WO2018098786A1 - Total dissolved solids sensor calibration devices, methods, and systems - Google Patents

Total dissolved solids sensor calibration devices, methods, and systems Download PDF

Info

Publication number
WO2018098786A1
WO2018098786A1 PCT/CN2016/108272 CN2016108272W WO2018098786A1 WO 2018098786 A1 WO2018098786 A1 WO 2018098786A1 CN 2016108272 W CN2016108272 W CN 2016108272W WO 2018098786 A1 WO2018098786 A1 WO 2018098786A1
Authority
WO
WIPO (PCT)
Prior art keywords
tds
calibration
sensor
value
sample
Prior art date
Application number
PCT/CN2016/108272
Other languages
French (fr)
Inventor
Yubin LV
Bo REN
Changquan QIU
Chaojun Liu
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to PCT/CN2016/108272 priority Critical patent/WO2018098786A1/en
Priority to CN201680090731.7A priority patent/CN109983327A/en
Publication of WO2018098786A1 publication Critical patent/WO2018098786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/08Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
    • G01N27/10Investigation or analysis specially adapted for controlling or monitoring operations or for signalling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/22Measuring resistance of fluids

Definitions

  • the present disclosure relates to methods, devices, and systems for a total dissolved solids (TDS) sensor calibration.
  • TDS total dissolved solids
  • Sensors can be utilized to detect events or changes in a particular environment.
  • sensors can utilize electrical or optical signals that can vary based on the environment.
  • a sensor can be coupled to a controller that receives the signals.
  • the controller can receive the signal and determine a corresponding attribute of the environment based on the signal.
  • the sensors can be coupled to a computing device.
  • the computing device may need calibration to accurately determine the attribute of the environment.
  • the computing device can be calibrated by manually altering a potentiometer coupled to the computing device. Manually altering the potentiometer can increase a likelihood of human error when calibrating the sensor.
  • Figure 1 is an example of a system for TDS sensor calibration according to one or more embodiments of the present disclosure.
  • Figure 2 is an example of a method for TDS sensor calibration according to one or more embodiments of the present disclosure.
  • Figure 3 is an example of a method for TDS sensor calibration according to one or more embodiments of the present disclosure.
  • Figure 4 is an example of a computing device for TDS sensor calibration according to one or more embodiments of the present disclosure.
  • TDS Total dissolved solids
  • one or more embodiments include a TDS calibration tool coupled to a first probe to determine a calibration TDS value of a sample, and a TDS sensor coupled to a second probe to determine a test TDS value of the sample, wherein the TDS sensor is communicatively coupled to the TDS calibration tool via a communication link; and a computing device coupled to the TDS sensor to: receive the calibration TDS value of the sample from the TDS calibration tool, compare the calibration TDS value to the test TDS value, and alter a number of settings of the TDS sensor based on the comparison of the calibration TDS value and the test TDS value.
  • the TDS sensor calibration devices, methods, and systems can utilize a calibration tool to calibrate a TDS sensor.
  • the calibration tool can be coupled to a probe that can be utilized to determine a TDS value (e.g., calibration TDS value, etc. ) for a sample.
  • the probe can alter a resistance within the calibration tool, which can alter a current or voltage of the calibration tool.
  • the current or voltage altered by the resistance can correspond to a TDS value.
  • a TDS value can be a measured quantity of solids dissolved within a quantity of liquid.
  • a TDS value can be milligrams (mg) of solids per liters (L) of liquid (e.g., mg/L, etc. ) .
  • the sample can be a liquid sample that can have a particular TDS value.
  • the sample can be a liquid sample with a known TDS value.
  • the determined TDS value for the sample by the calibration tool can be compared to the known TDS value.
  • the calibration tool can include a communication device that can communicatively couple the calibration tool with the TDS sensor to be calibrated.
  • the communication device can be utilized to generate a communication path between the calibration tool and the TDS sensor to be calibrated.
  • the TDS sensor to be calibrated can receive messages from the calibration tool via the communication path.
  • the messages can include a determined TDS value from the calibration tool that can be utilized by the TDS sensor to be calibrated.
  • the TDS sensor to be calibrated can utilize the determined TDS value within the message to compare with a TDS value determined by the TDS sensor to be calibrated.
  • the calibration tool can be utilized to calibrate a plurality of TDS sensors without manual alterations of the plurality of TDS sensors.
  • the calibration tool can determine a plurality of known samples and send corresponding messages to the TDS sensor to be calibrated.
  • the TDS sensor calibration devices, methods, and systems described herein can increase an accuracy of calibrating TDS sensors by calibrating the plurality of TDS sensors for specific TDS value ranges.
  • a” or “a number of” something can refer to one or more such things.
  • a number of users can refer to one or more users.
  • the designator “N” indicates that a number of the particular feature so designated can be included with a number of embodiments of the present disclosure.
  • FIG. 1 is an example of a system 100 for TDS sensor calibration according to one or more embodiments of the present disclosure.
  • the system 100 can be utilized to calibrate a TDS sensor 112 coupled to a probe 114.
  • the TDS sensor 112 can be calibrated utilizing a calibration tool 102 coupled to a probe 104.
  • calibrating the TDS sensor 112 can include adjusting settings of the TDS sensor 112 such that a TDS value determined by the TDS sensor 112 is an accurate measurement.
  • the TDS sensor 112 can be adjusted such that the TDS value measured by the TDS sensor 112 is within a threshold value range of a known TDS value of the sample.
  • Adjusting settings of the TDS sensor 112 can include altering an electrical potentiometer of the TDS sensor 112.
  • the settings of the TDS sensor 112 can be adjusted by the calibration tool 102 via the communication pathway 110.
  • a computing device can alter the number of settings of the TDS sensor 112 while the probe 114 is within the sample.
  • the calibration tool 102 can include an indicator 106.
  • the indicator 106 can include a user interface as described herein.
  • the user interface can display information relating to a determined TDS value or other information relating to a functionality of the calibration tool 102.
  • the indicator 106 can provide an alert when the calibration tool 102 has determined a TDS value for a sample from a plurality of samples 116-1, 116-2, 116-N (e.g., calibration samples, liquid samples, liquid solutions, etc. ) .
  • the system 100 can be utilized to calibrate the TDS sensor 112.
  • the calibration tool 102 can be coupled to a probe 104.
  • the probe 104 can be positioned into a sample 116-1.
  • the calibration tool 102 can determine a TDS value for the sample 116-1.
  • the probe 104 can then be removed from the sample 116-1.
  • the TDS sensor 112 can be coupled to a probe 114.
  • the probe 114 can be positioned into the sample 116-1 and the TDS sensor 112 can determine a TDS value for the sample 116-1.
  • the calibration tool 102 can establish a communication pathway 110 with the TDS sensor 112.
  • the communication pathway 110 can allow the calibration tool 102 to communicate with the TDS sensor 112.
  • the communication pathway 110 can be a wired connection (e.g., Ethernet, etc. ) or a wireless communication pathway (e.g., WiFi, Bluetooth, near field communication (NFC) , etc. ) between the calibration tool 102 and the TDS sensor 112.
  • the communication pathway 110 can be a wired or wireless connection that allows for messages to transfer between the calibration tool 102 and the TDS sensor 112.
  • the calibration tool 102 can send a number of messages to the TDS sensor 112 via the communication pathway 110.
  • the number of messages can include the determined TDS value from the calibration tool 102.
  • the determined TDS value from the calibration tool 102 can be compared to the determined TDS value from the TDS sensor 112. In some examples, the comparison can be utilized to alter a number of settings of the TDS sensor 112.
  • the TDS sensor 112 can utilize the comparison of the TDS values to determine a number of settings to alter to adjust the determined TDS value of the TDS sensor 112 within a TDS value threshold range of the determined TDS value from the calibration tool 102.
  • the calibration tool 102 can utilize the communication pathway 110 to alter a number of settings of the TDS sensor 112 based on the comparison of TDS values.
  • the process for calibrating the TDS sensor 112 utilizing a comparison of TDS values from the sample 116-1 can be performed on sample 116-2 and sample 116-N in a similar manner as sample 116-1.
  • the plurality of samples 116-1, 116-2, 116-N can each comprise a TDS value within a TDS value range.
  • the sample 116-1 can comprise a first TDS value
  • the sample 116-N can comprise a second TDS value
  • sample 116-2 can be a TDS value between the first TDS value and the second TDS value.
  • the plurality of samples 116-1, 116-2, 116-N can comprise a TDS value range that corresponds to a TDS value range of the TDS sensor 112.
  • the calibration tool 102 can include a switch 108.
  • the switch 108 can be utilized to execute a number of functions. In some examples, the switch 108 can execute a first function when the switch 108 is activated for a first time period and can perform a second function when the switch 108 is activated for a second time period.
  • the switch 108 can be coupled to a communication interface and/or a calibration reset interface. In some examples, the switch 108 can execute the communication interface to communicatively couple the calibration tool 102 with the TDS sensor 112 as described herein. In these examples, the switch 108 can also execute the calibration reset interface to reset the calibration tool 102 as described herein.
  • the switch 108 can be activated for a first time period to reset the calibration tool 102 prior to positioning the probe 104 into one or more of the plurality of samples 116-1, 116-2, 116-N.
  • resetting the calibration tool 102 can include zeroing the calibration tool between determining a TDS value of the plurality of samples 116-1, 116-2, 116-N.
  • the switch 108 can be activated for a second time period to initiate the communication pathway 110 and/or to send a message to the TDS sensor 112 via the communication pathway 110 as described herein. In some examples, the switch 108 can be activated for the second time period while the probe 114 of the TDS sensor 112 is within the sample corresponding to the TDS value determined by the calibration tool 102.
  • the system 100 can be utilized to calibrate the TDS sensor 112 utilizing communication between the TDS sensor 112 and the calibration tool 102.
  • the calibration tool 102 can initiate a communication pathway 110 between the calibration tool 102 and a TDS sensor such as TDS sensor 112.
  • the calibration tool 102 can be utilized to calibrate a plurality of different TDS sensors similar to TDS sensor 112.
  • Figure 2 is an example of a method 220 for TDS sensor calibration according to one or more embodiments of the present disclosure.
  • the method 220 can utilize the features of system 100 as referenced in Figure 1.
  • the method 220 includes a tool (e.g., calibration tool 102) , a sensor (e.g., TDS sensor 112) , a sample (e.g., samples 116-1, 116-2, 116-N) , communication pathway (e.g., communication pathway 110) , and/or a switch (e.g., switch 108) .
  • the method 220 can include connecting the sensor to the tool.
  • connecting the sensor to the tool can include initiating a communication pathway between a TDS sensor and a calibration tool.
  • initiating a communication pathway can include communicatively coupling the TDS sensor with the calibration tool.
  • Connecting the sensor to the tool can include enabling communication via a wired or wireless connection between the sensor and the tool.
  • the method 220 can include resetting the tool.
  • resetting the tool can include zeroing or initiating the calibration tool prior to determining a TDS value for a sample.
  • the tool can be reset between each sample from a plurality of samples.
  • the tool can be reset utilizing a switch as described herein. The switch can be activated or selected for a first period of time (e.g., time period, quantity of time, etc. ) to initiate the reset.
  • the method 220 can include putting the probe of the calibration tool into a first sample (e.g., sample #i) .
  • a first sample e.g., sample #i
  • the calibration tool can be coupled to a probe that can be positioned within a sample to test the TDS value of the sample.
  • the calibration tool can determine a TDS value for the first sample while the probe is within the sample.
  • the method 220 can include activating the switch of the calibration tool.
  • activating the switch of the calibration tool can include depressing a switch of the calibration tool for a first time period.
  • Activating the switch of the calibration tool can initiate a function of determining a TDS value of the sample.
  • the calibration tool can include an indicator (e.g., indicator 106 as referenced in Figure 1) .
  • the indicator can be utilized to identify when the calibration tool has determined a TDS value of the sample.
  • the TDS value of the sample can be displayed on the indicator as described herein.
  • the method 220 can include removing the probe of the calibration tool from the sample.
  • the method 220 can include putting the probe of the TDS sensor into the sample.
  • the TDS sensor can be coupled to a probe for positioning within the sample so that the TDS sensor can determine a TDS value of the sample.
  • the TDS sensor can be a TDS sensor to be calibrated by the calibration tool.
  • the TDS sensor can be in production and need calibration before selling the TDS sensor to a consumer.
  • the TDS sensor can be calibrated at a scheduled time period or after a particular quantity of utilization.
  • the method 220 can include activating the switch of the calibration tool for a second time period. Activating the switch of the calibration tool for the second time period can initiate a communication pathway between the calibration tool and the TDS sensor.
  • the communication pathway can be utilized to send a number of messages from the calibration tool to the TDS sensor.
  • the number of messages can include the TDS value determined by the calibration tool.
  • the TDS value determined by the calibration tool can be compared to the TDS value determined by the TDS sensor.
  • the TDS value determined by the calibration tool for each of a plurality of samples can be compared to the TDS value determined by the TDS sensor for each of the plurality of samples.
  • the comparison can be utilized to alter a number of settings of the TDS sensor as described herein.
  • the method 220 can include removing the probe of the TDS sensor from the sample.
  • the method 220 can include cleaning the probe of the TDS sensor. Cleaning the probe of the TDS sensor can be performed in a manner consistent with manufacturer specifications of the TDS sensor.
  • the method 220 can include determining if the sample number (e.g., sample #i) is less than a total quantity of samples to be utilized for the calibration (e.g., N number of samples for calibration) . When the determination is “YES” 242-1 the method 220 can move to box 244 and when the determination is “NO” 242-2 the method 220 can move to box 246.
  • the sample number can be increased by a value (e.g., I +1) .
  • the method 220 can move to box 222 and the method 220 can repeat until the determination at box 240 is “Yes” 242-1.
  • the method 220 can include disconnecting the TDS sensor from the calibration tool to complete the calibration of the TDS sensor. Disconnecting the TDS sensor from the calibration tool can include disconnecting the communication pathway between the calibration tool and the TDS sensor.
  • Figure 3 is an example of a method 350 for TDS sensor calibration according to one or more embodiments of the present disclosure.
  • the method 350 can be executed by a computing device as described herein.
  • the method 350 can utilize a number of the features from system 100 as referenced in Figure 1.
  • the method 350 can be utilized to calibrate a TDS sensor as described herein.
  • the method 350 can include communicatively coupling a TDS sensor to a TDS calibration tool.
  • Communicatively coupling the TDS sensor to the TDS calibration tool can include initiating a communication pathway between the TDS sensor and the TDS calibration tool.
  • initiating a communication pathway can include establishing a wired connection or a wireless connection between the TDS sensor and the TDS calibration tool such that messages can be sent and received between the TDS sensor and the TDS calibration tool.
  • the method 350 can include providing a probe of the TDS calibration tool to a sample.
  • Providing the probe of the TDS calibration tool to the sample includes positioning the probe of the TDS calibration tool within a sample.
  • the sample can include a calibration sample with a known TDS value.
  • the sample can be a liquid sample that can interact with the probe in such a way that the calibration tool can determine the TDS value.
  • the probe can alter a resistance within the TDS calibration tool, which can alter a current or voltage of the TDS calibration tool. In these examples, the current or voltage altered by the resistance can correspond to a TDS value.
  • the method 350 can include activating the TDS calibration tool via a switch to measure a calibration TDS value of the sample.
  • the switch can be a button or other type of physical switch to activate or deactivate a process of the TDS calibration tool.
  • a time period of activating the switch can be utilized to determine which process the TDS calibration tool performs. For example, the switch can be activated for a first time period to execute measuring the TDS value of the sample. In another example, the switch can be activated for a second time period to execute a different function.
  • the method 350 can include providing a probe of the TDS sensor to the sample.
  • providing the probe of the TDS sensor to the sample can include positioning the probe into the sample such that the sample can affect the probe.
  • the probe can be a similar probe as the probe coupled to the TDS calibration tool.
  • the probe can alter a resistance based on the TDS value of the sample, and the TDS sensor can determine a TDS value of the sample based on the resistance provided by the probe.
  • the method 350 can include activating the TDS calibration tool via the switch to send the calibration TDS value to the TDS sensor via the coupling.
  • Activating the switch to send the calibration TDS value can include activating the switch for a second time period to execute sending the calibration TDS value to the TDS sensor.
  • the method 350 can include measuring, by the TDS sensor, a test TDS value of the sample.
  • measuring the test TDS value of the sample can include determining the TDS value of the sample by the TDS sensor.
  • the test TDS value can be based on a resistance of the probe when positioned within the sample.
  • the method 350 can include comparing, by a computing device coupled to the TDS sensor, the test TDS value to the calibration TDS value. Comparing the test TDS value to the calibration TDS value can include determining a difference between the test TDS value and the calibration TDS value. In some examples, the TDS sensor can be calibrated to minimize the difference between the test TDS value and the calibration test value.
  • the method 350 can include altering, by the computing device, a number of settings of the TDS sensor based on comparison of the test TDS value and the calibration TDS value.
  • altering the number of settings can include the TDS sensor automatically altering settings such that the test TDS value is altered to minimize the difference between the test TDS value and the calibration test value.
  • the computing device that alters the number of settings can be a computing device coupled to the TDS sensor.
  • the computing device can be within the TDS sensor or communicatively coupled to the TDS sensor.
  • the computing device can be coupled to the TDS calibration tool.
  • the computing device can utilize the communication pathway between the TDS sensor and the TDS calibration tool to alter the number of settings of the TDS sensor.
  • the method 350 can include determining a TDS value range for the TDS sensor.
  • the TDS value range can be a range of TDS values that the TDS sensor is configured to measure or determine as described herein.
  • the test TDS value and the calibration TDS value can be measured for a plurality of samples within the determined TDS value range.
  • the TDS value range can be 0.5 parts per trillion (PPT) to 30 PPT.
  • the plurality of samples can include a first sample with a known TDS value of 0.5 PPT, a second sample, with a known TDS value of 1.0 PPT, and an Nth sample with a known TDS value of 30 PPT.
  • the method 350 can be performed for each of the plurality of samples.
  • the method 350 can include determining a threshold TDS value range for the TDS sensor.
  • the threshold TDS value range can be an acceptable difference between the test TDS value and the calibration TDS value.
  • the method 350 can include determining when a difference between the calibration TDS value and the test TDS value is within the threshold TDS value range.
  • the method 350 can include altering the number of settings based on the difference between the calibration TDS value and the test TDS value. As described herein, the number of settings can be altered to minimize the difference between the calibration TDS value and the test TDS value. In some examples, the number of settings can correspond to settings that alter a voltage or current based on a resistance provided by a probe coupled to the TDS sensor. In addition, the method 350 can include altering instructions of a computing device coupled to the TDS sensor to display a TDS value within a TDS value range of the calibration TDS value for the sample. That is, the instructions of the computing device can be altered to minimize the difference between the test TDS value and the calibration TDS value.
  • FIG 4 is an example of a computing device 480 for TDS sensor calibration according to one or more embodiments of the present disclosure.
  • Computing device 480 can be, for example, a laptop computer, a desktop computer, a microprocessing resource, or a mobile device (e.g., a mobile phone, a personal digital assistant, etc. ) , among other types of computing devices.
  • Computing device 480 can be utilized in system 100 as referenced in Figure 1.
  • the computing device 480 can also perform the method 220 as referenced in Figure 2.
  • the computing device 480 can perform the method 350 as referenced in Figure 3.
  • computing device 480 includes a memory 482 and a processing resource 484 (e.g., processor) coupled to memory 482.
  • Memory 482 can be any type of storage medium that can be accessed by processing resource 484 to perform various examples of the present disclosure.
  • memory 482 can be a non-transitory computer readable medium having computer readable instructions (e.g., computer program instructions) stored thereon that are executable by processing resource 484 to receive a calibration TDS value of the sample from a calibration tool, compare the calibration TDS value to a test TDS value, and/or alter a number of settings of the TDS sensor based on the comparison.
  • Memory 482 can be volatile or nonvolatile memory. Memory 482 can also be removable (e.g., portable) memory, or non-removable (e.g., internal) memory.
  • memory 482 can be random access memory (RAM) (e.g., dynamic random access memory (DRAM) and/or phase change random access memory (PCRAM) ) , read-only memory (ROM) (e.g., electrically erasable programmable read-only memory (EEPROM) and/or compact-disc read-only memory (CD-ROM) ) , flash memory, a laser disc, a digital versatile disc (DVD) or other optical disk storage, and/or a magnetic medium such as magnetic cassettes, tapes, or disks, among other types of memory.
  • RAM random access memory
  • DRAM dynamic random access memory
  • PCRAM phase change random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact-disc read-only memory
  • flash memory a
  • memory 482 is illustrated as being located in computing device 480, embodiments of the present disclosure are not so limited.
  • memory 482 can also be located internal to another computing resource (e.g., enabling computer readable instructions to be downloaded over the Internet or another wired or wireless connection) .
  • computing device 480 can also include a user interface 486.
  • User interface 486 can include, for example, a display (e.g., a screen) .
  • the display can be, for instance, a touch-screen (e.g., the display can include touch-screen capabilities) .
  • User interface 486 (e.g., the display of user interface 486) can provide (e.g., display and/or present) information to a user of computing device 480.
  • computing device 480 can receive information from the user of computing device 480 through an interaction with the user via user interface 486.
  • computing device 480 e.g., the display of user interface 486
  • computing device 480 can receive input from the user via user interface 486.
  • the user can enter the input into computing device 480 using, for instance, a mouse and/or keyboard associated with computing device 480, or by touching the display of user interface 486 in embodiments in which the display includes touch-screen capabilities (e.g., embodiments in which the display is a touch screen) .
  • a “module” can include computer readable instructions that can be executed by a processing resource to perform a particular function.
  • a module can also include hardware, firmware, and/or logic that can perform a particular function.
  • logic is an alternative or additional processing resource to execute the actions and/or functions, described herein, which includes hardware (e.g., various forms of transistor logic, application specific integrated circuits (ASICs) ) , as opposed to computer executable instructions (e.g., software, firmware) stored in memory and executable by a processing resource.
  • hardware e.g., various forms of transistor logic, application specific integrated circuits (ASICs)
  • ASICs application specific integrated circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Devices, methods (220, 350), and systems (100) for total dissolved solids (TDS) sensor calibration are described herein. One system (100) includes a TDS calibration tool (102) coupled to a first probe(104) to determine a calibration TDS value of a sample (116-1,..., 116-N), and a TDS sensor (112) coupled to a second probe (114) to determine a test TDS value of the sample (116-1,..., 116-N), wherein the TDS sensor (112) is communicatively coupled to the TDS calibration tool (102) via a communication link (110); and a computing device (480) coupled to the TDS sensor (112) to: receive the calibration TDS value of the sample (116-1,..., 116-N) from the TDS calibration tool (102), compare the calibration TDS value with the test TDS value, and alter a number of settings of the TDS sensor (112) based on the comparison of the calibration TDS value and the test TDS value.

Description

TOTAL DISSOLVED SOLIDS SENSOR CALIBRATION DEVICES, METHODS, AND SYSTEMS Technical Field
The present disclosure relates to methods, devices, and systems for a total dissolved solids (TDS) sensor calibration.
Background
Sensors can be utilized to detect events or changes in a particular environment. In some examples, sensors can utilize electrical or optical signals that can vary based on the environment. In some examples, a sensor can be coupled to a controller that receives the signals. In these examples, the controller can receive the signal and determine a corresponding attribute of the environment based on the signal.
In some examples, the sensors can be coupled to a computing device. The computing device may need calibration to accurately determine the attribute of the environment. The computing device can be calibrated by manually altering a potentiometer coupled to the computing device. Manually altering the potentiometer can increase a likelihood of human error when calibrating the sensor.
Brief Description of the Drawings
Figure 1 is an example of a system for TDS sensor calibration according to one or more embodiments of the present disclosure.
Figure 2 is an example of a method for TDS sensor calibration according to one or more embodiments of the present disclosure.
Figure 3 is an example of a method for TDS sensor calibration according to one or more embodiments of the present disclosure.
Figure 4 is an example of a computing device for TDS sensor calibration according to one or more embodiments of the present disclosure.
Detailed Description
Total dissolved solids (TDS) sensor calibration devices, methods, and systems are described herein. For example, one or more embodiments include a TDS calibration tool coupled to a first probe to determine a calibration TDS value of a sample, and a TDS sensor coupled to a second probe to determine a test TDS value of the sample, wherein the TDS sensor is communicatively coupled to the TDS calibration tool via a communication link; and a computing device coupled to the TDS sensor to: receive the calibration TDS value of the sample from the TDS calibration tool, compare the calibration TDS value to the test TDS value, and alter a number of settings of the TDS sensor based on the comparison of the calibration TDS value and the test TDS value.
The TDS sensor calibration devices, methods, and systems can utilize a calibration tool to calibrate a TDS sensor. The calibration tool can be coupled to a probe that can be utilized to determine a TDS value (e.g., calibration TDS value, etc. ) for a sample. In some examples, the probe can alter a resistance within the calibration tool, which can alter a current or voltage of the calibration tool. In these examples, the current or voltage altered by the resistance can correspond to a TDS value. A TDS value can be a measured quantity of solids dissolved within a quantity of liquid. For example, a TDS value can be milligrams (mg) of solids per liters (L) of liquid (e.g., mg/L, etc. ) . The sample can be a liquid sample that can have a particular TDS value. In some examples, the sample can be a liquid sample with a known TDS value. In these examples, the determined TDS value for the sample by the calibration tool can be compared to the known TDS value.
The calibration tool can include a communication device that can communicatively couple the calibration tool with the TDS sensor to be calibrated. For example, the communication device can be utilized to generate a communication path between the calibration tool and the TDS sensor to be calibrated. In some examples, the TDS sensor to be calibrated can receive messages from the calibration tool via the  communication path. The messages can include a determined TDS value from the calibration tool that can be utilized by the TDS sensor to be calibrated. For example, the TDS sensor to be calibrated can utilize the determined TDS value within the message to compare with a TDS value determined by the TDS sensor to be calibrated.
The calibration tool can be utilized to calibrate a plurality of TDS sensors without manual alterations of the plurality of TDS sensors. In some examples, the calibration tool can determine a plurality of known samples and send corresponding messages to the TDS sensor to be calibrated. The TDS sensor calibration devices, methods, and systems described herein can increase an accuracy of calibrating TDS sensors by calibrating the plurality of TDS sensors for specific TDS value ranges.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof. The drawings show by way of illustration how one or more embodiments of the disclosure may be practiced.
These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that process changes may be made without departing from the scope of the present disclosure.
As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits.
As used herein, “a” or “a number of” something can refer to one or more such things. For example, “a number of users” can refer to one or more users. Additionally, the designator “N” , as used herein, particularly with respect to reference numerals in the drawings, indicates that a number of the particular feature so designated can be included with a number of embodiments of the present disclosure.
Figure 1 is an example of a system 100 for TDS sensor calibration according to one or more embodiments of the present disclosure. The system 100 can be utilized to calibrate a TDS sensor 112 coupled to a probe 114. The TDS sensor 112 can be calibrated utilizing a calibration tool 102 coupled to a probe 104.
As used herein, calibrating the TDS sensor 112 can include adjusting settings of the TDS sensor 112 such that a TDS value determined by the TDS sensor 112 is an accurate measurement. For example, the TDS sensor 112 can be adjusted such that the TDS value measured by the TDS sensor 112 is within a threshold value range of a known TDS value of the sample. Adjusting settings of the TDS sensor 112 can include altering an electrical potentiometer of the TDS sensor 112. In some examples, the settings of the TDS sensor 112 can be adjusted by the calibration tool 102 via the communication pathway 110. In some examples, a computing device can alter the number of settings of the TDS sensor 112 while the probe 114 is within the sample.
In some examples, the calibration tool 102 can include an indicator 106. The indicator 106 can include a user interface as described herein. The user interface can display information relating to a determined TDS value or other information relating to a functionality of the calibration tool 102. For example, the indicator 106 can provide an alert when the calibration tool 102 has determined a TDS value for a sample from a plurality of samples 116-1, 116-2, 116-N (e.g., calibration samples, liquid samples, liquid solutions, etc. ) .
The system 100 can be utilized to calibrate the TDS sensor 112. The calibration tool 102 can be coupled to a probe 104. The probe 104  can be positioned into a sample 116-1. The calibration tool 102 can determine a TDS value for the sample 116-1. The probe 104 can then be removed from the sample 116-1. The TDS sensor 112 can be coupled to a probe 114. The probe 114 can be positioned into the sample 116-1 and the TDS sensor 112 can determine a TDS value for the sample 116-1. In some examples, the calibration tool 102 can establish a communication pathway 110 with the TDS sensor 112.
The communication pathway 110 can allow the calibration tool 102 to communicate with the TDS sensor 112. The communication pathway 110 can be a wired connection (e.g., Ethernet, etc. ) or a wireless communication pathway (e.g., WiFi, Bluetooth, near field communication (NFC) , etc. ) between the calibration tool 102 and the TDS sensor 112. For example, the communication pathway 110 can be a wired or wireless connection that allows for messages to transfer between the calibration tool 102 and the TDS sensor 112.
The calibration tool 102 can send a number of messages to the TDS sensor 112 via the communication pathway 110. The number of messages can include the determined TDS value from the calibration tool 102. The determined TDS value from the calibration tool 102 can be compared to the determined TDS value from the TDS sensor 112. In some examples, the comparison can be utilized to alter a number of settings of the TDS sensor 112.
In some examples, the TDS sensor 112 can utilize the comparison of the TDS values to determine a number of settings to alter to adjust the determined TDS value of the TDS sensor 112 within a TDS value threshold range of the determined TDS value from the calibration tool 102. The calibration tool 102 can utilize the communication pathway 110 to alter a number of settings of the TDS sensor 112 based on the comparison of TDS values. In some examples, the process for calibrating the TDS sensor 112 utilizing a comparison of TDS values from the sample 116-1 can be performed on sample 116-2 and sample 116-N in a similar manner as sample 116-1.
The plurality of samples 116-1, 116-2, 116-N can each comprise a TDS value within a TDS value range. For example, the sample 116-1 can comprise a first TDS value, the sample 116-N can comprise a second TDS value, and sample 116-2 can be a TDS value between the first TDS value and the second TDS value. In some examples, the plurality of samples 116-1, 116-2, 116-N can comprise a TDS value range that corresponds to a TDS value range of the TDS sensor 112.
The calibration tool 102 can include a switch 108. The switch 108 can be utilized to execute a number of functions. In some examples, the switch 108 can execute a first function when the switch 108 is activated for a first time period and can perform a second function when the switch 108 is activated for a second time period. The switch 108 can be coupled to a communication interface and/or a calibration reset interface. In some examples, the switch 108 can execute the communication interface to communicatively couple the calibration tool 102 with the TDS sensor 112 as described herein. In these examples, the switch 108 can also execute the calibration reset interface to reset the calibration tool 102 as described herein.
In one example, the switch 108 can be activated for a first time period to reset the calibration tool 102 prior to positioning the probe 104 into one or more of the plurality of samples 116-1, 116-2, 116-N. As used herein, resetting the calibration tool 102 can include zeroing the calibration tool between determining a TDS value of the plurality of samples 116-1, 116-2, 116-N.
In another example, the switch 108 can be activated for a second time period to initiate the communication pathway 110 and/or to send a message to the TDS sensor 112 via the communication pathway 110 as described herein. In some examples, the switch 108 can be activated for the second time period while the probe 114 of the TDS sensor 112 is within the sample corresponding to the TDS value determined by the calibration tool 102.
The system 100 can be utilized to calibrate the TDS sensor 112 utilizing communication between the TDS sensor 112 and the calibration  tool 102. The calibration tool 102 can initiate a communication pathway 110 between the calibration tool 102 and a TDS sensor such as TDS sensor 112. In some examples, the calibration tool 102 can be utilized to calibrate a plurality of different TDS sensors similar to TDS sensor 112.
Figure 2 is an example of a method 220 for TDS sensor calibration according to one or more embodiments of the present disclosure. The method 220 can utilize the features of system 100 as referenced in Figure 1. For example, the method 220 includes a tool (e.g., calibration tool 102) , a sensor (e.g., TDS sensor 112) , a sample (e.g., samples 116-1, 116-2, 116-N) , communication pathway (e.g., communication pathway 110) , and/or a switch (e.g., switch 108) .
At box 222, the method 220 can include connecting the sensor to the tool. In some examples, connecting the sensor to the tool can include initiating a communication pathway between a TDS sensor and a calibration tool. As described herein, initiating a communication pathway can include communicatively coupling the TDS sensor with the calibration tool. Connecting the sensor to the tool can include enabling communication via a wired or wireless connection between the sensor and the tool.
At box 224, the method 220 can include resetting the tool. In some examples, resetting the tool can include zeroing or initiating the calibration tool prior to determining a TDS value for a sample. In some examples, the tool can be reset between each sample from a plurality of samples. In some examples, the tool can be reset utilizing a switch as described herein. The switch can be activated or selected for a first period of time (e.g., time period, quantity of time, etc. ) to initiate the reset.
At box 226, the method 220 can include putting the probe of the calibration tool into a first sample (e.g., sample #i) . As described herein, the calibration tool can be coupled to a probe that can be positioned within a sample to test the TDS value of the sample. In some examples, the calibration tool can determine a TDS value for the first sample while the probe is within the sample.
At box 228, the method 220 can include activating the switch of the calibration tool. In some examples, activating the switch of the calibration tool can include depressing a switch of the calibration tool for a first time period. Activating the switch of the calibration tool can initiate a function of determining a TDS value of the sample. The calibration tool can include an indicator (e.g., indicator 106 as referenced in Figure 1) . The indicator can be utilized to identify when the calibration tool has determined a TDS value of the sample. In some examples, the TDS value of the sample can be displayed on the indicator as described herein. At box 230, the method 220 can include removing the probe of the calibration tool from the sample.
At box 232, the method 220 can include putting the probe of the TDS sensor into the sample. As described herein, the TDS sensor can be coupled to a probe for positioning within the sample so that the TDS sensor can determine a TDS value of the sample. In some examples, the TDS sensor can be a TDS sensor to be calibrated by the calibration tool. For example, the TDS sensor can be in production and need calibration before selling the TDS sensor to a consumer. In some examples, the TDS sensor can be calibrated at a scheduled time period or after a particular quantity of utilization.
At box 234, the method 220 can include activating the switch of the calibration tool for a second time period. Activating the switch of the calibration tool for the second time period can initiate a communication pathway between the calibration tool and the TDS sensor. In some examples, the communication pathway can be utilized to send a number of messages from the calibration tool to the TDS sensor. In some examples, the number of messages can include the TDS value determined by the calibration tool.
The TDS value determined by the calibration tool can be compared to the TDS value determined by the TDS sensor. In some examples, the TDS value determined by the calibration tool for each of a plurality of samples can be compared to the TDS value determined by the TDS sensor for each of the plurality of samples. In some examples,  the comparison can be utilized to alter a number of settings of the TDS sensor as described herein.
At box 236, the method 220 can include removing the probe of the TDS sensor from the sample. At box 236, the method 220 can include cleaning the probe of the TDS sensor. Cleaning the probe of the TDS sensor can be performed in a manner consistent with manufacturer specifications of the TDS sensor. At box 240, the method 220 can include determining if the sample number (e.g., sample #i) is less than a total quantity of samples to be utilized for the calibration (e.g., N number of samples for calibration) . When the determination is “YES” 242-1 the method 220 can move to box 244 and when the determination is “NO” 242-2 the method 220 can move to box 246.
At box 244, the sample number can be increased by a value (e.g., I +1) . When the sample number is increased by the value, the method 220 can move to box 222 and the method 220 can repeat until the determination at box 240 is “Yes” 242-1. At box 246, the method 220 can include disconnecting the TDS sensor from the calibration tool to complete the calibration of the TDS sensor. Disconnecting the TDS sensor from the calibration tool can include disconnecting the communication pathway between the calibration tool and the TDS sensor.
Figure 3 is an example of a method 350 for TDS sensor calibration according to one or more embodiments of the present disclosure. In some examples, the method 350 can be executed by a computing device as described herein. The method 350 can utilize a number of the features from system 100 as referenced in Figure 1. In some examples, the method 350 can be utilized to calibrate a TDS sensor as described herein.
At box 352, the method 350 can include communicatively coupling a TDS sensor to a TDS calibration tool. Communicatively coupling the TDS sensor to the TDS calibration tool can include initiating a communication pathway between the TDS sensor and the TDS calibration tool. As described herein, initiating a communication pathway  can include establishing a wired connection or a wireless connection between the TDS sensor and the TDS calibration tool such that messages can be sent and received between the TDS sensor and the TDS calibration tool.
At box 354, the method 350 can include providing a probe of the TDS calibration tool to a sample. Providing the probe of the TDS calibration tool to the sample includes positioning the probe of the TDS calibration tool within a sample. In some examples, the sample can include a calibration sample with a known TDS value. The sample can be a liquid sample that can interact with the probe in such a way that the calibration tool can determine the TDS value. In some examples, the probe can alter a resistance within the TDS calibration tool, which can alter a current or voltage of the TDS calibration tool. In these examples, the current or voltage altered by the resistance can correspond to a TDS value.
At box 356, the method 350 can include activating the TDS calibration tool via a switch to measure a calibration TDS value of the sample. The switch can be a button or other type of physical switch to activate or deactivate a process of the TDS calibration tool. In some examples, a time period of activating the switch can be utilized to determine which process the TDS calibration tool performs. For example, the switch can be activated for a first time period to execute measuring the TDS value of the sample. In another example, the switch can be activated for a second time period to execute a different function.
At box 358, the method 350 can include providing a probe of the TDS sensor to the sample. As described herein, providing the probe of the TDS sensor to the sample can include positioning the probe into the sample such that the sample can affect the probe. In some examples, the probe can be a similar probe as the probe coupled to the TDS calibration tool. For example, the probe can alter a resistance based on the TDS value of the sample, and the TDS sensor can determine a TDS value of the sample based on the resistance provided by the probe.
At box 360, the method 350 can include activating the TDS calibration tool via the switch to send the calibration TDS value to the TDS sensor via the coupling. Activating the switch to send the calibration TDS value can include activating the switch for a second time period to execute sending the calibration TDS value to the TDS sensor.
At box 362, the method 350 can include measuring, by the TDS sensor, a test TDS value of the sample. In some examples, measuring the test TDS value of the sample can include determining the TDS value of the sample by the TDS sensor. As described herein, the test TDS value can be based on a resistance of the probe when positioned within the sample.
At box 364, the method 350 can include comparing, by a computing device coupled to the TDS sensor, the test TDS value to the calibration TDS value. Comparing the test TDS value to the calibration TDS value can include determining a difference between the test TDS value and the calibration TDS value. In some examples, the TDS sensor can be calibrated to minimize the difference between the test TDS value and the calibration test value.
At box 366, the method 350 can include altering, by the computing device, a number of settings of the TDS sensor based on comparison of the test TDS value and the calibration TDS value. In some examples, altering the number of settings can include the TDS sensor automatically altering settings such that the test TDS value is altered to minimize the difference between the test TDS value and the calibration test value.
In some examples, the computing device that alters the number of settings can be a computing device coupled to the TDS sensor. The computing device can be within the TDS sensor or communicatively coupled to the TDS sensor. In some examples, the computing device can be coupled to the TDS calibration tool. In these examples, the computing device can utilize the communication pathway between the TDS sensor and the TDS calibration tool to alter the number of settings of the TDS sensor.
The method 350 can include determining a TDS value range for the TDS sensor. The TDS value range can be a range of TDS values that the TDS sensor is configured to measure or determine as described herein. The test TDS value and the calibration TDS value can be measured for a plurality of samples within the determined TDS value range. For example, the TDS value range can be 0.5 parts per trillion (PPT) to 30 PPT. In this example, the plurality of samples, can include a first sample with a known TDS value of 0.5 PPT, a second sample, with a known TDS value of 1.0 PPT, and an Nth sample with a known TDS value of 30 PPT. In some examples, the method 350 can be performed for each of the plurality of samples.
The method 350 can include determining a threshold TDS value range for the TDS sensor. The threshold TDS value range can be an acceptable difference between the test TDS value and the calibration TDS value. In some examples, the method 350 can include determining when a difference between the calibration TDS value and the test TDS value is within the threshold TDS value range.
The method 350 can include altering the number of settings based on the difference between the calibration TDS value and the test TDS value. As described herein, the number of settings can be altered to minimize the difference between the calibration TDS value and the test TDS value. In some examples, the number of settings can correspond to settings that alter a voltage or current based on a resistance provided by a probe coupled to the TDS sensor. In addition, the method 350 can include altering instructions of a computing device coupled to the TDS sensor to display a TDS value within a TDS value range of the calibration TDS value for the sample. That is, the instructions of the computing device can be altered to minimize the difference between the test TDS value and the calibration TDS value.
Figure 4 is an example of a computing device 480 for TDS sensor calibration according to one or more embodiments of the present disclosure. Computing device 480 can be, for example, a laptop  computer, a desktop computer, a microprocessing resource, or a mobile device (e.g., a mobile phone, a personal digital assistant, etc. ) , among other types of computing devices. Computing device 480 can be utilized in system 100 as referenced in Figure 1. The computing device 480 can also perform the method 220 as referenced in Figure 2. The computing device 480 can perform the method 350 as referenced in Figure 3.
As shown in Figure 4, computing device 480 includes a memory 482 and a processing resource 484 (e.g., processor) coupled to memory 482. Memory 482 can be any type of storage medium that can be accessed by processing resource 484 to perform various examples of the present disclosure. For example, memory 482 can be a non-transitory computer readable medium having computer readable instructions (e.g., computer program instructions) stored thereon that are executable by processing resource 484 to receive a calibration TDS value of the sample from a calibration tool, compare the calibration TDS value to a test TDS value, and/or alter a number of settings of the TDS sensor based on the comparison.
Memory 482 can be volatile or nonvolatile memory. Memory 482 can also be removable (e.g., portable) memory, or non-removable (e.g., internal) memory. For example, memory 482 can be random access memory (RAM) (e.g., dynamic random access memory (DRAM) and/or phase change random access memory (PCRAM) ) , read-only memory (ROM) (e.g., electrically erasable programmable read-only memory (EEPROM) and/or compact-disc read-only memory (CD-ROM) ) , flash memory, a laser disc, a digital versatile disc (DVD) or other optical disk storage, and/or a magnetic medium such as magnetic cassettes, tapes, or disks, among other types of memory.
Further, although memory 482 is illustrated as being located in computing device 480, embodiments of the present disclosure are not so limited. For example, memory 482 can also be located internal to another computing resource (e.g., enabling computer readable  instructions to be downloaded over the Internet or another wired or wireless connection) .
As shown in Figure 4, computing device 480 can also include a user interface 486. User interface 486 can include, for example, a display (e.g., a screen) . The display can be, for instance, a touch-screen (e.g., the display can include touch-screen capabilities) . User interface 486 (e.g., the display of user interface 486) can provide (e.g., display and/or present) information to a user of computing device 480.
Additionally, computing device 480 can receive information from the user of computing device 480 through an interaction with the user via user interface 486. For example, computing device 480 (e.g., the display of user interface 486) can receive input from the user via user interface 486. The user can enter the input into computing device 480 using, for instance, a mouse and/or keyboard associated with computing device 480, or by touching the display of user interface 486 in embodiments in which the display includes touch-screen capabilities (e.g., embodiments in which the display is a touch screen) .
As described herein, a “module” can include computer readable instructions that can be executed by a processing resource to perform a particular function. A module can also include hardware, firmware, and/or logic that can perform a particular function.
As used herein, “logic” is an alternative or additional processing resource to execute the actions and/or functions, described herein, which includes hardware (e.g., various forms of transistor logic, application specific integrated circuits (ASICs) ) , as opposed to computer executable instructions (e.g., software, firmware) stored in memory and executable by a processing resource.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is  intended to cover any and all adaptations or variations of various embodiments of the disclosure.
It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.
The scope of the various embodiments of the disclosure includes any other applications in which the above elements and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (10)

  1. A total dissolved solids (TDS) sensor calibration system, comprising:
    a first probe coupled to a calibration tool to determine a calibration TDS value of a sample; and
    a second probe coupled to a TDS sensor to determine a test TDS value of the sample and compare the calibration TDS value of the sample, wherein the TDS sensor alters a number of settings based on the test TDS value and the calibration TDS value of the sample.
  2. The TDS sensor calibration system of claim 1, wherein the calibration tool is communicatively coupled to the TDS sensor.
  3. The TDS sensor calibration system of claim 2, wherein the calibration tool sends the calibration TDS value of the sample to the TDS sensor.
  4. The TDS sensor calibration system of claim 1, wherein the calibration tool includes a switch coupled to a communication interface and a calibration reset.
  5. The TDS sensor calibration system of claim 4, wherein the switch resets the calibration tool when activated for a first time period.
  6. The TDS sensor calibration system of claim 5, wherein the switch activates that communication interface to enable the calibration tool to send the calibration TDS value to the TDS sensor when activated for a second time period.
  7. A TDS sensor calibration system of claim 1, further comprising a computing device coupled to the TDS sensor to alter the number of settings based on the test TDS value and the calibration TDS value of the sample.
  8. The TDS sensor calibration system of claim 7, wherein the computing device alters the number of settings of the TDS sensor while the second probe is within the sample.
  9. The TDS sensor calibration system of claim 7, wherein the computing device alters the number of settings to alter the test TDS value within a threshold value of the calibration TDS value.
  10. The TDS sensor calibration system of claim 7, wherein the TDS calibration tool includes an indicator to display the calibration TDS value.
PCT/CN2016/108272 2016-12-01 2016-12-01 Total dissolved solids sensor calibration devices, methods, and systems WO2018098786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/108272 WO2018098786A1 (en) 2016-12-01 2016-12-01 Total dissolved solids sensor calibration devices, methods, and systems
CN201680090731.7A CN109983327A (en) 2016-12-01 2016-12-01 Total dissolved solid pick up calibration equipment, method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108272 WO2018098786A1 (en) 2016-12-01 2016-12-01 Total dissolved solids sensor calibration devices, methods, and systems

Publications (1)

Publication Number Publication Date
WO2018098786A1 true WO2018098786A1 (en) 2018-06-07

Family

ID=62241000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108272 WO2018098786A1 (en) 2016-12-01 2016-12-01 Total dissolved solids sensor calibration devices, methods, and systems

Country Status (2)

Country Link
CN (1) CN109983327A (en)
WO (1) WO2018098786A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211981A (en) * 2018-09-05 2019-01-15 广东点球电子科技有限公司 The probe calibration method, apparatus and TDS detector of TDS detector
CN109655497A (en) * 2018-11-28 2019-04-19 厦门芯阳科技股份有限公司 It is a kind of for correcting the control circuit and method of TDS probe measurement errors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581189A (en) * 1992-03-17 1996-12-03 Brenn; Eric W. Water purity testing system having reversing polarity
KR100428751B1 (en) * 2003-09-08 2004-04-28 대윤계기산업 주식회사 TDS/Salt-Meter
CN103868960A (en) * 2014-03-10 2014-06-18 佛山市南海Tcl家用电器有限公司 Water purification machine, measuring method and measuring device of TDS (Total Dissolved Solids) value of water purification machine
CN104298208A (en) * 2014-10-27 2015-01-21 宋建峰 Intelligent Internet of Things system adapting to water purifying device
CN105565525A (en) * 2015-11-19 2016-05-11 宁波祖创电子科技有限公司 Intelligent water purifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242493A1 (en) * 2008-03-25 2009-10-01 Hm Digital, Inc. Method and apparatus for routine liquid testing for total dissolved solids
EP2710505A4 (en) * 2011-05-11 2014-10-29 Isense Acquisition Llc Back calibration of sensor data
EP2626755B1 (en) * 2012-02-10 2019-04-10 Nxp B.V. Calibration method, calibration device and measurement device
CN103176460A (en) * 2013-03-05 2013-06-26 北京智淼科技有限公司 Remote real-time water quality monitoring and controlling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581189A (en) * 1992-03-17 1996-12-03 Brenn; Eric W. Water purity testing system having reversing polarity
KR100428751B1 (en) * 2003-09-08 2004-04-28 대윤계기산업 주식회사 TDS/Salt-Meter
CN103868960A (en) * 2014-03-10 2014-06-18 佛山市南海Tcl家用电器有限公司 Water purification machine, measuring method and measuring device of TDS (Total Dissolved Solids) value of water purification machine
CN104298208A (en) * 2014-10-27 2015-01-21 宋建峰 Intelligent Internet of Things system adapting to water purifying device
CN105565525A (en) * 2015-11-19 2016-05-11 宁波祖创电子科技有限公司 Intelligent water purifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109211981A (en) * 2018-09-05 2019-01-15 广东点球电子科技有限公司 The probe calibration method, apparatus and TDS detector of TDS detector
CN109211981B (en) * 2018-09-05 2021-10-26 广东点球电子科技有限公司 Method and device for calibrating probe of TDS detector and TDS detector
CN109655497A (en) * 2018-11-28 2019-04-19 厦门芯阳科技股份有限公司 It is a kind of for correcting the control circuit and method of TDS probe measurement errors
CN109655497B (en) * 2018-11-28 2021-05-04 厦门芯阳科技股份有限公司 Control circuit and method for correcting TDS probe measurement error

Also Published As

Publication number Publication date
CN109983327A (en) 2019-07-05

Similar Documents

Publication Publication Date Title
RU2661053C1 (en) Measurements and calibration using colorimetric sensitive elements
CN107621279B (en) Data processing method, sensor data calibration method and device
DK2761267T3 (en) CALIBLE ALKOMETER
US11231402B2 (en) Calibrated mobile gas sensor
US10359308B2 (en) Flow meter and a method of calibration
CN110617916B (en) Calibration method and device of air pressure sensor
WO2018098786A1 (en) Total dissolved solids sensor calibration devices, methods, and systems
Moylan Progress toward standardized additive manufacturing test artifacts
US11680925B2 (en) Systems and methods for electrochemical hematocrit determination by alternate current impedance phase angle determinations
CN109580549B (en) Method and device for calculating and calibrating material content
US20170007128A1 (en) Output device, output method, and recording medium
CN110954152A (en) Providing compensation parameters for sensor integrated circuits
JP2016161276A (en) Current sensor circuit
CN110646134A (en) Calibration method and calibration device for air pressure sensor
CN107607144B (en) Sensor baseline drift correction method and detection equipment
JP6364232B2 (en) Calibration system
US11549924B2 (en) Methane sensor automatic baseline calibration
KR20160061698A (en) Temperature sensor correcting device, temperature sensor, and temperature sensor correcting method
JP3187757U (en) electronic balance
US20170188915A1 (en) Measurement error correction device of bio-measurer
JP2014085353A (en) Device and method for measuring moisture content
JP7314969B2 (en) Zirconia oxygen concentration meter maintenance method, maintenance system, and zirconia oxygen concentration meter
EP3187847B1 (en) Pressure measurement
US20190112126A1 (en) Smart jar
Backsheeva et al. Improvement of the reliability of information received from sensor devices with metrological self-check

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922670

Country of ref document: EP

Kind code of ref document: A1