WO2018109516A1 - Automatic driving assistance method and device - Google Patents

Automatic driving assistance method and device Download PDF

Info

Publication number
WO2018109516A1
WO2018109516A1 PCT/IB2016/001969 IB2016001969W WO2018109516A1 WO 2018109516 A1 WO2018109516 A1 WO 2018109516A1 IB 2016001969 W IB2016001969 W IB 2016001969W WO 2018109516 A1 WO2018109516 A1 WO 2018109516A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic driving
branch line
branch
control device
host vehicle
Prior art date
Application number
PCT/IB2016/001969
Other languages
French (fr)
Japanese (ja)
Inventor
隼一 畑山
Original Assignee
日産自動車株式会社
ルノーエス・ア・エス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノーエス・ア・エス filed Critical 日産自動車株式会社
Priority to PCT/IB2016/001969 priority Critical patent/WO2018109516A1/en
Publication of WO2018109516A1 publication Critical patent/WO2018109516A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the present invention relates to an automatic driving support method and apparatus.
  • branch line information on the road ahead of the vehicle regarding the main line and the branch line ahead of the branch point
  • the host vehicle enters the first branch line that is a non-guide route instead of the main line that is a guide route, and starts from a branch point between the main line and the first branch line (hereinafter referred to as a first branch point).
  • a branch point between the second branch line and the third branch line (hereinafter referred to as a second branch point) exists at a short distance.
  • the navigation system searches for a guidance route when entering the first branch line and includes the searched guidance route.
  • a method of outputting the road information ahead from the navigation system to the travel control device is conceivable.
  • this method there is a problem that the communication load between the navigation system and the travel control device increases.
  • the problem to be solved by the present invention is that the host vehicle enters the first branch line that is a non-guide route instead of the main route that is a guide route, and the second branch point is located at a short distance from the first branch point.
  • the present invention provides a main line set as a first guide route, a first branch line branched from the main line, a first branch point that is a branch point between the main line and the first branch line, and the first branch line. And a second branch line and a third branch line branching from the second branch point, and from the first branch point to the second branch point.
  • the travel time of the vehicle is determined by the automatic driving control device from the start of the second guidance route search processing when the second guidance route search processing is executed by the navigation system after the host vehicle enters the first branch line.
  • the navigation system The second guidance route search process is executed by Upon reaching a predetermined position, by executing the output processing of the automatic driving control apparatus of the second guide route by the navigation system, to solve the above problems.
  • the present invention in a situation where the host vehicle enters the first branch line that is a non-guide route instead of the main route that is a guide route, and the second branch point exists at a short distance from the first branch point. There is an effect that the automatic operation control can be continued while suppressing an increase in communication load.
  • FIG. 1 is a block diagram showing a configuration of a vehicle equipped with an automatic driving support system according to an embodiment of the present invention.
  • 2 is a flowchart for explaining a procedure of automatic driving control processing of the automatic driving support system in FIG. 1 when the host vehicle deviates from the guiding route and enters a non-guidance route. It is a figure for demonstrating the process of the automatic driving control of the automatic driving assistance system of FIG. 1 in the condition where the own vehicle which is performing automatic driving control approachs the 1st branch line which is a non-guide route.
  • FIG. 6 is a first half of a flowchart for explaining a process of automatic driving control of the automatic driving support system in FIG.
  • FIG. 6 is a first half of a flowchart for explaining a process of automatic driving control of the automatic driving support system in FIG. 1 in a situation where the own vehicle that is executing the automatic driving control enters the first branch line that is a non-guidance route. . It is the latter half part of the flowchart of FIG. 5A. It is a figure for demonstrating the process of the automatic driving control of the automatic driving assistance system of FIG. 1 in the condition where the own vehicle which is performing automatic driving control approachs the 1st branch line which is a non-guide route.
  • FIG. 1 is a block diagram showing a configuration of a vehicle equipped with an automatic driving support system 1 according to an embodiment of the present invention.
  • the automatic driving support system 1 executes automatic driving control of a vehicle according to the guidance route to the destination generated by the navigation system 20.
  • control is started in accordance with the driver's input, and the vehicle is driven according to the guidance route without the driver performing the accelerator operation, the brake operation, and the steering wheel operation.
  • the automatic driving control is stopped or temporarily interrupted, and various operations by the driver are given priority.
  • the vehicle includes an automatic driving support system 1, an engine control device (ECM: Engine Control Module) 2, a body control device (BCM: Body Control Module) 3, a steering control device 4, and a brake control device 5. And a transmission control device (TCM: Transmission Control Module) 6, a skid prevention device (VDC: Vehicle Dynamics Control) 7, and the like.
  • the automatic driving support system 1 includes an automatic driving control device 10, a camera 11, a radar 12, and a navigation system 20.
  • the navigation system 20 includes a navigation control device 201, a map database 202, and a locator 203.
  • the automatic driving control device 10 the navigation control device 201, the engine control device 2, the body control device 3, the steering control device 4, the brake control device 5, the transmission control device 6, and the skid prevention device 7.
  • a CAN (Controller Area Network) bus 8 as an in-vehicle LAN.
  • the engine control device 2 is a controller that executes operation control of the engine 21.
  • the engine control device 2 controls the engine 21 so as to realize the required driving force output from the automatic operation control device 10, the skid prevention device 7, or the like.
  • the vehicle provided with only the engine (internal combustion engine) as a travel drive source is taken as an example, an electric vehicle (including a fuel cell vehicle) including only an electric motor as a travel drive source, or a combination of an engine and an electric motor You may replace with a hybrid vehicle etc. provided with a thing as a driving source.
  • the body control device 3 includes door lock / unlock of the door lock device 31, keyless functions such as passive keyless and remote control keyless, engine start functions such as push engine start function, security functions such as immobilizer, room lamp, battery saver, etc. Controls various functions such as timer functions and safety functions such as tire pressure monitoring systems.
  • keyless functions such as passive keyless and remote control keyless
  • engine start functions such as push engine start function
  • security functions such as immobilizer, room lamp, battery saver, etc.
  • Controls various functions such as timer functions and safety functions such as tire pressure monitoring systems.
  • the steering control device 4 is a controller that executes control of the electric power steering motor 41.
  • the steering control device 4 controls the electric power steering motor 41 so as to realize the target steering angle output from the automatic driving control device 10 or the like.
  • the electric power steering motor 41 is a steering actuator attached to a steering column shaft (not shown).
  • the brake control device 5 is a controller that executes control of the brake unit 51.
  • the brake control device 5 controls the brake unit 51 so as to realize the required braking force output from the automatic driving control device 10, the skid prevention device 7, or the like.
  • the transmission control device 6 is a controller that controls an automatic match transmission (AT) 61.
  • the transmission control device 6 calculates the optimum gear from the vehicle speed, the accelerator opening, the shift position, etc. so as to realize the required driving force output from the automatic operation control device 10, the skid prevention device 7, etc. Shift control is executed.
  • the skid prevention device 7 uses various sensors to monitor the driving operation of the driver and the movement of the vehicle for the purpose of preventing the skid of the vehicle, and outputs the required driving force to the engine control device 2 according to the running state of the vehicle.
  • the required braking force is output to the brake control device 5.
  • the camera 11 is installed at the front of the vehicle, the side of the vehicle, the rear of the vehicle, and the like, and outputs image data obtained by photographing the front of the vehicle, the side of the vehicle, the rear of the vehicle, and the like to the automatic driving control device 10.
  • the radar 12 is installed in the front part of the vehicle, the side part of the vehicle, the rear part of the vehicle, etc., and automatically converts the polar coordinates (distance and position) of the reflection points of the objects existing in the front of the vehicle, the side of the vehicle, and the rear of the vehicle. Output to the operation control device 10.
  • the map database 202 stores map information.
  • This map information includes road types such as types of highways and general roads, link types such as types of highway main links and branch links, positions of branch points between main roads and branch lines of highways, and branch lines
  • the information includes the position of the branch point, the distance from the branch point between the main line and the branch line to the branch point between the branch lines, the speed limit, and the like.
  • Locator 203 calculates the position of the host vehicle at predetermined time intervals based on signals from a vehicle speed sensor, a direction sensor, a GPS receiver, and the like. Then, the locator 203 executes map matching processing for correcting the calculated position of the own vehicle using map information stored in the map database 202, and outputs the corrected position of the own vehicle to the navigation control device 201.
  • the navigation control device 201 searches for a route from the position of the host vehicle output from the locator 22 to the destination input by the driver, displays the search result on the display device, and controls automatic driving through the CAN bus 8. Output to the device 10.
  • the automatic operation control device 10 is an integrated circuit such as a microprocessor, and includes an A / D conversion circuit, a D / A conversion circuit, a central processing unit (CPU, Central Processing Unit), a ROM (Read Only Memory), and a RAM (Read). Access Memory).
  • the automatic operation control device 10 processes image data output from the camera 11 and information on reflection points output from the radar 12, recognizes objects such as other vehicles around the own vehicle, Recognize curbs and branch points. Further, the automatic driving control device 10 calculates the required driving force, the required braking force, and the target steering angle so as to travel along the route output from the navigation control device 201 while avoiding the recognized object.
  • the automatic driving control device 10 outputs the calculated required driving force to the engine control device 2 and the transmission control device 6 through the CAN bus 8, and outputs the calculated required braking force to the brake control device 5 through the CAN bus 8.
  • the target steering angle is output to the steering control device 4 through the CAN bus 8.
  • FIG. 2 is a flowchart for explaining the processing.
  • step S1 the navigation control device 201 re-searches the guidance route to the destination.
  • step S ⁇ b> 2 the navigation control apparatus 201 outputs the re-searched guidance route to the automatic driving control apparatus 10 through the CAN bus 8.
  • step S ⁇ b> 3 the automatic driving control device 10 processes the guidance route information output from the navigation control device 201.
  • step S 4 the automatic driving control device 10 outputs a command to output a voice guidance notifying the driver that selection of whether to change the guidance route is selected or not to the navigation control device 201 through the CAN bus 8.
  • step S5 the navigation control device 201 outputs the voice guidance.
  • step S6 the automatic driving control device 10 determines whether or not the driver has permitted the change of the guidance route by voice or switch operation. When the change of the guide route is permitted, the process proceeds to step S7, and when the change of the guide route is not permitted, the process proceeds to step S8.
  • step S8 the automatic driving control device 10 stops the automatic driving control.
  • the requested driving force is such that the automatic driving control device 10 travels along the re-search route output from the navigation control device 201 while avoiding the object recognized from the image data of the camera 11.
  • the required braking force and the target steering angle are calculated and output to the engine control device 2, the transmission control device 6, the brake control device 5, and the steering control device 4 through the CAN bus 8.
  • the time Tp required from the start of re-search for the guidance route of the navigation control device 201 to the completion of the automatic driving control according to the re-searched guidance route is generally assumed to be 10 seconds or more.
  • branch point 105 there is a branch point (hereinafter referred to as a first branch point) 105 between the main road 101 and the first branch line 102 of the expressway, and the first branch line 102 has a second branch point.
  • the main line 101 in which the own vehicle V that is performing the automatic driving control is the first guide route IC1 is present, and a branch point (hereinafter referred to as a second branch point) 106 between the branch line 103 and the third branch line 104 exists. It is assumed that the vehicle enters the first branch line 102 that is a non-guide route without being able to travel.
  • the distance D2 from the first branch point 105 to the second branch point 106 is short, and the traveling time T2 of the host vehicle V from the first branch point 105 to the second branch point 106 is the above required value. If it is shorter than the time Tp, the process of steps S1 to S6 described above has been executed after passing through the first branch point 105. Will not be able to.
  • the first branch point 105 exists, the second branch point 106 exists in the first branch line 102, and the second branch point 105 extends from the first branch point 105 to the second branch point 105. If the traveling time T2 of the host vehicle V to the first branch point 106 is shorter than the required time Tp, before the host vehicle V reaches the predetermined position 107 on the nearer side in the traveling direction than the first branch point 105.
  • the navigation control device 201 searches for the second guidance route IC2 and the host vehicle V reaches the predetermined position 107, the navigation control device 201 automatically controls the second guidance route IC2 through the CAN bus 8. Output to the device 10.
  • the navigation control device 201 searches for the second guidance route IC2 before the host vehicle V reaches the predetermined position 107 on the near side in the traveling direction from the first branch point 105 by the distance D1. The processing is started, and when the predetermined position 107 is reached, the searched second guidance route IC2 is output to the automatic operation control device 10 through the CAN bus 8. When the searched second guidance route IC2 is input, the automatic operation control device 10 executes the processes of steps S3 to S6 described above.
  • the above-described distance D1 is expressed by the following equation (1).
  • D2 is the distance from the 1st branch point 105 to the 2nd branch point 106
  • V2 is the area from the 1st branch point 105 of the 1st branch line 102 to the 2nd branch point 106
  • V1 is a speed limit in a section from the predetermined position 107 to the first branch point 105.
  • the distance D2 and the speed limits V1 and V2 are included in the map information stored in the map database 202, and the navigation control apparatus 201 calculates the distance D2 and the speed limit V1 from the map information stored in the map database 202.
  • V2 is read.
  • the first branch line 102 and the first branch point 105 exist, and the first branch line 102 includes the second branch line 103, the third branch line 104, and the second branch point 106.
  • the process is started, and the process proceeds to step S101.
  • step S101 the navigation control apparatus 201 refers to the map information stored in the map database 202, and determines a predetermined distance (for example, 2 to 10 km, preferably 4 to 6 km) from the vehicle V along the first guidance route IC1. In this embodiment, it is determined whether or not the first branch point 105 exists in the section of 5 km). If the determination is negative, step S101 is executed, and if the determination is affirmative, the process proceeds to step S102. In step S102, the navigation control apparatus 201 refers to the map information stored in the map database 202, and the second branch point 106 exists in the first branch line 102 branched from the main line 101 at the first branch point 105. It is determined whether or not to do. If the determination is negative, the process returns to step S101. If the determination is affirmative, the process proceeds to step S103.
  • a predetermined distance for example, 2 to 10 km, preferably 4 to 6 km
  • step S105 the navigation control apparatus 201 determines that the host vehicle V is the first before the host vehicle V reaches the predetermined position 107 on the near side in the traveling direction from the first branch point 105 by the distance D1.
  • the search process of the second guidance route IC2 is executed when the branch point 105 departs from the main line 101 set in the first guidance route IC1 and enters the first branch line 102 which is a non-guidance route.
  • step S106 the navigation control apparatus 201 determines whether or not the host vehicle V has reached the predetermined position 107 on the near side in the traveling direction from the first branch point 105 by a distance D1. If the determination is negative, step S106 is executed, and if the determination is affirmative, the process proceeds to step S107.
  • step S107 the navigation control device 201 passes the second guidance route IC2 when the host vehicle V deviates to the first branch line 102, which is a non-guidance route, to the automatic driving control device 10 through the CAN bus 8 together with the map information. Output. That is, when the host vehicle V reaches the predetermined position 107 on the near side in the traveling direction from the first branch point 105 by the distance D1, the second branch line 103 and the third branch line 104 pass through the first branch line 102.
  • the re-search route that enters either one is output to the automatic operation control device 10 through the CAN bus 8.
  • step S108 the navigation control device 201 determines whether or not the position of the host vehicle V output from the locator 203 has deviated from the first guidance route IC1. If the determination is negative, the process returns to step S101. If the determination is affirmative, the process proceeds to step S109. In step S109, the automatic driving control device 10 processes the information on the second guidance route IC2 output from the navigation control device 201.
  • step S110 the automatic driving control device 10 outputs a voice guidance output command for notifying the driver to select the rejection of the guidance route change to the navigation control device 201 through the CAN bus 8.
  • step S111 the navigation control device 201 outputs the voice guidance.
  • step S112 the automatic driving control apparatus 10 determines whether or not the driver has permitted the change of the guidance route by voice or switch operation. If the change of the guide route is permitted, the process proceeds to step S113. On the other hand, when the change of the guidance route is not permitted, the automatic operation control is stopped in step S115, and the processing shown in the flowcharts of FIGS. 4A and 4B is ended.
  • step S113 the automatic driving control device 10 avoids the object recognized from the image data of the camera 11, and the second branch line 103 along the second guidance route IC2 output from the navigation control device 201.
  • the required driving force, the required braking force, and the target steering angle are calculated so as to travel through the third branch line 104, and the engine control device 2, the transmission control device 6, the brake control device 5, and the steering control device are transmitted through the CAN bus 8. 4 is output.
  • step S114 the automatic driving control apparatus 10 determines whether or not the automatic driving control is continued and the own vehicle V is traveling on the highway. When an affirmative determination is made, the process returns to step S101, and when a negative determination is made, the processing illustrated in the flowcharts of FIGS. 4A and 4B ends.
  • the host vehicle V is determined from the first branch point 105 only when the following first condition and the following second condition are met. Also, the search process of the second guidance route IC2 by the navigation system 20 is executed before reaching the predetermined position 107 on the near side in the traveling direction, and when the host vehicle V reaches the predetermined position 107, the navigation system 20 The output process to the automatic operation control device 10 of the second guidance route IC2 is executed.
  • the main line 101 having the first condition set in the first guide route IC1, the first branch line 102 branched from the main line 101, and the main line 101 A first branch point 105 that is a branch point between the first branch line 102, a second branch point 106 provided on the first branch line 102, and a second branch line that branches from the second branch point 106. 103 and the third branch line 104 exist.
  • the second condition is that the travel time of the host vehicle V from the first branch point 105 to the second branch point 106 is determined by the navigation control device 201 after the host vehicle V enters the first branch line 102.
  • the condition is that it is shorter than the required time Tp.
  • the host vehicle V enters the first branch line 102 which is a non-guide route instead of the main line 101 which is the first guide route IC1, and the branch point (first branch point) between the main line 101 and the first branch line 102 is reached.
  • a branch point (second branch point 106) between the second branch line 103 and the third branch line 104 exists at a position at a short distance from the point 105. Automatic operation can be continued.
  • the predetermined position 107 is set as a postscript condition.
  • the condition is that the travel time of the host vehicle V from the predetermined position 107 to the second branch point 106 is the second guidance by the automatic driving control device 10 from the start of the search process of the second guidance route IC2 by the navigation system 20.
  • This is a condition that the time required for executing the automatic driving of the host vehicle V along the route IC2 is equal to or longer than the required time Tp.
  • the automatic driving of the host vehicle V along the second guidance route IC2 by the automatic driving control device 10 is executed until the host vehicle V that has entered the first branch line 102 reaches the second branch point 106. It becomes possible to do.
  • the navigation system 20 searches for the distance D1 from the predetermined position 107 to the first branch point 105 and the navigation system 20 starts the search process for the second guidance route IC2.
  • Time required for execution of automatic driving of the host vehicle V along the second guidance route IC2 by the automatic driving control device 10, the speed limit V1 on the main line 101, the speed limit V2 on the first branch line 102, the first branch It sets so that the said (1) Formula may be satisfied by the relationship with the distance D2 from the point 105 to the 2nd branch point 106.
  • the host vehicle V that enters the first branch line 102 and travels below the speed limit reaches the second branch point 106 along the second guidance route IC2 by the automatic driving control device 10.
  • FIG. 5 is a flowchart for explaining the procedure of the automatic operation control according to another embodiment.
  • the automatic driving control when the automatic driving control is executed and the host vehicle V is traveling on the highway, the process is started and the process proceeds to step S101.
  • the second branch line 103 and the third branch line 104 are both As shown in FIG. 6, the second branch line 103 linearly extends from the first branch line 102, and the third branch line 104 is the first branch line. It is assumed that the car bends with a large curvature from 102.
  • processing similar to that in the above-described embodiment is executed, whereas in the case shown in FIG. 6, processing different from that in the above-described embodiment is executed.
  • step S203 the navigation system 21 refers to the map information stored in the map database 202, calculates an inclination angle ⁇ of the second branch line 103 and the third branch line 104 with respect to the first branch line 102, It is determined whether the inclination angle ⁇ of at least one of the second branch line 103 and the third branch line 104 is less than a predetermined value (for example, 10 °) ⁇ 0 . If a positive determination is made, the process proceeds to step S204. On the other hand, if a negative determination is made, the process proceeds to step S103, and steps S103 to S113 of the above-described embodiment are executed.
  • the inclination angle alpha with respect to the first branch 102 of the second branch 103 is described below as being less than the predetermined value alpha 0.
  • step S204 the navigation controller 201, the distance L1 to the destination when the inclination angle alpha has advanced the second branch 103 of less than the predetermined value alpha 0, the destination of a case it proceeded to the third branch 104 To determine whether or not the distance L1 is shorter than the distance L2. If a positive determination is made, the process proceeds to step S205. On the other hand, if a negative determination is made, the process proceeds to step S103, and steps S103 to S113 of the above-described embodiment are executed.
  • the distances L1 and L2 described above may be replaced with the time to the destination.
  • step S205 the navigation control device 201 determines whether or not the position of the host vehicle V output from the locator 203 has deviated from the first guidance route IC1. If the determination is negative, the process returns to step S101. If the determination is affirmative, the process proceeds to step S206.
  • step S206 the navigation control device 201 executes a search process for the second guidance route IC2 when the host vehicle V has traveled to the second branch line 103, and uses the searched second guidance route IC2 for the automatic driving control device. 10 is output.
  • step S207 the automatic driving control device 10 processes the information on the second guidance route IC2 output from the navigation control device 201. Then, steps S112 and S113 of the above-described embodiment are executed.
  • both the second branch line 103 and the third branch line 104 branched from the first branch line 102 are bent with a large curvature from the first branch line 102, and the second guide path For example, there is a traffic jam on the branch line searched for as IC2.
  • a voice guidance output command for allowing the driver to select whether or not to continue the automatic driving is output from the automatic driving control device 10 to the navigation control device 201, and the voice guidance is output from the navigation system 20.
  • the navigation control device 201 accepts the selection by the driver and the automatic driving control device 10 executes processing according to the selection by the driver. Therefore, in such a situation, after the search process of the second guidance route IC2 by the navigation system 20 is started, the automatic driving of the host vehicle V along the second guidance route IC2 by the automatic driving control device 10 is executed.
  • the required time Tp until is longer than a required time Tp ′ described later.
  • the host vehicle V when the first condition and the second condition are satisfied, the host vehicle V is more than the first branch point 105 except when the following third condition is satisfied.
  • the search process for the second guidance route IC2 by the navigation system 20 is executed before reaching the predetermined position 107 on the front side in the traveling direction, and when the host vehicle V reaches the predetermined position 107, the second navigation system 20 performs the second search.
  • the output process to the automatic operation control device 10 of the guidance route IC2 is executed.
  • one of the second branch line 103 and the third branch line 104 (second branch line 103) branched from the first branch line 102 extends linearly from the first branch line 102.
  • the other of the second branch line 103 and the third branch line 104 (third branch line 104) is bent with a large curvature from the first branch line 102, and the second branch line 103 is the second branch line 103.
  • the distance (or time) to the destination when searched as the guidance route IC2 and traveled on the second branch line 103 is more than the distance (or time) to the destination when traveled on the third branch line 104.
  • a voice guidance output command for allowing the driver to select whether or not to continue automatic driving is output from the automatic driving control device 10 to the navigation control device 201, and the voice guidance is output from the navigation control device 201.
  • a series of processes in which the navigation control apparatus 201 receives the selection by the driver and receives the selection by the driver and the automatic driving control apparatus 10 executes the process according to the selection by the driver is not necessary.
  • the automatic operation of the host vehicle V along the second guidance route IC2 by the automatic driving control device 10 is executed.
  • the required time Tp ′ until the time is shorter than the required time Tp described above.
  • the host vehicle V is placed on the first branch line 102.
  • the search process of the second guide route IC2 by the navigation system 20 is executed, and the output process of the second guide route IC2 to the automatic driving control device 10 by the navigation system 20 is executed.
  • the third condition is that the second branch line 103 and the third branch line 104 have a high degree of linearity with respect to the first branch line 102 and the distance to the destination when the one branch line travels.
  • the condition is that (or time) is shorter than the distance (or time) to the destination when traveling on the other branch line.
  • the host vehicle V enters the first branch line 102 which is a non-guide route instead of the main line 101 which is the first guide route IC1, and the branch point (first branch point) between the main line 101 and the first branch line 102 is reached.
  • the branch point (second branch point 106) between the second branch line 103 and the third branch line 103 exists at a position at a short distance from the point 105).
  • the communication load of the CAN bus 8 is further increased.
  • the situation in which the host vehicle V is traveling on a highway has been described as an example.
  • the present invention may be applied to other roads where main lines and branch lines are distinguished.
  • the navigation control device 201 moves along the second guidance route IC2 in the automatic driving control device 10.
  • the output processing of the second guidance route IC2 by the navigation control device 201 is executed when the host vehicle V travels a distance D1 or more behind the first branch point 105. May be.
  • automatic driving support system 10 automatic driving control device 20 navigation system 101 main line 102 first branch line 103 second branch line 104 third branch line 105 first branch point 106 second branch point 107 predetermined position IC1 first guidance Route IC2 Second guidance route

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

The present invention makes it possible for automatic driving to continue while an increase in communication load is minimized under conditions in which a host vehicle approaches a first branch line, which is a non-guided route, and another divergence point is present at a position close to a divergence point of a main line and the first branch line. When there are a main line (101), a first branch line (102), a first divergence point (105), a second divergence point (106), a second branch line (103), and a third branch line (104) set in a first guided route (IC1), and the travel time of a host vehicle (V) from the first divergence point (105) to the second divergence point (106) is less than a required time from the initiation of a process of searching for a second guided route (IC2) by a navigation system to the execution of automatic driving of the host vehicle (V) along the second guided route (IC2) by an automatic driving control device (10), before the host vehicle (V) reaches a prescribed location (107) ahead of the first divergence point (105) along a travel direction, the navigation system executes the process of searching for the second guided route (IC2) and executes a process of outputting the second guided route (IC2) to the automatic driving control device (10).

Description

自動運転支援方法および装置Automatic driving support method and apparatus
 本発明は、自動運転支援方法および装置に関するものである。 The present invention relates to an automatic driving support method and apparatus.
 車両運転支援システムとして、高速道路の本線と非本線(以下、支線という)との分岐点の情報を含む道路情報を基に、分岐点よりも先の本線と支線とに関する自車前方道路情報を取得して、自車両が分岐点に到達する前に上記自車前方道路情報を走行制御装置に付与するものが知られている(例えば、特許文献1参照)。 As a vehicle driving support system, based on road information including information on the branch point between the main line and non-main line (hereinafter referred to as branch line) of the expressway, information on the road ahead of the vehicle regarding the main line and the branch line ahead of the branch point What acquires and gives the said vehicle front road information to a traveling control apparatus before the own vehicle reaches a branch point is known (for example, refer patent document 1).
特開2010−143504号公報JP 2010-143504 A
 自動運転支援システムでは、自車両が誘導経路である本線ではなく非誘導経路である第1の支線に進入し、本線と第1の支線との分岐点(以下、第1の分岐点という)から近距離の位置に第2の支線と第3の支線との分岐点(以下、第2の分岐点という)が存在する状況が想定される。かかる状況において自動運転制御を継続するための方法として、第1の分岐点が近づく度に、ナビゲーションシステムにおいて第1の支線に進入した場合の誘導経路を探索し、探索した誘導経路を含む自車前方道路情報をナビゲーションシステムから走行制御装置に出力する方法が考えられる。しかしながら、かかる方法によれば、ナビゲーションシステムと走行制御装置との間の通信負荷が増大するという問題がある。 In the automatic driving support system, the host vehicle enters the first branch line that is a non-guide route instead of the main line that is a guide route, and starts from a branch point between the main line and the first branch line (hereinafter referred to as a first branch point). A situation is assumed in which a branch point between the second branch line and the third branch line (hereinafter referred to as a second branch point) exists at a short distance. As a method for continuing the automatic driving control in such a situation, every time the first branch point approaches, the navigation system searches for a guidance route when entering the first branch line and includes the searched guidance route. A method of outputting the road information ahead from the navigation system to the travel control device is conceivable. However, according to this method, there is a problem that the communication load between the navigation system and the travel control device increases.
 本発明が解決しようとする課題は、自車両が誘導経路である本線ではなく非誘導経路である第1の支線に進入し、第1の分岐点から近距離の位置に第2の分岐点が存在する状況において、通信負荷の増大を抑制しつつ、自動運転制御の継続を可能にできる自動運転支援方法及び装置を提供することである。 The problem to be solved by the present invention is that the host vehicle enters the first branch line that is a non-guide route instead of the main route that is a guide route, and the second branch point is located at a short distance from the first branch point. To provide an automatic driving support method and apparatus capable of continuing automatic driving control while suppressing an increase in communication load in an existing situation.
 本発明は、第1の誘導経路に設定した本線と、この本線から分岐する第1の支線と、本線と第1の支線との分岐点である第1の分岐点と、この第1の支線に設けられた第2の分岐点と、この第2の分岐点から分岐する第2の支線及び第3の支線とが存在し、且つ、第1の分岐点から第2の分岐点までの自車両の走行時間が、自車両が第1の支線に進入した後にナビゲーションシステムによる第2の誘導経路の探索処理を実行した場合における第2の誘導経路の探索処理の開始から自動運転制御装置による第2の誘導経路に沿った自車両の自動運転の実行までの所要時間よりも短い場合には、自車両が第1の分岐点よりも進行方向手前側の所定位置に到達する前に、ナビゲーションシステムによる第2の誘導経路の探索処理を実行し、自車両が所定位置に到達した時点で、ナビゲーションシステムによる第2の誘導経路の自動運転制御装置への出力処理を実行することによって、上記課題を解決する。 The present invention provides a main line set as a first guide route, a first branch line branched from the main line, a first branch point that is a branch point between the main line and the first branch line, and the first branch line. And a second branch line and a third branch line branching from the second branch point, and from the first branch point to the second branch point. The travel time of the vehicle is determined by the automatic driving control device from the start of the second guidance route search processing when the second guidance route search processing is executed by the navigation system after the host vehicle enters the first branch line. If the time required for the automatic driving of the host vehicle along the two guidance routes is shorter than the time required for the host vehicle to reach a predetermined position on the nearer side of the traveling direction than the first branch point, the navigation system The second guidance route search process is executed by Upon reaching a predetermined position, by executing the output processing of the automatic driving control apparatus of the second guide route by the navigation system, to solve the above problems.
 本発明によれば、自車両が誘導経路である本線ではなく非誘導経路である第1の支線に進入し、第1の分岐点から近距離の位置に第2の分岐点が存在する状況において、通信負荷の増大を抑制しつつ、自動運転制御の継続を可能にできるという効果を奏する。 According to the present invention, in a situation where the host vehicle enters the first branch line that is a non-guide route instead of the main route that is a guide route, and the second branch point exists at a short distance from the first branch point. There is an effect that the automatic operation control can be continued while suppressing an increase in communication load.
本発明の一実施形態に係る自動運転支援システムが搭載された車両の構成を示すブロック図である。1 is a block diagram showing a configuration of a vehicle equipped with an automatic driving support system according to an embodiment of the present invention. 自車両が誘導経路を外れて非誘導経路に進入した場合における、図1の自動運転支援システムの自動運転制御の処理の手順を説明するためのフローチャートである。2 is a flowchart for explaining a procedure of automatic driving control processing of the automatic driving support system in FIG. 1 when the host vehicle deviates from the guiding route and enters a non-guidance route. 自動運転制御を実行中の自車両が、非誘導経路である第1の支線に進入する状況における、図1の自動運転支援システムの自動運転制御の処理を説明するための図である。It is a figure for demonstrating the process of the automatic driving control of the automatic driving assistance system of FIG. 1 in the condition where the own vehicle which is performing automatic driving control approachs the 1st branch line which is a non-guide route. 自動運転制御を実行中の自車両が、非誘導経路である第1の支線に進入する状況における、図1の自動運転支援システムの自動運転制御の処理を説明するためのフローチャートの前半部分である。FIG. 6 is a first half of a flowchart for explaining a process of automatic driving control of the automatic driving support system in FIG. 1 in a situation where the own vehicle that is executing the automatic driving control enters the first branch line that is a non-guidance route. . 図4Aのフローチャートの後半部分である。4B is the latter half of the flowchart of FIG. 4A. 自動運転制御を実行中の自車両が、非誘導経路である第1の支線に進入する状況における、図1の自動運転支援システムの自動運転制御の処理を説明するためのフローチャートの前半部分である。FIG. 6 is a first half of a flowchart for explaining a process of automatic driving control of the automatic driving support system in FIG. 1 in a situation where the own vehicle that is executing the automatic driving control enters the first branch line that is a non-guidance route. . 図5Aのフローチャートの後半部分である。It is the latter half part of the flowchart of FIG. 5A. 自動運転制御を実行中の自車両が、非誘導経路である第1の支線に進入する状況における、図1の自動運転支援システムの自動運転制御の処理を説明するための図である。It is a figure for demonstrating the process of the automatic driving control of the automatic driving assistance system of FIG. 1 in the condition where the own vehicle which is performing automatic driving control approachs the 1st branch line which is a non-guide route.
 以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る自動運転支援システム1が搭載された車両の構成を示すブロック図である。本実施形態に係る自動運転支援システム1は、ナビゲーションシステム20により生成された目的地への誘導経路にしたがって車両の自動運転制御を実行するものである。本実施形態の車両の自動運転は、運転者の入力にしたがって制御が開始され、運転者がアクセル操作、ブレーキ操作及びハンドル操作をしなくても誘導経路にしたがって車両を走行させるものである。ただし、運転者がアクセル操作、ブレーキ操作又はハンドル操作をすると、当該自動運転制御が停止又は一時的に中断され、運転者による各種操作が優先される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a vehicle equipped with an automatic driving support system 1 according to an embodiment of the present invention. The automatic driving support system 1 according to the present embodiment executes automatic driving control of a vehicle according to the guidance route to the destination generated by the navigation system 20. In the automatic driving of the vehicle according to the present embodiment, control is started in accordance with the driver's input, and the vehicle is driven according to the guidance route without the driver performing the accelerator operation, the brake operation, and the steering wheel operation. However, when the driver performs an accelerator operation, a brake operation or a steering wheel operation, the automatic driving control is stopped or temporarily interrupted, and various operations by the driver are given priority.
 本実施形態の車両は、自動運転支援システム1と、エンジン制御装置(ECM:Engine Control Module)2と、ボディ制御装置(BCM:Body Control Module)3と、操舵制御装置4と、ブレーキ制御装置5と、トランスミッション制御装置(TCM:Transmission Control Module)6と、横滑り防止装置(VDC:Vehicle Dynamics Control)7等を備えている。自動運転支援システム1は、自動運転制御装置10と、カメラ11と、レーダ12と、ナビゲーションシステム20とを備えている。ナビゲーションシステム20は、ナビゲーション制御装置201と、地図データベース202と、ロケータ203とを備えている。 The vehicle according to the present embodiment includes an automatic driving support system 1, an engine control device (ECM: Engine Control Module) 2, a body control device (BCM: Body Control Module) 3, a steering control device 4, and a brake control device 5. And a transmission control device (TCM: Transmission Control Module) 6, a skid prevention device (VDC: Vehicle Dynamics Control) 7, and the like. The automatic driving support system 1 includes an automatic driving control device 10, a camera 11, a radar 12, and a navigation system 20. The navigation system 20 includes a navigation control device 201, a map database 202, and a locator 203.
 ここで、自動運転制御装置10と、ナビゲーション制御装置201と、エンジン制御装置2と、ボディ制御装置3と、操舵制御装置4と、ブレーキ制御装置5と、トランスミッション制御装置6と、横滑り防止装置7等は、車載LANとしてのCAN(Controller Area Network)バス8を介して通信可能に接続されている。 Here, the automatic driving control device 10, the navigation control device 201, the engine control device 2, the body control device 3, the steering control device 4, the brake control device 5, the transmission control device 6, and the skid prevention device 7. Are connected to each other via a CAN (Controller Area Network) bus 8 as an in-vehicle LAN.
 エンジン制御装置2は、エンジン21の運転制御を実行するコントローラである。このエンジン制御装置2は、自動運転制御装置10や横滑り防止装置7等から出力される要求駆動力を実現するようにエンジン21を制御する。なお、エンジン(内燃機関)のみを走行駆動源として備える車両を例に挙げたが、電動モータのみを走行駆動源として備える電気自動車(燃料電池車を含む)や、エンジンと電動モータとを組み合わせたものを走行駆動源として備えるハイブリッド車等に代えてもよい。 The engine control device 2 is a controller that executes operation control of the engine 21. The engine control device 2 controls the engine 21 so as to realize the required driving force output from the automatic operation control device 10, the skid prevention device 7, or the like. In addition, although the vehicle provided with only the engine (internal combustion engine) as a travel drive source is taken as an example, an electric vehicle (including a fuel cell vehicle) including only an electric motor as a travel drive source, or a combination of an engine and an electric motor You may replace with a hybrid vehicle etc. provided with a thing as a driving source.
 ボディ制御装置3は、ドアロック装置31のドアロック・アンロック、パッシブキーレス、リモコンキーレス等のキーレス機能、プッシュエンジンスタート機能等のエンジン始動機能、イモビライザ等のセキュリティ機能、ルームランプ、バッテリーセーバ等のタイマー機能、タイヤ空気圧モニタリングシステム等の安全機能等の各種機能を制御する。 The body control device 3 includes door lock / unlock of the door lock device 31, keyless functions such as passive keyless and remote control keyless, engine start functions such as push engine start function, security functions such as immobilizer, room lamp, battery saver, etc. Controls various functions such as timer functions and safety functions such as tire pressure monitoring systems.
 操舵制御装置4は、電動パワーステアリングモータ41の制御を実行するコントローラである。この操舵制御装置4は、自動運転制御装置10等から出力される目標操舵角を実現するように、電動パワーステアリングモータ41を制御する。この電動パワーステアリングモータ41は、ステアリングのコラムシャフト(図示省略)に取り付けられたステアリングアクチュエータである。 The steering control device 4 is a controller that executes control of the electric power steering motor 41. The steering control device 4 controls the electric power steering motor 41 so as to realize the target steering angle output from the automatic driving control device 10 or the like. The electric power steering motor 41 is a steering actuator attached to a steering column shaft (not shown).
 ブレーキ制御装置5は、ブレーキユニット51の制御を実行するコントローラである。このブレーキ制御装置5は、自動運転制御装置10や横滑り防止装置7等から出力される要求制動力を実現するようにブレーキユニット51を制御する。 The brake control device 5 is a controller that executes control of the brake unit 51. The brake control device 5 controls the brake unit 51 so as to realize the required braking force output from the automatic driving control device 10, the skid prevention device 7, or the like.
 トランスミッション制御装置6は、オートマッチックトランスミッション(AT)61を制御するコントローラである。このトランスミッション制御装置6は、自動運転制御装置10や横滑り防止装置7等から出力される要求駆動力を実現するように、車速、アクセル開度、シフトポジション等から最適なギヤを演算してAT61の変速制御を実行する。 The transmission control device 6 is a controller that controls an automatic match transmission (AT) 61. The transmission control device 6 calculates the optimum gear from the vehicle speed, the accelerator opening, the shift position, etc. so as to realize the required driving force output from the automatic operation control device 10, the skid prevention device 7, etc. Shift control is executed.
 横滑り防止装置7は、車両の横滑りの防止を目的として、各種センサを使用して運転者の運転操作と車両の動きを監視し車両の走行状態に応じてエンジン制御装置2に要求駆動力を出力し、ブレーキ制御装置5に要求制動力を出力する。 The skid prevention device 7 uses various sensors to monitor the driving operation of the driver and the movement of the vehicle for the purpose of preventing the skid of the vehicle, and outputs the required driving force to the engine control device 2 according to the running state of the vehicle. The required braking force is output to the brake control device 5.
 カメラ11は、車両前部、車両側部、及び車両後部等に設置され、車両前方、車両側方、及び車両後方等を撮影した画像データを自動運転制御装置10に出力する。また、レーダ12は、車両前部、車両側部、及び車両後部等に設置され、車両前方、車両側方、及び車両後方等に存在する物体の反射点の極座標(距離及び位置)を、自動運転制御装置10に出力する。 The camera 11 is installed at the front of the vehicle, the side of the vehicle, the rear of the vehicle, and the like, and outputs image data obtained by photographing the front of the vehicle, the side of the vehicle, the rear of the vehicle, and the like to the automatic driving control device 10. The radar 12 is installed in the front part of the vehicle, the side part of the vehicle, the rear part of the vehicle, etc., and automatically converts the polar coordinates (distance and position) of the reflection points of the objects existing in the front of the vehicle, the side of the vehicle, and the rear of the vehicle. Output to the operation control device 10.
 地図データベース202は、地図情報を格納している。この地図情報には、高速道路と一般道路との種別等の道路種別、高速道路の本線リンクと支線リンクとの種別等のリンク種別、高速道路の本線と支線との分岐点の位置、支線同士の分岐点の位置、本線と支線との分岐点から支線同士の分岐点までの距離、及び制限速度等の情報が含まれている。 The map database 202 stores map information. This map information includes road types such as types of highways and general roads, link types such as types of highway main links and branch links, positions of branch points between main roads and branch lines of highways, and branch lines The information includes the position of the branch point, the distance from the branch point between the main line and the branch line to the branch point between the branch lines, the speed limit, and the like.
 ロケータ203は、車速センサ、方位センサ、GPS受信機等からの信号に基づいて所定時間の間隔で自車両の位置を算出する。そして、ロケータ203は、算出した自車両の位置を地図データベース202に格納された地図情報を用いて補正するマップマッチング処理を実行し、補正した自車両の位置をナビゲーション制御装置201に出力する。ナビゲーション制御装置201は、ロケータ22から出力された自車両の位置から、運転者により入力された目的地までの経路を探索し、探索結果を表示装置に表示させると共に、CANバス8を通して自動運転制御装置10に出力する。 Locator 203 calculates the position of the host vehicle at predetermined time intervals based on signals from a vehicle speed sensor, a direction sensor, a GPS receiver, and the like. Then, the locator 203 executes map matching processing for correcting the calculated position of the own vehicle using map information stored in the map database 202, and outputs the corrected position of the own vehicle to the navigation control device 201. The navigation control device 201 searches for a route from the position of the host vehicle output from the locator 22 to the destination input by the driver, displays the search result on the display device, and controls automatic driving through the CAN bus 8. Output to the device 10.
 自動運転制御装置10は、マイクロプロセッサ等の集積回路であり、A/D変換回路、D/A変換回路、中央演算処理装置(CPU、Central Processing Unit)、ROM(Read Only Memory)及びRAM(Read Access Memory)等を備える。この自動運転制御装置10は、カメラ11から出力された画像データやレーダ12から出力された反射点の情報を処理し、自車両の周囲の他車両等の物体を認識すると共に、道路の白線や縁石や分岐点等を認識する。また、自動運転制御装置10は、認識した物体を回避しながら、ナビゲーション制御装置201から出力された経路に沿って走行するように、要求駆動力、要求制動力、目標操舵角を算出する。自動運転制御装置10は、算出した要求駆動力をCANバス8を通してエンジン制御装置2及びトランスミッション制御装置6に出力し、算出した要求制動力をCANバス8を通してブレーキ制御装置5に出力し、算出した目標操舵角をCANバス8を通して操舵制御装置4に出力する。 The automatic operation control device 10 is an integrated circuit such as a microprocessor, and includes an A / D conversion circuit, a D / A conversion circuit, a central processing unit (CPU, Central Processing Unit), a ROM (Read Only Memory), and a RAM (Read). Access Memory). The automatic operation control device 10 processes image data output from the camera 11 and information on reflection points output from the radar 12, recognizes objects such as other vehicles around the own vehicle, Recognize curbs and branch points. Further, the automatic driving control device 10 calculates the required driving force, the required braking force, and the target steering angle so as to travel along the route output from the navigation control device 201 while avoiding the recognized object. The automatic driving control device 10 outputs the calculated required driving force to the engine control device 2 and the transmission control device 6 through the CAN bus 8, and outputs the calculated required braking force to the brake control device 5 through the CAN bus 8. The target steering angle is output to the steering control device 4 through the CAN bus 8.
 本実施形態の自動運転支援システム1では、自動運転制御の実行中に自車両が誘導経路を外れて非誘導経路に進入した場合には、後述の高速道路の分岐点の位置等を除いて、以下のような処理が実行される。図2は、当該処理を説明するためのフローチャートである。 In the automatic driving support system 1 of the present embodiment, when the host vehicle is out of the guidance route and enters the non-guidance route during execution of the automatic driving control, except for the position of a branch point on the expressway described later, The following processing is executed. FIG. 2 is a flowchart for explaining the processing.
 まず、ステップS1において、ナビゲーション制御装置201が、目的地までの誘導経路を再探索する。次に、ステップS2において、ナビゲーション制御装置201が、再探索した誘導経路をCANバス8を通して自動運転制御装置10に出力する。次に、ステップS3において、自動運転制御装置10が、ナビゲーション制御装置201から出力された誘導経路の情報を処理する。 First, in step S1, the navigation control device 201 re-searches the guidance route to the destination. Next, in step S <b> 2, the navigation control apparatus 201 outputs the re-searched guidance route to the automatic driving control apparatus 10 through the CAN bus 8. Next, in step S <b> 3, the automatic driving control device 10 processes the guidance route information output from the navigation control device 201.
 次に、ステップS4において、自動運転制御装置10が、誘導経路の変更の許否を選択することを運転者に通知する音声案内を出力する指令を、CANバス8を通してナビゲーション制御装置201に出力する。次に、ステップS5において、ナビゲーション制御装置201が、上記音声案内を出力する。次に、ステップS6において、自動運転制御装置10が、運転者が音声やスイッチ操作等により誘導経路の変更を許可したか否かを判定する。誘導経路の変更が許可された場合には、ステップS7に進み、誘導経路の変更が不許可とされた場合には、ステップS8に進む。 Next, in step S 4, the automatic driving control device 10 outputs a command to output a voice guidance notifying the driver that selection of whether to change the guidance route is selected or not to the navigation control device 201 through the CAN bus 8. Next, in step S5, the navigation control device 201 outputs the voice guidance. Next, in step S6, the automatic driving control device 10 determines whether or not the driver has permitted the change of the guidance route by voice or switch operation. When the change of the guide route is permitted, the process proceeds to step S7, and when the change of the guide route is not permitted, the process proceeds to step S8.
 ステップS8では、自動運転制御装置10が、自動運転制御を停止する。一方、ステップS7では、自動運転制御装置10が、カメラ11の画像データ等から認識した物体を回避しながら、ナビゲーション制御装置201から出力された再探索経路に沿って走行するように、要求駆動力、要求制動力、目標操舵角を算出し、CANバス8を通してエンジン制御装置2、トランスミッション制御装置6、ブレーキ制御装置5、及び操舵制御装置4に出力する。 In step S8, the automatic driving control device 10 stops the automatic driving control. On the other hand, in step S <b> 7, the requested driving force is such that the automatic driving control device 10 travels along the re-search route output from the navigation control device 201 while avoiding the object recognized from the image data of the camera 11. The required braking force and the target steering angle are calculated and output to the engine control device 2, the transmission control device 6, the brake control device 5, and the steering control device 4 through the CAN bus 8.
 ここで、自動運転制御装置10及びナビゲーション制御装置201の処理時間と、ステップS5において運転者が音声案内を認識してから誘導経路の変更の許否を決定するまでの時間とを合算した時間、即ち、ナビゲーション制御装置201の誘導経路の再探索が開始されてから再探索された誘導経路に従った自動運転制御が完了するまでの所要時間Tpは、一般的に10秒以上となることが想定される。 Here, the sum of the processing time of the automatic driving control device 10 and the navigation control device 201 and the time from when the driver recognizes voice guidance until the driver decides whether or not to change the guidance route in step S5, that is, The time Tp required from the start of re-search for the guidance route of the navigation control device 201 to the completion of the automatic driving control according to the re-searched guidance route is generally assumed to be 10 seconds or more. The
 ところで、図3に示すように、高速道路の本線101と第1の支線102との分岐点(以下、第1の分岐点という)105が存在し、且つ、第1の支線102には第2の支線103と第3の支線104との分岐点(以下、第2の分岐点という)106が存在し、自動運転制御を実行中の自車両Vが、第1の誘導経路IC1である本線101を進行できずに非誘導経路である第1の支線102に進入してしまう状況が想定される。かかる状況において、第1の分岐点105から第2の分岐点106までの距離D2が短く、第1の分岐点105から第2の分岐点106までの自車両Vの走行時間T2が、上記所要時間Tpより短い場合には、第1の分岐点105を通過してから上述のステップS1~S6の処理を実行していたのでは、自動運転制御により自車両Vを適切な経路を進行させることができないことになる。 By the way, as shown in FIG. 3, there is a branch point (hereinafter referred to as a first branch point) 105 between the main road 101 and the first branch line 102 of the expressway, and the first branch line 102 has a second branch point. The main line 101 in which the own vehicle V that is performing the automatic driving control is the first guide route IC1 is present, and a branch point (hereinafter referred to as a second branch point) 106 between the branch line 103 and the third branch line 104 exists. It is assumed that the vehicle enters the first branch line 102 that is a non-guide route without being able to travel. In such a situation, the distance D2 from the first branch point 105 to the second branch point 106 is short, and the traveling time T2 of the host vehicle V from the first branch point 105 to the second branch point 106 is the above required value. If it is shorter than the time Tp, the process of steps S1 to S6 described above has been executed after passing through the first branch point 105. Will not be able to.
 そこで、本実施形態の自動運転支援システム1では、第1の分岐点105が存在し、第1の支線102に第2の分岐点106が存在し、且つ、第1の分岐点105から第2の分岐点106までの自車両Vの走行時間T2が、上記所要時間Tpより短い場合には、自車両Vが第1の分岐点105よりも進行方向手前側の所定位置107に到達する前に、ナビゲーション制御装置201が、第2の誘導経路IC2を探索し、自車両Vが所定位置107に到達した時点で、ナビゲーション制御装置201が、第2の誘導経路IC2をCANバス8を通して自動運転制御装置10に出力する。 Therefore, in the automatic driving support system 1 of the present embodiment, the first branch point 105 exists, the second branch point 106 exists in the first branch line 102, and the second branch point 105 extends from the first branch point 105 to the second branch point 105. If the traveling time T2 of the host vehicle V to the first branch point 106 is shorter than the required time Tp, before the host vehicle V reaches the predetermined position 107 on the nearer side in the traveling direction than the first branch point 105. When the navigation control device 201 searches for the second guidance route IC2 and the host vehicle V reaches the predetermined position 107, the navigation control device 201 automatically controls the second guidance route IC2 through the CAN bus 8. Output to the device 10.
 具体的には、自車両Vが、第1の分岐点105から距離D1だけ進行方向手前側の所定位置107に到達する前の時点で、ナビゲーション制御装置201は、第2の誘導経路IC2の探索処理を開始し、上記所定位置107に到達した時点で、探索した第2の誘導経路IC2をCANバス8を通して自動運転制御装置10に出力する。自動運転制御装置10は、探索された第2の誘導経路IC2が入力されると、上述のステップS3~S6の処理を実行する。 Specifically, the navigation control device 201 searches for the second guidance route IC2 before the host vehicle V reaches the predetermined position 107 on the near side in the traveling direction from the first branch point 105 by the distance D1. The processing is started, and when the predetermined position 107 is reached, the searched second guidance route IC2 is output to the automatic operation control device 10 through the CAN bus 8. When the searched second guidance route IC2 is input, the automatic operation control device 10 executes the processes of steps S3 to S6 described above.
 上述の距離D1は、下記(1)式で表される。
Figure JPOXMLDOC01-appb-M000002
但し、D2は、第1の分岐点105から第2の分岐点106までの距離であり、V2は、第1の支線102の第1の分岐点105から第2の分岐点106までの区間での制限速度であり、V1は、所定位置107から第1の分岐点105までの区間での制限速度である。ここで、距離D2、制限速度V1、V2は、地図データベース202に格納された地図情報に含まれており、ナビゲーション制御装置201は、地図データベース202に格納された地図情報から距離D2、制限速度V1、V2を読み出す。
The above-described distance D1 is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000002
However, D2 is the distance from the 1st branch point 105 to the 2nd branch point 106, and V2 is the area from the 1st branch point 105 of the 1st branch line 102 to the 2nd branch point 106. V1 is a speed limit in a section from the predetermined position 107 to the first branch point 105. Here, the distance D2 and the speed limits V1 and V2 are included in the map information stored in the map database 202, and the navigation control apparatus 201 calculates the distance D2 and the speed limit V1 from the map information stored in the map database 202. , V2 is read.
 図4A及び図4Bは、第1の支線102と第1の分岐点105とが存在し、且つ、第1の支線102に第2の支線103と第3の支線104と第2の分岐点106とが存在する状況での自動運転制御の手順を説明するためのフローチャートである。本実施形態では、自動運転制御が実行され、且つ、自車両Vが高速道路を進行している場合に、処理が開始され、ステップS101に進む。 4A and 4B, the first branch line 102 and the first branch point 105 exist, and the first branch line 102 includes the second branch line 103, the third branch line 104, and the second branch point 106. It is a flowchart for demonstrating the procedure of automatic driving | operation control in the condition where and exist. In the present embodiment, when the automatic driving control is executed and the host vehicle V is traveling on the highway, the process is started, and the process proceeds to step S101.
 ステップS101では、ナビゲーション制御装置201が、地図データベース202に格納された地図情報を参照し、自車両Vから第1の誘導経路IC1に沿った所定距離(例えば、2~10km、好ましくは4~6km、本実施形態では5km)の区間に第1の分岐点105が存在するか否かを判定する。否定判定の場合にはステップS101が実行され、肯定判定の場合にはステップS102に進む。ステップS102では、ナビゲーション制御装置201が、地図データベース202に格納された地図情報を参照し、第1の分岐点105において本線101から分岐した第1の支線102に、第2の分岐点106が存在するか否かを判定する。否定判定の場合にはステップS101に戻り、肯定判定の場合にはステップS103に進む。 In step S101, the navigation control apparatus 201 refers to the map information stored in the map database 202, and determines a predetermined distance (for example, 2 to 10 km, preferably 4 to 6 km) from the vehicle V along the first guidance route IC1. In this embodiment, it is determined whether or not the first branch point 105 exists in the section of 5 km). If the determination is negative, step S101 is executed, and if the determination is affirmative, the process proceeds to step S102. In step S102, the navigation control apparatus 201 refers to the map information stored in the map database 202, and the second branch point 106 exists in the first branch line 102 branched from the main line 101 at the first branch point 105. It is determined whether or not to do. If the determination is negative, the process returns to step S101. If the determination is affirmative, the process proceeds to step S103.
 ステップS103では、ナビゲーション制御装置201が、自車両Vの第1の分岐点105から第2の分岐点106までの走行時間T2(=D2/V2)が、上記所要時間Tpよりも短いか否かを判定する。否定判定の場合にはステップS101に戻り、肯定判定の場合にはステップS104に進む。ステップS104では、ナビゲーション制御装置201が、上記(1)式から距離D1を算出する。 In step S103, the navigation control apparatus 201 determines whether or not the travel time T2 (= D2 / V2) from the first branch point 105 to the second branch point 106 of the host vehicle V is shorter than the required time Tp. Determine. If the determination is negative, the process returns to step S101. If the determination is affirmative, the process proceeds to step S104. In step S104, the navigation control apparatus 201 calculates the distance D1 from the above equation (1).
 次に、ステップS105では、ナビゲーション制御装置201が、自車両Vが第1の分岐点105から距離D1だけ進行方向手前側の所定位置107に到達する前の時点で、自車両Vが第1の分岐点105において第1の誘導経路IC1に設定された本線101を逸脱して非誘導経路である第1の支線102に進入した場合の第2の誘導経路IC2の探索処理を実行する。次に、ステップS106では、ナビゲーション制御装置201が、自車両Vが第1の分岐点105から距離D1だけ進行方向手前側の所定位置107に到達したか否かを判定する。否定判定の場合にはステップS106が実行され、肯定判定の場合にはステップS107に進む。 Next, in step S105, the navigation control apparatus 201 determines that the host vehicle V is the first before the host vehicle V reaches the predetermined position 107 on the near side in the traveling direction from the first branch point 105 by the distance D1. The search process of the second guidance route IC2 is executed when the branch point 105 departs from the main line 101 set in the first guidance route IC1 and enters the first branch line 102 which is a non-guidance route. Next, in step S106, the navigation control apparatus 201 determines whether or not the host vehicle V has reached the predetermined position 107 on the near side in the traveling direction from the first branch point 105 by a distance D1. If the determination is negative, step S106 is executed, and if the determination is affirmative, the process proceeds to step S107.
 ステップS107では、ナビゲーション制御装置201が、自車両Vが非誘導経路である第1の支線102に逸脱した場合の第2の誘導経路IC2を、地図情報と共にCANバス8を通して自動運転制御装置10に出力する。即ち、自車両Vが第1の分岐点105から距離D1だけ進行方向手前側の所定位置107に到達した時点で、第1の支線102を通って第2の支線103及び第3の支線104の何れかに進入する再探索経路を、CANバス8を通して自動運転制御装置10に出力する。 In step S107, the navigation control device 201 passes the second guidance route IC2 when the host vehicle V deviates to the first branch line 102, which is a non-guidance route, to the automatic driving control device 10 through the CAN bus 8 together with the map information. Output. That is, when the host vehicle V reaches the predetermined position 107 on the near side in the traveling direction from the first branch point 105 by the distance D1, the second branch line 103 and the third branch line 104 pass through the first branch line 102. The re-search route that enters either one is output to the automatic operation control device 10 through the CAN bus 8.
 次に、ステップS108において、ナビゲーション制御装置201が、ロケータ203から出力された自車両Vの位置が第1の誘導経路IC1を逸脱したか否かを判定する。否定判定の場合にはステップS101に戻り、肯定判定の場合にはステップS109に進む。ステップS109では、自動運転制御装置10が、ナビゲーション制御装置201から出力された第2の誘導経路IC2の情報を処理する。 Next, in step S108, the navigation control device 201 determines whether or not the position of the host vehicle V output from the locator 203 has deviated from the first guidance route IC1. If the determination is negative, the process returns to step S101. If the determination is affirmative, the process proceeds to step S109. In step S109, the automatic driving control device 10 processes the information on the second guidance route IC2 output from the navigation control device 201.
 次に、ステップS110において、自動運転制御装置10が、誘導経路の変更の拒否を選択することを運転者に通知する音声案内の出力指令を、CANバス8を通してナビゲーション制御装置201に出力する。次に、ステップS111において、ナビゲーション制御装置201が、上記音声案内を出力する。次に、ステップS112において、自動運転制御装置10が、運転者が音声やスイッチ操作等により誘導経路の変更を許可したか否かを判定する。誘導経路の変更が許可された場合には、ステップS113に進む。一方、誘導経路の変更が不許可とされた場合には、ステップS115において自動運転制御が停止されることにより、図4A及び図4Bのフローチャートで示す処理が終了する。 Next, in step S110, the automatic driving control device 10 outputs a voice guidance output command for notifying the driver to select the rejection of the guidance route change to the navigation control device 201 through the CAN bus 8. Next, in step S111, the navigation control device 201 outputs the voice guidance. Next, in step S112, the automatic driving control apparatus 10 determines whether or not the driver has permitted the change of the guidance route by voice or switch operation. If the change of the guide route is permitted, the process proceeds to step S113. On the other hand, when the change of the guidance route is not permitted, the automatic operation control is stopped in step S115, and the processing shown in the flowcharts of FIGS. 4A and 4B is ended.
 一方、ステップS113では、自動運転制御装置10が、カメラ11の画像データ等から認識した物体を回避しながら、ナビゲーション制御装置201から出力された第2の誘導経路IC2に沿って第2の支線103又は第3の支線104を進行するように、要求駆動力、要求制動力、目標操舵角を算出し、CANバス8を通してエンジン制御装置2、トランスミッション制御装置6、ブレーキ制御装置5、及び操舵制御装置4に出力する。 On the other hand, in step S113, the automatic driving control device 10 avoids the object recognized from the image data of the camera 11, and the second branch line 103 along the second guidance route IC2 output from the navigation control device 201. Alternatively, the required driving force, the required braking force, and the target steering angle are calculated so as to travel through the third branch line 104, and the engine control device 2, the transmission control device 6, the brake control device 5, and the steering control device are transmitted through the CAN bus 8. 4 is output.
 次に、ステップS114では、自動運転制御装置10が、自動運転制御が継続され、且つ、自車両Vが高速道路を進行しているか否かを判定する。肯定判定がされた場合には、ステップS101に戻り、否定判定がされた場合に、図4A及び図4Bのフローチャートで示す処理が終了する。 Next, in step S114, the automatic driving control apparatus 10 determines whether or not the automatic driving control is continued and the own vehicle V is traveling on the highway. When an affirmative determination is made, the process returns to step S101, and when a negative determination is made, the processing illustrated in the flowcharts of FIGS. 4A and 4B ends.
 以上説明したように、本実施形態に係る自動運転支援方法及びシステム1では、下記第1の条件及び下記第2の条件が揃った場合に限って、自車両Vが第1の分岐点105よりも進行方向手前側の所定位置107に到達する前に、ナビゲーションシステム20による第2の誘導経路IC2の探索処理を実行し、自車両Vが所定位置107に到達した時点で、ナビゲーションシステム20による第2の誘導経路IC2の自動運転制御装置10への出力処理を実行する。 As described above, in the automatic driving support method and system 1 according to the present embodiment, the host vehicle V is determined from the first branch point 105 only when the following first condition and the following second condition are met. Also, the search process of the second guidance route IC2 by the navigation system 20 is executed before reaching the predetermined position 107 on the near side in the traveling direction, and when the host vehicle V reaches the predetermined position 107, the navigation system 20 The output process to the automatic operation control device 10 of the second guidance route IC2 is executed.
 ここで、本実施形態に係る自動運転支援システム1を搭載する車両では、CANバス8を通して、自動運転制御装置10とナビゲーション制御装置201との間のみならず、エンジン制御装置2やボディ制御装置3等の他の制御装置やその他の装置の間での通信が行われている。自動運転制御装置10とナビゲーション制御装置201との間の通信量の増加は、CANバス8における通信データの衝突を増加させたり、データの伝達遅延を増加させたりする等、CANバス8を介して構築されたシステム全体に影響を与える可能性がある。 Here, in a vehicle equipped with the automatic driving support system 1 according to the present embodiment, not only between the automatic driving control device 10 and the navigation control device 201 through the CAN bus 8, but also the engine control device 2 and the body control device 3. Communication is performed between other control devices such as the above and other devices. An increase in the amount of communication between the automatic driving control device 10 and the navigation control device 201 increases the collision of communication data on the CAN bus 8 or increases the transmission delay of data via the CAN bus 8. It may affect the entire built system.
 そこで、本実施形態に係る自動運転支援方法及びシステム1では、上記第1の条件を、第1の誘導経路IC1に設定した本線101と、本線101から分岐する第1の支線102と、本線101と第1の支線102との分岐点である第1の分岐点105と、第1の支線102に設けられた第2の分岐点106と、第2の分岐点106から分岐する第2の支線103及び第3の支線104とが存在するという条件とする。また、第2の条件を、第1の分岐点105から第2の分岐点106までの自車両Vの走行時間が、自車両Vが第1の支線102に進入した後にナビゲーション制御装置201による第2の誘導経路IC2の探索処理を実行した場合における第2の誘導経路IC2の探索処理の開始から自動運転制御装置10による第2の誘導経路IC2に沿った自車両Vの自動運転の実行までの所要時間Tpよりも短いという条件とする。 Therefore, in the automatic driving support method and system 1 according to the present embodiment, the main line 101 having the first condition set in the first guide route IC1, the first branch line 102 branched from the main line 101, and the main line 101 A first branch point 105 that is a branch point between the first branch line 102, a second branch point 106 provided on the first branch line 102, and a second branch line that branches from the second branch point 106. 103 and the third branch line 104 exist. The second condition is that the travel time of the host vehicle V from the first branch point 105 to the second branch point 106 is determined by the navigation control device 201 after the host vehicle V enters the first branch line 102. From the start of the search process of the second guide route IC2 when the search process of the second guide route IC2 is executed to the execution of the automatic driving of the host vehicle V along the second guide route IC2 by the automatic driving control device 10 The condition is that it is shorter than the required time Tp.
 これによって、自車両Vが第1の誘導経路IC1である本線101ではなく非誘導経路である第1の支線102に進入し、本線101と第1の支線102との分岐点(第1の分岐点105)から近距離の位置に第2の支線103と第3の支線104との分岐点(第2の分岐点106)が存在する状況において、CANバス8の通信負荷の増大を抑制しつつ、自動運転を継続可能にすることができる。 As a result, the host vehicle V enters the first branch line 102 which is a non-guide route instead of the main line 101 which is the first guide route IC1, and the branch point (first branch point) between the main line 101 and the first branch line 102 is reached. In a situation where a branch point (second branch point 106) between the second branch line 103 and the third branch line 104 exists at a position at a short distance from the point 105), an increase in communication load of the CAN bus 8 is suppressed. Automatic operation can be continued.
 また、本実施形態に係る自動運転支援方法及びシステム1では、上記所定位置107が、後記条件に設定される。当該条件は、所定位置107から第2の分岐点106までの自車両Vの走行時間が、ナビゲーションシステム20による第2の誘導経路IC2の探索処理の開始から自動運転制御装置10による第2の誘導経路IC2に沿った自車両Vの自動運転の実行までの所要時間Tp以上になるという条件である。これによって、第1の支線102に進入した自車両Vが第2の分岐点106に到達するまでに、自動運転制御装置10による第2の誘導経路IC2に沿った自車両Vの自動運転を実行することが可能になる。 Further, in the automatic driving support method and system 1 according to the present embodiment, the predetermined position 107 is set as a postscript condition. The condition is that the travel time of the host vehicle V from the predetermined position 107 to the second branch point 106 is the second guidance by the automatic driving control device 10 from the start of the search process of the second guidance route IC2 by the navigation system 20. This is a condition that the time required for executing the automatic driving of the host vehicle V along the route IC2 is equal to or longer than the required time Tp. Thus, the automatic driving of the host vehicle V along the second guidance route IC2 by the automatic driving control device 10 is executed until the host vehicle V that has entered the first branch line 102 reaches the second branch point 106. It becomes possible to do.
 さらに、本実施形態に係る自動運転支援方法及びシステム1では、所定位置107から第1の分岐点105までの距離D1を、ナビゲーションシステム20による第2の誘導経路IC2の探索処理が開始されてから自動運転制御装置10による第2の誘導経路IC2に沿った自車両Vの自動運転の実行までの所要時間Tp、本線101における制限速度V1、第1の支線102における制限速度V2、第1の分岐点105から第2の分岐点106までの距離D2との関係で、上記(1)式を満足するように設定する。これによって、第1の支線102に進入して制限速度以下で走行する自車両Vが第2の分岐点106に到達するまでの間に、自動運転制御装置10による第2の誘導経路IC2に沿った自車両Vの自動運転を実行することが可能になる。 Furthermore, in the automatic driving support method and system 1 according to the present embodiment, the navigation system 20 searches for the distance D1 from the predetermined position 107 to the first branch point 105 and the navigation system 20 starts the search process for the second guidance route IC2. Time required for execution of automatic driving of the host vehicle V along the second guidance route IC2 by the automatic driving control device 10, the speed limit V1 on the main line 101, the speed limit V2 on the first branch line 102, the first branch It sets so that the said (1) Formula may be satisfied by the relationship with the distance D2 from the point 105 to the 2nd branch point 106. FIG. As a result, the host vehicle V that enters the first branch line 102 and travels below the speed limit reaches the second branch point 106 along the second guidance route IC2 by the automatic driving control device 10. In addition, it is possible to execute automatic driving of the host vehicle V.
 図5は、他の実施形態に係る自動運転制御の手順を説明するためのフローチャートである。本実施形態に係る自動運転制御も、自動運転制御が実行され、且つ、自車両Vが高速道路を進行している場合に、処理が開始され、ステップS101に進む。 FIG. 5 is a flowchart for explaining the procedure of the automatic operation control according to another embodiment. In the automatic driving control according to the present embodiment, when the automatic driving control is executed and the host vehicle V is traveling on the highway, the process is started and the process proceeds to step S101.
 ここで、高速道路の本線101から分岐した第1の支線102に第2の分岐点106が存在するケースとして、図3に示すように、第2の支線103及び第3の支線104が、共に、第1の支線102から大きな曲率で曲がるケースと、図6に示すように、第2の支線103は、第1の支線102から直線的に延び、第3の支線104は、第1の支線102から大きな曲率で曲がるケースとが想定される。本実施形態では、図3に示すケースでは、上述の実施形態と同様の処理を実行するのに対して、図6に示すケースでは、上述の実施形態とは異なる処理を実行する。 Here, as a case where the second branch point 106 exists in the first branch line 102 branched from the main line 101 of the expressway, as shown in FIG. 3, the second branch line 103 and the third branch line 104 are both As shown in FIG. 6, the second branch line 103 linearly extends from the first branch line 102, and the third branch line 104 is the first branch line. It is assumed that the car bends with a large curvature from 102. In the present embodiment, in the case shown in FIG. 3, processing similar to that in the above-described embodiment is executed, whereas in the case shown in FIG. 6, processing different from that in the above-described embodiment is executed.
 まず、上述の実施形態のステップS101、S102と同様の処理が実行される。次に、ステップS203では、ナビシステム21が、地図データベース202に格納された地図情報を参照し、第2の支線103及び第3の支線104の第1の支線102に対する傾斜角度αを算出し、第2の支線103及び第3の支線104の少なくとも一方の傾斜角度αが所定値(例えば、10°)α未満であるか否かを判定する。肯定判定された場合にはステップS204に進む。一方、否定判定された場合には、ステップS103に進み、上述の実施形態のステップS103~S113が実行される。なお、第2の支線103の第1の支線102に対する傾斜角度αが所定値α未満であるとして以下説明する。 First, processing similar to steps S101 and S102 of the above-described embodiment is executed. Next, in step S203, the navigation system 21 refers to the map information stored in the map database 202, calculates an inclination angle α of the second branch line 103 and the third branch line 104 with respect to the first branch line 102, It is determined whether the inclination angle α of at least one of the second branch line 103 and the third branch line 104 is less than a predetermined value (for example, 10 °) α 0 . If a positive determination is made, the process proceeds to step S204. On the other hand, if a negative determination is made, the process proceeds to step S103, and steps S103 to S113 of the above-described embodiment are executed. The inclination angle alpha with respect to the first branch 102 of the second branch 103 is described below as being less than the predetermined value alpha 0.
 ステップS204では、ナビゲーション制御装置201が、傾斜角度αが所定値α未満の第2の支線103を進行した場合の目的地までの距離L1と、第3の支線104を進行した場合の目的地までの距離L2とを算出し、距離L1が距離L2よりも短いか否かを判定する。肯定判定された場合には、ステップS205に進む。一方、否定判定された場合には、ステップS103に進み、上述の実施形態のステップS103~S113が実行される。なお、上述の距離L1、L2は、目的地までの時間に代えてもよい。 In step S204, the navigation controller 201, the distance L1 to the destination when the inclination angle alpha has advanced the second branch 103 of less than the predetermined value alpha 0, the destination of a case it proceeded to the third branch 104 To determine whether or not the distance L1 is shorter than the distance L2. If a positive determination is made, the process proceeds to step S205. On the other hand, if a negative determination is made, the process proceeds to step S103, and steps S103 to S113 of the above-described embodiment are executed. The distances L1 and L2 described above may be replaced with the time to the destination.
 ステップS205では、ナビゲーション制御装置201が、ロケータ203から出力された自車両Vの位置が第1の誘導経路IC1から逸脱したか否かを判定する。否定判定の場合にはステップS101に戻り、肯定判定の場合にはステップS206に進む。ステップS206では、ナビゲーション制御装置201が、自車両Vが第2の支線103に進行した場合の第2の誘導経路IC2の探索処理を実行し、探索した第2の誘導経路IC2を自動運転制御装置10に出力する。次に、ステップS207では、自動運転制御装置10が、ナビゲーション制御装置201から出力された第2の誘導経路IC2の情報を処理する。そして、上述の実施形態のステップS112、S113が実行される。 In step S205, the navigation control device 201 determines whether or not the position of the host vehicle V output from the locator 203 has deviated from the first guidance route IC1. If the determination is negative, the process returns to step S101. If the determination is affirmative, the process proceeds to step S206. In step S206, the navigation control device 201 executes a search process for the second guidance route IC2 when the host vehicle V has traveled to the second branch line 103, and uses the searched second guidance route IC2 for the automatic driving control device. 10 is output. Next, in step S207, the automatic driving control device 10 processes the information on the second guidance route IC2 output from the navigation control device 201. Then, steps S112 and S113 of the above-described embodiment are executed.
 ここで、運転者が、第2の誘導経路IC2として探索された支線を進行することを望まない状況が想定される。例えば、図3に示すように、第1の支線102から分岐する第2の支線103及び第3の支線104の双方が、第1の支線102から大きな曲率で曲がっており、第2の誘導経路IC2として探索された支線に渋滞が発生している状況等である。かかる状況では、運転者に自動運転を継続するか否かを選択させるための音声案内の出力指令を、自動運転制御装置10からナビゲーション制御装置201に出力し、当該音声案内をナビゲーションシステム20から出力し、運転者による選択をナビゲーション制御装置201が受け付け、運転者による選択に応じた処理を自動運転制御装置10が実行するという一連の処理が必要となる。従って、かかる状況では、ナビゲーションシステム20による第2の誘導経路IC2の探索処理が開始されてから、自動運転制御装置10による第2の誘導経路IC2に沿った自車両Vの自動運転が実行されるまでの所要時間Tpが、後述の所要時間Tp´と比較して長くなる。 Here, it is assumed that the driver does not want to travel the branch line searched for as the second guidance route IC2. For example, as shown in FIG. 3, both the second branch line 103 and the third branch line 104 branched from the first branch line 102 are bent with a large curvature from the first branch line 102, and the second guide path For example, there is a traffic jam on the branch line searched for as IC2. In such a situation, a voice guidance output command for allowing the driver to select whether or not to continue the automatic driving is output from the automatic driving control device 10 to the navigation control device 201, and the voice guidance is output from the navigation system 20. Then, a series of processing is required in which the navigation control device 201 accepts the selection by the driver and the automatic driving control device 10 executes processing according to the selection by the driver. Therefore, in such a situation, after the search process of the second guidance route IC2 by the navigation system 20 is started, the automatic driving of the host vehicle V along the second guidance route IC2 by the automatic driving control device 10 is executed. The required time Tp until is longer than a required time Tp ′ described later.
 そこで、本実施形態では、上記第1の条件及び上記第2の条件が成立した場合には、下記第3の条件が成立した場合を除いて、自車両Vが第1の分岐点105よりも進行方向手前側の所定位置107に到達する前に、ナビゲーションシステム20による第2の誘導経路IC2の探索処理を実行し、自車両Vが所定位置107に到達した時点で、ナビゲーションシステム20による第2の誘導経路IC2の自動運転制御装置10への出力処理を実行する。 Therefore, in the present embodiment, when the first condition and the second condition are satisfied, the host vehicle V is more than the first branch point 105 except when the following third condition is satisfied. The search process for the second guidance route IC2 by the navigation system 20 is executed before reaching the predetermined position 107 on the front side in the traveling direction, and when the host vehicle V reaches the predetermined position 107, the second navigation system 20 performs the second search. The output process to the automatic operation control device 10 of the guidance route IC2 is executed.
 それに対して、運転者が、第2の誘導経路IC2として探索された支線を進行することを望む可能性が高い状況が想定される。例えば、図6に示すように、第1の支線102から分岐する第2の支線103及び第3の支線104の一方(第2の支線103)が、第1の支線102から直線的に延びているのに対して、第2の支線103及び第3の支線104の他方(第3の支線104)が、第1の支線102から大きな曲率で曲がっており、第2の支線103が第2の誘導経路IC2として探索され、且つ、第2の支線103を進行した場合の目的地までの距離(又は時間)が、第3の支線104を進行した場合の目的地までの距離(又は時間)よりも短い状況等である。かかる状況では、運転者に自動運転を継続するか否かを選択させるための音声案内の出力指令を、自動運転制御装置10からナビゲーション制御装置201に出力し、当該音声案内をナビゲーション制御装置201から出力し、運転者による選択をナビゲーション制御装置201が受け付け、運転者による選択に応じた処理を自動運転制御装置10が実行するという一連の処理が不要になる。従って、かかる状況では、ナビゲーション制御装置201による第2の誘導経路IC2の探索処理が開始されてから、自動運転制御装置10による第2の誘導経路IC2に沿った自車両Vの自動運転が実行されるまでの所要時間Tp´が、上述の所要時間Tpと比較して短くなる。 On the other hand, it is assumed that there is a high possibility that the driver desires to travel on the branch line searched for as the second guidance route IC2. For example, as shown in FIG. 6, one of the second branch line 103 and the third branch line 104 (second branch line 103) branched from the first branch line 102 extends linearly from the first branch line 102. On the other hand, the other of the second branch line 103 and the third branch line 104 (third branch line 104) is bent with a large curvature from the first branch line 102, and the second branch line 103 is the second branch line 103. The distance (or time) to the destination when searched as the guidance route IC2 and traveled on the second branch line 103 is more than the distance (or time) to the destination when traveled on the third branch line 104. Is a short situation. In such a situation, a voice guidance output command for allowing the driver to select whether or not to continue automatic driving is output from the automatic driving control device 10 to the navigation control device 201, and the voice guidance is output from the navigation control device 201. A series of processes in which the navigation control apparatus 201 receives the selection by the driver and receives the selection by the driver and the automatic driving control apparatus 10 executes the process according to the selection by the driver is not necessary. Therefore, in this situation, after the search processing of the second guidance route IC2 by the navigation control device 201 is started, the automatic operation of the host vehicle V along the second guidance route IC2 by the automatic driving control device 10 is executed. The required time Tp ′ until the time is shorter than the required time Tp described above.
 そこで、本実施形態では、上記第1の条件、及び上記第2の条件が成立した場合であっても、下記第3の条件が成立した場合には、自車両Vが第1の支線102に進行した後に、ナビゲーションシステム20による第2の誘導経路IC2の探索処理を実行し、ナビゲーションシステム20による第2の誘導経路IC2の自動運転制御装置10への出力処理を実行する。ここで、第3の条件を、第2の支線103及び第3の支線104の一方の第1の支線102に対する直線度が高く、且つ、当該一方の支線を進行した場合の目的地までの距離(又は時間)が、他方の支線を進行した場合の目的地までの距離(又は時間)よりも短いという条件とする。 Therefore, in the present embodiment, even when the first condition and the second condition are satisfied, if the following third condition is satisfied, the host vehicle V is placed on the first branch line 102. After the progress, the search process of the second guide route IC2 by the navigation system 20 is executed, and the output process of the second guide route IC2 to the automatic driving control device 10 by the navigation system 20 is executed. Here, the third condition is that the second branch line 103 and the third branch line 104 have a high degree of linearity with respect to the first branch line 102 and the distance to the destination when the one branch line travels. The condition is that (or time) is shorter than the distance (or time) to the destination when traveling on the other branch line.
 これによって、自車両Vが第1の誘導経路IC1である本線101ではなく非誘導経路である第1の支線102に進入し、本線101と第1の支線102との分岐点(第1の分岐点105)から近距離の位置に第2の支線103と第3の支線103との分岐点(第2の分岐点106)が存在する状況において、CANバス8の通信負荷の増大をより一層効果的に抑制しつつ、自動運転を継続可能にすることができる。 As a result, the host vehicle V enters the first branch line 102 which is a non-guide route instead of the main line 101 which is the first guide route IC1, and the branch point (first branch point) between the main line 101 and the first branch line 102 is reached. In the situation where the branch point (second branch point 106) between the second branch line 103 and the third branch line 103 exists at a position at a short distance from the point 105), the communication load of the CAN bus 8 is further increased. Thus, it is possible to continue the automatic driving while suppressing the operation.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態において開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for easy understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、上述の実施形態では、自車両Vが高速道路を走行している状況を例に挙げて説明したが、本線と支線とが区別される他の道路に本発明を適用してもよい。また、上述の実施形態では、自車両Vが第1の分岐点105より距離D1だけ後方の所定位置107に到達した時点で、ナビゲーション制御装置201が第2の誘導経路IC2を自動運転制御装置10に出力する例を挙げて説明したが、ナビゲーション制御装置201による第2の誘導経路IC2の出力処理は、自車両Vが第1の分岐点105よりも距離D1以上後方を走行している時に実行してもよい。 For example, in the above-described embodiment, the situation in which the host vehicle V is traveling on a highway has been described as an example. However, the present invention may be applied to other roads where main lines and branch lines are distinguished. In the above-described embodiment, when the host vehicle V reaches the predetermined position 107 behind the first branch point 105 by the distance D1, the navigation control device 201 moves along the second guidance route IC2 in the automatic driving control device 10. As described above, the output processing of the second guidance route IC2 by the navigation control device 201 is executed when the host vehicle V travels a distance D1 or more behind the first branch point 105. May be.
1 自動運転支援システム
10 自動運転制御装置
20 ナビゲーションシステム
101 本線
102 第1の支線
103 第2の支線
104 第3の支線
105 第1の分岐点
106 第2の分岐点
107 所定位置
IC1 第1の誘導経路
IC2 第2の誘導経路
1 automatic driving support system 10 automatic driving control device 20 navigation system 101 main line 102 first branch line 103 second branch line 104 third branch line 105 first branch point 106 second branch point 107 predetermined position IC1 first guidance Route IC2 Second guidance route

Claims (5)

  1.  ナビゲーションシステムと、前記ナビゲーションシステムから出力される誘導経路に沿った自車両の自動運転を実行させる自動運転制御装置とを用いて実行する自動運転支援方法であって、
     第1の誘導経路に設定した本線と、前記本線から分岐する第1の支線と、前記本線と前記第1の支線との分岐点である第1の分岐点と、前記第1の支線に設けられた第2の分岐点と、前記第2の分岐点から分岐する第2の支線及び第3の支線とが存在し、且つ、前記第1の分岐点から前記第2の分岐点までの前記自車両の走行時間が、前記自車両が前記第1の支線に進入した後に前記ナビゲーションシステムによる第2の誘導経路の探索処理を実行した場合における前記第2の誘導経路の探索処理の開始から前記自動運転制御装置による前記第2の誘導経路に沿った前記自車両の自動運転の実行までの所要時間よりも短い場合には、
     前記自車両が前記第1の分岐点よりも進行方向手前側の所定位置に到達する前に、前記ナビゲーションシステムによる前記第2の誘導経路の探索処理を実行し、
     前記自車両が前記所定位置に到達した時点で、前記ナビゲーションシステムによる前記第2の誘導経路の前記自動運転制御装置への出力処理を実行する自動運転支援方法。
    An automatic driving support method that is executed using a navigation system and an automatic driving control device that executes automatic driving of the host vehicle along a guidance route output from the navigation system,
    A main line set as a first guide route, a first branch line branching from the main line, a first branch point that is a branch point of the main line and the first branch line, and a first branch line And a second branch line and a third branch line that branch from the second branch point, and the first branch point to the second branch point. The travel time of the host vehicle is determined from the start of the search process of the second guide route when the search process of the second guide route by the navigation system is executed after the host vehicle enters the first branch line. If it is shorter than the time required until the automatic driving of the host vehicle along the second guidance route by the automatic driving control device,
    Before the host vehicle reaches a predetermined position on the nearer side of the traveling direction than the first branch point, the navigation system searches for the second guidance route,
    An automatic driving support method for executing output processing of the second guidance route to the automatic driving control device by the navigation system when the host vehicle reaches the predetermined position.
  2.  前記所定位置は、前記所定位置から前記第2の分岐点までの前記自車両の走行時間が、前記ナビゲーションシステムによる前記第2の誘導経路の探索処理の開始から前記自動運転制御装置による前記第2の誘導経路に沿った前記自車両の自動運転の実行までの所要時間以上になるように設定される請求項1に記載の自動運転支援方法。 The predetermined position is determined based on the traveling time of the host vehicle from the predetermined position to the second branch point from the start of search processing of the second guidance route by the navigation system to the second by the automatic operation control device. The automatic driving support method according to claim 1, wherein the automatic driving support method is set to be equal to or longer than a time required until execution of automatic driving of the host vehicle along the guidance route.
  3.  前記所定位置から前記第1の分岐点までの距離D1は、下記(1)式を満足する請求項1又は請求項2に記載の自動運転支援方法。
    Figure JPOXMLDOC01-appb-M000001
    但し、Tpは、前記ナビゲーションシステムによる前記第2の誘導経路の探索処理が開始されてから前記自動運転制御装置による前記第2の誘導経路に従った前記自車両の自動運転の実行までの所要時間であり、V1は、前記本線における制限速度であり、V2は、前記第1の支線における制限速度であり、D2は、前記第1の分岐点から前記第2の分岐点までの距離である。
    The automatic driving support method according to claim 1 or 2, wherein a distance D1 from the predetermined position to the first branch point satisfies the following expression (1).
    Figure JPOXMLDOC01-appb-M000001
    However, Tp is the time required from the start of the search process for the second guidance route by the navigation system to the execution of the automatic driving of the host vehicle according to the second guidance route by the automatic driving control device. V1 is a speed limit on the main line, V2 is a speed limit on the first branch line, and D2 is a distance from the first branch point to the second branch point.
  4.  前記第2の支線及び前記第3の支線の一方の前記第1の支線に対する傾斜角度が所定値未満であり、且つ、前記第2の支線及び前記第3の支線の前記一方を進行した場合の目的地までの距離が、前記第2の支線及び前記第3の支線の他方を進行した場合の目的地までの距離よりも短く、又は、前記第2の支線及び前記第3の支線の前記一方を進行した場合の目的地までの時間が、前記第2の支線及び前記第3の支線の他方を進行した場合の目的地までの時間よりも短い場合には、
     前記自車両が前記第1の支線に進行した後に、前記ナビゲーションシステムによる前記第2の誘導経路の探索処理を実行し、前記ナビゲーションシステムによる前記第2の誘導経路の前記自動運転制御装置への出力処理を実行する請求項1~3の何れか1項に記載の自動運転支援方法。
    An inclination angle of one of the second branch line and the third branch line with respect to the first branch line is less than a predetermined value, and the one of the second branch line and the third branch line is advanced. The distance to the destination is shorter than the distance to the destination when traveling the other of the second branch line and the third branch line, or the one of the second branch line and the third branch line If the time to the destination when traveling is shorter than the time to the destination when traveling the other of the second branch line and the third branch line,
    After the host vehicle has traveled to the first branch line, the navigation system searches for the second guidance route, and the navigation system outputs the second guidance route to the automatic driving control device. The automatic driving support method according to any one of claims 1 to 3, wherein the process is executed.
  5.  ナビゲーションシステムと、前記ナビゲーションシステムから出力される誘導経路に沿った自車両の自動運転を実行させる自動運転制御装置とを備える自動運転支援装置であって、
     前記ナビゲーションシステムは、
     第1の誘導経路に設定した本線と、前記本線から分岐する第1の支線と、前記本線と前記第1の支線との分岐点である第1の分岐点と、前記第1の支線に設けられた第2の分岐点と、前記第2の分岐点から分岐する第2の支線及び第3の支線とが存在し、且つ、前記第1の分岐点から前記第2の分岐点までの前記自車両の走行時間が、前記自車両が前記第1の支線に進入した後に前記ナビゲーションシステムによる第2の誘導経路の探索処理を実行した場合における前記第2の誘導経路の探索処理の開始から前記自動運転制御装置による前記第2の誘導経路に沿った前記自車両の自動運転の実行までの所要時間よりも短い場合には、
     前記自車両が前記第1の分岐点よりも進行方向手前側の所定位置に到達する前に、前記第2の誘導経路の探索処理を実行し、
     前記自車両が前記所定位置に到達した時点で、前記第2の誘導経路の前記自動運転制御装置への出力処理を実行する自動運転支援装置。
    An automatic driving support device comprising a navigation system and an automatic driving control device for executing automatic driving of the host vehicle along a guidance route output from the navigation system,
    The navigation system includes:
    A main line set as a first guide route, a first branch line branching from the main line, a first branch point that is a branch point of the main line and the first branch line, and a first branch line And a second branch line and a third branch line that branch from the second branch point, and the first branch point to the second branch point. The travel time of the host vehicle is determined from the start of the search process of the second guide route when the search process of the second guide route by the navigation system is executed after the host vehicle enters the first branch line. If it is shorter than the time required until the automatic driving of the host vehicle along the second guidance route by the automatic driving control device,
    Before the host vehicle reaches a predetermined position on the nearer side of the traveling direction than the first branch point, the second guidance route search process is executed,
    An automatic driving support device that executes output processing of the second guidance route to the automatic driving control device when the host vehicle reaches the predetermined position.
PCT/IB2016/001969 2016-12-13 2016-12-13 Automatic driving assistance method and device WO2018109516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/001969 WO2018109516A1 (en) 2016-12-13 2016-12-13 Automatic driving assistance method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/001969 WO2018109516A1 (en) 2016-12-13 2016-12-13 Automatic driving assistance method and device

Publications (1)

Publication Number Publication Date
WO2018109516A1 true WO2018109516A1 (en) 2018-06-21

Family

ID=62558148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/001969 WO2018109516A1 (en) 2016-12-13 2016-12-13 Automatic driving assistance method and device

Country Status (1)

Country Link
WO (1) WO2018109516A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035761A (en) * 2018-06-25 2018-12-18 复旦大学 Travel time estimation method based on back-up surveillance study
WO2020240243A1 (en) 2019-05-28 2020-12-03 日産自動車株式会社 Navigation device, autonomous driving control device, and navigation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281790A (en) * 1997-04-08 1998-10-23 Aisin Aw Co Ltd Route search device, navigation apparatus and medium on which computer program for navigation processing is stored
JP2000304562A (en) * 1999-04-26 2000-11-02 Kenwood Corp Navigation system, guide route reretrieving method, and recording medium
JP2015141053A (en) * 2014-01-27 2015-08-03 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method, and computer program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281790A (en) * 1997-04-08 1998-10-23 Aisin Aw Co Ltd Route search device, navigation apparatus and medium on which computer program for navigation processing is stored
JP2000304562A (en) * 1999-04-26 2000-11-02 Kenwood Corp Navigation system, guide route reretrieving method, and recording medium
JP2015141053A (en) * 2014-01-27 2015-08-03 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method, and computer program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035761A (en) * 2018-06-25 2018-12-18 复旦大学 Travel time estimation method based on back-up surveillance study
CN109035761B (en) * 2018-06-25 2021-06-04 复旦大学 Travel time estimation method based on auxiliary supervised learning
WO2020240243A1 (en) 2019-05-28 2020-12-03 日産自動車株式会社 Navigation device, autonomous driving control device, and navigation method
US11920935B2 (en) 2019-05-28 2024-03-05 Nissan Motor Co., Ltd. Navigation device, automatic driving control device, and navigation method

Similar Documents

Publication Publication Date Title
JP6723883B2 (en) Automatic driving support method and device
JP7088364B2 (en) Autonomous driving system
JP6642334B2 (en) Vehicle control device
US10597031B2 (en) Drive assist apparatus
US10274961B2 (en) Path planning for autonomous driving
US20150344033A1 (en) Apparatus and computer program for assisting driver of vehicle
RU2760714C1 (en) Driving assistance method and driving assistance device
JP7303667B2 (en) Automated driving support device
RU2754707C1 (en) Driving assistance method and driving assistance device
JP6647361B2 (en) Vehicle driving support device
EP3725628B1 (en) Vehicle control device
EP3816964A1 (en) Drive assisting method and vehicle control device
CN113811932A (en) Vehicle travel control method and travel control device
JP2019215730A (en) Vehicle driving assistance device
WO2016189727A1 (en) Travel control device and method
CN112262066A (en) Driving assistance method and driving assistance device
EP3730368A1 (en) Vehicle control device, method and computer program product
JP4979644B2 (en) Navigation device and vehicle travel safety device
CA2982546C (en) Vehicle periphery information verification device and method
CN112400096A (en) Driving assistance method and driving assistance device
WO2018109516A1 (en) Automatic driving assistance method and device
JP2020045039A (en) Vehicle control method and vehicle control apparatus
JP2021126991A (en) Travel route production system and vehicle operation support system
JP2008281448A (en) Driving support device for vehicle
JP5407641B2 (en) Vehicle control apparatus and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP