WO2018105208A1 - Wireless terminal and wireless base station allocation method - Google Patents

Wireless terminal and wireless base station allocation method Download PDF

Info

Publication number
WO2018105208A1
WO2018105208A1 PCT/JP2017/035600 JP2017035600W WO2018105208A1 WO 2018105208 A1 WO2018105208 A1 WO 2018105208A1 JP 2017035600 W JP2017035600 W JP 2017035600W WO 2018105208 A1 WO2018105208 A1 WO 2018105208A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
communication
radio
wireless terminal
wireless
Prior art date
Application number
PCT/JP2017/035600
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 修
紀之 志水
正哲 吉野
青山 恭弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US16/465,830 priority Critical patent/US10986635B2/en
Publication of WO2018105208A1 publication Critical patent/WO2018105208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to a radio terminal and a radio base station assignment method that determine and assign a radio base station that is a communication partner during radio communication.
  • the route estimation device determines a route used by a user who owns a mobile terminal based on a representative value (for example, an average value) of a distance between a position where the mobile terminal communicates and a position of, for example, a railway line.
  • a representative value for example, an average value
  • the present disclosure has been devised in view of the above-described conventional circumstances, and based on the communication history at its current position, determines and assigns a wireless base station to be a communication partner at the time of a wireless communication connection request, to the optimum cell.
  • a wireless terminal and a wireless base station assignment method that suppress deterioration of the connection probability of the wireless communication device are provided.
  • the present disclosure is a wireless terminal capable of communicating with a plurality of wireless base stations via a network in which a plurality of wireless communication schemes are used together, and the past between each of the wireless base stations
  • At the time of communication at least the location information of the wireless terminal and information related to the wireless base station are accumulated as a communication history, an acquisition unit that acquires the location information of the wireless terminal, and the acquired wireless terminal
  • a communication unit that performs the data communication with a base station.
  • the present disclosure is a radio base station allocation method in a radio terminal capable of communicating with a plurality of radio base stations via a network in which a plurality of radio communication schemes are used in combination.
  • a radio base station allocation method comprising the steps of: performing the data communication with the derived connection base station.
  • the present disclosure since it is possible to determine and assign a wireless base station to be a communication partner at the time of a wireless communication connection request based on a communication history at its current position, it is possible to suppress deterioration in the optimal connection probability to the cell. .
  • the macro cell is LTE (Long Term Evolution), and the cell throughput is 300 Mbps. If the number of wireless terminals connected to the macro cell is 100, the throughput per terminal is 3 Mbps.
  • the small cell is 5G (5th generation mobile communication system), and the cell throughput is 10 Gbps. Even if the number of wireless terminals connected to the small cell is 100, the throughput per terminal is 100 Mbps, if the number of wireless terminals connected to the small cell is 10, the throughput per terminal is 1 Gbps, and if the number of wireless terminals connected to the small cell is 2, 1 The throughput per terminal is 5 Gbps, which is an order of magnitude larger than that of a macro cell. Therefore, in a heterogeneous network, it is desired to connect a moving wireless terminal to a small cell as much as possible.
  • a wireless base station that is a communication partner with which the wireless terminal is wirelessly connected and, if necessary, a wireless frequency (in other words, a carrier frequency or a wireless channel) that the wireless terminal uses for wireless communication. Decide and assign.
  • a wireless base station that is a communication partner with which the wireless terminal is wirelessly connected and, if necessary, a wireless frequency (in other words, a carrier frequency or a wireless channel) that the wireless terminal uses for wireless communication.
  • a wireless frequency in other words, a carrier frequency or a wireless channel
  • the ratio of the small cell area to the entire area is small, and the probability that a moving wireless terminal misses an opportunity to connect to the optimal cell (in other words, a small cell with high throughput) at each position is low.
  • the time required for cell selection increases, the time increases. Therefore, there is a method in which the entire coverage area of the heterogeneous network is divided into area blocks of a certain size, the position of the wireless terminal is associated with the area block number, and the connection to the optimum cell is attempted using the communication history for each area block number. Proposed. For example, based on the current location information and communication history stored for each area block number, the radio terminal searches for a radio base station that has connected in the past and executed radio communication in that location and area block.
  • the area block is large (for example, 1 km ⁇ 1 km), a large communication history can be accumulated for each area block.
  • the base station most suitable for connection at the current pinpoint position of the wireless terminal in other words, The probability of misrecognizing (cell) increases.
  • the area block is small (for example, 5 m ⁇ 5 m)
  • the number of area blocks becomes enormous, and the accumulation of communication history is excessively divided, so that the communication history for each area block becomes too small.
  • the amount of prior work for dividing the entire coverage area of the heterogeneous network into area blocks is large regardless of the size of the area blocks.
  • the present disclosure has been devised in view of the above-described conventional circumstances, and based on the communication history at its current position, determines and assigns a wireless base station to be a communication partner at the time of a wireless communication connection request, to the optimum cell.
  • a wireless terminal and a wireless base station assignment method that suppress deterioration of the connection probability of the wireless communication device are provided.
  • FIG. 1 is a schematic diagram showing an example of a heterogeneous network 20 configured by the wireless communication system 10 of the present embodiment.
  • the radio communication system 10 is configured to include at least one radio terminal 100 and a plurality of radio base stations 200.
  • the radio terminal 100 and each radio base station 200 are connected via a radio communication line.
  • FIG. 1 for simplicity of explanation, only one wireless terminal 100 is shown, and the X axis in the horizontal direction of FIG. 1 and the Y axis in the vertical direction of the paper, the Y axis, and the X axis and the Y axis are both perpendicular.
  • the Z-axis direction is defined in such a direction.
  • the wireless communication system 10 constitutes a heterogeneous network 20 in which each wireless base station 200, which is a communication partner to which the wireless terminal 100 is connected during wireless communication, can execute wireless communication based on different wireless standard systems.
  • the radio terminal 100 communicates with the radio base station 200. That is, in the heterogeneous network 20, a plurality of radio base stations 200 corresponding to a plurality of different radio communication schemes (for example, radio access technology (RAT: Radio Access Technology) or cell radius) are mixed.
  • RAT Radio Access Technology
  • the RAT includes, for example, information on a wireless communication standard and a radio frequency.
  • the heterogeneous network 20 may not be a C / U separation type network or a C / U separation type network.
  • a network that is not a C / U separation type is illustrated. That is, in the radio communication system 10, the communication related to the control data and the communication related to the user data are performed by the same radio base station 200.
  • the radio base station 200 includes a macro cell radio base station 200A and a small cell radio base station 200B.
  • the radio terminal 100 communicates control data and user data with both the macro cell radio base station 200A and the small cell radio base station 200B.
  • the control data includes data related to C (Control) -Plane.
  • the user data includes data related to U (User) -Plane.
  • the user data includes, for example, image data (for example, moving images and still images) and audio data, and may include data with a large data amount.
  • C-plane is a communication protocol for communicating control data for call connection and radio resource allocation in radio communication.
  • U-plane is a communication protocol for actual communication (for example, video communication, voice communication, data communication) between the wireless terminal 100 and the wireless base station 200 using the allocated wireless resources.
  • the cell radius of the macrocell radio base station 200A is, for example, 1 km to several km and is relatively large.
  • the RAT that can be adopted by the macrocell radio base station 200A is, for example, one type (for example, LTE).
  • the cell radius corresponds to the maximum transmission distance of the radio base station 200.
  • the cell radius of the small cell radio base station 200B is, for example, 10 m to 100 m and is relatively small.
  • the cell radius may be 100 m or more in a mountainous area, a desert area, or a forest area, or may be larger than the cell radius of the macrocell radio base station 200A. That is, here, the distinction between the macro cell radio base station 200A and the small cell radio base station 200B is not conscious of the size of the cell radius.
  • MMS indicates the macro cell radio base station 200A
  • SBS indicates the small cell radio base station 200B
  • T indicates the radio terminal 100.
  • a line surrounding the macro cell radio base station 200A indicates a communicable range by the macro cell radio base station 200A.
  • a line surrounding the small cell radio base station 200B indicates a communicable range by the small cell radio base station 200B.
  • the communicable range of the radio base station 200 is determined according to the position of the radio base station 200 and the cell radius, for example.
  • the radio terminal 100 and the radio base station 200 set RATs used for radio communication from RATs (for example, radio communication standards and radio frequencies) that can be adopted, and perform radio communication using the set RATs.
  • RATs for example, radio communication standards and radio frequencies
  • Each wireless terminal 100 and wireless base station 200 can employ one or more RATs.
  • Wireless communication standards include, for example, LTE (Long Term Evolution), wireless LAN (Local Area Network), DECT (Digital Enhanced Cordless Telecommunication), 3G (third generation mobile communication system), 4G (fourth generation mobile communication system), 5G. (5th generation mobile communication system).
  • LTE Long Term Evolution
  • wireless LAN Local Area Network
  • DECT Digital Enhanced Cordless Telecommunication
  • 3G third generation mobile communication system
  • 4G fourth generation mobile communication system
  • RAT1 is, for example, LTE having a radio frequency band of 700 MHz to 3 GHz.
  • RAT2 is, for example, LTE-Advanced with a radio frequency band of 15 GHz.
  • RAT3 is, for example, wireless LAN communication with a radio frequency band of 5 GHz.
  • RAT4 is, for example, a radio communication system with a radio frequency band of 15 GHz, and is a fifth generation mobile communication system.
  • RAT5 is, for example, a radio communication system (for example, millimeter wave communication) (for example, WiGig) having a radio frequency band of 60 GHz.
  • FIG. 2 is a block diagram showing in detail an example of the internal configuration of the wireless terminal 100 of the present embodiment.
  • the wireless terminal 100 includes a processor 150, a memory 160, a GPS (Global Positioning System) antenna 101, a GPS receiving unit 102, a transmitting antenna 108, a receiving antenna 109, a BLE (Bluetooth (registered trademark) Low Low Energy) antenna 121, and a BLE receiving unit 122. It is the structure containing.
  • the processor 150 performs various processes and controls in cooperation with the memory 160. Specifically, the processor 150 refers to a program and data held in the memory 160 and executes the program, thereby realizing the functions of the following units. Each unit includes a position information generation unit 103, a base station derivation unit 104, a radio resource allocation management unit 105, a transmission packet generation unit 106, a radio transmission unit 107, a radio reception unit 110, and a reception packet decoding unit 111.
  • the memory 160 includes, for example, a RAM (Random Access Memory) as a work memory used during processing of the wireless terminal 100, and a ROM (Read Only Memory) that stores programs and data that define the operation of the wireless terminal 100. Various data and information are temporarily stored in the RAM.
  • a program that defines the operation of the radio terminal 100 (for example, processing (step) to be performed as the radio base station allocation method according to the present embodiment) is written.
  • the memory 160 as an example of the storage unit stores a cumulative communication history table T1 and a higher communication history table T2 described later.
  • the memory 160 is shown as a separate configuration from the processor 150, but may be built in the processor 150.
  • the memory 160 may include a secondary storage device together with the primary storage device.
  • the GPS antenna 101 receives a plurality of signals indicating times and positions (coordinates) of the GPS satellites 50 transmitted from a plurality of (for example, three or four) GPS satellites 50 and outputs the signals to the GPS receiver 102.
  • Each GPS satellite 50 transmits a signal indicating the time and the position (coordinates) of each GPS satellite 50.
  • the GPS reception unit 102 as an example of the acquisition unit is based on a plurality of signals received by the GPS antenna 101, and the position information of the GPS reception unit 102 (that is, the position information of the wireless terminal 100 itself (own position information)). Is calculated and obtained.
  • the position information obtained by this calculation indicates the current position of the wireless terminal 100 located outdoors, for example.
  • the GPS receiving unit 102 may be provided in the processor 150.
  • the GPS receiver 102 outputs the position information of the wireless terminal 100 obtained by the calculation to the processor 150.
  • the calculation of the position information of the GPS receiving unit 102 may be performed by the position information generating unit 103 of the processor 150 instead of the GPS receiving unit 102.
  • the position information generating unit 103 is input with information indicating the time and the position of each GPS satellite 50 included in the plurality of signals received by the GPS antenna 101 via the GPS receiving unit 102.
  • the wireless terminal 100 when the wireless terminal 100 is located outdoors, the reliability of the position information of the wireless terminal 100 calculated based on the signals from the plurality of GPS satellites 50 described above is considerably high. However, when the wireless terminal 100 is located indoors (for example, in a building or underground mall, but not limited to the same; the same applies hereinafter) or near the boundary between the outdoors and indoors, The position information of the wireless terminal 100 calculated based on the signal may include a certain error. As described above, when the wireless terminal 100 is located indoors or near the boundary between the outdoor and the indoor, the wireless terminal 100 transmits the time transmitted from the plurality of BLE beacons 60 installed indoors and each BLE beacon 60.
  • the current position information of the wireless terminal 100 itself is calculated and acquired. For example, if the wireless terminal 100 determines that the received electric field strength (RSSI: Received Signal Strength Strength Indicator) of the signal from the BLE beacon 60 is larger than a predetermined threshold, the wireless terminal 100 is located indoors or near the boundary between the outdoor and indoor. Based on the signal transmitted from the plurality of BLE beacons 60, its own position information is calculated. Note that the method for determining that the wireless terminal 100 is located indoors or near the boundary between the outdoor and indoor is not limited to the method based on the comparison result between the received electric field strength and a predetermined threshold value.
  • RSSI Received Signal Strength Strength Indicator
  • the BLE antenna 121 receives a plurality of signals indicating the time transmitted from a plurality of (for example, two) BLE beacons 60 and the position (coordinates) of each BLE beacon 60 and outputs the signals to the BLE receiving unit 122.
  • Each BLE beacon 60 transmits a signal indicating the time and the position (coordinates) of each BLE beacon 60.
  • the distance between each BLE beacon 60 is known.
  • Each wireless terminal 100 may acquire distance information between the respective BLE beacons 60 in advance, or may be directly or via an external device (not illustrated. For example, another wireless terminal, distance information) via a network (not illustrated). You may acquire from a management server.
  • the BLE receiving unit 122 as an example of the acquiring unit uses the triangulation method, for example, based on a plurality of signals received by the BLE antenna 121, that is, position information of the BLE receiving unit 122 (that is, position information of the wireless terminal 100 itself). (Own position information)) is calculated and acquired. The position information obtained by this calculation indicates the current position of the wireless terminal 100 located indoors or near the boundary between the outdoors and the indoors.
  • the BLE receiving unit 122 uses a combination of a plurality of signals received by the BLE antenna 121 and a known method (for example, PDR (Pedestrian DeadeckReckoning) or PMM (Pedestrian Map Matching)), or inside the wireless terminal 100 or Position information in the vicinity of the boundary between the outdoor and indoor may be calculated.
  • a known method for example, PDR (Pedestrian DeadeckReckoning) or PMM (Pedestrian Map Matching)
  • the wireless terminal 100 is indoors, or outdoors and indoors, as in the case where the wireless terminal 100 is located outdoors. Even when located near the boundary, the outdoor location information acquisition method can be expanded indoors, and location information similar to latitude, longitude, and altitude can be acquired.
  • the BLE receiving unit 122 may be provided in the processor 150.
  • the BLE receiving unit 122 outputs the position information of the wireless terminal 100 obtained by the calculation to the processor 150. Note that the calculation of the position information of the BLE receiving unit 122 may be performed by the position information generating unit 103 of the processor 150 instead of the BLE receiving unit 122. In this case, the position information generating unit 103 is input with information indicating the time included in the plurality of signals received by the BLE antenna 121 and the position of each BLE beacon 60 via the BLE receiving unit 122.
  • FIG. 3 is a schematic diagram illustrating an example of a cumulative communication history table T1 that holds a communication history for each position of the wireless terminal 100.
  • the accumulated communication history table T1 is the accumulated communication when the wireless terminal 100 has performed wireless communication with any one of the plurality of wireless base stations 200 (hereinafter also referred to as “connected base station”) in the past. Holds history (communication performance) information.
  • the connection base station is the radio base station 200 that is connected to the radio terminal 100 for communication.
  • the accumulated communication history table T1 is held in the memory 160 of each wireless terminal 100.
  • the communication history stored in the cumulative communication history table T1 includes, for example, information indicating the order (order i) when the wireless terminal 100 performs wireless communication with the connected base station, and the position of the wireless terminal 100 during the wireless communication (order i).
  • the wireless terminal 100 exists at the position (X1, Y1, Z1), and the number 1 is connected to the number 3 connected base station. It means that radio communication is performed using a radio frequency (carrier frequency).
  • the numbers of the connecting base station (radio base station) and the radio frequency (carrier frequency) are known in each radio terminal 100 using the heterogeneous network 20 shown in FIG. .
  • a communication history for 100 times is shown as the past cumulative total.
  • a communication history for 300 times may be used as the past total.
  • the communication history includes RAT (for example, LTE) adopted by the connecting base station, the number of times of communication with the connecting base station (number of times of wireless connection), and communication related to the communication with the connecting base station.
  • RAT for example, LTE
  • Information on the amount may be included.
  • the communication history between the wireless terminal 100 and the connected base station is managed in the memory 160 as the cumulative communication history table T1. Further, when a communication connection with a connection base station derived by a base station deriving unit 104 described later is tried and succeeded, the communication history is updated by a radio resource allocation management unit 105 as an example of an updating unit (for example, (See step S12 in FIG. 6 described later).
  • the position information generation unit 103 determines the position information of the wireless terminal 100 (that is, the current position information of the wireless terminal 100) based on the information from the GPS receiving unit 102. It is generated and output to the base station derivation unit 104. For example, when the wireless terminal 100 is located indoors or near the boundary between the outdoors and the indoors, the position information generation unit 103 uses the information from the BLE receiving unit 122 to determine the position information of the wireless terminal 100 (that is, the current information (Position information of the wireless terminal 100) is generated and output to the base station deriving unit 104.
  • the base station deriving unit 104 as an example of a deriving unit includes the position information of the wireless terminal 100 generated by the position information generating unit 103 (that is, the current position information of the wireless terminal 100) and the accumulated communication history table T1 in the memory 160. Based on the above, candidate connection base stations and radio frequencies used for data (for example, control data, user data) communication are derived from the plurality of radio base stations 200 in the heterogeneous network 20. The base station deriving unit 104 allocates a radio resource (for example, (1) an identification number of the radio base station or (2) an identification number of the radio base station and an identification number of the radio frequency (carrier frequency)) The data is output to the management unit 105.
  • a radio resource for example, (1) an identification number of the radio base station or (2) an identification number of the radio base station and an identification number of the radio frequency (carrier frequency)
  • the base station deriving unit 104 includes a predetermined number (k: default value) of communication history with a small distance Di based on the current location information of the wireless terminal 100 and the location information of the wireless terminal 100 in the communication history.
  • k default value
  • the connection base station and the radio frequency are derived preferentially from the radio base station (connection base station) and the radio frequency that are frequently assigned to the radio communication.
  • FIG. 4 is a schematic diagram showing an example of the upper communication history table T2 indicating the correspondence between the top n distances Di and the radio resources (radio base station-radio frequency).
  • the upper communication history table T2 is generated by the base station deriving unit 104.
  • the upper communication history table T2 is the position information of the wireless terminal 100 when wireless communication is performed between the current position information of the wireless terminal 100 and the past connected base station in the communication history of the cumulative communication history table T1.
  • the upper communication history table T2 is held in the memory 160 of each wireless terminal 100.
  • the communication history held in the upper communication history table T2 includes, for example, information indicating the order (order i) when the wireless terminal 100 performs wireless communication with the connected base station, and the position of the wireless terminal 100 at the time of wireless communication (order i).
  • FIG. 4 shows an example where the predetermined number (k) is 10.
  • the distance Di “0.07” is the minimum value (that is, the position closest to the current position of the wireless terminal 100 and has a past communication record), and the distance Di “0.89” is the maximum value (that is, Among the top 10 communication histories, it is the position farthest away from the current position of the wireless terminal 100 and the past communication performance).
  • the distance Di is the smallest “0.07”
  • the distance Di is the largest “0.89”
  • the wireless terminal 100 has performed wireless communication with the connected base station of the number 3 using the wireless frequency (carrier frequency) of the number 2.
  • the cumulative communication history table T1 and the upper communication history table T2 may be provided separately for the uplink 21 and for the downlink 22, or may be provided in common.
  • the RAT that can be adopted by the radio base station 200 held in the cumulative communication history table T1 and the upper communication history table T2 is a RAT that can also be adopted by the radio terminal 100.
  • the uplink 21 is a radio channel from the radio terminal 100 to the radio base station 200.
  • the downlink 22 is a radio link that goes from the radio base station 200 to the radio terminal 100.
  • Wireless lines widely include various public lines, mobile phone lines, wide area wireless lines, and the like.
  • the base station deriving unit 104 derives (calculates) a connected base station and a radio frequency will be specifically described with reference to FIGS.
  • FIG. 3 it is assumed that the communication history for 100 times is held in the cumulative communication history table T1 in the past, and the 101st communication connection request is generated in the wireless terminal 100 at the position (Xk, Yk, Zk).
  • the base station deriving unit 104 refers to the accumulated communication history table T1 in FIG. 3 and determines the current position (Xk, Yk, Zk) of the wireless terminal 100 and the position (Xi, Yi, Zi) of the wireless terminal 100 in the communication history.
  • a distance Di based on the above is calculated according to Equation (1).
  • i 1 to 100.
  • the calculation example of the distance Di is not limited to the Hamming distance of Expression (1), and may be the Euclidean distance of Expression (2).
  • the wireless resource eg, the identification number of the connecting base station ⁇ the identification number of the wireless frequency
  • the wireless resource is 4 times for the wireless resource (3-2) and 3 times for the wireless resource (2-1).
  • the wireless resource (9-2) has been used (allocated) once, the wireless resource (7-3) once, and the wireless resource (4-2) once.
  • the base station deriving unit 104 sets the priority of the radio resource to be allocated in response to the 101st new communication connection request as the radio resource (3-2) ⁇ the radio resource (2-1) ⁇ the radio resource (9 -2) ⁇ Radio resource (7-3) ⁇ Radio resource (4-2) is determined (derived).
  • the priority order of radio resource candidates to be allocated is determined in this way, but it is also assumed that the radio resource (3-2) is not necessarily the best radio resource candidate for the current radio terminal 100. This is because the wireless resource (3-2) may be occupied by other wireless terminals existing in the heterogeneous network 20. What is important is that the base station deriving unit 104 narrows down the priority of radio resources to be allocated.
  • the order of the radio resource (9-2), the radio resource (7-3), and the radio resource (4-2) corresponds to the order from the smallest distance Di.
  • the base station deriving unit 104 can assign the connection base station and the radio frequency in descending order of the past wireless communication performance of the wireless terminal 100, and in a more stable communication environment at the current position of the wireless terminal 100. Comfortable data communication can be facilitated.
  • the base station deriving unit 104 extracts both information indicating the identification number m of the connected base station and information indicating the radio frequency n (carrier frequency) as radio resource candidates. Only information indicating the station identification number m may be extracted, and so on. That is, in the following description, radio resources include (1) both information indicating the identification number m of the connecting base station and information indicating the radio frequency n (carrier frequency), and (2) the identification number m of the connecting base station. 2 patterns of only information indicating
  • the base station derivation unit 104 calculates the distance Di having a three-dimensional element as in the formulas (1) and (2), but considers the Z coordinate in the formulas (1) and (2). You may calculate the distance Di which has a two-dimensional element which cannot enter. As a result, when only the two-dimensional element needs to be considered as the distance Di (for example, when a new communication connection is requested at the same altitude position as in all past wireless communication), the upper communication history table T2 is generated. The calculation load of the base station deriving unit 104 when doing so is reduced.
  • the base station deriving unit 104 generates the upper communication history table T2 using all the communication histories of the cumulative communication history table T1 in the above-described calculation of the distance Di.
  • the upper communication history table T2 may be generated using only the communication history of 10 or 30). Thereby, the calculation load of the base station deriving unit 104 when generating the upper communication history table T2 is reduced.
  • the base station deriving unit 104 uses the predetermined number of communication histories from the communication history in the same time zone as the time when a new communication connection request is made to the wireless terminal 100 to obtain the upper communication history table T2. It may be generated. As a result, the base station deriving unit 104 can generate a higher communication history table T2 having a communication history corresponding to a different communication environment for each time zone, such as a daytime time zone or a night time zone.
  • the base station deriving unit 104 generates a higher-level communication history table T2 by extracting a predetermined number (k) of communication histories from only communication histories whose distance Di is equal to or less than a predetermined threshold value Dth (default value). May be. This eliminates the communication history in which the distance Di is greater than the predetermined threshold value Dth (in other words, the communication history when the position of the wireless terminal 100 in the past wireless communication is far away from the current position) and performs higher-level communication. Since the history table T2 can be generated, the wireless terminal 100 can perform more appropriate wireless resource allocation along the network environment provided around the current position.
  • the base station deriving unit 104 gives priority to the connection base station and the radio frequency with the highest number of allocations of radio resources (connection base station identification number-radio frequency identification number) in the higher communication history table T2.
  • the deriving method is not limited to this.
  • the base station deriving unit 104 when the communication data amount is included in the communication history of the higher communication history table T2, the connected base station and the radio frequency having a large communication data amount (in other words, the number of transmitted / received data bytes)
  • the connection base station and the radio frequency may be derived with priority given to.
  • the wireless terminal 100 adds a small cell (in other words, a cell that is likely to have a large amount of communication data) that can obtain a high-speed throughput such as 5G (fifth generation mobile communication system) to the heterogeneous network 20, for example. It becomes possible to preferentially assign a connectable base station and a radio frequency that can be provided, and it becomes easy to perform a comfortable amount of communication data.
  • 5G next generation mobile communication system
  • the base station deriving unit 104 may multiply a specific factor (for example, altitude) out of the position (latitude, longitude, altitude) of the wireless terminal 100 by a weighting coefficient when calculating the distance Di (see Equation (3)). ).
  • is only an example of a weighting coefficient. Even if the latitude and longitude are the same in the position information of the wireless terminal 100, the communication environment may differ greatly if the altitude is different. In such a case, the base station deriving unit 104 can provide a communication environment suitable for the current position of the radio terminal 100 by considering (specifically, multiplying) the above-described weighting coefficient (for example, 10). And a base station and a radio frequency can be derived.
  • the radio resource allocation management unit 105 acquires the radio resource derivation result output from the base station deriving unit 104.
  • the radio resource derivation result includes, for example, a connection base station as a radio resource derived by the base station deriving unit 104 and the priority order of the radio frequency, for example, between the candidate connection base station and the radio terminal 100.
  • Information on what the wireless communication standard is, and information on the frequency band may be included.
  • the radio resource allocation management unit 105 allocates and manages radio resources used for radio communication with the connection base station in cooperation with the connection base station.
  • This radio resource includes, for example, a radio frequency used for radio communication and a radio frequency resource block (RB).
  • the resource block refers to a unit of radio frequency allocation divided by, for example, a radio frequency (eg, subcarrier frequency) frequency axis and a time axis (eg, time slot).
  • the radio resource allocation management unit 105 inquires of the connecting base station whether or not the radio frequency allocation candidate resource block can be allocated. Based on the radio frequency allocation candidates, the connecting base station searches the resource block allocation status of this radio frequency, determines whether the resource block can be allocated, and transmits the determination result to the radio terminal 100.
  • the radio resource allocation management unit 105 refers to the determination result and determines whether or not a resource block of an allocation candidate radio frequency can be allocated.
  • the determination result includes, for example, information on whether or not resource blocks can be allocated, and information on radio frequency resource blocks allocated when resource blocks can be allocated.
  • the radio resource allocation management unit 105 allocates an unallocated resource block of a radio frequency used for communication with the connected base station based on the determination result. Further, the radio resource allocation management unit 105 may specify AMC (Adaptive Modulation and Coding) while allocating resource blocks.
  • AMC Adaptive Modulation and Coding
  • the radio resource allocation management unit 105 changes the radio frequency to the one with the next priority, and newly starts the radio frequency from the allocation candidate with the next priority. Select the frequency.
  • the radio resource allocation management unit 105 changes the connected base station to the one having the next priority, and the allocation candidate of the next priority is selected. A new connection base station is selected from the connection base stations.
  • the radio resource allocation management unit 105 acquires radio resource usage history information from the transmission packet generation unit 106 or the reception packet decoding unit 11.
  • the usage history information includes, for example, information on a connection base station that wirelessly communicates with the wireless terminal 100, information on a radio frequency used for communication with the connection base station, and a communication amount communicated using the radio frequency. Information.
  • the radio resource allocation management unit 105 as an example of the update unit performs communication included in the usage history information with respect to the radio frequency of the cumulative communication history table T1 that matches the radio frequency included in the acquired usage history information, for example.
  • the cumulative communication history table T1 may be updated by adding the amount.
  • the radio resource allocation management unit 105 sends the allocated radio resource information, that is, the radio frequency and resource block information used for communication with the connected base station, to the radio transmission unit 107 or the radio reception unit 110. In this case, the radio resource allocation management unit 105 sends the allocated radio resource information for the uplink 21 to the radio transmission unit 107. Also, the radio resource allocation management unit 105 sends the allocated radio resource information for the downlink 22 to the radio reception unit 110.
  • the transmission packet generation unit 106 generates a packet (transmission packet) to be transmitted to the radio base station 200 using the input uplink data (UL data).
  • the transmission packet includes data of the uplink 21.
  • Data on the uplink 21 (for example, control data and user data) is obtained from, for example, an external device (not shown) such as the memory 160 and a storage device, and various software processing units (not shown).
  • the transmission packet generation unit 106 sends information on the usage history of radio resources related to communication of transmission packets to the radio resource allocation management unit 105.
  • a radio transmission unit 107 as an example of a communication unit uses the radio resource allocated by the radio resource allocation management unit 105 to transmit the transmission packet generated by the transmission packet generation unit 106 via the transmission antenna 108 and the uplink 21. To the connected base station instructed by the radio resource allocation management unit 105.
  • the radio reception unit 110 as an example of a communication unit uses a radio resource allocated by the radio resource allocation management unit 105 to transmit a packet (reception packet) from the connected base station via the downlink 22 and the reception antenna 109. Receive.
  • Received packet decoder 111 decodes the received packet received by wireless receiver 110 to obtain decoded data.
  • the decoded data includes data on the downlink 22.
  • Data on the downlink 22 (for example, control data and user data) is passed to, for example, a memory 160, an external device (not shown) such as a storage device or a display device, and processing units (not shown) of various software.
  • the data of the downlink 22 may include information on connection candidate base stations selected by a known method. Information on this connection candidate base station is sent to the radio resource allocation management unit 105.
  • the data on the downlink 22 may include control information related to radio resource allocation.
  • This control information is sent to the radio resource allocation management unit 105.
  • This control information includes, for example, a determination result in which it is determined whether or not a resource block can be allocated by the connecting base station.
  • the received packet decoding unit 111 sends information on the usage history of radio resources related to communication of received packets to the radio resource allocation management unit 105.
  • 5 and 6 are flowcharts illustrating in detail an example of an operation procedure when a communication connection request is generated in the wireless terminal 100 of the present embodiment.
  • 5 and 6 for the sake of simplicity, the case where the wireless terminal 100 is located outdoors will be described as an example. However, the wireless terminal 100 is located indoors or near the boundary between the outdoors and indoors. But the same is true.
  • the radio reception unit 110 or the radio transmission unit 107 of the radio terminal 100 determines whether or not a new connection request has occurred (S1).
  • This connection request includes, for example, a connection request from the wireless terminal 100 to the wireless base station 200 or a connection request from the wireless base station 200 to the wireless terminal 100.
  • a connection request from the wireless terminal 100 to the wireless base station 200 is generated.
  • a connection request from any one of the wireless base stations 200 to the wireless terminal 100 is generated.
  • the GPS receiving unit 102 calculates and acquires position information of the GPS receiving unit 102 (that is, position information of the wireless terminal 100 itself (own position information)) based on a plurality of signals received by the GPS antenna 101. (S2).
  • the GPS receiver 102 outputs the position information of the wireless terminal 100 obtained by the calculation to the processor 150.
  • the position information generation unit 103 determines the position information of the wireless terminal 100 (that is, the current position information of the wireless terminal 100) based on the information from the GPS receiving unit 102. It is generated and output to the base station derivation unit 104.
  • the base station deriving unit 104 refers to the accumulated communication history table T1 in the memory 160 (S3), and the current location information of the wireless terminal 100 obtained in step S2 and the wireless terminal 100 of the communication history obtained in step S3.
  • the distance Di based on the position information is calculated according to any one of the formulas (1) to (3) (for example, the formula (1)) (S4). Which mathematical formula is used is preset in each wireless terminal 100.
  • the base station deriving unit 104 extracts and acquires a predetermined number (k: default value) of communication histories having a small distance Di based on the current position information of the wireless terminal 100 and the position information of the wireless terminal 100 in the communication history ( S5).
  • the result extracted in step S5 is, for example, the upper communication history table T2 shown in FIG.
  • the base station deriving unit 104 determines whether or not each distance Di corresponding to all the top n communication histories extracted in step S5 is larger than a predetermined threshold Dth (S6).
  • the predetermined threshold value Dth is, for example, 300 (meters).
  • the base station deriving unit 104 performs communication satisfying the distance Di ⁇ the predetermined threshold value Dth.
  • the radio resource radio base station, radio frequency (carrier frequency) included in the history is grasped (recognized) (S7).
  • the base station derivation unit 104 becomes a candidate to try data (for example, control data, user data) communication among the plurality of radio base stations 200 in the heterogeneous network 20.
  • the priority order of the connecting base station and the radio frequency is determined (S8).
  • the radio resource allocation management unit 105 uses the radio transmission unit 107 and the radio reception unit to transmit the radio resource having the highest priority among the priorities determined in step S8 (connection base station identification number-radio frequency identification number).
  • the communication connection to the connected base station is tried (S9).
  • the transmission packet generation unit 106 generates a transmission packet including data on the uplink 21.
  • the wireless transmission unit 107 wirelessly transmits a transmission packet to the determined connection base station.
  • the wireless reception unit 110 wirelessly receives a reception packet from the determined connection base station.
  • Received packet decoding section 111 decodes the received packet and obtains data on downlink 22.
  • the radio terminal 100 inquires of a candidate connection base station that tries communication connection whether or not it is possible to allocate a radio frequency resource block in radio communication with the radio terminal 100.
  • the connecting base station transmits a message indicating that the communication connection is successful to the wireless terminal 100 when determining that the resource block of the wireless frequency can be allocated.
  • the wireless transmission unit 107 and the wireless reception unit 110 of the wireless terminal 100 communicate data (for example, control data and user data) with the connected base station (S11).
  • the radio resource allocation management unit 105 as an example of the update unit includes a communication history (specifically, at least an identification number of the radio base station 200 that is a connection base station, And the identification number of the radio frequency (carrier frequency) are updated by writing them in the cumulative communication history table T1 (S12).
  • step S10 or step S19 may be either bidirectional communication or transmission or reception. Accordingly, the update of the cumulative communication history table T1 in step S12 may be performed either at the time of transmission or at the time of reception.
  • the processing of the wireless terminal 100 returns to Step 2. If the communication line status with the currently connected base station (wireless base station 200) deteriorates due to movement of the wireless terminal 100 during wireless communication or the like, as shown in step S14, the wireless terminal 100 generates a new communication connection request.
  • the wireless terminal 100 connects to the connected base station (communication base station that started communication in step S11). Communication with the radio base station 200) is continued (S11).
  • step S10 the base station deriving unit 104 excludes the communication history in which the communication connection has failed from the first extracted n communication histories (S15). After step S15, the base station deriving unit 104 determines that each distance Di corresponding to all the communication histories excluded (removed) in step S15 (for example, (n ⁇ 1) communication histories) is a predetermined threshold value Dth. It is determined whether it is larger (S6). Since the processing after step S6 is the same, detailed description is omitted.
  • the base station deriving unit 104 determines that the distances Di corresponding to all the top n communication histories extracted in step S5 are larger than the predetermined threshold Dth (S6, NO).
  • the method searches for a candidate for the base transceiver station 200 (cell search) in the vicinity of itself (wireless terminal 100) that can enable communication connection (S16).
  • the base station deriving unit 104 determines a radio base station that can be a connection candidate based on a search result of the radio base station 200 located in the vicinity of the radio terminal 100.
  • the base station deriving unit 104 searches for the radio base stations 200 using the RATs 1 to 5 in order, and the radio transmission unit 107 notifies the search results to a predetermined base station.
  • the predetermined base station selects a radio base station that can be a connection candidate according to the notified search result, and transmits information on the radio base station to the radio terminal 100.
  • the base station deriving unit 104 acquires information on a radio base station that can be a connection candidate from the received packet received by the radio reception unit 110 and decoded by the reception packet decoding unit 111, and determines the information as a connection candidate radio base station.
  • the cell search result is notified to a predetermined radio base station, and information on the radio base station that can be a connection candidate of the predetermined radio base station is transmitted to the radio terminal 100.
  • the radio terminal 100 may itself determine a radio base station that can be a connection candidate based on the cell search result without notifying the cell search result to a predetermined radio base station. If there is no radio base station 200 having radio resources that can be connected in step S16 (S17, NO), there is no radio base station 200 that can be connected to the radio terminal 100. Communication becomes impossible and the process ends.
  • the base station deriving unit 104 determines this radio base station 200 as a connection candidate base station. Only one radio base station that can be a connection candidate or a plurality of radio base stations may be determined. Further, when a plurality of connection candidate base stations are determined, the base station deriving unit 104 may set priorities of the plurality of connection candidate base stations. For example, the base station deriving unit 104 sets a higher priority for connection candidate base stations having a large communication volume.
  • the radio resource allocation management unit 105 selects this radio base station 200 as a connection base station when there is one determined radio base station. In addition, when there are a plurality of radio base stations that can be determined connection candidates, the radio resource allocation management unit 105 selects one of the radio base stations that can be a plurality of connection candidates. For example, the radio resource allocation management unit 105 may select a connection candidate base station having the largest communication volume in the past communication as a connection base station.
  • the radio resource allocation management unit 105 allocates radio resources used for communication with a radio base station that can be a connection candidate, and tries communication connection to the radio base station (S18). Allocation of radio resources is performed by a known method. In the known method, for example, the channel quality (interference amount) for each radio frequency is measured by the radio terminal 100 or a radio base station that can be a connection candidate, and used for communication between the radio terminal 100 and a radio base station that can be a connection candidate. Assigned radio frequency.
  • the radio terminal 100 determines whether or not a radio frequency resource block can be allocated in radio communication with the radio terminal 100 to a candidate connection base station to try communication connection. Inquire.
  • the connecting base station transmits a message indicating that the communication connection is successful to the wireless terminal 100 when determining that the resource block of the wireless frequency can be allocated.
  • the wireless transmission unit 107 and the wireless reception unit 110 of the wireless terminal 100 communicate data (for example, control data and user data) with the connected base station (S11). ).
  • the communication connection fails (S19, NO) there is no radio base station 200 that can be connected to the radio terminal 100, so that the radio terminal 100 becomes incapable of communication and the process ends.
  • the radio terminal 100 communicates with a plurality of radio base stations 200 via the heterogeneous network 20 in which a plurality of radio communication schemes are mixedly used. Is possible.
  • the wireless terminal 100 communicates at least the position information of the wireless terminal 100 and information about the wireless base station 200 (for example, at least the identification number of the connected base station) during the past communication with each wireless base station 200 in the communication history. And the current position information of the wireless terminal 100 is acquired.
  • the radio terminal 100 derives a connection base station as a radio base station used for data communication from the plurality of radio base stations 200 based on the current location information of the radio terminal 100 and past communication history, and the connection base Data communication is performed with the station.
  • the wireless terminal 100 can determine and assign a wireless base station to be a communication partner at the time of a new wireless communication connection request based on the past communication history at its current position, so that the connection to the optimum cell is possible. Probability deterioration can be suppressed. Therefore, since the radio terminal 100 can derive any one of the radio base stations 200 as a connection base station, for example, it is not necessary to search for the radio base station 200 (cell search, Discovery) by a known method. That is, the radio terminal 100 does not need to sequentially scan for adoptable radio communication schemes (RAT) and search for the radio base station 200 located in the vicinity of the radio terminal 100. In this case, the radio terminal 100 does not need to perform cell search for the same number as the number of RATs present in the heterogeneous network. Therefore, the radio terminal 100 can reduce the processing load and the processing time for searching for the connection-destination radio base station 200.
  • RAT adoptable radio communication schemes
  • the entire coverage area of the heterogeneous network is divided into area blocks of a certain size, the position of the wireless terminal 100 is associated with the area block number, and the communication history for each area block number is displayed.
  • a method has been proposed that attempts to connect to an optimal cell.
  • the wireless terminal 100 when requesting a new communication connection, the wireless terminal 100 performs data communication based on the current position of the wireless terminal 100 and the position of the wireless terminal 100 included in the past communication history.
  • radio base station 200 connection base station
  • connection base station connection base station
  • the wireless terminal 100 allocates a predetermined number (k) of communication histories having a small distance Di based on the current position information of the wireless terminal 100 and the position information of the wireless terminal 100 included in the past communication history.
  • a connection base station is derived by giving priority to a radio base station having a large number of times.
  • the wireless terminal 100 connects the wireless base station that has been used frequently in the communication history when the distance Di is small (in other words, the current position and the position at the time of past wireless communication are close). And can communicate stably with an appropriate connected base station having a communication record at the current position.
  • the wireless terminal 100 preferentially selects a wireless base station having a large number of allocations in the past predetermined number (k) of communication histories as a connection base station. To derive. This eliminates the communication history in which the distance Di is greater than the predetermined threshold value Dth (in other words, the communication history when the position of the wireless terminal 100 in the past wireless communication is far away from the current position) and performs higher-level communication. Since the history table T2 can be generated, the radio terminal 100 can assign more appropriate radio resources (for example, identification numbers of radio base stations) along the network environment provided around the current position. it can.
  • radio resources for example, identification numbers of radio base stations
  • the wireless terminal 100 further accumulates information on the amount of data communication with the connecting base station as a communication history, and the data communication amount is the predetermined number (k) of past communication histories with a small distance Di.
  • a connection base station is derived with priority given to many radio base stations.
  • a connection base that can provide a small cell (in other words, a cell with a high possibility of a large amount of communication data) capable of providing high-speed throughput such as 5G (fifth generation mobile communication system) to the heterogeneous network 20. It becomes possible to assign stations with priority, and it becomes easy to perform a comfortable amount of communication data.
  • the wireless terminal 100 stores information on the connection base station regarding data communication as a communication history associated with the current position information of the wireless terminal 100. It accumulates in 160. As a result, the wireless terminal 100 stores, in the memory 160, a communication history in which the identification number of the connected base station that is the communication partner is associated with the position at the time of communication as a communication result of actually performing wireless communication. Can learn.
  • the radio terminal 100 further accumulates information on the radio frequency used for data communication with the connected base station as a communication history, and uses the radio frequency information included in the communication history to communicate with the connected base station.
  • the radio frequency used for data communication is derived.
  • the radio terminal 100 performs data communication with the derived connection base station using the derived radio frequency.
  • the radio terminal 100 can manage not only the identification number of the connecting base station but also the identification number of the radio frequency (carrier frequency) at the time of radio communication in association with the position information as a radio resource. Therefore, it is possible to derive an appropriate connection base station and radio frequency when there is a request, and to perform quick communication without waste.
  • the wireless terminal 100 derives the connection base station and the radio frequency by giving priority to the radio base station and the radio frequency with a large number of allocations in a predetermined number (k) of communication histories with a small distance Di.
  • the wireless terminal 100 uses the radio frequency that has been used many times in the communication history when the distance Di is small (in other words, the current position is close to the position at the time of past wireless communication). It is possible to stably communicate with an appropriate connected base station having a communication record at the position of.
  • the wireless terminal 100 preferentially connects the wireless base station and the wireless frequency that are frequently assigned in the predetermined number (k) of past communication histories. Deriving base stations and radio frequencies. This eliminates the communication history in which the distance Di is greater than the predetermined threshold value Dth (in other words, the communication history when the position of the wireless terminal 100 in the past wireless communication is far away from the current position) and performs higher-level communication. Since the history table T2 can be generated, the radio terminal 100 can more appropriately use radio resources (for example, an identification number of a radio base station and an identification number of a radio frequency) along the network environment provided around the current position. Assignments can be made.
  • radio resources for example, an identification number of a radio base station and an identification number of a radio frequency
  • the radio terminal 100 further accumulates, as a communication history, information on the radio frequency used for data communication with the connected base station and information on the amount of data communication with the connected base station, and a predetermined number with a small distance Di.
  • a connection base station and a radio frequency are derived giving priority to a radio base station and a radio frequency with a large amount of data communication.
  • a connection base that can provide a small cell (in other words, a cell with a high possibility of a large amount of communication data) capable of providing high-speed throughput such as 5G (fifth generation mobile communication system) to the heterogeneous network 20.
  • Stations and radio frequencies can be preferentially assigned, and a comfortable amount of communication data can be easily obtained.
  • the radio terminal 100 associates information on the connection base station regarding data communication and information on the radio frequency with the current position information of the radio terminal 100. Is stored in the memory 160 as a communication history.
  • the wireless terminal 100 has a communication history in which the identification number of the connected base station and the identification number of the wireless frequency as the communication partner are associated with the position at the time of communication as a communication record of actually performing the wireless communication. It can be stored in the memory 160 for learning.
  • the position information of the wireless terminal 100 is, for example, a combination of information (latitude, longitude, altitude) that is effective outdoors, and the wireless terminal 100 sets the distance Di with priority given to, for example, altitude out of latitude, longitude, and altitude. To derive. Even if the latitude and longitude are the same in the position information of the wireless terminal 100, the communication environment may differ greatly if the altitude is different. Therefore, the radio terminal 100 can derive a connection base station and a radio frequency that can provide a communication environment suitable for the current position of the radio terminal 100 by calculating the distance Di with priority on altitude.
  • the position information of the wireless terminal 100 is relative to a plurality of BLE beacons 60 installed indoors. It may be position information obtained by a simple distance.
  • the position can be specified by information (latitude, longitude, altitude) calculated by the GPS receiving unit 102, for example, and on the other hand, indoors or between outdoor and indoor
  • the position can be specified by information on the relative distance from the BLE beacon 60 calculated by the BLE receiver 122.
  • the present disclosure relates to a wireless terminal and a wireless device that determine and assign a wireless base station to be a communication partner at the time of a wireless communication connection request based on the communication history at the current position of the wireless communication device, and suppress deterioration in the optimal connection probability to the cell. This is useful as a base station allocation method.
  • Wireless Communication System 20 Heterogeneous Network 21 Uplink (Uplink) 22 Downlink (Downlink) 50 GPS satellite 60 BLE beacon 100 Wireless terminal 101 GPS antenna 102 GPS receiver 103 Position information generator 104 Base station derivation unit 105 Radio resource allocation manager 106 Transmission packet generator 107 Radio transmitter 108 Transmit antenna 109 Receiver antenna 110 Radio reception Unit 111 received packet decoding unit 121 BLE antenna 122 BLE receiving unit 150 processor 160 memory 200 wireless base station T1 cumulative communication history table T2 upper communication history table

Abstract

A wireless terminal capable of communicating with multiple wireless base stations through a network in which multiple wireless communication methods are used in a mixed manner. A storage unit stores, as a communication history, at least location information for the wireless terminal and information pertaining to the wireless base station at the time of communication with each wireless base station. An acquisition unit acquires the location information for the wireless terminal. On the basis of the acquired location information for the wireless terminal and the communication history stored in the storage unit a derivation unit derives a connection base station from the multiple wireless base stations, as the wireless base station to be used in data communication. A communication unit performs data communication with the derived connection base station.

Description

無線端末及び無線基地局割当方法Wireless terminal and wireless base station allocation method
 本開示は、無線通信時の通信相手となる無線基地局を決定して割り当てる無線端末及び無線基地局割当方法に関する。 The present disclosure relates to a radio terminal and a radio base station assignment method that determine and assign a radio base station that is a communication partner during radio communication.
 従来、スマートフォンやタブレット端末型コンピュータに代表される通信可能な携帯移動端末の通信履歴に基づいて、携帯移動端末を所持したユーザの利用した移動手段(例えばバスや鉄道の路線)を推定する技術が存在する。例えば特許文献1では、路線推定装置は、移動端末が通信を行った位置と例えば鉄道路線の位置との距離の代表値(例えば平均値)に基づいて、移動端末を所持したユーザの使用路線を推定する。 2. Description of the Related Art Conventionally, there is a technique for estimating a moving means (for example, a bus or a railway route) used by a user who has a portable mobile terminal based on a communication history of a portable mobile terminal capable of communication represented by a smartphone or a tablet terminal type computer. Exists. For example, in Patent Document 1, the route estimation device determines a route used by a user who owns a mobile terminal based on a representative value (for example, an average value) of a distance between a position where the mobile terminal communicates and a position of, for example, a railway line. presume.
日本国特開2016-134731号公報Japanese Unexamined Patent Publication No. 2016-147331
 本開示は、上述した従来の事情に鑑みて案出され、自己の現在位置における通信履歴に基づいて、無線通信の接続要求時に通信相手となる無線基地局を決定して割り当て、最適なセルへの接続確率の劣化を抑制する無線端末及び無線基地局割当方法を提供する。 The present disclosure has been devised in view of the above-described conventional circumstances, and based on the communication history at its current position, determines and assigns a wireless base station to be a communication partner at the time of a wireless communication connection request, to the optimum cell. A wireless terminal and a wireless base station assignment method that suppress deterioration of the connection probability of the wireless communication device are provided.
 本開示は、複数の無線通信方式が混在して利用されるネットワークを介して、複数の無線基地局との間で通信可能な無線端末であって、それぞれの前記無線基地局との間の過去の通信時における、少なくとも前記無線端末の位置情報と前記無線基地局に関する情報とを通信履歴として蓄積する蓄積部と、前記無線端末の位置情報を取得する取得部と、取得された前記無線端末の位置情報と前記蓄積部に蓄積された前記通信履歴とに基づいて、前記複数の無線基地局から、データ通信に用いる無線基地局としての接続基地局を導出する導出部と、導出された前記接続基地局との間で前記データ通信を行う通信部と、を備える、無線端末を提供する。 The present disclosure is a wireless terminal capable of communicating with a plurality of wireless base stations via a network in which a plurality of wireless communication schemes are used together, and the past between each of the wireless base stations At the time of communication, at least the location information of the wireless terminal and information related to the wireless base station are accumulated as a communication history, an acquisition unit that acquires the location information of the wireless terminal, and the acquired wireless terminal A deriving unit for deriving a connection base station as a radio base station used for data communication from the plurality of radio base stations based on the location information and the communication history accumulated in the accumulation unit, and the derived connection And a communication unit that performs the data communication with a base station.
 また、本開示は、複数の無線通信方式が混在して利用されるネットワークを介して、複数の無線基地局との間で通信可能な無線端末における無線基地局割当方法であって、それぞれの前記無線基地局との間の過去の通信時における、少なくとも前記無線端末の位置情報と前記無線基地局に関する情報とを通信履歴として蓄積部に蓄積するステップと、前記無線端末の位置情報を取得するステップと、取得された前記無線端末の位置情報と前記蓄積部に蓄積された前記通信履歴とに基づいて、前記複数の無線基地局から、データ通信に用いる無線基地局としての接続基地局を導出するステップと、導出された前記接続基地局との間で前記データ通信を行うステップと、を有する、無線基地局割当方法を提供する。 Further, the present disclosure is a radio base station allocation method in a radio terminal capable of communicating with a plurality of radio base stations via a network in which a plurality of radio communication schemes are used in combination. A step of accumulating at least the location information of the radio terminal and information about the radio base station in a storage unit as a communication history during past communication with the radio base station; and a step of acquiring the location information of the radio terminal Based on the acquired location information of the wireless terminal and the communication history stored in the storage unit, a connection base station as a wireless base station used for data communication is derived from the plurality of wireless base stations. There is provided a radio base station allocation method comprising the steps of: performing the data communication with the derived connection base station.
 本開示によれば、自己の現在位置における通信履歴に基づいて、無線通信の接続要求時に通信相手となる無線基地局を決定して割り当てできるので、最適なセルへの接続確率の劣化を抑制できる。 According to the present disclosure, since it is possible to determine and assign a wireless base station to be a communication partner at the time of a wireless communication connection request based on a communication history at its current position, it is possible to suppress deterioration in the optimal connection probability to the cell. .
本実施の形態の無線通信システムにより構成されるヘテロジニアスネットワークの一例を示す模式図である。It is a schematic diagram which shows an example of the heterogeneous network comprised with the radio | wireless communications system of this Embodiment. 本実施の形態の無線端末の内部構成の一例を詳細に示すブロック図である。It is a block diagram which shows an example of an internal structure of the radio | wireless terminal of this Embodiment in detail. 無線端末の位置毎の通信履歴を保持した累計通信履歴テーブルT1の一例を示す模式図である。It is a schematic diagram which shows an example of the accumulation communication history table T1 which hold | maintained the communication history for every position of a radio | wireless terminal. 上位n個の距離Diと無線資源(無線基地局-無線周波数)との対応関係を示す上位通信履歴テーブルT2の一例を示す模式図である。It is a schematic diagram which shows an example of the high-order communication log | history table T2 which shows the correspondence of upper n distance Di and radio | wireless resource (radio base station-radio frequency). 本実施の形態の無線端末に通信接続要求が発生した場合の動作手順の一例を詳細に説明するフローチャートである。It is a flowchart explaining in detail an example of the operation | movement procedure when the communication connection request | requirement generate | occur | produces in the radio | wireless terminal of this Embodiment. 本実施の形態の無線端末に通信接続要求が発生した場合の動作手順の一例を詳細に説明するフローチャートである。It is a flowchart explaining in detail an example of the operation | movement procedure when the communication connection request | requirement generate | occur | produces in the radio | wireless terminal of this Embodiment.
 近年、無線端末と無線基地局装置とがネットワークに接続された無線通信システムにおいて、比較的セル半径の小さいスモールセルと比較的セル半径の大きいマクロセルとが面的に重畳したヘテロジニアスネットワークの検討がなされている。このヘテロジニアスネットワークでは、マクロセルでのスループット(bps)に比較してスモールセルのスループット(bps)は桁違いに大きいことが想定される。 In recent years, in a wireless communication system in which a wireless terminal and a wireless base station apparatus are connected to a network, a heterogeneous network in which a small cell having a relatively small cell radius and a macro cell having a relatively large cell radius are superposed has been studied. Has been made. In this heterogeneous network, it is assumed that the throughput (bps) of the small cell is orders of magnitude greater than the throughput (bps) of the macro cell.
 例えばマクロセルがLTE(Long Term Evolution)であり、セルスループットを300Mbpsとする。マクロセルに接続する無線端末数が100だとすると1端末あたりのスループットは3Mbpsとなる。一方、スモールセルが5G(第5世代移動通信システム)であり、セルスループットを10Gbpsとする。スモールセルに接続する無線端末数が100でも1端末あたりのスループットは100Mbps、スモールセルに接続する無線端末数が10なら1端末あたりのスループットは1Gbps、スモールセルに接続する無線端末数が2なら1端末あたりのスループットは5Gbpsとなり、マクロセルに比べて桁違いに大きい。従って、ヘテロジニアスネットワークでは、動き回る無線端末を極力、スモールセルに接続することが望まれる。 For example, the macro cell is LTE (Long Term Evolution), and the cell throughput is 300 Mbps. If the number of wireless terminals connected to the macro cell is 100, the throughput per terminal is 3 Mbps. On the other hand, the small cell is 5G (5th generation mobile communication system), and the cell throughput is 10 Gbps. Even if the number of wireless terminals connected to the small cell is 100, the throughput per terminal is 100 Mbps, if the number of wireless terminals connected to the small cell is 10, the throughput per terminal is 1 Gbps, and if the number of wireless terminals connected to the small cell is 2, 1 The throughput per terminal is 5 Gbps, which is an order of magnitude larger than that of a macro cell. Therefore, in a heterogeneous network, it is desired to connect a moving wireless terminal to a small cell as much as possible.
 ここで、無線端末は、無線通信する際、自己が無線接続する通信相手となる無線基地局と、また必要に応じて自己が無線通信に用いる無線周波数(言い換えると、キャリア周波数又は無線チャネル)を決定して割り当てる。しかし、上述した特許文献1では、携帯移動端末の通信履歴を用いて、無線端末が無線通信する際に必要となる無線基地局や無線周波数を決定する事は考慮されていないので、そのような決定を行う事が困難である。 Here, when a wireless terminal performs wireless communication, a wireless base station that is a communication partner with which the wireless terminal is wirelessly connected and, if necessary, a wireless frequency (in other words, a carrier frequency or a wireless channel) that the wireless terminal uses for wireless communication. Decide and assign. However, in Patent Document 1 described above, it is not considered to determine a radio base station and a radio frequency that are required when the radio terminal performs radio communication using the communication history of the mobile mobile terminal. It is difficult to make a decision.
 また、上述したヘテロジニアスネットワークにおいて、スモールセルエリアの全エリアに対する比率は小さく、動き回る無線端末が各位置における最適セル(言い換えると、高速なスループットが得られるスモールセル)への接続機会を逃す確率は、セル選択に要する時間が長い程、増大してしまう。そこで、ヘテロジニアスネットワークのカバーエリア全体をあるサイズのエリアブロックに区切り、無線端末の位置をエリアブロック番号に対応付けし、エリアブロック番号毎の通信履歴を用いて最適セルへの接続を試みる方式が提案されている。無線端末は、例えば自己の現在の位置情報及びエリアブロック番号毎に保存した通信履歴を基に、その位置及びエリアブロックにおいて過去に接続して無線通信を実行した無線基地局を検索する。 In the heterogeneous network described above, the ratio of the small cell area to the entire area is small, and the probability that a moving wireless terminal misses an opportunity to connect to the optimal cell (in other words, a small cell with high throughput) at each position is low. As the time required for cell selection increases, the time increases. Therefore, there is a method in which the entire coverage area of the heterogeneous network is divided into area blocks of a certain size, the position of the wireless terminal is associated with the area block number, and the connection to the optimum cell is attempted using the communication history for each area block number. Proposed. For example, based on the current location information and communication history stored for each area block number, the radio terminal searches for a radio base station that has connected in the past and executed radio communication in that location and area block.
 しかし、この方式ではエリアブロックが大きければ(例えば1km×1km)エリアブロック毎の通信履歴を多く蓄積できるが、無線端末の現在のピンポイントの位置での接続に最も適した基地局(言い換えると、セル)を見誤る確率が大きくなる。一方で、エリアブロックが小さければ(例えば5m×5m)エリアブロック数が膨大となり、通信履歴の蓄積が過度に細分化されるためエリアブロック毎の通信履歴が過少になり、同様に無線端末の現在のピンポイントの位置での接続に最も適した基地局(言い換えると、セル)を選択することが困難となる。従って、無線端末の位置精度(測位精度)及び位置特定所要時間への要求も高くなる。更に、上述方式では、エリアブロックの大小に拘わらず、ヘテロジニアスネットワークのカバーエリア全体をエリアブロックに分割するための事前作業量も膨大となる。 However, in this method, if the area block is large (for example, 1 km × 1 km), a large communication history can be accumulated for each area block. However, the base station most suitable for connection at the current pinpoint position of the wireless terminal (in other words, The probability of misrecognizing (cell) increases. On the other hand, if the area block is small (for example, 5 m × 5 m), the number of area blocks becomes enormous, and the accumulation of communication history is excessively divided, so that the communication history for each area block becomes too small. It becomes difficult to select a base station (in other words, a cell) most suitable for connection at the pinpoint position. Therefore, the requirements for the position accuracy (positioning accuracy) and the time required for specifying the position of the wireless terminal are also increased. Furthermore, in the above-described method, the amount of prior work for dividing the entire coverage area of the heterogeneous network into area blocks is large regardless of the size of the area blocks.
 本開示は、上述した従来の事情に鑑みて案出され、自己の現在位置における通信履歴に基づいて、無線通信の接続要求時に通信相手となる無線基地局を決定して割り当て、最適なセルへの接続確率の劣化を抑制する無線端末及び無線基地局割当方法を提供する。 The present disclosure has been devised in view of the above-described conventional circumstances, and based on the communication history at its current position, determines and assigns a wireless base station to be a communication partner at the time of a wireless communication connection request, to the optimum cell. A wireless terminal and a wireless base station assignment method that suppress deterioration of the connection probability of the wireless communication device are provided.
 以下、適宜図面を参照しながら、本開示に係る無線端末及び無線基地局割当方法を具体的に開示した本実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるものであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, the present embodiment that specifically discloses the radio terminal and radio base station allocation method according to the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 図1は、本実施の形態の無線通信システム10により構成されるヘテロジニアスネットワーク20の一例を示す模式図である。無線通信システム10は、少なくとも一つの無線端末100及び複数の無線基地局200を含む構成である。無線端末100とそれぞれの無線基地局200とは、無線通信回線を介して接続される。なお図1では、説明を簡単にするために、無線端末100は1台のみ図示され、図1紙面の左右方向にX軸、同紙面の上下方向にY軸、X軸及びY軸にともに垂直な方向にZ軸方向が規定される。 FIG. 1 is a schematic diagram showing an example of a heterogeneous network 20 configured by the wireless communication system 10 of the present embodiment. The radio communication system 10 is configured to include at least one radio terminal 100 and a plurality of radio base stations 200. The radio terminal 100 and each radio base station 200 are connected via a radio communication line. In FIG. 1, for simplicity of explanation, only one wireless terminal 100 is shown, and the X axis in the horizontal direction of FIG. 1 and the Y axis in the vertical direction of the paper, the Y axis, and the X axis and the Y axis are both perpendicular. The Z-axis direction is defined in such a direction.
 無線通信システム10は、無線端末100が無線通信の際に接続する通信相手となるそれぞれの無線基地局200が異なる無線規格方式に準拠した無線通信をそれぞれ実行可能なヘテロジニアスネットワーク20を構成する。無線端末100は、無線基地局200との間で通信する。つまり、ヘテロジニアスネットワーク20では、複数の異なる無線通信方式(例えば無線アクセス技術(RAT:Radio Access Technology)やセル半径)に対応した複数の無線基地局200が混在する。ヘテロジニアスネットワーク20では、例えば複数種類の無線規格が混在することを含め、セル半径の異なる無線基地局200が面的に重畳している。RATは、例えば無線通信規格、無線周波数の情報を含む。 The wireless communication system 10 constitutes a heterogeneous network 20 in which each wireless base station 200, which is a communication partner to which the wireless terminal 100 is connected during wireless communication, can execute wireless communication based on different wireless standard systems. The radio terminal 100 communicates with the radio base station 200. That is, in the heterogeneous network 20, a plurality of radio base stations 200 corresponding to a plurality of different radio communication schemes (for example, radio access technology (RAT: Radio Access Technology) or cell radius) are mixed. In the heterogeneous network 20, for example, wireless base stations 200 having different cell radii overlap in a plane, including a mixture of a plurality of types of wireless standards. The RAT includes, for example, information on a wireless communication standard and a radio frequency.
 ヘテロジニアスネットワーク20は、C/U分離型のネットワークでなくてもよいし、C/U分離型のネットワークであってもよい。本実施の形態では、C/U分離型ではないネットワークを例示する。つまり、無線通信システム10では、制御データに係る通信とユーザデータに係る通信とが同じ無線基地局200により実施される。 The heterogeneous network 20 may not be a C / U separation type network or a C / U separation type network. In this embodiment, a network that is not a C / U separation type is illustrated. That is, in the radio communication system 10, the communication related to the control data and the communication related to the user data are performed by the same radio base station 200.
 無線基地局200は、マクロセル無線基地局200Aと、スモールセル無線基地局200Bとを含む。無線端末100は、マクロセル無線基地局200A及びスモールセル無線基地局200Bのいずれとの間においても、制御データを通信し、ユーザデータを通信する。制御データは、C(Control)-Planeに係るデータを含む。ユーザデータは、U(User)-Planeに係るデータを含む。ユーザデータは、例えば画像データ(例えば動画、静止画)、音声データを含み、データ量の多いデータを含み得る。 The radio base station 200 includes a macro cell radio base station 200A and a small cell radio base station 200B. The radio terminal 100 communicates control data and user data with both the macro cell radio base station 200A and the small cell radio base station 200B. The control data includes data related to C (Control) -Plane. The user data includes data related to U (User) -Plane. The user data includes, for example, image data (for example, moving images and still images) and audio data, and may include data with a large data amount.
 C-planeは、無線通信における呼接続や無線資源割当の制御データを通信するための通信プロトコルである。U-planeは、無線端末100と無線基地局200との間で、割り当てられた無線資源を使用して実際に通信(例えば映像通信、音声通信、データ通信)するための通信プロトコルである。 C-plane is a communication protocol for communicating control data for call connection and radio resource allocation in radio communication. U-plane is a communication protocol for actual communication (for example, video communication, voice communication, data communication) between the wireless terminal 100 and the wireless base station 200 using the allocated wireless resources.
 マクロセル無線基地局200Aのセル半径は、例えば1km~数kmであり、比較的大きい。マクロセル無線基地局200Aが採用可能なRATは、例えば1種類(例えばLTE)である。セル半径は、無線基地局200の最大伝送距離に相当する。 The cell radius of the macrocell radio base station 200A is, for example, 1 km to several km and is relatively large. The RAT that can be adopted by the macrocell radio base station 200A is, for example, one type (for example, LTE). The cell radius corresponds to the maximum transmission distance of the radio base station 200.
 スモールセル無線基地局200Bのセル半径は、例えば10m~100mであり、比較的小さい。スモールセル無線基地局200Bが採用可能なRATは、多様であり、複数種類存在する。なお例えば、山間部、砂漠地帯、森林地帯においてセル半径が100m以上であってもよいし、マクロセル無線基地局200Aのセル半径よりも大きいことも考えられる。つまり、ここでは、マクロセル無線基地局200A,スモールセル無線基地局200Bの区別は、セル半径の大きさを意識していない。 The cell radius of the small cell radio base station 200B is, for example, 10 m to 100 m and is relatively small. There are various types of RATs that can be adopted by the small cell base station 200B, and there are a plurality of types. For example, the cell radius may be 100 m or more in a mountainous area, a desert area, or a forest area, or may be larger than the cell radius of the macrocell radio base station 200A. That is, here, the distinction between the macro cell radio base station 200A and the small cell radio base station 200B is not conscious of the size of the cell radius.
 図1では、「MBS」(▲)がマクロセル無線基地局200Aを示し、「SBS」(△)がスモールセル無線基地局200Bを示し、「T」が無線端末100を示す。マクロセル無線基地局200Aを囲む線が、そのマクロセル無線基地局200Aによる通信可能範囲を示す。スモールセル無線基地局200Bを囲む線が、そのスモールセル無線基地局200Bによる通信可能範囲を示す。無線基地局200の通信可能範囲は、例えば無線基地局200の位置とセル半径に応じて定まる。 In FIG. 1, “MBS” (▲) indicates the macro cell radio base station 200A, “SBS” (Δ) indicates the small cell radio base station 200B, and “T” indicates the radio terminal 100. A line surrounding the macro cell radio base station 200A indicates a communicable range by the macro cell radio base station 200A. A line surrounding the small cell radio base station 200B indicates a communicable range by the small cell radio base station 200B. The communicable range of the radio base station 200 is determined according to the position of the radio base station 200 and the cell radius, for example.
 無線端末100及び無線基地局200は、それぞれが採用可能なRAT(例えば無線通信規格、無線周波数)から無線通信に用いるRATを設定し、設定されたRATを用いて無線通信する。それぞれの無線端末100及び無線基地局200は、1つ以上のRATを採用可能である。 The radio terminal 100 and the radio base station 200 set RATs used for radio communication from RATs (for example, radio communication standards and radio frequencies) that can be adopted, and perform radio communication using the set RATs. Each wireless terminal 100 and wireless base station 200 can employ one or more RATs.
 無線通信規格は、例えばLTE(Long Term Evolution)、無線LAN(Local Area Network)、DECT(Digital Enhanced Cordless Telecommunication)、3G(第3世代移動通信システム)、4G(第4世代移動通信システム)、5G(第5世代移動通信システム)を含む。 Wireless communication standards include, for example, LTE (Long Term Evolution), wireless LAN (Local Area Network), DECT (Digital Enhanced Cordless Telecommunication), 3G (third generation mobile communication system), 4G (fourth generation mobile communication system), 5G. (5th generation mobile communication system).
 RATの具体的な情報として、例えば以下のRAT1~RAT5を含む。RAT1は、例えば無線周波数帯が700MHz~3GHzのLTEである。RAT2は、例えば無線周波数帯が15GHzのLTE-Advancedである。RAT3は、例えば無線周波数帯が5GHzの無線LAN通信である。RAT4は、例えば無線周波数帯が15GHz帯の無線通信方式であり、第5世代移動通信方式である。RAT5は、例えば無線周波数帯が60GHz帯の無線通信方式(例えばミリ波通信)(例えばWiGig)である。 Specific information on RAT includes, for example, the following RAT1 to RAT5. RAT1 is, for example, LTE having a radio frequency band of 700 MHz to 3 GHz. RAT2 is, for example, LTE-Advanced with a radio frequency band of 15 GHz. RAT3 is, for example, wireless LAN communication with a radio frequency band of 5 GHz. RAT4 is, for example, a radio communication system with a radio frequency band of 15 GHz, and is a fifth generation mobile communication system. RAT5 is, for example, a radio communication system (for example, millimeter wave communication) (for example, WiGig) having a radio frequency band of 60 GHz.
 図2は、本実施の形態の無線端末100の内部構成の一例を詳細に示すブロック図である。無線端末100は、プロセッサ150、メモリ160、GPS(Global Positioning System)アンテナ101、GPS受信部102、送信アンテナ108、受信アンテナ109、BLE(Bluetooth(登録商標) Low Energy)アンテナ121及びBLE受信部122を含む構成である。 FIG. 2 is a block diagram showing in detail an example of the internal configuration of the wireless terminal 100 of the present embodiment. The wireless terminal 100 includes a processor 150, a memory 160, a GPS (Global Positioning System) antenna 101, a GPS receiving unit 102, a transmitting antenna 108, a receiving antenna 109, a BLE (Bluetooth (registered trademark) Low Low Energy) antenna 121, and a BLE receiving unit 122. It is the structure containing.
 プロセッサ150は、メモリ160と協働して、各種処理や制御を行う。具体的には、プロセッサ150は、メモリ160に保持されたプログラム及びデータを参照し、そのプログラムを実行することにより、以下の各部の機能を実現する。この各部は、位置情報生成部103、基地局導出部104、無線資源割当管理部105、送信パケット生成部106、無線送信部107、無線受信部110、受信パケット復号部111を含む。 The processor 150 performs various processes and controls in cooperation with the memory 160. Specifically, the processor 150 refers to a program and data held in the memory 160 and executes the program, thereby realizing the functions of the following units. Each unit includes a position information generation unit 103, a base station derivation unit 104, a radio resource allocation management unit 105, a transmission packet generation unit 106, a radio transmission unit 107, a radio reception unit 110, and a reception packet decoding unit 111.
 メモリ160は、例えば無線端末100の処理時に用いられるワークメモリとしてのRAM(Random Access Memory)と、無線端末100の動作を規定したプログラム及びデータを格納するROM(Read Only Memory)とを有する。RAMには、各種データや情報が一時的に保存される。ROMには、無線端末100の動作(例えば、本実施の形態に係る無線基地局割当方法として行われるべき処理(ステップ))を規定したプログラムが書き込まれている。 The memory 160 includes, for example, a RAM (Random Access Memory) as a work memory used during processing of the wireless terminal 100, and a ROM (Read Only Memory) that stores programs and data that define the operation of the wireless terminal 100. Various data and information are temporarily stored in the RAM. In the ROM, a program that defines the operation of the radio terminal 100 (for example, processing (step) to be performed as the radio base station allocation method according to the present embodiment) is written.
 また、蓄積部の一例としてのメモリ160は、後述する累計通信履歴テーブルT1や、上位通信履歴テーブルT2を保存する。なお図1では、メモリ160は、プロセッサ150とは別構成として示されているが、プロセッサ150に内蔵されてもよい。メモリ160は、一次記憶装置とともに、二次記憶装置を含んでもよい。 Also, the memory 160 as an example of the storage unit stores a cumulative communication history table T1 and a higher communication history table T2 described later. In FIG. 1, the memory 160 is shown as a separate configuration from the processor 150, but may be built in the processor 150. The memory 160 may include a secondary storage device together with the primary storage device.
 GPSアンテナ101は、複数(例えば3つ又は4つ)のGPS衛星50から発信された時刻及び各GPS衛星50の位置(座標)を示す複数の信号を受信してGPS受信部102に出力する。それぞれのGPS衛星50は、時刻及び各GPS衛星50の位置(座標)を示す信号を発信する。 The GPS antenna 101 receives a plurality of signals indicating times and positions (coordinates) of the GPS satellites 50 transmitted from a plurality of (for example, three or four) GPS satellites 50 and outputs the signals to the GPS receiver 102. Each GPS satellite 50 transmits a signal indicating the time and the position (coordinates) of each GPS satellite 50.
 取得部の一例としてのGPS受信部102は、GPSアンテナ101により受信された複数の信号に基づいて、GPS受信部102の位置情報(つまり、無線端末100自身の位置情報(自己の位置情報))を算出して取得する。この算出により得られた位置の情報は、例えば屋外に位置する無線端末100の現在位置を示す。なお、GPS受信部102は、プロセッサ150内に設けられても構わない。GPS受信部102は、算出により得られた無線端末100の位置情報をプロセッサ150に出力する。なお、GPS受信部102の位置情報の算出は、GPS受信部102の代わりに、プロセッサ150の位置情報生成部103により行われてもよい。この場合、位置情報生成部103には、GPSアンテナ101が受信した複数の信号に含まれる時刻及び各GPS衛星50の位置を示す情報が、GPS受信部102を介して入力される。 The GPS reception unit 102 as an example of the acquisition unit is based on a plurality of signals received by the GPS antenna 101, and the position information of the GPS reception unit 102 (that is, the position information of the wireless terminal 100 itself (own position information)). Is calculated and obtained. The position information obtained by this calculation indicates the current position of the wireless terminal 100 located outdoors, for example. Note that the GPS receiving unit 102 may be provided in the processor 150. The GPS receiver 102 outputs the position information of the wireless terminal 100 obtained by the calculation to the processor 150. The calculation of the position information of the GPS receiving unit 102 may be performed by the position information generating unit 103 of the processor 150 instead of the GPS receiving unit 102. In this case, the position information generating unit 103 is input with information indicating the time and the position of each GPS satellite 50 included in the plurality of signals received by the GPS antenna 101 via the GPS receiving unit 102.
 ここで、無線端末100が屋外に位置する場合には、上述した複数のGPS衛星50からの信号に基づいて算出された無線端末100の位置情報の信頼性は相当に高い。しかし、無線端末100が屋内(例えば建物内又は地下街とするがこれらに限定されない。以下同様。)、又は屋外と屋内との境界付近に位置する場合には、上述した複数のGPS衛星50からの信号に基づいて算出された無線端末100の位置情報は一定の誤差を含む場合がある。このように、無線端末100が屋内、又は屋外と屋内との境界付近に位置する場合には、無線端末100は、屋内に設置された複数のBLEビーコン60から発信された時刻及び各BLEビーコン60の位置(座標)を示す複数の信号に基づいて、現在の無線端末100自身の位置情報(自己の位置情報)を算出して取得する。無線端末100は、例えばBLEビーコン60からの信号の受信電界強度(RSSI:Received Signal Strength Indicator)が所定の閾値より大きいと判断した場合には、屋内、又は屋外と屋内との境界付近に位置すると判断し、複数のBLEビーコン60から発信された信号に基づいて、自己の位置情報を算出する。なお、無線端末100が屋内、又は屋外と屋内との境界付近に位置すると判断する方法は、上述した受信電界強度と所定の閾値との比較結果に基づく方法に限定されない。 Here, when the wireless terminal 100 is located outdoors, the reliability of the position information of the wireless terminal 100 calculated based on the signals from the plurality of GPS satellites 50 described above is considerably high. However, when the wireless terminal 100 is located indoors (for example, in a building or underground mall, but not limited to the same; the same applies hereinafter) or near the boundary between the outdoors and indoors, The position information of the wireless terminal 100 calculated based on the signal may include a certain error. As described above, when the wireless terminal 100 is located indoors or near the boundary between the outdoor and the indoor, the wireless terminal 100 transmits the time transmitted from the plurality of BLE beacons 60 installed indoors and each BLE beacon 60. Based on a plurality of signals indicating the position (coordinates) of the wireless terminal 100, the current position information of the wireless terminal 100 itself (the position information of itself) is calculated and acquired. For example, if the wireless terminal 100 determines that the received electric field strength (RSSI: Received Signal Strength Strength Indicator) of the signal from the BLE beacon 60 is larger than a predetermined threshold, the wireless terminal 100 is located indoors or near the boundary between the outdoor and indoor. Based on the signal transmitted from the plurality of BLE beacons 60, its own position information is calculated. Note that the method for determining that the wireless terminal 100 is located indoors or near the boundary between the outdoor and indoor is not limited to the method based on the comparison result between the received electric field strength and a predetermined threshold value.
 BLEアンテナ121は、複数(例えば2つ)のBLEビーコン60から発信された時刻及び各BLEビーコン60の位置(座標)を示す複数の信号を受信してBLE受信部122に出力する。それぞれのBLEビーコン60は、時刻及び各BLEビーコン60の位置(座標)を示す信号を発信する。また、それぞれのBLEビーコン60間の距離は既知である。それぞれの無線端末100は、それぞれのBLEビーコン60間の距離情報を予め取得していてもよいし、直接又はネットワーク(不図示)を介して外部装置(不図示。例えば他の無線端末、距離情報管理サーバ)から取得してもよい。 The BLE antenna 121 receives a plurality of signals indicating the time transmitted from a plurality of (for example, two) BLE beacons 60 and the position (coordinates) of each BLE beacon 60 and outputs the signals to the BLE receiving unit 122. Each BLE beacon 60 transmits a signal indicating the time and the position (coordinates) of each BLE beacon 60. Moreover, the distance between each BLE beacon 60 is known. Each wireless terminal 100 may acquire distance information between the respective BLE beacons 60 in advance, or may be directly or via an external device (not illustrated. For example, another wireless terminal, distance information) via a network (not illustrated). You may acquire from a management server.
 取得部の一例としてのBLE受信部122は、BLEアンテナ121により受信された複数の信号に基づいて、例えば三角測量法を用いてBLE受信部122の位置情報(つまり、無線端末100自身の位置情報(自己の位置情報))を算出して取得する。この算出により得られた位置の情報は、屋内又は屋外と屋内との境界付近に位置する無線端末100の現在位置を示す。 The BLE receiving unit 122 as an example of the acquiring unit uses the triangulation method, for example, based on a plurality of signals received by the BLE antenna 121, that is, position information of the BLE receiving unit 122 (that is, position information of the wireless terminal 100 itself). (Own position information)) is calculated and acquired. The position information obtained by this calculation indicates the current position of the wireless terminal 100 located indoors or near the boundary between the outdoors and the indoors.
 なお、BLE受信部122は、BLEアンテナ121により受信された複数の信号と公知の方法(例えばPDR(Pedestrian Dead Reckoning)やPMM(Pedestrian Map Matching))とを組み合わせ用い、無線端末100の屋内、又は屋外と屋内との境界付近における位置情報を算出してもよい。 Note that the BLE receiving unit 122 uses a combination of a plurality of signals received by the BLE antenna 121 and a known method (for example, PDR (Pedestrian DeadeckReckoning) or PMM (Pedestrian Map Matching)), or inside the wireless terminal 100 or Position information in the vicinity of the boundary between the outdoor and indoor may be calculated.
 ここで、それぞれのBLEビーコン60の設置位置は、緯度、経度及び高度の情報を有すると言えるので、無線端末100が屋外に位置する場合と同様に、無線端末100が屋内、又は屋外と屋内との境界付近に位置する場合でも、屋外での位置情報の取得方法は屋内に拡張できて、緯度、経度及び高度と同様の位置情報を取得できる。なお、BLE受信部122は、プロセッサ150内に設けられても構わない。BLE受信部122は、算出により得られた無線端末100の位置情報をプロセッサ150に出力する。なお、BLE受信部122の位置情報の算出は、BLE受信部122の代わりに、プロセッサ150の位置情報生成部103により行われてもよい。この場合、位置情報生成部103には、BLEアンテナ121が受信した複数の信号に含まれる時刻及び各BLEビーコン60の位置を示す情報が、BLE受信部122を介して入力される。 Here, since it can be said that the installation positions of the respective BLE beacons 60 have information on latitude, longitude, and altitude, the wireless terminal 100 is indoors, or outdoors and indoors, as in the case where the wireless terminal 100 is located outdoors. Even when located near the boundary, the outdoor location information acquisition method can be expanded indoors, and location information similar to latitude, longitude, and altitude can be acquired. The BLE receiving unit 122 may be provided in the processor 150. The BLE receiving unit 122 outputs the position information of the wireless terminal 100 obtained by the calculation to the processor 150. Note that the calculation of the position information of the BLE receiving unit 122 may be performed by the position information generating unit 103 of the processor 150 instead of the BLE receiving unit 122. In this case, the position information generating unit 103 is input with information indicating the time included in the plurality of signals received by the BLE antenna 121 and the position of each BLE beacon 60 via the BLE receiving unit 122.
 図3は、無線端末100の位置毎の通信履歴を保持した累計通信履歴テーブルT1の一例を示す模式図である。累計通信履歴テーブルT1は、無線端末100が複数の無線基地局200のうちいずれかの無線基地局(以下、「接続基地局」ともいう)との間で過去に無線通信した時の累計の通信履歴(通信実績)の情報を保持する。接続基地局は、無線端末100と通信接続された無線基地局200である。この累計通信履歴テーブルT1は、それぞれの無線端末100のメモリ160に保持される。 FIG. 3 is a schematic diagram illustrating an example of a cumulative communication history table T1 that holds a communication history for each position of the wireless terminal 100. The accumulated communication history table T1 is the accumulated communication when the wireless terminal 100 has performed wireless communication with any one of the plurality of wireless base stations 200 (hereinafter also referred to as “connected base station”) in the past. Holds history (communication performance) information. The connection base station is the radio base station 200 that is connected to the radio terminal 100 for communication. The accumulated communication history table T1 is held in the memory 160 of each wireless terminal 100.
 累計通信履歴テーブルT1が保持する通信履歴は、例えば無線端末100が接続基地局との間で無線通信した時の順番(順序i)を示す情報と、その無線通信時の無線端末100の位置(緯度X、経度Y、高度Z)を示す情報と、接続基地局の識別番号mを示す情報及び無線周波数n(キャリア周波数)を示す情報とを対応付けて有する。例えば第1回目の接続基地局との間の通信接続時では、無線端末100は、位置(X1、Y1、Z1)に存在しており、番号3の接続基地局との間で、番号1の無線周波数(キャリア周波数)を用いて無線通信を行ったことを意味する。接続基地局(無線基地局)及び無線周波数(キャリア周波数)の各番号は、図1に示すヘテロジニアスネットワーク20を利用する各無線端末100においてそれぞれ既知であり、例えばメモリ160に予め保持されている。図3では、過去の累計として、例えば100回分の通信履歴が示されている。なお、過去の累計として、例えば300回分の通信履歴が使用されてもよい。 The communication history stored in the cumulative communication history table T1 includes, for example, information indicating the order (order i) when the wireless terminal 100 performs wireless communication with the connected base station, and the position of the wireless terminal 100 during the wireless communication (order i). Information indicating latitude X, longitude Y, altitude Z), information indicating the identification number m of the connecting base station, and information indicating the radio frequency n (carrier frequency). For example, at the time of communication connection with the first connected base station, the wireless terminal 100 exists at the position (X1, Y1, Z1), and the number 1 is connected to the number 3 connected base station. It means that radio communication is performed using a radio frequency (carrier frequency). The numbers of the connecting base station (radio base station) and the radio frequency (carrier frequency) are known in each radio terminal 100 using the heterogeneous network 20 shown in FIG. . In FIG. 3, for example, a communication history for 100 times is shown as the past cumulative total. For example, a communication history for 300 times may be used as the past total.
 なお、図3では示されていないが、通信履歴は、接続基地局が採用するRAT(例えばLTE)、接続基地局との通信回数(無線接続回数)、及び接続基地局との通信に係る通信量(通信データ量)の情報を含んでもよい。 Although not shown in FIG. 3, the communication history includes RAT (for example, LTE) adopted by the connecting base station, the number of times of communication with the connecting base station (number of times of wireless connection), and communication related to the communication with the connecting base station. Information on the amount (communication data amount) may be included.
 本実施の形態では、無線端末100と接続基地局との通信履歴は累計通信履歴テーブルT1としてメモリ160に管理される。また、後述する基地局導出部104により導出された接続基地局との間で通信接続がトライされて成功すると、通信履歴は更新部の一例としての無線資源割当管理部105によって更新される(例えば後述する図6のステップS12参照)。 In this embodiment, the communication history between the wireless terminal 100 and the connected base station is managed in the memory 160 as the cumulative communication history table T1. Further, when a communication connection with a connection base station derived by a base station deriving unit 104 described later is tried and succeeded, the communication history is updated by a radio resource allocation management unit 105 as an example of an updating unit (for example, (See step S12 in FIG. 6 described later).
 位置情報生成部103は、例えば無線端末100が屋外に位置する場合には、GPS受信部102からの情報を基に、無線端末100の位置情報(つまり、現在の無線端末100の位置情報)を生成して基地局導出部104に出力する。位置情報生成部103は、例えば無線端末100が屋内、又は屋外と屋内との境界付近に位置する場合には、BLE受信部122からの情報を基に、無線端末100の位置情報(つまり、現在の無線端末100の位置情報)を生成して基地局導出部104に出力する。 For example, when the wireless terminal 100 is located outdoors, the position information generation unit 103 determines the position information of the wireless terminal 100 (that is, the current position information of the wireless terminal 100) based on the information from the GPS receiving unit 102. It is generated and output to the base station derivation unit 104. For example, when the wireless terminal 100 is located indoors or near the boundary between the outdoors and the indoors, the position information generation unit 103 uses the information from the BLE receiving unit 122 to determine the position information of the wireless terminal 100 (that is, the current information (Position information of the wireless terminal 100) is generated and output to the base station deriving unit 104.
 導出部の一例としての基地局導出部104は、位置情報生成部103により生成された無線端末100の位置情報(つまり、無線端末100の現在の位置情報)と、メモリ160の累計通信履歴テーブルT1とに基づいて、ヘテロジニアスネットワーク20内の複数の無線基地局200から、データ(例えば制御データ、ユーザデータ)の通信に用いる候補の接続基地局及び無線周波数を導出する。基地局導出部104は、無線資源(例えば、(1)無線基地局の識別番号、又は(2)無線基地局の識別番号及び無線周波数(キャリア周波数)の識別番号)の導出結果を無線資源割当管理部105に出力する。 The base station deriving unit 104 as an example of a deriving unit includes the position information of the wireless terminal 100 generated by the position information generating unit 103 (that is, the current position information of the wireless terminal 100) and the accumulated communication history table T1 in the memory 160. Based on the above, candidate connection base stations and radio frequencies used for data (for example, control data, user data) communication are derived from the plurality of radio base stations 200 in the heterogeneous network 20. The base station deriving unit 104 allocates a radio resource (for example, (1) an identification number of the radio base station or (2) an identification number of the radio base station and an identification number of the radio frequency (carrier frequency)) The data is output to the management unit 105.
 具体的には、基地局導出部104は、無線端末100の現在の位置情報と通信履歴の無線端末100の位置情報とに基づく距離Diが小さい所定数(k:既定値)の通信履歴の中で、無線通信に割り当てた回数が多い無線基地局(接続基地局)及び無線周波数から優先して接続基地局及び無線周波数を導出する。 Specifically, the base station deriving unit 104 includes a predetermined number (k: default value) of communication history with a small distance Di based on the current location information of the wireless terminal 100 and the location information of the wireless terminal 100 in the communication history. Thus, the connection base station and the radio frequency are derived preferentially from the radio base station (connection base station) and the radio frequency that are frequently assigned to the radio communication.
 図4は、上位n個の距離Diと無線資源(無線基地局-無線周波数)との対応関係を示す上位通信履歴テーブルT2の一例を示す模式図である。上位通信履歴テーブルT2は、基地局導出部104により生成される。上位通信履歴テーブルT2は、累計通信履歴テーブルT1の通信履歴の中で、無線端末100の現在の位置情報と過去の接続基地局との間で無線通信を行った時の無線端末100の位置情報との間の距離Diが小さい上位所定数(k)個の通信履歴が抽出されたものである。この上位通信履歴テーブルT2は、それぞれの無線端末100のメモリ160に保持される。 FIG. 4 is a schematic diagram showing an example of the upper communication history table T2 indicating the correspondence between the top n distances Di and the radio resources (radio base station-radio frequency). The upper communication history table T2 is generated by the base station deriving unit 104. The upper communication history table T2 is the position information of the wireless terminal 100 when wireless communication is performed between the current position information of the wireless terminal 100 and the past connected base station in the communication history of the cumulative communication history table T1. The upper predetermined number (k) of communication histories having a small distance Di between and are extracted. The upper communication history table T2 is held in the memory 160 of each wireless terminal 100.
 上位通信履歴テーブルT2が保持する通信履歴は、例えば無線端末100が接続基地局との間で無線通信した時の順番(順序i)を示す情報と、その無線通信時の無線端末100の位置(緯度X、経度Y、高度Z)と現在の無線端末100の位置(緯度X、経度Y、高度Z)との間の距離Diを示す情報と、接続基地局の識別番号mを示す情報及び無線周波数n(キャリア周波数)を示す情報とを対応付けて有する。図4では、所定数(k)は10の例が示されている。つまり、距離Di「0.07」が最小値(つまり、無線端末100の現在の位置に最も近い、過去の通信実績がある位置)であり、距離Di「0.89」が最大値(つまり、上位10個の通信履歴の中で、無線端末100の現在の位置から最も離れた、過去の通信実績がある位置)である。例えば、距離Diが最も小さい「0.07」の時に、無線端末100は番号3の接続基地局との間で、番号2の無線周波数(キャリア周波数)を用いて無線通信を行ったことを意味する。同様に、距離Diが最も大きい「0.89」の時に、無線端末100は番号3の接続基地局との間で、番号2の無線周波数(キャリア周波数)を用いて無線通信を行ったことを意味する。 The communication history held in the upper communication history table T2 includes, for example, information indicating the order (order i) when the wireless terminal 100 performs wireless communication with the connected base station, and the position of the wireless terminal 100 at the time of wireless communication (order i). Information indicating the distance Di between the position (latitude X, longitude Y, altitude Z) of the current wireless terminal 100, information indicating the identification number m of the connected base station, and radio It has associated with information indicating the frequency n (carrier frequency). FIG. 4 shows an example where the predetermined number (k) is 10. That is, the distance Di “0.07” is the minimum value (that is, the position closest to the current position of the wireless terminal 100 and has a past communication record), and the distance Di “0.89” is the maximum value (that is, Among the top 10 communication histories, it is the position farthest away from the current position of the wireless terminal 100 and the past communication performance). For example, when the distance Di is the smallest “0.07”, this means that the wireless terminal 100 has performed wireless communication with the connected base station of number 3 using the wireless frequency (carrier frequency) of number 2. To do. Similarly, when the distance Di is the largest “0.89”, the wireless terminal 100 has performed wireless communication with the connected base station of the number 3 using the wireless frequency (carrier frequency) of the number 2. means.
 なお、累計通信履歴テーブルT1,上位通信履歴テーブルT2は、上り回線21用と下り回線22用とで別個に設けられてもよいし、共通して設けられてもよい。また、累計通信履歴テーブルT1,上位通信履歴テーブルT2に保持される無線基地局200が採用可能なRATは、無線端末100も採用可能なRATである。 The cumulative communication history table T1 and the upper communication history table T2 may be provided separately for the uplink 21 and for the downlink 22, or may be provided in common. The RAT that can be adopted by the radio base station 200 held in the cumulative communication history table T1 and the upper communication history table T2 is a RAT that can also be adopted by the radio terminal 100.
 なお、上り回線21は、無線端末100から無線基地局200に向かう無線回線である。下り回線22は、無線基地局200から無線端末100に向かう無線回線である。無線回線は、様々な公衆回線、携帯電話回線、広域無線回線等を広く含む。 Note that the uplink 21 is a radio channel from the radio terminal 100 to the radio base station 200. The downlink 22 is a radio link that goes from the radio base station 200 to the radio terminal 100. Wireless lines widely include various public lines, mobile phone lines, wide area wireless lines, and the like.
 ここで、図3及び図4を参照して基地局導出部104が接続基地局及び無線周波数を導出(算出)する例を具体的に説明する。図3により、過去に100回分の通信履歴が累計通信履歴テーブルT1に保持されており、無線端末100に101回目の通信接続の要求が位置(Xk、Yk、Zk)にて発生したとする。 Here, an example in which the base station deriving unit 104 derives (calculates) a connected base station and a radio frequency will be specifically described with reference to FIGS. As shown in FIG. 3, it is assumed that the communication history for 100 times is held in the cumulative communication history table T1 in the past, and the 101st communication connection request is generated in the wireless terminal 100 at the position (Xk, Yk, Zk).
 基地局導出部104は、図3の累計通信履歴テーブルT1を参照し、無線端末100の現在の位置(Xk、Yk、Zk)と通信履歴の無線端末100の位置(Xi、Yi、Zi)とに基づく距離Diを、数式(1)に従って算出する。ここでは、i=1~100となる。なお、距離Diの算出例は数式(1)のハミング距離に限定されず、数式(2)のユークリッド距離であってもよい。 The base station deriving unit 104 refers to the accumulated communication history table T1 in FIG. 3 and determines the current position (Xk, Yk, Zk) of the wireless terminal 100 and the position (Xi, Yi, Zi) of the wireless terminal 100 in the communication history. A distance Di based on the above is calculated according to Equation (1). Here, i = 1 to 100. Note that the calculation example of the distance Di is not limited to the Hamming distance of Expression (1), and may be the Euclidean distance of Expression (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 基地局導出部104は、数式(1)又は数式(2)により算出したそれぞれの距離Diの中で、上位10(例えばn=10の場合)個の順序iと、接続基地局の識別番号mを示す情報及び無線周波数n(キャリア周波数)を示す情報とを抽出することで、図4の上位通信履歴テーブルT2を生成する。図4の上位通信履歴テーブルT2により、無線資源(例えば接続基地局の識別番号-無線周波数の識別番号)として、無線資源(3-2)が4回、無線資源(2-1)が3回、無線資源(9-2)が1回、無線資源(7-3)が1回、無線資源(4-2)が1回、使用(割り当て)されたことが判明可能となる。 The base station deriving unit 104 uses the top 10 (for example, n = 10) order i among the distances Di calculated by Formula (1) or Formula (2), and the identification number m of the connected base station. 4 and information indicating the radio frequency n (carrier frequency) are extracted to generate the upper communication history table T2 of FIG. As shown in the upper communication history table T2 of FIG. 4, the wireless resource (eg, the identification number of the connecting base station−the identification number of the wireless frequency) is 4 times for the wireless resource (3-2) and 3 times for the wireless resource (2-1). Thus, it can be determined that the wireless resource (9-2) has been used (allocated) once, the wireless resource (7-3) once, and the wireless resource (4-2) once.
 そこで、基地局導出部104は、101回目の新たな通信接続の要求に対し、割り当てるべき無線資源の優先順位として、無線資源(3-2)→無線資源(2-1)→無線資源(9-2)→無線資源(7-3)→無線資源(4-2)と決定(導出)する。このように割り当てるべき無線資源の候補の優先順位が決定されるが、現在の無線端末100にとって、必ずしも無線資源(3-2)がベストな無線資源の候補とならないことも想定される。これは、ヘテロジニアスネットワーク20内に存在する他の無線端末によって、無線資源(3-2)が占有されていることがあり得るためである。重要なのは、基地局導出部104によって、割り当てるべき無線資源の優先順位が絞り込まれたことである。 Therefore, the base station deriving unit 104 sets the priority of the radio resource to be allocated in response to the 101st new communication connection request as the radio resource (3-2) → the radio resource (2-1) → the radio resource (9 -2) → Radio resource (7-3) → Radio resource (4-2) is determined (derived). The priority order of radio resource candidates to be allocated is determined in this way, but it is also assumed that the radio resource (3-2) is not necessarily the best radio resource candidate for the current radio terminal 100. This is because the wireless resource (3-2) may be occupied by other wireless terminals existing in the heterogeneous network 20. What is important is that the base station deriving unit 104 narrows down the priority of radio resources to be allocated.
 ここで、無線資源(9-2)、無線資源(7-3)、無線資源(4-2)の順は、距離Diが小さい順に対応している。これにより、基地局導出部104は、無線端末100の過去の無線通信の実績が多い順に接続基地局及び無線周波数を割り当て可能となり、無線端末100の現在の位置においてより安定した通信環境の中で快適にデータ通信を行い易くできる。 Here, the order of the radio resource (9-2), the radio resource (7-3), and the radio resource (4-2) corresponds to the order from the smallest distance Di. As a result, the base station deriving unit 104 can assign the connection base station and the radio frequency in descending order of the past wireless communication performance of the wireless terminal 100, and in a more stable communication environment at the current position of the wireless terminal 100. Comfortable data communication can be facilitated.
 ここでは、基地局導出部104は、無線資源の候補として、接続基地局の識別番号mを示す情報と無線周波数n(キャリア周波数)を示す情報との両方を抽出すると説明したが、例えば接続基地局の識別番号mを示す情報のみを抽出してもよく、以下同様である。つまり、以下の説明において、無線資源には、(1)接続基地局の識別番号mを示す情報と無線周波数n(キャリア周波数)を示す情報との両方、(2)接続基地局の識別番号mを示す情報のみの2パターンが含まれるとする。 Here, it has been described that the base station deriving unit 104 extracts both information indicating the identification number m of the connected base station and information indicating the radio frequency n (carrier frequency) as radio resource candidates. Only information indicating the station identification number m may be extracted, and so on. That is, in the following description, radio resources include (1) both information indicating the identification number m of the connecting base station and information indicating the radio frequency n (carrier frequency), and (2) the identification number m of the connecting base station. 2 patterns of only information indicating
 なお、基地局導出部104は、数式(1)や数式(2)のように、3次元要素を有する距離Diを算出しているが、数式(1)や数式(2)におけるZ座標を考慮に入れない2次元要素を有する距離Diを算出してもよい。これにより、距離Diとして2次元要素のみを考慮すればいい場合(例えば過去の全ての無線通信時と同じ高度の位置で新たに通信接続を要求する時)には、上位通信履歴テーブルT2を生成する時の基地局導出部104の計算負荷が軽減される。 Note that the base station derivation unit 104 calculates the distance Di having a three-dimensional element as in the formulas (1) and (2), but considers the Z coordinate in the formulas (1) and (2). You may calculate the distance Di which has a two-dimensional element which cannot enter. As a result, when only the two-dimensional element needs to be considered as the distance Di (for example, when a new communication connection is requested at the same altitude position as in all past wireless communication), the upper communication history table T2 is generated. The calculation load of the base station deriving unit 104 when doing so is reduced.
 なお、基地局導出部104は、上述した距離Diの算出において、累計通信履歴テーブルT1の全ての通信履歴を用いて上位通信履歴テーブルT2を生成したが、累計通信履歴テーブルT1のうち所定数(例えば10又は30)のみの通信履歴を用いて上位通信履歴テーブルT2を生成してもよい。これにより、上位通信履歴テーブルT2を生成する時の基地局導出部104の計算負荷が軽減される。 The base station deriving unit 104 generates the upper communication history table T2 using all the communication histories of the cumulative communication history table T1 in the above-described calculation of the distance Di. For example, the upper communication history table T2 may be generated using only the communication history of 10 or 30). Thereby, the calculation load of the base station deriving unit 104 when generating the upper communication history table T2 is reduced.
 また、基地局導出部104は、無線端末100に新たな通信接続の要求が発生した時点の時間帯と同一の時間帯における通信履歴から所定数個の通信履歴を用いて上位通信履歴テーブルT2を生成してもよい。これにより、基地局導出部104は、例えば昼間の時間帯や夜間の時間帯のように、時間帯毎に異なる通信環境に応じた通信履歴を有する上位通信履歴テーブルT2を生成できる。 In addition, the base station deriving unit 104 uses the predetermined number of communication histories from the communication history in the same time zone as the time when a new communication connection request is made to the wireless terminal 100 to obtain the upper communication history table T2. It may be generated. As a result, the base station deriving unit 104 can generate a higher communication history table T2 having a communication history corresponding to a different communication environment for each time zone, such as a daytime time zone or a night time zone.
 また、基地局導出部104は、距離Diが所定の閾値Dth(既定値)以下となる通信履歴のみから所定数(k)個の通信履歴を抽出することで、上位通信履歴テーブルT2を生成してもよい。これにより、距離Diが所定の閾値Dthより大きい通信履歴(言い換えると、無線端末100の過去の無線通信時の位置と現在の位置とが大きく離れている場合の通信履歴)を排除して上位通信履歴テーブルT2の生成が可能となるので、無線端末100は、現在の位置の周囲に設けられたネットワーク環境に沿う、より適切な無線資源の割り当てを行うことができる。 Further, the base station deriving unit 104 generates a higher-level communication history table T2 by extracting a predetermined number (k) of communication histories from only communication histories whose distance Di is equal to or less than a predetermined threshold value Dth (default value). May be. This eliminates the communication history in which the distance Di is greater than the predetermined threshold value Dth (in other words, the communication history when the position of the wireless terminal 100 in the past wireless communication is far away from the current position) and performs higher-level communication. Since the history table T2 can be generated, the wireless terminal 100 can perform more appropriate wireless resource allocation along the network environment provided around the current position.
 なお、基地局導出部104は、上位通信履歴テーブルT2の中で無線資源(接続基地局の識別番号-無線周波数の識別番号)の割り当て回数が多い接続基地局及び無線周波数を優先して接続基地局及び無線周波数を導出すると説明したが、導出方法はこれに限定されない。例えば、基地局導出部104は、上位通信履歴テーブルT2の通信履歴に通信データ量が含まれている場合に、この通信データ量(言い換えると、送受信データバイト数)が多い接続基地局及び無線周波数を優先して接続基地局及び無線周波数を導出してもよい。これにより、無線端末100は、例えばヘテロジニアスネットワーク20に5G(第5世代移動通信システム)のような高速なスループットが得られるスモールセル(言い換えると、通信データ量が多い可能性が高いセル)を提供可能な接続基地局及び無線周波数を優先して割り当てることが可能となり、快適な通信データ量を行い易くなる。 Note that the base station deriving unit 104 gives priority to the connection base station and the radio frequency with the highest number of allocations of radio resources (connection base station identification number-radio frequency identification number) in the higher communication history table T2. Although it has been described that the station and the radio frequency are derived, the deriving method is not limited to this. For example, the base station deriving unit 104, when the communication data amount is included in the communication history of the higher communication history table T2, the connected base station and the radio frequency having a large communication data amount (in other words, the number of transmitted / received data bytes) The connection base station and the radio frequency may be derived with priority given to. As a result, the wireless terminal 100 adds a small cell (in other words, a cell that is likely to have a large amount of communication data) that can obtain a high-speed throughput such as 5G (fifth generation mobile communication system) to the heterogeneous network 20, for example. It becomes possible to preferentially assign a connectable base station and a radio frequency that can be provided, and it becomes easy to perform a comfortable amount of communication data.
 なお、基地局導出部104は、距離Diの算出時に、無線端末100の位置(緯度、経度、高度)のうち特定の要因(例えば高度)に重み付け係数を乗じてもよい(数式(3)参照)。数式(3)において、|Zk-Zi|の係数の10はあくまで重み付け係数の一例である。無線端末100の位置情報の中で緯度や経度が同じでも、高度が異なると通信環境が大きく異なる場合がある。このような場合、高度に上述した重み付け係数(例えば10)を考慮(具体的には、乗算)することで、基地局導出部104は、無線端末100の現在の位置に相応しい通信環境を提供可能な接続基地局及び無線周波数を導出することができる。 Note that the base station deriving unit 104 may multiply a specific factor (for example, altitude) out of the position (latitude, longitude, altitude) of the wireless terminal 100 by a weighting coefficient when calculating the distance Di (see Equation (3)). ). In Equation (3), the coefficient of | Zk−Zi | is only an example of a weighting coefficient. Even if the latitude and longitude are the same in the position information of the wireless terminal 100, the communication environment may differ greatly if the altitude is different. In such a case, the base station deriving unit 104 can provide a communication environment suitable for the current position of the radio terminal 100 by considering (specifically, multiplying) the above-described weighting coefficient (for example, 10). And a base station and a radio frequency can be derived.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 無線資源割当管理部105は、基地局導出部104から出力された無線資源の導出結果を取得する。この無線資源の導出結果には、基地局導出部104により導出された無線資源としての接続基地局及び無線周波数の優先順位の他に、例えば候補の接続基地局と無線端末100との間で使われている無線通信規格が何であるかという情報や、周波数帯域に関する情報が含まれてもよい。 The radio resource allocation management unit 105 acquires the radio resource derivation result output from the base station deriving unit 104. The radio resource derivation result includes, for example, a connection base station as a radio resource derived by the base station deriving unit 104 and the priority order of the radio frequency, for example, between the candidate connection base station and the radio terminal 100. Information on what the wireless communication standard is, and information on the frequency band may be included.
 無線資源割当管理部105は、接続基地局と協働して、接続基地局との無線通信に用いられる無線資源を割り当て、管理する。この無線資源は、例えば無線通信に使用される無線周波数、無線周波数のリソースブロック(RB:Resource Block)を含む。リソースブロックは、例えば無線周波数(例えばサブキャリア周波数)の周波数軸及び時間軸(例えばタイムスロット)で分割された、無線周波数の割り当ての単位を指す。 The radio resource allocation management unit 105 allocates and manages radio resources used for radio communication with the connection base station in cooperation with the connection base station. This radio resource includes, for example, a radio frequency used for radio communication and a radio frequency resource block (RB). The resource block refers to a unit of radio frequency allocation divided by, for example, a radio frequency (eg, subcarrier frequency) frequency axis and a time axis (eg, time slot).
 無線資源割当管理部105は、無線周波数の割り当て候補のリソースブロックが割り当て可能か否かを、接続基地局に問い合わせる。接続基地局では、無線周波数の割り当て候補に基づいて、この無線周波数のリソースブロックの割り当て状況を検索し、リソースブロックが割り当て可能か否かを判定し、判定結果を無線端末100へ送信する。無線資源割当管理部105は、この判定結果を参照し、割り当て候補の無線周波数のリソースブロックが割り当て可能か否かを判定する。判定結果は、例えばリソースブロックの割り当て可否の情報や、リソースブロックを割り当て可能な場合に割り当てられる無線周波数のリソースブロックの情報を含む。 The radio resource allocation management unit 105 inquires of the connecting base station whether or not the radio frequency allocation candidate resource block can be allocated. Based on the radio frequency allocation candidates, the connecting base station searches the resource block allocation status of this radio frequency, determines whether the resource block can be allocated, and transmits the determination result to the radio terminal 100. The radio resource allocation management unit 105 refers to the determination result and determines whether or not a resource block of an allocation candidate radio frequency can be allocated. The determination result includes, for example, information on whether or not resource blocks can be allocated, and information on radio frequency resource blocks allocated when resource blocks can be allocated.
 無線資源割当管理部105は、上述判定結果に基づいて、接続基地局との通信に用いる無線周波数の未割り当てのリソースブロックを割り当てる。また、無線資源割当管理部105は、リソースブロックの割り当てるとともに、AMC(Adaptive Modulation and Coding)を指定してもよい。 The radio resource allocation management unit 105 allocates an unallocated resource block of a radio frequency used for communication with the connected base station based on the determination result. Further, the radio resource allocation management unit 105 may specify AMC (Adaptive Modulation and Coding) while allocating resource blocks.
 なお、無線資源割当管理部105は、割当候補の無線周波数を割当不可能な場合、無線周波数を次の優先順位のものに変更し、その次の優先順位の割当候補の無線周波数から新たに無線周波数を選定する。無線資源割当管理部105は、接続基地局に対してリソースブロックを割当可能な無線周波数が存在しない場合、接続基地局を次の優先順位のものに変更し、その次の優先順位の割当候補の接続基地局から新たに接続基地局を選定する。 If the allocation candidate radio frequency cannot be allocated, the radio resource allocation management unit 105 changes the radio frequency to the one with the next priority, and newly starts the radio frequency from the allocation candidate with the next priority. Select the frequency. When there is no radio frequency to which a resource block can be allocated to the connected base station, the radio resource allocation management unit 105 changes the connected base station to the one having the next priority, and the allocation candidate of the next priority is selected. A new connection base station is selected from the connection base stations.
 また、無線資源割当管理部105は、送信パケット生成部106又は受信パケット復号部11から無線資源の使用履歴の情報を取得する。この使用履歴の情報は、例えば無線端末100と無線通信した接続基地局の情報と、その接続基地局との通信に使用された無線周波数の情報と、この無線周波数を用いて通信された通信量の情報とが含まれる。更新部の一例としての無線資源割当管理部105は、例えば取得された使用履歴の情報に含まれる無線周波数と一致する累計通信履歴テーブルT1の無線周波数に対して、使用履歴の情報に含まれる通信量を加算し、累計通信履歴テーブルT1を更新してもよい。 Also, the radio resource allocation management unit 105 acquires radio resource usage history information from the transmission packet generation unit 106 or the reception packet decoding unit 11. The usage history information includes, for example, information on a connection base station that wirelessly communicates with the wireless terminal 100, information on a radio frequency used for communication with the connection base station, and a communication amount communicated using the radio frequency. Information. The radio resource allocation management unit 105 as an example of the update unit performs communication included in the usage history information with respect to the radio frequency of the cumulative communication history table T1 that matches the radio frequency included in the acquired usage history information, for example. The cumulative communication history table T1 may be updated by adding the amount.
 無線資源割当管理部105は、割り当てられた無線資源の情報、つまり接続基地局との通信に用いる無線周波数及びリソースブロックの情報を、無線送信部107又は無線受信部110へ送る。この場合、無線資源割当管理部105は、割り当てられた上り回線21用の無線資源の情報を無線送信部107へ送る。また、無線資源割当管理部105は、割り当てられた下り回線22用の無線資源の情報を、無線受信部110へ送る。 The radio resource allocation management unit 105 sends the allocated radio resource information, that is, the radio frequency and resource block information used for communication with the connected base station, to the radio transmission unit 107 or the radio reception unit 110. In this case, the radio resource allocation management unit 105 sends the allocated radio resource information for the uplink 21 to the radio transmission unit 107. Also, the radio resource allocation management unit 105 sends the allocated radio resource information for the downlink 22 to the radio reception unit 110.
 送信パケット生成部106は、入力されるアップリンクデータ(UL Data)を用いて、無線基地局200へ送信されるパケット(送信パケット)を生成する。送信パケットは、上り回線21のデータを含む。上り回線21のデータ(例えば制御データ、ユーザデータ)は、例えばメモリ160、記憶装置等の外部装置(不図示)、各種ソフトウェアの処理部(不図示)から得られる。 The transmission packet generation unit 106 generates a packet (transmission packet) to be transmitted to the radio base station 200 using the input uplink data (UL data). The transmission packet includes data of the uplink 21. Data on the uplink 21 (for example, control data and user data) is obtained from, for example, an external device (not shown) such as the memory 160 and a storage device, and various software processing units (not shown).
 送信パケット生成部106は、送信パケットの通信に係る無線資源の使用履歴の情報を、無線資源割当管理部105へ送る。 The transmission packet generation unit 106 sends information on the usage history of radio resources related to communication of transmission packets to the radio resource allocation management unit 105.
 通信部の一例としての無線送信部107は、送信パケット生成部106により生成された送信パケットを、無線資源割当管理部105により割り当てられた無線資源を用いて、送信アンテナ108及び上り回線21を介して、無線資源割当管理部105から指示された接続基地局に送信する。 A radio transmission unit 107 as an example of a communication unit uses the radio resource allocated by the radio resource allocation management unit 105 to transmit the transmission packet generated by the transmission packet generation unit 106 via the transmission antenna 108 and the uplink 21. To the connected base station instructed by the radio resource allocation management unit 105.
 通信部の一例としての無線受信部110は、接続基地局からのパケット(受信パケット)を、無線資源割当管理部105により割り当てられた無線資源を用いて、下り回線22及び受信アンテナ109を介して受信する。 The radio reception unit 110 as an example of a communication unit uses a radio resource allocated by the radio resource allocation management unit 105 to transmit a packet (reception packet) from the connected base station via the downlink 22 and the reception antenna 109. Receive.
 受信パケット復号部111は、無線受信部110により受信された受信パケットを復号して復号データを得る。復号データは、下り回線22のデータを含む。下り回線22のデータ(例えば制御データ、ユーザデータ)は、例えばメモリ160、記憶装置や表示装置等の外部装置(不図示)、各種ソフトウェアの処理部(不図示)に渡される。 Received packet decoder 111 decodes the received packet received by wireless receiver 110 to obtain decoded data. The decoded data includes data on the downlink 22. Data on the downlink 22 (for example, control data and user data) is passed to, for example, a memory 160, an external device (not shown) such as a storage device or a display device, and processing units (not shown) of various software.
 また、下り回線22のデータは、公知の方法で選定された接続候補基地局の情報が含まれる場合がある。この接続候補基地局の情報は、無線資源割当管理部105へ送られる。 Further, the data of the downlink 22 may include information on connection candidate base stations selected by a known method. Information on this connection candidate base station is sent to the radio resource allocation management unit 105.
 また、下り回線22のデータは、無線資源の割り当てに関する制御情報を含むことがある。この制御情報は、無線資源割当管理部105へ送られる。この制御情報は、例えば接続基地局によりリソースブロックを割当可能か否かが判定された判定結果が含まれる。 Further, the data on the downlink 22 may include control information related to radio resource allocation. This control information is sent to the radio resource allocation management unit 105. This control information includes, for example, a determination result in which it is determined whether or not a resource block can be allocated by the connecting base station.
 また、受信パケット復号部111は、受信パケットの通信に係る無線資源の使用履歴の情報を、無線資源割当管理部105へ送る。 Also, the received packet decoding unit 111 sends information on the usage history of radio resources related to communication of received packets to the radio resource allocation management unit 105.
 次に、本実施の形態の無線通信システム10の無線端末100に新たな通信接続要求が発生した時の動作手順について、図5及び図6を参照して説明する。 Next, an operation procedure when a new communication connection request is generated in the wireless terminal 100 of the wireless communication system 10 of the present embodiment will be described with reference to FIG. 5 and FIG.
 図5及び図6は、本実施の形態の無線端末100に通信接続要求が発生した場合の動作手順の一例を詳細に説明するフローチャートである。図5及び図6では、説明を簡単にするために、無線端末100が屋外に位置する場合を例示して説明するが、無線端末100が屋内、又は屋外と屋内との境界付近に位置する場合でも同様である。 5 and 6 are flowcharts illustrating in detail an example of an operation procedure when a communication connection request is generated in the wireless terminal 100 of the present embodiment. 5 and 6, for the sake of simplicity, the case where the wireless terminal 100 is located outdoors will be described as an example. However, the wireless terminal 100 is located indoors or near the boundary between the outdoors and indoors. But the same is true.
 図5において、無線端末100の無線受信部110又は無線送信部107は、新たな接続要求が発生したか否かを判定する(S1)。この接続要求は、例えば無線端末100から無線基地局200への接続要求、又は無線基地局200から無線端末100への接続要求を含む。例えば、無線端末100がコンテンツサーバ(不図示)上の動画データを取得して再生する場合、無線端末100から無線基地局200への接続要求が発生する。例えば、他の無線端末から無線端末100へ電話がかかってくる場合、いずれかの無線基地局200から無線端末100への接続要求が発生する。 In FIG. 5, the radio reception unit 110 or the radio transmission unit 107 of the radio terminal 100 determines whether or not a new connection request has occurred (S1). This connection request includes, for example, a connection request from the wireless terminal 100 to the wireless base station 200 or a connection request from the wireless base station 200 to the wireless terminal 100. For example, when the wireless terminal 100 acquires and reproduces moving image data on a content server (not shown), a connection request from the wireless terminal 100 to the wireless base station 200 is generated. For example, when a call is received from another wireless terminal to the wireless terminal 100, a connection request from any one of the wireless base stations 200 to the wireless terminal 100 is generated.
 GPS受信部102は、GPSアンテナ101により受信された複数の信号に基づいて、GPS受信部102の位置情報(つまり、無線端末100自身の位置情報(自己の位置情報))を算出して取得する(S2)。GPS受信部102は、算出により得られた無線端末100の位置情報をプロセッサ150に出力する。位置情報生成部103は、例えば無線端末100が屋外に位置する場合には、GPS受信部102からの情報を基に、無線端末100の位置情報(つまり、現在の無線端末100の位置情報)を生成して基地局導出部104に出力する。 The GPS receiving unit 102 calculates and acquires position information of the GPS receiving unit 102 (that is, position information of the wireless terminal 100 itself (own position information)) based on a plurality of signals received by the GPS antenna 101. (S2). The GPS receiver 102 outputs the position information of the wireless terminal 100 obtained by the calculation to the processor 150. For example, when the wireless terminal 100 is located outdoors, the position information generation unit 103 determines the position information of the wireless terminal 100 (that is, the current position information of the wireless terminal 100) based on the information from the GPS receiving unit 102. It is generated and output to the base station derivation unit 104.
 基地局導出部104は、メモリ160の累計通信履歴テーブルT1を参照し(S3)、ステップS2で得られた無線端末100の現在の位置情報とステップS3で得られた通信履歴の無線端末100の位置情報とに基づく距離Diを、数式(1)~数式(3)のうちいずれか(例えば数式(1))に従って算出する(S4)。いずれの数式が使用されるかは、それぞれの無線端末100において予め設定される。基地局導出部104は、無線端末100の現在の位置情報と通信履歴の無線端末100の位置情報とに基づく距離Diが小さい所定数(k:既定値)の通信履歴を抽出して取得する(S5)。ステップS5により抽出された結果は、例えば図4に示す上位通信履歴テーブルT2である。 The base station deriving unit 104 refers to the accumulated communication history table T1 in the memory 160 (S3), and the current location information of the wireless terminal 100 obtained in step S2 and the wireless terminal 100 of the communication history obtained in step S3. The distance Di based on the position information is calculated according to any one of the formulas (1) to (3) (for example, the formula (1)) (S4). Which mathematical formula is used is preset in each wireless terminal 100. The base station deriving unit 104 extracts and acquires a predetermined number (k: default value) of communication histories having a small distance Di based on the current position information of the wireless terminal 100 and the position information of the wireless terminal 100 in the communication history ( S5). The result extracted in step S5 is, for example, the upper communication history table T2 shown in FIG.
 基地局導出部104は、ステップS5において抽出された上位n個全ての通信履歴に対応するそれぞれの距離Diが所定の閾値Dthより大きいかどうかを判定する(S6)。所定の閾値Dthは例えば300(メートル)である。上位n個全ての通信履歴に対応するそれぞれの距離Diが所定の閾値Dthより大きい訳では無い場合には(S6、NO)、基地局導出部104は、距離Di≦所定の閾値Dthを満たす通信履歴に含まれる無線資源(無線基地局、無線周波数(キャリア周波数))を把握(認識)する(S7)。 The base station deriving unit 104 determines whether or not each distance Di corresponding to all the top n communication histories extracted in step S5 is larger than a predetermined threshold Dth (S6). The predetermined threshold value Dth is, for example, 300 (meters). When the distances Di corresponding to all the top n communication histories are not larger than the predetermined threshold value Dth (S6, NO), the base station deriving unit 104 performs communication satisfying the distance Di ≦ the predetermined threshold value Dth. The radio resource (radio base station, radio frequency (carrier frequency)) included in the history is grasped (recognized) (S7).
 図6において、ステップS7の後、基地局導出部104は、ヘテロジニアスネットワーク20内の複数の無線基地局200の中で、データ(例えば制御データ、ユーザデータ)の通信をトライするべき候補となる接続基地局及び無線周波数の優先順位を決定する(S8)。無線資源割当管理部105は、ステップS8において決定された優先順位の中で、最も優先順位の高い無線資源(接続基地局の識別番号-無線周波数の識別番号)を無線送信部107及び無線受信部110に割り当て、その接続基地局への通信接続をトライする(S9)。例えば、送信パケット生成部106は、上り回線21のデータを含む送信パケットを生成する。無線送信部107は、決定された接続基地局へ、送信パケットを無線送信する。また、例えば、無線受信部110は、決定された接続基地局から、受信パケットを無線受信する。受信パケット復号部111は、受信パケットを復号し、下り回線22のデータを得る。 In FIG. 6, after step S <b> 7, the base station derivation unit 104 becomes a candidate to try data (for example, control data, user data) communication among the plurality of radio base stations 200 in the heterogeneous network 20. The priority order of the connecting base station and the radio frequency is determined (S8). The radio resource allocation management unit 105 uses the radio transmission unit 107 and the radio reception unit to transmit the radio resource having the highest priority among the priorities determined in step S8 (connection base station identification number-radio frequency identification number). The communication connection to the connected base station is tried (S9). For example, the transmission packet generation unit 106 generates a transmission packet including data on the uplink 21. The wireless transmission unit 107 wirelessly transmits a transmission packet to the determined connection base station. Further, for example, the wireless reception unit 110 wirelessly receives a reception packet from the determined connection base station. Received packet decoding section 111 decodes the received packet and obtains data on downlink 22.
 つまり、無線端末100は、通信接続をトライする候補の接続基地局に対し、無線端末100との無線通信において無線周波数のリソースブロックの割り当てが可能であるか否かを問い合わせる。接続基地局は、無線端末100からの問い合わせに対し、無線周波数のリソースブロックの割り当てが可能であると判断した場合に、通信接続に成功した旨のメッセージを無線端末100に送信する。 That is, the radio terminal 100 inquires of a candidate connection base station that tries communication connection whether or not it is possible to allocate a radio frequency resource block in radio communication with the radio terminal 100. In response to the inquiry from the wireless terminal 100, the connecting base station transmits a message indicating that the communication connection is successful to the wireless terminal 100 when determining that the resource block of the wireless frequency can be allocated.
 通信接続が成功した場合(S10、YES)、無線端末100の無線送信部107や無線受信部110は、その接続基地局との間でデータ(例えば制御データ、ユーザデータ)の通信を行う(S11)。更に、更新部の一例としての無線資源割当管理部105は、通信接続が成功した接続基地局との間の通信履歴(具体的には、少なくとも接続基地局である無線基地局200の識別番号、及び無線周波数(キャリア周波数)の識別番号)を、累計通信履歴テーブルT1に書き込むことで更新する(S12)。 When the communication connection is successful (S10, YES), the wireless transmission unit 107 and the wireless reception unit 110 of the wireless terminal 100 communicate data (for example, control data and user data) with the connected base station (S11). ). Further, the radio resource allocation management unit 105 as an example of the update unit includes a communication history (specifically, at least an identification number of the radio base station 200 that is a connection base station, And the identification number of the radio frequency (carrier frequency) are updated by writing them in the cumulative communication history table T1 (S12).
 なお、ステップS10やステップS19の通信接続のトライは、双方向通信でも、送信又は受信のいずれか一方でもよい。従って、ステップS12の累計通信履歴テーブルT1の更新についても、送信時又は受信時のいずれか一方でもよい。 Note that the communication connection try in step S10 or step S19 may be either bidirectional communication or transmission or reception. Accordingly, the update of the cumulative communication history table T1 in step S12 may be performed either at the time of transmission or at the time of reception.
 ここで、通信が終了すれば(S13、YES)、無線端末100の処理は終了する。 Here, if the communication ends (S13, YES), the processing of the wireless terminal 100 ends.
 一方、通信が終了しなくて(S13、NO)、かつ無線端末100に新たな通信接続の要求があった場合には(S14、YES)、無線端末100の処理はステップ2に戻る。なお、無線通信中に無線端末100が移動する等で、現在接続中の接続基地局(無線基地局200)との間の通信回線状況が劣化した場合には、ステップS14のように、無線端末100は、新たな通信接続の要求を発生する。 On the other hand, when the communication is not completed (S13, NO) and there is a request for a new communication connection to the wireless terminal 100 (S14, YES), the processing of the wireless terminal 100 returns to Step 2. If the communication line status with the currently connected base station (wireless base station 200) deteriorates due to movement of the wireless terminal 100 during wireless communication or the like, as shown in step S14, the wireless terminal 100 generates a new communication connection request.
 また、通信が終了しなくて(S13、NO)、かつ無線端末100に新たな通信接続の要求がなかった場合(S14、NO)、無線端末100はステップS11において通信を開始した接続基地局(無線基地局200)との間の通信を継続する(S11)。 If the communication is not completed (S13, NO) and there is no request for a new communication connection to the wireless terminal 100 (S14, NO), the wireless terminal 100 connects to the connected base station (communication base station that started communication in step S11). Communication with the radio base station 200) is continued (S11).
 また、ステップS10において通信接続が失敗した場合(S10、NO)、基地局導出部104は、最初に抽出したn個の通信履歴の中から通信接続が失敗した通信履歴を除外する(S15)。ステップS15の後、基地局導出部104は、ステップS15において除外(取り除かれた)残り全ての通信履歴(例えば(n-1)個の通信履歴)に対応するそれぞれの距離Diが所定の閾値Dthより大きいかどうかを判定する(S6)。このステップS6以降の処理は同様となるので、詳細な説明を省略する。 If the communication connection fails in step S10 (S10, NO), the base station deriving unit 104 excludes the communication history in which the communication connection has failed from the first extracted n communication histories (S15). After step S15, the base station deriving unit 104 determines that each distance Di corresponding to all the communication histories excluded (removed) in step S15 (for example, (n−1) communication histories) is a predetermined threshold value Dth. It is determined whether it is larger (S6). Since the processing after step S6 is the same, detailed description is omitted.
 また、基地局導出部104は、ステップS5において抽出された上位n個全ての通信履歴に対応するそれぞれの距離Diが所定の閾値Dthより大きいと判定した場合には(S6、NO)、公知の方法により、自己(無線端末100)の近傍の、通信接続が可能となり得る無線基地局200の候補を探索(セルサーチ)する(S16)。この場合、基地局導出部104は、無線端末100の近傍に所在する無線基地局200の探索結果に基づいて、接続候補となり得る無線基地局を決定する。 Further, when the base station deriving unit 104 determines that the distances Di corresponding to all the top n communication histories extracted in step S5 are larger than the predetermined threshold Dth (S6, NO), The method searches for a candidate for the base transceiver station 200 (cell search) in the vicinity of itself (wireless terminal 100) that can enable communication connection (S16). In this case, the base station deriving unit 104 determines a radio base station that can be a connection candidate based on a search result of the radio base station 200 located in the vicinity of the radio terminal 100.
 この公知の方法では、例えば基地局導出部104が、RAT1~5を使用する無線基地局200を順に探索し、無線送信部107が、探索の結果を所定の基地局へ通知する。所定の基地局は、通知された探索の結果に応じて、接続候補となり得る無線基地局を選定し、その無線基地局の情報を無線端末100へ送信する。基地局導出部104は、無線受信部110により受信され、受信パケット復号部111により復号された受信パケットから接続候補となり得る無線基地局の情報を取得し、接続候補の無線基地局として決定する。 In this known method, for example, the base station deriving unit 104 searches for the radio base stations 200 using the RATs 1 to 5 in order, and the radio transmission unit 107 notifies the search results to a predetermined base station. The predetermined base station selects a radio base station that can be a connection candidate according to the notified search result, and transmits information on the radio base station to the radio terminal 100. The base station deriving unit 104 acquires information on a radio base station that can be a connection candidate from the received packet received by the radio reception unit 110 and decoded by the reception packet decoding unit 111, and determines the information as a connection candidate radio base station.
 なお、ここでは公知の方法として、セルサーチ結果を所定の無線基地局に通知して、所定の無線基地局が接続候補となり得る無線基地局の情報を無線端末100に伝達することを例示した。この代わりに、セルサーチ結果を所定の無線基地局に通知せずに、無線端末100が自ら、セルサーチ結果を基に接続候補となり得る無線基地局を決定してもよい。ステップS16において接続可能性のある無線資源を有する無線基地局200が存在しない場合には(S17、NO)、無線端末100に接続可能な無線基地局200が存在しないことになるため、無線端末100は通信不可となり処理が終了する。 In addition, here, as a known method, the cell search result is notified to a predetermined radio base station, and information on the radio base station that can be a connection candidate of the predetermined radio base station is transmitted to the radio terminal 100. Instead of this, the radio terminal 100 may itself determine a radio base station that can be a connection candidate based on the cell search result without notifying the cell search result to a predetermined radio base station. If there is no radio base station 200 having radio resources that can be connected in step S16 (S17, NO), there is no radio base station 200 that can be connected to the radio terminal 100. Communication becomes impossible and the process ends.
 ステップS16において接続可能性のある無線資源を有する無線基地局200が存在する場合(S17、YES)、基地局導出部104は、この無線基地局200を接続候補基地局として決定する。なお、接続候補となり得る無線基地局は、1つだけ決定されてもよいし、複数決定されてもよい。また、接続候補基地局が複数決定される場合、基地局導出部104は、複数の接続候補基地局の優先順位を設定してもよい。例えば、基地局導出部104は、通信量の多い接続候補基地局の優先順位を高く設定する。 If there is a radio base station 200 having a radio resource that can be connected in step S16 (S17, YES), the base station deriving unit 104 determines this radio base station 200 as a connection candidate base station. Only one radio base station that can be a connection candidate or a plurality of radio base stations may be determined. Further, when a plurality of connection candidate base stations are determined, the base station deriving unit 104 may set priorities of the plurality of connection candidate base stations. For example, the base station deriving unit 104 sets a higher priority for connection candidate base stations having a large communication volume.
 接続候補となり得る無線基地局が決定されると、無線資源割当管理部105は、決定された無線基地局が1つである場合、この無線基地局200を接続基地局に選定する。また、無線資源割当管理部105は、決定された接続候補となり得る無線基地局が複数存在する場合、複数の接続候補となり得る無線基地局のうちの1つを選定する。例えば、無線資源割当管理部105は、過去の通信において通信量が最多である接続候補基地局を、接続基地局に選定してもよい。 When a radio base station that can be a connection candidate is determined, the radio resource allocation management unit 105 selects this radio base station 200 as a connection base station when there is one determined radio base station. In addition, when there are a plurality of radio base stations that can be determined connection candidates, the radio resource allocation management unit 105 selects one of the radio base stations that can be a plurality of connection candidates. For example, the radio resource allocation management unit 105 may select a connection candidate base station having the largest communication volume in the past communication as a connection base station.
 無線資源割当管理部105は、接続候補となり得る無線基地局との通信に用いる無線資源を割り当て、その無線基地局への通信接続をトライする(S18)。無線資源の割り当ては、公知の方法により行われる。公知の方法では、例えば無線端末100又は接続候補となり得る無線基地局により、無線周波数毎の回線品質(干渉量)が測定され、無線端末100と接続候補となり得る無線基地局との通信に使用される無線周波数が割り当られる。 The radio resource allocation management unit 105 allocates radio resources used for communication with a radio base station that can be a connection candidate, and tries communication connection to the radio base station (S18). Allocation of radio resources is performed by a known method. In the known method, for example, the channel quality (interference amount) for each radio frequency is measured by the radio terminal 100 or a radio base station that can be a connection candidate, and used for communication between the radio terminal 100 and a radio base station that can be a connection candidate. Assigned radio frequency.
 ステップS18に関して、具体的には、無線端末100は、通信接続をトライする候補の接続基地局に対し、無線端末100との無線通信において無線周波数のリソースブロックの割り当てが可能であるか否かを問い合わせる。接続基地局は、無線端末100からの問い合わせに対し、無線周波数のリソースブロックの割り当てが可能であると判断した場合に、通信接続に成功した旨のメッセージを無線端末100に送信する。 Regarding step S18, specifically, the radio terminal 100 determines whether or not a radio frequency resource block can be allocated in radio communication with the radio terminal 100 to a candidate connection base station to try communication connection. Inquire. In response to the inquiry from the wireless terminal 100, the connecting base station transmits a message indicating that the communication connection is successful to the wireless terminal 100 when determining that the resource block of the wireless frequency can be allocated.
 通信接続が成功した場合(S19、YES)、無線端末100の無線送信部107や無線受信部110は、その接続基地局との間でデータ(例えば制御データ、ユーザデータ)の通信を行う(S11)。一方、通信接続が失敗した場合(S19、NO)、無線端末100に接続可能な無線基地局200が存在しないことになるため、無線端末100は通信不可となり処理が終了する。 When the communication connection is successful (S19, YES), the wireless transmission unit 107 and the wireless reception unit 110 of the wireless terminal 100 communicate data (for example, control data and user data) with the connected base station (S11). ). On the other hand, when the communication connection fails (S19, NO), there is no radio base station 200 that can be connected to the radio terminal 100, so that the radio terminal 100 becomes incapable of communication and the process ends.
 以上により、本実施の形態の無線通信システム10において、無線端末100は、複数の無線通信方式が混在して利用されるヘテロジニアスネットワーク20を介して、複数の無線基地局200との間で通信可能である。無線端末100は、それぞれの無線基地局200との間の過去の通信時における、少なくとも無線端末100の位置情報と無線基地局200に関する情報(例えば、少なくとも接続基地局の識別番号)とを通信履歴として蓄積し、現在の無線端末100の位置情報を取得する。無線端末100は、現在の無線端末100の位置情報と過去の通信履歴とに基づいて、複数の無線基地局200から、データ通信に用いる無線基地局としての接続基地局を導出し、その接続基地局との間でデータ通信を行う。 As described above, in the radio communication system 10 according to the present embodiment, the radio terminal 100 communicates with a plurality of radio base stations 200 via the heterogeneous network 20 in which a plurality of radio communication schemes are mixedly used. Is possible. The wireless terminal 100 communicates at least the position information of the wireless terminal 100 and information about the wireless base station 200 (for example, at least the identification number of the connected base station) during the past communication with each wireless base station 200 in the communication history. And the current position information of the wireless terminal 100 is acquired. The radio terminal 100 derives a connection base station as a radio base station used for data communication from the plurality of radio base stations 200 based on the current location information of the radio terminal 100 and past communication history, and the connection base Data communication is performed with the station.
 これにより、無線端末100は、自己の現在位置における過去の通信履歴に基づいて、新たな無線通信の接続要求時に通信相手となる無線基地局を決定して割り当てできるので、最適なセルへの接続確率の劣化を抑制できる。従って、無線端末100は、いずれかの無線基地局200を接続基地局として導出できるので、例えば公知の方法で無線基地局200を検索(セルサーチ、Discovery)する必要がない。つまり、無線端末100は、採用可能な無線通信方式(RAT)を順次スキャンし、無線端末100の近傍に位置する無線基地局200を検索する必要がない。この場合、無線端末100は、ヘテロジニアスネットワークに存在するRATの数と同数分のセルサーチを行う必要がない。そのため、無線端末100は、接続先の無線基地局200を探索するための処理負荷及び処理時間を低減できる。 As a result, the wireless terminal 100 can determine and assign a wireless base station to be a communication partner at the time of a new wireless communication connection request based on the past communication history at its current position, so that the connection to the optimum cell is possible. Probability deterioration can be suppressed. Therefore, since the radio terminal 100 can derive any one of the radio base stations 200 as a connection base station, for example, it is not necessary to search for the radio base station 200 (cell search, Discovery) by a known method. That is, the radio terminal 100 does not need to sequentially scan for adoptable radio communication schemes (RAT) and search for the radio base station 200 located in the vicinity of the radio terminal 100. In this case, the radio terminal 100 does not need to perform cell search for the same number as the number of RATs present in the heterogeneous network. Therefore, the radio terminal 100 can reduce the processing load and the processing time for searching for the connection-destination radio base station 200.
 また、例えば上述したように、従来技術として、ヘテロジニアスネットワークのカバーエリア全体をあるサイズのエリアブロックに区切り、無線端末100の位置をエリアブロック番号に対応付けし、エリアブロック番号毎の通信履歴を用いて最適セルへの接続を試みる方式が提案されている。しかしこの方式では、エリアブロックの大小に拘わらず、ヘテロジニアスネットワークのカバーエリア全体をエリアブロックに分割するための事前作業量も膨大であり、無線端末のメモリ容量も増大してしまう。一方、本実施の形態では、無線端末100は、新たな通信接続を要求する際に、現在の無線端末100の位置と過去の通信履歴に含まれる無線端末100の位置とに基づいて、データ通信に適する無線基地局200(接続基地局)を導出できる。このため、本実施の形態では、上述した提案方式に比べて、ヘテロジニアスネットワークのカバーエリア全体をエリアブロック(例えば3次元の位置情報を考慮したエリアブロック)に区切るという事前の煩雑な作業も必要無く、無線端末100のメモリ160の容量増大も無い。 Further, for example, as described above, as a conventional technique, the entire coverage area of the heterogeneous network is divided into area blocks of a certain size, the position of the wireless terminal 100 is associated with the area block number, and the communication history for each area block number is displayed. A method has been proposed that attempts to connect to an optimal cell. However, with this method, regardless of the size of the area block, the amount of prior work for dividing the entire coverage area of the heterogeneous network into area blocks is enormous, and the memory capacity of the wireless terminal also increases. On the other hand, in the present embodiment, when requesting a new communication connection, the wireless terminal 100 performs data communication based on the current position of the wireless terminal 100 and the position of the wireless terminal 100 included in the past communication history. It is possible to derive the radio base station 200 (connection base station) suitable for the above. For this reason, in this embodiment, in comparison with the proposed method described above, it is also necessary to perform a complicated work in advance to divide the entire coverage area of the heterogeneous network into area blocks (for example, area blocks considering three-dimensional position information). There is no increase in the capacity of the memory 160 of the wireless terminal 100.
 また、無線端末100は、現在の無線端末100の位置情報と過去の通信履歴に含まれる無線端末100の位置情報とに基づく距離Diが小さい所定数(k)個の通信履歴の中で、割り当て回数が多い無線基地局を優先して接続基地局を導出する。これにより、無線端末100は、距離Diが小さい(言い換えると、現在の位置と過去の無線通信時の位置とが近い)時の通信履歴の中で使用回数が多かった無線基地局を接続基地局として通信でき、現在の位置において通信実績のある適切な接続基地局と安定的に通信を行うことができる。 Further, the wireless terminal 100 allocates a predetermined number (k) of communication histories having a small distance Di based on the current position information of the wireless terminal 100 and the position information of the wireless terminal 100 included in the past communication history. A connection base station is derived by giving priority to a radio base station having a large number of times. As a result, the wireless terminal 100 connects the wireless base station that has been used frequently in the communication history when the distance Di is small (in other words, the current position and the position at the time of past wireless communication are close). And can communicate stably with an appropriate connected base station having a communication record at the current position.
 また、無線端末100は、距離Diが所定の閾値Dth以下である場合に、過去の所定数(k)個の通信履歴の中で、割り当て回数が多い無線基地局を優先して接続基地局を導出する。これにより、距離Diが所定の閾値Dthより大きい通信履歴(言い換えると、無線端末100の過去の無線通信時の位置と現在の位置とが大きく離れている場合の通信履歴)を排除して上位通信履歴テーブルT2の生成が可能となるので、無線端末100は、現在の位置の周囲に設けられたネットワーク環境に沿う、より適切な無線資源(例えば無線基地局の識別番号)の割り当てを行うことができる。 In addition, when the distance Di is equal to or less than the predetermined threshold value Dth, the wireless terminal 100 preferentially selects a wireless base station having a large number of allocations in the past predetermined number (k) of communication histories as a connection base station. To derive. This eliminates the communication history in which the distance Di is greater than the predetermined threshold value Dth (in other words, the communication history when the position of the wireless terminal 100 in the past wireless communication is far away from the current position) and performs higher-level communication. Since the history table T2 can be generated, the radio terminal 100 can assign more appropriate radio resources (for example, identification numbers of radio base stations) along the network environment provided around the current position. it can.
 また、無線端末100は、接続基地局との間のデータ通信量の情報を通信履歴として更に蓄積し、距離Diが小さい所定数(k)個の過去の通信履歴の中で、データ通信量が多い無線基地局を優先して接続基地局を導出する。これにより、例えばヘテロジニアスネットワーク20に5G(第5世代移動通信システム)のような高速なスループットが得られるスモールセル(言い換えると、通信データ量が多い可能性が高いセル)を提供可能な接続基地局を優先して割り当てることが可能となり、快適な通信データ量を行い易くなる。 In addition, the wireless terminal 100 further accumulates information on the amount of data communication with the connecting base station as a communication history, and the data communication amount is the predetermined number (k) of past communication histories with a small distance Di. A connection base station is derived with priority given to many radio base stations. As a result, for example, a connection base that can provide a small cell (in other words, a cell with a high possibility of a large amount of communication data) capable of providing high-speed throughput such as 5G (fifth generation mobile communication system) to the heterogeneous network 20. It becomes possible to assign stations with priority, and it becomes easy to perform a comfortable amount of communication data.
 また、無線端末100は、導出された接続基地局との間でデータ通信が行われると、データ通信に関する接続基地局に関する情報を、現在の無線端末100の位置情報に対応付けた通信履歴としてメモリ160に蓄積する。これにより、無線端末100は、無線通信を実際に行ったことの通信実績として、その通信相手である接続基地局の識別番号を通信時の位置と対応付けた通信履歴をメモリ160に蓄積して学習できる。 Further, when data communication is performed with the derived connection base station, the wireless terminal 100 stores information on the connection base station regarding data communication as a communication history associated with the current position information of the wireless terminal 100. It accumulates in 160. As a result, the wireless terminal 100 stores, in the memory 160, a communication history in which the identification number of the connected base station that is the communication partner is associated with the position at the time of communication as a communication result of actually performing wireless communication. Can learn.
 また、無線端末100は、接続基地局との間のデータ通信に用いる無線周波数の情報を通信履歴として更に蓄積し、通信履歴に含まれる無線周波数の情報を用いて、接続基地局との間のデータ通信に用いる無線周波数を導出する。無線端末100は、導出された無線周波数を用いて、導出された接続基地局との間でデータ通信を行う。これにより、無線端末100は、無線資源として、接続基地局の識別番号だけでなく、無線通信時の無線周波数(キャリア周波数)の識別番号も位置情報と対応付けて管理できるので、新たな通信接続の要求があった時に適切な接続基地局及び無線周波数を導出でき、無駄なく迅速に通信を行うことができる。 Further, the radio terminal 100 further accumulates information on the radio frequency used for data communication with the connected base station as a communication history, and uses the radio frequency information included in the communication history to communicate with the connected base station. The radio frequency used for data communication is derived. The radio terminal 100 performs data communication with the derived connection base station using the derived radio frequency. As a result, the radio terminal 100 can manage not only the identification number of the connecting base station but also the identification number of the radio frequency (carrier frequency) at the time of radio communication in association with the position information as a radio resource. Therefore, it is possible to derive an appropriate connection base station and radio frequency when there is a request, and to perform quick communication without waste.
 また、無線端末100は、距離Diが小さい所定数(k)個の通信履歴の中で、割り当て回数が多い無線基地局及び無線周波数を優先して接続基地局及び無線周波数を導出する。これにより、無線端末100は、距離Diが小さい(言い換えると、現在の位置と過去の無線通信時の位置とが近い)時の通信履歴の中で使用回数が多かった無線周波数を用いて、現在の位置において通信実績のある適切な接続基地局と安定的に通信を行うことができる。 In addition, the wireless terminal 100 derives the connection base station and the radio frequency by giving priority to the radio base station and the radio frequency with a large number of allocations in a predetermined number (k) of communication histories with a small distance Di. As a result, the wireless terminal 100 uses the radio frequency that has been used many times in the communication history when the distance Di is small (in other words, the current position is close to the position at the time of past wireless communication). It is possible to stably communicate with an appropriate connected base station having a communication record at the position of.
 また、無線端末100は、距離Diが所定の閾値Dth以下である場合に、所定数(k)個の過去の通信履歴の中で、割り当て回数が多い無線基地局及び無線周波数を優先して接続基地局及び無線周波数を導出する。これにより、距離Diが所定の閾値Dthより大きい通信履歴(言い換えると、無線端末100の過去の無線通信時の位置と現在の位置とが大きく離れている場合の通信履歴)を排除して上位通信履歴テーブルT2の生成が可能となるので、無線端末100は、現在の位置の周囲に設けられたネットワーク環境に沿う、より適切な無線資源(例えば無線基地局の識別番号及び無線周波数の識別番号)の割り当てを行うことができる。 In addition, when the distance Di is equal to or less than the predetermined threshold value Dth, the wireless terminal 100 preferentially connects the wireless base station and the wireless frequency that are frequently assigned in the predetermined number (k) of past communication histories. Deriving base stations and radio frequencies. This eliminates the communication history in which the distance Di is greater than the predetermined threshold value Dth (in other words, the communication history when the position of the wireless terminal 100 in the past wireless communication is far away from the current position) and performs higher-level communication. Since the history table T2 can be generated, the radio terminal 100 can more appropriately use radio resources (for example, an identification number of a radio base station and an identification number of a radio frequency) along the network environment provided around the current position. Assignments can be made.
 また、無線端末100は、接続基地局との間のデータ通信に用いる無線周波数の情報と接続基地局との間のデータ通信量の情報とを通信履歴として更に蓄積し、距離Diが小さい所定数(k)個の通信履歴の中で、データ通信量が多い無線基地局及び無線周波数を優先して接続基地局及び無線周波数を導出する。これにより、例えばヘテロジニアスネットワーク20に5G(第5世代移動通信システム)のような高速なスループットが得られるスモールセル(言い換えると、通信データ量が多い可能性が高いセル)を提供可能な接続基地局及び無線周波数を優先して割り当てることが可能となり、快適な通信データ量を行い易くなる。 In addition, the radio terminal 100 further accumulates, as a communication history, information on the radio frequency used for data communication with the connected base station and information on the amount of data communication with the connected base station, and a predetermined number with a small distance Di. (K) Among the communication histories, a connection base station and a radio frequency are derived giving priority to a radio base station and a radio frequency with a large amount of data communication. As a result, for example, a connection base that can provide a small cell (in other words, a cell with a high possibility of a large amount of communication data) capable of providing high-speed throughput such as 5G (fifth generation mobile communication system) to the heterogeneous network 20. Stations and radio frequencies can be preferentially assigned, and a comfortable amount of communication data can be easily obtained.
 また、無線端末100は、導出された接続基地局との間でデータ通信が行われると、データ通信に関する接続基地局に関する情報及び無線周波数の情報を、現在の無線端末100の位置情報に対応付けた通信履歴としてメモリ160に蓄積する。これにより、無線端末100は、無線通信を実際に行ったことの通信実績として、その通信相手である接続基地局の識別番号及び無線周波数の識別番号を通信時の位置と対応付けた通信履歴をメモリ160に蓄積して学習できる。 Further, when data communication is performed with the derived connection base station, the radio terminal 100 associates information on the connection base station regarding data communication and information on the radio frequency with the current position information of the radio terminal 100. Is stored in the memory 160 as a communication history. As a result, the wireless terminal 100 has a communication history in which the identification number of the connected base station and the identification number of the wireless frequency as the communication partner are associated with the position at the time of communication as a communication record of actually performing the wireless communication. It can be stored in the memory 160 for learning.
 また、無線端末100の位置情報は例えば屋外で有効な(緯度、経度、高度)の情報の組み合わせであり、無線端末100は、緯度、経度及び高度のうち、例えば高度を優先して距離Diを導出する。無線端末100の位置情報の中で緯度や経度が同じでも、高度が異なると通信環境が大きく異なる場合がある。従って、無線端末100は、高度を優先して距離Diを算出することで、自己の現在の位置に相応しい通信環境を提供可能な接続基地局及び無線周波数を導出することができる。 Further, the position information of the wireless terminal 100 is, for example, a combination of information (latitude, longitude, altitude) that is effective outdoors, and the wireless terminal 100 sets the distance Di with priority given to, for example, altitude out of latitude, longitude, and altitude. To derive. Even if the latitude and longitude are the same in the position information of the wireless terminal 100, the communication environment may differ greatly if the altitude is different. Therefore, the radio terminal 100 can derive a connection base station and a radio frequency that can provide a communication environment suitable for the current position of the radio terminal 100 by calculating the distance Di with priority on altitude.
 また、本実施の形態では、無線端末100が屋内、又は屋外と屋内との境界付近に位置する場合に、無線端末100の位置情報は、屋内に設置された複数のBLEビーコン60からの相対的な距離によって求められる位置情報であってもよい。これにより、無線端末100は、屋外に位置する場合には例えばGPS受信部102により算出される(緯度、経度、高度)の情報で位置を特定できる上、一方、屋内、又は屋外と屋内との境界付近に位置する場合には例えばBLE受信部122により算出される、BLEビーコン60からの相対距離の情報で位置を特定できる。 Further, in the present embodiment, when the wireless terminal 100 is located indoors or near the boundary between the outdoors and indoors, the position information of the wireless terminal 100 is relative to a plurality of BLE beacons 60 installed indoors. It may be position information obtained by a simple distance. As a result, when the wireless terminal 100 is located outdoors, the position can be specified by information (latitude, longitude, altitude) calculated by the GPS receiving unit 102, for example, and on the other hand, indoors or between outdoor and indoor When located near the boundary, for example, the position can be specified by information on the relative distance from the BLE beacon 60 calculated by the BLE receiver 122.
 以上、図面を参照しながら各種の実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上述実施形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood. Moreover, you may combine each component in the above-mentioned embodiment arbitrarily in the range which does not deviate from the meaning of invention.
 なお、本出願は、2016年12月6日出願の日本特許出願(特願2016-236917)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application filed on December 6, 2016 (Japanese Patent Application No. 2016-236917), the contents of which are incorporated herein by reference.
 本開示は、自己の現在位置における通信履歴に基づいて、無線通信の接続要求時に通信相手となる無線基地局を決定して割り当て、最適なセルへの接続確率の劣化を抑制する無線端末及び無線基地局割当方法として有用である。 The present disclosure relates to a wireless terminal and a wireless device that determine and assign a wireless base station to be a communication partner at the time of a wireless communication connection request based on the communication history at the current position of the wireless communication device, and suppress deterioration in the optimal connection probability to the cell. This is useful as a base station allocation method.
10 無線通信システム
20 ヘテロジニアスネットワーク
21 上り回線(アップリンク)
22 下り回線(ダウンリンク)
50 GPS衛星
60 BLEビーコン
100 無線端末
101 GPSアンテナ
102 GPS受信部
103 位置情報生成部
104 基地局導出部
105 無線資源割当管理部
106 送信パケット生成部
107 無線送信部
108 送信アンテナ
109 受信アンテナ
110 無線受信部
111 受信パケット復号部
121 BLEアンテナ
122 BLE受信部
150 プロセッサ
160 メモリ
200 無線基地局
T1 累計通信履歴テーブル
T2 上位通信履歴テーブル
10 Wireless Communication System 20 Heterogeneous Network 21 Uplink (Uplink)
22 Downlink (Downlink)
50 GPS satellite 60 BLE beacon 100 Wireless terminal 101 GPS antenna 102 GPS receiver 103 Position information generator 104 Base station derivation unit 105 Radio resource allocation manager 106 Transmission packet generator 107 Radio transmitter 108 Transmit antenna 109 Receiver antenna 110 Radio reception Unit 111 received packet decoding unit 121 BLE antenna 122 BLE receiving unit 150 processor 160 memory 200 wireless base station T1 cumulative communication history table T2 upper communication history table

Claims (12)

  1.  複数の無線通信方式が混在して利用されるネットワークを介して、複数の無線基地局との間で通信可能な無線端末であって、
     それぞれの前記無線基地局との間の過去の通信時における、少なくとも前記無線端末の位置情報と前記無線基地局に関する情報とを通信履歴として蓄積する蓄積部と、
     前記無線端末の位置情報を取得する取得部と、
     取得された前記無線端末の位置情報と前記蓄積部に蓄積された前記通信履歴とに基づいて、前記複数の無線基地局から、データ通信に用いる無線基地局としての接続基地局を導出する導出部と、
     導出された前記接続基地局との間で前記データ通信を行う通信部と、を備える、
     無線端末。
    A wireless terminal capable of communicating with a plurality of wireless base stations via a network in which a plurality of wireless communication methods are used together,
    An accumulator that accumulates at least location information of the radio terminal and information about the radio base station as a communication history at the time of past communication with each of the radio base stations;
    An acquisition unit for acquiring position information of the wireless terminal;
    A derivation unit for deriving a connection base station as a radio base station used for data communication from the plurality of radio base stations based on the acquired location information of the radio terminal and the communication history accumulated in the accumulation unit When,
    A communication unit that performs the data communication with the derived connection base station,
    Wireless terminal.
  2.  前記導出部は、取得された前記無線端末の位置情報と前記通信履歴に含まれる前記無線端末の位置情報とに基づく距離が小さい所定数の通信履歴の中で、割り当て回数が多い無線基地局を優先して前記接続基地局を導出する、
     請求項1に記載の無線端末。
    The derivation unit selects a radio base station having a large number of allocations in a predetermined number of communication histories having a small distance based on the acquired location information of the radio terminal and the location information of the radio terminal included in the communication history. Deriving the connected base station with priority,
    The wireless terminal according to claim 1.
  3.  前記導出部は、前記距離が所定の閾値以下である場合に、前記所定数の通信履歴の中で、割り当て回数が多い無線基地局を優先して前記接続基地局を導出する、
     請求項2に記載の無線端末。
    The derivation unit derives the connection base station in preference to a radio base station having a large number of allocations in the predetermined number of communication histories when the distance is equal to or less than a predetermined threshold.
    The wireless terminal according to claim 2.
  4.  前記蓄積部は、前記接続基地局との間のデータ通信量の情報を前記通信履歴として更に蓄積し、
     前記導出部は、取得された前記無線端末の位置情報と前記通信履歴に含まれる前記無線端末の位置情報とに基づく距離が小さい所定数の通信履歴の中で、前記データ通信量が多い無線基地局を優先して前記接続基地局を導出する、
     請求項1に記載の無線端末。
    The accumulation unit further accumulates information on the amount of data communication with the connected base station as the communication history,
    The deriving unit includes a radio base having a large amount of data communication in a predetermined number of communication histories having a small distance based on the acquired position information of the wireless terminal and the position information of the wireless terminal included in the communication history. Deriving the connected base station in preference to the station,
    The wireless terminal according to claim 1.
  5.  導出された前記接続基地局との間で前記データ通信が行われると、前記データ通信に関する前記接続基地局に関する情報を、取得された前記無線端末の位置情報に対応付けた通信履歴として前記蓄積部に蓄積する更新部、を更に備える、
     請求項1に記載の無線端末。
    When the data communication is performed with the derived connection base station, the storage unit includes information on the connection base station regarding the data communication as a communication history associated with the acquired location information of the wireless terminal. An update unit for storing
    The wireless terminal according to claim 1.
  6.  前記蓄積部は、前記接続基地局との間のデータ通信に用いる無線周波数の情報を前記通信履歴として更に蓄積し、
     前記導出部は、前記通信履歴に含まれる前記無線周波数の情報を用いて、前記接続基地局との間のデータ通信に用いる無線周波数を導出し、
     前記通信部は、導出された前記無線周波数を用いて、導出された前記接続基地局との間で前記データ通信を行う、
     請求項1に記載の無線端末。
    The accumulation unit further accumulates radio frequency information used for data communication with the connection base station as the communication history,
    The derivation unit derives a radio frequency used for data communication with the connection base station using the information on the radio frequency included in the communication history,
    The communication unit performs the data communication with the derived connection base station using the derived radio frequency.
    The wireless terminal according to claim 1.
  7.  前記導出部は、取得された前記無線端末の位置情報と前記通信履歴に含まれる前記無線端末の位置情報とに基づく距離が小さい所定数の通信履歴の中で、割り当て回数が多い無線基地局及び無線周波数を優先して前記接続基地局及び前記無線周波数を導出する、
     請求項6に記載の無線端末。
    The deriving unit includes a radio base station having a large number of allocations in a predetermined number of communication histories having a small distance based on the acquired position information of the wireless terminal and the position information of the wireless terminal included in the communication history, and Deriving the connection base station and the radio frequency in preference to a radio frequency;
    The wireless terminal according to claim 6.
  8.  前記導出部は、前記距離が所定の閾値以下である場合に、前記所定数の通信履歴の中で、割り当て回数が多い無線基地局及び無線周波数を優先して前記接続基地局及び前記無線周波数を導出する、
     請求項7に記載の無線端末。
    When the distance is equal to or less than a predetermined threshold, the deriving unit gives priority to the connection base station and the radio frequency in the predetermined number of communication histories, giving priority to a radio base station and a radio frequency with a large number of allocations. To derive,
    The wireless terminal according to claim 7.
  9.  前記蓄積部は、前記接続基地局との間のデータ通信に用いる無線周波数の情報と前記接続基地局との間のデータ通信量の情報とを前記通信履歴として更に蓄積し、
     前記導出部は、取得された前記無線端末の位置情報と前記通信履歴に含まれる前記無線端末の位置情報とに基づく距離が小さい所定数の通信履歴の中で、前記データ通信量が多い無線基地局及び無線周波数を優先して前記接続基地局及び前記無線周波数を導出する、
     請求項1に記載の無線端末。
    The storage unit further stores, as the communication history, radio frequency information used for data communication with the connection base station and data communication volume information with the connection base station,
    The deriving unit includes a radio base having a large amount of data communication in a predetermined number of communication histories having a small distance based on the acquired position information of the wireless terminal and the position information of the wireless terminal included in the communication history. Deriving the connected base station and the radio frequency in preference to the station and the radio frequency
    The wireless terminal according to claim 1.
  10.  導出された前記接続基地局との間で前記データ通信が行われると、前記データ通信に関する前記接続基地局に関する情報及び前記無線周波数の情報を、取得された前記無線端末の位置情報に対応付けた通信履歴として前記蓄積部に蓄積する更新部、を更に備える、
     請求項6に記載の無線端末。
    When the data communication is performed with the derived connection base station, the information regarding the connection base station regarding the data communication and the information on the radio frequency are associated with the acquired position information of the wireless terminal. An update unit that stores the communication history in the storage unit;
    The wireless terminal according to claim 6.
  11.  前記無線端末の位置情報は、緯度、経度及び高度を有し、
     前記導出部は、前記緯度、経度及び高度のうち、前記高度を優先して前記距離を導出する、
     請求項2又は7に記載の無線端末。
    The location information of the wireless terminal has latitude, longitude and altitude,
    The derivation unit derives the distance by giving priority to the altitude among the latitude, longitude, and altitude.
    The wireless terminal according to claim 2 or 7.
  12.  複数の無線通信方式が混在して利用されるネットワークを介して、複数の無線基地局との間で通信可能な無線端末における無線基地局割当方法であって、
     それぞれの前記無線基地局との間の過去の通信時における、少なくとも前記無線端末の位置情報と前記無線基地局に関する情報とを通信履歴として蓄積部に蓄積するステップと、
     前記無線端末の位置情報を取得するステップと、
     取得された前記無線端末の位置情報と前記蓄積部に蓄積された前記通信履歴とに基づいて、前記複数の無線基地局から、データ通信に用いる無線基地局としての接続基地局を導出するステップと、
     導出された前記接続基地局との間で前記データ通信を行うステップと、を有する、
     無線基地局割当方法。
    A wireless base station allocation method in a wireless terminal capable of communicating with a plurality of wireless base stations via a network in which a plurality of wireless communication methods are used in combination,
    Storing at least the position information of the wireless terminal and information about the wireless base station in a storage unit as a communication history during past communication with each of the wireless base stations;
    Obtaining location information of the wireless terminal;
    Deriving a connection base station as a radio base station used for data communication from the plurality of radio base stations based on the acquired location information of the radio terminal and the communication history accumulated in the accumulation unit; ,
    Performing the data communication with the derived connection base station.
    Radio base station allocation method.
PCT/JP2017/035600 2016-12-06 2017-09-29 Wireless terminal and wireless base station allocation method WO2018105208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/465,830 US10986635B2 (en) 2016-12-06 2017-09-29 Wireless terminal and wireless base station allocation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016236917A JP6574159B2 (en) 2016-12-06 2016-12-06 Wireless terminal and wireless base station allocation method
JP2016-236917 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018105208A1 true WO2018105208A1 (en) 2018-06-14

Family

ID=62491461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035600 WO2018105208A1 (en) 2016-12-06 2017-09-29 Wireless terminal and wireless base station allocation method

Country Status (3)

Country Link
US (1) US10986635B2 (en)
JP (1) JP6574159B2 (en)
WO (1) WO2018105208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533159A (en) * 2019-09-19 2021-03-19 中移(苏州)软件技术有限公司 Signaling data compression method, device and storage medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969922B2 (en) * 2017-07-18 2021-11-24 パナソニック株式会社 Communication device, communication system, and connection destination control method
US11146934B2 (en) * 2019-03-29 2021-10-12 Aptiv Technologies Limited System and method of reducing a communication range
KR20210078203A (en) * 2019-12-18 2021-06-28 엘지전자 주식회사 Method for profiling based on foothold and terminal using the same
JP7424162B2 (en) * 2020-03-27 2024-01-30 セイコーエプソン株式会社 Electronic equipment and communication systems
US11588230B2 (en) 2020-11-12 2023-02-21 Aptiv Technologies Limited System for transmitting radio frequency signals from a vehicle
JP7245481B1 (en) 2022-09-20 2023-03-24 Matt&Massimo合同会社 Equipment management system, mobile terminal and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021516A (en) * 2011-07-11 2013-01-31 Toshiba Corp Consumed quantity measurement system, radio communication center device and program for the same measurement system
WO2013121670A1 (en) * 2012-02-16 2013-08-22 ソニー株式会社 Wireless communication device, program, and communication control method
WO2016170719A1 (en) * 2015-04-24 2016-10-27 パナソニックIpマネジメント株式会社 Radio communication terminal and frequency assignment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229545B (en) * 2010-11-30 2016-04-20 夏普株式会社 Communication system, mobile terminal and communication means
WO2012164854A1 (en) * 2011-06-02 2012-12-06 パナソニック株式会社 Wireless terminal, wireless communication method, and wireless communication system
JP5657038B2 (en) * 2013-01-23 2015-01-21 ヤフー株式会社 Information providing system, information providing apparatus, and information providing method
JP6007804B2 (en) * 2013-01-28 2016-10-12 株式会社ソシオネクスト Power supply control circuit, power supply device, electronic device, and power supply control method
JP6396811B2 (en) 2015-01-19 2018-09-26 株式会社Kddi総合研究所 Apparatus, program and method for estimating route used from communication history

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021516A (en) * 2011-07-11 2013-01-31 Toshiba Corp Consumed quantity measurement system, radio communication center device and program for the same measurement system
WO2013121670A1 (en) * 2012-02-16 2013-08-22 ソニー株式会社 Wireless communication device, program, and communication control method
WO2016170719A1 (en) * 2015-04-24 2016-10-27 パナソニックIpマネジメント株式会社 Radio communication terminal and frequency assignment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533159A (en) * 2019-09-19 2021-03-19 中移(苏州)软件技术有限公司 Signaling data compression method, device and storage medium

Also Published As

Publication number Publication date
US20190297628A1 (en) 2019-09-26
US10986635B2 (en) 2021-04-20
JP2018093428A (en) 2018-06-14
JP6574159B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP6574159B2 (en) Wireless terminal and wireless base station allocation method
US10536197B2 (en) Device and method for managing spectrum resources, and wireless communication device and method
US10645698B2 (en) Radio communication terminal and base station assignment method
US20140213251A1 (en) Wireless communication controlling device, wireless communication system, and wireless communication controlling method
CN111989585A (en) Relative positioning method, terminal, base station, communication device and storage medium
US10237815B2 (en) Radio communication terminal and frequency assignment method
US10849129B2 (en) Communication control apparatus, communication control method and terminal apparatus
WO2021043050A1 (en) Electronic device, wireless communication method, and computer readable medium
JP2016053518A (en) Mobile terminal device, server device, route extraction program, route extraction method and route extraction system
WO2018110033A1 (en) Wireless terminal and base station switching method
US10880832B2 (en) Wireless base station, wireless communication system, and base station allocation method
CN112556704A (en) Path planning method and communication device
JP2019502331A (en) Device and method for network management side and user device side, central management device
KR20190079980A (en) Base station and method for wireless energy harvesting network system, and system comprising same
CN111886898A (en) User equipment for satellite communication
JP7220374B2 (en) Communication terminal and communication method
US10448371B2 (en) Wireless base station and frequency allocation method
US20220029696A1 (en) Solutions for UAV Communications in a Network with Receiver-Only mmWave 5G BS Antennas and in Other Networks
WO2022156893A1 (en) Groupcast master ue re-assignment with beam-domain operation
KR101049596B1 (en) Method for frequency scanning of pico access point
KR20140074077A (en) Apparatus and method for allocating radio channel in marine communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877995

Country of ref document: EP

Kind code of ref document: A1