WO2018109845A1 - Component mounting device, surface mounter, and method for mounting component - Google Patents

Component mounting device, surface mounter, and method for mounting component Download PDF

Info

Publication number
WO2018109845A1
WO2018109845A1 PCT/JP2016/087109 JP2016087109W WO2018109845A1 WO 2018109845 A1 WO2018109845 A1 WO 2018109845A1 JP 2016087109 W JP2016087109 W JP 2016087109W WO 2018109845 A1 WO2018109845 A1 WO 2018109845A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mounting
load value
protective cover
pressing
Prior art date
Application number
PCT/JP2016/087109
Other languages
French (fr)
Japanese (ja)
Inventor
良隆 室内
公久 安間
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2018556075A priority Critical patent/JP6714103B2/en
Priority to PCT/JP2016/087109 priority patent/WO2018109845A1/en
Publication of WO2018109845A1 publication Critical patent/WO2018109845A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the technology disclosed in this specification relates to a component mounting apparatus and a surface mounting machine.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-160788
  • a fitting component is sucked and held by a suction nozzle, transferred to a mounted component, and then pressed with a first load.
  • the fitting component is pressed with a second load larger than the first load, and the engagement portion provided in the fitting component is engaged with the engagement opening provided in the fitting component.
  • the mounting of the fitting part to the mounting part is completed.
  • the completion of mounting is determined when the load applied between the suction nozzle and the fitting component reaches the target load value. For this reason, for example, as shown in FIG. 17, the displacement of the fitting component 2 with respect to the mounted component 1 occurs, so that the load Z is as shown in FIG.
  • the target load value is reached, there is a possibility that it is determined that the fitting component 2 has been mounted on the mounted component 1.
  • the fitting component is properly fitted to the mounted component before the load reaches the target load value, although the fitting component is properly fitted to the mounted component, there is a possibility that the component may be damaged when a load is further applied.
  • This specification discloses a technique for improving the accuracy of determining completion of mounting between parts.
  • the technology disclosed in this specification is a component mounting apparatus that presses and mounts a mounting component on a mounted component, the component holding unit holding the mounting component and pressing the mounted component on the mounted component, and the component holding unit And a pressing load value for pressing the mounting component against the mounted component by the component holding unit increases when the mounting component is pressed against the mounted component, and the mounted component
  • the control unit is configured to reduce the pressing load when the maximum load value is set when the mounting component is pressed against the mounted component.
  • the value decreases after reaching the load target range between the lower limit load value set smaller than the maximum load value and the upper limit load value set larger than the maximum load value.
  • As determined condition, and configured to perform the attachment judging process judges that the mounting of the mounting part with respect to the mounting part has been completed.
  • the technique disclosed in this specification is a surface mounter, and the component mounting apparatus, a component supply apparatus that supplies the mounting component to the component mounting apparatus, and the mounting of the mounting component by the component mounting apparatus. And a transporting device that transports the mounted part to within the range.
  • the technology disclosed in this specification is a mounting method of a component that presses and mounts a mounting component against a mounted component, and a pressing load value that presses the mounting component against the mounted component is the mounting component.
  • the load value increases when the mounted component is pressed against the mounted component, and decreases when the mounting of the mounted component to the mounted component is completed, and the maximum load value when the mounted component is pressed against the mounted component.
  • the pressing load value that presses the mounting component against the mounted component is lower than the lower limit load value and the maximum load value that are smaller than the maximum load value when the mounting component is pressed against the mounted component. After reaching the load target range between the large upper limit load value, it is determined that the mounting of the mounting component to the mounted component is completed on the condition that the load has fallen That.
  • the pressing load value is reduced, so that the mounting component is mounted on the mounted component. Can be determined to be completed.
  • the increase in pressing load value is small, even when the pressing load value does not reach the maximum load value when pressing the mounting part against the mounted part, Not only does the pressing load value exceed the lower limit load value, but it can be determined that the mounting of the mounting component to the mounted component has been completed because the pressing load value has subsequently decreased.
  • the pressing load value exceeds the maximum load value due to variations in the size of the mounted component or mating component, but the mounting of the mating component to the mounted component is not complete, the pressing load value decreases. Therefore, it can be prevented that the mounted component is erroneously determined as being mounted on the mounted component.
  • the pressing load value that has reached the load target range does not decrease, but the upper limit load value is reached.
  • the determination accuracy of mounting completion between components is improved. Can be improved.
  • the component mounting apparatus, the surface mounter, and the component mounting method disclosed in this specification may have the following configurations.
  • the judgment condition is that the pressure load value falls below the lower limit load value after reaching the load target range.
  • the pressing load value after exceeding the lower limit load value is a measurement error or the size of each component.
  • the pressing load value after exceeding the lower limit load value is a measurement error or the size of each component.
  • the judgment condition is that the pressure load value is increased again after the pressure load value is lowered.
  • the pressing load value is completely reduced, the mounting of the mounting component to the mounted component is completed, and the mounting component is properly mounted on the mounted component by increasing the pressing load value. For example, even when the mounting of the mounting component to the mounted component is completed, even if the pressing load value does not become smaller than expected, each member is damaged due to excessive pressing of the mounting component. Can be suppressed.
  • the mounting component is pressed by the component holding unit until the pressing load value increases. It is possible to suppress erroneous determination that the mounting of the mounting component on the mounted component is completed when a part of the mounting component is mounted on the mounting component.
  • the determination condition is that the re-increase of the pressing load value in the component holding part exceeds a predetermined upper limit of re-loading.
  • the component holding unit sucks and holds the mounting component by a negative pressure generated by a negative pressure generating unit, and the control unit holds the mounting component by the component holding unit after the mounting determination process. It moves in a direction away from the mounted component in the held state, and further executes a mounting confirmation process for checking whether or not the mounted component is held in the component holding unit by a change in vacuum pressure in the component holding unit.
  • the component is confirmed that the mounted component is not held by the component holding unit that sucks and holds the mounted component.
  • the mounting component is securely mounted on the mounted component and firmly held.
  • FIG. 6 is a diagram illustrating a transition of a pressing load value of the mounting head according to the second embodiment, and a diagram illustrating a transition of a pressing load value corresponding to the mounting process of FIG. 5.
  • wearing judgment process which concerns on Embodiment 2.
  • FIG. 17 shows the transition of the pressing load value of the mounting head based on the conventional judgment criteria in the assembly process of FIG.
  • a protective cover (an example of “mounted component”) 80 is attached to a shield frame (an example of “mounted component”) 70 that is mounted on the printed circuit board P or is fixed on the printed circuit board P.
  • the surface mounting machine 10 to mount is illustrated.
  • the printed circuit board P is a flat printed circuit board, and a metal shield frame 70 is fixed on the printed circuit board P.
  • the shield frame 70 is formed in a box shape that opens downward. Inside the shield frame 70, an electronic component E (not shown) mounted on the printed circuit board P is arranged. Has been.
  • the protective cover 80 includes four substantially rectangular side plates 71 standing on the printed circuit board P and a substantially rectangular ceiling plate 72 connected to the upper end edges of the four side plates 71. Each side plate 71 is provided with a pair of locking holes 73 having a substantially rectangular shape so as to penetrate the side plate 71 in the plate thickness direction along the printed circuit board P.
  • the protective cover 80 is made of synthetic resin and is formed in a box shape that is slightly larger than the shield frame 70 as shown in FIG. 4, and covers the shield frame 70 so as to cover the shield frame 70 from above. It is to be attached. That is, the protective cover 80 is attached to the shield frame 70 by being pressed against the shield frame 70 from above.
  • the protective cover 80 has four side walls 81 arranged on the outside of the side plate 71 in the shield frame 70 and a ceiling wall 82 that covers the ceiling plate 72 of the shield frame 70 from above.
  • Each side wall 81 is provided with two pairs of slits 83 extending in the vertical direction from the lower end of the side wall 81, and the side wall 81 between the pair of slits 83 has the upper end position between the pair of slits 83 as a fulcrum.
  • the elastic locking piece 84 is elastically displaced toward the outside.
  • Each elastic locking piece 84 is provided at a position corresponding to the locking hole 73 of the shield frame 70 when the protective cover 80 is attached to the shield frame 70.
  • the upper opening edge 73A of the locking hole 73 is provided with a locking projection 85 that can be locked in the vertical direction.
  • the locking protrusion 85 is pressed by the side plate 71 of the shield frame 70 and rides on the side plate 71, thereby elastically displacing the elastic locking piece 84 outward.
  • the locking projection 85 is fitted into the locking hole 73, and the upper opening edge 73 ⁇ / b> A of the locking hole 73 and the locking projection 85 are The protective cover 80 is held at the normal position of the shield frame 70 by being locked in the vertical direction.
  • the pressing load value F that presses the protective cover 80 against the shield frame 70 is different from that shown when the locking projection 85 of the elastic locking piece 84 rides on the shield frame 70. 6A, the pressure increases when the protective cover 80 is pressed against the shield frame 70, and the pressure load value F remains high (see B in FIG. 6), and the shield frame 70 is attached to the protective cover 80. Covered gradually. Then, when the locking projection 85 is fitted into the locking hole 73, the pressing load value F is lowered as shown in FIG. 6C so that the protective cover 80 reaches the normal position of the shield frame 70. It has become.
  • the surface mounter 10 is configured to supply a base 11, a conveyer 12 disposed on the base 11, a component mounting apparatus 20, and an electronic component E to the component mounting apparatus 20.
  • the component supply device 13 and the tray supply device 14 for supplying the protective cover 80 to the component mounting device 20 are provided.
  • the left-right direction refers to the left-right direction in FIG. 1
  • the front-rear direction refers to the front side in the figure with respect to the up-down direction in FIG.
  • the vertical direction is described as the vertical direction reference in FIG.
  • the base 11 has a substantially rectangular shape in plan view, and a transport conveyor (an example of a “transport device”) 12 that transports the printed circuit board P is disposed at the center of the base 11.
  • the conveyor 12 includes a pair of conveyor belts 15 that are circulated and driven in the left-right direction, and the printed circuit board P is set on the pair of conveyor belts 15.
  • the printed circuit board P set on the pair of conveyor belts 15 is loaded from the right side of the base 11 into the mounting range S in the substantially central portion in the left-right direction, and after the mounting operation of the protective cover 80 is completed, the pair of conveyor belts 15 Carried out to the left.
  • two component supply devices 13 are arranged side by side in the left-right direction on the front side of the conveyor 12. These component supply devices 13 are feeder-type, and are attached in a state where a plurality of feeders 16 are aligned in the left-right direction.
  • Each feeder 16 includes an unillustrated electric delivery device that pulls out a component supply tape containing a plurality of electronic components E from a reel. The electronic components E are fed from the end of each feeder 16 on the transport conveyor 12 side. Supply one by one.
  • the tray supply device 14 is disposed on the rear side of the conveyor 12 as shown in FIG.
  • the tray supply device 14 accommodates a plurality of pallets 14A that accommodate a plurality of protective covers 80, and supplies the pallets 14A one by one onto the base 11 so that the protective covers 80 are mounted on the component mounting device. 20 is supplied.
  • the component mounting apparatus 20 includes a head driving device 30 provided on the base 11 and a head unit 40 provided on the head driving device 30.
  • the head drive device 30 moves the head unit 40 back and forth and right and left on the base 11, and has a vertical axis drive mechanism 31 and a horizontal axis drive mechanism 36 as shown in FIG.
  • the vertical axis drive mechanism 31 includes a pair of vertical frames 32 provided on both sides of the base 11 in the left-right direction and extending in the front-rear direction, and a pair of vertical frames provided along the vertical frames 32.
  • a shaft guide rail 33 and a vertical servo motor 34 provided at the front end of each vertical guide rail 33 are provided.
  • a pair of vertical axis guide rails 33 are attached in such a manner that a horizontal axis drive mechanism 36 is installed.
  • the vertical axis servo motor 34 is energized, the horizontal axis drive mechanism 36 is moved along the vertical axis guide rail 33. It is designed to move back and forth.
  • the horizontal axis drive mechanism 36 is provided at a right side end portion of the horizontal axis guide rail 37 and a horizontal axis guide rail 37 installed on a pair of vertical axis guide rails 33 in a form extending in the left-right direction.
  • the horizontal axis servo motor 38 is provided.
  • a head unit 40 is attached to the horizontal axis guide rail 37 so as to be movable in the left-right direction.
  • the horizontal axis servo motor 38 is energized and controlled, the head unit 40 moves in the left-right direction along the horizontal axis guide rail 37. It is supposed to move. Therefore, the head unit 40 is movable on the base 11 in the horizontal direction, which is the front / rear / left / right direction.
  • the head unit 40 takes out the electronic component E supplied from the component supply device 13, takes out the protective cover 80 mounted on the printed circuit board P or supplied from the tray supply device 14, and attaches it to the shield frame 70 on the printed circuit board P.
  • the plurality of mounting heads 42 are arranged in the left-right direction so as to protrude downward from the head unit main body 41, and each mounting head 42 is centered on the axis of the mounting head 42.
  • the head unit 40 is supported so as to be rotatable around an axis.
  • Each mounting head 42 can be moved up and down by a plurality of Z-axis servo motors 43 provided in the head unit main body 41, and the R-axis servo motor 44 can be pivoted around the axis of the mounting head 42. It can be rotated around.
  • Each mounting head 42 is supplied with negative pressure or positive pressure from an air supply device 60 as shown in FIG.
  • the air supply device 60 includes an air generation unit (an example of a “negative pressure generation unit”) 61 that generates negative and positive pressures, and an air control unit 62 that controls the negative and positive pressures from the air generation unit 61. And a pressure sensor 63 for measuring the pressure.
  • the negative pressure controlled by the air control unit 62 is supplied to each mounting head 42, whereby the electronic component E and the protective cover 80 are sucked and held at the lower end of each mounting head 42, and the air control unit 62.
  • the electronic component E and the protective cover 80 sucked and held by the mounting head 42 are released by supplying the positive pressure controlled by the above.
  • each mounting head 42 can press the protective cover 80 against the shield frame 70 from above with the protective cover 80 being sucked and held, and the protective cover 80 is in a normal position with respect to the shield frame 70.
  • the protective cover 80 can be attached to the shield frame 70.
  • the head unit 40 is provided with a board recognition camera 45, and the board recognition camera 45 moves the head unit 40 on the base 11 such as the printed board P. It is possible to take an image at any position.
  • a pair of front and rear component recognition cameras 17 are provided on the base 11 at the sides of the component supply device 13 and the tray supply device 14. An image of the electronic component E and the protective cover 80 held at the lower end of the mounting head 42 can be taken.
  • the surface mounter 10 is entirely controlled by a control unit 110, and the control unit 110 includes an arithmetic processing unit 111 configured by a CPU or the like.
  • the arithmetic processing unit 111 includes a motor control unit (an example of a “control unit”) 112, a storage unit 113, an image processing unit 114, an external input / output unit 115, a component supply device communication unit 116, a management device communication unit 117, and an operation unit. 118 etc. are connected.
  • the storage unit 113 stores a mounting program for mounting the electronic component E and the protective cover 80, a mounting determination program for determining the mounting state of the protective cover 80, various data, and the like.
  • the various data includes board information relating to the number and type of printed circuit boards P that are scheduled to be produced, position information relating to the mounting position where the protective cover 80 is attached to the shield frame 70, and the component supply device 13 and the tray supply device 14.
  • the protective cover 80 is attached to the shield frame 70, the reload upper limit Fru, the holding vacuum pressure Pu of the mounting head 42 in a state where the protective cover 80 is sucked and held by the mounting head 42, and nothing is held by the mounting head 42.
  • the non-holding vacuum pressure Pd of the mounting head 42 in a state where the mounting head 42 is not included is included.
  • the image processing unit 114 is configured to capture an image signal output from the board recognition camera 45 or the component recognition camera 17, and generates an image based on the captured image signal.
  • the external input / output unit 115 is a so-called interface, and is configured to receive detection signals output from various sensors 47 such as the pressure sensor 63 of the air supply device 60 in the surface mounter 10.
  • the external input / output unit 115 outputs a control signal output from the arithmetic processing unit 111 to the air supply device 60 and various actuators 48.
  • the component supply device communication unit 116 is connected to the component supply device 13 and the tray supply device 14 and controls the supply devices 13 and 14 in an integrated manner.
  • the management device communication unit 117 is communicably connected to the management device 90.
  • the management device 90 executes an optimization program based on the type of the printed circuit board P to be produced, and the electronic component E and the protective cover 80 are connected. Decide the order of mounting in advance.
  • the operation unit 118 includes a display device (not shown) such as a liquid crystal monitor, an input device (not shown) such as a keyboard and a mouse, etc., and receives an input from an operator and outputs it to the operator.
  • a display device such as a liquid crystal monitor
  • an input device such as a keyboard and a mouse, etc.
  • the motor control unit 112 controls the vertical axis servo motor 34, the horizontal axis servo motor 38, the Z axis servo motor 43, the R axis servo motor 44, the transport conveyor 12, and the like based on the mounting program stored in the storage unit 113. Then, the electronic component E and the protective cover 80 are mounted.
  • the motor control unit 112 executes a mounting determination program stored in the storage unit 113 together with the mounting program, and determines whether or not the protective cover 80 has been mounted on the shield frame 70.
  • the cover mounting process in which the surface mounter 10 of the present embodiment mounts the protective cover 80 on the shield frame 70 by the mounting program will be described, and then the mounting of the protective cover 80 will be completed based on the mounting determination program.
  • a mounting determination process for determining whether or not the user is doing will be described.
  • the mounting head 42 in the head unit 40 is moved onto the pallet 14A of the tray supply device 14 (S11). Then, the Z-axis servo motor 43 is operated to raise and lower the mounting head 42, whereby the protective cover 80 accommodated in the pallet 14A is held by the mounting head 42 (S12).
  • the mounting head 42 holding the protective cover 80 is moved onto the shield frame 70 disposed in the mounting range S of the base 11 (S13), and the Z-axis servo motor 43 is operated to protect the mounting head 42.
  • the protective cover 80 is attached to the shield frame 70 by lowering the cover 80 and pressing the protective cover 80 so as to cover the shield frame 70 from above (S14).
  • the protective cover 80 is lowered by the mounting head 42 as shown in FIG. Then, when the upper end of the shield frame 70 starts to enter the protective cover 80, the locking projections 85 on the elastic locking pieces 84 of the protective cover 80 are formed on the side plates 71 of the shield frame 70 as shown in FIG. The locking projection 85 of each elastic locking piece 84 of the protective cover 80 rides on the side plate 71 of the shield frame 70.
  • the pressing load value F for pressing the protective cover 80 against the shield frame 70 by the mounting head 42 increases to the maximum load value Fmax as shown in A of FIG.
  • the maximum load value Fmax is a maximum load value when the protective cover 80 is pressed against the shield frame 70 and attached.
  • the protective cover 80 is further pressed against the shield frame 70 as it is, as shown in FIG. 5C, the locking projections 85 of the elastic locking pieces 84 and the outer surface of the side plate 71 of the shield frame 70 Slides, and the shield frame 70 is gradually covered by the protective cover 80. Note that the pressing load value F of the mounting head 42 at this time changes as the maximum load value Fmax as shown in FIG. 6B.
  • the attachment determination process first, it is determined whether or not the assembly of the protective cover 80 to the shield frame 70 has been started.
  • the motor control unit 112 lowers the protective cover 80 by the mounting head 42 (S21), and measures the pressing load value F of the mounting head 42 (S22).
  • the motor control unit 112 increases the maximum load value Fmax until the pressing load value F exceeds the lower limit load value Fd, and reaches the load target range Fr between the upper limit load value Fu and the lower limit load value Fd. It is determined whether or not (S23).
  • the upper limit load value Fu is set larger than the maximum load value Fmax
  • the lower limit load value Fd is set smaller than the maximum load value Fmax.
  • the upper limit load value Fu is a maximum load value measured by measuring a plurality of sets of the maximum load value Fmax when all the elastic locking pieces 84 in the protective cover 80 ride on the side plate 71 of the shield frame 70 in advance.
  • the lower limit load value Fd is, for example, a reduced load that decreases from the maximum load value Fmax when all the locking projections 85 of the elastic locking piece 84 in the protective cover 80 are fitted into the locking holes 73 of the shield frame 70.
  • a plurality of sets of values are measured, and the values are set to be slightly larger than the smallest drop load value among the measured drop load values (specifically, 10% increase of the smallest drop load value, etc.).
  • the upper limit load value Fu and the lower limit load value Fd are set based on the maximum load value Fmax when the protective cover 80 is mounted on the shield frame 70, but based on the load values when other components are mounted. It may be set.
  • the motor control unit 112 continues the lowering of the protective cover 80 by the mounting head 42.
  • the motor control unit 112 determines that the assembly of the protective cover 80 to the shield frame 70 has started. Further, the protective cover 80 is lowered by the mounting head 42 (S24), and the pressing load value F of the mounting head 42 is measured (S25).
  • the motor control unit 112 determines whether the pressing load value F reaching the load target range Fr is lower than the lower limit load value Fd (S26).
  • the motor control unit 112 continues to press the protective cover 80 by the mounting head 42.
  • the motor control unit 112 indicates that the locking projection 85 of the elastic locking piece 84 is the shield frame 70. It is determined that the protective cover 80 is held by the shield frame 70 and the attachment of the protective cover 80 to the shield frame 70 is completed.
  • the pressing load value F of the mounting head 42 decreases after reaching the load target range Fr exceeding the lower limit load value Fd and further lower than the lower limit load value Fd. As a determination condition, it can be determined that the protective cover 80 is attached to the shield frame 70.
  • the pressing load value F of the mounting head 42 is the maximum load value Fmax.
  • the determination is based on the fact that the pressing load value F exceeds the lower limit load value Fd and then the pressing load value F is lower than the lower limit load value Fd, the shield frame 70 is protected. It can be determined that the cover 80 is attached.
  • the pressing load value F exceeds the maximum load value Fmax, but the protective cover 80 has not been attached to the shield frame 70. If the locking protrusion 85 of the elastic locking piece 84 is not fitted in the locking hole 73, the pressing load value F does not decrease, and it is erroneously assumed that the mounting of the protective cover 80 on the shield frame 70 is completed. Can be prevented.
  • the protective cover 80 when the protective cover 80 is assembled with the shield frame 70 being displaced, the pressing load value F reaching the load target range Fr does not decrease and exceeds the upper limit load value Fu. Therefore, it can be determined that the attachment of the protective cover 80 to the shield frame 70 is not completed.
  • the motor control unit 112 further moves the protective cover 80 by the mounting head 42.
  • the pressure is lowered (S27), and the pressing load value F of the mounting head 42 is measured (S28).
  • the pressing load value F of the mounting head 42 is such that the locking projections 85 fitted in the respective locking holes 73 are disengaged from the locking holes 73 and ride on the side plates 71.
  • the motor control unit 112 determines whether the pressing load value F of the mounting head 42 has increased again and the pressing load value F has exceeded the reload upper limit value Fru (S29).
  • the reload upper limit value Fru is set to a value slightly smaller than the pressing load value F when one elastic locking piece 84 of the protective cover 80 rides on the side plate 71 of the shield frame 70, for example.
  • the control unit 112 continues to press the protective cover 80 by the mounting head 42, assuming that some of the locking protrusions 85 are not yet fitted in the locking holes 73.
  • the motor control unit 112 causes each elastic member of the protective cover 80 to It is assumed that all the locking projections 85 in the stop piece 84 are fitted into the respective locking holes 73 of the shield frame 70, and then the locking projections 85 are about to be detached from the locking holes 73. It is determined that the protective cover 80 is properly attached.
  • the attachment of the protective cover 80 to the shield frame 70 is almost completed, but some of the engagement protrusions 85 are not fitted in the engagement holes 73. It can be determined that the protective cover 80 is not properly attached to the shield frame 70.
  • the mounting of the protective cover 80 is completed.
  • the determination accuracy can be further improved.
  • Embodiment 2 will be described with reference to FIGS. 9 and 10.
  • the elasticity of the elastic locking piece 84 of the protective cover 80 is completed. This corresponds to the case where the return force is small and the pressing load value F of the mounting head 42 does not fall below the lower limit load value Fd, and the configuration, operation, and effect common to the first embodiment are duplicated. Description is omitted.
  • the same reference numerals are used for the same configurations as those in the first embodiment.
  • the protective cover 80 is properly attached to the shield frame 70.
  • the locking projections 85 of the respective elastic locking pieces 84 are fitted into the locking holes 73 in the side plate 71 of the shield frame 70, and the pressing load of the mounting head 42 is reached.
  • the value F decreases from the maximum load value Fmax as shown in FIG. 9C, the pressing load value F may remain within the load target range Fr. Therefore, in the mounting determination process of the second embodiment, as shown in FIG.
  • the protective cover 80 is lowered by the mounting head 42 (S31), and the pressing load value F of the mounting head 42 is set. Measure (S32). Then, the motor control unit 112 increases the maximum load value Fmax until the pressing load value F exceeds the lower limit load value Fd, and reaches the load target range Fr between the upper limit load value Fu and the lower limit load value Fd. It is determined whether or not (S33).
  • the motor control unit 112 determines that the assembly of the protective cover 80 to the shield frame 70 has started. Further, the protective cover 80 is lowered by the mounting head 42 (S34), and the pressing load value F of the mounting head 42 is measured (S35).
  • the motor control unit 112 determines whether or not the pressing load value F that has reached the load target range Fr is subsequently lowered, so that the locking protrusion 85 of the elastic locking piece 84 is engaged with the shield frame 70. It is determined whether the protective cover 80 is completely attached to the shield frame 70 by fitting into the stop hole 73 (S36).
  • the motor control unit 112 causes the locking protrusion 85 of the elastic locking piece 84 to fit into the locking hole 73 of the shield frame 70.
  • the protective cover 80 is held by the shield frame 70, and it is determined that the mounting of the protective cover 80 on the shield frame 70 is completed. Then, as in the first embodiment, S37 to S39 are executed.
  • the determination condition is as shown in FIG. As shown, although the pressing load value F has decreased, it can be determined that the protective cover 80 is attached to the shield frame 70 even if the pressing load value F remains within the load target range Fr.
  • the elastic return force of the elastic locking piece 84 of the protective cover 80 is small, and the pressing load value F of the mounting head 42 is the lower limit load value.
  • the determination criterion is only that the pressure load value F decreases after the pressure load value F exceeds the lower limit load value Fd, the attachment of the protective cover 80 to the shield frame 70 is completed. Can be determined.
  • Embodiment 3 will be described with reference to FIGS.
  • a mounting confirmation process is performed to check whether the protective cover 80 is firmly held on the shield frame 70.
  • the configuration common to the first embodiment Since the operation and effect are duplicated, the description thereof is omitted.
  • the same reference numerals are used for the same configurations as those in the first embodiment.
  • the mounting confirmation process is executed when the mounting determination process ends and the mounting head 42 is raised by the mounting program. Specifically, when the protective cover 80 is attracted and held by the mounting head 42, the lower end opening of the mounting head 42 is blocked by the ceiling wall 82 of the protective cover 80 as shown in FIG. Therefore, the vacuum pressure P in the mounting head 42 is higher than the holding vacuum pressure Pu stored in the storage unit 113 as indicated by X in FIG.
  • the holding force of the protective cover 80 by the mounting head 42 is set to be smaller than the attaching force when the protective cover 80 is normally attached to the shield frame 70.
  • the protective cover 80 is not held by the shield frame 70 even though the protective cover 80 is completely attached to the shield frame 70, and the protective cover 80 is not attached to the shield frame 70.
  • the protective cover 80 is lifted while being held by the mounting head 42 as the mounting head 42 is lifted, as shown in FIG.
  • the vacuum pressure P is substantially unchanged and is higher than the holding vacuum pressure Pu.
  • the motor control unit 112 sucks the protective cover 80 by the mounting head 42. While being held, the mounting head 42 is raised by the Z-axis servo motor 43, and it is determined whether the vacuum pressure P in the mounting head 42 decreases (S41).
  • the motor control unit 112 detects the protective cover as the mounting head 42 rises. 80 rises while being held by the mounting head 42, and it is determined that the protective cover 80 is in a state of falling off from the shield frame 70 as shown in FIG. Then, an error is displayed on the display unit of the operation unit 118 via the arithmetic processing unit 111 (S42).
  • the motor control unit 112 correctly attaches the protective cover 80 to the shield frame 70.
  • the shield frame 70 is firmly held (S43). Accordingly, it can be confirmed that the protective cover 80 is not easily detached from the shield frame 70.
  • the protective cover 80 reaches the regular attachment position with respect to the shield frame 70 and the attachment is completed.
  • the protective cover 80 is easy to drop off from the shield frame 70 due to the large size or the elastic locking piece 84 floating, and the protective cover 80 is strong against the shield frame 70. It can be determined that it is held.
  • the protective cover 80 is attached to the shield frame 70 having the ceiling plate 72.
  • the present invention is not limited to this, and a configuration may be adopted in which a protective cover is attached to a shield frame without a ceiling plate, or a configuration in which a shield cover is attached to a resin frame.
  • a plurality of elastic locking pieces 84 are provided on the side wall 81 of the protective cover 80, and the locking protrusions 85 of these elastic locking pieces 84 are provided in the plurality of locking holes provided in the shield frame 70. 73.
  • the present invention is not limited to this, and as shown in FIG. 16, a locking groove 171 is provided on the entire outer surface of the shield frame 170, and a locking protrusion 185 fitted into the locking groove 171 is provided on the protective cover 180. You may make it the structure provided in the inner surface of the side wall 181.
  • the upper limit load value Fu and the lower limit load value Fd are determined based on data measured in advance.
  • the upper limit load value may be set to 1.5 times or twice the maximum load value, or the lower limit load value may be set to about 80% of the maximum load value. Can be set to an arbitrary value larger than the maximum load value, and the lower limit load value can be set to an arbitrary value smaller than the maximum load value.
  • the mounting head 42 holds the protective cover 80 by suction.
  • the configuration is not limited to this, and the mounting head may be configured to chuck and hold the protective cover.
  • the protective cover 80 is normally attached to the shield frame 70 on the condition that the pressing load value F of the mounting head 42 exceeds the reload upper limit value Fru in the attachment determination process. It was set as the structure judged that it was carried out. However, the present invention is not limited to this, and in the mounting determination process, it is determined that the protective cover is properly mounted on the shield frame on the condition that the pressing load value of the mounting head exceeds the lower limit load value. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

A surface mounter 10 disclosed by the specification of the present invention has a component mounting device 20 for pressing and fitting a protective cover 80 onto a shield frame 70 fixed to a printed substrate P, wherein the surface mounter 10 is provided with: a mounting head 42 for holding the protective cover 80 and pressing the protective cover 80 onto the shield frame 70; and a motor control unit 112 for controlling the operation of the mounting head 42. The pressing load value F at which the protective cover 80 is pressed against the shield frame 70 by the mounting head 42 increases when the protective cover 80 is pressed against the shield frame 70 and decreases when the fitting of the protective cover 80 onto the shield frame 70 is complete. The motor control unit 112 performs a fitting determination process of determining that the fitting of the protective cover 80 onto the shield frame 70 is complete when a determination condition is satisfied, the determination condition being the pressing load value F reaching a load target range Fr between a lower limit load value Fd and an upper limit load value Fu and subsequently decreasing.

Description

部品実装装置、表面実装機および部品の実装方法Component mounting apparatus, surface mounter, and component mounting method
 本明細書によって開示される技術は、部品実装装置および表面実装機に関する。 The technology disclosed in this specification relates to a component mounting apparatus and a surface mounting machine.
 例えば、シールド枠部品などの被装着部品にシールド蓋部品などの嵌合部品を装着させる部品実装装置として、特開2014-160788号公報(下記特許文献1)に記載のものが知られている。この部品実装装置は、まず嵌合部品を吸着ノズルによって吸着保持して被装着部品に移載後第1の荷重で押圧する。その後、嵌合部品を第1の荷重よりも大きい第2の荷重で押圧して被装着部品に設けられた係合開口部に嵌合部品に設けられた係合部を係合させることで被装着部品に対する嵌合部品の装着を完了させる。 For example, as a component mounting apparatus for mounting a fitting component such as a shield lid component on a mounted component such as a shield frame component, one disclosed in Japanese Patent Application Laid-Open No. 2014-160788 (Patent Document 1 below) is known. In this component mounting apparatus, first, a fitting component is sucked and held by a suction nozzle, transferred to a mounted component, and then pressed with a first load. Thereafter, the fitting component is pressed with a second load larger than the first load, and the engagement portion provided in the fitting component is engaged with the engagement opening provided in the fitting component. The mounting of the fitting part to the mounting part is completed.
特開2004-235518号公報JP 2004-235518 A
 ところで、一般に、この種の部品実装装置では、吸着ノズルと嵌合部品との間にかかる荷重が目標荷重値に達したことで装着完了の判断をしている。このため、例えば、図17に示すように、被装着部品1に対する嵌合部品2の位置ずれが生じることで、装着が完了していないにもかかわらず、図18に示すように、荷重Zが目標荷重値に達することで被装着部品1に対する嵌合部品2の装着が完了したと判断される虞がある。また、例えば、装着部品や嵌合部品の大きさにばらつきがある場合には、荷重が目標荷重値に達する前に嵌合部品が被装着部品に対して正規に嵌合されたと判断されたり、嵌合部品が被装着部品に対して正規に嵌合されているにもかかわらず、さらに荷重が加えられることで部品を破損させたりする虞がある。 By the way, in general, in this type of component mounting apparatus, the completion of mounting is determined when the load applied between the suction nozzle and the fitting component reaches the target load value. For this reason, for example, as shown in FIG. 17, the displacement of the fitting component 2 with respect to the mounted component 1 occurs, so that the load Z is as shown in FIG. When the target load value is reached, there is a possibility that it is determined that the fitting component 2 has been mounted on the mounted component 1. In addition, for example, when there is a variation in the size of the mounting component and the fitting component, it is determined that the fitting component is properly fitted to the mounted component before the load reaches the target load value, Although the fitting component is properly fitted to the mounted component, there is a possibility that the component may be damaged when a load is further applied.
 本明細書では、部品同士の装着完了の判断精度を向上させる技術を開示する。 This specification discloses a technique for improving the accuracy of determining completion of mounting between parts.
 本明細書によって開示される技術は、被装着部品に装着部品を押し付けて装着する部品実装装置であって、前記装着部品を保持して前記被装着部品に押し付ける部品保持部と、前記部品保持部の動作を制御する制御部とを備え、前記部品保持部によって前記装着部品を前記被装着部品に押し付ける押圧荷重値は、前記被装着部品に前記装着部品を押し付ける際に増加し、前記被装着部品に対する前記装着部品の装着が完了すると低下するようになっており、前記被装着部品に前記装着部品を押し付ける際に最大となる荷重値を最大荷重値とした場合、前記制御部は、前記押圧荷重値が、前記最大荷重値よりも小さく設定された下限荷重値と前記最大荷重値よりも大きく設定された上限荷重値との間の荷重目標範囲内に至った後、低下することを判断条件として、前記被装着部品に対する前記装着部品の装着が完了したと判断する装着判断処理を実行する構成とした。 The technology disclosed in this specification is a component mounting apparatus that presses and mounts a mounting component on a mounted component, the component holding unit holding the mounting component and pressing the mounted component on the mounted component, and the component holding unit And a pressing load value for pressing the mounting component against the mounted component by the component holding unit increases when the mounting component is pressed against the mounted component, and the mounted component When the mounting of the mounting component to the mounting component is completed, the control unit is configured to reduce the pressing load when the maximum load value is set when the mounting component is pressed against the mounted component. The value decreases after reaching the load target range between the lower limit load value set smaller than the maximum load value and the upper limit load value set larger than the maximum load value. As determined condition, and configured to perform the attachment judging process judges that the the mounting of the mounting part with respect to the mounting part has been completed.
 また、本明細書によって開示される技術は表面実装機であって、前記部品実装装置と、前記部品実装装置に前記装着部品を供給する部品供給装置と、前記部品実装装置による前記装着部品の実装範囲内まで前記被装着部品を搬送する搬送装置とを備える構成とした。 The technique disclosed in this specification is a surface mounter, and the component mounting apparatus, a component supply apparatus that supplies the mounting component to the component mounting apparatus, and the mounting of the mounting component by the component mounting apparatus. And a transporting device that transports the mounted part to within the range.
 また、本明細書によって開示される技術は、被装着部品に装着部品を押し付けて装着する部品の実装方法であって、前記装着部品を前記被装着部品に押し付ける押圧荷重値は、前記被装着部品に前記装着部品を押し付ける際に増加し、前記被装着部品に対する前記装着部品の装着が完了すると低下するようになっており、前記被装着部品に前記装着部品を押し付ける際に最大となる荷重値を最大荷重値とした場合、前記装着部品を前記被装着部品に押し付ける押圧荷重値が、前記被装着部品に前記装着部品を押し付ける際の最大荷重値よりも小さい下限荷重値と前記最大荷重値よりも大きい上限荷重値との間の荷重目標範囲内に至った後、低下していることを判断条件として、前記被装着部品に対する前記装着部品の装着が完了したと判断する。 Further, the technology disclosed in this specification is a mounting method of a component that presses and mounts a mounting component against a mounted component, and a pressing load value that presses the mounting component against the mounted component is the mounting component. The load value increases when the mounted component is pressed against the mounted component, and decreases when the mounting of the mounted component to the mounted component is completed, and the maximum load value when the mounted component is pressed against the mounted component. In the case of the maximum load value, the pressing load value that presses the mounting component against the mounted component is lower than the lower limit load value and the maximum load value that are smaller than the maximum load value when the mounting component is pressed against the mounted component. After reaching the load target range between the large upper limit load value, it is determined that the mounting of the mounting component to the mounted component is completed on the condition that the load has fallen That.
 このような構成の部品実装装置、表面実装機および部品の実装方法によると、押圧荷重値が、下限荷重値を超えた後、押圧荷重値が低下したことにより、被装着部品に対する装着部品の装着が完了したと判断することができる。これにより、例えば、装着部品や嵌合部品の大きさのばらつきなどにより、押圧荷重値の増加が小さく、被装着部品に装着部品を押し付ける際の最大荷重値に押圧荷重値が至らない場合でも、押圧荷重値が下限荷重値を超えただけでなく、その後押圧荷重値が低下したことで被装着部品に対して装着部品の装着が完了したと判断することができる。 According to the component mounting apparatus, the surface mounting machine, and the component mounting method having such a configuration, after the pressing load value exceeds the lower limit load value, the pressing load value is reduced, so that the mounting component is mounted on the mounted component. Can be determined to be completed. Thereby, for example, due to variations in the size of mounting parts and fitting parts, the increase in pressing load value is small, even when the pressing load value does not reach the maximum load value when pressing the mounting part against the mounted part, Not only does the pressing load value exceed the lower limit load value, but it can be determined that the mounting of the mounting component to the mounted component has been completed because the pressing load value has subsequently decreased.
 また、装着部品や嵌合部品の大きさのばらつきなどにより、押圧荷重値が最大荷重値を超えるものの、被装着部品に対する嵌合部品の装着が完了していない場合には、押圧荷重値が低下しないため、装着部品が被装着部品に装着されたと誤って判断されることを防ぐことができる。 In addition, if the pressing load value exceeds the maximum load value due to variations in the size of the mounted component or mating component, but the mounting of the mating component to the mounted component is not complete, the pressing load value decreases. Therefore, it can be prevented that the mounted component is erroneously determined as being mounted on the mounted component.
 さらに、例えば、被装着部品に対して装着部品が位置ずれした状態で装着部品が部品保持部によって押圧された場合には、荷重目標範囲に至った押圧荷重値が、低下せずに上限荷重値を超えることで、被装着部品に対する装着部品の位置ずれが生じ、被装着部品に対する装着部品の装着が完了していないと判断することができる。 Furthermore, for example, when the mounted component is pressed by the component holding portion in a state where the mounted component is displaced with respect to the mounted component, the pressing load value that has reached the load target range does not decrease, but the upper limit load value is reached. By exceeding the above, it is possible to determine that the mounting component is displaced from the mounted component, and that the mounting of the mounted component to the mounted component is not completed.
 つまり、従来のように、押圧荷重値が荷重目標値を超えたことを判断条件に被装着部品に対する装着部品の装着が完了したと判断する場合に比べて、部品同士の装着完了の判断精度を向上させることができる。 In other words, compared to the conventional case where it is determined that the mounting of the mounting component to the mounted component is completed based on the determination condition that the pressing load value exceeds the load target value, the determination accuracy of mounting completion between components is improved. Can be improved.
 本明細書によって開示される部品実装装置、表面実装機および部品の実装方法は、以下の構成としてもよい。 The component mounting apparatus, the surface mounter, and the component mounting method disclosed in this specification may have the following configurations.
 前記判断条件は、前記押圧荷重値が前記荷重目標範囲内に至った後、前記下限荷重値よりも低下することである。 The judgment condition is that the pressure load value falls below the lower limit load value after reaching the load target range.
 このような判断条件によると、押圧荷重値が下限荷重値よりも低下することを判断条件としているから、例えば、下限荷重値を超えた後の押圧荷重値が測定誤差や各部品の大きさのばらつきなどに起因して僅かに低下する場合に、被装着部品に対する装着部品の装着が完了したと誤って判断されることを抑制することができる。 According to such a determination condition, since the determination is that the pressing load value is lower than the lower limit load value, for example, the pressing load value after exceeding the lower limit load value is a measurement error or the size of each component. When it slightly decreases due to variations or the like, it is possible to suppress erroneous determination that the mounting of the mounted component to the mounted component is completed.
 前記判断条件は、前記押圧荷重値が低下した後、再増加することである。 The judgment condition is that the pressure load value is increased again after the pressure load value is lowered.
 このような判断条件によると、押圧荷重値が完全に低下して被装着部品に対する装着部品の装着が完了し、押圧荷重値が増加することで被装着部品に対して装着部品が正規に装着されたと判断することができるから、例えば、被装着部品に対する装着部品の装着が完了したにもかかわらず、想定以上に押圧荷重値が小さくならない場合でも、装着部品の押圧し過ぎによる各部材の破損などを抑制することができる。 According to such determination conditions, the pressing load value is completely reduced, the mounting of the mounting component to the mounted component is completed, and the mounting component is properly mounted on the mounted component by increasing the pressing load value. For example, even when the mounting of the mounting component to the mounted component is completed, even if the pressing load value does not become smaller than expected, each member is damaged due to excessive pressing of the mounting component. Can be suppressed.
 また、例えば、被装着部品に対して装着部品の一部が装着されることで押圧荷重値が低下する場合でも、押圧荷重値が増加するまで部品保持部によって装着部品が押圧されるから、被装着部品に対して装着部品の一部が装着されたことをもって被装着部品に対する装着部品の装着が完了したと誤って判断されることを抑制することができる。 In addition, for example, even when the pressing load value is reduced by mounting a part of the mounting component on the mounting component, the mounting component is pressed by the component holding unit until the pressing load value increases. It is possible to suppress erroneous determination that the mounting of the mounting component on the mounted component is completed when a part of the mounting component is mounted on the mounting component.
 前記判断条件は、前記部品保持部における前記押圧荷重値の再増加が所定の再荷重上限値を超えることである。 The determination condition is that the re-increase of the pressing load value in the component holding part exceeds a predetermined upper limit of re-loading.
 このような判断条件によると、押圧荷重値の再増加が再荷重上限値を超えたか否かにより、装着部品の装着が完了したか否かを判断するから、押圧荷重値の測定誤差などによる押圧荷重値の再増加により、被装着部品に対する装着部品の装着が完了したと誤って判断されることを抑制することができる。 According to such a judgment condition, it is determined whether or not the mounting of the mounted component is completed depending on whether or not the re-increase in the pressing load value exceeds the re-load upper limit value. By re-increasing the load value, it is possible to suppress erroneous determination that the mounting of the mounting component to the mounted component is completed.
 前記部品保持部は、負圧発生部による負圧によって前記装着部品を吸引して保持するようになっており、前記制御部は、前記装着判断処理の後、前記部品保持部によって前記装着部品を保持した状態で前記被装着部品から離れる方向に移動し、前記部品保持部に前記装着部品が保持されている否かを前記部品保持部内の真空圧の変化によって確認する装着確認処理をさらに実行する構成とした。 The component holding unit sucks and holds the mounting component by a negative pressure generated by a negative pressure generating unit, and the control unit holds the mounting component by the component holding unit after the mounting determination process. It moves in a direction away from the mounted component in the held state, and further executes a mounting confirmation process for checking whether or not the mounted component is held in the component holding unit by a change in vacuum pressure in the component holding unit. The configuration.
 このような構成によると、被装着部品に対する装着部品の装着が完了し、装着判断処理を行った後、さらに装着部品を吸引して保持する部品保持部に装着部品が保持されていないことを部品保持部内の真空圧の変化によって確認することで、被装着部品に対して装着部品が確実に装着されて強固に保持されていると判断することができる。 According to such a configuration, after the mounting of the mounted component to the mounted component is completed and the mounting determination process is performed, the component is confirmed that the mounted component is not held by the component holding unit that sucks and holds the mounted component. By confirming with the change of the vacuum pressure in the holding portion, it can be determined that the mounting component is securely mounted on the mounted component and firmly held.
 本明細書によって開示される技術によれば、部品同士の装着完了の判断精度を向上させることができる。 According to the technology disclosed in this specification, it is possible to improve the accuracy of determining completion of mounting between components.
実施形態1に係る表面実装機の平面図The top view of the surface mounting machine concerning Embodiment 1 表面実装機の正面図Front view of surface mounter 表面実装機の電気的構成図Electrical configuration diagram of surface mounter シールドフレームに保護カバーを装着する前の状態を示した斜視図The perspective view which showed the state before attaching a protective cover to a shield frame シールドフレームに保護カバーを装着する装着過程を示した断面図Sectional view showing the process of attaching the protective cover to the shield frame 図5の装着過程における実装ヘッドの押圧荷重値の推移を示した図The figure which showed transition of the pressing load value of the mounting head in the mounting process of FIG. カバー装着処理のフローチャート図Flow chart of cover mounting process 装着判断処理のフローチャート図Flowchart diagram of attachment determination processing 実施形態2に係る実装ヘッドの押圧荷重値の推移を示した図であって、図5の装着過程に相当する押圧荷重値の推移を示した図FIG. 6 is a diagram illustrating a transition of a pressing load value of the mounting head according to the second embodiment, and a diagram illustrating a transition of a pressing load value corresponding to the mounting process of FIG. 5. 実施形態2に係る装着判断処理のフローチャート図The flowchart figure of the mounting | wearing judgment process which concerns on Embodiment 2. FIG. 実施形態3に係る保護カバー装着後の実装ヘッドの上昇過程を示した図The figure which showed the raising process of the mounting head after mounting the protective cover which concerns on Embodiment 3. 図11の上昇過程における実装ヘッド内の真空圧の推移を示した図The figure which showed transition of the vacuum pressure in the mounting head in the rising process of FIG. 装着確認処理のフローチャート図Flowchart diagram of installation confirmation processing 保護カバー装着後の実装ヘッドの上昇過程を示した図であって、保護カバーがシールドフレーム70から外れる状態を示した図The figure which showed the raising process of the mounting head after mounting | wearing a protective cover, Comprising: The figure which showed the state from which a protective cover remove | deviates from the shield frame 70 図14の上昇過程における実装ヘッド内の真空圧の推移を示した図The figure which showed transition of the vacuum pressure in the mounting head in the rising process of FIG. 他の実施形態に係るシールドフレームに保護カバーを装着する前の状態を示した斜視図The perspective view which showed the state before attaching a protective cover to the shield frame which concerns on other embodiment. シールドフレームに対して保護カバーが位置ずれした状態で組み付けられる過程を示した断面図Sectional drawing showing the process of assembling the protective cover with the shield frame displaced 図17の組み付け過程において、従来の判断基準に基づく実装ヘッドの押圧荷重値の推移を示した図FIG. 17 shows the transition of the pressing load value of the mounting head based on the conventional judgment criteria in the assembly process of FIG.
 <実施形態1>
 本明細書に開示された技術における実施形態1について図1から図8を参照して説明する。
<Embodiment 1>
A first embodiment of the technology disclosed in this specification will be described with reference to FIGS.
 本実施形態は、プリント基板P上への電子部品Eの実装やプリント基板P上に固定されたシールドフレーム(「被装着部品」の一例)70に保護カバー(「装着部品」の一例)80を装着する表面実装機10を例示している。 In the present embodiment, a protective cover (an example of “mounted component”) 80 is attached to a shield frame (an example of “mounted component”) 70 that is mounted on the printed circuit board P or is fixed on the printed circuit board P. The surface mounting machine 10 to mount is illustrated.
 プリント基板Pは、図4に示すように、平板状をなすプリント基板であって、プリント基板P上には、金属製のシールドフレーム70が固定されている。 As shown in FIG. 4, the printed circuit board P is a flat printed circuit board, and a metal shield frame 70 is fixed on the printed circuit board P.
 シールドフレーム70は、図4に示すように、下方に向かって開口する箱形状に形成されており、シールドフレーム70の内側には、プリント基板P上に実装された図示しない電子部品Eなどが配されている。また、保護カバー80は、プリント基板P上に立設する略矩形状の4つの側板71と、4つの側板71の上端縁に連なる略矩形状の天井板72とを備えて構成されており、各側板71には、略矩形状をなす一対の係止孔73がプリント基板Pに沿うように側板71を板厚方向に貫通して設けられている。 As shown in FIG. 4, the shield frame 70 is formed in a box shape that opens downward. Inside the shield frame 70, an electronic component E (not shown) mounted on the printed circuit board P is arranged. Has been. The protective cover 80 includes four substantially rectangular side plates 71 standing on the printed circuit board P and a substantially rectangular ceiling plate 72 connected to the upper end edges of the four side plates 71. Each side plate 71 is provided with a pair of locking holes 73 having a substantially rectangular shape so as to penetrate the side plate 71 in the plate thickness direction along the printed circuit board P.
 保護カバー80は、合成樹脂製であって、図4に示すように、シールドフレーム70よりも一回り大きい箱形状に形成されており、シールドフレーム70を上方から覆うようにシールドフレーム70に被せて装着されるものである。つまり、保護カバー80は、シールドフレーム70に対して上方から押さえ付けられるように押圧されることで、シールドフレーム70に装着されるようになっている。 The protective cover 80 is made of synthetic resin and is formed in a box shape that is slightly larger than the shield frame 70 as shown in FIG. 4, and covers the shield frame 70 so as to cover the shield frame 70 from above. It is to be attached. That is, the protective cover 80 is attached to the shield frame 70 by being pressed against the shield frame 70 from above.
 また、保護カバー80は、シールドフレーム70における側板71の外側に配される4つの側壁81と、シールドフレーム70の天井板72を上方から覆う天井壁82とを有している。各側壁81には、側壁81の下端部から上下方向に延びる一対のスリット83が2組ずつ設けられており、一対のスリット83間の側壁81は、一対のスリット83間の上端位置を支点として外側に向かって弾性変位する弾性係止片84とされている。各弾性係止片84は、保護カバー80をシールドフレーム70に装着した際に、シールドフレーム70の係止孔73に対応する位置に設けられており、各弾性係止片84の下端縁には、係止孔73の上側開口縁73Aと上下方向に係止可能な係止突起85が設けられている。 The protective cover 80 has four side walls 81 arranged on the outside of the side plate 71 in the shield frame 70 and a ceiling wall 82 that covers the ceiling plate 72 of the shield frame 70 from above. Each side wall 81 is provided with two pairs of slits 83 extending in the vertical direction from the lower end of the side wall 81, and the side wall 81 between the pair of slits 83 has the upper end position between the pair of slits 83 as a fulcrum. The elastic locking piece 84 is elastically displaced toward the outside. Each elastic locking piece 84 is provided at a position corresponding to the locking hole 73 of the shield frame 70 when the protective cover 80 is attached to the shield frame 70. The upper opening edge 73A of the locking hole 73 is provided with a locking projection 85 that can be locked in the vertical direction.
 係止突起85は、保護カバー80をシールドフレーム70に装着する際に、シールドフレーム70の側板71に押圧されて側板71に乗り上げることで、弾性係止片84を外側に弾性変位させる。そして、シールドフレーム70に対して保護カバー80が正規の位置に装着されると、係止突起85が係止孔73に嵌まり込み、係止孔73の上側開口縁73Aと係止突起85とが上下方向に係止することで、保護カバー80がシールドフレーム70の正規の位置に保持されるようになっている。 When the protective cover 80 is attached to the shield frame 70, the locking protrusion 85 is pressed by the side plate 71 of the shield frame 70 and rides on the side plate 71, thereby elastically displacing the elastic locking piece 84 outward. When the protective cover 80 is attached to the shield frame 70 at a proper position, the locking projection 85 is fitted into the locking hole 73, and the upper opening edge 73 </ b> A of the locking hole 73 and the locking projection 85 are The protective cover 80 is held at the normal position of the shield frame 70 by being locked in the vertical direction.
 したがって、保護カバー80をシールドフレーム70に装着する過程では、保護カバー80をシールドフレーム70に押し付ける押圧荷重値Fは、弾性係止片84の係止突起85がシールドフレーム70に乗り上げる際に、図6のAに示すように、保護カバー80をシールドフレーム70に押し付ける際に高くなり、押圧荷重値Fは高くなった状態のまま(図6のBを参照)、シールドフレーム70が保護カバー80に徐々に覆われる。そして、係止突起85が係止孔73に嵌まり込むことで、図6のCに示すように、押圧荷重値Fは低くなり、保護カバー80がシールドフレーム70の正規の位置に至るようになっている。 Therefore, in the process of attaching the protective cover 80 to the shield frame 70, the pressing load value F that presses the protective cover 80 against the shield frame 70 is different from that shown when the locking projection 85 of the elastic locking piece 84 rides on the shield frame 70. 6A, the pressure increases when the protective cover 80 is pressed against the shield frame 70, and the pressure load value F remains high (see B in FIG. 6), and the shield frame 70 is attached to the protective cover 80. Covered gradually. Then, when the locking projection 85 is fitted into the locking hole 73, the pressing load value F is lowered as shown in FIG. 6C so that the protective cover 80 reaches the normal position of the shield frame 70. It has become.
 表面実装機10は、図1に示すように、基台11と、基台11上に配置される搬送コンベア12と、部品実装装置20と、部品実装装置20に電子部品Eを供給するための部品供給装置13と、部品実装装置20に保護カバー80を供給するためのトレイ供給装置14とを備えて構成されている。なお、以下の説明において、左右方向とは、図1における左右方向を基準とし、前後方向とは、図1における上下方向を基準として図示手前側を前側とする。また、上下方向とは、図2における上下方向基準として説明する。 As shown in FIG. 1, the surface mounter 10 is configured to supply a base 11, a conveyer 12 disposed on the base 11, a component mounting apparatus 20, and an electronic component E to the component mounting apparatus 20. The component supply device 13 and the tray supply device 14 for supplying the protective cover 80 to the component mounting device 20 are provided. In the following description, the left-right direction refers to the left-right direction in FIG. 1, and the front-rear direction refers to the front side in the figure with respect to the up-down direction in FIG. Further, the vertical direction is described as the vertical direction reference in FIG.
 基台11は、図1に示すように、平面視略矩形状をなしており、基台11の中央には、プリント基板Pを搬送する搬送コンベア(「搬送装置」の一例)12が配置されている。搬送コンベア12は、左右方向に循環駆動する一対のコンベアベルト15を備えており、一対のコンベアベルト15には、プリント基板Pが架設されるようにしてセットされる。一対のコンベアベルト15にセットされたプリント基板Pは、基台11の右側から左右方向略中央部の実装範囲Sに搬入され、保護カバー80の装着作業が完了した後、一対のコンベアベルト15によって左側に搬出される。 As shown in FIG. 1, the base 11 has a substantially rectangular shape in plan view, and a transport conveyor (an example of a “transport device”) 12 that transports the printed circuit board P is disposed at the center of the base 11. ing. The conveyor 12 includes a pair of conveyor belts 15 that are circulated and driven in the left-right direction, and the printed circuit board P is set on the pair of conveyor belts 15. The printed circuit board P set on the pair of conveyor belts 15 is loaded from the right side of the base 11 into the mounting range S in the substantially central portion in the left-right direction, and after the mounting operation of the protective cover 80 is completed, the pair of conveyor belts 15 Carried out to the left.
 部品供給装置13は、図1に示すように、搬送コンベア12の前側において左右方向に2つ並んで配されている。これらの部品供給装置13は、フィーダ型であって、複数のフィーダ16が左右方向に整列した状態で取り付けられている。各フィーダ16は、複数の電子部品Eが収容された部品供給テープをリールから引き出す図示しない電動式の送出装置などを備えており、各フィーダ16における搬送コンベア12側の端部から電子部品Eを一つずつ供給する。 As shown in FIG. 1, two component supply devices 13 are arranged side by side in the left-right direction on the front side of the conveyor 12. These component supply devices 13 are feeder-type, and are attached in a state where a plurality of feeders 16 are aligned in the left-right direction. Each feeder 16 includes an unillustrated electric delivery device that pulls out a component supply tape containing a plurality of electronic components E from a reel. The electronic components E are fed from the end of each feeder 16 on the transport conveyor 12 side. Supply one by one.
 トレイ供給装置14は、図1に示すように、搬送コンベア12の後側に配置されている。また、トレイ供給装置14は、複数の保護カバー80を収容するパレット14Aを複数収容しており、これらのパレット14Aを1枚ずつ基台11上に供給することで、保護カバー80を部品実装装置20に供給する。 The tray supply device 14 is disposed on the rear side of the conveyor 12 as shown in FIG. In addition, the tray supply device 14 accommodates a plurality of pallets 14A that accommodate a plurality of protective covers 80, and supplies the pallets 14A one by one onto the base 11 so that the protective covers 80 are mounted on the component mounting device. 20 is supplied.
 部品実装装置20は、図1および図2に示すように、基台11上に設けられたヘッド駆動装置30と、ヘッド駆動装置30に設けられたヘッドユニット40とを備えて構成されている。 1 and FIG. 2, the component mounting apparatus 20 includes a head driving device 30 provided on the base 11 and a head unit 40 provided on the head driving device 30.
 ヘッド駆動装置30は、基台11上においてヘッドユニット40を前後左右に移動させるものであって、図1に示すように、縦軸駆動機構31と横軸駆動機構36とを有している。 The head drive device 30 moves the head unit 40 back and forth and right and left on the base 11, and has a vertical axis drive mechanism 31 and a horizontal axis drive mechanism 36 as shown in FIG.
 縦軸駆動機構31は、図1に示すように、基台11の左右方向の両側に設けられた前後方向に延びる一対の縦フレーム32と、各縦フレーム32に沿って設けられた一対の縦軸ガイドレール33と、各縦軸ガイドレール33の前端部に設けられた縦軸サーボモータ34とを有している。一対の縦軸ガイドレール33には、横軸駆動機構36が架設する形態で取り付けられており、縦軸サーボモータ34が通電されると、横軸駆動機構36が縦軸ガイドレール33に沿って前後方向に移動するようになっている。 As shown in FIG. 1, the vertical axis drive mechanism 31 includes a pair of vertical frames 32 provided on both sides of the base 11 in the left-right direction and extending in the front-rear direction, and a pair of vertical frames provided along the vertical frames 32. A shaft guide rail 33 and a vertical servo motor 34 provided at the front end of each vertical guide rail 33 are provided. A pair of vertical axis guide rails 33 are attached in such a manner that a horizontal axis drive mechanism 36 is installed. When the vertical axis servo motor 34 is energized, the horizontal axis drive mechanism 36 is moved along the vertical axis guide rail 33. It is designed to move back and forth.
 横軸駆動機構36は、図2に示すように、左右方向に延びた形態で一対の縦軸ガイドレール33に架設された横軸ガイドレール37と、横軸ガイドレール37の右側端部に設けられた横軸サーボモータ38とを有している。横軸ガイドレール37には、左右方向にヘッドユニット40が移動自在に取り付けられており、横軸サーボモータ38が通電制御されると、ヘッドユニット40が横軸ガイドレール37に沿って左右方向に移動するようになっている。
 したがって、ヘッドユニット40は基台11上において前後左右方向である水平方向に移動可能とされている。
As shown in FIG. 2, the horizontal axis drive mechanism 36 is provided at a right side end portion of the horizontal axis guide rail 37 and a horizontal axis guide rail 37 installed on a pair of vertical axis guide rails 33 in a form extending in the left-right direction. The horizontal axis servo motor 38 is provided. A head unit 40 is attached to the horizontal axis guide rail 37 so as to be movable in the left-right direction. When the horizontal axis servo motor 38 is energized and controlled, the head unit 40 moves in the left-right direction along the horizontal axis guide rail 37. It is supposed to move.
Therefore, the head unit 40 is movable on the base 11 in the horizontal direction, which is the front / rear / left / right direction.
 ヘッドユニット40は、部品供給装置13から供給される電子部品Eを取り出してプリント基板P上に実装またはトレイ供給装置14から供給される保護カバー80を取り出して、プリント基板P上のシールドフレーム70に装着するものであって、図2に示すように、箱形状をなすヘッドユニット本体41と、ヘッドユニット本体41の下端部に突出した形態で左右方向に並んで設けられた複数の実装ヘッド(「部品保持部」の一例)42とを有している。 The head unit 40 takes out the electronic component E supplied from the component supply device 13, takes out the protective cover 80 mounted on the printed circuit board P or supplied from the tray supply device 14, and attaches it to the shield frame 70 on the printed circuit board P. As shown in FIG. 2, a box-shaped head unit main body 41 and a plurality of mounting heads ("" An example) 42 of “part holding part”.
 複数の実装ヘッド42は、図2に示すように、ヘッドユニット本体41から下方に突出した形態で左右方向に並んで配置されており、各実装ヘッド42は、実装ヘッド42の軸心を中心に軸周りに回転可能な状態でヘッドユニット40に支持されている。 As shown in FIG. 2, the plurality of mounting heads 42 are arranged in the left-right direction so as to protrude downward from the head unit main body 41, and each mounting head 42 is centered on the axis of the mounting head 42. The head unit 40 is supported so as to be rotatable around an axis.
 各実装ヘッド42は、ヘッドユニット本体41内に設けられた複数のZ軸サーボモータ43によって上下方向に昇降可能とされており、R軸サーボモータ44によって、実装ヘッド42の軸心を中心に軸周りに回転可能とされている。 Each mounting head 42 can be moved up and down by a plurality of Z-axis servo motors 43 provided in the head unit main body 41, and the R-axis servo motor 44 can be pivoted around the axis of the mounting head 42. It can be rotated around.
 各実装ヘッド42には、図11に示すように、エア供給装置60から負圧または正圧が供給されるようになっている。
 エア供給装置60は、負圧および正圧を発生させるエア発生部(「負圧発生部」の一例)61と、エア発生部61からの負圧および正圧の圧力を制御するエア制御部62と、圧力を測定する圧力センサ63とを有している。そして、エア制御部62によって制御された負圧が各実装ヘッド42に供給されることで各実装ヘッド42の下端部に電子部品Eや保護カバー80が吸引されて吸着保持され、エア制御部62によって制御された正圧が供給されることで実装ヘッド42に吸着保持された電子部品Eや保護カバー80が解放されるようになっている。
Each mounting head 42 is supplied with negative pressure or positive pressure from an air supply device 60 as shown in FIG.
The air supply device 60 includes an air generation unit (an example of a “negative pressure generation unit”) 61 that generates negative and positive pressures, and an air control unit 62 that controls the negative and positive pressures from the air generation unit 61. And a pressure sensor 63 for measuring the pressure. The negative pressure controlled by the air control unit 62 is supplied to each mounting head 42, whereby the electronic component E and the protective cover 80 are sucked and held at the lower end of each mounting head 42, and the air control unit 62. The electronic component E and the protective cover 80 sucked and held by the mounting head 42 are released by supplying the positive pressure controlled by the above.
 また、各実装ヘッド42は、保護カバー80を吸着保持した状態で保護カバー80を上方からシールドフレーム70に押し付けることができるようになっており、保護カバー80がシールドフレーム70に対して正規の位置まで押し付けられることで、シールドフレーム70に対して保護カバー80を装着することができるようになっている。 Further, each mounting head 42 can press the protective cover 80 against the shield frame 70 from above with the protective cover 80 being sucked and held, and the protective cover 80 is in a normal position with respect to the shield frame 70. The protective cover 80 can be attached to the shield frame 70.
 また、ヘッドユニット40には、図2に示すように、基板認識カメラ45が設けられており、この基板認識カメラ45は、ヘッドユニット40を移動させることで、プリント基板Pなど、基台11上の任意の位置の画像を撮像することができるようになっている。一方、基台11上における部品供給装置13およびトレイ供給装置14の側方には、図1に示すように、前後一対の部品認識カメラ17が設けられており、これらの部品認識カメラ17は、実装ヘッド42の下端部に保持された電子部品Eや保護カバー80の画像を撮像することができるようになっている。 Further, as shown in FIG. 2, the head unit 40 is provided with a board recognition camera 45, and the board recognition camera 45 moves the head unit 40 on the base 11 such as the printed board P. It is possible to take an image at any position. On the other hand, as shown in FIG. 1, a pair of front and rear component recognition cameras 17 are provided on the base 11 at the sides of the component supply device 13 and the tray supply device 14. An image of the electronic component E and the protective cover 80 held at the lower end of the mounting head 42 can be taken.
 次に、表面実装機10の電気的構成を、図3を参照して説明する。
 表面実装機10は、制御部110によって全体が制御統括されており、制御部110は、CPUなどにより構成される演算処理部111を備えている。演算処理部111には、モータ制御部(「制御部」の一例)112、記憶部113、画像処理部114、外部入出力部115、部品供給装置通信部116、管理装置通信部117、操作部118などが接続されている。
Next, the electrical configuration of the surface mounter 10 will be described with reference to FIG.
The surface mounter 10 is entirely controlled by a control unit 110, and the control unit 110 includes an arithmetic processing unit 111 configured by a CPU or the like. The arithmetic processing unit 111 includes a motor control unit (an example of a “control unit”) 112, a storage unit 113, an image processing unit 114, an external input / output unit 115, a component supply device communication unit 116, a management device communication unit 117, and an operation unit. 118 etc. are connected.
 記憶部113には、電子部品Eや保護カバー80を実装するための実装プログラム、保護カバー80の装着状態を判断するための装着判断プログラム、各種データなどが記憶されている。各種データには、生産が予定されているプリント基板Pの生産枚数や品種に関する基板情報、シールドフレーム70に保護カバー80を装着する装着位置に関する位置情報、部品供給装置13やトレイ供給装置14に収容された電子部品Eや保護カバー80の数や種類に関する情報、保護カバー80をシールドフレーム70に装着する際の上限荷重値Fu、保護カバー80をシールドフレーム70に装着する際の下限荷重値Fd、保護カバー80をシールドフレーム70に装着する際に再荷重上限値Fru、実装ヘッド42に保護カバー80が吸着保持された状態での実装ヘッド42の保持真空圧Pu、実装ヘッド42に何も保持されていない状態での実装ヘッド42の非保持真空圧Pdなどが含まれている。 The storage unit 113 stores a mounting program for mounting the electronic component E and the protective cover 80, a mounting determination program for determining the mounting state of the protective cover 80, various data, and the like. The various data includes board information relating to the number and type of printed circuit boards P that are scheduled to be produced, position information relating to the mounting position where the protective cover 80 is attached to the shield frame 70, and the component supply device 13 and the tray supply device 14. Information regarding the number and types of the electronic parts E and the protective covers 80, the upper limit load value Fu when the protective cover 80 is attached to the shield frame 70, the lower limit load value Fd when the protective cover 80 is attached to the shield frame 70, When the protective cover 80 is attached to the shield frame 70, the reload upper limit Fru, the holding vacuum pressure Pu of the mounting head 42 in a state where the protective cover 80 is sucked and held by the mounting head 42, and nothing is held by the mounting head 42. The non-holding vacuum pressure Pd of the mounting head 42 in a state where the mounting head 42 is not included is included.
 画像処理部114は、基板認識カメラ45や部品認識カメラ17から出力される画像信号が取り込まれるようになっており、取り込んだ画像信号に基づいて画像を生成する。 The image processing unit 114 is configured to capture an image signal output from the board recognition camera 45 or the component recognition camera 17, and generates an image based on the captured image signal.
 外部入出力部115は、いわゆるインターフェースであって、表面実装機10におけるエア供給装置60の圧力センサ63などの各種センサ類47から出力される検出信号が取り込まれるように構成されている。また、外部入出力部115は、演算処理部111から出力される制御信号をエア供給装置60や各種アクチュエータ類48に出力する。 The external input / output unit 115 is a so-called interface, and is configured to receive detection signals output from various sensors 47 such as the pressure sensor 63 of the air supply device 60 in the surface mounter 10. The external input / output unit 115 outputs a control signal output from the arithmetic processing unit 111 to the air supply device 60 and various actuators 48.
 部品供給装置通信部116は、部品供給装置13およびトレイ供給装置14に接続されており、これら供給装置13、14を統括して制御する。 The component supply device communication unit 116 is connected to the component supply device 13 and the tray supply device 14 and controls the supply devices 13 and 14 in an integrated manner.
 管理装置通信部117は、管理装置90と通信可能に接続されており、管理装置90は、生産予定のプリント基板Pの種類に基づいて最適化プログラムを実行し、電子部品Eおよび保護カバー80を実装する順番などを事前に決定する。 The management device communication unit 117 is communicably connected to the management device 90. The management device 90 executes an optimization program based on the type of the printed circuit board P to be produced, and the electronic component E and the protective cover 80 are connected. Decide the order of mounting in advance.
 操作部118は、液晶モニタなどの図示しない表示装置、キーボードやマウスなどの図示しない入力装置などを備えており、作業者からの入力の受付や作業者への出力を行う。 The operation unit 118 includes a display device (not shown) such as a liquid crystal monitor, an input device (not shown) such as a keyboard and a mouse, etc., and receives an input from an operator and outputs it to the operator.
 モータ制御部112は、記憶部113に記憶されている実装プログラムに基づいて、縦軸サーボモータ34、横軸サーボモータ38、Z軸サーボモータ43、R軸サーボモータ44、搬送コンベア12などを制御し、電子部品Eおよび保護カバー80を実装する。 The motor control unit 112 controls the vertical axis servo motor 34, the horizontal axis servo motor 38, the Z axis servo motor 43, the R axis servo motor 44, the transport conveyor 12, and the like based on the mounting program stored in the storage unit 113. Then, the electronic component E and the protective cover 80 are mounted.
 また、モータ制御部112は、実装プログラムと共に、記憶部113に記憶されている装着判断プログラムを実行し、シールドフレーム70に対して保護カバー80の装着が完了しているか否かを判断する。 Also, the motor control unit 112 executes a mounting determination program stored in the storage unit 113 together with the mounting program, and determines whether or not the protective cover 80 has been mounted on the shield frame 70.
 以下に、本実施形態の表面実装機10が、実装プログラムによって保護カバー80をシールドフレーム70に装着するカバー装着処理について説明し、続けて、装着判断プログラムに基づいて、保護カバー80の装着が完了しているか判断する装着判断処理について説明する。 Hereinafter, the cover mounting process in which the surface mounter 10 of the present embodiment mounts the protective cover 80 on the shield frame 70 by the mounting program will be described, and then the mounting of the protective cover 80 will be completed based on the mounting determination program. A mounting determination process for determining whether or not the user is doing will be described.
 実装プログラムでは、まず、ヘッドユニット40における実装ヘッド42をトレイ供給装置14のパレット14A上に移動させる(S11)。そして、Z軸サーボモータ43を動作させて実装ヘッド42を昇降させることで、パレット14Aに収容された保護カバー80を実装ヘッド42によって保持する(S12)。 In the mounting program, first, the mounting head 42 in the head unit 40 is moved onto the pallet 14A of the tray supply device 14 (S11). Then, the Z-axis servo motor 43 is operated to raise and lower the mounting head 42, whereby the protective cover 80 accommodated in the pallet 14A is held by the mounting head 42 (S12).
 次に、保護カバー80を保持した実装ヘッド42を、基台11の実装範囲Sに配置されたシールドフレーム70上に移動させ(S13)、Z軸サーボモータ43を動作させて実装ヘッド42により保護カバー80を降下させて、シールドフレーム70を覆うように保護カバー80を上方から被せて押圧することでシールドフレーム70に保護カバー80を装着する(S14)。 Next, the mounting head 42 holding the protective cover 80 is moved onto the shield frame 70 disposed in the mounting range S of the base 11 (S13), and the Z-axis servo motor 43 is operated to protect the mounting head 42. The protective cover 80 is attached to the shield frame 70 by lowering the cover 80 and pressing the protective cover 80 so as to cover the shield frame 70 from above (S14).
 この装着過程では、まず、図5の(a)に示すように、実装ヘッド42により保護カバー80を降下させる。そして、保護カバー80内にシールドフレーム70の上端が進入し始めると、図5の(b)に示すように、保護カバー80の弾性係止片84における係止突起85がシールドフレーム70の側板71に押し付けられ、保護カバー80の各弾性係止片84における係止突起85がシールドフレーム70の側板71に乗り上げる。このとき、実装ヘッド42によって保護カバー80をシールドフレーム70に対して押し付ける押圧荷重値Fは、図6のAに示すように最大荷重値Fmaxまで増加する。ここで、最大荷重値Fmaxとは、シールドフレーム70に保護カバー80を押し付けて装着する際に最大となる荷重値とする。 In this mounting process, first, the protective cover 80 is lowered by the mounting head 42 as shown in FIG. Then, when the upper end of the shield frame 70 starts to enter the protective cover 80, the locking projections 85 on the elastic locking pieces 84 of the protective cover 80 are formed on the side plates 71 of the shield frame 70 as shown in FIG. The locking projection 85 of each elastic locking piece 84 of the protective cover 80 rides on the side plate 71 of the shield frame 70. At this time, the pressing load value F for pressing the protective cover 80 against the shield frame 70 by the mounting head 42 increases to the maximum load value Fmax as shown in A of FIG. Here, the maximum load value Fmax is a maximum load value when the protective cover 80 is pressed against the shield frame 70 and attached.
 そして、このままさらに、保護カバー80をシールドフレーム70に対して押し付けると、図5の(c)に示すように、各弾性係止片84の係止突起85とシールドフレーム70の側板71の外面とが摺動し、シールドフレーム70が保護カバー80によって徐々に覆われる。なお、このときの実装ヘッド42の押圧荷重値Fは、図6のBに示すように、最大荷重値Fmaxのまま推移する。 If the protective cover 80 is further pressed against the shield frame 70 as it is, as shown in FIG. 5C, the locking projections 85 of the elastic locking pieces 84 and the outer surface of the side plate 71 of the shield frame 70 Slides, and the shield frame 70 is gradually covered by the protective cover 80. Note that the pressing load value F of the mounting head 42 at this time changes as the maximum load value Fmax as shown in FIG. 6B.
 そして、保護カバー80がシールドフレーム70に対して正規の装着位置に至ると、図5の(d)に示すように、各弾性係止片84の係止突起85がシールドフレーム70の側板71における係止孔73に嵌まり込み、実装ヘッド42の押圧荷重値Fは、図6のCに示すように、最大荷重値Fmaxから低下する。 When the protective cover 80 reaches the proper mounting position with respect to the shield frame 70, the locking projections 85 of the respective elastic locking pieces 84 are formed on the side plate 71 of the shield frame 70 as shown in FIG. The pressing load value F of the mounting head 42 is reduced from the maximum load value Fmax as shown in FIG. 6C.
 そして、係止孔73の上側開口縁73Aと係止突起85とが上下方向に係止することで、保護カバー80がシールドフレーム70に対して正規の位置に保持され、シールドフレーム70に対する保護カバー80の装着が完了する。 Then, the upper opening edge 73A of the locking hole 73 and the locking projection 85 are locked in the vertical direction, so that the protective cover 80 is held at a normal position with respect to the shield frame 70, and the protective cover for the shield frame 70 is obtained. Installation of 80 is completed.
 以上のような保護カバー80の装着において、装着判断処理では、以下のような処理が行われる。 In the mounting of the protective cover 80 as described above, the following processing is performed in the mounting determination processing.
 装着判断処理では、まず、シールドフレーム70に対する保護カバー80の組み付けが開始されたか否か判断する。 In the attachment determination process, first, it is determined whether or not the assembly of the protective cover 80 to the shield frame 70 has been started.
 具体的には、モータ制御部112は、実装ヘッド42によって保護カバー80を降下させ(S21)、実装ヘッド42の押圧荷重値Fを測定する(S22)。 Specifically, the motor control unit 112 lowers the protective cover 80 by the mounting head 42 (S21), and measures the pressing load value F of the mounting head 42 (S22).
 次に、モータ制御部112は、押圧荷重値Fが、下限荷重値Fdを超えるまで最大荷重値Fmaxまで増加し、上限荷重値Fuと下限荷重値Fdとの間の荷重目標範囲Fr内に至っているか否か判定する(S23)。ここで、上限荷重値Fuは、最大荷重値Fmaxよりも大きく設定されており、下限荷重値Fdは、最大荷重値Fmaxよりも小さく設定されている。
 詳しくは、例えば、上限荷重値Fuとは、保護カバー80における全ての弾性係止片84がシールドフレーム70の側板71に乗り上げる際の最大荷重値Fmaxを予め複数セット測定し、測定した最大荷重値Fmaxのうち最も大きかった最大荷重値Fmaxよりもやや大きな値(具体的には、最も大きかった最大荷重値の10%増など)とする。また、下限荷重値Fdは、例えば、保護カバー80における弾性係止片84の全ての係止突起85がシールドフレーム70の係止孔73に嵌まり込む際に最大荷重値Fmaxから低下する低下荷重値を複数セット測定し、測定した低下荷重値のうち最も小さかった低下荷重値よりもやや大きな値(具体的には、最も小さかった低下荷重値の10%増など)とする。なお、上限荷重値Fuと下限荷重値Fdとは、シールドフレーム70に保護カバー80を装着する際に最大荷重値Fmaxに基づいて設定したが、他の部品を装着する際の荷重値に基づいて設定されてもよい。
Next, the motor control unit 112 increases the maximum load value Fmax until the pressing load value F exceeds the lower limit load value Fd, and reaches the load target range Fr between the upper limit load value Fu and the lower limit load value Fd. It is determined whether or not (S23). Here, the upper limit load value Fu is set larger than the maximum load value Fmax, and the lower limit load value Fd is set smaller than the maximum load value Fmax.
Specifically, for example, the upper limit load value Fu is a maximum load value measured by measuring a plurality of sets of the maximum load value Fmax when all the elastic locking pieces 84 in the protective cover 80 ride on the side plate 71 of the shield frame 70 in advance. A value that is slightly larger than the maximum load value Fmax that is the largest among Fmax (specifically, an increase of 10% of the maximum load value that was the largest). Further, the lower limit load value Fd is, for example, a reduced load that decreases from the maximum load value Fmax when all the locking projections 85 of the elastic locking piece 84 in the protective cover 80 are fitted into the locking holes 73 of the shield frame 70. A plurality of sets of values are measured, and the values are set to be slightly larger than the smallest drop load value among the measured drop load values (specifically, 10% increase of the smallest drop load value, etc.). The upper limit load value Fu and the lower limit load value Fd are set based on the maximum load value Fmax when the protective cover 80 is mounted on the shield frame 70, but based on the load values when other components are mounted. It may be set.
 押圧荷重値Fが下限荷重値Fdを超えない場合(S23:NO)、モータ制御部112は、実装ヘッド42による保護カバー80の降下を継続する。 When the pressing load value F does not exceed the lower limit load value Fd (S23: NO), the motor control unit 112 continues the lowering of the protective cover 80 by the mounting head 42.
 一方、押圧荷重値Fが下限荷重値Fdを超えて荷重目標範囲Fr内に至った場合(S23:YES)、モータ制御部112は、シールドフレーム70に対する保護カバー80の組み付けが開始されたと判断し、さらに、実装ヘッド42によって保護カバー80を降下させ(S24)、実装ヘッド42の押圧荷重値Fを測定する(S25)。 On the other hand, when the pressing load value F exceeds the lower limit load value Fd and reaches the load target range Fr (S23: YES), the motor control unit 112 determines that the assembly of the protective cover 80 to the shield frame 70 has started. Further, the protective cover 80 is lowered by the mounting head 42 (S24), and the pressing load value F of the mounting head 42 is measured (S25).
 そして、弾性係止片84の係止突起85がシールドフレーム70の係止孔73に嵌まり込み、シールドフレーム70に対して保護カバー80の装着が完了したか否か判定する。 Then, it is determined whether or not the locking protrusion 85 of the elastic locking piece 84 is fitted into the locking hole 73 of the shield frame 70 and the mounting of the protective cover 80 to the shield frame 70 is completed.
 具体的には、モータ制御部112は、荷重目標範囲Frに至った押圧荷重値Fが、その後、下限荷重値Fdよりも低下するか判定する(S26)。 Specifically, the motor control unit 112 determines whether the pressing load value F reaching the load target range Fr is lower than the lower limit load value Fd (S26).
 実装ヘッド42の押圧荷重値Fが下限荷重値Fdよりも低下していない場合(S26:NO)、モータ制御部112は、実装ヘッド42による保護カバー80の押圧を継続する。 When the pressing load value F of the mounting head 42 is not lower than the lower limit load value Fd (S26: NO), the motor control unit 112 continues to press the protective cover 80 by the mounting head 42.
 一方、実装ヘッド42の押圧荷重値Fが低下して下限荷重値Fdよりも低くなった場合(S26:YES)、モータ制御部112は、弾性係止片84の係止突起85がシールドフレーム70の係止孔73に嵌まり込み、保護カバー80がシールドフレーム70によって保持され、シールドフレーム70に対する保護カバー80の装着が完了したと判断する。 On the other hand, when the pressing load value F of the mounting head 42 decreases and becomes lower than the lower limit load value Fd (S26: YES), the motor control unit 112 indicates that the locking projection 85 of the elastic locking piece 84 is the shield frame 70. It is determined that the protective cover 80 is held by the shield frame 70 and the attachment of the protective cover 80 to the shield frame 70 is completed.
 このように、本実施形態によると、実装ヘッド42の押圧荷重値Fが、下限荷重値Fdを超えて荷重目標範囲Fr内に至った後、低下して下限荷重値Fdよりもさらに低下したことを判断条件としてシールドフレーム70に保護カバー80が装着されたと判断することができる。 As described above, according to the present embodiment, the pressing load value F of the mounting head 42 decreases after reaching the load target range Fr exceeding the lower limit load value Fd and further lower than the lower limit load value Fd. As a determination condition, it can be determined that the protective cover 80 is attached to the shield frame 70.
 したがって、例えば、シールドフレーム70が保護カバー80に大きさのばらつきにより、シールドフレーム70に対する保護カバー80の大きさが基準値よりもやや大きい場合、実装ヘッド42の押圧荷重値Fが最大荷重値Fmaxに至らない虞があるものの、押圧荷重値Fが下限荷重値Fdを超えて、さらにその後、押圧荷重値Fが下限荷重値Fdよりも低下したことを判断基準としているから、シールドフレーム70に保護カバー80が装着されたと判断することができる。 Therefore, for example, when the size of the protective cover 80 with respect to the shield frame 70 is slightly larger than the reference value due to variations in the size of the shield frame 70 on the protective cover 80, the pressing load value F of the mounting head 42 is the maximum load value Fmax. However, since the determination is based on the fact that the pressing load value F exceeds the lower limit load value Fd and then the pressing load value F is lower than the lower limit load value Fd, the shield frame 70 is protected. It can be determined that the cover 80 is attached.
 また、例えば、シールドフレーム70に対して保護カバー80が基準値よりも小さい場合、押圧荷重値Fが最大荷重値Fmaxを超えるものの、シールドフレーム70に対して保護カバー80の装着が完了しておらず、弾性係止片84の係止突起85が係止孔73に嵌まり込んでいない場合には、押圧荷重値Fが低下しないため、シールドフレーム70に対する保護カバー80の装着が完了したと誤って判断されることを防ぐことができる。 For example, when the protective cover 80 is smaller than the reference value with respect to the shield frame 70, the pressing load value F exceeds the maximum load value Fmax, but the protective cover 80 has not been attached to the shield frame 70. If the locking protrusion 85 of the elastic locking piece 84 is not fitted in the locking hole 73, the pressing load value F does not decrease, and it is erroneously assumed that the mounting of the protective cover 80 on the shield frame 70 is completed. Can be prevented.
 さらに、例えば、シールドフレーム70に対して保護カバー80が位置ずれした状態で組み付けられた場合には、荷重目標範囲Frに至った押圧荷重値Fが、低下せずに上限荷重値Fuを超えることになるから、シールドフレーム70に対する保護カバー80の装着が完了していないと判断することができる。 Furthermore, for example, when the protective cover 80 is assembled with the shield frame 70 being displaced, the pressing load value F reaching the load target range Fr does not decrease and exceeds the upper limit load value Fu. Therefore, it can be determined that the attachment of the protective cover 80 to the shield frame 70 is not completed.
 つまり、従来のように、押圧荷重値Fが荷重目標値を超えたことを条件に、シールドフレーム70に対する保護カバー80の装着が完了したと判断する場合(図17および図18を参照)に比べて、シールドフレーム70に対する保護カバー80の装着完了の判断精度を向上させることができる。 That is, as compared with the conventional case where it is determined that the mounting of the protective cover 80 on the shield frame 70 is completed on the condition that the pressing load value F exceeds the load target value (see FIGS. 17 and 18). Thus, it is possible to improve the accuracy of determining whether or not the protective cover 80 is attached to the shield frame 70.
 ところで、本実施形態のように、シールドフレーム70の複数の係止孔73に複数の弾性係止片84の係止突起85がそれぞれ嵌まり込む場合、一部の係止突起85が係止孔73に嵌まり込まない場合でも、実装ヘッド42の押圧荷重値Fが下限荷重値Fdよりも低下してしまい、シールドフレーム70に対して保護カバー80が正規に装着されたと誤判断されることが懸念される。 By the way, when the locking projections 85 of the plurality of elastic locking pieces 84 are respectively fitted into the plurality of locking holes 73 of the shield frame 70 as in the present embodiment, some of the locking projections 85 are locked into the locking holes. Even if it does not fit in 73, the pressing load value F of the mounting head 42 falls below the lower limit load value Fd, and it may be erroneously determined that the protective cover 80 is properly attached to the shield frame 70. Concerned.
 そこで、本実施形態の装着判断処理では、実装ヘッド42の押圧荷重値Fが低下して下限荷重値Fdよりも低くなった後、モータ制御部112は、さらに、実装ヘッド42によって保護カバー80を降下させ(S27)、実装ヘッド42の押圧荷重値Fを測定する(S28)。つまり、シールドフレーム70に対する保護カバー80の装着が完了して、保護カバー80が正規の装着位置に至っている場合、実装ヘッド42によって保護カバー80をさらに降下させると、係止突起85がシールドフレーム70の各係止孔73に嵌まり込んだ係止突起85が係止孔73から外れて側板71上に乗りあげようとして、実装ヘッド42の押圧荷重値Fが、図6のDに示すように、再増加し、再荷重上限値Fruを超えることになる。
 そこで、モータ制御部112は、実装ヘッド42の押圧荷重値Fが再増加し、押圧荷重値Fが再荷重上限値Fruを超えたか判定する(S29)。ここで、再荷重上限値Fruとは、例えば、保護カバー80の1つの弾性係止片84がシールドフレーム70の側板71に乗り上げる際の押圧荷重値Fよりもやや小さい値に設定されている。
Therefore, in the mounting determination process of the present embodiment, after the pressing load value F of the mounting head 42 decreases and becomes lower than the lower limit load value Fd, the motor control unit 112 further moves the protective cover 80 by the mounting head 42. The pressure is lowered (S27), and the pressing load value F of the mounting head 42 is measured (S28). In other words, when the mounting of the protective cover 80 to the shield frame 70 is completed and the protective cover 80 has reached the proper mounting position, when the protective cover 80 is further lowered by the mounting head 42, the locking projection 85 is moved to the shield frame 70. As shown in FIG. 6D, the pressing load value F of the mounting head 42 is such that the locking projections 85 fitted in the respective locking holes 73 are disengaged from the locking holes 73 and ride on the side plates 71. , It increases again and exceeds the reload upper limit Fru.
Therefore, the motor control unit 112 determines whether the pressing load value F of the mounting head 42 has increased again and the pressing load value F has exceeded the reload upper limit value Fru (S29). Here, the reload upper limit value Fru is set to a value slightly smaller than the pressing load value F when one elastic locking piece 84 of the protective cover 80 rides on the side plate 71 of the shield frame 70, for example.
 判定の結果、実装ヘッド42の押圧荷重値Fが下限荷重値Fdよりも低くなった後、再び増加しない場合や押圧荷重値Fが再荷重上限値Fruを超えない場合(S29:NO)、モータ制御部112は、未だ一部の係止突起85が係止孔73に嵌まり込んでいないとして、実装ヘッド42による保護カバー80の押圧を継続する。 As a result of the determination, after the pressing load value F of the mounting head 42 becomes lower than the lower limit load value Fd, the motor does not increase again or the pressing load value F does not exceed the reload upper limit value Fru (S29: NO). The control unit 112 continues to press the protective cover 80 by the mounting head 42, assuming that some of the locking protrusions 85 are not yet fitted in the locking holes 73.
 そして、押圧荷重値Fが下限荷重値Fdよりも低くなった後、再び増加して再荷重上限値Fruを超えた場合(S29:YES)、モータ制御部112は、保護カバー80の各弾性係止片84における全ての係止突起85がシールドフレーム70の各係止孔73に嵌まり込み、その後、さらに係止突起85が係止孔73から外れようとしているとして、シールドフレーム70に対して保護カバー80が正規に装着されたと判断する。 When the pressing load value F becomes lower than the lower limit load value Fd and then increases again and exceeds the reload upper limit value Fru (S29: YES), the motor control unit 112 causes each elastic member of the protective cover 80 to It is assumed that all the locking projections 85 in the stop piece 84 are fitted into the respective locking holes 73 of the shield frame 70, and then the locking projections 85 are about to be detached from the locking holes 73. It is determined that the protective cover 80 is properly attached.
 したがって、本実施形態の装着判断処理によると、シールドフレーム70に対する保護カバー80の装着がほぼ完了しているものの、一部の係止突起85が係止孔73に嵌まり込んでいないような場合には、保護カバー80がシールドフレーム70に対して正規に装着されていないと判断することができる。 Therefore, according to the attachment determination process of the present embodiment, the attachment of the protective cover 80 to the shield frame 70 is almost completed, but some of the engagement protrusions 85 are not fitted in the engagement holes 73. It can be determined that the protective cover 80 is not properly attached to the shield frame 70.
 すなわち、シールドフレーム70に対して保護カバー80の一部が装着されたことをもって保護カバー80の装着が完了したと誤って判断されることを抑制することができるから、保護カバー80の装着完了の判断精度をさらに向上させることができる。 That is, since it is possible to suppress erroneously determining that the mounting of the protective cover 80 is completed when a part of the protective cover 80 is mounted on the shield frame 70, the mounting of the protective cover 80 is completed. The determination accuracy can be further improved.
 <実施形態2>
 次に、実施形態2について図9および図10を参照して説明する。
<Embodiment 2>
Next, Embodiment 2 will be described with reference to FIGS. 9 and 10.
 実施形態2は、実施形態1における装着判断処理の判断条件を一部変更することで、例えば、シールドフレーム70に対する保護カバー80の装着が完了したものの、保護カバー80の弾性係止片84の弾性復帰力が小さく、実装ヘッド42の押圧荷重値Fが下限荷重値Fdよりも低下しない場合に対応するものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。 In the second embodiment, for example, although the mounting of the protective cover 80 to the shield frame 70 is completed by partially changing the determination conditions of the mounting determination process in the first embodiment, the elasticity of the elastic locking piece 84 of the protective cover 80 is completed. This corresponds to the case where the return force is small and the pressing load value F of the mounting head 42 does not fall below the lower limit load value Fd, and the configuration, operation, and effect common to the first embodiment are duplicated. Description is omitted. The same reference numerals are used for the same configurations as those in the first embodiment.
 例えば、保護カバー80の弾性係止片84の弾性復帰力が小さく、実装ヘッド42の押圧荷重値Fが下限荷重値Fdよりも低下しない場合、保護カバー80がシールドフレーム70に対して正規の装着位置に至ると、図5の(d)に示すように、各弾性係止片84の係止突起85がシールドフレーム70の側板71における係止孔73に嵌まり込み、実装ヘッド42の押圧荷重値Fが、図9のCに示すように、最大荷重値Fmaxから低下するものの、押圧荷重値Fが荷重目標範囲Fr内に留まる場合がある。
 そこで、実施形態2の装着判断処理は、図10に示すように、まず、実施形態1と同様に、実装ヘッド42によって保護カバー80を降下させ(S31)、実装ヘッド42の押圧荷重値Fを測定する(S32)。
 そして、モータ制御部112は、押圧荷重値Fが、下限荷重値Fdを超えるまで最大荷重値Fmaxまで増加し、上限荷重値Fuと下限荷重値Fdとの間の荷重目標範囲Fr内に至っているか否か判定する(S33)。
For example, when the elastic return force of the elastic locking piece 84 of the protective cover 80 is small and the pressing load value F of the mounting head 42 does not fall below the lower limit load value Fd, the protective cover 80 is properly attached to the shield frame 70. When reaching the position, as shown in FIG. 5D, the locking projections 85 of the respective elastic locking pieces 84 are fitted into the locking holes 73 in the side plate 71 of the shield frame 70, and the pressing load of the mounting head 42 is reached. Although the value F decreases from the maximum load value Fmax as shown in FIG. 9C, the pressing load value F may remain within the load target range Fr.
Therefore, in the mounting determination process of the second embodiment, as shown in FIG. 10, first, similarly to the first embodiment, the protective cover 80 is lowered by the mounting head 42 (S31), and the pressing load value F of the mounting head 42 is set. Measure (S32).
Then, the motor control unit 112 increases the maximum load value Fmax until the pressing load value F exceeds the lower limit load value Fd, and reaches the load target range Fr between the upper limit load value Fu and the lower limit load value Fd. It is determined whether or not (S33).
 押圧荷重値Fが下限荷重値Fdを超えない場合(S33:NO)、モータ制御部112は、実装ヘッド42による保護カバー80の降下を継続する。 When the pressing load value F does not exceed the lower limit load value Fd (S33: NO), the motor control unit 112 continues the lowering of the protective cover 80 by the mounting head 42.
 一方、押圧荷重値Fが下限荷重値Fdを超えて荷重目標範囲Fr内に至った場合(S33:YES)、モータ制御部112は、シールドフレーム70に対する保護カバー80の組み付けが開始されたと判断し、さらに、実装ヘッド42によって保護カバー80を降下させ(S34)、実装ヘッド42の押圧荷重値Fを測定する(S35)。 On the other hand, when the pressing load value F exceeds the lower limit load value Fd and reaches the load target range Fr (S33: YES), the motor control unit 112 determines that the assembly of the protective cover 80 to the shield frame 70 has started. Further, the protective cover 80 is lowered by the mounting head 42 (S34), and the pressing load value F of the mounting head 42 is measured (S35).
 そして、モータ制御部112は、荷重目標範囲Frに至った押圧荷重値Fが、その後、低下しているか否か判定することで、弾性係止片84の係止突起85がシールドフレーム70の係止孔73に嵌まり込み、シールドフレーム70に対して保護カバー80の装着が完了したか否か判定する(S36)。 Then, the motor control unit 112 determines whether or not the pressing load value F that has reached the load target range Fr is subsequently lowered, so that the locking protrusion 85 of the elastic locking piece 84 is engaged with the shield frame 70. It is determined whether the protective cover 80 is completely attached to the shield frame 70 by fitting into the stop hole 73 (S36).
 実装ヘッド42の押圧荷重値Fが低下していない場合(S36:NO)、モータ制御部112は、実装ヘッド42による保護カバー80の押圧を継続する。 When the pressing load value F of the mounting head 42 has not decreased (S36: NO), the motor control unit 112 continues to press the protective cover 80 by the mounting head 42.
 一方、実装ヘッド42の押圧荷重値Fが低下している場合(S36:YES)、モータ制御部112は、弾性係止片84の係止突起85がシールドフレーム70の係止孔73に嵌まり込み、保護カバー80がシールドフレーム70によって保持され、シールドフレーム70に対する保護カバー80の装着が完了したと判断する。
 そして、実施形態1と同様に、S37からS39を実行する。
On the other hand, when the pressing load value F of the mounting head 42 is decreased (S36: YES), the motor control unit 112 causes the locking protrusion 85 of the elastic locking piece 84 to fit into the locking hole 73 of the shield frame 70. The protective cover 80 is held by the shield frame 70, and it is determined that the mounting of the protective cover 80 on the shield frame 70 is completed.
Then, as in the first embodiment, S37 to S39 are executed.
 このように、本実施形態によると、実装ヘッド42の押圧荷重値Fが、下限荷重値Fdを超えて荷重目標範囲Fr内に至った後、低下したことを判断条件としているから、図9に示すように、押圧荷重値Fは低下したものの、押圧荷重値Fが荷重目標範囲Fr内に留まっていたとしても、シールドフレーム70に保護カバー80が装着されたと判断することができる。 As described above, according to the present embodiment, since the pressing load value F of the mounting head 42 has exceeded the lower limit load value Fd and has reached the load target range Fr, the determination condition is as shown in FIG. As shown, although the pressing load value F has decreased, it can be determined that the protective cover 80 is attached to the shield frame 70 even if the pressing load value F remains within the load target range Fr.
 すなわち、本実施形態によると、シールドフレーム70に対する保護カバー80の装着が完了したものの、保護カバー80の弾性係止片84の弾性復帰力が小さく、実装ヘッド42の押圧荷重値Fが下限荷重値Fdよりも低下しない場合においても、押圧荷重値Fが下限荷重値Fdを超えた後、押圧荷重値Fが低下したことだけを判断基準としているから、シールドフレーム70に対する保護カバー80の装着が完了したと判断することができる。 That is, according to the present embodiment, although the mounting of the protective cover 80 to the shield frame 70 is completed, the elastic return force of the elastic locking piece 84 of the protective cover 80 is small, and the pressing load value F of the mounting head 42 is the lower limit load value. Even when the pressure does not decrease below Fd, since the determination criterion is only that the pressure load value F decreases after the pressure load value F exceeds the lower limit load value Fd, the attachment of the protective cover 80 to the shield frame 70 is completed. Can be determined.
 <実施形態3>
 次に、実施形態3について図11から図15を参照して説明する。
 実施形態3は、実施形態1における装着判断処理を実行した後、シールドフレーム70に保護カバー80が強固に保持されているか装着確認処理を実行するものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。
<Embodiment 3>
Next, Embodiment 3 will be described with reference to FIGS.
In the third embodiment, after the mounting determination process in the first embodiment is performed, a mounting confirmation process is performed to check whether the protective cover 80 is firmly held on the shield frame 70. The configuration common to the first embodiment, Since the operation and effect are duplicated, the description thereof is omitted. The same reference numerals are used for the same configurations as those in the first embodiment.
 装着確認処理は、装着判断処理が終了し、実装プログラムによる実装ヘッド42の上昇時に実行される。
 具体的には、保護カバー80が実装ヘッド42によって吸着保持されていると、図11の(a)に示すように、実装ヘッド42の下端開口は、保護カバー80の天井壁82によって閉塞されており、実装ヘッド42内の真空圧Pは、図12のXに示すように、記憶部113に記憶された保持真空圧Puよりも高まった状態となっている。
The mounting confirmation process is executed when the mounting determination process ends and the mounting head 42 is raised by the mounting program.
Specifically, when the protective cover 80 is attracted and held by the mounting head 42, the lower end opening of the mounting head 42 is blocked by the ceiling wall 82 of the protective cover 80 as shown in FIG. Therefore, the vacuum pressure P in the mounting head 42 is higher than the holding vacuum pressure Pu stored in the storage unit 113 as indicated by X in FIG.
 一方、実装ヘッド42に負圧が供給されるものの、保護カバー80が保持されておらず、図11の(b)に示すように、実装ヘッド42の下端開口が開放されていると、実装ヘッド42内の真空圧Pは低下するように変化し、図12のYに示すように、記憶部113に記憶された非保持真空圧Pdよりも低下した状態となる。 On the other hand, when a negative pressure is supplied to the mounting head 42, but the protective cover 80 is not held and the lower end opening of the mounting head 42 is opened as shown in FIG. The vacuum pressure P in 42 changes so as to decrease, and as shown in Y of FIG. 12, the vacuum pressure P becomes lower than the non-holding vacuum pressure Pd stored in the storage unit 113.
 そして、実装ヘッド42による保護カバー80の保持力は、シールドフレーム70に保護カバー80が正規に装着された際の装着力よりも小さく設定されている。 The holding force of the protective cover 80 by the mounting head 42 is set to be smaller than the attaching force when the protective cover 80 is normally attached to the shield frame 70.
 つまり、図11の(a)に示すように、シールドフレーム70に対する保護カバー80の装着が完了し、保護カバー80がシールドフレーム70に強固に保持されている場合、図11の(b)に示すように、実装ヘッド42の上昇するもの、保護カバー80はシールドフレーム70に保持されたままとなり、図12のYに示すように、実装ヘッド42内の真空圧Pが、非保持真空圧Pdよりも低下する。 That is, as shown in FIG. 11A, when the mounting of the protective cover 80 to the shield frame 70 is completed and the protective cover 80 is firmly held by the shield frame 70, as shown in FIG. Thus, the rising of the mounting head 42 and the protective cover 80 remain held by the shield frame 70, and the vacuum pressure P in the mounting head 42 is higher than the non-holding vacuum pressure Pd as shown by Y in FIG. Also decreases.
 一方、図14の(a)に示すように、シールドフレーム70に対する保護カバー80の装着が完了しているにもかかわらず、保護カバー80がシールドフレーム70によって保持されず、保護カバー80がシールドフレーム70から脱落する状態になっている場合、図14の(b)に示すように、実装ヘッド42の上昇に伴い、保護カバー80が実装ヘッド42に保持されたまま上昇するため、実装ヘッド42内の真空圧Pは、図15のXに示すように、ほぼ変化せず、保持真空圧Puよりも高い状態となる。 On the other hand, as shown in FIG. 14A, the protective cover 80 is not held by the shield frame 70 even though the protective cover 80 is completely attached to the shield frame 70, and the protective cover 80 is not attached to the shield frame 70. When the mounting head 42 is removed, the protective cover 80 is lifted while being held by the mounting head 42 as the mounting head 42 is lifted, as shown in FIG. As shown by X in FIG. 15, the vacuum pressure P is substantially unchanged and is higher than the holding vacuum pressure Pu.
 そこで、装着確認処理では、図13に示すように、シールドフレーム70に対する保護カバー80の装着が完了して装着判断処理が終了したところで、モータ制御部112は、実装ヘッド42によって保護カバー80を吸着保持させたまま、実装ヘッド42をZ軸サーボモータ43により上昇させ、実装ヘッド42内の真空圧Pが低下するか判定する(S41)。 Therefore, in the attachment confirmation process, as shown in FIG. 13, when the attachment determination process is completed after the attachment of the protective cover 80 to the shield frame 70 is completed, the motor control unit 112 sucks the protective cover 80 by the mounting head 42. While being held, the mounting head 42 is raised by the Z-axis servo motor 43, and it is determined whether the vacuum pressure P in the mounting head 42 decreases (S41).
 実装ヘッド42内の真空圧Pが、図15に示すように、保持真空圧Puよりも低下していない場合(S41:NO)、モータ制御部112は、実装ヘッド42の上昇に伴って保護カバー80が実装ヘッド42に保持されたまま上昇し、図11の(b)に示すように、保護カバー80がシールドフレーム70から脱落する状態になっていると判断する。そして、演算処理部111を介して操作部118の表示部にエラー表示を行う(S42)。 When the vacuum pressure P in the mounting head 42 is not lower than the holding vacuum pressure Pu as shown in FIG. 15 (S41: NO), the motor control unit 112 detects the protective cover as the mounting head 42 rises. 80 rises while being held by the mounting head 42, and it is determined that the protective cover 80 is in a state of falling off from the shield frame 70 as shown in FIG. Then, an error is displayed on the display unit of the operation unit 118 via the arithmetic processing unit 111 (S42).
 一方、実装ヘッド42内の真空圧Pが、非保持真空圧Pdよりも低下している場合(S41:YES)、モータ制御部112は、保護カバー80がシールドフレーム70に対して正規に装着されて、シールドフレーム70よって強固に保持されていると判断する(S43)。これにより、シールドフレーム70から保護カバー80が容易に脱落しない状態になっていることを確認することができる。 On the other hand, when the vacuum pressure P in the mounting head 42 is lower than the non-holding vacuum pressure Pd (S41: YES), the motor control unit 112 correctly attaches the protective cover 80 to the shield frame 70. Thus, it is determined that the shield frame 70 is firmly held (S43). Accordingly, it can be confirmed that the protective cover 80 is not easily detached from the shield frame 70.
 すなわち、本実施形態によると、装着判断処理において、シールドフレーム70に対して保護カバー80が正規の装着位置に至って装着が完了したものの、例えば、シールドフレーム70に対して保護カバー80が基準値よりも大きかったり、弾性係止片84の浮きがあったりするなどして、保護カバー80がシールドフレーム70から脱落し易い状態になっているものと、保護カバー80がシールドフレーム70に対して強固に保持されているものとを判断することができる。 That is, according to the present embodiment, in the attachment determination process, the protective cover 80 reaches the regular attachment position with respect to the shield frame 70 and the attachment is completed. The protective cover 80 is easy to drop off from the shield frame 70 due to the large size or the elastic locking piece 84 floating, and the protective cover 80 is strong against the shield frame 70. It can be determined that it is held.
 <他の実施形態>
 本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
<Other embodiments>
The technology disclosed in the present specification is not limited to the embodiments described with reference to the above description and drawings, and includes, for example, the following various aspects.
 (1)上記実施形態では、天井板72を有するシールドフレーム70に保護カバー80を装着する構成にした。しかしながら、これに限らず、天井板のないシールドフレームに保護カバーを装着する構成にしてもよく、樹脂フレームにシールドカバーを装着する構成にしてもよい。 (1) In the above embodiment, the protective cover 80 is attached to the shield frame 70 having the ceiling plate 72. However, the present invention is not limited to this, and a configuration may be adopted in which a protective cover is attached to a shield frame without a ceiling plate, or a configuration in which a shield cover is attached to a resin frame.
 (2)上記実施形態では、保護カバー80の側壁81に複数の弾性係止片84を設け、これらの弾性係止片84の係止突起85をシールドフレーム70に設けられた複数の係止孔73に嵌め込む構成とした。しかしながら、これに限らず、図16に示すように、シールドフレーム170の外面に全周に亘って係止溝171を設け、この係止溝171に嵌まり込む係止突起185を保護カバー180の側壁181の内面に設ける構成にしてもよい。 (2) In the above embodiment, a plurality of elastic locking pieces 84 are provided on the side wall 81 of the protective cover 80, and the locking protrusions 85 of these elastic locking pieces 84 are provided in the plurality of locking holes provided in the shield frame 70. 73. However, the present invention is not limited to this, and as shown in FIG. 16, a locking groove 171 is provided on the entire outer surface of the shield frame 170, and a locking protrusion 185 fitted into the locking groove 171 is provided on the protective cover 180. You may make it the structure provided in the inner surface of the side wall 181. FIG.
 (3)上記実施形態では、上限荷重値Fuと下限荷重値Fdを予め測定したデータをもとに決定する構成とした。しかしながら、これに限らず、上限荷重値を最大荷重値の1.5倍や2倍に設定したり、下限荷重値を最大荷重値の80%程度に設定したりしてもよく、上限荷重値は、最大荷重値よりも大きい任意の値に設定でき、下限荷重値は、最大荷重値よりも小さい任意の値に設定できる。 (3) In the above embodiment, the upper limit load value Fu and the lower limit load value Fd are determined based on data measured in advance. However, not limited to this, the upper limit load value may be set to 1.5 times or twice the maximum load value, or the lower limit load value may be set to about 80% of the maximum load value. Can be set to an arbitrary value larger than the maximum load value, and the lower limit load value can be set to an arbitrary value smaller than the maximum load value.
 (4)上記実施形態では、実装ヘッド42が保護カバー80を吸着保持する構成とした。しかしながら、これに限らず、実装ヘッドが保護カバーをチャックして保持する構成にしてもよい。 (4) In the above embodiment, the mounting head 42 holds the protective cover 80 by suction. However, the configuration is not limited to this, and the mounting head may be configured to chuck and hold the protective cover.
 (5)上記実施形態1では、装着判断処理において、実装ヘッド42の押圧荷重値Fが再荷重上限値Fruを超えたことを判断条件に、シールドフレーム70に対して保護カバー80が正規に装着されたと判断する構成とした。しかしながら、これに限らず、装着判断処理において、実装ヘッドの押圧荷重値が下限荷重値を超えたことを判断条件に、シールドフレームに対して保護カバーが正規に装着されたと判断する構成にしてもよい。 (5) In the first embodiment, the protective cover 80 is normally attached to the shield frame 70 on the condition that the pressing load value F of the mounting head 42 exceeds the reload upper limit value Fru in the attachment determination process. It was set as the structure judged that it was carried out. However, the present invention is not limited to this, and in the mounting determination process, it is determined that the protective cover is properly mounted on the shield frame on the condition that the pressing load value of the mounting head exceeds the lower limit load value. Good.
10:表面実装機
12:搬送コンベア(「基板搬送装置」の一例)
13:部品供給装置
20:部品実装装置
42:実装ヘッド(「部品保持部」の一例)
70:シールドフレーム(「被装着部品」の一例)
61:エア発生部(「負圧発生部」の一例)
80:保護カバー(「装着部品」の一例)
110:制御部
112:モータ制御部(「制御部」の一例)
F:押圧荷重値
Fd:下限荷重値
Fr:荷重目標範囲
Fru:再荷重上限値
Fu:上限荷重値
S:実装範囲
10: Surface mounter 12: Conveyor (an example of “substrate conveyor”)
13: Component supply device 20: Component mounting device 42: Mounting head (an example of “component holding unit”)
70: Shield frame (an example of “mounted parts”)
61: Air generating part (an example of “negative pressure generating part”)
80: Protective cover (an example of “mounted parts”)
110: Control unit 112: Motor control unit (an example of “control unit”)
F: Press load value Fd: Lower limit load value Fr: Target load range Fru: Reload upper limit value Fu: Upper limit load value S: Mounting range

Claims (7)

  1.  被装着部品に装着部品を押し付けて装着する部品実装装置であって、
     前記装着部品を保持して前記被装着部品に押し付ける部品保持部と、
     前記部品保持部の動作を制御する制御部とを備え、
     前記部品保持部によって前記装着部品を前記被装着部品に押し付ける押圧荷重値は、前記被装着部品に前記装着部品を押し付ける際に増加し、前記被装着部品に対する前記装着部品の装着が完了すると低下するようになっており、
     前記被装着部品に前記装着部品を押し付ける際に最大となる荷重値を最大荷重値とした場合、
     前記制御部は、前記押圧荷重値が、前記最大荷重値よりも小さく設定された下限荷重値と前記最大荷重値よりも大きく設定された上限荷重値との間の荷重目標範囲内に至った後、低下することを判断条件として、被装着部品に対する前記装着部品の装着が完了したと判断する装着判断処理を実行する部品実装装置。
    A component mounting apparatus that presses and mounts a mounted component on a mounted component,
    A component holding unit that holds the mounted component and presses it against the mounted component;
    A control unit for controlling the operation of the component holding unit,
    The pressing load value for pressing the mounted component against the mounted component by the component holding unit increases when the mounted component is pressed against the mounted component, and decreases when the mounting of the mounted component on the mounted component is completed. And
    When the maximum load value when pressing the mounting part against the mounted part is the maximum load value,
    After the controller has reached the load target range between the lower limit load value set smaller than the maximum load value and the upper limit load value set larger than the maximum load value. A component mounting apparatus that executes mounting determination processing for determining that mounting of the mounting component on the mounted component is completed on the condition that the decrease is a determination condition.
  2.  前記判断条件は、前記押圧荷重値が前記荷重目標範囲内に至った後、前記下限荷重値よりも低下することである請求項1に記載の部品実装装置。 2. The component mounting apparatus according to claim 1, wherein the determination condition is that the pressing load value falls below the lower limit load value after reaching the load target range.
  3.  前記判断条件は、前記押圧荷重値が低下した後、再増加することである請求項1または請求項2に記載の部品実装装置。 3. The component mounting apparatus according to claim 1, wherein the determination condition is that the pressing load value is increased again after the pressing load value is decreased.
  4.  前記判断条件は、前記部品保持部における前記押圧荷重値の再増加が所定の再荷重上限値を超えることである請求項3に記載の部品実装装置。 4. The component mounting apparatus according to claim 3, wherein the determination condition is that a re-increase of the pressing load value in the component holding part exceeds a predetermined reload upper limit value.
  5.  前記部品保持部は、負圧発生部による負圧によって前記装着部品を吸引して保持するようになっており、
     前記制御部は、前記装着判断処理の後、前記部品保持部によって前記装着部品を保持した状態で前記被装着部品から離れる方向に移動し、前記部品保持部に前記装着部品が保持されているか否かを前記部品保持部内の真空圧の変化によって確認する装着確認処理をさらに実行する請求項1から請求項4のいずれか一項に記載の部品実装装置。
    The component holding unit is configured to suck and hold the mounting component by the negative pressure generated by the negative pressure generating unit,
    After the mounting determination process, the control unit moves in a direction away from the mounted component while the mounted component is held by the component holding unit, and whether or not the mounted component is held in the component holding unit. 5. The component mounting apparatus according to claim 1, further comprising a mounting confirmation process for confirming whether or not this is caused by a change in a vacuum pressure in the component holding unit.
  6.  請求項1から請求項5のいずれか一項に記載の部品実装装置と、
     前記部品実装装置に前記装着部品を供給する部品供給装置と、
     前記部品実装装置による前記装着部品の実装範囲内まで前記被装着部品を搬送する搬送装置とを備える表面実装機。
    The component mounting apparatus according to any one of claims 1 to 5,
    A component supply device for supplying the mounting component to the component mounting device;
    A surface mounting machine comprising: a transport device that transports the mounted component to a mounting range of the mounted component by the component mounting device.
  7.  被装着部品に装着部品を押し付けて装着する部品の実装方法であって、
     前記装着部品を前記被装着部品に押し付ける押圧荷重値は、前記被装着部品に前記装着部品を押し付ける際に増加し、前記被装着部品に対する前記装着部品の装着が完了すると低下するようになっており、
     前記被装着部品に前記装着部品を押し付ける際に最大となる荷重値を最大荷重値とした場合、
     前記装着部品を前記被装着部品に押し付ける押圧荷重値が、前記被装着部品に前記装着部品を押し付ける際の最大荷重値よりも小さい下限荷重値と前記最大荷重値よりも大きい上限荷重値との間の荷重目標範囲内に至った後、低下することを判断条件として、被装着部品に対する前記装着部品の装着が完了したと判断する部品の実装方法。
    A mounting method for a component that is mounted by pressing the mounted component against the mounted component,
    The pressing load value that presses the mounted component against the mounted component increases when the mounted component is pressed against the mounted component, and decreases when the mounting of the mounted component to the mounted component is completed. ,
    When the maximum load value when pressing the mounting part against the mounted part is the maximum load value,
    A pressing load value for pressing the mounting component against the mounted component is between a lower limit load value smaller than a maximum load value when pressing the mounting component against the mounted component and an upper limit load value larger than the maximum load value. The component mounting method for determining that the mounting of the mounting component to the mounted component is completed on the condition that the load decreases after reaching the load target range.
PCT/JP2016/087109 2016-12-13 2016-12-13 Component mounting device, surface mounter, and method for mounting component WO2018109845A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018556075A JP6714103B2 (en) 2016-12-13 2016-12-13 Component mounter, surface mounter, and component mount method
PCT/JP2016/087109 WO2018109845A1 (en) 2016-12-13 2016-12-13 Component mounting device, surface mounter, and method for mounting component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087109 WO2018109845A1 (en) 2016-12-13 2016-12-13 Component mounting device, surface mounter, and method for mounting component

Publications (1)

Publication Number Publication Date
WO2018109845A1 true WO2018109845A1 (en) 2018-06-21

Family

ID=62558227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087109 WO2018109845A1 (en) 2016-12-13 2016-12-13 Component mounting device, surface mounter, and method for mounting component

Country Status (2)

Country Link
JP (1) JP6714103B2 (en)
WO (1) WO2018109845A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020157971A1 (en) * 2019-02-01 2021-09-09 株式会社Fuji Work machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222035A (en) * 2011-04-05 2012-11-12 Fuji Mach Mfg Co Ltd Method and device for mounting electronic component
JP2014160788A (en) * 2013-02-21 2014-09-04 Panasonic Corp Component mounting apparatus and component mounting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222035A (en) * 2011-04-05 2012-11-12 Fuji Mach Mfg Co Ltd Method and device for mounting electronic component
JP2014160788A (en) * 2013-02-21 2014-09-04 Panasonic Corp Component mounting apparatus and component mounting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020157971A1 (en) * 2019-02-01 2021-09-09 株式会社Fuji Work machine

Also Published As

Publication number Publication date
JPWO2018109845A1 (en) 2019-10-24
JP6714103B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
US8136219B2 (en) Electronic component mounter and mounting method
JP6224348B2 (en) Judgment device, surface mounter
JP6522670B2 (en) Mounting work machine
JP2016157754A (en) Component mounting method
JPWO2017085865A1 (en) Control device for component mounter
WO2018109845A1 (en) Component mounting device, surface mounter, and method for mounting component
WO2018037507A1 (en) Mounting device
EP3346816B1 (en) Component-mounting machine
JP2018049963A (en) Component mounting machine
JP6840223B2 (en) How to hold the component mounting device and board
JP5067412B2 (en) Connector mounting method
JP6571360B2 (en) Component mounter
CN114041332B (en) Mounting device, mounting system, and inspection mounting method
JP6448337B2 (en) Component mounting equipment
WO2017064777A1 (en) Component mounter
CN111727672B (en) Component mounting machine
JP2016162900A (en) Component mounting machine
JP6778270B2 (en) Component mounting device
JPWO2017017788A1 (en) Component mounter
WO2019163044A1 (en) Component mounting system
JP6603318B2 (en) Component mounting equipment
JP7353913B2 (en) Component mounting machine
JP7223136B2 (en) Component mounter
JP2018006417A (en) Determination device
JP2018190785A (en) Assembly machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923882

Country of ref document: EP

Kind code of ref document: A1