WO2018101283A1 - Transmission oil pressure control device and control method for continuously variable transmission - Google Patents

Transmission oil pressure control device and control method for continuously variable transmission Download PDF

Info

Publication number
WO2018101283A1
WO2018101283A1 PCT/JP2017/042705 JP2017042705W WO2018101283A1 WO 2018101283 A1 WO2018101283 A1 WO 2018101283A1 JP 2017042705 W JP2017042705 W JP 2017042705W WO 2018101283 A1 WO2018101283 A1 WO 2018101283A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pulley
primary
control
transmission
Prior art date
Application number
PCT/JP2017/042705
Other languages
French (fr)
Japanese (ja)
Inventor
盛弼 柳
洛鎬 李
官容 申
恩惠 金
京南 金
テヨン 金
赫鎭 卞
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2018554169A priority Critical patent/JP6700419B2/en
Publication of WO2018101283A1 publication Critical patent/WO2018101283A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used

Definitions

  • the present invention relates to a transmission hydraulic pressure control device and a control method for a continuously variable transmission that supplies a transmission hydraulic pressure adjusted based on oil discharged from an oil pump to a primary pulley and a secondary pulley of a variator.
  • Patent Document 1 a control device for an electric oil pump for a vehicle that changes the driving frequency of the electric oil pump according to the vehicle state in order to reduce noise generated when the electric oil pump is driven.
  • the noise (noise) generated in the above prior art is generated in the electric oil pump, but is not limited to the electric oil pump, and is also generated in the oil pump driven by the engine. Moreover, although the noise (noise) generated in the above-described prior art is generated in the electric oil pump alone, the generation of noise is not limited to the oil pump alone in this way, and the oil pump and other rotating bodies (for example, This also occurs due to a resonance phenomenon with the secondary pulley.
  • Oil pump noise may occur.
  • this oil pump noise is generated in a state just before stopping or when the vehicle is stopped, where road noise, engine sound, etc. are small compared to when traveling, there is a problem that it is likely to be uncomfortable for the driver.
  • the present invention has been made paying attention to the above-mentioned problem, and aims to reduce the occurrence of oil pump noise that makes the driver feel uncomfortable while suppressing the occurrence of belt slip and unintentional shift.
  • the present invention provides an oil pump, a variator whose gear ratio is controlled by changing a pulley width by a transmission hydraulic pressure adjusted based on a discharge pressure from the oil pump, and a transmission hydraulic pressure A control unit.
  • the transmission hydraulic pressure control unit supplies the primary pressure and the secondary pressure adjusted according to the target transmission gear ratio to the primary pulley and the secondary pulley, respectively.
  • the pulley rotational speed at which the gear ratio of the variator does not change even when the secondary pressure is reduced control for reducing the secondary pressure is started.
  • the cause of the oil pump noise is the fluctuation component of the secondary pressure, and reducing the secondary pressure reduces the oil pump noise and improves the sense of incongruity.
  • the pulley rotation speed at which the gear ratio of the variator does not change even if the secondary pressure is lowered that is, the secondary pressure is lowered when the vehicle state is not shifted even if the balance pressure between the primary pressure and the secondary pressure collapses. Control was started. As a result, it is possible to reduce the occurrence of oil pump noise that makes the driver feel uncomfortable while suppressing the occurrence of belt slippage and unintentional shifting due to starting secondary pressure reduction control regardless of the vehicle state. .
  • 1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a transmission hydraulic pressure control device and a control method for a continuously variable transmission according to a first embodiment are applied.
  • It is a shift schedule figure which shows an example of the shift schedule used when shifting hydraulic pressure control is performed by the variator mounted in the drive system of the engine vehicle.
  • It is an external appearance block diagram which shows the external appearance outline
  • 6 is a flowchart showing a flow of a shift hydraulic pressure control process executed by the CVT control unit of the first embodiment.
  • FIG. 6 is a time chart showing the characteristics of post-F / B SEC command pressure, SEC command pressure, and SEC actual pressure when the SEC actual pressure drop condition, which is one of the exit conditions for ending noise reduction control, is satisfied.
  • Time chart showing characteristics of accelerator operation, brake operation, vehicle speed, gradient, engine speed, primary pulse, timer value, control approach flag, SEC command pressure, PRI command pressure, PRI lower limit pressure when noise reduction control is executed It is. It is a time chart which shows each characteristic of SEC command pressure, SEC command pressure, and SEC actual pressure after F / B which expanded the field surrounded by arrow H of Drawing 6 where noise reduction control is started.
  • the transmission hydraulic pressure control device and the control method in the first embodiment are applied to an engine vehicle equipped with a belt type continuously variable transmission mechanism called a variator.
  • a variator a belt type continuously variable transmission mechanism
  • the configuration of the first embodiment will be described by dividing it into an “overall system configuration”, a “secondary pressure oil passage configuration”, and a “shift oil pressure control processing configuration”.
  • FIG. 1 shows a drive system and a control system of an engine vehicle to which a transmission hydraulic pressure control device and a control method for a continuously variable transmission according to a first embodiment are applied.
  • FIG. An example of the shift schedule used is shown.
  • the overall system configuration will be described below with reference to FIGS.
  • the drive system of the engine vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a variator 4 (belt-type continuously variable transmission mechanism), a final reduction mechanism 5, and drive wheels. 6 and 6.
  • the engine 1 can control the output torque by an engine control signal from the outside, in addition to the output torque control by the accelerator operation by the driver.
  • the engine 1 includes an output torque control actuator 10 that performs output torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like.
  • the torque converter 2 is a starting element having a torque increasing function.
  • the torque converter 2 is provided with a turbine runner 23 connected to the engine output shaft 11 via a converter housing 22, a pump impeller 24 connected to the torque converter output shaft 21, and a case via a one-way clutch 25.
  • the stator 26 is a component.
  • the forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel.
  • the forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31 using a plurality of clutch plates, and a reverse brake 32 using a plurality of brake plates.
  • the forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when a forward travel range such as the D range is selected.
  • the reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse travel range such as the R range is selected.
  • the forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range, non-traveling range) is selected.
  • the variator 4 has a primary pulley 42, a secondary pulley 43, and a pulley belt 44, and changes a gear ratio (a ratio between a variator input rotation speed and a variator output rotation speed) steplessly by changing a belt contact diameter.
  • a continuously variable transmission function is provided.
  • the primary pulley 42 includes a fixed pulley 42 a and a slide pulley 42 b arranged on the same axis as the variator input shaft 40, and the slide pulley 42 b is slid by the primary pressure Ppri guided to the primary pressure chamber 45.
  • the secondary pulley 43 includes a fixed pulley 43 a and a slide pulley 43 b that are arranged coaxially with the variator output shaft 41, and the slide pulley 43 b is slid by the secondary pressure Psec guided to the secondary pressure chamber 46.
  • the pulley belt 44 is stretched between a sheave surface that forms a V shape of the primary pulley 42 and a sheave surface that forms a V shape of the secondary pulley 43.
  • the pulley belt 44 is formed of two sets of laminated rings in which a large number of annular rings are stacked from the inside to the outside and a plurality of punched plate members, and is attached by being laminated in an annular manner by being sandwiched along the two sets of laminated rings. It is composed of elements.
  • the pulley belt 44 may be a chain-type belt in which a large number of chain elements arranged in the pulley traveling direction are coupled by pins penetrating in the pulley axial direction.
  • the final deceleration mechanism 5 is a mechanism that decelerates the variator output rotation speed from the variator output shaft 41 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function.
  • the final reduction mechanism 5 is provided as a reduction gear mechanism at the outer peripheral position of the first gear 52 provided on the variator output shaft 41, the second gear 53 and the third gear 54 provided on the idler shaft 50, and the differential case. And a fourth gear 55.
  • the differential gear mechanism includes a differential gear 56 interposed between the left and right drive shafts 51, 51.
  • the engine vehicle control system includes a hydraulic control unit 7 that is a hydraulic control system and a CVT control unit 8 that is an electronic control system.
  • the hydraulic control unit 7 includes a primary pressure Ppri guided to the primary pressure chamber 45, a secondary pressure Psec guided to the secondary pressure chamber 46, a forward clutch pressure Pfc to the forward clutch 31, and a reverse brake pressure Prb to the reverse brake 32. And a unit for regulating the pressure.
  • the hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1 that is a travel drive source, and a hydraulic control circuit 71 that adjusts various control pressures based on the discharge pressure from the oil pump 70. .
  • the hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a forward clutch pressure solenoid valve 75, and a reverse brake pressure solenoid valve 76.
  • Each solenoid valve 72, 73, 74, 75, 76 adjusts to each command pressure by varying the ON / OFF ratio (duty ratio) according to the duty command value output from the CVT control unit 8.
  • the line pressure solenoid valve 72 adjusts the discharge pressure from the oil pump 70 to the commanded line pressure PL in accordance with the line pressure command value output from the CVT control unit 8.
  • the line pressure PL is a source pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip against torque transmitted through the drive system.
  • the primary pressure solenoid valve 73 adjusts the pressure to the primary pressure Ppri commanded using the line pressure PL as the original pressure according to the primary pressure command value output from the CVT control unit 8.
  • the secondary pressure solenoid valve 74 adjusts the pressure to the secondary pressure Psec commanded using the line pressure PL as the original pressure in accordance with the secondary pressure command value output from the CVT control unit 8.
  • the forward clutch pressure solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc commanded using the line pressure PL as the original pressure according to the forward clutch pressure command value output from the CVT control unit 8.
  • the reverse brake pressure solenoid valve 76 reduces the pressure to the reverse brake pressure Prb commanded using the line pressure PL as the original pressure in accordance with the reverse brake pressure command value output from the CVT control unit 8.
  • the CVT control unit 8 performs line pressure control, shift hydraulic pressure control, forward / reverse switching control, and the like.
  • line pressure control a command value for obtaining a target line pressure corresponding to the throttle opening degree is output to the line pressure solenoid valve 72.
  • transmission hydraulic pressure control when the target speed ratio (target primary rotational speed Npri * ) is determined, command values for obtaining the determined target speed ratio (target primary rotational speed Npri * ) are sent to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74.
  • Output In the forward / reverse switching control, a command value for controlling the engagement / release of the forward clutch 31 and the reverse brake 32 is output to the forward clutch pressure solenoid valve 75 and the reverse brake pressure solenoid valve 76 according to the selected range position.
  • the CVT control unit 8 includes a primary pulley rotational speed sensor 80, a vehicle speed sensor 81, a secondary pressure sensor 82, an oil temperature sensor 83, an inhibitor switch 84, a brake switch 85, an accelerator opening sensor 86, a primary pressure sensor 87, and a longitudinal G sensor. Sensor information and switch information from 89, etc. are input. Further, engine torque information is input from the engine control unit 88 to which sensor information from the engine rotation speed sensor 12 is input, and an engine torque request is output to the engine control unit 88.
  • the primary pulley rotational speed sensor 80 is a sensor that detects the primary pulley rotational speed based on a pulse count number that is the number of pulse wave signal counts.
  • the vehicle speed sensor 81 is a sensor that detects the transmission output rotation speed based on the pulse count number that is the number of counts of the pulse wave signal.
  • the inhibitor switch 84 detects the selected range position (D range, N range, R range, etc.) and outputs a range position signal corresponding to the range position.
  • the normal shift hydraulic pressure control executed by the CVT control unit 8 is the shift of FIG. 2 specified by the vehicle speed VSP detected by the vehicle speed sensor 81 and the accelerator opening APO detected by the accelerator opening sensor 86. This is done by determining the target primary rotational speed Npri * based on the operating points (VSP, APO) on the schedule.
  • the speed change schedule is set so as to change the speed ratio steplessly within the range of the speed ratio range by the lowest gear ratio and the highest gear ratio according to the operating point (VSP, APO). ing.
  • VSP operating point
  • the target primary rotation speed Npri * increases and shifts in the downshift direction
  • the accelerator depressing operation is performed, the target primary rotation speed Npri * decreases. Shift in the upshift direction.
  • the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and the vehicle shifts in the downshift direction when the vehicle speed VSP decreases.
  • FIG. 3 shows the appearance of the belt type continuously variable transmission unit 9 mounted in the power unit chamber of the engine vehicle by elastic support to the vehicle body.
  • the secondary pressure oil passage configuration will be described with reference to FIG.
  • the belt-type continuously variable transmission unit 9 includes a transmission case 90, a side cover 91 fixed to one side opening of the case, a converter case 92 fixed to the other side opening of the case, and a bottom of the case An oil pan 93 fixed to the opening.
  • the forward / reverse switching mechanism 3 In a space formed by the transmission case 90 and the side cover 91, the forward / reverse switching mechanism 3, the variator 4, the final reduction mechanism 5, and the hydraulic control circuit 71 are built.
  • torque converter 2 is built in a space formed by converter case 92, and converter case 92 is coupled to engine 1.
  • the belt-type continuously variable transmission unit 9 is combined with the engine 1 to form a power unit.
  • This power unit is disposed in the power unit chamber on the front side in a horizontal position and elastically moves to the vehicle body via a plurality of power unit mounts. Supported.
  • the side cover 91 supports the shaft end portion of the pulley shaft of the primary pulley 42 of the variator 4 and also supports the shaft end portion of the pulley shaft of the secondary pulley 43.
  • the side cover 91 is formed with a secondary pressure oil passage 94 that guides the secondary pressure Psec from the oil pump 70 to the secondary pressure chamber 46 of the secondary pulley 43 via the hydraulic control circuit 71. Yes.
  • a unit side mounting bracket 95 is fixed to the side cover 91. That is, the secondary pressure oil passage 94 and the unit-side mount bracket 95 are arranged at positions close to each other in the side cover 91.
  • FIG. 4 shows the flow of the shift hydraulic pressure control process executed by the CVT control unit 8 of the first embodiment. In the following, each step of FIG. 4 representing the transmission hydraulic pressure control processing configuration will be described. This shift hydraulic pressure control process is executed when a travel range (D range or R range) is selected.
  • step S1 it is determined whether or not the vehicle is stopped in a situation where the accelerator is OFF and the brake is ON. If YES (stopped), the process proceeds to step S2, and if NO (running), the process proceeds to step S6.
  • accelerator OFF information is acquired from the accelerator opening sensor 86
  • brake ON information is acquired from the brake switch 85. Whether or not the vehicle is stopped is determined by using vehicle speed information from the vehicle speed sensor 81 that detects the output rotation speed of the variator 4 and when the vehicle speed sensor value indicates a stop determination value.
  • step S2 following the determination that the vehicle is stopped in step S1, it is determined whether or not the road surface on which the vehicle is stopped is flat. If YES (flat ground), the process proceeds to step S3. If NO (gradient ground), the process proceeds to step S6.
  • whether or not the stop road surface is flat is determined when the sensor value from the front and rear G sensor 89 satisfies the flat ground determination lower limit value ⁇ the front and rear G sensor value ⁇ the flat ground determination upper limit value.
  • the flat ground determination lower limit value> the front and rear G sensor value or the front and rear G sensor value> the flat ground determination upper limit value it is determined that the stop road surface is a slope.
  • step S3 it is determined whether or not the engine rotation speed is equal to or lower than the idle rotation determination value following the determination that the road is flat in step S2. If YES (engine rotation speed ⁇ idle rotation determination value), the process proceeds to step S4. If NO (engine rotation speed> idle rotation determination value), the process proceeds to step S6.
  • information on the engine speed is acquired from the engine speed sensor 12.
  • the “idle rotation determination value” is set to a value indicating that the rotation speed of the engine 1 has been reduced to the idle rotation speed range.
  • step S4 following the determination in step S3 that the engine rotation speed is equal to or less than the idle rotation determination value, the primary pulley rotation speed is in a low rotation state by checking the pulse wave signal from the primary pulley rotation speed sensor 80. It is determined whether or not. If YES (primary pulley rotation speed is low), the process proceeds to step S5. If NO (primary pulley rotation speed is not low), the process proceeds to step S6.
  • YES primary pulley rotation speed is low
  • NO primary pulley rotation speed is not low
  • step S6 when determining the low rotation state of the primary pulley rotation speed, when a pulse wave signal is input from the primary pulley rotation speed sensor 80, counting of the timer value is started from the down edge of the pulse wave signal.
  • next pulse wave signal is not input even after the timer value has passed a threshold value (for example, 0.5 sec), it is determined that the primary pulley rotation speed has become a low rotation state. That is, if the next pulse wave signal is input before the timer value passes the threshold, it is determined that the primary pulley rotational speed is not yet in a low rotational state.
  • the threshold value of the timer value is set to a time required to determine that the variator 4 has reached the pulley rotation speed in the pulley rotation stop state in which the gear ratio does not change to the upshift side even when the secondary pressure Psec is decreased. .
  • step S5 following the determination that the primary pulley rotation speed is in the low rotation state in step S4, it is determined whether there is a restriction to reduce the secondary pressure Psec. If YES (no secondary pressure lowering restriction), the process proceeds to step S6, and if NO (secondary pressure lowering restriction is present), the process proceeds to step S6.
  • the reduction regulation determination of the secondary pressure Psec is, for example, that the secondary pressure Psec is regulated to be lower when the secondary pressure Psec is raised by the intervention of other shift hydraulic pressure control than the noise reduction control of the first embodiment. to decide. And the noise reduction control process after step S7 is not performed.
  • step S6 following the determination of NO in any of steps S1, S2, S3, S4, and S5, normal shift hydraulic pressure control is executed, and the process proceeds to return.
  • the normal transmission hydraulic pressure control means feedback control of the differential pressure between the primary pressure Ppri and the secondary pressure Psec so that the actual primary rotation speed Npri converges to the target primary rotation speed Npri * .
  • the primary pressure Ppri and the secondary pressure Psec instead of lowering or raising only one of the primary pressure Ppri and the secondary pressure Psec, it is assumed that both the pressures Ppri and Psec are lowered or raised, so that the primary pulley 42 and the secondary pulley 43 The balance thrust is maintained.
  • step S7 following the determination in step S5 that there is no secondary pressure reduction restriction, the lower limit pressure (PRI lower limit pressure) of the primary command pressure is increased to the primary lower limit pressure B, and the process proceeds to step S8. If it is determined in step S5 that there is no secondary pressure reduction restriction, it is determined that the conditions for entering the noise reduction control in steps S1, S2, S3, S4, and S5 are satisfied, and the control entry flag that starts the noise reduction control is determined. Is established.
  • the “primary lower limit pressure B” is a hydraulic pressure higher than the primary pressure Ppri set by the balance thrust between the primary pulley 42 and the secondary pulley 43 and is a torque input from the engine 1 in the idling rotation state.
  • the hydraulic pressure for example, 0.7 MPa
  • step S8 following the determination that the PRI lower limit pressure is increased to the PRI lower limit pressure B in step S7 or that the release condition is not satisfied in step S12, the actual secondary pressure Psec is added to the secondary target pressure A by a hysteresis amount ⁇ . It is determined whether or not the value is equal to or greater than the value added. If YES (actual SEC pressure ⁇ A + ⁇ ), the process proceeds to step S9. If NO (actual SEC pressure ⁇ A + ⁇ ), the process proceeds to step S10. Here, the information of “actual secondary pressure Psec” is acquired from a sensor signal from the secondary pressure sensor 82.
  • the “secondary target pressure A” is set to the maximum pressure (for example, 0.8 MPa) in the secondary pressure region in which the oil pump noise confirmed by the experiment is reduced.
  • “Hysteresis ⁇ ” is set to a value that suppresses hydraulic control hunting of the secondary pressure Psec.
  • step S9 following the determination that the actual SEC pressure ⁇ A + ⁇ in step S8, the secondary command pressure by the secondary pressure command value output to the secondary pressure solenoid valve 74 is lowered, and the process proceeds to step S12.
  • the secondary command pressure is lowered with a steep command pressure drop characteristic, and when the actual SEC pressure approaches from (A + ⁇ ) to less than the predetermined pressure.
  • the slope of the secondary command pressure drop characteristic is moderated. That is, in the actual SEC pressure decrease control, the secondary command pressure decrease gradient is determined so as to achieve both responsiveness (steep gradient) and convergence (slow gradient).
  • step S10 following the determination that the actual SEC pressure ⁇ A + ⁇ in step S8, it is determined whether the actual secondary pressure Psec is equal to or lower than the secondary target pressure A. If YES (actual SEC pressure ⁇ A), the process proceeds to step S11. If NO (actual SEC pressure> A), the process proceeds to step S12. “Secondary target pressure A” is the same value as in step S8.
  • step S11 following the determination that the actual SEC pressure ⁇ A in step S6, the secondary command pressure (SEC command pressure) at that time is maintained as it is, and the process proceeds to step S12.
  • step S12 following the decrease in the SEC command pressure in step S9, or the determination that the actual SEC pressure> A in step S10, or the maintenance of the SEC pressure in step S11, the noise reduction control is terminated. It is determined whether the condition is satisfied. If YES (exit condition is satisfied), the process proceeds to step S13. If NO (exit condition is not satisfied), the process returns to step S8.
  • the determination of whether or not the missing condition is established is that the missing condition is not established while all of the following six conditions are not established, and when one of the following six conditions is established, it is determined that the missing condition is established. .
  • Six specific conditions are: 1.
  • step S13 following the determination that the removal condition is satisfied in step S12, the primary command pressure, which is suppressed by the PRI lower limit pressure B, is reduced and returned to the original value, and the reduced secondary command pressure is increased. Undo and proceed to return.
  • step S13 when it is determined in step S12 that the noise reduction control missing condition is satisfied, the control approach flag set during the control is lowered.
  • the operation of the first embodiment will be described by dividing it into “transmission oil pressure control processing operation”, “background art and problems of transmission oil pressure control”, “transmission oil pressure control operation”, and “characteristic operation of transmission oil pressure control”.
  • step S6 return The forward flow is repeated.
  • step S6 normal transmission hydraulic pressure control is executed.
  • step S1 to step S2 to step S6 to return is repeated.
  • step S6 normal transmission hydraulic pressure control is executed.
  • step S1 When the stop condition and the flat ground condition are satisfied, but the idle rotation condition is not satisfied, the flow of step S1, step S2, step S3, step S6 and return is repeated. In step S6, normal transmission hydraulic pressure control is executed.
  • step S6 normal transmission hydraulic pressure control is executed.
  • step S1 step S2, step S3, step S4, step S5, step S6, and return.
  • step S6 normal transmission hydraulic pressure control is executed.
  • step S the control for increasing the primary lower limit pressure to the primary lower limit pressure B is performed because the entry condition for the noise reduction control is satisfied.
  • step S8 it is determined whether or not the actual secondary pressure Psec is equal to or greater than the value obtained by adding the hysteresis amount ⁇ to the secondary target pressure A. Then, while it is determined that the actual SEC pressure ⁇ A + ⁇ , the flow from step S8 ⁇ step S9 ⁇ step S12 is repeated, and in step S9, the secondary command pressure based on the secondary pressure command value output to the secondary pressure solenoid valve 74 is obtained. Control to lower is started.
  • step S8 If it is determined that the actual SEC pressure ⁇ A + ⁇ is established by starting the control to lower the secondary command pressure, the process proceeds from step S8 to step S10, while the actual SEC pressure> A is determined in step S10. The flow from step S8 to step S10 to step S12 is repeated. During this time, the control until then is taken over and the secondary command pressure is lowered.
  • step S10 If it is determined in step S10 that the actual SEC pressure ⁇ A, the flow from step S8 to step S10 ⁇ step S11 ⁇ step S12 is repeated, and in step S11, the secondary command pressure at that time is maintained as it is.
  • the flow of going from step S8 ⁇ step S10 ⁇ step S12 is repeated until the actual SEC pressure ⁇ A + ⁇ is determined. During this time, the control until then is taken over and the secondary command pressure is maintained.
  • the actual secondary pressure Psec is lowered to the secondary target pressure A by repeating the control operation for lowering the secondary command pressure and the control operation for maintaining the secondary command pressure.
  • step S12 the process proceeds from step S12 to step S13 ⁇ return.
  • step S13 the control approach flag is lowered, and the primary command pressure that is suppressed from being reduced by the PRI lower limit pressure B is controlled to return to the original value, and the reduced secondary command pressure is increased to return to the original value. Is done.
  • the variator 4 reaches a pulley rotation speed that does not shift to the upshift side even if the secondary pressure Psec is reduced, the actual secondary pressure Psec is reduced to the secondary target pressure A.
  • noise called “oil pump noise” is reduced and the sound vibration performance is improved when the vehicle state is just before the vehicle is stopped or is stopped.
  • the belt clamping force of the pulley belt 44 is reduced, and there is a concern that the belt slip may occur due to the decrease in the actual secondary pressure Psec.
  • the actual primary pressure Ppri which is to be decreased as the actual secondary pressure Psec is decreased, is raised by the primary lower limit pressure B so that the actual primary pressure Ppri does not decrease below the primary lower limit pressure B. To prevent it.
  • the present inventors investigated the cause of the oil pump noise, and the oil pump noise originally had a dependency on the line pressure. It became clear that the line pressure dependency became weak and had a secondary pressure dependency. Therefore, attention was paid to the secondary pressure oil passage 94 from the oil pump 70 driven by the engine 1 to the secondary pulley 43 (FIG. 3). When attention is paid to the secondary pressure oil passage 94, resonance with a unit-side mount bracket 95 provided close to the secondary pressure oil passage 94 using the fluctuation component of the secondary pressure Psec passing through the secondary pressure oil passage 94 as an excitation source. It was found that “oil pump noise” occurred.
  • the secondary pressure solenoid valve 74 that regulates the secondary pressure Psec is pulsating oil pressure that fluctuates as shown in the SEC actual pressure characteristics in FIG.
  • the excitation source of the oil pump noise is in the fluctuation component of the secondary pressure Psec, it has been found that when the secondary pressure Psec is reduced, the oil pump noise is reduced and the sound vibration performance is improved.
  • the reason why the oil pump noise is reduced when the secondary pressure Psec is reduced is that the fluctuation component (amplitude of the pulsating hydraulic pressure) that becomes the excitation source is suppressed to a small value by reducing the secondary pressure Psec.
  • the accelerator release operation is performed when the operating point (VSP, APO) is the point C in FIG. 2, the operating point (VSP, APO) is moved to the point D in FIG. Then, after moving to point D in FIG. 2, when the brake is depressed and decelerated, the operating point (VSP, APO) is maintained from point D in FIG. 2 while maintaining the highest gear ratio along the coastal shift line.
  • the gear ratio of the variator 4 moves from the highest gear ratio to the point F while shifting in the downshift direction as the vehicle speed VSP decreases.
  • the target primary rotational speed Npri * decreases while maintaining the lowest gear ratio
  • the vehicle speed VSP moves to the point G where the vehicle speed VSP is zero.
  • the timer value starts counting from the down edge.
  • a threshold value for example, 0.5 sec
  • the pressure is returned to the primary lower limit pressure (comparative example) before the noise reduction control.
  • the time chart shown in FIG. 6 determines that “the pulley rotation speed at which the transmission ratio of the variator 4 does not change” is determined, and the secondary pressure reduction control is started, but after the secondary pressure reduction control is started. Also depicts the situation where the pulley is rotating slightly. This is because even if it is determined that the pulley rotation is stopped, there is a scene in which the driver slightly releases the brake pedal and the vehicle moves forward at a creep vehicle speed or less. Or, even if the vehicle is not moving forward and the pulley rotation stoppage is determined, there is a scene where the pulley clamp force is insufficient, the belt slides against the input torque from the engine to the pulley, and the pulley rotates. by. Therefore, the absence of the noise reduction control (end of the secondary pressure reduction control) is the timing (time t17) when the primary pulse count number ⁇ the threshold value.
  • the noise reduction control missing condition is satisfied at time t18, and the noise is reduced.
  • the reduction control is finished.
  • the noise reduction control is started, if the accelerator OFF ⁇ ON operation is performed before the primary pulse count number ⁇ threshold without confirming the brake ON ⁇ OFF operation, the noise reduction control missing condition at time t19 Is established and the noise reduction control is terminated.
  • the “pulley rotational speed at which the gear ratio of the variator 4 does not change even when the secondary pressure Psec is reduced” is a state immediately before stopping or a stopped state.
  • sounds other than oil pump noise road noise, engine sound, etc.
  • the oil pump noise tends to be uncomfortable for the driver.
  • the oil pump noise is mixed with other sounds in a state just before stopping or in a driving state where the vehicle is not stopped, and the uncomfortable feeling given to the driver is reduced.
  • the oil pump 70 is a pump that is rotationally driven by the engine 1 that is a driving source for traveling. Therefore, by reducing the secondary pressure Psec, the oil pump driving load is reduced and fuel efficiency is improved. To do.
  • the vehicle stoppage determination is rough, and the pulley may be slightly rotated at the timing when the stoppage determination is established. That is, “the pulley rotation speed is stopped” is determined based on the fact that the pulse wave signal from the primary pulley rotation speed sensor 80 is not detected for a predetermined time (for example, 0.5 sec). “Vehicle stop determination” is also determined based on the fact that the pulse wave signal from the vehicle speed sensor 81 is not detected for a predetermined time, but the predetermined time in the stop determination is shorter than the predetermined time for determining the stop state of the pulley rotation speed.
  • the noise reduction control is started not based on the vehicle stoppage determination but based on the pulley rotation speed being stopped.
  • the timing at which the control approach flag is set (time t7) is later than the vehicle stop determination timing (time t3). For this reason, when the pulley rotational speed is in a stopped state, even if the secondary pressure Psec is decreased, belt slippage or unintended shift does not occur. Therefore, when the pulley rotation speed is stopped, the control for reducing the secondary pressure Psec is started, so that it is possible to reliably prevent belt slippage and unintended shift.
  • Example 1 after starting the control for reducing the secondary pressure Psec, when the number of pulse counts from the primary pulley rotation speed sensor 80 exceeds the threshold, the control for reducing the secondary pressure Psec is terminated.
  • the oil pump noise that generates the secondary target pressure A which is the target achieved by the oil pressure reduction, using the hydraulic system from the oil pump 70 as the vibration source is reduced. Set to the maximum pressure in the hydraulic range.
  • the oil pump noise can be reduced by lowering the secondary pressure Psec.
  • the secondary pressure Psec if the secondary pressure Psec is lowered too much, the secondary pressure Psec becomes insufficient at the time of subsequent start / acceleration. Occurrence delay). Therefore, by setting the secondary target pressure A as high as possible within a range where oil pump noise can be reduced, it is possible to reduce oil pump noise and reduce driving force deficiency and lag during subsequent start / acceleration. .
  • the SEC command pressure after F / B is increased, and when the actual SEC pressure is higher than the secondary target pressure A, the SEC command pressure after F / B is decreased.
  • the SEC command pressure is F / B controlled so that the actual SEC pressure becomes the secondary target pressure A).
  • the primary lower limit pressure B that suppresses the decrease in the hydraulic pressure of the primary pressure Ppri is set to a higher hydraulic pressure than the hydraulic pressure set by the balance thrust between the primary pulley 42 and the secondary pulley 43.
  • the primary pressure Ppri is also decreased.
  • the primary lower limit pressure B that suppresses the decrease in the hydraulic pressure of the primary pressure Ppri is set to a higher hydraulic pressure than the hydraulic pressure set based on the balance thrust. Therefore, it is possible to prevent the occurrence of belt slip with respect to the torque input from the engine 1 in the idle rotation state.
  • the secondary pressure solenoid valve 74 sticks due to contamination and the SEC actual pressure cannot follow the SEC command pressure, the oil pump noise can be reduced.
  • the belt capacity may not be secured.
  • the control for reducing the secondary pressure Psec is terminated (FIG. 5). Therefore, it is possible to secure a belt capacity that suppresses belt slip at the time of start / acceleration after the end of control.
  • An oil pump 70, a variator 4, and a shift hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) are provided.
  • the variator 4 includes a primary pulley 42, a secondary pulley 43, and a pulley belt 44 that spans between the pulleys 42 and 43.
  • the variator 4 is a pulley that is adjusted by a transmission hydraulic pressure that is adjusted based on the discharge pressure from the oil pump 70.
  • the gear ratio is controlled by changing the width.
  • the transmission hydraulic pressure control unit uses the primary pressure Ppri and the secondary pressure Psec adjusted according to the target transmission gear ratio as primary.
  • the transmission hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) may reduce the secondary pressure Psec when at least one of the primary pulley 42 and the secondary pulley 43 is stopped. It is determined that the pulley rotation speed at which the gear ratio of the variator 4 does not change has been reached. For this reason, in addition to the effect of (1), when the pulley rotation speed is stopped, it is possible to reliably prevent belt slippage or unintentional shift from occurring by starting control to reduce the secondary pressure Psec. it can.
  • a pulley rotation speed sensor (primary pulley rotation speed sensor 80) that detects the pulley rotation speed of at least one of the primary pulley 42 and the secondary pulley 43 by the pulse count number that is the number of counts of the pulse wave signal is provided.
  • the transmission hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) starts control to reduce the secondary pressure Psec, and then the pulse count from the pulley rotational speed sensor (primary pulley rotational speed sensor 80) exceeds the threshold value. Then, the control for reducing the secondary pressure Psec is terminated. For this reason, in addition to the effect of (2), when the pulley rotation state is detected during the reduction control of the secondary pressure Psec, an unintended shift in the variator 4 can be prevented.
  • the transmission hydraulic pressure control unit (the hydraulic pressure control unit 7 and the CVT control unit 8) performs the control to reduce the secondary pressure Psec
  • the secondary target pressure A that is the target achieved by the decrease in hydraulic pressure is set to the hydraulic pressure from the oil pump 70.
  • the maximum pressure is set in the hydraulic range where the oil pump noise generated using the system as the excitation source is reduced. For this reason, in addition to the effects (1) to (3), the secondary target pressure A is set as high as possible within the range where oil pump noise can be reduced. Insufficient driving force and lag can be reduced.
  • the transmission hydraulic pressure control unit decreases the secondary actual pressure with respect to the secondary command pressure to the secondary pulley 42, and the difference between the secondary command pressure and the secondary actual pressure is a predetermined value. If it becomes above, the control which reduces secondary pressure Psec will be complete
  • the variator 4 includes a primary pulley 42, a secondary pulley 43, and a pulley belt 44 that spans between the pulleys 42 and 43.
  • the variator 4 is a pulley that is adjusted by a transmission hydraulic pressure that is adjusted based on the discharge pressure from the oil pump 70.
  • the gear ratio is controlled by changing the width. In this vehicle (engine vehicle), when the target gear ratio of the variator 4 is determined during traveling, the primary pressure Pri and the secondary pressure Psec adjusted according to the target gear ratio are supplied to the primary pulley 42 and the secondary pulley 43, respectively. To do.
  • the secondary pressure Psec reduction control is always executed regardless of whether oil pump noise is generated or not. Indicated. However, the presence or absence of oil pump noise is detected, and only when the rotation speed of the pulley is such that the gear ratio of the variator does not change even when the secondary pressure is reduced, and the occurrence of oil pump noise is detected. It is good also as an example which performs pressure reduction control.
  • the stop state of the pulley rotational speed of the primary pulley 42 is determined based on the pulse wave signal from the primary pulley rotational speed sensor 80.
  • it may be determined by detecting the rotation speed of either the primary pulley or the secondary pulley, or by detecting the rotation speed of both pulleys.
  • an example of an oil pump 70 that is rotationally driven by the engine 1 that is a driving source for traveling is shown as an oil pump.
  • the oil pump may be an electric oil pump that is rotationally driven by a motor that is independent of the travel drive source, or a mechanical oil pump that is rotationally driven by the travel drive source and an electric oil pump.
  • a combination pump may be used.
  • the secondary target pressure A which is the target achieved by the decrease in hydraulic pressure
  • the secondary target pressure at which belt slip does not occur is determined by the torque input to the variator when the controlled condition is satisfied, or a preset secondary target pressure is input to the variator.
  • An example of correcting with torque may be used.
  • Embodiment 1 shows an example in which the transmission hydraulic pressure control device and control method of the present invention are applied to an engine vehicle equipped with a belt type continuously variable transmission using only a variator.
  • the transmission hydraulic pressure control device and the control method of the present invention may be applied to a vehicle equipped with a continuously variable transmission with a sub transmission in which a sub transmission mechanism and a variator are combined.
  • the applied vehicle is not limited to an engine vehicle, but can be applied to a hybrid vehicle, an electric vehicle, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A variator (4) has: a primary pulley (42); a secondary pulley (43); and a pulley belt (44) that is hung and suspended on both the pulleys (42), (43), wherein the transmission gear ratio is controlled by changing a pulley width by means of transmission oil pressure that is adjusted on the basis of discharge pressure from an oil pump (70). In this engine vehicle, when the target transmission gear ratio of the variator (4) is determined during traveling, primary pressure (Pri) and secondary pressure (Psec) adjusted according to the target transmission gear ratio are respectively supplied to the primary pulley (42) and the secondary pulley (43). When the pulley rotational speed reaches to a level at which the transmission gear ratio of the variator (4) does not change even if the secondary pressure (Psec) is reduced, control for reducing the secondary pressure (Psec) is started.

Description

無段変速機の変速油圧制御装置及び制御方法Variable speed hydraulic control device and control method for continuously variable transmission
 本発明は、オイルポンプからの吐出油に基づいて調圧された変速油圧をバリエータのプライマリプーリとセカンダリプーリに供給する無段変速機の変速油圧制御装置及び制御方法に関する。 The present invention relates to a transmission hydraulic pressure control device and a control method for a continuously variable transmission that supplies a transmission hydraulic pressure adjusted based on oil discharged from an oil pump to a primary pulley and a secondary pulley of a variator.
 従来、電動オイルポンプを駆動するに際して発生するノイズ(騒音)を低減すべく、電動オイルポンプの駆動周波数を車両状態に応じて変更する車両用電動オイルポンプの制御装置が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, there is known a control device for an electric oil pump for a vehicle that changes the driving frequency of the electric oil pump according to the vehicle state in order to reduce noise generated when the electric oil pump is driven (for example, Patent Document 1).
 上記従来技術で発生するノイズ(騒音)は、電動オイルポンプで発生しているが、電動オイルポンプに限られず、エンジンにより駆動されるオイルポンプにおいても発生する。また、上記従来技術で発生するノイズ(騒音)は、電動オイルポンプ単体にて発生しているが、ノイズの発生はこのようにオイルポンプ単体に限られず、オイルポンプと他の回転体(例えば、セカンダリプーリ)との間における共振現象によっても発生する。 The noise (noise) generated in the above prior art is generated in the electric oil pump, but is not limited to the electric oil pump, and is also generated in the oil pump driven by the engine. Moreover, although the noise (noise) generated in the above-described prior art is generated in the electric oil pump alone, the generation of noise is not limited to the oil pump alone in this way, and the oil pump and other rotating bodies (for example, This also occurs due to a resonance phenomenon with the secondary pulley.
 即ち、エンジンにより駆動されるオイルポンプからセカンダリプーリまでのセカンダリ圧油路を通過する油圧の変動成分を加振源とし、セカンダリ圧油路の付近に設けられた変速機取付け部品と共振することによりオイルポンプノイズが発生することがある。このオイルポンプノイズが、道路ノイズやエンジン音等が走行中に比べて小さい停車直前状態や停車状態で発生すると、運転者にとって違和感になりやすい、という問題があった。 That is, by using the fluctuation component of the hydraulic pressure passing through the secondary pressure oil passage from the oil pump driven by the engine to the secondary pulley as a vibration source, and resonating with a transmission mounting part provided near the secondary pressure oil passage Oil pump noise may occur. When this oil pump noise is generated in a state just before stopping or when the vehicle is stopped, where road noise, engine sound, etc. are small compared to when traveling, there is a problem that it is likely to be uncomfortable for the driver.
 本発明は、上記問題に着目してなされたもので、ベルト滑りや意図しない変速が発生することを抑制しつつ、運転者にとって違和感になるオイルポンプノイズの発生を低減することを目的とする。 The present invention has been made paying attention to the above-mentioned problem, and aims to reduce the occurrence of oil pump noise that makes the driver feel uncomfortable while suppressing the occurrence of belt slip and unintentional shift.
特開2015-021512号公報Japanese Patent Laid-Open No. 2015-021512
 上記目的を達成するため、本発明は、オイルポンプと、オイルポンプからの吐出圧に基づいて調圧された変速油圧によりプーリ幅が変更されることで変速比が制御されるバリエータと、変速油圧制御部と、を備える。変速油圧制御部は、走行中、バリエータの目標変速比が決まると、目標変速比に応じて調圧されたプライマリ圧とセカンダリ圧を、プライマリプーリとセカンダリプーリにそれぞれ供給する。セカンダリ圧を低下させてもバリエータの変速比が変化しないプーリ回転速度になると、セカンダリ圧を低下させる制御を開始する。 To achieve the above object, the present invention provides an oil pump, a variator whose gear ratio is controlled by changing a pulley width by a transmission hydraulic pressure adjusted based on a discharge pressure from the oil pump, and a transmission hydraulic pressure A control unit. When the target transmission gear ratio of the variator is determined during traveling, the transmission hydraulic pressure control unit supplies the primary pressure and the secondary pressure adjusted according to the target transmission gear ratio to the primary pulley and the secondary pulley, respectively. When the pulley rotational speed at which the gear ratio of the variator does not change even when the secondary pressure is reduced, control for reducing the secondary pressure is started.
 例えば、DレンジやRレンジでの停車中にオイルポンプノイズが発生すると、運転者にとって違和感になる。これに対し、本発明者等は、オイルポンプノイズの発生原因がセカンダリ圧の変動成分にあり、セカンダリ圧を低減するとオイルポンプノイズも低減し、違和感が改善することを知見した。この点に着目し、セカンダリ圧を低下させてもバリエータの変速比が変化しないプーリ回転速度、つまり、プライマリ圧とセカンダリ圧のバランス圧が崩れても変速しない車両状態になると、セカンダリ圧を低下させる制御を開始するようにした。この結果、車両状態にかかわらずセカンダリ圧の低下制御を開始することによるベルト滑りや意図しない変速が発生することを抑制しつつ、運転者にとって違和感になるオイルポンプノイズの発生を低減することができる。 For example, if an oil pump noise occurs while the vehicle is stopped in the D range or R range, the driver feels uncomfortable. On the other hand, the present inventors have found that the cause of the oil pump noise is the fluctuation component of the secondary pressure, and reducing the secondary pressure reduces the oil pump noise and improves the sense of incongruity. Paying attention to this point, the pulley rotation speed at which the gear ratio of the variator does not change even if the secondary pressure is lowered, that is, the secondary pressure is lowered when the vehicle state is not shifted even if the balance pressure between the primary pressure and the secondary pressure collapses. Control was started. As a result, it is possible to reduce the occurrence of oil pump noise that makes the driver feel uncomfortable while suppressing the occurrence of belt slippage and unintentional shifting due to starting secondary pressure reduction control regardless of the vehicle state. .
実施例1の無段変速機の変速油圧制御装置及び制御方法が適用されたエンジン車の駆動系と制御系を示す全体システム図である。1 is an overall system diagram showing a drive system and a control system of an engine vehicle to which a transmission hydraulic pressure control device and a control method for a continuously variable transmission according to a first embodiment are applied. エンジン車の駆動系に搭載されたバリエータにより変速油圧制御を実行する際に用いられる変速スケジュールの一例を示す変速スケジュール図である。It is a shift schedule figure which shows an example of the shift schedule used when shifting hydraulic pressure control is performed by the variator mounted in the drive system of the engine vehicle. エンジン車のパワーユニット室に車体への弾性支持により搭載されるベルト式無段変速機ユニットの外観概要を示す外観構成図である。It is an external appearance block diagram which shows the external appearance outline | summary of the belt-type continuously variable transmission unit mounted in the power unit chamber of an engine vehicle by the elastic support to a vehicle body. 実施例1のCVTコントロールユニットで実行される変速油圧制御処理の流れを示すフローチャートである。6 is a flowchart showing a flow of a shift hydraulic pressure control process executed by the CVT control unit of the first embodiment. ノイズ低減制御を終了する抜け条件の一つであるSEC実圧低下条件が成立するときのF/B後SEC指令圧・SEC指令圧・SEC実圧の各特性を示すタイムチャートである。6 is a time chart showing the characteristics of post-F / B SEC command pressure, SEC command pressure, and SEC actual pressure when the SEC actual pressure drop condition, which is one of the exit conditions for ending noise reduction control, is satisfied. ノイズ低減制御が実行するときのアクセル操作・ブレーキ操作・車速・勾配・エンジン回転速度・プライマリパルス・タイマー値・制御進入フラグ・SEC指令圧・PRI指令圧・PRI下限圧の各特性を示すタイムチャートである。Time chart showing characteristics of accelerator operation, brake operation, vehicle speed, gradient, engine speed, primary pulse, timer value, control approach flag, SEC command pressure, PRI command pressure, PRI lower limit pressure when noise reduction control is executed It is. ノイズ低減制御が開始される図6の矢印Hで囲まれる領域を拡大したF/B後SEC指令圧・SEC指令圧・SEC実圧の各特性を示すタイムチャートである。It is a time chart which shows each characteristic of SEC command pressure, SEC command pressure, and SEC actual pressure after F / B which expanded the field surrounded by arrow H of Drawing 6 where noise reduction control is started.
 以下、本発明の無段変速機の変速油圧制御装置及び制御方法を実現する最良の形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, the best mode for realizing a transmission hydraulic pressure control device and a control method for a continuously variable transmission according to the present invention will be described based on Example 1 shown in the drawings.
 まず、構成を説明する。実施例1における変速油圧制御装置及び制御方法は、バリエータと呼ばれるベルト式無段変速機構を搭載したエンジン車に適用したものである。以下、実施例1の構成を、「全体システム構成」、「セカンダリ圧油路構成」、「変速油圧制御処理構成」に分けて説明する。 First, the configuration will be described. The transmission hydraulic pressure control device and the control method in the first embodiment are applied to an engine vehicle equipped with a belt type continuously variable transmission mechanism called a variator. Hereinafter, the configuration of the first embodiment will be described by dividing it into an “overall system configuration”, a “secondary pressure oil passage configuration”, and a “shift oil pressure control processing configuration”.
 [全体システム構成]
 図1は、実施例1の無段変速機の変速油圧制御装置及び制御方法が適用されたエンジン車の駆動系と制御系を示し、図2は、バリエータ4の変速油圧制御を実行する際に用いられる変速スケジュールの一例を示す。以下、図1及び図2に基づいて、全体システム構成を説明する。
[Overall system configuration]
FIG. 1 shows a drive system and a control system of an engine vehicle to which a transmission hydraulic pressure control device and a control method for a continuously variable transmission according to a first embodiment are applied. FIG. An example of the shift schedule used is shown. The overall system configuration will be described below with reference to FIGS.
 エンジン車の駆動系は、図1に示すように、エンジン1と、トルクコンバータ2と、前後進切替機構3と、バリエータ4(ベルト式無段変速機構)と、終減速機構5と、駆動輪6,6と、を備えている。 As shown in FIG. 1, the drive system of the engine vehicle includes an engine 1, a torque converter 2, a forward / reverse switching mechanism 3, a variator 4 (belt-type continuously variable transmission mechanism), a final reduction mechanism 5, and drive wheels. 6 and 6.
 エンジン1は、ドライバによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号により出力トルクが制御可能である。このエンジン1には、スロットルバルブ開閉動作や燃料カット動作等により出力トルク制御を行う出力トルク制御アクチュエータ10を有する。 The engine 1 can control the output torque by an engine control signal from the outside, in addition to the output torque control by the accelerator operation by the driver. The engine 1 includes an output torque control actuator 10 that performs output torque control by a throttle valve opening / closing operation, a fuel cut operation, and the like.
 トルクコンバータ2は、トルク増大機能を有する発進要素であり、トルク増大機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、エンジン出力軸11にコンバータハウジング22を介して連結されたタービンランナ23と、トルクコンバータ出力軸21に連結されたポンプインペラ24と、ケースにワンウェイクラッチ25を介して設けられたステータ26と、を構成要素とする。 The torque converter 2 is a starting element having a torque increasing function. When the torque increasing function is not required, the torque converter 2 includes a lock-up clutch 20 that can directly connect the engine output shaft 11 (= torque converter input shaft) and the torque converter output shaft 21. Have. The torque converter 2 is provided with a turbine runner 23 connected to the engine output shaft 11 via a converter housing 22, a pump impeller 24 connected to the torque converter output shaft 21, and a case via a one-way clutch 25. The stator 26 is a component.
 前後進切替機構3は、バリエータ4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数枚のクラッチプレートによる前進クラッチ31と、複数枚のブレーキプレートによる後退ブレーキ32と、を有する。前進クラッチ31は、Dレンジ等の前進走行レンジ選択時に前進クラッチ圧Pfcにより油圧締結される。後退ブレーキ32は、Rレンジ等の後退走行レンジ選択時に後退ブレーキ圧Prbにより油圧締結される。なお、前進クラッチ31と後退ブレーキ32は、Nレンジ(ニュートラルレンジ、非走行レンジ)の選択時、前進クラッチ圧Pfcと後退ブレーキ圧Prbをドレーンすることで、いずれも解放される。 The forward / reverse switching mechanism 3 is a mechanism that switches the input rotation direction to the variator 4 between a forward rotation direction during forward travel and a reverse rotation direction during reverse travel. The forward / reverse switching mechanism 3 includes a double pinion planetary gear 30, a forward clutch 31 using a plurality of clutch plates, and a reverse brake 32 using a plurality of brake plates. The forward clutch 31 is hydraulically engaged by the forward clutch pressure Pfc when a forward travel range such as the D range is selected. The reverse brake 32 is hydraulically engaged by the reverse brake pressure Prb when the reverse travel range such as the R range is selected. The forward clutch 31 and the reverse brake 32 are both released by draining the forward clutch pressure Pfc and the reverse brake pressure Prb when the N range (neutral range, non-traveling range) is selected.
 バリエータ4は、プライマリプーリ42と、セカンダリプーリ43と、プーリベルト44と、を有し、ベルト接触径の変化により変速比(バリエータ入力回転速度とバリエータ出力回転速度の比)を無段階に変化させる無段変速機能を備える。プライマリプーリ42は、バリエータ入力軸40の同軸上に配された固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bは、プライマリ圧室45に導かれるプライマリ圧Ppriによりスライド動作する。セカンダリプーリ43は、バリエータ出力軸41の同軸上に配された固定プーリ43aとスライドプーリ43bにより構成され、スライドプーリ43bは、セカンダリ圧室46に導かれるセカンダリ圧Psecによりスライド動作する。プーリベルト44は、プライマリプーリ42のV字形状をなすシーブ面と、セカンダリプーリ43のV字形状をなすシーブ面に掛け渡されている。このプーリベルト44は、環状リングを内から外へ多数重ね合わせた2組の積層リングと、打ち抜き板材により形成され、2組の積層リングに沿って挟み込みにより環状に積層して取り付けられた多数のエレメントにより構成されている。なお、プーリベルト44としては、プーリ進行方向に多数配列したチェーンエレメントを、プーリ軸方向に貫通するピンにより結合したチェーンタイプのベルトであっても良い。 The variator 4 has a primary pulley 42, a secondary pulley 43, and a pulley belt 44, and changes a gear ratio (a ratio between a variator input rotation speed and a variator output rotation speed) steplessly by changing a belt contact diameter. A continuously variable transmission function is provided. The primary pulley 42 includes a fixed pulley 42 a and a slide pulley 42 b arranged on the same axis as the variator input shaft 40, and the slide pulley 42 b is slid by the primary pressure Ppri guided to the primary pressure chamber 45. The secondary pulley 43 includes a fixed pulley 43 a and a slide pulley 43 b that are arranged coaxially with the variator output shaft 41, and the slide pulley 43 b is slid by the secondary pressure Psec guided to the secondary pressure chamber 46. The pulley belt 44 is stretched between a sheave surface that forms a V shape of the primary pulley 42 and a sheave surface that forms a V shape of the secondary pulley 43. The pulley belt 44 is formed of two sets of laminated rings in which a large number of annular rings are stacked from the inside to the outside and a plurality of punched plate members, and is attached by being laminated in an annular manner by being sandwiched along the two sets of laminated rings. It is composed of elements. The pulley belt 44 may be a chain-type belt in which a large number of chain elements arranged in the pulley traveling direction are coupled by pins penetrating in the pulley axial direction.
 終減速機構5は、バリエータ出力軸41からのバリエータ出力回転速度を減速すると共に差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、減速ギア機構として、バリエータ出力軸41に設けられた第1ギア52と、アイドラ軸50に設けられた第2ギア53及び第3ギア54と、デフケースの外周位置に設けられた第4ギア55と、を有する。そして、差動ギア機構として、左右のドライブ軸51,51に介装されたディファレンシャルギア56を有する。 The final deceleration mechanism 5 is a mechanism that decelerates the variator output rotation speed from the variator output shaft 41 and transmits it to the left and right drive wheels 6 and 6 while providing a differential function. The final reduction mechanism 5 is provided as a reduction gear mechanism at the outer peripheral position of the first gear 52 provided on the variator output shaft 41, the second gear 53 and the third gear 54 provided on the idler shaft 50, and the differential case. And a fourth gear 55. The differential gear mechanism includes a differential gear 56 interposed between the left and right drive shafts 51, 51.
 エンジン車の制御系は、図1に示すように、油圧制御系である油圧制御ユニット7と、電子制御系であるCVTコントロールユニット8と、を備えている。 As shown in FIG. 1, the engine vehicle control system includes a hydraulic control unit 7 that is a hydraulic control system and a CVT control unit 8 that is an electronic control system.
 油圧制御ユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppriと、セカンダリ圧室46に導かれるセカンダリ圧Psecと、前進クラッチ31への前進クラッチ圧Pfcと、後退ブレーキ32への後退ブレーキ圧Prbと、を調圧するユニットである。この油圧制御ユニット7は、走行用駆動源であるエンジン1により回転駆動されるオイルポンプ70と、オイルポンプ70からの吐出圧に基づいて各種の制御圧を調圧する油圧制御回路71と、を備える。油圧制御回路71には、ライン圧ソレノイドバルブ72と、プライマリ圧ソレノイドバルブ73と、セカンダリ圧ソレノイドバルブ74と、前進クラッチ圧ソレノイドバルブ75と、後退ブレーキ圧ソレノイドバルブ76と、を有する。なお、各ソレノイドバルブ72,73,74,75,76は、CVTコントロールユニット8から出力されるデューティ指令値によって、ON/OFF比率(デューティ比)を異ならせることにより各指令圧に調圧する。 The hydraulic control unit 7 includes a primary pressure Ppri guided to the primary pressure chamber 45, a secondary pressure Psec guided to the secondary pressure chamber 46, a forward clutch pressure Pfc to the forward clutch 31, and a reverse brake pressure Prb to the reverse brake 32. And a unit for regulating the pressure. The hydraulic control unit 7 includes an oil pump 70 that is rotationally driven by the engine 1 that is a travel drive source, and a hydraulic control circuit 71 that adjusts various control pressures based on the discharge pressure from the oil pump 70. . The hydraulic control circuit 71 includes a line pressure solenoid valve 72, a primary pressure solenoid valve 73, a secondary pressure solenoid valve 74, a forward clutch pressure solenoid valve 75, and a reverse brake pressure solenoid valve 76. Each solenoid valve 72, 73, 74, 75, 76 adjusts to each command pressure by varying the ON / OFF ratio (duty ratio) according to the duty command value output from the CVT control unit 8.
 ライン圧ソレノイドバルブ72は、CVTコントロールユニット8から出力されるライン圧指令値に応じ、オイルポンプ70からの吐出圧を、指令されたライン圧PLに調圧する。このライン圧PLは、各種の制御圧を調圧する際の元圧であり、駆動系を伝達するトルクに対してベルト滑りやクラッチ滑りを抑える油圧とされる。 The line pressure solenoid valve 72 adjusts the discharge pressure from the oil pump 70 to the commanded line pressure PL in accordance with the line pressure command value output from the CVT control unit 8. The line pressure PL is a source pressure when adjusting various control pressures, and is a hydraulic pressure that suppresses belt slip and clutch slip against torque transmitted through the drive system.
 プライマリ圧ソレノイドバルブ73は、CVTコントロールユニット8から出力されるプライマリ圧指令値に応じ、ライン圧PLを元圧として指令されたプライマリ圧Ppriに減圧調整する。セカンダリ圧ソレノイドバルブ74は、CVTコントロールユニット8から出力されるセカンダリ圧指令値に応じ、ライン圧PLを元圧として指令されたセカンダリ圧Psecに減圧調整する。 The primary pressure solenoid valve 73 adjusts the pressure to the primary pressure Ppri commanded using the line pressure PL as the original pressure according to the primary pressure command value output from the CVT control unit 8. The secondary pressure solenoid valve 74 adjusts the pressure to the secondary pressure Psec commanded using the line pressure PL as the original pressure in accordance with the secondary pressure command value output from the CVT control unit 8.
 前進クラッチ圧ソレノイドバルブ75は、CVTコントロールユニット8から出力される前進クラッチ圧指令値に応じ、ライン圧PLを元圧として指令された前進クラッチ圧Pfcに減圧調整する。後退ブレーキ圧ソレノイドバルブ76は、CVTコントロールユニット8から出力される後退ブレーキ圧指令値に応じ、ライン圧PLを元圧として指令された後退ブレーキ圧Prbに減圧調整する。 The forward clutch pressure solenoid valve 75 adjusts the pressure to the forward clutch pressure Pfc commanded using the line pressure PL as the original pressure according to the forward clutch pressure command value output from the CVT control unit 8. The reverse brake pressure solenoid valve 76 reduces the pressure to the reverse brake pressure Prb commanded using the line pressure PL as the original pressure in accordance with the reverse brake pressure command value output from the CVT control unit 8.
 CVTコントロールユニット8は、ライン圧制御や変速油圧制御や前後進切替制御、等を行う。ライン圧制御では、スロットル開度等に応じた目標ライン圧を得る指令値をライン圧ソレノイドバルブ72に出力する。変速油圧制御では、目標変速比(目標プライマリ回転速度Npri*)を決めると、決めた目標変速比(目標プライマリ回転速度Npri*)を得る指令値をプライマリ圧ソレノイドバルブ73及びセカンダリ圧ソレノイドバルブ74に出力する。前後進切替制御では、選択されているレンジ位置に応じて前進クラッチ31と後退ブレーキ32の締結/解放を制御する指令値を前進クラッチ圧ソレノイドバルブ75及び後退ブレーキ圧ソレノイドバルブ76に出力する。 The CVT control unit 8 performs line pressure control, shift hydraulic pressure control, forward / reverse switching control, and the like. In the line pressure control, a command value for obtaining a target line pressure corresponding to the throttle opening degree is output to the line pressure solenoid valve 72. In the transmission hydraulic pressure control, when the target speed ratio (target primary rotational speed Npri * ) is determined, command values for obtaining the determined target speed ratio (target primary rotational speed Npri * ) are sent to the primary pressure solenoid valve 73 and the secondary pressure solenoid valve 74. Output. In the forward / reverse switching control, a command value for controlling the engagement / release of the forward clutch 31 and the reverse brake 32 is output to the forward clutch pressure solenoid valve 75 and the reverse brake pressure solenoid valve 76 according to the selected range position.
 CVTコントロールユニット8には、プライマリプーリ回転速度センサ80、車速センサ81、セカンダリ圧センサ82、油温センサ83、インヒビタースイッチ84、ブレーキスイッチ85、アクセル開度センサ86、プライマリ圧センサ87、前後Gセンサ89、等からのセンサ情報やスイッチ情報が入力される。また、エンジン回転速度センサ12からのセンサ情報が入力されるエンジンコントロールユニット88からは、エンジントルク情報を入力し、エンジンコントロールユニット88へはエンジントルクリクエストを出力する。なお、プライマリプーリ回転速度センサ80は、プライマリプーリ回転速度をパルス波信号のカウント回数であるパルスカウント数により検出するセンサである。車速センサ81も同様に、変速機出力回転速度をパルス波信号のカウント回数であるパルスカウント数により検出するセンサである。インヒビタースイッチ84は、選択されているレンジ位置(Dレンジ,Nレンジ,Rレンジ等)を検出し、レンジ位置に応じたレンジ位置信号を出力する。 The CVT control unit 8 includes a primary pulley rotational speed sensor 80, a vehicle speed sensor 81, a secondary pressure sensor 82, an oil temperature sensor 83, an inhibitor switch 84, a brake switch 85, an accelerator opening sensor 86, a primary pressure sensor 87, and a longitudinal G sensor. Sensor information and switch information from 89, etc. are input. Further, engine torque information is input from the engine control unit 88 to which sensor information from the engine rotation speed sensor 12 is input, and an engine torque request is output to the engine control unit 88. The primary pulley rotational speed sensor 80 is a sensor that detects the primary pulley rotational speed based on a pulse count number that is the number of pulse wave signal counts. Similarly, the vehicle speed sensor 81 is a sensor that detects the transmission output rotation speed based on the pulse count number that is the number of counts of the pulse wave signal. The inhibitor switch 84 detects the selected range position (D range, N range, R range, etc.) and outputs a range position signal corresponding to the range position.
 ここで、CVTコントロールユニット8で実行される通常の変速油圧制御は、車速センサ81により検出された車速VSPと、アクセル開度センサ86により検出されたアクセル開度APOにより特定される図2の変速スケジュール上での運転点(VSP,APO)により、目標プライマリ回転速度Npri*を決めることで行われる。 Here, the normal shift hydraulic pressure control executed by the CVT control unit 8 is the shift of FIG. 2 specified by the vehicle speed VSP detected by the vehicle speed sensor 81 and the accelerator opening APO detected by the accelerator opening sensor 86. This is done by determining the target primary rotational speed Npri * based on the operating points (VSP, APO) on the schedule.
 変速スケジュールは、図2に示すように、運転点(VSP,APO)に応じて最Low変速比と最High変速比による変速比幅の範囲内で変速比を無段階に変更するように設定されている。例えば、車速VSPが一定のときは、アクセル踏み込み操作を行うと目標プライマリ回転速度Npri*が上昇してダウンシフト方向に変速し、アクセル踏み込み戻し操作を行うと目標プライマリ回転速度Npri*が低下してアップシフト方向に変速する。アクセル開度APOが一定のときは、車速VSPが上昇するとアップシフト方向に変速し、車速VSPが低下するとダウンシフト方向に変速する。 As shown in FIG. 2, the speed change schedule is set so as to change the speed ratio steplessly within the range of the speed ratio range by the lowest gear ratio and the highest gear ratio according to the operating point (VSP, APO). ing. For example, when the vehicle speed VSP is constant, if the accelerator depressing operation is performed, the target primary rotation speed Npri * increases and shifts in the downshift direction, and if the accelerator depressing operation is performed, the target primary rotation speed Npri * decreases. Shift in the upshift direction. When the accelerator opening APO is constant, the vehicle shifts in the upshift direction when the vehicle speed VSP increases, and the vehicle shifts in the downshift direction when the vehicle speed VSP decreases.
 [セカンダリ圧油路構成]
 図3は、エンジン車のパワーユニット室に車体への弾性支持により搭載されるベルト式無段変速機ユニット9の外観を示す。以下、図3に基づいて、セカンダリ圧油路構成を説明する。
[Secondary pressure oil passage configuration]
FIG. 3 shows the appearance of the belt type continuously variable transmission unit 9 mounted in the power unit chamber of the engine vehicle by elastic support to the vehicle body. Hereinafter, the secondary pressure oil passage configuration will be described with reference to FIG.
 ベルト式無段変速機ユニット9は、図3に示すように、トランスミッションケース90と、ケース一側面開口に固定されるサイドカバー91と、ケース他側面開口に固定されるコンバータケース92と、ケース底面開口に固定されるオイルパン93と、を有する。そして、トランスミッションケース90とサイドカバー91により形成される空間に、前後進切替機構3とバリエータ4と終減速機構5と油圧制御回路71が内蔵されている。また、コンバータケース92により形成される空間にトルクコンバータ2が内蔵されていて、コンバータケース92は、エンジン1と結合される。 As shown in FIG. 3, the belt-type continuously variable transmission unit 9 includes a transmission case 90, a side cover 91 fixed to one side opening of the case, a converter case 92 fixed to the other side opening of the case, and a bottom of the case An oil pan 93 fixed to the opening. In a space formed by the transmission case 90 and the side cover 91, the forward / reverse switching mechanism 3, the variator 4, the final reduction mechanism 5, and the hydraulic control circuit 71 are built. In addition, torque converter 2 is built in a space formed by converter case 92, and converter case 92 is coupled to engine 1.
 ベルト式無段変速機ユニット9は、エンジン1と結合させることでパワーユニットを構成し、このパワーユニットは、フロント側のパワーユニット室にエンジン横置きにて配置され、複数のパワーユニットマウントを介して車体へ弾性支持される。 The belt-type continuously variable transmission unit 9 is combined with the engine 1 to form a power unit. This power unit is disposed in the power unit chamber on the front side in a horizontal position and elastically moves to the vehicle body via a plurality of power unit mounts. Supported.
 サイドカバー91は、バリエータ4のプライマリプーリ42のプーリ軸の軸端部を支持すると共に、セカンダリプーリ43のプーリ軸の軸端部を支持する。そして、サイドカバー91には、図3に示すように、オイルポンプ70から油圧制御回路71を経由し、セカンダリプーリ43のセカンダリ圧室46にセカンダリ圧Psecを導くセカンダリ圧油路94が形成されている。さらに、サイドカバー91には、図3に示すように、ユニット側マウントブラケット95が固定されている。つまり、セカンダリ圧油路94とユニット側マウントブラケット95とは、サイドカバー91において互いに近接する位置に配されている。 The side cover 91 supports the shaft end portion of the pulley shaft of the primary pulley 42 of the variator 4 and also supports the shaft end portion of the pulley shaft of the secondary pulley 43. As shown in FIG. 3, the side cover 91 is formed with a secondary pressure oil passage 94 that guides the secondary pressure Psec from the oil pump 70 to the secondary pressure chamber 46 of the secondary pulley 43 via the hydraulic control circuit 71. Yes. Further, as shown in FIG. 3, a unit side mounting bracket 95 is fixed to the side cover 91. That is, the secondary pressure oil passage 94 and the unit-side mount bracket 95 are arranged at positions close to each other in the side cover 91.
 [変速油圧制御処理構成]
 図4は、実施例1のCVTコントロールユニット8で実行される変速油圧制御処理の流れを示す。以下、変速油圧制御処理構成をあらわす図4の各ステップについて説明する。なお、この変速油圧制御処理は、走行レンジ(Dレンジ又はRレンジ)を選択しているときに実行される。
[Transmission hydraulic pressure control processing configuration]
FIG. 4 shows the flow of the shift hydraulic pressure control process executed by the CVT control unit 8 of the first embodiment. In the following, each step of FIG. 4 representing the transmission hydraulic pressure control processing configuration will be described. This shift hydraulic pressure control process is executed when a travel range (D range or R range) is selected.
 ステップS1では、アクセルOFF・ブレーキONの状況で車両が停車中であるか否かを判断する。YES(停車中)の場合はステップS2へ進み、NO(走行中)の場合はステップS6へ進む。ここで、アクセルOFFの情報はアクセル開度センサ86から取得し、ブレーキONの情報はブレーキスイッチ85から取得する。停車中であるか否かの判断は、バリエータ4の出力回転速度を検出する車速センサ81からの車速情報を用い、車速センサ値が停車判定値を示すと停車中であると判断する。 In step S1, it is determined whether or not the vehicle is stopped in a situation where the accelerator is OFF and the brake is ON. If YES (stopped), the process proceeds to step S2, and if NO (running), the process proceeds to step S6. Here, accelerator OFF information is acquired from the accelerator opening sensor 86, and brake ON information is acquired from the brake switch 85. Whether or not the vehicle is stopped is determined by using vehicle speed information from the vehicle speed sensor 81 that detects the output rotation speed of the variator 4 and when the vehicle speed sensor value indicates a stop determination value.
 ステップS2では、ステップS1での停車中であるとの判断に続き、車両が停車している路面が平地であるか否かを判断する。YES(平地)の場合はステップS3へ進み、NO(勾配地)の場合はステップS6へ進む。ここで、停車路面が平地であるか否かの判断は、前後Gセンサ89からのセンサ値が、平地判定下限値≦前後Gセンサ値≦平地判定上限値であるとき、停車路面が平地であると判断する。平地判定下限値>前後Gセンサ値、又は、前後Gセンサ値>平地判定上限値であるとき、停車路面が勾配地であると判断する。 In step S2, following the determination that the vehicle is stopped in step S1, it is determined whether or not the road surface on which the vehicle is stopped is flat. If YES (flat ground), the process proceeds to step S3. If NO (gradient ground), the process proceeds to step S6. Here, whether or not the stop road surface is flat is determined when the sensor value from the front and rear G sensor 89 satisfies the flat ground determination lower limit value ≦ the front and rear G sensor value ≦ the flat ground determination upper limit value. Judge. When the flat ground determination lower limit value> the front and rear G sensor value or the front and rear G sensor value> the flat ground determination upper limit value, it is determined that the stop road surface is a slope.
 ステップS3では、ステップS2での平地であるとの判断に続き、エンジン回転速度がアイドル回転判定値以下であるか否かを判断する。YES(エンジン回転速度≦アイドル回転判定値)の場合はステップS4へ進み、NO(エンジン回転速度>アイドル回転判定値)の場合はステップS6へ進む。ここで、エンジン回転速度の情報は、エンジン回転速度センサ12から取得する。「アイドル回転判定値」は、エンジン1の回転速度がアイドル回転速度域まで低下した状態になったことを示す値に設定される。 In step S3, it is determined whether or not the engine rotation speed is equal to or lower than the idle rotation determination value following the determination that the road is flat in step S2. If YES (engine rotation speed ≦ idle rotation determination value), the process proceeds to step S4. If NO (engine rotation speed> idle rotation determination value), the process proceeds to step S6. Here, information on the engine speed is acquired from the engine speed sensor 12. The “idle rotation determination value” is set to a value indicating that the rotation speed of the engine 1 has been reduced to the idle rotation speed range.
 ステップS4では、ステップS3でのエンジン回転速度≦アイドル回転判定値であるとの判断に続き、プライマリプーリ回転速度センサ80からのパルス波信号をチェックすることによりプライマリプーリ回転速度が低回転状態になったか否かを判断する。YES(プライマリプーリ回転速度が低回転状態になった)の場合はステップS5へ進み、NO(プライマリプーリ回転速度が低回転状態になっていない)の場合はステップS6へ進む。ここで、プライマリプーリ回転速度の低回転状態判断を行う際は、プライマリプーリ回転速度センサ80からパルス波信号が入力されると、パルス波信号のダウンエッジからタイマー値のカウントを開始する。そして、タイマー値が閾値(例えば、0.5sec)を経過しても次のパルス波信号が入力されないとプライマリプーリ回転速度が低回転状態になったと判断する。つまり、タイマー値が閾値を経過する前に次のパルス波信号が入力されると、プライマリプーリ回転速度は、未だに低回転状態になっていないと判断する。タイマー値の閾値は、セカンダリ圧Psecを低下させてもバリエータ4がアップシフト側に変速比が変化しないプーリ回転停止状態のプーリ回転速度になったことを判断するのに必要な時間に設定される。 In step S4, following the determination in step S3 that the engine rotation speed is equal to or less than the idle rotation determination value, the primary pulley rotation speed is in a low rotation state by checking the pulse wave signal from the primary pulley rotation speed sensor 80. It is determined whether or not. If YES (primary pulley rotation speed is low), the process proceeds to step S5. If NO (primary pulley rotation speed is not low), the process proceeds to step S6. Here, when determining the low rotation state of the primary pulley rotation speed, when a pulse wave signal is input from the primary pulley rotation speed sensor 80, counting of the timer value is started from the down edge of the pulse wave signal. If the next pulse wave signal is not input even after the timer value has passed a threshold value (for example, 0.5 sec), it is determined that the primary pulley rotation speed has become a low rotation state. That is, if the next pulse wave signal is input before the timer value passes the threshold, it is determined that the primary pulley rotational speed is not yet in a low rotational state. The threshold value of the timer value is set to a time required to determine that the variator 4 has reached the pulley rotation speed in the pulley rotation stop state in which the gear ratio does not change to the upshift side even when the secondary pressure Psec is decreased. .
 ステップS5では、ステップS4でのプライマリプーリ回転速度が低回転状態になったとの判断に続き、セカンダリ圧Psecを低下させる規制が無いか否かを判断する。YES(セカンダリ圧低下規制無し)の場合はステップS6へ進み、NO(セカンダリ圧低下規制有り)の場合はステップS6へ進む。ここで、セカンダリ圧Psecの低下規制判断とは、例えば、実施例1のノイズ低減制御以外の他の変速油圧制御の介入によりセカンダリ圧Psecを上昇させている場合、セカンダリ圧Psecの低下規制有りと判断する。そして、ステップS7以降のノイズ低減制御処理を実行しない。 In step S5, following the determination that the primary pulley rotation speed is in the low rotation state in step S4, it is determined whether there is a restriction to reduce the secondary pressure Psec. If YES (no secondary pressure lowering restriction), the process proceeds to step S6, and if NO (secondary pressure lowering restriction is present), the process proceeds to step S6. Here, the reduction regulation determination of the secondary pressure Psec is, for example, that the secondary pressure Psec is regulated to be lower when the secondary pressure Psec is raised by the intervention of other shift hydraulic pressure control than the noise reduction control of the first embodiment. to decide. And the noise reduction control process after step S7 is not performed.
 ステップS6では、ステップS1,S2,S3,S4,S5の何れかのステップでNOであるとの判断に続き、通常の変速油圧制御を実行し、リターンへ進む。ここで、通常の変速油圧制御とは、実プライマリ回転速度Npriが目標プライマリ回転速度Npri*に収束するように、プライマリ圧Ppriとセカンダリ圧Psecの差圧をフィードバック制御することをいう。このとき、プライマリ圧Ppriとセカンダリ圧Psecの片方のみを低下させたり上昇させたりするのではなく、両圧Ppri,Psecを低下させたり上昇させたとすることで、プライマリプーリ42とセカンダリプーリ43とのバランス推力を保つようにしている。 In step S6, following the determination of NO in any of steps S1, S2, S3, S4, and S5, normal shift hydraulic pressure control is executed, and the process proceeds to return. Here, the normal transmission hydraulic pressure control means feedback control of the differential pressure between the primary pressure Ppri and the secondary pressure Psec so that the actual primary rotation speed Npri converges to the target primary rotation speed Npri * . At this time, instead of lowering or raising only one of the primary pressure Ppri and the secondary pressure Psec, it is assumed that both the pressures Ppri and Psec are lowered or raised, so that the primary pulley 42 and the secondary pulley 43 The balance thrust is maintained.
 ステップS7では、ステップS5でのセカンダリ圧低下規制無しであるとの判断に続き、プライマリ指令圧の下限圧(PRI下限圧)を、プライマリ下限圧Bまで上昇させ、ステップS8へ進む。なお、ステップS5にてセカンダリ圧低下規制無しと判断されると、ステップS1,S2,S3,S4,S5によるノイズ低減制御の入り条件が成立したと判断され、ノイズ低減制御を開始する制御進入フラグが立てられる。ここで、「プライマリ下限圧B」は、プライマリプーリ42とセカンダリプーリ43とのバランス推力により設定されるプライマリ圧Ppriより高い油圧であり、かつ、アイドル回転状態であるエンジン1から入力されるトルクに対してベルト滑りが発生しない油圧(例えば、0.7MPa)に設定される。 In step S7, following the determination in step S5 that there is no secondary pressure reduction restriction, the lower limit pressure (PRI lower limit pressure) of the primary command pressure is increased to the primary lower limit pressure B, and the process proceeds to step S8. If it is determined in step S5 that there is no secondary pressure reduction restriction, it is determined that the conditions for entering the noise reduction control in steps S1, S2, S3, S4, and S5 are satisfied, and the control entry flag that starts the noise reduction control is determined. Is established. Here, the “primary lower limit pressure B” is a hydraulic pressure higher than the primary pressure Ppri set by the balance thrust between the primary pulley 42 and the secondary pulley 43 and is a torque input from the engine 1 in the idling rotation state. On the other hand, the hydraulic pressure (for example, 0.7 MPa) at which no belt slip occurs is set.
 ステップS8では、ステップS7でのPRI下限圧をPRI下限圧Bまで上昇、或いは、ステップS12での抜け条件不成立であるとの判断に続き、実セカンダリ圧Psecが、セカンダリ目標圧Aにヒステリシス分αを加えた値以上であるか否かを判断する。YES(実SEC圧≧A+α)の場合はステップS9へ進み、NO(実SEC圧<A+α)の場合はステップS10へ進む。ここで、「実セカンダリ圧Psec」の情報は、セカンダリ圧センサ82からのセンサ信号により取得される。「セカンダリ目標圧A」は、実験により確認されたオイルポンプノイズが低減されるセカンダリ圧領域の最大圧(例えば、0.8MPa)に設定される。「ヒステリシス分α」は、セカンダリ圧Psecの油圧制御ハンチングを抑える値に設定される。 In step S8, following the determination that the PRI lower limit pressure is increased to the PRI lower limit pressure B in step S7 or that the release condition is not satisfied in step S12, the actual secondary pressure Psec is added to the secondary target pressure A by a hysteresis amount α. It is determined whether or not the value is equal to or greater than the value added. If YES (actual SEC pressure ≧ A + α), the process proceeds to step S9. If NO (actual SEC pressure <A + α), the process proceeds to step S10. Here, the information of “actual secondary pressure Psec” is acquired from a sensor signal from the secondary pressure sensor 82. The “secondary target pressure A” is set to the maximum pressure (for example, 0.8 MPa) in the secondary pressure region in which the oil pump noise confirmed by the experiment is reduced. “Hysteresis α” is set to a value that suppresses hydraulic control hunting of the secondary pressure Psec.
 ステップS9では、ステップS8での実SEC圧≧A+αであるとの判断に続き、セカンダリ圧ソレノイドバルブ74へ出力するセカンダリ圧指令値によるセカンダリ指令圧を下げ、ステップS12へ進む。ここで、実SEC圧が(A+α)から所定圧以上離れている領域においては、セカンダリ指令圧を急勾配の指令圧低下特性にて下げ、実SEC圧が(A+α)から所定圧未満まで近づくと、セカンダリ指令圧の低下特性の勾配を緩やかにする。つまり、実SEC圧の低下制御においては、応答性(急勾配)と収束性(緩勾配)を両立させるようにセカンダリ指令圧の低下勾配を決めている。 In step S9, following the determination that the actual SEC pressure ≧ A + α in step S8, the secondary command pressure by the secondary pressure command value output to the secondary pressure solenoid valve 74 is lowered, and the process proceeds to step S12. Here, in a region where the actual SEC pressure is a predetermined pressure or more away from (A + α), the secondary command pressure is lowered with a steep command pressure drop characteristic, and when the actual SEC pressure approaches from (A + α) to less than the predetermined pressure. The slope of the secondary command pressure drop characteristic is moderated. That is, in the actual SEC pressure decrease control, the secondary command pressure decrease gradient is determined so as to achieve both responsiveness (steep gradient) and convergence (slow gradient).
 ステップS10では、ステップS8での実SEC圧<A+αであるとの判断に続き、実セカンダリ圧Psecがセカンダリ目標圧A以下であるか否かを判断する。YES(実SEC圧≦A)の場合はステップS11へ進み、NO(実SEC圧>A)の場合はステップS12へ進む。なお、「セカンダリ目標圧A」は、ステップS8と同じ値である。 In step S10, following the determination that the actual SEC pressure <A + α in step S8, it is determined whether the actual secondary pressure Psec is equal to or lower than the secondary target pressure A. If YES (actual SEC pressure ≦ A), the process proceeds to step S11. If NO (actual SEC pressure> A), the process proceeds to step S12. “Secondary target pressure A” is the same value as in step S8.
 ステップS11では、ステップS6での実SEC圧≦Aであるとの判断に続き、そのときのセカンダリ指令圧(SEC指令圧)をそのまま維持し、ステップS12へ進む。 In step S11, following the determination that the actual SEC pressure ≦ A in step S6, the secondary command pressure (SEC command pressure) at that time is maintained as it is, and the process proceeds to step S12.
 ステップS12では、ステップS9でのSEC指令圧の下げ、或いは、ステップS10での実SEC圧>Aであるとの判断、或いは、ステップS11でのSEC圧維持に続き、ノイズ低減制御を終了する抜け条件が成立したか否かを判断する。YES(抜け条件成立)の場合はステップS13へ進み、NO(抜け条件不成立)の場合はステップS8へ戻る。ここで、抜け条件の不成立/成立判断は、下記の6つの条件が全て不成立である間は抜け条件不成立と判断し、下記の6つの条件のうち1つの条件が成立すると抜け条件成立と判断する。具体的な6つの条件は、
1.制御開始後のプライマリパルスカウント数≧閾値(例えば、4回)
なお、セカンダリ回転速度センサが設けられている場合には、制御開始後のセカンダリパルスカウント数≧閾値としても良い。
2.ブレーキOFF
3.実SEC圧≦SEC必要圧となってa時間が経過
4.アクセルON
5.走行レンジ以外へのセレクト操作
6.フェイル判定
である。
In step S12, following the decrease in the SEC command pressure in step S9, or the determination that the actual SEC pressure> A in step S10, or the maintenance of the SEC pressure in step S11, the noise reduction control is terminated. It is determined whether the condition is satisfied. If YES (exit condition is satisfied), the process proceeds to step S13. If NO (exit condition is not satisfied), the process returns to step S8. Here, the determination of whether or not the missing condition is established is that the missing condition is not established while all of the following six conditions are not established, and when one of the following six conditions is established, it is determined that the missing condition is established. . Six specific conditions are:
1. Primary pulse count after starting control ≥ threshold (for example, 4 times)
In addition, when the secondary rotational speed sensor is provided, it is good also as secondary pulse count number ≥ threshold value after control start.
2.Brake off
3. Actual SEC pressure ≤ SEC required pressure a time has elapsed
4.Accelerator ON
5. Select operation outside the driving range
6. It is a fail judgment.
 ここで、「3.実SEC圧≦SEC必要圧となってa時間が経過」とは、図5に示すように、SEC実圧がSEC必要圧(セカンダリ目標圧Aより低い油圧)以下になったままでa時間が経過するタイミングをいう。このタイミングは、SEC実圧がセカンダリ目標圧A以下になった後、F/B後SEC指令圧を上昇させているにもかかわらず、SEC実圧が低下を続けている状況のときであり、何らかの原因によりSEC実圧が容量不足に陥ったと判断されるタイミングである。なお、「SEC必要圧」とは、エンジン1からトルクコンバータ2を経由してバリエータ4へ入力される入力トルクに相当するセカンダリ圧Psecをいう。但し、バリエータ4への入力トルクは、トルクコンバータ2のトルク容量τとエンジン回転速度Neを用いた(入力トルク≒τNe2)の式により計算される。 Here, “3. Actual SEC pressure ≤ SEC required pressure and a time has elapsed” means that the actual SEC pressure is less than the required SEC pressure (hydraulic pressure lower than the secondary target pressure A) as shown in FIG. This is the timing when a time elapses. This timing is when the SEC actual pressure continues to decrease after the SEC actual pressure has fallen below the secondary target pressure A, even though the SEC command pressure has been increased after F / B. It is the timing when it is determined that the actual SEC pressure has become insufficient for some reason. The “SEC required pressure” refers to the secondary pressure Psec corresponding to the input torque input from the engine 1 to the variator 4 via the torque converter 2. However, the input torque to the variator 4 is calculated by the equation (input torque≈τNe 2 ) using the torque capacity τ of the torque converter 2 and the engine rotational speed Ne.
 ステップS13では、ステップS12での抜け条件成立であるとの判断に続き、PRI下限圧Bにより低下を抑えたプライマリ指令圧を低下させて元に戻すと共に、低下させたセカンダリ指令圧を上昇させて元に戻し、リターンへ進む。このステップS13では、ステップS12にてノイズ低減制御の抜け条件が成立したと判断されると、制御中に立てていた制御進入フラグが降ろされる。 In step S13, following the determination that the removal condition is satisfied in step S12, the primary command pressure, which is suppressed by the PRI lower limit pressure B, is reduced and returned to the original value, and the reduced secondary command pressure is increased. Undo and proceed to return. In step S13, when it is determined in step S12 that the noise reduction control missing condition is satisfied, the control approach flag set during the control is lowered.
 次に、作用を説明する。実施例1の作用を、「変速油圧制御処理作用」、「変速油圧制御の背景技術と課題」、「変速油圧制御作用」、「変速油圧制御の特徴作用」に分けて説明する。 Next, the operation will be described. The operation of the first embodiment will be described by dividing it into “transmission oil pressure control processing operation”, “background art and problems of transmission oil pressure control”, “transmission oil pressure control operation”, and “characteristic operation of transmission oil pressure control”.
 [変速油圧制御処理作用]
 以下、図4に示すフローチャートに基づいて、変速油圧制御処理作用を説明する。先ず、アクセルON・ブレーキOFFによる走行時、或いは、アクセルOFF・ブレーキONによる減速走行時、或いは、アクセルOFF・ブレーキONであるが停車条件が成立しないときは、ステップS1→ステップS6→リターンへと進む流れが繰り返される。ステップS6では、通常の変速油圧制御が実行される。
[Speed change hydraulic control processing action]
Hereinafter, the shift hydraulic pressure control processing operation will be described based on the flowchart shown in FIG. First, when traveling with the accelerator on / brake off, or when decelerating with the accelerator off / brake on, or when the accelerator is off / brake on but the stop condition is not met, go to step S1 → step S6 → return The forward flow is repeated. In step S6, normal transmission hydraulic pressure control is executed.
 停車条件は成立するが、平地条件が成立しないときは、ステップS1→ステップS2→ステップS6→リターンへと進む流れが繰り返される。ステップS6では、通常の変速油圧制御が実行される。 When the stop condition is satisfied, but the flat ground condition is not satisfied, the flow from step S1 to step S2 to step S6 to return is repeated. In step S6, normal transmission hydraulic pressure control is executed.
 停車条件と平地条件は成立するが、アイドル回転条件が成立しないときは、ステップS1→ステップS2→ステップS3→ステップS6→リターンへと進む流れが繰り返される。ステップS6では、通常の変速油圧制御が実行される。 When the stop condition and the flat ground condition are satisfied, but the idle rotation condition is not satisfied, the flow of step S1, step S2, step S3, step S6 and return is repeated. In step S6, normal transmission hydraulic pressure control is executed.
 停車条件と平地条件とアイドル回転条件は成立するが、プーリ低回転条件が成立しないときは、ステップS1→ステップS2→ステップS3→ステップS4→ステップS6→リターンへと進む流れが繰り返される。ステップS6では、通常の変速油圧制御が実行される。 The stopping condition, the flat ground condition, and the idle rotation condition are satisfied, but when the pulley low rotation condition is not satisfied, the flow from step S1, step S2, step S3, step S4, step S6, and return is repeated. In step S6, normal transmission hydraulic pressure control is executed.
 停車条件と平地条件とアイドル回転条件とプーリ低回転条件は成立するが、SEC圧低下規制無し条件が成立しないときは、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6→リターンへと進む流れが繰り返される。ステップS6では、通常の変速油圧制御が実行される。 Stop conditions, flat ground conditions, idle rotation conditions, and low pulley rotation conditions are satisfied, but when the SEC pressure reduction no restriction condition is not satisfied, step S1, step S2, step S3, step S4, step S5, step S6, and return. The flow to go to is repeated. In step S6, normal transmission hydraulic pressure control is executed.
 停車条件と平地条件とアイドル回転条件とプーリ低回転条件とSEC圧低下規制無し条件が成立するときは、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS7へと進む。ステップS7では、ノイズ低減制御の入り条件が成立したことで、プライマリ下限圧をプライマリ下限圧Bまで上昇させる制御が行われる。 When the stop condition, the flat ground condition, the idle rotation condition, the pulley low rotation condition, and the SEC pressure lowering no-restriction condition are satisfied, the process proceeds from step S1, step S2, step S3, step S4, step S5, and step S7. In step S <b> 7, the control for increasing the primary lower limit pressure to the primary lower limit pressure B is performed because the entry condition for the noise reduction control is satisfied.
 続いて、ステップS8→ステップS9→ステップS12へと進み、ステップS8では、実セカンダリ圧Psecが、セカンダリ目標圧Aにヒステリシス分αを加えた値以上であるか否かが判断される。そして、実SEC圧≧A+αと判断されている間、ステップS8→ステップS9→ステップS12へと進む流れが繰り返され、ステップS9では、セカンダリ圧ソレノイドバルブ74へ出力するセカンダリ圧指令値によるセカンダリ指令圧を下げる制御が開始される。 Subsequently, the process proceeds from step S8 to step S9 to step S12. In step S8, it is determined whether or not the actual secondary pressure Psec is equal to or greater than the value obtained by adding the hysteresis amount α to the secondary target pressure A. Then, while it is determined that the actual SEC pressure ≧ A + α, the flow from step S8 → step S9 → step S12 is repeated, and in step S9, the secondary command pressure based on the secondary pressure command value output to the secondary pressure solenoid valve 74 is obtained. Control to lower is started.
 セカンダリ指令圧を下げる制御が開始されたことで、実SEC圧<A+αであると判断されると、ステップS8からステップS10へ進み、ステップS10にて実SEC圧>Aと判断されている間は、ステップS8→ステップS10→ステップS12へと進む流れが繰り返される。この間は、それまでの制御を引き継ぎ、セカンダリ指令圧が下げられる。 If it is determined that the actual SEC pressure <A + α is established by starting the control to lower the secondary command pressure, the process proceeds from step S8 to step S10, while the actual SEC pressure> A is determined in step S10. The flow from step S8 to step S10 to step S12 is repeated. During this time, the control until then is taken over and the secondary command pressure is lowered.
 ステップS10にて実SEC圧≦Aと判断されると、ステップS8からステップS10→ステップS11→ステップS12へと進む流れが繰り返され、ステップS11では、そのときのセカンダリ指令圧がそのまま維持される。セカンダリ指令圧を維持したことで、実SEC圧>Aになると、実SEC圧≧A+αと判断されるまでの間は、ステップS8→ステップS10→ステップS12へと進む流れが繰り返される。この間は、それまでの制御を引き継ぎ、セカンダリ指令圧が維持される。このように、セカンダリ指令圧を下げる制御動作とセカンダリ指令圧を維持する制御動作とを繰り返すことで、実セカンダリ圧Psecがセカンダリ目標圧Aまで下げられる。 If it is determined in step S10 that the actual SEC pressure ≦ A, the flow from step S8 to step S10 → step S11 → step S12 is repeated, and in step S11, the secondary command pressure at that time is maintained as it is. By maintaining the secondary command pressure, if the actual SEC pressure> A, the flow of going from step S8 → step S10 → step S12 is repeated until the actual SEC pressure ≧ A + α is determined. During this time, the control until then is taken over and the secondary command pressure is maintained. Thus, the actual secondary pressure Psec is lowered to the secondary target pressure A by repeating the control operation for lowering the secondary command pressure and the control operation for maintaining the secondary command pressure.
 その後、ノイズ低減制御を終了する抜け条件が成立すると、ステップS12からステップS13→リターンへ進む。ステップS13では、制御進入フラグが降ろされ、PRI下限圧Bにより低下を抑えたプライマリ指令圧を低下させて元に戻す制御が行われると共に、低下させたセカンダリ指令圧を上昇させて元に戻す制御が行われる。 Thereafter, when the missing condition for ending the noise reduction control is established, the process proceeds from step S12 to step S13 → return. In step S13, the control approach flag is lowered, and the primary command pressure that is suppressed from being reduced by the PRI lower limit pressure B is controlled to return to the original value, and the reduced secondary command pressure is increased to return to the original value. Is done.
 このように、Dレンジ又はRレンジの選択時、セカンダリ圧Psecを低下させてもバリエータ4がアップシフト側に変速しないプーリ回転速度になると、実セカンダリ圧Psecをセカンダリ目標圧Aまで低下させる。この実セカンダリ圧Psecを低下させる制御により、車両状態が停車直前状態又は停車状態において、“オイルポンプノイズ”と呼ばれる騒音を低減し、音振性能を改善するようにしている。 Thus, when the D range or the R range is selected, if the variator 4 reaches a pulley rotation speed that does not shift to the upshift side even if the secondary pressure Psec is reduced, the actual secondary pressure Psec is reduced to the secondary target pressure A. By controlling to reduce the actual secondary pressure Psec, noise called “oil pump noise” is reduced and the sound vibration performance is improved when the vehicle state is just before the vehicle is stopped or is stopped.
 そして、実セカンダリ圧Psecを低下させる制御を行うことにより、プーリベルト44のベルトクランプ力が低下し、実セカンダリ圧Psecの低下を原因とするベルト滑りの発生が懸念される。しかし、このベルト滑りに対しては、実セカンダリ圧Psecを低下に伴って低下しようとする実プライマリ圧Ppriをプライマリ下限圧Bにより持ち上げ、実プライマリ圧Ppriがプライマリ下限圧Bより低下しないようにすることで防止している。 Further, by performing the control to reduce the actual secondary pressure Psec, the belt clamping force of the pulley belt 44 is reduced, and there is a concern that the belt slip may occur due to the decrease in the actual secondary pressure Psec. However, for this belt slip, the actual primary pressure Ppri, which is to be decreased as the actual secondary pressure Psec is decreased, is raised by the primary lower limit pressure B so that the actual primary pressure Ppri does not decrease below the primary lower limit pressure B. To prevent it.
 [変速油圧制御の背景技術と課題]
 先ず、DレンジやRレンジでの停車中にオイルポンプノイズが発生することがユーザから指摘された。特に、道路ノイズやエンジン音等が走行中に比べて小さい停車直前状態や停車状態において、オイルポンプノイズが発生すると、運転者にとって違和感になりやすく、音振性能を改善してほしいという要求があった。
[Background technology and issues of transmission hydraulic control]
First, it was pointed out by the user that oil pump noise is generated while the vehicle is stopped in the D range or the R range. In particular, when oil pump noise occurs in a state just before stopping or when the vehicle is stopped, where road noise and engine noise are low compared to when driving, there is a demand for the driver to feel uncomfortable and to improve sound vibration performance. It was.
 この音振性能の改善要求に対し、本発明者等がオイルポンプノイズの発生原因を調査したところ、オイルポンプノイズは元々ライン圧に依存性を持っているが、車両共振領域を過ぎてからはライン圧依存性が弱くなり、セカンダリ圧依存性を持つことが分かった。そこで、エンジン1により駆動されるオイルポンプ70からセカンダリプーリ43までのセカンダリ圧油路94に注目した(図3)。このセカンダリ圧油路94に注目すると、セカンダリ圧油路94を通過するセカンダリ圧Psecの変動成分を加振源とし、セカンダリ圧油路94に近接して設けられたユニット側マウントブラケット95との共振により“オイルポンプノイズ”が発生することが判明した。 In response to this request for improvement in sound vibration performance, the present inventors investigated the cause of the oil pump noise, and the oil pump noise originally had a dependency on the line pressure. It became clear that the line pressure dependency became weak and had a secondary pressure dependency. Therefore, attention was paid to the secondary pressure oil passage 94 from the oil pump 70 driven by the engine 1 to the secondary pulley 43 (FIG. 3). When attention is paid to the secondary pressure oil passage 94, resonance with a unit-side mount bracket 95 provided close to the secondary pressure oil passage 94 using the fluctuation component of the secondary pressure Psec passing through the secondary pressure oil passage 94 as an excitation source. It was found that “oil pump noise” occurred.
 そして、セカンダリ圧Psecを調圧するセカンダリ圧ソレノイドバルブ74は、ON/OFF動作を繰り返して調圧するため、図7のSEC実圧特性に示すように、油圧が変動する脈動油圧になる。このように、オイルポンプノイズの加振源が、セカンダリ圧Psecの変動成分にあることから、セカンダリ圧Psecを低減すると、オイルポンプノイズが低減され、音振性能が改善することを知見した。なお、セカンダリ圧Psecを低減するとオイルポンプノイズが低減される理由は、セカンダリ圧Psecを低減することにより、加振源になる変動成分(脈動油圧の振幅)も小さく抑えられることによると思われる。 Further, the secondary pressure solenoid valve 74 that regulates the secondary pressure Psec is pulsating oil pressure that fluctuates as shown in the SEC actual pressure characteristics in FIG. Thus, since the excitation source of the oil pump noise is in the fluctuation component of the secondary pressure Psec, it has been found that when the secondary pressure Psec is reduced, the oil pump noise is reduced and the sound vibration performance is improved. Note that the reason why the oil pump noise is reduced when the secondary pressure Psec is reduced is that the fluctuation component (amplitude of the pulsating hydraulic pressure) that becomes the excitation source is suppressed to a small value by reducing the secondary pressure Psec.
 しかし、オイルポンプノイズを低減することだけに着目し、車両状態を考慮することなくセカンダリ圧Psecを低減すると、例えば、走行中においては、ベルト滑りが発生したり、意図しない変速が発生したりする、という課題がある。つまり、走行中にセカンダリ圧Psecを低減すると、セカンダリプーリ43によるプーリベルト44のクランプ力が低下し、ベルト伝達トルクがプーリ挟持トルクを上回り、ベルト滑りが発生する。また、走行中にセカンダリ圧Psecを低減すると、セカンダリプーリ43のプーリ幅が拡大し、プーリベルト44のセカンダリプーリ43に対する巻き付き位置がプーリ回転に伴ってプーリ内径方向に移動し、意図しないアップシフト変速が発生する。 However, focusing only on reducing the oil pump noise and reducing the secondary pressure Psec without considering the vehicle state, for example, belt slippage or unintentional shift occurs during traveling. There is a problem. That is, when the secondary pressure Psec is reduced during traveling, the clamping force of the pulley belt 44 by the secondary pulley 43 is reduced, the belt transmission torque exceeds the pulley clamping torque, and belt slip occurs. Further, when the secondary pressure Psec is reduced during traveling, the pulley width of the secondary pulley 43 is expanded, and the winding position of the pulley belt 44 with respect to the secondary pulley 43 moves in the pulley inner diameter direction as the pulley rotates, and an unintended upshift speed change Occurs.
 [変速油圧制御作用]
 以下、図6に示すタイムチャートに基づいて、変速油圧制御作用を説明する。時刻t1にてアクセル足放し操作を行った後、時刻t2にてブレーキ踏み込み操作を行って車両を停止させるとき、通常の変速油圧制御が実行され、運転点(VSP,APO)が図2のC点→D点→E点→F点→G点へと進み、車速VSPが低下する。
[Speed change hydraulic control]
Hereinafter, the shift hydraulic pressure control operation will be described based on the time chart shown in FIG. When the accelerator is released at time t1 and then the brake is depressed at time t2 to stop the vehicle, normal shift hydraulic pressure control is executed and the operating point (VSP, APO) is set to C in FIG. The vehicle proceeds from point → D point → E point → F point → G point, and the vehicle speed VSP decreases.
 つまり、運転点(VSP,APO)が図2のC点のときにアクセル足放し操作を行うと、図2のD点へ移動し、バリエータ4の変速比はアップシフト方向に変速される。そして、図2のD点に移動した後、ブレーキ踏み込み操作を行って減速すると、コースト変速線に沿って最High変速比を維持したままで運転点(VSP,APO)が図2のD点からE点へ移動する。そして、図2のE点からは、車速VSPの低下に伴ってバリエータ4の変速比は最High変速比からダウンシフト方向に変速しながらF点へ移動する。図2の最Low変速比によるF点に到達すると、最Low変速比を保ったままで目標プライマリ回転速度Npri*が低下し、車速VSPがゼロのG点へと移動する。 That is, if the accelerator release operation is performed when the operating point (VSP, APO) is the point C in FIG. 2, the operating point (VSP, APO) is moved to the point D in FIG. Then, after moving to point D in FIG. 2, when the brake is depressed and decelerated, the operating point (VSP, APO) is maintained from point D in FIG. 2 while maintaining the highest gear ratio along the coastal shift line. Move to point E. Then, from point E in FIG. 2, the gear ratio of the variator 4 moves from the highest gear ratio to the point F while shifting in the downshift direction as the vehicle speed VSP decreases. When the point F by the lowest gear ratio in FIG. 2 is reached, the target primary rotational speed Npri * decreases while maintaining the lowest gear ratio, and the vehicle speed VSP moves to the point G where the vehicle speed VSP is zero.
 その後、時刻t3にて車速センサ値により車両停止が判定され、時刻t4にて前後Gセンサ値により路面勾配が平地であると判定され、時刻t5にてエンジン回転速度センサ値によりアイドル回転域まで低下したと判定される。しかし、これらの条件はノイズ低減制御の入り条件の一部であり、これらの条件が成立したとしてもノイズ低減制御が開始されることはない。 After that, at time t3, it is determined that the vehicle is stopped based on the vehicle speed sensor value, and at time t4, it is determined that the road surface gradient is flat according to the front and rear G sensor values, and at time t5, the engine speed sensor value decreases to the idling speed range It is determined that However, these conditions are part of the conditions for entering the noise reduction control, and the noise reduction control is not started even if these conditions are satisfied.
 その後、時刻t6にてプライマリプーリ回転速度センサ80からパルス波信号のダウンエッジが検出されると、ダウンエッジからタイマー値のカウントが開始される。そして、タイマー値が閾値(例えば、0.5sec)を経過した時刻t7になっても次のパルス波信号が入力されないとプライマリプーリ回転速度が低回転状態になったと判断され、ノイズ低減制御が開始される。制御開始時刻t7になると、制御進入フラグが、制御進入フラグ=0から制御進入フラグ=1に書き替えられ、セカンダリ指令圧を低下させる制御が開始され、プライマリ下限圧を、プライマリ下限圧Bまで上昇させる制御が行われる。 After that, when the down edge of the pulse wave signal is detected from the primary pulley rotation speed sensor 80 at time t6, the timer value starts counting from the down edge. When the next pulse wave signal is not input even at time t7 when the timer value has passed a threshold value (for example, 0.5 sec), it is determined that the primary pulley rotation speed has become low, and noise reduction control is started. The When the control start time t7 is reached, the control approach flag is rewritten from the control approach flag = 0 to the control approach flag = 1, the control for lowering the secondary command pressure is started, and the primary lower limit pressure is increased to the primary lower limit pressure B. Control is performed.
 ここで、図6の矢印Hで囲まれるセカンダリ指令圧を低下させる制御を、図6の矢印Hで囲まれる領域を拡大した図7に基づいて詳細に説明する。制御開始時刻t7からセカンダリ目標圧Aまで乖離している時刻t8までは、セカンダリ指令圧が急勾配の低下特性により下げられる。時刻t8から実SEC圧≦Aと判断される時刻t9までは、セカンダリ指令圧が緩勾配の低下特性により下げられる。時刻t9から実SEC圧≧A+αと判断される時刻t10までは、時刻t9でのセカンダリ指令圧がそのまま維持される。時刻t10から実SEC圧≦Aと判断される時刻t11までは、セカンダリ指令圧が緩勾配の低下特性により下げられる。時刻t11から実SEC圧≧A+αと判断される時刻t12までは、時刻t11でのセカンダリ指令圧がそのまま維持される。時刻t12から実SEC圧≦Aと判断される時刻t13までは、セカンダリ指令圧が緩勾配の低下特性により下げられる。時刻t13以降は、A<実SEC圧<A+αであるため、時刻t13でのセカンダリ指令圧がそのまま維持される。 Here, the control for reducing the secondary command pressure surrounded by the arrow H in FIG. 6 will be described in detail based on FIG. 7 in which the region surrounded by the arrow H in FIG. 6 is enlarged. Until the time t8 when the control target time t7 deviates from the secondary target pressure A, the secondary command pressure is lowered due to the steep decrease characteristic. From time t8 to time t9 when it is determined that the actual SEC pressure ≦ A, the secondary command pressure is lowered due to the gentle slope decreasing characteristic. From time t9 to time t10 when it is determined that the actual SEC pressure ≧ A + α, the secondary command pressure at time t9 is maintained as it is. From time t10 to time t11 when it is determined that the actual SEC pressure ≦ A, the secondary command pressure is lowered due to the gentle slope decreasing characteristic. From time t11 to time t12 when it is determined that the actual SEC pressure ≧ A + α, the secondary command pressure at time t11 is maintained as it is. From time t12 to time t13 when it is determined that the actual SEC pressure ≦ A, the secondary command pressure is lowered due to the gentle slope decreasing characteristic. After time t13, since A <actual SEC pressure <A + α, the secondary command pressure at time t13 is maintained as it is.
 実セカンダリ圧Psecがセカンダリ目標圧Aまで下げられた後、時刻t14にてプライマリプーリ回転速度センサ80からパルス波信号のダウンエッジが検出される(n=1)。さらに、時刻t15にてパルス波信号のダウンエッジが検出され(n=1)、時刻t16にてパルス波信号のダウンエッジが検出され(n=3)、時刻t17にてパルス波信号のダウンエッジが検出される(n=4)。この時刻t17にて制御開始後のプライマリパルスカウント数≧閾値というノイズ低減制御の抜け条件が成立し、ノイズ低減制御を終了する。制御終了時刻t17になると、制御進入フラグが、制御進入フラグ=1から制御進入フラグ=0に書き替えられ、セカンダリ指令圧がノイズ低減制御前に戻され、プライマリ下限圧が、プライマリ下限圧Bからノイズ低減制御前のプライマリ下限圧(比較例)に戻される。 After the actual secondary pressure Psec is lowered to the secondary target pressure A, the down edge of the pulse wave signal is detected from the primary pulley rotation speed sensor 80 at time t14 (n = 1). Further, the down edge of the pulse wave signal is detected at time t15 (n = 1), the down edge of the pulse wave signal is detected at time t16 (n = 3), and the down edge of the pulse wave signal is detected at time t17. Is detected (n = 4). At time t17, the noise reduction control missing condition that the primary pulse count after starting control ≧ the threshold value is satisfied, and the noise reduction control is terminated. At the control end time t17, the control entry flag is rewritten from the control entry flag = 1 to the control entry flag = 0, the secondary command pressure is returned before the noise reduction control, and the primary lower limit pressure is changed from the primary lower limit pressure B. The pressure is returned to the primary lower limit pressure (comparative example) before the noise reduction control.
 ここで、図6に示すタイムチャートは、“バリエータ4の変速比が変化しないプーリ回転速度となった”と判断して、セカンダリ圧低下制御を開始しているが、セカンダリ圧低下制御の開始後もプーリが僅かに回転している状況を描いている。これは、プーリ回転停止を判定しても、運転者が僅かにブレーキペダルを弛め車両がクリープ車速以下で前進するようなシーンがあることによる。又は、車両は前進していなくてプーリ回転停止を判定しても、プーリクランプ力が不足して、エンジンからプーリへの入力トルクに負けてベルトが滑ってプーリが回転するようなシーンがあることによる。従って、ノイズ低減制御の抜け(セカンダリ圧低下制御の終了)は、プライマリパルスカウント数≧閾値となったタイミング(時刻t17)になっている。 Here, the time chart shown in FIG. 6 determines that “the pulley rotation speed at which the transmission ratio of the variator 4 does not change” is determined, and the secondary pressure reduction control is started, but after the secondary pressure reduction control is started. Also depicts the situation where the pulley is rotating slightly. This is because even if it is determined that the pulley rotation is stopped, there is a scene in which the driver slightly releases the brake pedal and the vehicle moves forward at a creep vehicle speed or less. Or, even if the vehicle is not moving forward and the pulley rotation stoppage is determined, there is a scene where the pulley clamp force is insufficient, the belt slides against the input torque from the engine to the pulley, and the pulley rotates. by. Therefore, the absence of the noise reduction control (end of the secondary pressure reduction control) is the timing (time t17) when the primary pulse count number ≧ the threshold value.
 一方、ノイズ低減制御開始以降、プーリ回転停止等によりプライマリパルスカウント数≧閾値になる前にブレーキON→OFFの操作がなされたときは、時刻t18にてノイズ低減制御の抜け条件が成立し、ノイズ低減制御を終了する。さらに、ノイズ低減制御開始以降、ブレーキON→OFF操作を確認できないまま、プライマリパルスカウント数≧閾値になる前にアクセルOFF→ONの操作がなされたときは、時刻t19にてノイズ低減制御の抜け条件が成立し、ノイズ低減制御を終了する。 On the other hand, when the brake ON → OFF operation is performed before the primary pulse count number ≧ threshold value due to pulley rotation stop, etc. after the start of noise reduction control, the noise reduction control missing condition is satisfied at time t18, and the noise is reduced. The reduction control is finished. Furthermore, after the noise reduction control is started, if the accelerator OFF → ON operation is performed before the primary pulse count number ≥ threshold without confirming the brake ON → OFF operation, the noise reduction control missing condition at time t19 Is established and the noise reduction control is terminated.
 [変速油圧制御の特徴作用]
 実施例1では、走行中、バリエータ4の目標変速比が決まると、目標変速比に応じて調圧されたプライマリ圧Priとセカンダリ圧Psecを、プライマリプーリ42とセカンダリプーリ43にそれぞれ供給する。セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度になると、セカンダリ圧Psecを低下させる制御を開始する。
[Characteristic action of shift hydraulic control]
In the first embodiment, when the target speed ratio of the variator 4 is determined during traveling, the primary pressure Pri and the secondary pressure Psec adjusted according to the target speed ratio are supplied to the primary pulley 42 and the secondary pulley 43, respectively. When the pulley rotation speed at which the gear ratio of the variator 4 does not change even when the secondary pressure Psec is decreased, control for decreasing the secondary pressure Psec is started.
 即ち、“セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度”とは、停車直前状態又は停車状態である。このような車両状態では、オイルポンプノイズ以外の音(道路ノイズやエンジン音等)が走行中に比べて小さく、運転者にとってオイルポンプノイズが違和感となりやすい。従って、このようにオイルポンプノイズ以外の音が小さい車両状態のときに、セカンダリ圧Psecを低下させる制御を開始することで、オイルポンプノイズを低減し、運転者への違和感を低減することができる。一方、停車直前状態や停車状態でない走行状態では、オイルポンプノイズが他の音に混じり、運転者へ与える違和感は低くなる。このような走行状態では、不必要にセカンダリ圧Psecを低減しないことで、ベルト滑りや意図しない変速が発生するおそれを低減することができる。このように、セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度になると、セカンダリ圧Psecを低下させる制御を開始することで、オイルポンプノイズを低減することができる。そして、セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度では、プーリベルト44と両プーリ42,43との間で周方向の相対移動が生じないため、ベルト滑りや意図しない変速が発生することを抑制することができる。さらに、実施例1では、オイルポンプ70を、走行用駆動源であるエンジン1により回転駆動されるポンプとしているため、セカンダリ圧Psecを低減することで、オイルポンプ駆動負荷が低減され、燃費が向上する。 That is, the “pulley rotational speed at which the gear ratio of the variator 4 does not change even when the secondary pressure Psec is reduced” is a state immediately before stopping or a stopped state. In such a vehicle state, sounds other than oil pump noise (road noise, engine sound, etc.) are smaller than that during traveling, and the oil pump noise tends to be uncomfortable for the driver. Accordingly, by starting control for reducing the secondary pressure Psec when the vehicle is in a state where the sound other than the oil pump noise is low, the oil pump noise can be reduced and the driver can feel uncomfortable. . On the other hand, the oil pump noise is mixed with other sounds in a state just before stopping or in a driving state where the vehicle is not stopped, and the uncomfortable feeling given to the driver is reduced. In such a traveling state, it is possible to reduce the possibility of belt slippage or unintentional shifting by not unnecessarily reducing the secondary pressure Psec. As described above, when the pulley rotation speed at which the transmission ratio of the variator 4 does not change even when the secondary pressure Psec is reduced, the oil pump noise can be reduced by starting the control for reducing the secondary pressure Psec. Then, at the pulley rotational speed at which the gear ratio of the variator 4 does not change even when the secondary pressure Psec is lowered, the relative movement in the circumferential direction does not occur between the pulley belt 44 and the pulleys 42, 43. It is possible to suppress the occurrence of shifting that does not occur. Further, in the first embodiment, the oil pump 70 is a pump that is rotationally driven by the engine 1 that is a driving source for traveling. Therefore, by reducing the secondary pressure Psec, the oil pump driving load is reduced and fuel efficiency is improved. To do.
 実施例1では、プライマリプーリ42とセカンダリプーリ43のうち、少なくとも一方のプーリ回転速度が停止状態になると、セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度になったと判断する。 In the first embodiment, when at least one pulley rotation speed of the primary pulley 42 and the secondary pulley 43 is stopped, it is determined that the pulley rotation speed does not change the speed ratio of the variator 4 even if the secondary pressure Psec is decreased. To do.
 即ち、“プーリ回転速度が停止状態となること”ではなく、“車両の停車判定”に基づきセカンダリ圧低下制御を開始することも考えられる。しかしながら、車両の停車判定は精度が粗く、停車判定が成立したタイミングでは、プーリが僅かに回転している状態であることがある。つまり、“プーリ回転速度が停止状態となること”は、プライマリプーリ回転速度センサ80からのパルス波信号が所定時間(例えば、0.5sec)検知されないことに基づき判定される。“車両の停車判定”も、車速センサ81からのパルス波信号が所定時間検知されないことに基づき判定されるが、停車判定における所定時間は、プーリ回転速度の停止状態を判定する所定時間より短い時間(例えば、0.3sec)に設定されている。従って、ノイズ低減制御は、車両の停車判定ではなく、プーリ回転速度が停止状態となることに基づき開始している。その結果、図6に示すタイムチャートにおいて、制御進入フラグが立つタイミング(時刻t7)は、車両の停車判定タイミング(時刻t3)よりも遅くなっている。このため、プーリ回転速度が停止している状態であると、セカンダリ圧Psecを低下させてもベルト滑りや意図しない変速が発生することがない。よって、プーリ回転速度が停止状態になると、セカンダリ圧Psecを低下する制御を開始することで、ベルト滑りや意図しない変速が発生することを確実に防止することができる。 That is, it is also conceivable to start the secondary pressure lowering control based on “vehicle stoppage determination” rather than “pulley rotation speed becoming stopped”. However, the vehicle stoppage determination is rough, and the pulley may be slightly rotated at the timing when the stoppage determination is established. That is, “the pulley rotation speed is stopped” is determined based on the fact that the pulse wave signal from the primary pulley rotation speed sensor 80 is not detected for a predetermined time (for example, 0.5 sec). “Vehicle stop determination” is also determined based on the fact that the pulse wave signal from the vehicle speed sensor 81 is not detected for a predetermined time, but the predetermined time in the stop determination is shorter than the predetermined time for determining the stop state of the pulley rotation speed. (For example, 0.3 sec). Therefore, the noise reduction control is started not based on the vehicle stoppage determination but based on the pulley rotation speed being stopped. As a result, in the time chart shown in FIG. 6, the timing at which the control approach flag is set (time t7) is later than the vehicle stop determination timing (time t3). For this reason, when the pulley rotational speed is in a stopped state, even if the secondary pressure Psec is decreased, belt slippage or unintended shift does not occur. Therefore, when the pulley rotation speed is stopped, the control for reducing the secondary pressure Psec is started, so that it is possible to reliably prevent belt slippage and unintended shift.
 実施例1では、セカンダリ圧Psecを低下させる制御を開始した後、プライマリプーリ回転速度センサ80からのパルスカウント数が閾値以上になると、セカンダリ圧Psecを低下させる制御を終了する。 In Example 1, after starting the control for reducing the secondary pressure Psec, when the number of pulse counts from the primary pulley rotation speed sensor 80 exceeds the threshold, the control for reducing the secondary pressure Psec is terminated.
 即ち、セカンダリ圧Psecの低下制御中にプライマリプーリ42やセカンダリプーリ43が回転していることが検知されると、プール回転に伴ってプーリベルト44と両プーリ42,43とが周方向に相対移動し、意図しない変速が発生するおそれがある。従って、両プーリ42,43が回転していることをパルスカウント数により検知し、パルスカウント数が閾値以上になると、セカンダリ圧Psecを低下させる制御を終了するようにしている。これにより、セカンダリ圧Psecの低下制御中にプーリ回転状態が検知されたとき、バリエータ4での意図しない変速を防止することができる。ここで、“セカンダリ圧Psecを低下させる制御を終了する”とは、セカンダリ圧Psecの低下制御を開始する前の油圧までセカンダリ圧Psecを増大させることをいう。 That is, if it is detected that the primary pulley 42 or the secondary pulley 43 is rotating during the control for decreasing the secondary pressure Psec, the pulley belt 44 and the pulleys 42 and 43 are relatively moved in the circumferential direction as the pool rotates. In addition, an unintended shift may occur. Therefore, the fact that both pulleys 42 and 43 are rotating is detected by the pulse count number, and when the pulse count number becomes equal to or greater than the threshold value, the control for decreasing the secondary pressure Psec is terminated. Thereby, when the pulley rotation state is detected during the reduction control of the secondary pressure Psec, an unintended shift in the variator 4 can be prevented. Here, “to end the control for reducing the secondary pressure Psec” means to increase the secondary pressure Psec to the hydraulic pressure before starting the reduction control of the secondary pressure Psec.
 実施例1では、セカンダリ圧Psecを低下させる制御を行うとき、油圧低下による到達目標であるセカンダリ目標圧Aを、オイルポンプ70からの油圧系を加振源として発生するオイルポンプノイズが低減される油圧領域の最大圧に設定する。 In the first embodiment, when the control for reducing the secondary pressure Psec is performed, the oil pump noise that generates the secondary target pressure A, which is the target achieved by the oil pressure reduction, using the hydraulic system from the oil pump 70 as the vibration source is reduced. Set to the maximum pressure in the hydraulic range.
 即ち、セカンダリ圧Psecを低下させることでオイルポンプノイズを低減できるが、セカンダリ圧Psecを低下させ過ぎると、その後の発進・加速に際して、セカンダリ圧Psecが不足し、駆動力不足やラグ(駆動力の発生遅れ)となる。従って、オイルポンプノイズを低減できる範囲内で極力セカンダリ目標圧Aを高くしておくことで、オイルポンプノイズを低減しつつ、その後の発進・加速時の駆動力不足やラグを低減することができる。 That is, the oil pump noise can be reduced by lowering the secondary pressure Psec. However, if the secondary pressure Psec is lowered too much, the secondary pressure Psec becomes insufficient at the time of subsequent start / acceleration. Occurrence delay). Therefore, by setting the secondary target pressure A as high as possible within a range where oil pump noise can be reduced, it is possible to reduce oil pump noise and reduce driving force deficiency and lag during subsequent start / acceleration. .
 ここで、SEC実圧をセカンダリ目標圧Aに向けて低下させるとき、SEC指令圧をどのように制御するかについて説明する(図7)。先ず、SEC指令圧の低下によりSEC実圧がセカンダリ目標圧Aとなった時点で、SEC指令圧をキープ(その時のSEC指令圧を維持)する。即ち、SEC指令圧をセカンダリ目標圧Aとしたいのではなく、SEC実圧をセカンダリ目標圧Aとしたい。従って、SEC指令圧がセカンダリ目標圧Aより高くても低くても、SEC実圧がセカンダリ目標圧Aとなった時点でSEC指令圧はキープする。なお、その後、SEC実圧がセカンダリ目標圧Aより低くなったら、F/B後SEC指令圧は増大させ、SEC実圧がセカンダリ目標圧Aより高くなったらF/B後SEC指令圧は低下させる(SEC実圧がセカンダリ目標圧Aとなるよう、SEC指令圧をF/B制御する)。 Here, how to control the SEC command pressure when the SEC actual pressure is reduced toward the secondary target pressure A will be described (FIG. 7). First, when the actual SEC pressure becomes the secondary target pressure A due to a decrease in the SEC command pressure, the SEC command pressure is maintained (the SEC command pressure at that time is maintained). That is, the SEC command pressure is not the secondary target pressure A, but the SEC actual pressure is the secondary target pressure A. Therefore, regardless of whether the SEC command pressure is higher or lower than the secondary target pressure A, the SEC command pressure is kept when the SEC actual pressure becomes the secondary target pressure A. After that, when the actual SEC pressure is lower than the secondary target pressure A, the SEC command pressure after F / B is increased, and when the actual SEC pressure is higher than the secondary target pressure A, the SEC command pressure after F / B is decreased. (The SEC command pressure is F / B controlled so that the actual SEC pressure becomes the secondary target pressure A).
 実施例1では、セカンダリ圧Psecを低下させる制御を行うとき、プライマリ圧Ppriの油圧低下を抑えるプライマリ下限圧Bを、プライマリプーリ42とセカンダリプーリ43とのバランス推力により設定される油圧より高い油圧に設定する。 In the first embodiment, when performing control to reduce the secondary pressure Psec, the primary lower limit pressure B that suppresses the decrease in the hydraulic pressure of the primary pressure Ppri is set to a higher hydraulic pressure than the hydraulic pressure set by the balance thrust between the primary pulley 42 and the secondary pulley 43. Set.
 例えば、セカンダリ圧Psecのみを低下すると、セカンダリプーリ42とプライマリプーリ43との推力差のバランスが崩れるため変速してしまう。そのため、通常の変速油圧制御では、セカンダリ圧Psecを低下させるとプライマリ圧Ppriも低下させる。しかし、セカンダリ圧Psecの低下制御時には、バランス推力を保つ通常の変速油圧制御でのプライマリ圧Ppriよりも油圧を低下させることとなるため、アイドル回転状態のエンジン1からの入力トルクに対してベルト滑りが発生するおそれがある。これに対し、プライマリ圧Ppriの油圧低下を抑えるプライマリ下限圧Bを、バランス推力に基づき設定される油圧より高い油圧に設定する。従って、アイドル回転状態のエンジン1から入力されるトルクに対してベルト滑りの発生を防止することができる。 For example, if only the secondary pressure Psec is lowered, the balance of the thrust difference between the secondary pulley 42 and the primary pulley 43 is lost, resulting in a shift. Therefore, in normal transmission hydraulic pressure control, when the secondary pressure Psec is decreased, the primary pressure Ppri is also decreased. However, since the hydraulic pressure is lower than the primary pressure Ppri in the normal shift hydraulic pressure control that maintains the balance thrust during the reduction control of the secondary pressure Psec, the belt slips with respect to the input torque from the engine 1 in the idle rotation state. May occur. On the other hand, the primary lower limit pressure B that suppresses the decrease in the hydraulic pressure of the primary pressure Ppri is set to a higher hydraulic pressure than the hydraulic pressure set based on the balance thrust. Therefore, it is possible to prevent the occurrence of belt slip with respect to the torque input from the engine 1 in the idle rotation state.
 実施例1では、セカンダリプーリ42へのセカンダリ指令圧(SEC指令圧)に対しセカンダリ実圧(SEC実圧)が低下し、セカンダリ指令圧とセカンダリ実圧との差分が所定値以上となったら、セカンダリ圧Psecを低下させる制御を終了する。 In the first embodiment, when the secondary actual pressure (SEC actual pressure) is reduced with respect to the secondary command pressure (SEC command pressure) to the secondary pulley 42 and the difference between the secondary command pressure and the secondary actual pressure becomes a predetermined value or more, The control for reducing the secondary pressure Psec is terminated.
 例えば、コンタミ等の影響によりセカンダリ圧ソレノイドバルブ74がスティックし、SEC指令圧に対してSEC実圧が追従できず大幅に低下してしまう場合は、オイルポンプノイズを低減できるものの、発進・加速時のベルト容量を確保できなくなるおそれがある。これに対し、SEC指令圧とSEC実圧との差分が所定値以上となったら、セカンダリ圧Psecを低下させる制御を終了する(図5)。このため、制御終了後の発進・加速時において、ベルト滑りを抑えるベルト容量を確保することができる。 For example, if the secondary pressure solenoid valve 74 sticks due to contamination and the SEC actual pressure cannot follow the SEC command pressure, the oil pump noise can be reduced. The belt capacity may not be secured. On the other hand, when the difference between the SEC command pressure and the SEC actual pressure is equal to or greater than a predetermined value, the control for reducing the secondary pressure Psec is terminated (FIG. 5). Therefore, it is possible to secure a belt capacity that suppresses belt slip at the time of start / acceleration after the end of control.
 次に、効果を説明する。実施例1の無段変速機の変速油圧制御装置及び制御方法にあっては、下記に列挙する効果が得られる。 Next, the effect will be explained. In the transmission hydraulic pressure control apparatus and control method for a continuously variable transmission according to the first embodiment, the following effects can be obtained.
 (1)オイルポンプ70と、バリエータ4と、変速油圧制御部(油圧制御ユニット7及びCVTコントロールユニット8)と、を備える。バリエータ4は、プライマリプーリ42と、セカンダリプーリ43と、両プーリ42,43に掛け渡されるプーリベルト44と、を有し、オイルポンプ70からの吐出圧に基づいて調圧された変速油圧によりプーリ幅が変更されることで変速比が制御される。変速油圧制御部(油圧制御ユニット7及びCVTコントロールユニット8)は、走行中、バリエータ4の目標変速比が決まると、目標変速比に応じて調圧されたプライマリ圧Ppriとセカンダリ圧Psecを、プライマリプーリ42とセカンダリプーリ43にそれぞれ供給する。そして、セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度になると、セカンダリ圧Psecを低下させる制御を開始する。このため、ベルト滑りや意図しない変速が発生することを抑制しつつ、運転者にとって違和感になるオイルポンプノイズの発生を低減する無段変速機の変速油圧制御装置を提供することができる。 (1) An oil pump 70, a variator 4, and a shift hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) are provided. The variator 4 includes a primary pulley 42, a secondary pulley 43, and a pulley belt 44 that spans between the pulleys 42 and 43. The variator 4 is a pulley that is adjusted by a transmission hydraulic pressure that is adjusted based on the discharge pressure from the oil pump 70. The gear ratio is controlled by changing the width. When the target transmission gear ratio of the variator 4 is determined during traveling, the transmission hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) uses the primary pressure Ppri and the secondary pressure Psec adjusted according to the target transmission gear ratio as primary. It supplies to the pulley 42 and the secondary pulley 43, respectively. Then, when the pulley rotational speed at which the gear ratio of the variator 4 does not change even when the secondary pressure Psec is decreased, control for decreasing the secondary pressure Psec is started. Therefore, it is possible to provide a transmission hydraulic pressure control device for a continuously variable transmission that suppresses the occurrence of oil pump noise that makes the driver feel uncomfortable while suppressing the occurrence of belt slip and unintended shift.
 (2)変速油圧制御部(油圧制御ユニット7及びCVTコントロールユニット8)は、プライマリプーリ42とセカンダリプーリ43のうち、少なくとも一方のプーリ回転速度が停止状態になると、セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度になったと判断する。このため、(1)の効果に加え、プーリ回転速度が停止状態になると、セカンダリ圧Psecを低下する制御を開始することで、ベルト滑りや意図しない変速が発生することを確実に防止することができる。 (2) The transmission hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) may reduce the secondary pressure Psec when at least one of the primary pulley 42 and the secondary pulley 43 is stopped. It is determined that the pulley rotation speed at which the gear ratio of the variator 4 does not change has been reached. For this reason, in addition to the effect of (1), when the pulley rotation speed is stopped, it is possible to reliably prevent belt slippage or unintentional shift from occurring by starting control to reduce the secondary pressure Psec. it can.
 (3)プライマリプーリ42とセカンダリプーリ43のうち少なくとも一方のプーリ回転速度を、パルス波信号のカウント回数であるパルスカウント数により検出するプーリ回転速度センサ(プライマリプーリ回転速度センサ80)を設ける。変速油圧制御部(油圧制御ユニット7及びCVTコントロールユニット8)は、セカンダリ圧Psecを低下させる制御を開始した後、プーリ回転速度センサ(プライマリプーリ回転速度センサ80)からのパルスカウント数が閾値以上になると、セカンダリ圧Psecを低下させる制御を終了する。このため、(2)の効果に加え、セカンダリ圧Psecの低下制御中にプーリ回転状態が検知されたとき、バリエータ4での意図しない変速を防止することができる。 (3) A pulley rotation speed sensor (primary pulley rotation speed sensor 80) that detects the pulley rotation speed of at least one of the primary pulley 42 and the secondary pulley 43 by the pulse count number that is the number of counts of the pulse wave signal is provided. The transmission hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) starts control to reduce the secondary pressure Psec, and then the pulse count from the pulley rotational speed sensor (primary pulley rotational speed sensor 80) exceeds the threshold value. Then, the control for reducing the secondary pressure Psec is terminated. For this reason, in addition to the effect of (2), when the pulley rotation state is detected during the reduction control of the secondary pressure Psec, an unintended shift in the variator 4 can be prevented.
 (4)変速油圧制御部(油圧制御ユニット7及びCVTコントロールユニット8)は、セカンダリ圧Psecを低下させる制御を行うとき、油圧低下による到達目標であるセカンダリ目標圧Aを、オイルポンプ70からの油圧系を加振源として発生するオイルポンプノイズが低減される油圧領域の最大圧に設定する。このため、(1)~(3)の効果に加え、オイルポンプノイズを低減できる範囲内で極力セカンダリ目標圧Aを高くしておくことで、オイルポンプノイズを低減しつつ、その後の発進・加速時の駆動力不足やラグを低減することができる。 (4) When the transmission hydraulic pressure control unit (the hydraulic pressure control unit 7 and the CVT control unit 8) performs the control to reduce the secondary pressure Psec, the secondary target pressure A that is the target achieved by the decrease in hydraulic pressure is set to the hydraulic pressure from the oil pump 70. The maximum pressure is set in the hydraulic range where the oil pump noise generated using the system as the excitation source is reduced. For this reason, in addition to the effects (1) to (3), the secondary target pressure A is set as high as possible within the range where oil pump noise can be reduced. Insufficient driving force and lag can be reduced.
 (5)変速油圧制御部(油圧制御ユニット7及びCVTコントロールユニット8)は、セカンダリ圧Psecを低下させる制御を行うとき、プライマリ圧Ppriの油圧低下を抑えるプライマリ下限圧Bを、プライマリプーリ42とセカンダリプーリ43とのバランス推力により設定される油圧より高い油圧に設定する。このため、(1)~(4)の効果に加え、アイドル回転状態のエンジン1から入力されるトルクに対してベルト滑りの発生を防止することができる。 (5) When the transmission hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) performs control to decrease the secondary pressure Psec, the primary lower limit pressure B that suppresses the decrease in the primary pressure Ppri is set to the primary pulley 42 and the secondary pulley. The hydraulic pressure is set higher than the hydraulic pressure set by the balance thrust with the pulley 43. For this reason, in addition to the effects (1) to (4), it is possible to prevent the occurrence of belt slip with respect to the torque input from the engine 1 in the idle rotation state.
 (6)変速油圧制御部(油圧制御ユニット7及びCVTコントロールユニット8)は、セカンダリプーリ42へのセカンダリ指令圧に対しセカンダリ実圧が低下し、セカンダリ指令圧とセカンダリ実圧との差分が所定値以上となったら、セカンダリ圧Psecを低下させる制御を終了する。このため、(1)~(5)の効果に加え、制御終了後の発進・加速時において、ベルト滑りを抑えるベルト容量を確保することができる。 (6) The transmission hydraulic pressure control unit (hydraulic control unit 7 and CVT control unit 8) decreases the secondary actual pressure with respect to the secondary command pressure to the secondary pulley 42, and the difference between the secondary command pressure and the secondary actual pressure is a predetermined value. If it becomes above, the control which reduces secondary pressure Psec will be complete | finished. For this reason, in addition to the effects (1) to (5), it is possible to secure a belt capacity that suppresses belt slipping when starting and accelerating after the end of control.
 (7)オイルポンプ70と、バリエータ4と、を備える。バリエータ4は、プライマリプーリ42と、セカンダリプーリ43と、両プーリ42,43に掛け渡されるプーリベルト44と、を有し、オイルポンプ70からの吐出圧に基づいて調圧された変速油圧によりプーリ幅が変更されることで変速比が制御される。この車両(エンジン車)において、走行中、バリエータ4の目標変速比が決まると、目標変速比に応じて調圧されたプライマリ圧Priとセカンダリ圧Psecを、プライマリプーリ42とセカンダリプーリ43にそれぞれ供給する。セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度になると、セカンダリ圧Psecを低下させる制御を開始する。このため、ベルト滑りや意図しない変速が発生することを抑制しつつ、運転者にとって違和感になるオイルポンプノイズの発生を低減する無段変速機の変速油圧制御方法を提供することができる。 (7) An oil pump 70 and a variator 4 are provided. The variator 4 includes a primary pulley 42, a secondary pulley 43, and a pulley belt 44 that spans between the pulleys 42 and 43. The variator 4 is a pulley that is adjusted by a transmission hydraulic pressure that is adjusted based on the discharge pressure from the oil pump 70. The gear ratio is controlled by changing the width. In this vehicle (engine vehicle), when the target gear ratio of the variator 4 is determined during traveling, the primary pressure Pri and the secondary pressure Psec adjusted according to the target gear ratio are supplied to the primary pulley 42 and the secondary pulley 43, respectively. To do. When the pulley rotation speed at which the gear ratio of the variator 4 does not change even when the secondary pressure Psec is decreased, control for decreasing the secondary pressure Psec is started. Therefore, it is possible to provide a transmission hydraulic pressure control method for a continuously variable transmission that suppresses the occurrence of belt slip and unintended shift while reducing the occurrence of oil pump noise that makes the driver feel uncomfortable.
 以上、本発明の無段変速機の変速油圧制御装置及び制御方法を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As described above, the transmission hydraulic pressure control device and the control method of the continuously variable transmission according to the present invention have been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and design changes and additions are allowed without departing from the spirit of the invention according to each claim of the claims.
 実施例1では、セカンダリ圧Psecを低下させてもバリエータ4の変速比が変化しないプーリ回転速度となると、オイルポンプノイズの発生の有無にかかわらず、常にセカンダリ圧Psecの低下制御を実行する例を示した。しかし、オイルポンプノイズの発生の有無を検知するようにし、セカンダリ圧を低下させてもバリエータの変速比が変化しないプーリ回転速度となり、かつ、オイルポンプノイズの発生が検知された場合にのみ、セカンダリ圧の低下制御を実行する例としても良い。 In the first embodiment, when the pulley rotational speed is such that the gear ratio of the variator 4 does not change even when the secondary pressure Psec is reduced, the secondary pressure Psec reduction control is always executed regardless of whether oil pump noise is generated or not. Indicated. However, the presence or absence of oil pump noise is detected, and only when the rotation speed of the pulley is such that the gear ratio of the variator does not change even when the secondary pressure is reduced, and the occurrence of oil pump noise is detected. It is good also as an example which performs pressure reduction control.
 実施例1では、プライマリプーリ回転速度センサ80を備えているため、プライマリプーリ回転速度センサ80からのパルス波信号に基づいて、プライマリプーリ42のプーリ回転速度の停止状態を判断するようにしている。しかし、プーリ回転速度の停止状態を判断する場合、プライマリプーリとセカンダリプーリのいずれの回転速度を検知して判断しても良いし、両プーリの回転速度を検知して判断しても良い。 In the first embodiment, since the primary pulley rotational speed sensor 80 is provided, the stop state of the pulley rotational speed of the primary pulley 42 is determined based on the pulse wave signal from the primary pulley rotational speed sensor 80. However, when determining the stop state of the pulley rotation speed, it may be determined by detecting the rotation speed of either the primary pulley or the secondary pulley, or by detecting the rotation speed of both pulleys.
 実施例1では、オイルポンプとして、走行用駆動源であるエンジン1により回転駆動されるオイルポンプ70の例を示した。しかし、オイルポンプとしては、走行用駆動源とは独立であるモータにより回転駆動される電動オイルポンプであっても良いし、走行用駆動源により回転駆動されるメカオイルポンプと電動オイルポンプとの組み合わせポンプであっても良い。 In the first embodiment, an example of an oil pump 70 that is rotationally driven by the engine 1 that is a driving source for traveling is shown as an oil pump. However, the oil pump may be an electric oil pump that is rotationally driven by a motor that is independent of the travel drive source, or a mechanical oil pump that is rotationally driven by the travel drive source and an electric oil pump. A combination pump may be used.
 実施例1では、セカンダリ圧Psecを低下させる制御を行うとき、油圧低下による到達目標であるセカンダリ目標圧Aを、ノイズ低減油圧領域の最大圧に予め設定する例を示した。しかし、制御入り条件が成立すると、バリエータに入力されるトルクでベルト滑りが生じないセカンダリ目標圧を決めるような例としても良いし、また、予め設定されているセカンダリ目標圧を、バリエータへの入力トルクで補正するような例としても良い。 In the first embodiment, when the control for reducing the secondary pressure Psec is performed, the secondary target pressure A, which is the target achieved by the decrease in hydraulic pressure, is set in advance to the maximum pressure in the noise reduction hydraulic pressure region. However, an example in which the secondary target pressure at which belt slip does not occur is determined by the torque input to the variator when the controlled condition is satisfied, or a preset secondary target pressure is input to the variator. An example of correcting with torque may be used.
 実施例1では、本発明の変速油圧制御装置及び制御方法を、バリエータのみによるベルト式無段変速機を搭載したエンジン車に適用する例を示した。しかし、本発明の変速油圧制御装置及び制御方法は、副変速機構とバリエータを組み合わせた副変速機付き無段変速機を搭載した車両に適用しても良い。また、適用される車両としても、エンジン車に限らず、ハイブリッド車や電気自動車などに対しても適用できる。 Embodiment 1 shows an example in which the transmission hydraulic pressure control device and control method of the present invention are applied to an engine vehicle equipped with a belt type continuously variable transmission using only a variator. However, the transmission hydraulic pressure control device and the control method of the present invention may be applied to a vehicle equipped with a continuously variable transmission with a sub transmission in which a sub transmission mechanism and a variator are combined. Further, the applied vehicle is not limited to an engine vehicle, but can be applied to a hybrid vehicle, an electric vehicle, and the like.

Claims (7)

  1.  オイルポンプと、
     プライマリプーリと、セカンダリプーリと、両プーリに掛け渡されるプーリベルトと、
    を有し、前記オイルポンプからの吐出圧に基づいて調圧された変速油圧によりプーリ幅が変更されることで変速比が制御されるバリエータと、
     走行中、前記バリエータの目標変速比が決まると、前記目標変速比に応じて調圧されたプライマリ圧とセカンダリ圧を、前記プライマリプーリと前記セカンダリプーリにそれぞれ供給する変速油圧制御部と、を備え、
     前記変速油圧制御部は、前記セカンダリ圧を低下させても前記バリエータの変速比が変化しないプーリ回転速度になると、前記セカンダリ圧を低下させる制御を開始する
     無段変速機の変速油圧制御装置。
    An oil pump,
    A primary pulley, a secondary pulley, and a pulley belt spanned between both pulleys;
    A variator in which a gear ratio is controlled by changing a pulley width by a transmission hydraulic pressure adjusted based on a discharge pressure from the oil pump;
    A shift hydraulic pressure control unit that supplies a primary pressure and a secondary pressure adjusted according to the target gear ratio to the primary pulley and the secondary pulley, respectively, when a target gear ratio of the variator is determined during travel; ,
    The transmission hydraulic pressure control unit of the continuously variable transmission starts the control to reduce the secondary pressure when the pulley rotation speed at which the transmission ratio of the variator does not change even if the secondary pressure is reduced.
  2.  請求項1に記載された無段変速機の変速油圧制御装置において、
     前記変速油圧制御部は、前記プライマリプーリと前記セカンダリプーリのうち、少なくとも一方のプーリ回転速度が停止状態になると、前記セカンダリ圧を低下させても前記バリエータの変速比が変化しないプーリ回転速度になったと判断する
     無段変速機の変速油圧制御装置。
    In the transmission hydraulic pressure control device for a continuously variable transmission according to claim 1,
    When the pulley rotation speed of at least one of the primary pulley and the secondary pulley is stopped, the transmission hydraulic pressure control unit has a pulley rotation speed that does not change the gear ratio of the variator even if the secondary pressure is reduced. A transmission hydraulic control device for a continuously variable transmission.
  3.  請求項1又は請求項2に記載された無段変速機の変速油圧制御装置において、
     前記プライマリプーリと前記セカンダリプーリのうち少なくとも一方のプーリ回転速度を、パルス波信号のカウント回数であるパルスカウント数により検出するプーリ回転速度センサを設け、
     前記変速油圧制御部は、前記セカンダリ圧を低下させる制御を開始した後、前記プーリ回転速度センサからのパルスカウント数が閾値以上になると、前記セカンダリ圧を低下させる制御を終了する
     無段変速機の変速油圧制御装置。
    In the transmission hydraulic pressure control device for a continuously variable transmission according to claim 1 or 2,
    A pulley rotation speed sensor that detects a pulley rotation speed of at least one of the primary pulley and the secondary pulley by a pulse count number that is a count number of pulse wave signals;
    The shift oil pressure control unit ends the control to reduce the secondary pressure when the pulse count from the pulley rotation speed sensor becomes equal to or greater than a threshold value after starting the control to reduce the secondary pressure. Variable speed hydraulic control device.
  4.  請求項1から請求項3までの何れか一項に記載された無段変速機の変速油圧制御装置において、
     前記変速油圧制御部は、前記セカンダリ圧を低下させる制御を行うとき、油圧低下による到達目標であるセカンダリ目標圧を、前記オイルポンプからの油圧系を加振源として発生するオイルポンプノイズが低減される油圧領域の最大圧に設定する
     無段変速機の変速油圧制御装置。
    The transmission hydraulic pressure control device for a continuously variable transmission according to any one of claims 1 to 3,
    When the shift hydraulic pressure control unit performs the control to reduce the secondary pressure, the oil pump noise that generates the secondary target pressure, which is the target achieved by the hydraulic pressure reduction, using the hydraulic system from the oil pump as the excitation source is reduced. A variable speed hydraulic control device for a continuously variable transmission that is set to the maximum pressure in the hydraulic range.
  5.  請求項1から請求項4までの何れか一項に記載された無段変速機の変速油圧制御装置において、
     前記変速油圧制御部は、前記セカンダリ圧を低下させる制御を行うとき、前記プライマリ圧の油圧低下を抑えるプライマリ下限圧を、前記プライマリプーリと前記セカンダリプーリとのバランス推力により設定される油圧より高い油圧に設定する
     無段変速機の変速油圧制御装置。
    In the transmission hydraulic pressure control device for a continuously variable transmission according to any one of claims 1 to 4,
    The shift hydraulic pressure control unit, when performing control to reduce the secondary pressure, has a primary lower limit pressure that suppresses a decrease in the primary pressure, higher than a hydraulic pressure set by a balance thrust between the primary pulley and the secondary pulley. Set to variable speed hydraulic control device for continuously variable transmission.
  6.  請求項1から請求項5までの何れか一項に記載された無段変速機の変速油圧制御装置において、
     前記変速油圧制御部は、前記セカンダリプーリへのセカンダリ指令圧に対しセカンダリ実圧が低下し、セカンダリ指令圧とセカンダリ実圧との差分が所定値以上となったら、前記セカンダリ圧を低下させる制御を終了する
     無段変速機の変速油圧制御装置。
    In the transmission hydraulic pressure control device for a continuously variable transmission according to any one of claims 1 to 5,
    The transmission hydraulic pressure control unit performs control to reduce the secondary pressure when the secondary actual pressure is reduced with respect to the secondary command pressure to the secondary pulley and the difference between the secondary command pressure and the secondary actual pressure becomes a predetermined value or more. The hydraulic pressure control device for the continuously variable transmission to be finished.
  7.  オイルポンプと、
     プライマリプーリと、セカンダリプーリと、両プーリに掛け渡されるプーリベルトと、を有し、前記オイルポンプからの吐出圧に基づいて調圧された変速油圧によりプーリ幅が変更されることで変速比が制御されるバリエータと、
     を備える車両において、
     走行中、前記バリエータの目標変速比が決まると、前記目標変速比に応じて調圧されたプライマリ圧とセカンダリ圧を、前記プライマリプーリと前記セカンダリプーリにそれぞれ供給し、
     前記セカンダリ圧を低下させても前記バリエータの変速比が変化しないプーリ回転速度になると、前記セカンダリ圧を低下させる制御を開始する
     無段変速機の変速油圧制御方法。
    An oil pump,
    The pulley has a primary pulley, a secondary pulley, and a pulley belt spanned between the two pulleys, and the gear ratio is changed by changing the pulley width by the transmission hydraulic pressure adjusted based on the discharge pressure from the oil pump. A controlled variator,
    In a vehicle comprising:
    During travel, when the target speed ratio of the variator is determined, the primary pressure and the secondary pressure adjusted according to the target speed ratio are supplied to the primary pulley and the secondary pulley, respectively.
    A transmission hydraulic pressure control method for a continuously variable transmission that starts control to reduce the secondary pressure when the pulley rotation speed at which the gear ratio of the variator does not change even if the secondary pressure is reduced.
PCT/JP2017/042705 2016-12-02 2017-11-29 Transmission oil pressure control device and control method for continuously variable transmission WO2018101283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554169A JP6700419B2 (en) 2016-12-02 2017-11-29 Shift hydraulic control device and control method for continuously variable transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-234645 2016-12-02
JP2016234645 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018101283A1 true WO2018101283A1 (en) 2018-06-07

Family

ID=62242162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042705 WO2018101283A1 (en) 2016-12-02 2017-11-29 Transmission oil pressure control device and control method for continuously variable transmission

Country Status (2)

Country Link
JP (1) JP6700419B2 (en)
WO (1) WO2018101283A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07317863A (en) * 1994-05-27 1995-12-08 Fuji Heavy Ind Ltd Control device for continuously variable transmission
JP2007211849A (en) * 2006-02-08 2007-08-23 Jatco Ltd Hydraulic control device of belt type continuously variable transmission system for vehicle
JP2015021512A (en) * 2013-07-16 2015-02-02 日立オートモティブシステムズ株式会社 Control device of electric oil pump for vehicle
WO2015046188A1 (en) * 2013-09-30 2015-04-02 ジヤトコ株式会社 Control device for stepped transmission mechanism
WO2016147727A1 (en) * 2015-03-17 2016-09-22 ジヤトコ株式会社 Control device for hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07317863A (en) * 1994-05-27 1995-12-08 Fuji Heavy Ind Ltd Control device for continuously variable transmission
JP2007211849A (en) * 2006-02-08 2007-08-23 Jatco Ltd Hydraulic control device of belt type continuously variable transmission system for vehicle
JP2015021512A (en) * 2013-07-16 2015-02-02 日立オートモティブシステムズ株式会社 Control device of electric oil pump for vehicle
WO2015046188A1 (en) * 2013-09-30 2015-04-02 ジヤトコ株式会社 Control device for stepped transmission mechanism
WO2016147727A1 (en) * 2015-03-17 2016-09-22 ジヤトコ株式会社 Control device for hybrid vehicle

Also Published As

Publication number Publication date
JP6700419B2 (en) 2020-05-27
JPWO2018101283A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6513264B2 (en) Control device for continuously variable transmission for vehicle
US20120298462A1 (en) Control device and control method for transmission mechanism
WO2017130779A1 (en) Method and device for controlling sailing stop of vehicle
JP2015190487A (en) Control device of continuously variable transmission
JP6437125B2 (en) Hydraulic control device and hydraulic control method for continuously variable transmission for vehicle
WO2018101283A1 (en) Transmission oil pressure control device and control method for continuously variable transmission
JP6327369B2 (en) Control device for automatic transmission
WO2018123225A1 (en) Control device and control method for vehicular oil pump
JP6444517B2 (en) Control device and control method for continuously variable transmission mechanism for vehicle
JP2008267467A (en) Control device for continuously variable transmission
JP4645119B2 (en) Control device for continuously variable transmission
JP7058909B2 (en) Belt type continuously variable transmission control device
JP2019027542A (en) Shift control device of automatic transmission
JP6868715B2 (en) Automatic transmission lockup release control device
JP6893740B2 (en) Shift control device for continuously variable transmission
JP7139070B2 (en) Gear control device for continuously variable transmission
JP6949433B2 (en) Belt type continuously variable transmission control device
JP6752506B2 (en) Control device for continuously variable transmission for vehicles
JP2019143699A (en) Control device of belt-type continuous variable transmission
JP2019143725A (en) Control device of automatic transmission
JP2005105835A (en) Output torque controller of engine
JP2019190567A (en) Lock-up control device for automatic transmission
JP2020125832A (en) Vehicle speed control device of engine vehicle
JP2019156326A (en) Drive support control device for vehicle
JP2019032003A (en) Vehicle controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875692

Country of ref document: EP

Kind code of ref document: A1