数(force coefficient)との関係を示すグラフである。 FIG. 16 is a diagram showing the operation of the left wing when the cord is relaxed. FIG. 17 is a diagram illustrating the operation of the left wing during cord tension. FIG. 18 shows the angle of attack of the wings. FIG. 19 is a graph showing the relationship between the angle of attack of a wing and the force coefficient of thrust and drag.
 図16を参照して、第2移動機構部70により左側コード支持体53Lを+Y方向に移動させると、左側コード47Lが緩むことになる。これにより、左側羽体40Lの後縁部42の回転半径が増大し、図18中に示す羽体40の迎え角が小さくなる。図17を参照して、一方、第2移動機構部70により左側コード支持体53Lを-Y方向に移動させると、左側コード47Lが張ることになる。これにより、左側羽体40Lの後縁部42の回転半径を縮小し、図18中に示す羽体40の迎え角が大きくなる。 Referring to FIG. 16, when the left cord support 53L is moved in the + Y direction by the second moving mechanism 70, the left cord 47L is loosened. Thereby, the radius of rotation of the trailing edge 42 of the left wing 40L is increased, and the angle of attack of the wing 40 shown in FIG. 18 is reduced. Referring to FIG. 17, when the left cord support 53L is moved in the −Y direction by the second moving mechanism 70, the left cord 47L is stretched. As a result, the radius of rotation of the trailing edge 42 of the left wing 40L is reduced, and the angle of attack of the wing 40 shown in FIG. 18 is increased.
 図19中に示すように、迎え角が40°付近までは迎え角が増大すると、推力(liftに対応)は単調に増大する。この範囲内では、概ね推力の大小を、コード47の左右への移動により制御することができる。すなわち、コード支持体53がY軸方向において羽体40に近づけば、推力は減少し、コード支持体53がY軸方向において羽体40から遠ざかれば、推力は増大する。 As shown in FIG. 19, the thrust (corresponding to lift) increases monotonously as the angle of attack increases until the angle of attack is close to 40 °. Within this range, the magnitude of the thrust can generally be controlled by moving the cord 47 left and right. That is, the thrust decreases when the cord support 53 approaches the wing 40 in the Y-axis direction, and the thrust increases when the cord support 53 moves away from the wing 40 in the Y-axis direction.
 実際には、迎え角が増大すると抗力(drag)も増大する。この場合、主回転電動機20への負荷が増すことによって、主回転電動機20の回転速度が低下し、その結果、羽体40の移動速度も低下する。このため、単純に迎え角の大小が推力の大小に対応するわけではない。また、揺動運動中の羽体40の移動速度は、一様でないため、平均浮上力は、これらの加重平均により考察される必要がある。しかしながら、図19中に示すように、迎え角が0°から20°程度の範囲では、推力の上昇率が抗力の変化率を上回っているため、迎え角の大小が推力の大小に対応すると考えられる。このため、羽体40の移動速度が大きく、主要な浮上力を生み出していると想定されるストローク中心付近(ポジションa~c、ポジションf~h)における迎え角がこの範囲内にあれば、平均浮上力も対応することになると考えられる。 Actually, drag increases as angle of attack increases. In this case, when the load on the main rotary motor 20 increases, the rotational speed of the main rotary motor 20 decreases, and as a result, the moving speed of the wing body 40 also decreases. For this reason, the magnitude of the angle of attack does not simply correspond to the magnitude of the thrust. Moreover, since the moving speed of the wing body 40 during the swinging motion is not uniform, the average levitation force needs to be considered by these weighted averages. However, as shown in FIG. 19, when the angle of attack is in the range of 0 ° to 20 °, the rate of increase of the thrust exceeds the rate of change of the drag, so that the magnitude of the angle of attack corresponds to the magnitude of the thrust. It is done. For this reason, if the angle of attack in the vicinity of the stroke center (positions a to c and positions f to h), which is assumed to generate the main levitation force, is high if the moving speed of the wings 40 is within this range, the average It is thought that the levitation force will correspond.
 図20から図25は、羽ばたき装置の各種飛行形態を示す斜視図である。図中では、羽体40の揺動運動に伴って生じる周囲流体の流れと、その大きさとが、それぞれ、矢印の向きと、矢印の大きさとにより示されている。図13および図20を参照して、コード支持体53(左側コード支持体53L,右側コード支持体53R)を右方(-Y方向)に移動させると、左側羽体40Lの浮上力が増大し、右側羽体40Rの浮上力が減少する。これにより、羽ばたき装置1Aに、X軸(ロール軸)の軸周りにおいて右ねじ方向(X+)の回転運動が生じる。 20 to 25 are perspective views showing various flight modes of the flapping apparatus. In the drawing, the flow of the surrounding fluid that is caused by the swinging motion of the wing body 40 and its size are indicated by the direction of the arrow and the size of the arrow, respectively. 13 and 20, when the cord support 53 (left cord support 53L, right cord support 53R) is moved to the right (−Y direction), the levitation force of the left wing 40L increases. The levitation force of the right wing 40R decreases. Thereby, in the flapping apparatus 1A, a rotational motion in the right screw direction (X +) occurs around the axis of the X axis (roll axis).
 図13および図21を参照して、コード支持体53(左側コード支持体53L,右側コード支持体53R)を左方(+Y方向)に移動させると、左側羽体40Lの浮上力が減少し、右側羽体40Rの浮上力が増大する。これにより、羽ばたき装置1Aに、X軸(ロール軸)の軸周りにおいて左ねじ方向(X-)の回転運動が生じる。 Referring to FIGS. 13 and 21, when the cord support 53 (left cord support 53L, right cord support 53R) is moved to the left (+ Y direction), the levitation force of the left wing 40L decreases, The levitation force of the right wing 40R increases. As a result, the flapping device 1A undergoes a rotational motion in the left screw direction (X−) around the X axis (roll axis).
 図13および図22を参照して、左側コード支持体53Lを前方(+X方向)に移動させ、右側コード支持体53Rを後方(-X方向)に移動させると、Z軸(ヨー軸)の軸周りにおいて右ねじ方向(Z+)の回転運動が生じる。 Referring to FIGS. 13 and 22, when the left cord support 53L is moved forward (+ X direction) and the right cord support 53R is moved backward (−X direction), the axis of the Z axis (yaw axis) A rotational motion in the right screw direction (Z +) occurs around.
 図13および図23を参照して、左側コード支持体53Lを後方(-X方向)に移動させ、右側コード支持体53Rを前方(+X方向)に移動させると、Z軸(ヨー軸)の軸周りにおいて左ねじ方向(Z-)の回転運動が生じる。 Referring to FIGS. 13 and 23, when the left cord support 53L is moved backward (−X direction) and the right cord support 53R is moved forward (+ X direction), the axis of the Z axis (yaw axis) A rotational movement in the left-handed screw direction (Z-) occurs around.
 図13および図24を参照して、コード支持体53(左側コード支持体53L,右側コード支持体53R)を前方(+X方向)に移動させると、Y軸(ピッチ軸)の軸周りにおいて左ねじ方向(Y-)の回転運動が生じる。 Referring to FIG. 13 and FIG. 24, when the cord support 53 (left cord support 53L, right cord support 53R) is moved forward (+ X direction), a left-hand screw around the Y axis (pitch axis) axis A rotational movement in the direction (Y-) occurs.
 図13および図25を参照して、コード支持体53(左側コード支持体53L,右側コード支持体53R)を後方(-X方向)に移動させると、Y軸(ピッチ軸)の軸周りにおいて右ねじ方向(Y+)の回転運動が生じる。 Referring to FIGS. 13 and 25, when the cord support 53 (the left cord support 53L, the right cord support 53R) is moved rearward (−X direction), the right side around the Y axis (pitch axis) axis. A rotational movement in the screw direction (Y +) occurs.
 このように、左右のコード支持体53(左側コード支持体53L,右側コード支持体53R)を前後方向、左右方向に移動させることによって、羽ばたき装置1Aの鉛直軸周りの回転、左右方向への移動、および、前後方向への移動が実現されるため、羽ばたき装置1Aを空間内の任意の位置に移動させることができる。 Thus, by moving the left and right cord supports 53 (left cord support 53L, right cord support 53R) in the front-rear direction and the left-right direction, the flapping device 1A rotates around the vertical axis and moves in the left-right direction. Since the movement in the front-rear direction is realized, the flapping apparatus 1A can be moved to an arbitrary position in the space.
 図1、図2および図7を参照して、第2移動機構部70によるコード支持体53の左右方向への移動がゼロである場合、すなわち、ピッチ軸の軸方向(Y軸方向)における、コード支持体53からコード47が接続される後縁部42の位置(クリップ部材46)までの距離が、左右の羽体40で等しくなる場合、コード支持体53の揺動中心である中心軸206が、羽体40の揺動中心である中心軸202と一致する。 With reference to FIGS. 1, 2, and 7, when the movement of the cord support 53 in the left-right direction by the second movement mechanism unit 70 is zero, that is, in the axial direction of the pitch axis (Y-axis direction), When the distance from the cord support 53 to the position of the rear edge portion 42 (clip member 46) to which the cord 47 is connected is equal between the left and right wings 40, the central axis 206 that is the center of oscillation of the cord support 53 Is coincident with the central axis 202 which is the center of oscillation of the wing body 40.
 このような構成により、コード支持体53の前後方向への移動がロールの操舵トルクに与える影響を小さくすることができる。 With such a configuration, the influence of the movement of the cord support 53 in the front-rear direction on the steering torque of the roll can be reduced.
 以上に説明した、本開示の実施の形態1における羽ばたき装置1Aの構造についてまとめて説明すると、本実施の形態における羽ばたき装置1Aは、躯体10と、躯体10に搭載されるアクチュエータと、可撓性を有し、前後に揺動運動することによって浮上力を発生する一対の羽体40と、躯体10と、一対の羽体40との間で懸架される線状体としてのコード47とを備える。羽体40は、アクチュエータから揺動運動が入力される前縁部41と、アクチュエータから前縁部41への揺動運動の入力に対して前縁部41よりも遅れて動作し、コード47が接続される後縁部42とを含む。羽ばたき装置1Aは、躯体10側でコード47を支持する支持部としてのコード支持体53と、コード支持体53を移動させることによりコード支持体53の位置を可変に調整する位置調整機構部50とをさらに備える。 The structure of the flapping apparatus 1A according to the first embodiment of the present disclosure described above will be described together. The flapping apparatus 1A according to the present embodiment includes a casing 10, an actuator mounted on the casing 10, and flexibility. And a pair of wings 40 that generate a levitation force by swinging back and forth, a housing 10, and a cord 47 as a linear body suspended between the pair of wings 40. . The wing body 40 is operated later than the front edge portion 41 with respect to the front edge portion 41 to which the swing motion is input from the actuator and the swing motion input from the actuator to the front edge portion 41, and the cord 47 is And a trailing edge 42 to be connected. The flapping apparatus 1A includes a cord support 53 as a support for supporting the cord 47 on the housing 10 side, and a position adjustment mechanism 50 that variably adjusts the position of the cord support 53 by moving the cord support 53. Is further provided.
 このように構成された、本開示の実施の形態1における羽ばたき装置1Aによれば、簡易な構成により、各種の飛行形態(鉛直軸周りの回転、左右方向への移動、および、前後方向への移動)を実現するための機構を得ることができる。 According to the flapping apparatus 1A in the first embodiment of the present disclosure configured as described above, various flight modes (rotation around the vertical axis, movement in the left-right direction, and movement in the front-rear direction) can be performed with a simple configuration. A mechanism for realizing (movement) can be obtained.
 (実施の形態2)
 図26は、本開示の実施の形態2における羽ばたき装置を示す斜視図である。図27は、図26中の羽ばたき装置が備える位置調整機構部を示す上面図である。
(Embodiment 2)
FIG. 26 is a perspective view illustrating a flapping apparatus according to Embodiment 2 of the present disclosure. FIG. 27 is a top view showing a position adjustment mechanism part provided in the flapping apparatus in FIG.
 本実施の形態における羽ばたき装置1Bは、実施の形態1における羽ばたき装置1Aと比較して、基本的には同様の構造を備える。以下、重複する構造については、その説明を繰り返さない。 The flapping apparatus 1B in the present embodiment basically has the same structure as the flapping apparatus 1A in the first embodiment. Hereinafter, the description of the overlapping structure will not be repeated.
 図26および図27を参照して、本実施の形態では、1本のコード47が、左側羽体40L、躯体10および右側羽体40Rに渡って懸架されている。 Referring to FIGS. 26 and 27, in the present embodiment, one cord 47 is suspended over left wing 40L, housing 10 and right wing 40R.
 羽ばたき装置1Bは、実施の形態1における左側コード支持体53Lおよび右側コード支持体53Rに替えて、左側コード支持ガイド81L(第1支持部)および右側コード支持ガイド81R(第2支持部)と、コード支持体82(第3支持部)とを有する。左側コード支持ガイド81Lおよび右側コード支持ガイド81Rを特に区別しない場合、単に「コード支持ガイド81」という。 Flapping apparatus 1B replaces left cord support 53L and right cord support 53R in Embodiment 1, with left cord support guide 81L (first support portion) and right cord support guide 81R (second support portion); A cord support 82 (third support portion). When the left cord support guide 81L and the right cord support guide 81R are not particularly distinguished, they are simply referred to as “cord support guide 81”.
 コード支持ガイド81は、中心軸206からその半径方向にアーム状に延びるアーム部材66の先端に設けられている。左側コード支持ガイド81Lは、躯体10側から左側羽体40Lに向けて繰り出されるコード47を支持するように設けられている。右側コード支持ガイド81Rは、躯体10側から右側羽体40Rに向けて繰り出されるコード47を支持するように設けられている。コード支持ガイド81は、コード47がその延伸方向に沿って移動可能なようにコード47を支持している。 The cord support guide 81 is provided at the tip of an arm member 66 that extends from the central axis 206 in an arm shape in the radial direction. The left cord support guide 81L is provided so as to support the cord 47 that is fed from the housing 10 side toward the left wing 40L. The right cord support guide 81R is provided so as to support the cord 47 that is fed from the housing 10 side toward the right wing 40R. The cord support guide 81 supports the cord 47 so that the cord 47 can move along the extending direction.
 コード支持体82は、左側コード支持ガイド81Lおよび右側コード支持ガイド81Rの間でコード47を支持するように設けられている。コード支持体82は、左側コード支持ガイド81Lの揺動中心である中心軸206と、右側コード支持ガイド81Rの揺動中心である中心軸206との間でコード47を支持するように設けられている。コード47は、コード支持体82に接続されている。 The cord support 82 is provided so as to support the cord 47 between the left cord support guide 81L and the right cord support guide 81R. The cord support 82 is provided so as to support the cord 47 between the central shaft 206 that is the swing center of the left cord support guide 81L and the central shaft 206 that is the swing center of the right cord support guide 81R. Yes. The cord 47 is connected to the cord support 82.
 羽ばたき装置1Bは、位置調整機構部50として、左側第3移動機構部86Lおよび右側第3移動機構部86Rと、第4移動機構部87とを有する。左側第3移動機構部86Lおよび右側第3移動機構部86Rを特に区別しない場合、単に「第3移動機構部86」という。 The flapping apparatus 1B includes a left third movement mechanism 86L, a right third movement mechanism 86R, and a fourth movement mechanism 87 as the position adjustment mechanism 50. When the left third moving mechanism 86L and the right third moving mechanism 86R are not particularly distinguished, they are simply referred to as “third moving mechanism 86”.
 左側第3移動機構部86Lおよび右側第3移動機構部86Rは、それぞれ、実施の形態1における左側第1移動機構部60Lおよび右側第1移動機構部60Rと同様の構造を有する。すなわち、左側第3移動機構部86Lは、Z軸(ヨー軸)に平行な中心軸206(第3軸)を中心に、左側コード支持ガイド81Lを揺動させるように構成されている。右側第3移動機構部86Rは、中心軸206(第3軸)を中心に、右側コード支持ガイド81Rを揺動させるように構成されている。 Left side third moving mechanism part 86L and right side third moving mechanism part 86R have structures similar to left side first moving mechanism part 60L and right side first moving mechanism part 60R in the first embodiment, respectively. That is, the left third movement mechanism 86L is configured to swing the left cord support guide 81L around a central axis 206 (third axis) parallel to the Z axis (yaw axis). The right third movement mechanism 86R is configured to swing the right cord support guide 81R about the central axis 206 (third axis).
 第4移動機構部87は、コード支持体82に連結されている。第4移動機構部87は、Y軸方向(ピッチ軸の軸方向)に、コード支持体82を移動させるように構成されている。第4移動機構部87は、支持プレート51上でコード支持体82を移動させるように構成されている。 The fourth moving mechanism 87 is connected to the cord support 82. The fourth moving mechanism unit 87 is configured to move the cord support 82 in the Y-axis direction (the axial direction of the pitch axis). The fourth moving mechanism unit 87 is configured to move the cord support 82 on the support plate 51.
 第4移動機構部87によりコード支持体82を+Y方向に移動させると、左側コード支持ガイド81Lおよび左側羽体40Lの間のコード長が長くなってコード47が緩むことになる。また、第4移動機構部87によりコード支持体82を-Y方向に移動させると、右側コード支持ガイド81Rおよび右側羽体40Rの間のコード長が長くなってコード47が緩むことになる。 When the cord support 82 is moved in the + Y direction by the fourth moving mechanism 87, the cord length between the left cord support guide 81L and the left wing 40L becomes long and the cord 47 is loosened. Further, when the cord support 82 is moved in the −Y direction by the fourth moving mechanism 87, the cord length between the right cord support guide 81R and the right wing 40R becomes longer and the cord 47 becomes loose.
 羽ばたき装置1Bは、ガイド部材83をさらに有する。ガイド部材83は、コード支持ガイド81の揺動中心である中心軸206の近傍において、コード47を支持するように設けられている。ガイド部材83は、コード支持体82から左側コード支持ガイド81Lおよび右側コード支持ガイド81Rに向けて繰り出されるコード47をそれぞれ支持するように設けられている。ガイド部材83は、回転可能な一対のローラから構成され、コード47を挟持するように設けられている。 The flapping apparatus 1B further includes a guide member 83. The guide member 83 is provided so as to support the cord 47 in the vicinity of the central axis 206 that is the center of oscillation of the cord support guide 81. The guide member 83 is provided so as to support the cord 47 that is fed from the cord support 82 toward the left cord support guide 81L and the right cord support guide 81R. The guide member 83 is composed of a pair of rotatable rollers, and is provided so as to sandwich the cord 47.
 図28および図29は、コード支持ガイドの前後方向への移動と、コード支持体の左右方向への移動とを示す上面図である。 28 and 29 are top views showing the movement of the cord support guide in the front-rear direction and the movement of the cord support in the left-right direction.
 図26から図29を参照して、本実施の形態においても、左右のコード支持ガイド81を前後方向に移動させ、コード支持体82を左右方向に移動させることによって、羽ばたき装置1Bを空間内の任意の位置に移動させることができる。 Referring to FIGS. 26 to 29, also in the present embodiment, the flapping apparatus 1B is moved in the space by moving the left and right cord support guides 81 in the front-rear direction and moving the cord support 82 in the left-right direction. It can be moved to any position.
 この際、コード支持ガイド81の揺動中心の近傍に設けられたガイド部材83によって、コード支持ガイド81の前後方向への移動の際にも、左側コード支持ガイド81Lおよび右側コード支持ガイド81Rの間に収められているコード47の長さはほぼ変化しない。これにより、コード支持体82の左右方向への移動によって、左右の羽体40と、左右のコード支持ガイド81との間のコード長を調整することができる。また、実施の形態1と同様に、コード支持体53の揺動中心である中心軸206と、羽体40の揺動中心である中心軸202と一致させることにより、コード支持ガイド81から、コード47が接続される後縁部42の位置(クリップ部材46)までの距離が、コード支持ガイド81の前後方向への移動に伴って変化しない。このため、ヨー軸、ロール軸およびピッチ軸の操舵トルクの独立性を高めることができる。 At this time, even when the cord support guide 81 is moved in the front-rear direction by the guide member 83 provided in the vicinity of the swing center of the cord support guide 81, it is between the left cord support guide 81L and the right cord support guide 81R. The length of the cord 47 housed in is almost unchanged. Accordingly, the cord length between the left and right wings 40 and the left and right cord support guides 81 can be adjusted by the movement of the cord support 82 in the left-right direction. Similarly to the first embodiment, the cord support guide 81 is used to make the cord support guide 81 match the center axis 206 that is the swing center of the cord support 53 and the center axis 202 that is the swing center of the wing body 40. The distance to the position (clip member 46) of the rear edge portion 42 to which 47 is connected does not change as the cord support guide 81 moves in the front-rear direction. For this reason, the independence of the steering torque of the yaw axis, roll axis, and pitch axis can be enhanced.
 このように構成された、本開示の実施の形態2における羽ばたき装置1Bによれば、実施の形態1に記載の効果を同様に奏することができる。 According to the flapping apparatus 1B according to the second embodiment of the present disclosure configured as described above, the effects described in the first embodiment can be similarly achieved.
 (実施の形態3)
 図30は、本開示の実施の形態3における羽ばたき装置を部分的に示す前面図である。図30中には、羽ばたき装置をその前方側から見た時のコード支持体301および第4移動機構部87が示されている。図31は、図30中のコード支持体を示す上面図である。
(Embodiment 3)
FIG. 30 is a front view partially showing the flapping apparatus according to the third embodiment of the present disclosure. FIG. 30 shows the cord support 301 and the fourth moving mechanism 87 when the flapping apparatus is viewed from the front side. FIG. 31 is a top view showing the cord support in FIG.
 本実施の形態における羽ばたき装置は、実施の形態2における羽ばたき装置1Bと比較して、基本的には同様の構造を有する。以下、重複する構造については、その説明を繰り返さない。 Compared with the flapping apparatus 1B in the second embodiment, the flapping apparatus in the present embodiment has basically the same structure. Hereinafter, the description of the overlapping structure will not be repeated.
 図30および図31を参照して、本実施の形態における羽ばたき装置は、実施の形態2におけるコード支持体82に替えて、コード支持体301を有する。 Referring to FIG. 30 and FIG. 31, the flapping apparatus in the present embodiment has a cord support 301 in place of the cord support 82 in the second embodiment.
 本実施の形態では、左側コード47Lが、躯体10および左側羽体40Lの間に懸架され、右側コード47Rが、躯体10および右側羽体40Rの間に懸架されている。左側コード47Lおよび右側コード47Rは、コード支持体301に接続されている。第4移動機構部87は、Y軸方向にコード支持体301を移動させるように構成されている。 In the present embodiment, the left cord 47L is suspended between the housing 10 and the left wing 40L, and the right cord 47R is suspended between the housing 10 and the right wing 40R. The left cord 47L and the right cord 47R are connected to the cord support 301. The fourth moving mechanism unit 87 is configured to move the cord support 301 in the Y-axis direction.
 コード支持体301は、線状体長さ調整機構部としてのコード長さ調整機構部310を有する。 The cord support 301 has a cord length adjustment mechanism 310 as a linear body length adjustment mechanism.
 コード長さ調整機構部310は、躯体10および羽体40の間に懸架されるコード47の長さを可変に調整するように構成されている。コード長さ調整機構部310は、躯体10および左側羽体40Lの間に懸架される左側コード47Lの長さを可変に調整し、躯体10および右側羽体40Rの間に懸架される右側コード47Rの長さを可変に調整するように構成されている。コード長さ調整機構部310は、躯体10および左側羽体40Lの間に懸架される左側コード47Lの長さと、躯体10および右側羽体40Rの間に懸架される右側コード47Rの長さとを、互いに独立して調整するように構成されている。 The cord length adjustment mechanism unit 310 is configured to variably adjust the length of the cord 47 suspended between the casing 10 and the wing 40. The cord length adjusting mechanism 310 variably adjusts the length of the left cord 47L suspended between the housing 10 and the left wing 40L, and the right cord 47R suspended between the housing 10 and the right wing 40R. It is configured to variably adjust the length. The cord length adjusting mechanism 310 determines the length of the left cord 47L suspended between the housing 10 and the left wing 40L and the length of the right cord 47R suspended between the housing 10 and the right wing 40R. It is configured to adjust independently of each other.
 コード長さ調整機構部310の構造について具体的に説明する。コード支持体301には、左側コードガイド313Lと、右側コードガイド313Rとが設けられている。左側コードガイド313Lおよび右側コードガイド313Rを特に区別しない場合、単に「コードガイド313」という。 The structure of the cord length adjusting mechanism 310 will be specifically described. The cord support 301 is provided with a left cord guide 313L and a right cord guide 313R. When the left code guide 313L and the right code guide 313R are not particularly distinguished, they are simply referred to as “code guide 313”.
 コードガイド313は、コード47が挿通可能な孔から構成されている。コードガイド313は、X-Y平面上で延びている。コードガイド313は、コード支持体301の外周面上の第1位置と、コード支持体301の外周面上の、第1位置からずれた第2位置との間において、コード支持体301を貫通している。 The cord guide 313 is configured by a hole through which the cord 47 can be inserted. The code guide 313 extends on the XY plane. The cord guide 313 passes through the cord support 301 between a first position on the outer peripheral surface of the cord support 301 and a second position on the outer peripheral surface of the cord support 301 that is shifted from the first position. ing.
 左側コードガイド313Lおよび右側コードガイド313Rには、それぞれ、左側コード47Lおよび右側コード47Rが挿通されている。 The left cord 47L and the right cord 47R are inserted into the left cord guide 313L and the right cord guide 313R, respectively.
 コード支持体301には、コード47をコード支持体301に留め付けるための左側ネジ314Lおよび右側ネジ314Rが設けられている。左側ネジ314Lおよび右側ネジ314Rを特に区別しない場合、単に「ネジ314」という。 The cord support 301 is provided with a left screw 314L and a right screw 314R for fastening the cord 47 to the cord support 301. When the left screw 314L and the right screw 314R are not particularly distinguished, they are simply referred to as “screws 314”.
 左側ネジ314Lは、その先端部が左側コードガイド313Lに達するように設けられている。右側ネジ314Rは、その先端部が右側コードガイド313Rに達するように設けられている。左側コードガイド313Lに挿通された左側コード47Lは、左側ネジ314Lの先端部と、左側コードガイド313Lの内壁との間に挟持されることによって、コード支持体301に接続されている。右側コードガイド313Rに挿通された右側コード47Rは、右側ネジ314Rの先端部と、右側コードガイド313Rの内壁との間に挟持されることによって、コード支持体301に接続されている。 The left screw 314L is provided such that the tip thereof reaches the left code guide 313L. The right screw 314R is provided such that the tip thereof reaches the right code guide 313R. The left cord 47L inserted through the left cord guide 313L is connected to the cord support 301 by being sandwiched between the tip of the left screw 314L and the inner wall of the left cord guide 313L. The right cord 47R inserted through the right cord guide 313R is connected to the cord support 301 by being sandwiched between the tip of the right screw 314R and the inner wall of the right cord guide 313R.
 このような構成において、左側ネジ314Lを緩めるとともに、左側コード47Lを、その線状に延びる方向に移動させ、左側コード47Lがコード支持体301により支持される位置を変更することによって、躯体10および左側羽体40Lの間に懸架される左側コード47Lの長さを可変に調整することができる。右側ネジ314Rを緩めるとともに、右側コード47Rを、その線状に延びる方向に移動させ、右側コード47Rがコード支持体301により支持される位置を変更することによって、躯体10および右側羽体40Rの間に懸架される右側コード47Rの長さを可変に調整することができる。 In such a configuration, the left screw 314L is loosened and the left cord 47L is moved in the linearly extending direction to change the position at which the left cord 47L is supported by the cord support 301, and thereby the housing 10 and The length of the left cord 47L suspended between the left wings 40L can be variably adjusted. While loosening the right screw 314R and moving the right cord 47R in the linearly extending direction to change the position where the right cord 47R is supported by the cord support 301, the space between the housing 10 and the right wing 40R is changed. It is possible to variably adjust the length of the right cord 47R suspended on the cable.
 なお、コード支持体301にコードガイド313が設けられない構成としてもよい。この場合、たとえば、コード47は、ネジ314の頭部と、コード支持体301との間に挟持されることによって、コード支持体301に接続される。 Note that the cord support 301 may not be provided with the cord guide 313. In this case, for example, the cord 47 is connected to the cord support 301 by being sandwiched between the head of the screw 314 and the cord support 301.
 羽ばたき装置の姿勢を変えるためのトルクは、コード長のほかにも、羽体40の形状や弾性等の影響により変化する。一方、羽ばたき装置の稼働時間が長くなると、羽体40の形状や弾性等は、経時変化する。この場合、羽体40の形状や弾性等の僅かな変化が、羽ばたき装置の姿勢を変えるためのトルクを変化させるため、羽ばたき装置の姿勢(たとえば、左右前後に中立を保つ姿勢)を維持するための条件が変動してしまう。 The torque for changing the posture of the flapping device changes due to the influence of the shape and elasticity of the wing 40 in addition to the cord length. On the other hand, when the operation time of the flapping apparatus becomes longer, the shape, elasticity, and the like of the wing body 40 change with time. In this case, a slight change in the shape or elasticity of the wing body 40 changes the torque for changing the posture of the flapping device, so that the posture of the flapping device (for example, a posture that maintains neutrality in the left and right directions) is maintained. Will fluctuate.
 PID制御(Proportional-Integral-Differential Controller)を行なう場合、僅かなトルクの変化であれば、羽ばたき装置の姿勢を保つことは可能であるが、たとえば、トルクが大きく変化してしまい、トルクの中立位置が、第4移動機構部87により移動可能な限界位置の近くまで偏ってしまった場合、コード支持体301を限界位置に近い側へは僅かしか移動させることができない。このような場合に、ある方向への羽ばたき装置の姿勢を立て直すためのトルクを、必要な大きさまで発生させることができず、その結果、羽ばたき装置の姿勢を安定化させることができないおそれがある。 When performing PID control (Proportional-Integral-Differential Controller), if the torque changes slightly, it is possible to maintain the posture of the flapping device. However, for example, the torque changes greatly, and the neutral position of the torque However, if the fourth moving mechanism unit 87 is biased to a position near the limit position where it can move, the cord support 301 can be moved only slightly to the side close to the limit position. In such a case, the torque for reestablishing the posture of the flapping device in a certain direction cannot be generated to a necessary magnitude, and as a result, the posture of the flapping device may not be stabilized.
 本実施の形態における羽ばたき装置においては、コード支持体301にコード長さ調整機構部310を設けることによって、左右のコード長を独立して調整することができる。羽ばたき装置を稼働させている間の羽体40の経時変化により、機体製造時に設定した条件からトルクの値が大きくずれた場合であっても、左右のコード長を独立して調整することにより、ユーザがトルクを調整することが可能となり、その結果、羽ばたき装置の姿勢を安定化させることができる。 In the flapping apparatus according to the present embodiment, by providing the cord support 301 with the cord length adjustment mechanism 310, the left and right cord lengths can be adjusted independently. By adjusting the left and right cord lengths independently even if the value of the torque deviates greatly from the conditions set during the manufacture of the fuselage due to changes over time during the operation of the flapping apparatus, The user can adjust the torque, and as a result, the posture of the flapping apparatus can be stabilized.
 図32および図33は、図30および図31中のコード支持体において、コード長を調整する方法を説明するための上面図である。図32および図33中では、羽体40におけるコード47の支持端が、クリップ部材46により示されている。 32 and 33 are top views for explaining a method of adjusting the cord length in the cord support in FIGS. 30 and 31. FIG. In FIG. 32 and FIG. 33, the support end of the cord 47 in the wing body 40 is shown by a clip member 46.
 図32を参照して、一例として、左側羽体40Lの形状および弾性等が変化することにより、コード支持体301が同じ位置にあっても、左側羽体40Lの迎え角が小さく(水平に近い角度)になってしまう場合を想定する。この場合、左側羽体40Lの浮上力が変化するため、左側羽体40Lの浮上力と右側羽体40Rの浮上力とのバランスによって決まるトルクも変化してしまう。 Referring to FIG. 32, as an example, the left wing 40L has a small angle of attack (close to horizontal) even when the cord support 301 is in the same position by changing the shape and elasticity of the left wing 40L. (Angle) is assumed. In this case, since the levitation force of the left wing 40L changes, the torque determined by the balance between the levitation force of the left wing 40L and the levitation force of the right wing 40R also changes.
 図33を参照して、コード長さ調整機構部310において、左側ネジ314Lを緩めて、左側コード47Lを左側コードガイド313Lに引き込むように移動させる。左側コード47Lを支持する位置が定まった後、左側ネジ314Lを締める。躯体10および左側羽体40Lの間に懸架される左側コード47Lの長さを短くすることによって、左側羽体40Lの迎え角を大きくすることができ、この結果、トルクのバランスの調整も可能となる。 33, in the cord length adjusting mechanism 310, the left screw 314L is loosened and moved so that the left cord 47L is pulled into the left cord guide 313L. After the position for supporting the left cord 47L is determined, the left screw 314L is tightened. By shortening the length of the left cord 47L suspended between the casing 10 and the left wing 40L, the angle of attack of the left wing 40L can be increased, and as a result, the balance of torque can be adjusted. Become.
 本実施の形態では、左右のコード長を独立して調整することが可能であるため、左側羽体40Lおよび右側羽体40Rの経時変化により浮上力に様々な変化が生じた場合であっても、トルクのバランスを適切に調整することができる。 In the present embodiment, since the left and right cord lengths can be adjusted independently, even when various changes occur in the levitation force due to changes over time in the left wing 40L and the right wing 40R. The torque balance can be adjusted appropriately.
 さらに本実施の形態では、コード支持体301に、コード47をガイドするためのコードガイド313が設けられている。このような構成により、コード長を調整する際にコード47の移動方向を規制することが可能となり、コード長の調整作業が容易になる。 Further, in the present embodiment, the cord support 301 is provided with a cord guide 313 for guiding the cord 47. With such a configuration, it is possible to regulate the moving direction of the cord 47 when adjusting the cord length, and the cord length can be easily adjusted.
 図34は、図30および図31中のコード支持体の第1変形例を示す前面図である。図35は、図30および図31中のコード支持体の第2変形例を示す上面図である。図34および図35は、それぞれ、図30および図31に対応する図である。 FIG. 34 is a front view showing a first modification of the cord support in FIGS. 30 and 31. FIG. FIG. 35 is a top view showing a second modification of the cord support in FIGS. 30 and 31. 34 and 35 correspond to FIGS. 30 and 31, respectively.
 図34を参照して、コード支持体301は、底面301bを有する。コード支持体301は、底面301bが第4移動機構部87と対向するように設けられている。コード支持体301は、第4移動機構部87に対して着脱可能に取り付けられている。 Referring to FIG. 34, the cord support 301 has a bottom surface 301b. The cord support 301 is provided so that the bottom surface 301 b faces the fourth moving mechanism portion 87. The cord support 301 is detachably attached to the fourth moving mechanism portion 87.
 本変形例では、コードガイド313が、コード支持体301の底面301bに設けられている。コードガイド313は、底面301bから凹む溝形状を有する。コードガイド313に挿通されたコード47は、ネジ314の先端部と、第4移動機構部87との間に挟持されることによって、コード支持体301に接続されている。 In the present modification, the cord guide 313 is provided on the bottom surface 301b of the cord support 301. The code guide 313 has a groove shape that is recessed from the bottom surface 301b. The cord 47 inserted through the cord guide 313 is connected to the cord support 301 by being sandwiched between the tip end portion of the screw 314 and the fourth moving mechanism portion 87.
 このような構成によれば、コード長の調整時にコード47が外部に露出する領域が大きくなるため、コード長の調整作業が容易になる。 According to such a configuration, since the area where the cord 47 is exposed to the outside when the cord length is adjusted is increased, the cord length adjustment operation is facilitated.
 図35を参照して、本変形例では、コード支持体301に、余剰コード保持部321が設けられている。余剰コード保持部321は、コードガイド313から延出する余ったコード47(余剰コード47)をコード支持体301に保持するように構成されている。 Referring to FIG. 35, in this modification, the cord support 301 is provided with an excess cord holding portion 321. The surplus cord holding portion 321 is configured to hold the surplus cord 47 (surplus cord 47) extending from the cord guide 313 on the cord support 301.
 より具体的には、余剰コード保持部321は、コード支持体301の外周面に開口するスリット形状を有する。コードガイド313から延出する余剰コード47は、余剰コード保持部321に圧入されることによって、コード支持体301に保持されている。 More specifically, the surplus cord holding portion 321 has a slit shape that opens to the outer peripheral surface of the cord support 301. The surplus cord 47 extending from the cord guide 313 is held on the cord support 301 by being press-fitted into the surplus cord holding portion 321.
 このような構成によれば、第4移動機構部87によりコード支持体301を移動させる際に、余剰コード47がコード支持体301の移動を阻害する可能性を抑制することができる。 According to such a configuration, when the cord support 301 is moved by the fourth moving mechanism 87, the possibility that the surplus cord 47 inhibits the movement of the cord support 301 can be suppressed.
 このように構成された、本開示の実施の形態3における羽ばたき装置によれば、実施の形態1および2に記載の効果を同様に奏することができる。 According to the flapping apparatus according to the third embodiment of the present disclosure configured as described above, the effects described in the first and second embodiments can be similarly achieved.
 (実施の形態4)
 図36は、本開示の実施の形態4における羽ばたき装置を部分的に示す前面図である。図36中には、羽ばたき装置をその前方側から見た時のコード支持体331および第4移動機構部87が示されている。図37は、図36中のコード支持体を示す上面図である。
(Embodiment 4)
FIG. 36 is a front view partially showing the flapping apparatus according to the fourth embodiment of the present disclosure. FIG. 36 shows the cord support 331 and the fourth moving mechanism 87 when the flapping apparatus is viewed from the front side thereof. FIG. 37 is a top view showing the cord support in FIG.
 本実施の形態における羽ばたき装置は、実施の形態3における羽ばたき装置と比較して、基本的には同様の構造を有する。以下、重複する構造については、その説明を繰り返さない。 Compared with the flapping apparatus in the third embodiment, the flapping apparatus in the present embodiment has basically the same structure. Hereinafter, the description of the overlapping structure will not be repeated.
 図36および図37を参照して、本実施の形態における羽ばたき装置は、実施の形態3におけるコード支持体301に替えて、左側コード支持体331Lおよび右側コード支持体331Rを有する。左側コード支持体331Lおよび右側コード支持体331Rを特に区別しない場合には、単に「コード支持体331」という。 36 and 37, the flapping apparatus in the present embodiment has a left cord support 331L and a right cord support 331R in place of cord support 301 in the third embodiment. When the left cord support 331L and the right cord support 331R are not particularly distinguished, they are simply referred to as “cord support 331”.
 本実施の形態では、左側コード47Lが、左側コード支持体331Lに接続され、右側コード47Rが、右側コード支持体331Rに接続されている。コード47は、たとえば、接着によりコード支持体331に接続されている。第4移動機構部87は、Y軸方向にコード支持体331を移動させるように構成されている。 In the present embodiment, the left cord 47L is connected to the left cord support 331L, and the right cord 47R is connected to the right cord support 331R. The cord 47 is connected to the cord support 331 by adhesion, for example. The fourth movement mechanism unit 87 is configured to move the cord support 331 in the Y-axis direction.
 左側コード支持体331Lおよび右側コード支持体331Rは、上下方向(Z軸方向)において互いに重ね合わされている。右側コード支持体331Rは、上方から左側コード支持体331Lに重ね合わされている。左側コード支持体331Lおよび右側コード支持体331Rは、Y軸方向にスライド可能に組み合わされている。左側コード支持体331Lおよび右側コード支持体331Rは、第4移動機構部87に対して着脱可能に取り付けられている。 The left cord support 331L and the right cord support 331R are overlapped with each other in the vertical direction (Z-axis direction). The right cord support 331R is superimposed on the left cord support 331L from above. The left cord support 331L and the right cord support 331R are combined so as to be slidable in the Y-axis direction. The left cord support 331L and the right cord support 331R are detachably attached to the fourth moving mechanism portion 87.
 コード支持体331は、実施の形態3におけるコード長さ調整機構部310に替えて、コード長さ調整機構部340を有する。 The cord support 331 has a cord length adjustment mechanism 340 instead of the cord length adjustment mechanism 310 in the third embodiment.
 コード長さ調整機構部340の構造について具体的に説明する。右側コード支持体331Rには、ネジ挿入孔342が設けられている。ネジ挿入孔342は、上下方向において右側コード支持体331Rを貫通し、左側コード支持体331Lとの合わせ面に開口している。ネジ挿入孔342は、Y軸方向が長手方向となる長孔形状を有する。 The structure of the cord length adjusting mechanism 340 will be specifically described. A screw insertion hole 342 is provided in the right cord support 331R. The screw insertion hole 342 passes through the right cord support 331R in the up-down direction, and opens on the mating surface with the left cord support 331L. The screw insertion hole 342 has a long hole shape whose longitudinal direction is the Y-axis direction.
 コード支持体331には、ネジ341が設けられている。ネジ341は、ネジ挿入孔342に挿通されるとともに、左側コード支持体331Lに螺合されている。右側コード支持体331Rおよび左側コード支持体331Lは、ネジ341によって互いに一体とされている。 The screw 341 is provided on the cord support 331. The screw 341 is inserted into the screw insertion hole 342 and is screwed to the left cord support 331L. The right cord support 331R and the left cord support 331L are integrated with each other by a screw 341.
 このような構成において、ネジ341を緩めるとともに、左側コード支持体331LをY軸方向に移動させ、左側コード支持体331Lおよび左側羽体40Lの間の距離を変化させることによって、躯体10および左側羽体40Lの間に懸架される左側コード47Lの長さを可変に調整することができる。ネジ341を緩めるとともに、右側コード支持体331RをY軸方向に移動させ、右側コード支持体331Rおよび右側羽体40Rの間の距離を変化させることによって、躯体10および右側羽体40Rの間に懸架される右側コード47Rの長さを可変に調整することができる。 In such a configuration, the screw 341 is loosened and the left cord support 331L is moved in the Y-axis direction to change the distance between the left cord support 331L and the left wing 40L. The length of the left cord 47L suspended between the bodies 40L can be variably adjusted. While loosening the screw 341 and moving the right cord support 331R in the Y-axis direction to change the distance between the right cord support 331R and the right wing 40R, the suspension is suspended between the housing 10 and the right wing 40R. The length of the right cord 47R can be adjusted variably.
 このように構成された、本開示の実施の形態4における羽ばたき装置によれば、実施の形態1から3に記載の効果を同様に奏することができる。 According to the flapping apparatus in the fourth embodiment of the present disclosure configured as described above, the effects described in the first to third embodiments can be similarly achieved.
 (実施の形態5)
 図38は、本開示の実施の形態5における羽ばたき装置を部分的に示す前面図である。図38中には、羽ばたき装置をその前方側から見た時のコード支持体351が示されている。
(Embodiment 5)
FIG. 38 is a front view partially showing the flapping apparatus according to the fifth embodiment of the present disclosure. FIG. 38 shows a cord support 351 when the flapping device is viewed from the front side thereof.
 本実施の形態における羽ばたき装置は、実施の形態3における羽ばたき装置と比較して、基本的には同様の構造を有する。以下、重複する構造については、その説明を繰り返さない。 Compared with the flapping apparatus in the third embodiment, the flapping apparatus in the present embodiment has basically the same structure. Hereinafter, the description of the overlapping structure will not be repeated.
 図38を参照して、本実施の形態における羽ばたき装置は、実施の形態3におけるコード支持体301に替えて、コード支持体351を有する。 38, the flapping apparatus in the present embodiment has a cord support 351 instead of cord support 301 in the third embodiment.
 本実施の形態では、左側コード47Lおよび右側コード47Rが、コード支持体351に接続されている。コード47は、たとえば、接着によりコード支持体351に接続されている。第4移動機構部87は、Y軸方向にコード支持体351を移動させるように構成されている。 In the present embodiment, the left cord 47L and the right cord 47R are connected to the cord support 351. The cord 47 is connected to the cord support 351 by adhesion, for example. The fourth moving mechanism unit 87 is configured to move the cord support 351 in the Y-axis direction.
 コード支持体351は、実施の形態3におけるコード長さ調整機構部310に替えて、コード長さ調整機構部350を有する。 The cord support 351 has a cord length adjustment mechanism 350 instead of the cord length adjustment mechanism 310 in the third embodiment.
 コード長さ調整機構部350の構造について具体的に説明する。コード支持体351には、左側ネジ361Lおよび右側ネジ361Rが設けられている。左側ネジ361Lおよび右側ネジ361Rを特に区別しない場合、単に「ネジ361」という。左側ネジ361Lおよび右側ネジ361Rは、Y軸方向に並んで設けられている。ネジ361は、正回転および逆回転の双方の方向に回転可能な状態により、コード支持体351に螺合されている。 The structure of the cord length adjustment mechanism unit 350 will be specifically described. The cord support 351 is provided with a left screw 361L and a right screw 361R. When the left screw 361L and the right screw 361R are not particularly distinguished, they are simply referred to as “screws 361”. The left screw 361L and the right screw 361R are provided side by side in the Y-axis direction. The screw 361 is screwed to the cord support 351 so as to be rotatable in both the forward and reverse directions.
 左側コード47Lは、左側ネジ361Lに巻き回されている。右側コード47Rは、右側ネジ361Rに巻き回されている。コード47は、コード支持体351への接続端の手前において、ネジ361に巻き回されている。 The left cord 47L is wound around the left screw 361L. The right cord 47R is wound around the right screw 361R. The cord 47 is wound around the screw 361 before the connection end to the cord support 351.
 このような構成において、左側ネジ361Lを正逆方向に回転させ、左側ネジ361Lに巻き回されている左側コード47Lの長さを変化させることによって、躯体10および左側羽体40Lの間に懸架される左側コード47Lの長さを可変に調整することができる。右側ネジ361Rを正逆方向に回転させ、右側ネジ361Rに巻き回されている右側コード47Rの長さを変化させることによって、躯体10および右側羽体40Rの間に懸架される右側コード47Rの長さを可変に調整することができる。 In such a configuration, the left screw 361L is rotated in the forward and reverse directions to change the length of the left cord 47L wound around the left screw 361L, thereby being suspended between the housing 10 and the left wing 40L. The length of the left cord 47L can be variably adjusted. The length of the right cord 47R suspended between the housing 10 and the right wing 40R is changed by rotating the right screw 361R in the forward and reverse directions and changing the length of the right cord 47R wound around the right screw 361R. The thickness can be adjusted variably.
 このように構成された、本開示の実施の形態5における羽ばたき装置によれば、実施の形態1から3に記載の効果を同様に奏することができる。 According to the flapping apparatus in the fifth embodiment of the present disclosure configured as described above, the effects described in the first to third embodiments can be similarly achieved.
 (実施の形態6)
 図39は、本開示の実施の形態6における羽ばたき装置を部分的に示す上面図である。図39中には、実施の形態1におけるコード支持体53が示されている。
(Embodiment 6)
FIG. 39 is a top view partially illustrating the flapping apparatus according to the sixth embodiment of the present disclosure. FIG. 39 shows the cord support 53 according to the first embodiment.
 本実施の形態では、実施の形態3において説明したコード長さ調整機構部310の構造を、実施の形態1における羽ばたき装置に適用した場合について説明する。以下、重複する構造については、その説明を繰り返さない。 In the present embodiment, a case will be described in which the structure of the cord length adjustment mechanism unit 310 described in the third embodiment is applied to the flapping apparatus in the first embodiment. Hereinafter, the description of the overlapping structure will not be repeated.
 図39を参照して、本実施の形態では、コード支持体53が、線状体長さ調整機構部としてのコード長さ調整機構部410を有する。コード長さ調整機構部410は、躯体10および羽体40の間に懸架されるコード47の長さを可変に調整するように構成されている。 39, in the present embodiment, the cord support 53 includes a cord length adjustment mechanism 410 serving as a linear body length adjustment mechanism. The cord length adjusting mechanism 410 is configured to variably adjust the length of the cord 47 suspended between the housing 10 and the wing 40.
 コード長さ調整機構部410の構造について具体的に説明する。コード支持体53には、コードガイド411が設けられている。コードガイド411は、コード47が挿通可能な孔から構成されている。コードガイド411は、コード支持体53の回動中心である中心軸207の周りで周方向に延びている。コードガイド411には、コード47が挿通されている。 The structure of the cord length adjusting mechanism 410 will be specifically described. The cord support 53 is provided with a cord guide 411. The code guide 411 includes a hole through which the code 47 can be inserted. The cord guide 411 extends in the circumferential direction around a central axis 207 that is the center of rotation of the cord support 53. A cord 47 is inserted through the cord guide 411.
 コード支持体53には、コード47をコード支持体53に留め付けるためのネジ412が設けられている。ネジ412は、その先端部がコードガイド411に達するように設けられている。コードガイド411に挿通されたコード47は、ネジ412の先端部と、コードガイド411の内壁との間に挟持されることによって、コード支持体53に接続されている。 The cord support 53 is provided with a screw 412 for fastening the cord 47 to the cord support 53. The screw 412 is provided so that the tip portion thereof reaches the code guide 411. The cord 47 inserted through the cord guide 411 is connected to the cord support 53 by being sandwiched between the tip of the screw 412 and the inner wall of the cord guide 411.
 このような構成において、ネジ412を緩めるとともに、コード47を、その線状に延びる方向に移動させ、コード47がコード支持体53により支持される位置を変更することによって、躯体10および羽体40の間に懸架されるコード47の長さを可変に調整することができる。 In such a configuration, the screw 412 is loosened, the cord 47 is moved in the linearly extending direction, and the position where the cord 47 is supported by the cord support 53 is changed. The length of the cord 47 suspended between the two can be variably adjusted.
 なお、左側コード支持体53Lおよび右側コード支持体53Rは、共通して上記に説明したコード長さ調整機構部410を有しており、本実施の形態においても、躯体10および左側羽体40Lの間に懸架される左側コード47Lの長さと、躯体10および右側羽体40Rの間に懸架される右側コード47Rの長さとを、互いに独立して調整することが可能である。 The left cord support 53L and the right cord support 53R have the cord length adjustment mechanism 410 described above in common, and in this embodiment, the housing 10 and the left wing 40L The length of the left cord 47L suspended between and the length of the right cord 47R suspended between the housing 10 and the right wing 40R can be adjusted independently of each other.
 このように構成された、本開示の実施の形態6における羽ばたき装置によれば、実施の形態1および3に記載の効果を同様に奏することができる。 According to the flapping apparatus in the sixth embodiment of the present disclosure configured as described above, the effects described in the first and third embodiments can be similarly achieved.
 実施の形態3から6における羽ばたき装置において、トルクの発生状態の変化を検出するセンサを設け、センサにおける検出結果に基づいて、コード長さ調整機構部におけるコード長の調整を自動で行なう構成としてもよい。トルクの発生状態の変化を検出するセンサとしては、たとえば、角加速度センサや姿勢センサ、羽体の傾きを検出するセンサ等を用いることができる。このような構成によれば、ユーザが手間をかけずに、羽体の経時変化によるトルクのずれを補正することができる。 In the flapping apparatus according to the third to sixth embodiments, a sensor that detects a change in the torque generation state is provided, and the cord length adjustment mechanism unit automatically adjusts the cord length based on the detection result of the sensor. Good. As a sensor for detecting a change in the torque generation state, for example, an angular acceleration sensor, a posture sensor, a sensor for detecting the inclination of the wings, or the like can be used. According to such a configuration, it is possible to correct the torque deviation due to the temporal change of the wing without the user's effort.
 以下、本開示の構成と、本開示により奏される作用効果とについて、まとめて説明する。 Hereinafter, the configuration of the present disclosure and the effects achieved by the present disclosure will be described together.
 本開示に従った羽ばたき装置は、躯体と、躯体に搭載されるアクチュエータと、可撓性を有し、前後に揺動運動することによって浮上力を発生する一対の羽体と、躯体と、一対の羽体との間で懸架される線状体とを備える。羽体は、アクチュエータから揺動運動が入力される前縁部と、アクチュエータから前縁部への揺動運動の入力に対して前縁部よりも遅れて動作し、線状体が接続される後縁部とを含む。羽ばたき装置は、躯体側で線状体を支持する支持部と、支持部を移動させることにより支持部の位置を可変に調整する位置調整機構部とを備える。 A flapping apparatus according to the present disclosure includes a casing, an actuator mounted on the casing, a pair of wings that have flexibility and generate levitation force by swinging back and forth, a casing, and a pair of And a linear body suspended between the wings. The wing body operates behind the front edge portion to which the swing motion is input from the actuator and the swing motion input from the actuator to the front edge portion, and the linear body is connected. And a trailing edge. The flapping apparatus includes a support unit that supports the linear body on the housing side, and a position adjustment mechanism unit that variably adjusts the position of the support unit by moving the support unit.
 このように構成された羽ばたき装置によれば、羽体が、その前縁部および後縁部の間において羽体の移動方向に対して傾いた姿勢をとりながら前後に揺動運動することにより、飛行に必要な推力を得る。この際、位置調整機構部により支持部を移動させると、線状体によって後縁部の動作が拘束される度合い、および/または、タイミングが変化する。このため、支持部の位置を可変に調整することによって、羽ばたき装置の飛行形態を制御することができる。したがって、本開示によれば、各種の飛行形態を実現するための機構を、簡易な構成により得ることができる。 According to the flapping apparatus configured as described above, the wing body swings back and forth while taking a posture inclined with respect to the moving direction of the wing body between the front edge portion and the rear edge portion, Get the thrust needed for flight. At this time, when the support portion is moved by the position adjusting mechanism portion, the degree and / or timing at which the operation of the rear edge portion is restrained by the linear body changes. For this reason, the flight form of the flapping apparatus can be controlled by variably adjusting the position of the support portion. Therefore, according to the present disclosure, a mechanism for realizing various flight modes can be obtained with a simple configuration.
 また好ましくは、前縁部は、羽体の揺動運動に伴って、ロール軸およびピッチ軸を含む第1平面内であって、前方切り返し位置および後方切り返し位置の間で往復移動する。位置調整機構部は、第1平面に平行な第2平面内であって、ロール軸の軸方向において、前方切り返し位置および後方切り返し位置から等距離にある第1位置と、ロール軸の軸方向において、後方切り返し位置よりも前方切り返し位置に寄った第2位置と、ロール軸の軸方向において、前方切り返し位置よりも後方切り返し位置に寄った第3位置とを含む範囲で、支持部を移動させる第1移動機構部を含む。 Further preferably, the front edge portion reciprocates between the front turning position and the rear turning position in the first plane including the roll axis and the pitch axis in accordance with the swinging motion of the wing body. The position adjusting mechanism is in a second plane parallel to the first plane, and in the axial direction of the roll axis, the first position is equidistant from the front turning position and the rear turning position, and in the axial direction of the roll axis. The support unit is moved in a range including a second position closer to the front turning position than the rear turning position and a third position closer to the rear turning position than the front turning position in the axial direction of the roll shaft. 1 moving mechanism part is included.
 さらに好ましくは、第1移動機構部は、ヨー軸に平行な第1軸を中心に、支持部を揺動させる。 More preferably, the first moving mechanism section swings the support section about a first axis parallel to the yaw axis.
 このように構成された羽ばたき装置によれば、主に、線状体により後縁部の動作が拘束されるタイミングを意図的に変化させることによって、羽ばたき装置の飛行形態を制御することができる。 According to the flapping apparatus configured in this way, the flight form of the flapping apparatus can be controlled mainly by intentionally changing the timing at which the movement of the trailing edge is restrained by the linear body.
 さらに好ましくは、第1軸は、羽体の揺動中心軸と一致する。
 このように構成された羽ばたき装置によれば、第1移動機構部による支持部の移動がロールの操舵トルクに与える影響を小さくすることができる。
More preferably, the first axis coincides with the swing center axis of the wing.
According to the flapping apparatus configured as described above, the influence of the movement of the support portion by the first moving mechanism portion on the steering torque of the roll can be reduced.
 また好ましくは、位置調整機構部は、躯体および羽体の間における線状体の張力が変化するように、支持部を移動させる第2移動機構部を含む。 Also preferably, the position adjusting mechanism includes a second moving mechanism that moves the support so that the tension of the linear body between the housing and the wing changes.
 さらに好ましくは、第2移動機構部は、ピッチ軸の軸方向に支持部を移動させる。
 このように構成された羽ばたき装置によれば、主に、線状体により後縁部の動作が拘束される度合いを意図的に変化させることによって、羽ばたき装置の飛行形態を制御することができる。
More preferably, the second moving mechanism unit moves the support unit in the axial direction of the pitch axis.
According to the flapping apparatus configured as described above, the flight form of the flapping apparatus can be controlled mainly by intentionally changing the degree of restraint of the operation of the trailing edge by the linear body.
 また好ましくは、支持部は、線状体を、ヨー軸に平行な第2軸を中心に回動可能に支持する。 Also preferably, the support portion supports the linear body so as to be rotatable about a second axis parallel to the yaw axis.
 このように構成された羽ばたき装置によれば、アクチュエータにおけるエネルギー効率を高めたり、線状体の耐久性を向上させたりすることができる。 According to the flapping apparatus configured as described above, the energy efficiency of the actuator can be increased, and the durability of the linear body can be improved.
 また好ましくは、線状体は、一対の羽体の一方、躯体、および、一対の羽体の他方に渡って懸架される。支持部として、躯体側から一対の羽体の一方に向けて繰り出される線状体を支持する第1支持部と、躯体側から一対の羽体の他方に向けて繰り出される線状体を支持する第2支持部と、第1支持部および第2支持部の間で線状体を支持する第3支持部とが設けられる。位置調整機構部は、第1支持部および第2支持部を、ヨー軸に平行な第3軸を中心に揺動させる第3移動機構部と、第3支持部を、ピッチ軸の軸方向に移動させる第4移動機構部とを含む。 Also preferably, the linear body is suspended over one of the pair of wings, the housing, and the other of the pair of wings. As a support part, the 1st support part which supports the linear body extended toward one side of a pair of wings from a housing side, and the linear body extended toward the other of a pair of wings from a housing side are supported. A second support part and a third support part for supporting the linear body between the first support part and the second support part are provided. The position adjustment mechanism includes a third moving mechanism that swings the first support and the second support around a third axis that is parallel to the yaw axis, and the third support that extends in the axial direction of the pitch axis. A fourth moving mechanism unit to be moved.
 このように構成された羽ばたき装置によれば、線状体により後縁部の動作が拘束される度合いおよびタイミングを変化させることによって、羽ばたき装置の飛行形態を制御することができる。 According to the flapping apparatus configured in this way, the flight form of the flapping apparatus can be controlled by changing the degree and timing at which the movement of the trailing edge is restrained by the linear body.
 また好ましくは、支持部は、躯体および羽体の間に懸架される線状体の長さを可変に調整する線状体長さ調整機構部を有する。 Also preferably, the support section has a linear body length adjustment mechanism that variably adjusts the length of the linear body suspended between the housing and the wing.
 このように構成された羽ばたき装置によれば、羽体の経時変化により浮上力に種々の変化が生じることがあっても、躯体および羽体の間に懸架される線状体の長さを、所望の飛行形態が得られるように調整することができる。 According to the flapping apparatus configured in this way, even if various changes occur in the levitation force due to the aging of the wings, the length of the linear body suspended between the skeleton and the wings, Adjustments can be made to obtain the desired flight configuration.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本開示は、主に、羽体が揺動運動することにより浮上力を得る羽ばたき装置に適用される。 The present disclosure is mainly applied to a flapping apparatus that obtains a levitation force by a wing swinging motion.
 1A,1B 装置、10 躯体、11 下フレーム、12 上フレーム、13 中間フレーム、15 ステム、16a,16b スライドガイド、18 ガイドシャフト、18L 左側ガイドシャフト、18R 右側ガイドシャフト、20 主回転電動機、20a 出力シャフト、20b,31b,31c,32b ギヤ、30 動力伝達機構、30A 回転運動伝達部、30B 運動変換部、31 第1伝達部材、31a 第1接続ロッド、32 第2伝達部材、32a 第2接続ロッド、32c ディスク、33 クランクアーム、34a,34b クランクピン、35 スライダ、36 弾性ベルト、37 回転体、37L 左側回転体、37R 右側回転体、38 マスト支持体、38L 左側マスト支持体、38R 右側マスト支持体、39 マスト、39L 左側マスト、39R 右側マスト、40 羽体、40L 左側羽体、40R 右側羽体、41 前縁部、42 後縁部、43 付け根部、44 先端部、46 クリップ部材、47 コード、47L 左側コード、47R 右側コード、50 位置調整機構部、51 支持プレート、53,82 コード支持体、53L 左側コード支持体、53R 右側コード支持体、54 ベアリング、60 第1移動機構部、60L 左側第1移動機構部、60R 右側第1移動機構部、61 第1副回転電動機、62 ベース部、63,64b 円筒ウォーム、64,73 ギヤユニット、64a,65 ウォームホイール、66 アーム部材、67 シャフト、70 第2移動機構部、71 第2副回転電動機、71a 出力軸、73a スパーギヤ、73b 送りねじ、74 ナット、81 コード支持ガイド、81L 左側コード支持ガイド、81R 右側コード支持ガイド、83 ガイド部材、86 第3移動機構部、86L 左側第3移動機構部、86R 右側第3移動機構部、87 第4移動機構部、201,202,206,207,221,222,223,224 中心軸、210 仮想曲面、211 第1平面、213 第2平面、301,331,351 コード支持体、301b 底面、310,340,350,410 コード長さ調整機構部、313,411 コードガイド、313L 左側コードガイド、313R 右側コードガイド、314,341,361,412 ネジ、314L,361L 左側ネジ、314R,361R 右側ネジ、321 余剰コード保持部、331L 左側コード支持体、331R 右側コード支持体、342 ネジ挿入孔。 1A, 1B device, 10 housing, 11 lower frame, 12 upper frame, 13 intermediate frame, 15 stem, 16a, 16b slide guide, 18 guide shaft, 18L left guide shaft, 18R right guide shaft, 20 main rotary motor, 20a output Shaft, 20b, 31b, 31c, 32b gear, 30 power transmission mechanism, 30A rotational motion transmission unit, 30B motion conversion unit, 31 first transmission member, 31a first connection rod, 32 second transmission member, 32a second connection rod , 32c disk, 33 crank arm, 34a, 34b crank pin, 35 slider, 36 elastic belt, 37 rotor, 37L left rotor, 37R right rotor, 38 mast support, 38L left mast support, 38R right mast Holding body, 39 mast, 39L left mast, 39R right mast, 40 wing, 40L left wing, 40R right wing, 41 front edge, 42 rear edge, 43 root, 44 tip, 46 clip member, 47 cord, 47L left cord, 47R right cord, 50 position adjustment mechanism, 51 support plate, 53, 82 cord support, 53L left cord support, 53R right cord support, 54 bearing, 60 first moving mechanism, 60L left first moving mechanism, 60R right first moving mechanism, 61 first auxiliary rotating motor, 62 base, 63, 64b cylindrical worm, 64, 73 gear unit, 64a, 65 worm wheel, 66 arm member, 67 Shaft, 70 second moving mechanism, 71 second subrotating motor, 7 a output shaft, 73a spur gear, 73b feed screw, 74 nut, 81 cord support guide, 81L left cord support guide, 81R right cord support guide, 83 guide member, 86 third moving mechanism, 86L left third moving mechanism, 86R right third moving mechanism, 87 fourth moving mechanism, 201, 202, 206, 207, 221, 222, 223, 224, central axis, 210, virtual curved surface, 211, first plane, 213, second plane, 301,331 , 351 cord support, 301b bottom surface, 310, 340, 350, 410, cord length adjustment mechanism, 313, 411 cord guide, 313L left cord guide, 313R right cord guide, 314, 341, 361, 412 screw, 314L, 361L Left side screw, 314R, 3 61R right side screw, 321 surplus cord holding part, 331L left side cord support, 331R right side cord support, 342 screw insertion hole.

Claims (9)

  1.  躯体と、
     前記躯体に搭載されるアクチュエータと、
     可撓性を有し、前後に揺動運動することによって浮上力を発生する一対の羽体と、
     前記躯体と、一対の前記羽体との間で懸架される線状体とを備え、
     前記羽体は、
     前記アクチュエータから揺動運動が入力される前縁部と、
     前記アクチュエータから前記前縁部への揺動運動の入力に対して前記前縁部よりも遅れて動作し、前記線状体が接続される後縁部とを含み、さらに、
     前記躯体側で前記線状体を支持する支持部と、
     前記支持部を移動させることにより前記支持部の位置を可変に調整する位置調整機構部とを備える、羽ばたき装置。
    The body,
    An actuator mounted on the housing;
    A pair of wings that have flexibility and generate levitation force by swinging back and forth;
    A linear body suspended between the housing and the pair of wings;
    The wings are
    A leading edge to which a swing motion is input from the actuator;
    A rear edge that is operated later than the front edge with respect to the input of the swing motion from the actuator to the front edge, and to which the linear body is connected, and
    A support portion for supporting the linear body on the housing side;
    A flapping apparatus comprising: a position adjusting mechanism that variably adjusts the position of the support by moving the support.
  2.  前記前縁部は、前記羽体の揺動運動に伴って、ロール軸およびピッチ軸を含む第1平面内であって、前方切り返し位置および後方切り返し位置の間で往復移動し、
     前記位置調整機構部は、前記第1平面に平行な第2平面内であって、ロール軸の軸方向において、前記前方切り返し位置および前記後方切り返し位置から等距離にある第1位置と、ロール軸の軸方向において、前記後方切り返し位置よりも前記前方切り返し位置に寄った第2位置と、ロール軸の軸方向において、前記前方切り返し位置よりも前記後方切り返し位置に寄った第3位置とを含む範囲で、前記支持部を移動させる第1移動機構部を含む、請求項1に記載の羽ばたき装置。
    The front edge is reciprocated between a front turning position and a rear turning position in a first plane including a roll axis and a pitch axis in accordance with the swinging motion of the wing.
    The position adjustment mechanism section is in a second plane parallel to the first plane, and in the axial direction of the roll axis, a first position that is equidistant from the front turning position and the rear turning position, and a roll axis A second position closer to the front turning position than the rear turning position and a third position closer to the rear turning position than the front turning position in the axial direction of the roll shaft. The flapping apparatus according to claim 1, further comprising a first moving mechanism section that moves the support section.
  3.  前記第1移動機構部は、ヨー軸に平行な第1軸を中心に、前記支持部を揺動させる、請求項2に記載の羽ばたき装置。 The flapping apparatus according to claim 2, wherein the first moving mechanism section swings the support section about a first axis parallel to the yaw axis.
  4.  前記第1軸は、前記羽体の揺動中心軸と一致する、請求項3に記載の羽ばたき装置。 The flapping apparatus according to claim 3, wherein the first axis coincides with a swing central axis of the wing.
  5.  前記位置調整機構部は、前記躯体および前記羽体の間における前記線状体の張力が変化するように、前記支持部を移動させる第2移動機構部を含む、請求項1から4のいずれか1項に記載の羽ばたき装置。 The said position adjustment mechanism part contains the 2nd moving mechanism part which moves the said support part so that the tension | tensile_strength of the said linear body between the said housing and the said wings may change. The flapping apparatus according to item 1.
  6.  前記第2移動機構部は、ピッチ軸の軸方向に前記支持部を移動させる、請求項5に記載の羽ばたき装置。 The flapping apparatus according to claim 5, wherein the second moving mechanism unit moves the support unit in the axial direction of the pitch axis.
  7.  前記支持部は、前記線状体を、ヨー軸に平行な第2軸を中心に回動可能に支持する、請求項1から6のいずれか1項に記載の羽ばたき装置。 The flapping apparatus according to any one of claims 1 to 6, wherein the support portion supports the linear body so as to be rotatable about a second axis parallel to the yaw axis.
  8.  前記線状体は、一対の前記羽体の一方、前記躯体、および、一対の前記羽体の他方に渡って懸架され、
     前記支持部として、前記躯体側から一対の前記羽体の一方に向けて繰り出される前記線状体を支持する第1支持部と、前記躯体側から一対の前記羽体の他方に向けて繰り出される前記線状体を支持する第2支持部と、前記第1支持部および前記第2支持部の間で前記線状体を支持する第3支持部とが設けられ、
     前記位置調整機構部は、前記第1支持部および前記第2支持部を、ヨー軸に平行な第3軸を中心に揺動させる第3移動機構部と、前記第3支持部を、ピッチ軸の軸方向に移動させる第4移動機構部とを含む、請求項1から7のいずれか1項に記載の羽ばたき装置。
    The linear body is suspended over one of the pair of wings, the casing, and the other of the pair of wings,
    As the support portion, a first support portion that supports the linear body that is fed out from the housing side toward one of the pair of wings, and is fed out from the housing side toward the other of the pair of wings. A second support part for supporting the linear body; and a third support part for supporting the linear body between the first support part and the second support part;
    The position adjustment mechanism includes a third moving mechanism that swings the first support and the second support around a third axis parallel to the yaw axis, and the third support that is connected to the pitch axis. The flapping apparatus according to any one of claims 1 to 7, further comprising a fourth moving mechanism section that moves in the axial direction.
  9.  前記支持部は、前記躯体および前記羽体の間に懸架される前記線状体の長さを可変に調整する線状体長さ調整機構部を有する、請求項1から8のいずれか1項に記載の羽ばたき装置。 The said support part has a linear body length adjustment mechanism part which adjusts the length of the said linear body suspended between the said housing and the said wing body variably. The flapping device described.
PCT/JP2017/043022 2016-12-15 2017-11-30 Flapping device WO2018110292A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-243319 2016-12-15
JP2016243319 2016-12-15
JP2017117362 2017-06-15
JP2017-117362 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018110292A1 true WO2018110292A1 (en) 2018-06-21

Family

ID=62559540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043022 WO2018110292A1 (en) 2016-12-15 2017-11-30 Flapping device

Country Status (1)

Country Link
WO (1) WO2018110292A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466755A (en) * 2019-09-20 2019-11-19 西北工业大学 It is applicable in the chord length self-adapting stretching formula flapping wing and flapping-wing aircraft of active twist flapping mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106393A (en) * 2005-09-15 2007-04-26 Sharp Corp Flapping floating movement device
JP2009006762A (en) * 2007-06-26 2009-01-15 Sharp Corp Flapping device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106393A (en) * 2005-09-15 2007-04-26 Sharp Corp Flapping floating movement device
JP2009006762A (en) * 2007-06-26 2009-01-15 Sharp Corp Flapping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466755A (en) * 2019-09-20 2019-11-19 西北工业大学 It is applicable in the chord length self-adapting stretching formula flapping wing and flapping-wing aircraft of active twist flapping mechanism

Similar Documents

Publication Publication Date Title
US10875637B2 (en) Rotor assembly apparatus
KR102061468B1 (en) Air vehicle flight mechanism and control method
US11077941B2 (en) Wing flapping apparatus
US11136117B2 (en) Wing flapping apparatus
US11254426B2 (en) Wing unit, wing flapping apparatus, and method of manufacturing wing unit
JP6844775B2 (en) Flapping airplane
CN106078800A (en) The series-parallel mechanical arm of a kind of seven freedom rope bar composite flooding and method for carrying thereof
WO2018110292A1 (en) Flapping device
CN104520184B (en) For controlling the control stick of aircraft
US20220009187A1 (en) Manipulator device having a triangular architecture and installation for manufacturing tires using such a manipulator device for placing strips
JP6455838B2 (en) Attitude control device
JP6471255B1 (en) Multicopter
WO2018110308A1 (en) Flapping device
JP2015182170A (en) Machine tool
JP6744833B2 (en) Flapping airplane
WO2018110307A1 (en) Flapping device
WO2018110290A1 (en) Wing body and flapping device
CN111660297A (en) Lasso driven wearable cooperation robot
JP6552631B2 (en) Flapping device
WO2018110306A1 (en) Flapping device
CN115990870A (en) Actuator and robot
CN116038672A (en) Robot waist mechanism and robot
CN116421442A (en) Active rope-driven variable-rigidity parallel exoskeleton
JP2019182397A (en) Multicopter
KR20170077876A (en) Wire driven lightweight robot arm device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP