WO2018097676A1 - Antenna core for contactless electronic payment and contactless electronic payment module including same - Google Patents

Antenna core for contactless electronic payment and contactless electronic payment module including same Download PDF

Info

Publication number
WO2018097676A1
WO2018097676A1 PCT/KR2017/013595 KR2017013595W WO2018097676A1 WO 2018097676 A1 WO2018097676 A1 WO 2018097676A1 KR 2017013595 W KR2017013595 W KR 2017013595W WO 2018097676 A1 WO2018097676 A1 WO 2018097676A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic payment
antenna
antenna core
contactless electronic
magnetic
Prior art date
Application number
PCT/KR2017/013595
Other languages
French (fr)
Korean (ko)
Inventor
이동훈
장길재
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Publication of WO2018097676A1 publication Critical patent/WO2018097676A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/32Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices
    • G06Q20/327Short range or proximity payments by means of M-devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas

Definitions

  • the present invention relates to an antenna core, and more particularly, to a non-contact electronic payment antenna core having an excellent transmission / reception efficiency, an extended signal recognition range and a range even though it is thin and light, and a non-contact electronic payment module including the same. .
  • a magnetic stripe (MS) including card data such as payment information is formed.
  • the magnetic stripe is made of magnetic particles, and data is recorded according to the order of magnetic polarity of such magnetic particles.
  • This card data is read from the magnetic stripe by the POS by moving the magnetic card to the sensing opening in which the leader head of the point of sale (POS) is formed.
  • the magnetic stripe forms a magnetic field in the sensing opening of the reader head, and the reader head can read the card data by converting the magnetic field thus formed into an electrical signal.
  • the magnetic core provided inside the antenna should be thinner / smaller and lighter in weight.
  • the payment signal recognition performance and recognition distance can be expressed to the desired level.
  • the payment function is difficult to perform smoothly.
  • the magnetic core is provided to ensure sufficient payment signal recognition performance and recognition distance, it is difficult to miniaturize / thin the magnetic core, which makes it difficult to mount the portable terminal device.
  • the present invention has been made to solve the above-described problems, and can achieve excellent transmission efficiency and transmission distance of an electronic payment signal, and at the same time, it is miniaturized, thinned, and lightweight, and is suitable for mounting in a portable terminal.
  • An object of the present invention is to provide a core and a non-contact electronic payment module including the same.
  • Another object of the present invention is to provide an electronic device including a portable device employing the non-contact electronic payment module as described above.
  • the present invention provides a non-contact electronic payment antenna core comprising a; a magnetic body disposed inside the non-contact electronic payment antenna coil, containing a Fe-based alloy. According to this, the characteristic of an antenna core can be improved.
  • the Fe-based alloy is a three-element alloy containing iron (Fe), silicon (Si) and boron (B) or iron (Fe), silicon (Si), boron (B) , Copper (Cu) and niobium (Nb) may be a five-element alloy.
  • the magnetic material containing the Fe-based alloy may be a Fe-based alloy ribbon sheet or formed of debris obtained by crushing the Fe-based alloy ribbon sheet into a plurality of fine pieces in order to prevent physical properties of the antenna core, high magnetic permeability More preferably, the Fe-based alloy ribbon sheet may be implemented.
  • the antenna core may be configured by stacking a plurality of magnetic bodies, an adhesive layer is interposed between the stacked magnetic bodies, and two to four magnetic bodies may be provided.
  • the magnetic material may have a thickness of 15 to 35 ⁇ m single layer.
  • the antenna core includes a first protection portion covering the upper and lower portions of the magnetic material, and a second protection portion extending from the first protection portion and forming a rim with a predetermined width and enclosing the magnetic body side to improve corrosion resistance.
  • a protective member may be further provided, and the width of the second protective part may be 100 ⁇ m to 1 mm, and the thickness of the protective member may be 5 to 100 ⁇ m.
  • the present invention is a non-contact electronic payment antenna core according to the present invention; And a contactless electronic payment antenna formed by winding the antenna core.
  • the relative gain with respect to the inductance (Ls) of the contactless electronic payment antenna may be 5 or more, more preferably May be 5-15.
  • the present invention provides a portable device including a non-contact electronic payment module according to the present invention as a receiving module.
  • the present invention also provides an electronic device including a non-contact electronic payment module according to the present invention.
  • the non-contact electronic payment antenna core of the present invention can have an excellent transmission and reception efficiency, an extended transmission and reception distance and a wide recognition range of the electronic payment signal even though it is thin and light.
  • the contactless electronic payment module implemented in this way can be implemented in various sizes, such as a thin and light and small size can be widely applied to portable electronic devices.
  • the electronic payment signal is not transmitted or received on any one side of the device, and both sides of the device can recognize the signal, thereby positioning the mobile device only in one specific direction in the non-contact electronic payment process. As there is no inconvenience to be made, it can be widely applied to various fields and related devices where contactless electronic payment is required.
  • FIG. 1 is a partial cross-sectional view of a non-contact electronic payment antenna core according to an embodiment of the present invention
  • FIG. 2 is a partial cross-sectional view of a contactless electronic payment antenna core according to another embodiment of the present invention.
  • 3a and 3b is a perspective view and a cross-sectional view taken along the line X-X 'of a non-contact electronic payment module according to an embodiment of the present invention
  • FIG. 4 is a partial cross-sectional view of a non-contact electronic payment module according to another embodiment of the present invention.
  • FIG. 5 is a perspective view of a non-contact electronic payment module according to an embodiment of the present invention.
  • FIG. 6 is a partial plan view of a non-contact electronic payment module according to an embodiment of the present invention.
  • FIG. 7 is an exploded perspective view of FIG. 6, and
  • Figure 8 is an antenna core included in an embodiment of the present invention, the single layer height is 24 ⁇ m, the composition is Fe 75 . 1 Si 17 B 4 Cu 1 Nb 2 .9 , and the heat treatment is in the ribbon sheet is not crushed, and the laminate 4, the total thickness 105 ⁇ m interposed 3 ⁇ m the double-sided adhesive thickness between the respective ribbon sheet antenna core frequency band It is a complex permeability graph.
  • the non-contact electronic payment antenna core 100 includes a magnetic body 110 including a Fe-based alloy, and a protective member covering the magnetic body 110 ( 120) may be further included.
  • the magnetic body 110 improves the characteristics of the antenna coil for contactless electronic payment, and for this purpose includes a Fe-based alloy as a magnetic body.
  • a Fe-based alloy as a magnetic body.
  • a frequency band used for contactless electronic payment may be several hundreds of frequencies, for example, 5 Hz to 100 Hz.
  • the contactless electronic payment antenna and the antenna core are disposed adjacent to the metal cover of the mobile device having the conductive metal cover, the above magnetic material may be used in both the front and the rear of the mobile device having the conductive metal cover.
  • the Fe-based alloy used as the magnetic material of the present invention has an advantage of sufficiently expressing desired physical properties in a low frequency band even when implemented in a very thin thickness.
  • the thickness of the ribbon produced is very thin, the thickness does not increase even when stacked, and when stacked, antenna performance coefficient can be improved by lowering the AC resistance generated from the antenna.
  • the Fe-based alloy can be used without limitation in the case of the Fe-based alloy known as soft magnetic material.
  • silicon steel for example, may have excellent physical properties compared to the above-described magnetic materials such as ferrite in the desired frequency band for non-contact electronic payment, and has the lowest cost, and thus can be easily used. Since the characteristic is not high, the magnetic field signal may be generated and amplified by the required intensity alone, and the signal may not be easily recognized.
  • the Fe-based alloy is a three-element Fe alloy containing silicon and boron, or a five-element Fe alloy including silicon, boron, copper, and niobium (Nb). This can be very advantageous in contrast to the degree of manifestation of the specific properties.
  • the tri-element Fe alloy may further add elements, such as chromium (Cr), cobalt (Co), nickel (Ni), etc. to the base composition of the element alloy to improve other properties, for example, corrosion resistance.
  • the Fe-based alloy is a Fe-Si-B-based ternary alloy, it may be an alloy having preferably 70 to 90 at% of Fe.
  • the saturation magnetic flux density of the alloy may be increased, but a crystalline alloy may be prepared.
  • the Si and B elements are responsible for increasing the crystallization temperature of the alloy to make the alloy more easily amorphous
  • the content of the Si and B elements is specifically 10 to 27 at%
  • Si is 3 to 12 at% may be included, but the present invention is not limited thereto, and may be modified according to the desired physical properties.
  • the five-element Fe alloy further includes copper and niobium in addition to the above-described main elements of the three-element-based alloy.
  • the copper improves the corrosion resistance of the Fe-based alloy and prevents the size of the crystal from growing even when the crystal is formed. At the same time, the magnetic properties such as permeability can be improved.
  • the copper is preferably included in the alloy 0.01 ⁇ 10at%, if less than 0.01at% expression of the effect obtained by the copper may be insignificant, if it exceeds 10at% amorphous alloy is produced It can be difficult.
  • the niobium (Nb) may improve the magnetic properties such as permeability, it is preferably included in the alloy 0.01 ⁇ 10at%, if included in less than 0.01at% the expression of the effect obtained due to niobium is It may be insignificant and, if it exceeds 10 at%, it may be difficult to form an amorphous alloy.
  • the Fe-based alloy is a five-element alloy further including copper and niobium
  • Si and B may be included in the 10 to 30 at% alloy, and Fe may be included in the balance.
  • the saturation magnetic flux density of the alloy may be increased, but a crystalline alloy may be prepared.
  • the content of Si and B may increase the crystallization temperature of the alloy to more easily amorphous the alloy.
  • the content of Si and B may be specifically included in the case of Si 10 ⁇ 27at%, B 3 ⁇ 12at%, but is not limited to this may be changed according to the degree of the desired physical properties.
  • the Fe-based alloy may be derived from Fe-based amorphous alloy ribbon, and may be heat-treated to control the permeability to the desired level or to maximize the permeability, wherein the Fe-based alloy heat-treated the amorphous phase according to the composition Or may comprise nanocrystals.
  • the crystal phase of the Fe-based alloy may vary depending on the composition, composition ratio and / or heat treatment temperature / time of the alloy.
  • the antenna core 100 may include a single layer of magnetic material 110.
  • the magnetic body 110 may have a thickness of 15 ⁇ m to 35 ⁇ m.
  • the magnetic body 110 may be a sheet shape cut to a predetermined width / length, as may be derived from the Fe-based ribbon sheet as described above.
  • the shape of the magnetic body 110 is not limited thereto, and may be appropriately changed according to the shape of the antenna for contactless electronic payment in which the antenna core is disposed.
  • the antenna core 100 has a high permeability in the frequency band of the desired signal may be good in terms of electronic payment signal, transmission capability and recognition capability.
  • the real part of the complex permeability of the magnetic material in the frequency band of 5 GHz to 100 GHz may be preferably 6,000 or more, and more preferably 8,000 to 22,000.
  • the complex permeability real part in the 10 GHz frequency band may be 17,000 or more, more preferably 17,000 to 20,000
  • the imaginary part may be 5,000 or less, and more preferably 4,000 or less.
  • a plurality of magnetic bodies 112, 113, and 114 may be stacked on the antenna core 102, and an adhesive layer 140 may be further interposed between the stacked magnetic bodies 112, 113, and 114.
  • the transmission / reception distance of the electronic payment signal is required to be further extended or have a wide recognition range, and it may be difficult to satisfy the high physical properties required by the magnetic material of a single layer.
  • the antenna core 102 includes a plurality of magnetic bodies 112, 113, and 114, thereby achieving a physical property increasing effect such as using a magnetic material having a high permeability, and providing a noncontact electronic payment antenna. While the inductance is further improved, the specific resistance can be increased relatively to increase the quality index.
  • Antenna core 102 including a plurality of magnetic material is preferably 2 to 7 magnetic material, more preferably slim and light to implement a non-contact electronic payment module, to facilitate mounting on a thin and thin portable device 2 It may be provided with four magnetic material.
  • By increasing the number of the magnetic material indefinitely may not achieve the desired level of transmission efficiency and transmission distance of the electronic payment signal, and if the number of the magnetic material increases it may not be mounted on the portable device.
  • the degree of inductance increase of the non-contact electronic payment antenna may be insignificant, and the width of the quality index improvement may be small, and the thickness may be thick, which may be undesirable for thinning the antenna core.
  • the plurality of magnetic bodies 112, 113, and 114 may have the same or different compositions of the Fe-based alloys included in the respective magnetic bodies.
  • the magnetic permeability of each of the magnetic material may be different due to different heat treatment time.
  • the thickness of each of the magnetic bodies may be the same or different from each other according to the purpose.
  • an adhesive layer 140 may be further interposed between the stacked magnetic bodies 112, 113, and 114.
  • the adhesive layer 140 may be formed of a known thermosetting or thermoplastic adhesive.
  • the adhesive may include an adhesive component such as acrylic, urethane, and epoxy.
  • the adhesive layer 140 may be formed of a double-sided adhesive member having an adhesive with a predetermined thickness on both sides of a substrate such as a support film, or may be formed of only an adhesive without a substrate.
  • the thickness of the adhesive layer 140 may be 1 ⁇ 20 ⁇ m, but is not limited thereto.
  • the above-described magnetic material is applied to the external force such as frequent vibrations in order to minimize the change in the physical properties due to the micro-fragmentation of the magnetic material when there is a risk of cracking, fracture of the magnetic material, the antenna core Since implementing the Fe-based alloy ribbon sheet may be provided with a magnetic body formed of fragments that are broken into a plurality of fine pieces. In this case, even when an external force is continuously applied to the antenna core, additional microfragmentation of the magnetic material is prevented, thereby minimizing fluctuations in physical properties set at the beginning.
  • the magnetic properties required for non-contact electronic payment after crushing may be lowered than before crushing, so that in order to express excellent magnetic properties in non-contact electronic payment
  • the antenna core may be implemented by a magnetic material that is not broken.
  • the upper and lower portions of the magnetic body 110 may further include a protection member 120.
  • the protection member 120 serves to physically and chemically protect the magnetic material from the external environment.
  • the protective member 120 may be a protective film or a protective coating layer.
  • the protective member 120 illustrated in FIGS. 3A and 3B is implemented as a protective film, and is used to attach the base film 120b 2 , the base film 120b 2 , and the magnetic body 110 as a protective film.
  • the adhesive layer 120b 1 may be included.
  • the base layer 120b 2 may be a protective film that is typically provided to protect the magnetic material of the antenna core, and may be heat resistant, mechanical strength, and resistance to protect the magnetic material 110 against physical and chemical stimuli applied from the outside.
  • polyethylene polypropylene, polyimide, crosslinked polypropylene, nylon, polyurethane-based resin, acetate, polybenzimidazole, polyimideamide, polyetherimide, polyphenylene sulfide (PPS).
  • PPS polyphenylene sulfide
  • the base layer 120b 2 may have a thickness of 1 to 100 ⁇ m, preferably 10 to 30 ⁇ m, but is not limited thereto.
  • the adhesive layer 120b 1 may be formed of a conventional adhesive having an adhesive force, and the present invention is not particularly limited thereto.
  • the adhesive layer 120b 1 may have a thickness of 3 to 50 ⁇ m, but the thickness of the adhesive layer 120b 1 is not limited thereto.
  • the protection member 120 as shown in Figure 3a and 3b is the first protection portion (A) and the first protection portion (covering the upper and lower portions of the magnetic body 110) ( It may include a second protective portion (B) extending from A), forming a rim with a predetermined width (d) and surrounding the magnetic body 110 side. Corrosion resistance can be prevented due to the brine that can be introduced into the side through the second protection portion (B), preferably for this purpose, the width of the second protection portion (B) may be 100 ⁇ m ⁇ 1mm have.
  • the protection member 120 ′ may be a protective coating layer formed of a single layer without a separate adhesive layer.
  • the protective coating layer may have protective properties, adhesion (or adhesion) properties with the magnetic body, and / or electrical properties capable of insulating the magnetic body.
  • the protective coating layer can be used without limitation in the case of a material that can express the adhesion to the magnetic body without a separate adhesive layer, for example, may be ethylene propylene rubber (Ex. EPDM).
  • the main component of the protective coating layer may be a crosslinking or non-crosslinking component, and in the case of the crosslinking component, it may be crosslinked through a crosslinking agent to form a protective coating layer, and in the case of the noncrosslinking component, the solvent may be dried or solidified in a molten state.
  • the protective coating layer can be formed.
  • the protective coating layer is applied to a magnetic body by a method such as a comma coater, screen printing, dipping, spraying, etc., a composition for forming a protective coating layer according to the type of the main component of the protective coating layer.
  • the protective coating layer can be formed by a known method.
  • the method of manufacturing the protective coating layer is not limited to this, it is possible to form a powder-based dimer through a parallel coating to form a protective film in the form of a polymer using a chemical vapor deposition method.
  • the paraline coating has the advantage of forming a uniform protective layer.
  • the non-contact electronic payment antenna core according to the embodiment of the present invention described above may be manufactured including (1) cutting the Fe-based alloy ribbon to a predetermined width.
  • the Fe-based alloy ribbon may be an amorphous Fe-based alloy ribbon prepared by a known method such as quench solidification (RSP) by melt spinning, or an Fe-based alloy ribbon after heat treatment of the amorphous Fe-based alloy ribbon, More preferably, it may be a heat-treated Fe-based alloy ribbon with a maximum improvement in permeability.
  • the heat treatment temperature may be differently selected according to the composition, composition ratio, and magnetic permeability of the desired magnetic material.
  • Fe-Si-B In the case of the alloy, it may be heat-treated at a temperature of 300 to 600 ° C., more preferably 400 to 500 ° C., more preferably at a temperature of 440 to 480 ° C. for 30 minutes to 2 hours in an air atmosphere or a nitrogen atmosphere. Can be processed.
  • the Fe-Si-B-Cu-Nb-based alloy may be heat treated at a temperature of 300 to 700 ° C., more preferably 500 to 700 ° C. for 30 minutes to 2 hours in an air atmosphere or a nitrogen atmosphere. If the heat treatment temperature is less than 300 °C it may be difficult to achieve the desired permeability, the heat treatment time can be extended.
  • the magnetic permeability of the magnetic material may be significantly lowered when the heat treatment temperature exceeds 700 ° C.
  • the Fe-based alloy ribbon may be laminated in a desired number and manufactured as a laminate.
  • an adhesive layer may be provided between the stacked Fe-based alloy ribbons.
  • an unheated Fe-based alloy ribbon may be laminated and then subjected to a heat treatment process, or the heat-treated Fe-based alloy ribbon may be laminated through an adhesive layer.
  • a single layer or laminated Fe-based alloy ribbon may be subjected to a process of punching in a desired shape and size.
  • a step of forming a protection member to cover the punched monolayer or the stacked Fe-based alloy ribbon may be performed.
  • the protective member when the protective member is a protective film, a protective film with an adhesive on one surface thereof is disposed on the upper and lower portions of the punched single layer or the laminated Fe-based alloy ribbon, and then laminated and laminated. It can be punched by a predetermined width / length larger than the size of the alloy ribbon to form a second protective portion (B) having an edge around the single-layer / laminated Fe-based alloy ribbon as shown in Figure 3a.
  • a protective coating layer is formed by coating an outer surface of the Fe-based alloy ribbon with a protective coating composition, or a Fe-based material is formed through a paraline coating method before forming the protective coating layer.
  • the protective plating layer may be formed by polymerization and deposition on the outer surface of the alloy ribbon.
  • the antenna core according to an embodiment of the present invention manufactured by the above-described method may be disposed inside the antenna for contactless electronic payment and may be implemented as a contactless electronic payment module.
  • the contactless electronic payment module 1000 includes a contactless electronic payment antenna 1200 formed by winding on an outer surface of the antenna core 1100.
  • the contactless electronic payment antenna 1200 may wind the antenna core in a clockwise or counterclockwise direction, wherein the axial direction of the antenna core and the angle of the wound antenna, the line spacing of the antenna coil, the diameter of the coil, and the like According to the present invention, the present invention is not particularly limited thereto.
  • the material of the antenna may also use a known antenna material, for example, may be a copper wire.
  • two or more contactless electronic payment antennas may be provided to wind the antenna core in different directions. For example, three antennas may be wound around three x, y, and z axes of the antenna core, and each wound antenna may be implemented to be orthogonal.
  • the non-contact electronic payment module 2000 may be implemented to include a non-contact electronic payment antenna 2200 formed by winding a portion of the antenna core 2100 having a recess, and the antenna core ( A portion of the 2100 may include a perforated hole (P).
  • the hole P may prevent distortion of the antenna core.
  • the shape of the hole P is not limited, and the present invention is not particularly limited as the size may be appropriately changed according to the purpose.
  • the first antenna 2300 for performing heterogeneous functions on another area of the antenna core in which the non-contact electronic payment antenna 2200 is not formed is provided. It may be provided. In this case, the antenna core may simultaneously perform a function of concentrating magnetic flux to the first antenna 2300 and improving characteristics of the first antenna.
  • the first antenna 2300 may be at least one of an antenna for near field communication (NFC) and an antenna for wireless power transmission (WPT).
  • NFC near field communication
  • WPT antenna for wireless power transmission
  • the antenna for wireless power transmission (WPT) may be applied to the Qi method, or a part of the magnetic force lines generated in the permanent magnet may be applied to the wireless power transmission of the PMA method induced through an attractor (not shown). have.
  • it can be applied to a magnetic resonance method in which wireless power transmission is performed at a frequency of several tens of kHz to 6.78 MHz.
  • the above-described antenna for MST, antenna for WPT and antenna for NFC will be found that all can be used for the purpose of transmitting or receiving signals.
  • the non-contact electronic payment module 2000 as shown in FIG. 6 is an antenna core integrally implemented, or as shown in FIG. 7, the first antenna core 2100A and the second antenna core 2100B are coupled to the antenna core 2100. It may be implemented as. In this case, the second antenna core 2100B may be accommodated in an inner space of the contactless electronic payment antenna 2200 formed by winding the first antenna core 2100A and assembled into one antenna core 2100.
  • the contactless electronic payment antenna 2200 is wound around the first antenna core 2100A in consideration of the thickness of the second antenna core 2100B to accommodate the second antenna core 2100B in the coil,
  • the contactless electronic payment module 2000 may be integrally assembled by performing a winding process in a state where the protrusions of the first antenna core 2100A and the second antenna core 2100B overlap.
  • the first antenna core 2100A and the second antenna core 2100B may be Fe-based alloys having the same composition, or Fe-based alloys having heterogeneous compositions.
  • the first antenna core 2100A may be silicon steel
  • the second antenna core 2100B may be a five-element-based alloy including Si, B, Cu, and Nb.
  • the antenna core according to an embodiment of the present invention described above when the total thickness of the magnetic material provided is 72 ⁇ m, the relative gain with respect to the inductance (Ls) of the contactless electronic payment antenna is 5 or more, preferably 5 It may be 15.
  • the relative gain of the noncontact electronic payment antenna inductance with respect to the electronic payment signal indicates the gain of the inductance obtained through the antenna core. The higher the relative gain, the more advantageous the expression of the desired physical property through the antenna core.
  • Relative gain antenna inductance for electronic payment ( ⁇ H) with antenna core ⁇ antenna inductance for electronic payment ( ⁇ H)
  • the relative gain is to measure the inductance of the electronic payment antenna through the LCR meter, for example, under the same frequency and voltage conditions for the same non-contact electronic payment antenna, which is different from the presence or absence of the antenna core. Through the antenna core can be clearly seen the effect.
  • the relative gain of the antenna inductance satisfies 5 or more, thereby significantly reducing the characteristics of the non-contact electronic payment antenna. Even if the cover of the portable device having the antenna core is a conductive metal, both front and rear surfaces may transmit and receive signals for electronic payment in both directions. If the thickness of the magnetic material is 72 ⁇ m and the relative gain is less than 5, the properties of the antenna core may be insufficient to improve the characteristics of the non-contact electronic payment antenna, and the electronic payment distance may be very short. In the case of metal, the electronic payment signal can be transmitted / received in only one direction or the transmission / reception distance can be very short. In order to solve this problem, the thickness of the magnetic material provided in the antenna core should be increased. It is difficult to mount in a mobile device, which is very undesirable.
  • the above-described contactless electronic payment module 1000 and 2000 may be included in an electronic device such as a POS terminal for transmitting and receiving a contactless electronic payment signal.
  • the contactless electronic payment module (1000,2000) may be implemented as a portable device including a receiving module.
  • the non-contact electronic payment module (1000,2000) according to the present invention can recognize the magnetic field signal is formed / transmitted in both directions rather than in one direction, it is necessary to position the device having it in a specific direction to recognize the signal As a result, there is an advantage that a non-contact electronic payment function can be easily used through transmission and reception of an electronic payment signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Accounting & Taxation (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Soft Magnetic Materials (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

Provided is an antenna core for contactless electronic payment. The antenna core for contactless electronic payment according to an embodiment of the present invention comprises a magnetic substance disposed inside an antenna coil for contactless electronic payment and containing an Fe-based alloy. According to the present invention, despite being thin and light in weight, it is possible to have an excellent transmission/reception efficiency of an electronic payment signal and an extended transmission/reception distance of the signal. In addition, a contactless electronic payment module implemented according to the present invention can be widely applied to various portable electronic devices since the module is light in weight, thin, short and small in size. Furthermore, in a portable device equipped with the same, since transmission/reception of an electronic payment signal is not specified on any one side of the device and the signal can be recognized on both sides of the device, there is no inconvenience of a portable device having to be located in only one specific direction in a contactless electronic payment process, so that the present invention can be widely applied to various fields and related devices which require contactless electronic payment.

Description

비접촉식 전자결제용 안테나코어 및 이를 포함하는 비접촉식전자결제모듈Antenna core for contactless electronic payment and contactless electronic payment module including the same
본 발명은 안테나코어에 관한 것으로, 더욱 상세하게는 박형화 및 경량화됨에도 신호의 우수한 송수신효율, 연장된 신호의 인식거리 및 범위를 갖는 비접촉식 전자결제용 안테나코어 및 이를 포함하는 비접촉식 전자결제모듈에 관한 것이다.The present invention relates to an antenna core, and more particularly, to a non-contact electronic payment antenna core having an excellent transmission / reception efficiency, an extended signal recognition range and a range even though it is thin and light, and a non-contact electronic payment module including the same. .
종래의 보편적인 결제 수단인 마그네틱 카드에는 결제 정보와 같은 카드 데이터를 포함하는 마그네틱 스트라이프(MS, magnetic stripe)가 형성된다.In the magnetic card, which is a conventional payment method, a magnetic stripe (MS) including card data such as payment information is formed.
여기서, 마그네틱 스트라이프는 자분(magnetic particle)으로 이루어지며, 이러한 자분의 자기 극성의 순서에 따라 데이터가 기록된다. 이러한 카드 데이터는 마그네틱 카드를 POS(Point Of Sale)의 리더 헤드가 형성된 센싱 개구에 이동시킴으로써 POS에 의해 마그네틱 스트라이프로부터 판독된다. 이때, 마그네틱 카드가 이동함에 따라, 마그네틱 스트라이프는 리더 헤드의 센싱 개구 내에서, 자기장을 형성하고, 리더 헤드는 이와 같이 형성된 자기장을 전기 신호로 변환하여 카드 데이터를 판독할 수 있다.Here, the magnetic stripe is made of magnetic particles, and data is recorded according to the order of magnetic polarity of such magnetic particles. This card data is read from the magnetic stripe by the POS by moving the magnetic card to the sensing opening in which the leader head of the point of sale (POS) is formed. At this time, as the magnetic card moves, the magnetic stripe forms a magnetic field in the sensing opening of the reader head, and the reader head can read the card data by converting the magnetic field thus formed into an electrical signal.
한편, 스마트폰이 보편화되고 그 기능이 향상됨에 따라, 스마트폰을 이용한 결제 방법이 등장하고 있다. 최근에는 애플 페이, 삼성 페이 등과 같이 휴대 단말을 이용한 전자결제 기능이 소개되면서 휴대 단말에 전자 결제용 안테나를 구비하도록 요구되고 있다. 휴대 단말에 구비된 안테나는 비접촉식 카드 결제 기능의 수행을 위하여 형성된 자기장으로 결제신호를 송수신하게 되는데, 이러한 기능의 향상을 위하여 안테나와 자성체 코어의 조합에 대한 연구가 계속되는 추세에 있다. On the other hand, as smart phones are becoming more common and their functions are improved, payment methods using smart phones are emerging. Recently, with the introduction of an electronic payment function using a mobile terminal such as Apple Pay and Samsung Pay, it is required to have an electronic payment antenna in the mobile terminal. The antenna provided in the portable terminal transmits and receives a payment signal with a magnetic field formed to perform a contactless card payment function. In order to improve such a function, research on a combination of an antenna and a magnetic core has continued.
또한, 최근에는 휴대 단말 시장의 경박단소형화 추세에 따라서 비접촉식 카드 결제 기능을 수행하기 위한 모듈 역시 소형화, 경량화되도록 개발되고 있다. 그러나 이를 위해서는 비접촉식 카드 결제 기능의 향상을 위해 안테나 내부에 구비되는 자성체 코어의 박형/소형화 및 경량화가 이루어져야 하는데, 자성체 코어를 소형화 및 박형화 시킬 경우 목적하는 수준으로 결제신호 인식성능 및 인식거리를 발현하기 어려워 결제기능을 원활히 수행할 수 없는 문제가 있다. 또한, 충분한 결제신호 인식성능 및 인식거리를 확보하도록 자성체 코어를 구비시킬 경우 자성체 코어의 소형화/박형화가 어려워 휴대장 단말 장치에 장착하기 어려운 문제가 있다. In addition, in recent years, according to the trend of light and small size of the portable terminal market, a module for performing a contactless card payment function has also been developed to be smaller and lighter. However, in order to improve the contactless card payment function, the magnetic core provided inside the antenna should be thinner / smaller and lighter in weight. When the magnetic core is miniaturized and thinned, the payment signal recognition performance and recognition distance can be expressed to the desired level. There is a problem that the payment function is difficult to perform smoothly. In addition, when the magnetic core is provided to ensure sufficient payment signal recognition performance and recognition distance, it is difficult to miniaturize / thin the magnetic core, which makes it difficult to mount the portable terminal device.
이에 따라서 우수한 성능으로 비접촉식 카드 결제 기능을 수행하는 동시에 소형/박형화 및 경량화된 비접촉식 카드결제 모듈을 구현할 수 있는 자성체 코어에 대한 개발이 시급한 실정이다.Accordingly, there is an urgent need to develop a magnetic core capable of implementing a contactless card payment function with excellent performance and at the same time implementing a small / thin and lightweight contactless card payment module.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 전자결제신호의 우수한 전송효율 및 전송거리를 달성하게 할 수 있는 동시에 소형화/박형화 및 경량화되어 휴대단말에 장착되기에 매우 적합한 비접촉식 전자결제용 안테나코어 및 이를 포함하는 비접촉식 전자결제모듈을 제공하는데 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and can achieve excellent transmission efficiency and transmission distance of an electronic payment signal, and at the same time, it is miniaturized, thinned, and lightweight, and is suitable for mounting in a portable terminal. An object of the present invention is to provide a core and a non-contact electronic payment module including the same.
본 발명의 다른 목적은 상기와 같은 비접촉식 전자결제모듈을 채용한 휴대기기를 비롯한 전자기기를 제공하는데 있다.Another object of the present invention is to provide an electronic device including a portable device employing the non-contact electronic payment module as described above.
상술한 과제를 해결하기 위해 본 발명은, 비접촉식 전자결제용 안테나코일의 내부에 배치되며, Fe계 합금을 포함하는 자성체;를 포함하는 비접촉식 전자결제용 안테나코어를 제공한다. 이에 의하면, 안테나 코어의 특성을 향상시킬 수 있다.In order to solve the above problems, the present invention provides a non-contact electronic payment antenna core comprising a; a magnetic body disposed inside the non-contact electronic payment antenna coil, containing a Fe-based alloy. According to this, the characteristic of an antenna core can be improved.
본 발명의 일 실시예에 의하면, 상기 Fe계 합금은 철(Fe), 규소(Si) 및 붕소(B)를 포함하는 3원소계 합금 또는 철(Fe), 규소(Si), 붕소(B), 구리(Cu) 및 니오븀(Nb)을 포함하는 5원소계 합금일 수 있다. According to an embodiment of the present invention, the Fe-based alloy is a three-element alloy containing iron (Fe), silicon (Si) and boron (B) or iron (Fe), silicon (Si), boron (B) , Copper (Cu) and niobium (Nb) may be a five-element alloy.
또한, 상기 Fe계 합금을 포함하는 자성체는 Fe계 합금 리본시트이거나 안테나코어의 물성변동 방지를 위하여 Fe계 합금 리본시트를 다수의 미세조각으로 파쇄한 파편들로 형성된 것일 수 있고, 투자율이 높은 자성체를 구현하기 위하여 보다 바람직하게는 Fe계 합금 리본시트일 수 있다.In addition, the magnetic material containing the Fe-based alloy may be a Fe-based alloy ribbon sheet or formed of debris obtained by crushing the Fe-based alloy ribbon sheet into a plurality of fine pieces in order to prevent physical properties of the antenna core, high magnetic permeability More preferably, the Fe-based alloy ribbon sheet may be implemented.
또한, 상기 안테나 코어는 복수의 자성체가 적층되어 구성될 수 있고, 적층된 자성체 사이에는 접착층이 개재되며, 2 ~ 4개의 자성체가 구비될 수 있다.In addition, the antenna core may be configured by stacking a plurality of magnetic bodies, an adhesive layer is interposed between the stacked magnetic bodies, and two to four magnetic bodies may be provided.
또한, 상기 자성체는 단일층의 두께가 15 ~ 35㎛일 수 있다.In addition, the magnetic material may have a thickness of 15 to 35 ㎛ single layer.
또한, 상기 안테나 코어는 자성체의 상, 하부를 덮는 제1보호부 및 상기 제1보호부에서 연장되고, 내식성을 향상시키기 위하여 소정의 폭으로 테두리를 형성하며 자성체 측부를 둘러싸는 제2보호부를 포함하는 보호부재를 더 구비할 수 있고, 상기 제2보호부의 폭은 100㎛ ~ 1㎜일 수 있으며, 상기 보호부재의 두께는 5 ~ 100㎛일 수 있다. In addition, the antenna core includes a first protection portion covering the upper and lower portions of the magnetic material, and a second protection portion extending from the first protection portion and forming a rim with a predetermined width and enclosing the magnetic body side to improve corrosion resistance. A protective member may be further provided, and the width of the second protective part may be 100 μm to 1 mm, and the thickness of the protective member may be 5 to 100 μm.
또한, 본 발명은 본 발명에 따른 비접촉식 전자결제용 안테나코어; 및 상기 안테나 코어를 권회하여 형성된 비접촉식 전자결제용 안테나;를 포함하는 비접촉식 전자결제모듈을 제공한다.In addition, the present invention is a non-contact electronic payment antenna core according to the present invention; And a contactless electronic payment antenna formed by winding the antenna core.
본 발명의 일 실시예에 의하면, 상기 안테나 코어에 구비된 자성체의 총 두께가 72㎛일 때, 상기 비접촉식 전자결제용 안테나의 인덕턴스(Ls)에 대한 상대이득이 5 이상일 수 있고, 보다 바람직하게는 5 ~ 15일 수 있다.According to an embodiment of the present invention, when the total thickness of the magnetic material provided in the antenna core is 72㎛, the relative gain with respect to the inductance (Ls) of the contactless electronic payment antenna may be 5 or more, more preferably May be 5-15.
또한, 본 발명은 본 발명에 따른 비접촉식 전자결제모듈을 수신용 모듈로 포함하는 휴대용 기기를 제공한다.In addition, the present invention provides a portable device including a non-contact electronic payment module according to the present invention as a receiving module.
또한, 본 발명은 본 발명에 따른 비접촉식 전자결제모듈을 포함하는 전자기기를 제공한다.The present invention also provides an electronic device including a non-contact electronic payment module according to the present invention.
본 발명의 비접촉식 전자결제용 안테나코어는 박형화 및 경량화됨에도 전자결제신호의 우수한 송수신효율, 연장된 송수신 거리 및 넓은 인식범위를 갖도록 할 수 있다. 또한, 이로 구현된 비접촉식 전자결제모듈은 경박단소형화된 크기로 구현이 가능함에 따라서 각종 휴대용 전자기기에 널리 응용될 수 있다. 나아가, 이를 구비한 휴대용 기기의 경우 전자결제신호의 송수신이 기기의 어느 일면에 특정되어 이루어지지 않고, 기기의 양면에서 모두 신호를 인식할 수 있어서 비접촉식 전자결제 과정에서 휴대기기를 특정한 일방향으로만 위치시켜야 하는 불편함이 없음에 따라서 비접촉식 전자결제가 요구되는 각종 분야 및 관련 기기에 널리 응용될 수 있다.The non-contact electronic payment antenna core of the present invention can have an excellent transmission and reception efficiency, an extended transmission and reception distance and a wide recognition range of the electronic payment signal even though it is thin and light. In addition, the contactless electronic payment module implemented in this way can be implemented in various sizes, such as a thin and light and small size can be widely applied to portable electronic devices. Furthermore, in the case of a portable device having the same, the electronic payment signal is not transmitted or received on any one side of the device, and both sides of the device can recognize the signal, thereby positioning the mobile device only in one specific direction in the non-contact electronic payment process. As there is no inconvenience to be made, it can be widely applied to various fields and related devices where contactless electronic payment is required.
도 1은 본 발명의 일 실시예에 의한 비접촉식 전자결제용 안테나 코어의 부분단면도,1 is a partial cross-sectional view of a non-contact electronic payment antenna core according to an embodiment of the present invention;
도 2는 본 발명의 다른 실시예에 의한 비접촉식 전자결제용 안테나 코어의 부분단면도,2 is a partial cross-sectional view of a contactless electronic payment antenna core according to another embodiment of the present invention;
도 3a 및 도 3b는 본 발명의 일 실시예에 의한 비접촉식 전자결제용 모듈의 사시도 및 경계선 X-X'에 따른 단면도,3a and 3b is a perspective view and a cross-sectional view taken along the line X-X 'of a non-contact electronic payment module according to an embodiment of the present invention;
도 4는 본 발명의 다른 실시예에 의한 비접촉식 전자결제용 모듈의 부분단면도,4 is a partial cross-sectional view of a non-contact electronic payment module according to another embodiment of the present invention;
도 5는 본 발명의 일 실시예에 의한 비접촉식 전자결제용 모듈의 사시도,5 is a perspective view of a non-contact electronic payment module according to an embodiment of the present invention;
도 6은 본 발명의 일 실시예에 의한 비접촉식 전자결제용 모듈의 부분평면도, 6 is a partial plan view of a non-contact electronic payment module according to an embodiment of the present invention;
도 7은 도 6의 분해사시도, 그리고, 7 is an exploded perspective view of FIG. 6, and
도 8은 본 발명의 일 실시예에 포함되는 안테나코어로서, 단일층 높이가 24㎛이고, 조성은 Fe75 . 1Si17B4Cu1Nb2 .9이며, 열처리 되고 파쇄되지 않은 리본시트가 4개 적층되며, 각 리본시트 사이에 두께 3㎛인 양면접착제가 개재된 총 두께 105㎛인 안테나코어의 주파수 대역별 복소투자율 그래프이다.Figure 8 is an antenna core included in an embodiment of the present invention, the single layer height is 24㎛, the composition is Fe 75 . 1 Si 17 B 4 Cu 1 Nb 2 .9 , and the heat treatment is in the ribbon sheet is not crushed, and the laminate 4, the total thickness 105㎛ interposed 3㎛ the double-sided adhesive thickness between the respective ribbon sheet antenna core frequency band It is a complex permeability graph.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
도 1에 도시된 것과 같이, 본 발명의 일 실시예에 따른 비접촉식 전자결제용 안테나코어(100)는 Fe계 합금을 포함하는 자성체(110)를 포함하고, 상기 자성체(110)를 덮는 보호부재(120)를 더 포함할 수 있다.As shown in FIG. 1, the non-contact electronic payment antenna core 100 according to the embodiment of the present invention includes a magnetic body 110 including a Fe-based alloy, and a protective member covering the magnetic body 110 ( 120) may be further included.
상기 자성체(110)는 비접촉식 전자결제용 안테나코일의 특성을 향상시키며, 이를 위하여 자성체로써 Fe계 합금을 포함한다. 통상적으로 자성체로 기능하는 것들로써, 뮤메탈, 페라이트를 일예로 들 수 있는데, 비접촉식 전자결제에 사용되는 주파수대가 수~ 수백 ㎑, 일예로 5㎑ ~ 100㎑로 저주파수 대역인 점, 비접촉식 전자결제용 안테나와 안테나 코어가 도전성 메탈커버를 갖는 모바일기기의 메탈커버에 인접해서 배치될 경우 위와 같은 자성체로는 도전성 메탈커버를 갖는 모바일기기의 전면과 후면 양방향에서 모두 전자결제 신호의 송수신이 어려울 수 있는 점, 및 전자결제 신호의 향상된 송수신효율, 연장된 송수신 거리 및 넓은 신호인식범위를 만족할 수 있도록 요구되는 자성체의 중량/두께를 고려했을 때 위의 일예와 같은 자성체들은 Fe계 합금보다 비접촉식 전자결제용 안테나코어의 자성체로 부적합할 수 있다. 그러나 본 발명의 자성체로 사용되는 Fe계 합금은 매우 얇은 두께로 구현되는 경우에도 저주파수 대역에서 목적하는 물성을 충분히 발현시킬 수 있는 이점이 있다. 특히, Fe계 합금의 경우 제조된 리본의 두께가 매우 얇아서 적층시켜 사용해도 두께증가가 크지 않고, 적층시켜 사용할 경우 안테나에서 발생되는 교류 저항성분을 낮춰 안테나 품질계수를 높여줄 수 있음에 따라서 안테나 성능을 크게 향상시키는데 매우 유리하다. 또한, 경량성이 확보됨에 따라서 휴대용 기기에 채용되기에 매우 적합하며, 휴대용 기기의 커버가 도전성 메탈인 경우에도 기기 전면과 후면 양방향에서 모두 전자결제 신호의 송수신이 가능한 점에서 더욱 적합하다. The magnetic body 110 improves the characteristics of the antenna coil for contactless electronic payment, and for this purpose includes a Fe-based alloy as a magnetic body. Generally, as a magnetic material, mumetal and ferrite may be used, for example, a frequency band used for contactless electronic payment may be several hundreds of frequencies, for example, 5 Hz to 100 Hz. When the low frequency band, the contactless electronic payment antenna and the antenna core are disposed adjacent to the metal cover of the mobile device having the conductive metal cover, the above magnetic material may be used in both the front and the rear of the mobile device having the conductive metal cover. In consideration of the fact that payment signals may be difficult to transmit and receive, and the transmission / reception efficiency of electronic payment signals, extended transmission / reception distances, and the weight / thickness of the magnetic materials required to satisfy a wide signal recognition range, such magnetic materials may be It may be less suitable as a magnetic material of the antenna core for contactless electronic payment than the Fe-based alloy. However, the Fe-based alloy used as the magnetic material of the present invention has an advantage of sufficiently expressing desired physical properties in a low frequency band even when implemented in a very thin thickness. In particular, in the case of Fe-based alloys because the thickness of the ribbon produced is very thin, the thickness does not increase even when stacked, and when stacked, antenna performance coefficient can be improved by lowering the AC resistance generated from the antenna. It is very advantageous to greatly improve this. In addition, as light weight is secured, it is very suitable to be adopted in a portable device, and even when the cover of the portable device is a conductive metal, it is more suitable in that an electronic payment signal can be transmitted and received both in the front and rear of the device.
상기 Fe계 합금은 연자성체로 공지된 Fe계 합금의 경우 제한 없이 사용할 수 있다. 다만, 일예로써 규소강은 비접촉식 전자결제를 위한 목적하는 주파수대역에서 두께/중량 대비 상술한 페라이트 등의 자성체에 비해서 물성이 우수할 수 있고, 원가가 가장 낮아서 쉽게 이용할 수 있지만 재료 자체의 투자율 등 자기적 특성이 높지 않아서 단독으로는 요구되는 세기로 자기장신호를 발생 및 증폭시키고, 보다 용이하게 신호를 인식할 수 없을 수 있다. 이에 바람직하게는 상기 Fe계 합금은 규소 및 붕소를 포함하는 3원소계 Fe 합금이나 규소, 붕소, 구리 및 니오븀(Nb)을 포함하는 5원소계 Fe 합금이 동일 두께 및 중량에서 전자결제 신호 관련 자기적 특성의 발현 정도를 대비했을 때 매우 유리할 수 있다. 상기 3원소계 Fe 합금은 원소 합금의 기본 조성에 다른 특성, 예를 들어 내부식성의 향상을 위해 크롬(Cr), 코발트(Co), 니켈(Ni) 등의 원소를 더 부가할 수 있다. 상기 Fe계 합금이 Fe-Si-B계 3원소 합금일 경우 바람직하게는 Fe가 70 ~ 90at% 구비된 합금일 수 있다. 상기 Fe의 함량이 증가할 경우 합금의 포화자속밀도가 높아질 수 있으나 반대로 결정질의 합금이 제조될 수 있다. 또한, 상기 Si 및 B 원소는 합금의 결정화 온도를 상승시켜 합금을 보다 용이하게 비정질화 시키는 기능을 담당하고, 상기 Si 및 B 원소의 함량은 구체적으로 Si의 경우 10 ~ 27at%, B는 3 ~ 12at%로 포함될 수 있으나, 이에 제한되는 것은 아니며 목적하는 물성의 정도에 따라 변경하여 실시할 수 있다.The Fe-based alloy can be used without limitation in the case of the Fe-based alloy known as soft magnetic material. However, silicon steel, for example, may have excellent physical properties compared to the above-described magnetic materials such as ferrite in the desired frequency band for non-contact electronic payment, and has the lowest cost, and thus can be easily used. Since the characteristic is not high, the magnetic field signal may be generated and amplified by the required intensity alone, and the signal may not be easily recognized. Preferably, the Fe-based alloy is a three-element Fe alloy containing silicon and boron, or a five-element Fe alloy including silicon, boron, copper, and niobium (Nb). This can be very advantageous in contrast to the degree of manifestation of the specific properties. The tri-element Fe alloy may further add elements, such as chromium (Cr), cobalt (Co), nickel (Ni), etc. to the base composition of the element alloy to improve other properties, for example, corrosion resistance. When the Fe-based alloy is a Fe-Si-B-based ternary alloy, it may be an alloy having preferably 70 to 90 at% of Fe. When the Fe content is increased, the saturation magnetic flux density of the alloy may be increased, but a crystalline alloy may be prepared. In addition, the Si and B elements are responsible for increasing the crystallization temperature of the alloy to make the alloy more easily amorphous, the content of the Si and B elements is specifically 10 to 27 at%, Si is 3 to 12 at% may be included, but the present invention is not limited thereto, and may be modified according to the desired physical properties.
또한, 상기 5원소계 Fe 합금은 상술한 3원소계의 주요 원소 이외에 구리 및니오븀을 더 포함하게 되는데, 상기 구리는 Fe계 합금의 내식성을 향상시키고, 결정이 생성되더라도 결정의 크기가 커지는 것을 방지하는 동시에 투자율 등의 자기적 특성을 개선할 수 있게 한다. 상기 구리는 합금내 0.01 ~ 10at%로 포함되는 것이 바람직하며, 만일 0.01at%미만으로 포함될 경우 구리로 인해 수득되는 효과의 발현이 미미할 수 있고, 만일 10at%를 초과할 경우 비정질의 합금이 생성되기 어려울 수 있다. In addition, the five-element Fe alloy further includes copper and niobium in addition to the above-described main elements of the three-element-based alloy. The copper improves the corrosion resistance of the Fe-based alloy and prevents the size of the crystal from growing even when the crystal is formed. At the same time, the magnetic properties such as permeability can be improved. The copper is preferably included in the alloy 0.01 ~ 10at%, if less than 0.01at% expression of the effect obtained by the copper may be insignificant, if it exceeds 10at% amorphous alloy is produced It can be difficult.
또한, 상기 니오븀(Nb)은 투자율 등의 자기적 특성을 개선시킬 수 있으며, 합금내 0.01 ~ 10at%로 포함되는 것이 바람직하고, 만일 0.01at% 미만으로 포함될 경우 니오븀으로 인해 수득되는 효과의 발현이 미미할 수 있고, 만일 10at%를 초과할 경우 비정질의 합금이 생성되기 어려울 수 있다.In addition, the niobium (Nb) may improve the magnetic properties such as permeability, it is preferably included in the alloy 0.01 ~ 10at%, if included in less than 0.01at% the expression of the effect obtained due to niobium is It may be insignificant and, if it exceeds 10 at%, it may be difficult to form an amorphous alloy.
상기 Fe계 합금이 구리 및 니오븀을를 더 포함하는 5원소 합금인 경우 바람직하게는 Si와 B가 10 ~ 30at% 합금내에 포함될 수 있고, 잔량으로 Fe가 포함될 수 있다. 상기 Fe의 함량이 증가할 경우 합금의 포화자속밀도가 높아질 수 있으나 반대로 결정질의 합금이 제조될 수 있다. 상기 Si 및 B의 함량은 합금의 결정화 온도를 상승시켜 합금을 보다 용이하게 비정질화시킬 수 있다. 상기 Si 및 B의 함량은 구체적으로 Si의 경우 10 ~ 27at%, B는 3 ~ 12at%로 포함될 수 있으나, 이에 제한되는 것은 아니며 목적하는 물성의 정도에 따라 변경하여 실시할 수 있다.When the Fe-based alloy is a five-element alloy further including copper and niobium, preferably Si and B may be included in the 10 to 30 at% alloy, and Fe may be included in the balance. When the Fe content is increased, the saturation magnetic flux density of the alloy may be increased, but a crystalline alloy may be prepared. The content of Si and B may increase the crystallization temperature of the alloy to more easily amorphous the alloy. The content of Si and B may be specifically included in the case of Si 10 ~ 27at%, B 3 ~ 12at%, but is not limited to this may be changed according to the degree of the desired physical properties.
또한, 상기 Fe계 합금은 유래가 Fe계 비정질 합금 리본일 수 있고, 목적하는 수준으로 투자율을 조절하거나 투자율을 최대화하기 위하여 열처리된 것일 수 있으며, 이에 열처리된 Fe계 합금은 조성에 따라서 결정상이 비정질이거나 나노결정립을 포함할 수 있다. 상기 Fe계 합금의 결정상은 합금의 조성, 조성비 및/또는 열처리 온도/시간 등에 따라 달라질 수 있다. In addition, the Fe-based alloy may be derived from Fe-based amorphous alloy ribbon, and may be heat-treated to control the permeability to the desired level or to maximize the permeability, wherein the Fe-based alloy heat-treated the amorphous phase according to the composition Or may comprise nanocrystals. The crystal phase of the Fe-based alloy may vary depending on the composition, composition ratio and / or heat treatment temperature / time of the alloy.
또한, 도 1과 같이 안테나코어(100)는 단층의 자성체(110)를 포함할 수 있다. 상기 자성체(110)는 단일층의 두께가 15 ~ 35㎛일 수 있다. 또한, 상기 자성체(110)는 상술한 것과 같이 Fe계 리본시트 유래일 수 있음에 따라서 소정의 폭/길이로 절단된 시트형상일 수 있다. 다만, 자성체(110)의 형상은 이에 제한되지 않으며, 안테나코어가 배치되는 비접촉식 전자결제용 안테나의 형상 등에 따라 적절히 변경될 수 있다.In addition, as shown in FIG. 1, the antenna core 100 may include a single layer of magnetic material 110. The magnetic body 110 may have a thickness of 15 μm to 35 μm. In addition, the magnetic body 110 may be a sheet shape cut to a predetermined width / length, as may be derived from the Fe-based ribbon sheet as described above. However, the shape of the magnetic body 110 is not limited thereto, and may be appropriately changed according to the shape of the antenna for contactless electronic payment in which the antenna core is disposed.
또한, 상기 안테나 코어(100)는 목적하는 신호의 주파수대역에서 높은 투자율을 가지는 것이 전자결제신호와 전송능력 및 인식능력 측면에서 좋을 수 있다. 5㎑~100㎑ 주파수대역에서 자성체의 복소투자율의 실수부가 바람직하게는 6,000 이상일 수 있고, 보다 바람직하게는 8,000 ~ 22,000일 수 있다. 또한, 10㎑ 주파수 대역에서 복소투자율 실수부가 17,000 이상, 보다 바람직하게는 17,000 ~ 20,000일 수 있고, 허수부가 5,000 이하, 보다 바람직하게는 4,000 이하일 수 있다.In addition, the antenna core 100 has a high permeability in the frequency band of the desired signal may be good in terms of electronic payment signal, transmission capability and recognition capability. The real part of the complex permeability of the magnetic material in the frequency band of 5 GHz to 100 GHz may be preferably 6,000 or more, and more preferably 8,000 to 22,000. In addition, the complex permeability real part in the 10 GHz frequency band may be 17,000 or more, more preferably 17,000 to 20,000, the imaginary part may be 5,000 or less, and more preferably 4,000 or less.
또한, 도 2와 같이 안테나코어(102)에는 복수의 자성체(112,113,114)가 적층되어 형성될 수 있고, 적층된 자성체(112,113,114) 사이에는 접착층(140)이 더 개재될 수 있다. 경우에 따라서는 전자결제 신호의 송수신 거리가 더욱 연장되거나 넓은 인식범위를 갖도록 요구되며, 단층의 자성체로는 요구되는 높은 물성을 만족시키기 어려울 수 있다. 이에 따라 도 2에 도시된 것과 같이, 안테나 코어(102)는 자성체(112,113,114)를 복수개로 구비함을 통해 투자율이 높은 자성체를 사용한 것과 같은 물성증가 효과를 달성할 수 있으며, 비접촉식 전자결제용 안테나의 인덕턴스를 더욱 향상시키는 반면에 비저항은 상대적으로 적게 증가시킴에 따라 높은 품질지수를 발현하게 할 수 있다.In addition, as shown in FIG. 2, a plurality of magnetic bodies 112, 113, and 114 may be stacked on the antenna core 102, and an adhesive layer 140 may be further interposed between the stacked magnetic bodies 112, 113, and 114. In some cases, the transmission / reception distance of the electronic payment signal is required to be further extended or have a wide recognition range, and it may be difficult to satisfy the high physical properties required by the magnetic material of a single layer. Accordingly, as shown in FIG. 2, the antenna core 102 includes a plurality of magnetic bodies 112, 113, and 114, thereby achieving a physical property increasing effect such as using a magnetic material having a high permeability, and providing a noncontact electronic payment antenna. While the inductance is further improved, the specific resistance can be increased relatively to increase the quality index.
복수의 자성체를 포함하는 안테나코어(102)는 바람직하게는 2 ~ 7개의 자성체, 보다 바람직하게는 슬림하고 가벼운 비접촉 전자결제모듈을 구현하고, 경박단소형화된 휴대기기에 장착되기 용이하게 하기 위하여 2 ~ 4개의 자성체를 구비할 수 있다. 한편, 자성체의 개수를 무한정 증가시킨다 하여 목적하는 수준의 전자결제신호의 전송효율 및 전송거리를 달성하는 것은 아닐 수 있고, 자성체의 개수가 증가할 경우 이를 휴대기기에 장착할 수 없을 수 있다. 또한, 비접촉식 전자결제용 안테나의 인덕턴스 증가 정도가 미미해져 품질지수 향상의 폭이 작을 수 있고, 두께가 두꺼워져 안테나 코어의 박형화에 바람직하지 못할 수 있다. Antenna core 102 including a plurality of magnetic material is preferably 2 to 7 magnetic material, more preferably slim and light to implement a non-contact electronic payment module, to facilitate mounting on a thin and thin portable device 2 It may be provided with four magnetic material. On the other hand, by increasing the number of the magnetic material indefinitely may not achieve the desired level of transmission efficiency and transmission distance of the electronic payment signal, and if the number of the magnetic material increases it may not be mounted on the portable device. In addition, the degree of inductance increase of the non-contact electronic payment antenna may be insignificant, and the width of the quality index improvement may be small, and the thickness may be thick, which may be undesirable for thinning the antenna core.
또한, 복수의 자성체(112,113,114)는 각각의 자성체에 포함되는 Fe계 합금의 조성이 서로 동일하거나 상이할 수 있다. 또한, 조성이 동일하더라도 열처리 시간 등의 상이함으로 인해 자성체 각각의 투자율이 서로 다를 수 있다. 또한, 자성체 각각의 두께도 목적에 따라 서로 동일하거나 상이하게 구성시킬 수 있다.In addition, the plurality of magnetic bodies 112, 113, and 114 may have the same or different compositions of the Fe-based alloys included in the respective magnetic bodies. In addition, even if the composition is the same, the magnetic permeability of each of the magnetic material may be different due to different heat treatment time. In addition, the thickness of each of the magnetic bodies may be the same or different from each other according to the purpose.
또한, 적층된 자성체(112,113,114) 사이에는 이들을 접합시키기 위한 접착층(140)이 더 개재될 수 있다. 상기 접착층(140)은 공지된 열경화성 또는 열가소성 접착제로 형성될 수 있으며, 일예로, 상기 접착제는 아크릴계, 우레탄계, 에폭시계 등의 접착성분을 포함할 수 있다. 또한, 상기 접착층(140)은 지지필름과 같은 기재의 양면에 소정의 두께로 접착제를 구비한 양면형 접착부재로 형성되거나 또는 기재 없이 접착제로만 형성된 것일 수 있다. 또한, 상기 접착층(140)의 두께는 1 ~ 20㎛일 수 있으나, 이에 제한되는 것은 아니다.In addition, an adhesive layer 140 may be further interposed between the stacked magnetic bodies 112, 113, and 114. The adhesive layer 140 may be formed of a known thermosetting or thermoplastic adhesive. For example, the adhesive may include an adhesive component such as acrylic, urethane, and epoxy. In addition, the adhesive layer 140 may be formed of a double-sided adhesive member having an adhesive with a predetermined thickness on both sides of a substrate such as a support film, or may be formed of only an adhesive without a substrate. In addition, the thickness of the adhesive layer 140 may be 1 ~ 20㎛, but is not limited thereto.
한편, 상술한 자성체는 구현되는 비접촉식 전자결제 모듈의 적용처에 따라서 잦은 진동 등의 외력이 가해짐에 따라서 자성체의 크랙, 부서짐 우려가 있는 경우 자성체의 미세파편화에 따른 물성변동을 최소화하기 위하여, 안테나코어를 구현할 때부터 Fe계 합금 리본시트를 다수의 미세조각으로 파쇄한 파편들로 형성된 자성체를 구비시킬 수 있다. 이 경우 지속적으로 안테나코어에 외력이 가해지는 경우에도 자성체의 추가적 미세파편화가 방지되어 초도에 설정된 물성의 변동을 최소화할 수 있는 이점이 있다. 다만, 동일조성 및 동일조건에서 제조된 Fe계 합금 리본시트에 있어서, 파쇄 후 파쇄 전보다 비접촉식 전자결제에 요구되는 자기적 특성이 저하될 수 있음에 따라서 비접촉식 전자결제 있어서 우수한 자기적 특성의 발현을 위하여 바람직하게는 파쇄되지 않는 자성체로 안테나코어를 구현하는 것이 좋다. On the other hand, according to the application of the non-contact electronic payment module, the above-described magnetic material is applied to the external force such as frequent vibrations in order to minimize the change in the physical properties due to the micro-fragmentation of the magnetic material when there is a risk of cracking, fracture of the magnetic material, the antenna core Since implementing the Fe-based alloy ribbon sheet may be provided with a magnetic body formed of fragments that are broken into a plurality of fine pieces. In this case, even when an external force is continuously applied to the antenna core, additional microfragmentation of the magnetic material is prevented, thereby minimizing fluctuations in physical properties set at the beginning. However, in the Fe-based alloy ribbon sheet manufactured in the same composition and the same conditions, the magnetic properties required for non-contact electronic payment after crushing may be lowered than before crushing, so that in order to express excellent magnetic properties in non-contact electronic payment Preferably, the antenna core may be implemented by a magnetic material that is not broken.
한편, 도 1에 도시된 바와 같이 자성체(110)의 상부 및 하부에는 보호부재(120)를 더 구비할 수 있다. 상기 보호부재(120)는 자성체를 외부 환경으로부터 물리적, 화학적으로 보호하는 역할을 수행한다. 상기 보호부재(120)는 보호필름 또는 보호코팅층일 수 있다. 구체적으로 도 3a 및 도 3b에 도시된 보호부재(120)는 보호필름으로 구현된 것으로써, 보호필름인 기재층(120b2) 및 상기 기재층(120b2)과 자성체(110)를 부착하기 위한 접착층(120b1)을 포함할 수 있다. 상기 기재층(120b2)은 통상적으로 안테나 코어의 자성체를 보호하도록 구비되는 보호필름일 수 있고, 외부에서 가해지는 물리적, 화학적 자극에 대해 자성체(110)를 보호할 수 있는 내열성, 기계적 강도, 내화학성이 담보되는 재질의 필름의 경우 제한 없이 사용될 수 있다. 이에 대한 비제한적인 예로써, 폴리에틸렌, 폴리프로필렌, 폴리이미드, 가교 폴리프로필렌, 나일론, 폴리우레탄계 수지, 아세테이트, 폴리벤즈이미다졸, 폴리이미드아마이드, 폴리에테르이미드, 폴리페닐렌설파이드(PPS). 폴리에틸렌테레프탈레이트(PET), 폴리트리메틸렌테레프탈레이트(PTT) 및 폴리부틸렌테레프탈레이트(PBT), 폴리비닐리덴플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE) 및 폴리클로로트리플루오로에틸렌(PCTFE), 폴리에틸렌테트라플루오로에틸렌(ETFE) 등이 있으며, 이들을 단독 또는 병용할 수 있다. 또한, 상기 기재층(120b2)은 두께가 1 ~ 100㎛, 바람직하게는 10 ~ 30㎛일 수 있으나 이에 제한되는 것은 아니다. Meanwhile, as shown in FIG. 1, the upper and lower portions of the magnetic body 110 may further include a protection member 120. The protection member 120 serves to physically and chemically protect the magnetic material from the external environment. The protective member 120 may be a protective film or a protective coating layer. Specifically, the protective member 120 illustrated in FIGS. 3A and 3B is implemented as a protective film, and is used to attach the base film 120b 2 , the base film 120b 2 , and the magnetic body 110 as a protective film. The adhesive layer 120b 1 may be included. The base layer 120b 2 may be a protective film that is typically provided to protect the magnetic material of the antenna core, and may be heat resistant, mechanical strength, and resistance to protect the magnetic material 110 against physical and chemical stimuli applied from the outside. In the case of a film whose material is chemically secured, it can be used without limitation. As a non-limiting example, polyethylene, polypropylene, polyimide, crosslinked polypropylene, nylon, polyurethane-based resin, acetate, polybenzimidazole, polyimideamide, polyetherimide, polyphenylene sulfide (PPS). Polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polybutylene terephthalate (PBT), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene ( PCTFE), polyethylenetetrafluoroethylene (ETFE), and the like, and these may be used alone or in combination. In addition, the base layer 120b 2 may have a thickness of 1 to 100 μm, preferably 10 to 30 μm, but is not limited thereto.
또한, 상기 접착층(120b1)은 접착력을 보유한 통상의 접착제로 형성된 것일 수 있으며, 본 발명은 이에 대해 특별히 한정하지 않는다. 상기 접착층(120b1)의 두께는 3 ~ 50㎛일 수 있으나 이에 제한되는 것은 아니며 목적에 따라 변경하여 실시될 수 있다. In addition, the adhesive layer 120b 1 may be formed of a conventional adhesive having an adhesive force, and the present invention is not particularly limited thereto. The adhesive layer 120b 1 may have a thickness of 3 to 50 μm, but the thickness of the adhesive layer 120b 1 is not limited thereto.
다만, 염수분무에 따른 내식성의 신뢰성 확보를 위하여, 도 3a 및 도 3b와 같이 보호부재(120)는 자성체(110)의 상,하부를 덮는 제1보호부(A) 및 상기 제1보호부(A)에서 연장되고, 소정의 폭(d)으로 테두리를 형성하며 자성체(110) 측부를 둘러싸는 제2보호부(B)를 포함할 수 있다. 상기 제2보호부(B)를 통해 측면으로 유입될 수 있는 염수에 따른 내식성 저하를 방지할 수 있으며, 이를 위해 바람직하게는 상기 제2보호부(B)의 폭은 100㎛ ~ 1㎜일 수 있다. However, in order to ensure the reliability of the corrosion resistance according to the salt spray, the protection member 120 as shown in Figure 3a and 3b is the first protection portion (A) and the first protection portion (covering the upper and lower portions of the magnetic body 110) ( It may include a second protective portion (B) extending from A), forming a rim with a predetermined width (d) and surrounding the magnetic body 110 side. Corrosion resistance can be prevented due to the brine that can be introduced into the side through the second protection portion (B), preferably for this purpose, the width of the second protection portion (B) may be 100㎛ ~ 1mm have.
한편, 도 4에 도시된 것과 같이 보호부재(120')는 별도의 접착층 없이 단일층으로 형성된 보호코팅층일 수 있다. 이 경우 보호코팅층은 보호특성, 자성체와의 접착(또는 점착) 특성 및/또는 자성체를 절연화시킬 수 있는 전기적 특성을 구비할 수 있다. 상기 보호코팅층은 별도의 접착층 없이도 자성체에 부착력을 발현할 수 있는 재질인 경우 제한없이 사용할 수 있으며, 일예로 에틸렌프로필렌고무(Ex. EPDM)일 수 있다. 이때 보호코팅층의 주제가 되는 성분은 가교형 또는 비가교형 성분일 수 있고, 가교형 성분의 경우 가교제를 통해 가교되어 보호코팅층을 형성할 수 있으며, 비가교형 성분의 경우 용매의 건조 또는 용융상태의 고화를 통해 보호코팅층을 형성할 수 있다. 이때, 보호코팅층은 보호코팅층을 형성하는 조성물을 통상의 공지된 방법, 일예로 콤마코터, 스크린인쇄, 침지, 스프레잉 등의 방법을 통해 자성체 상에 도포한 후 보호코팅층의 주제성분의 종류에 따라 공지된 방법으로 보호코팅층을 형성시킬 수 있다. 한편, 상기 보호코팅층의 제조방법은 이에 제한되지 않고, 분말상태의 다이머를 화학증착법을 이용하여 폴리머 형태의 보호필름을 형성시키는 패럴린 코팅을 통해 형성시킬 수 있다. 상기 패럴린 코팅은 균일한 보호층을 형성시킬 수 있는 이점이 있다. Meanwhile, as shown in FIG. 4, the protection member 120 ′ may be a protective coating layer formed of a single layer without a separate adhesive layer. In this case, the protective coating layer may have protective properties, adhesion (or adhesion) properties with the magnetic body, and / or electrical properties capable of insulating the magnetic body. The protective coating layer can be used without limitation in the case of a material that can express the adhesion to the magnetic body without a separate adhesive layer, for example, may be ethylene propylene rubber (Ex. EPDM). In this case, the main component of the protective coating layer may be a crosslinking or non-crosslinking component, and in the case of the crosslinking component, it may be crosslinked through a crosslinking agent to form a protective coating layer, and in the case of the noncrosslinking component, the solvent may be dried or solidified in a molten state. Through the protective coating layer can be formed. At this time, the protective coating layer is applied to a magnetic body by a method such as a comma coater, screen printing, dipping, spraying, etc., a composition for forming a protective coating layer according to the type of the main component of the protective coating layer. The protective coating layer can be formed by a known method. On the other hand, the method of manufacturing the protective coating layer is not limited to this, it is possible to form a powder-based dimer through a parallel coating to form a protective film in the form of a polymer using a chemical vapor deposition method. The paraline coating has the advantage of forming a uniform protective layer.
상술한 본 발명의 일실시예에 따른 비접촉식 전자결제용 안테나코어는 (1) Fe계 합금리본을 소정의 폭으로 절단하는 단계;를 포함하여 제조될 수 있다. The non-contact electronic payment antenna core according to the embodiment of the present invention described above may be manufactured including (1) cutting the Fe-based alloy ribbon to a predetermined width.
상기 Fe계 합금리본의 조성 및 조성비는 상술한 바와 동일하여 이하에서는 제조방법을 중심으로 설명한다. 상기 Fe계 합금리본은 멜트 스피닝에 의한 급냉응고법(RSP)와 같은 공지된 방법을 통해 제조된 비정질 Fe계 합금리본이나, 또는 상기 비정질 Fe계 합금리본을 열처리한 후의 Fe계 합금리본일 수 있고, 보다 바람직하게는 투자율을 최대로 향상시킨 열처리된 Fe계 합금리본일 수 있다. 이때의 열처리 온도는 Fe계 합금의 조성, 조성비 및 목적하는 자성체의 투자율의 정도에 따라 달리 선택될 수 있는데, 목적하는 동작주파수 범위에서 일정수준 이상의 우수한 물성을 발현하기 위하여 일예로 Fe-Si-B계 합금의 경우 대기분위기 또는 질소분위기하에서 300 ~ 600℃의 온도, 보다 바람직하게는 400 ~ 500℃로 열처리될 수 있으며, 보다 더 바람직하게는 440 ~ 480℃의 온도로 30분 ~ 2시간 동안 열처리 처리될 수 있다. 또한, Fe-Si-B-Cu-Nb계 합금의 경우 대기분위기 또는 질소분위기하에서 300 ~ 700℃의 온도, 보다 바람직하게는 500 ~ 700℃로 30 분 ~ 2시간 동안 열처리 처리될 수 있다. 만일 열처리 온도가 300℃ 미만일 경우 목적하는 투자율을 달성하기 어려울 수 있고, 열처리 시간이 연장될 수 있다. 또한, 열처리 온도가 700℃를 초과하는 경우 자성체의 투자율이 현저히 낮아질 수 있다.Composition and composition ratio of the Fe-based alloy ribbon is the same as described above will be described below with a focus on the manufacturing method. The Fe-based alloy ribbon may be an amorphous Fe-based alloy ribbon prepared by a known method such as quench solidification (RSP) by melt spinning, or an Fe-based alloy ribbon after heat treatment of the amorphous Fe-based alloy ribbon, More preferably, it may be a heat-treated Fe-based alloy ribbon with a maximum improvement in permeability. At this time, the heat treatment temperature may be differently selected according to the composition, composition ratio, and magnetic permeability of the desired magnetic material. For example, in order to express excellent properties over a certain level in the desired operating frequency range, for example, Fe-Si-B In the case of the alloy, it may be heat-treated at a temperature of 300 to 600 ° C., more preferably 400 to 500 ° C., more preferably at a temperature of 440 to 480 ° C. for 30 minutes to 2 hours in an air atmosphere or a nitrogen atmosphere. Can be processed. In addition, the Fe-Si-B-Cu-Nb-based alloy may be heat treated at a temperature of 300 to 700 ° C., more preferably 500 to 700 ° C. for 30 minutes to 2 hours in an air atmosphere or a nitrogen atmosphere. If the heat treatment temperature is less than 300 ℃ it may be difficult to achieve the desired permeability, the heat treatment time can be extended. In addition, the magnetic permeability of the magnetic material may be significantly lowered when the heat treatment temperature exceeds 700 ° C.
또한, 만일 복수의 자성체를 구비하고자 하는 경우 Fe계 합금리본을 목적하는 개수로 적층하여 적층체로 제조할 수 있다. 이때, 적층된 각각의 Fe계 합금리본 사이에는 접착층을 구비시킬 수 있다. 다수개의 자성체를 적층시켜 안테나 코어를 제조하는 경우 열처리되지 않은 Fe계 합금리본을 적층 후 열처리공정을 거치거나 또는 열처리된 Fe계 합금리본을 접착층을 개재시켜 적층할 수 있다. In addition, if a plurality of magnetic bodies are to be provided, the Fe-based alloy ribbon may be laminated in a desired number and manufactured as a laminate. In this case, an adhesive layer may be provided between the stacked Fe-based alloy ribbons. In the case of manufacturing an antenna core by stacking a plurality of magnetic bodies, an unheated Fe-based alloy ribbon may be laminated and then subjected to a heat treatment process, or the heat-treated Fe-based alloy ribbon may be laminated through an adhesive layer.
(1) 단계 이후, 단층의 또는 적층된 Fe계 합금리본을 원하는 모양과 크기로 타발하는 공정을 거칠 수 있다. After step (1), a single layer or laminated Fe-based alloy ribbon may be subjected to a process of punching in a desired shape and size.
이후 (2) 단계로써, 타발된 단층의 또는 적층된 Fe계 합금리본을 덮도록 보호부재를 형성시키는 단계를 수행할 수 있다. Thereafter, as a step (2), a step of forming a protection member to cover the punched monolayer or the stacked Fe-based alloy ribbon may be performed.
보호부재가 보호필름인 경우를 일예로 설명하면, 일면에 접착제가 구비된 보호필름을 타발된 단층의 또는 적층된 Fe계 합금리본의 상부와 하부에 배치시킨 뒤 합지 한 후 단층/적층된 Fe계 합금리본의 크기보다 소정의 폭/길이만큼 더 크게 타발하여 도 3a와 같이 단층/적층된 Fe계 합금리본 주위에 테두리를 형성한 제2보호부(B)를 형성시킬 수 있다.As an example, when the protective member is a protective film, a protective film with an adhesive on one surface thereof is disposed on the upper and lower portions of the punched single layer or the laminated Fe-based alloy ribbon, and then laminated and laminated. It can be punched by a predetermined width / length larger than the size of the alloy ribbon to form a second protective portion (B) having an edge around the single-layer / laminated Fe-based alloy ribbon as shown in Figure 3a.
또는, 보호부재가 보호코팅층인 경우, 보호코팅조성물로 Fe계 합금리본의 외부면을 코팅하는 방식으로 보호코팅층을 형성하거나, 보호코팅층의 형성 전 단량체 상태의 물질을 패럴린코팅법을 통해 Fe계 합금리본의 외부면에 중합 및 증착시켜 보호도금층을 형성할 수도 있다.Alternatively, when the protective member is a protective coating layer, a protective coating layer is formed by coating an outer surface of the Fe-based alloy ribbon with a protective coating composition, or a Fe-based material is formed through a paraline coating method before forming the protective coating layer. The protective plating layer may be formed by polymerization and deposition on the outer surface of the alloy ribbon.
상술한 방법으로 제조된 본 발명의 일 실시예에 의한 안테나 코어는 비접촉식 전자결제용 안테나내부에 배치되어 비접촉식 전자결제모듈로 구현될 수 있다.The antenna core according to an embodiment of the present invention manufactured by the above-described method may be disposed inside the antenna for contactless electronic payment and may be implemented as a contactless electronic payment module.
도 5를 참조하여 설명하면, 비접촉식 전자결제모듈(1000)은 안테나코어(1100)의 외부면에 권회하여 형성된 비접촉식 전자결제용 안테나(1200)를 구비한다. Referring to FIG. 5, the contactless electronic payment module 1000 includes a contactless electronic payment antenna 1200 formed by winding on an outer surface of the antenna core 1100.
상기 비접촉식 전자결제용 안테나(1200)는 시계방향 또는 반시계 방향으로 안테나 코어를 권회할 수 있으며, 이때 안테나 코어의 축방향과 권회된 안테나의 각도, 안테나 코일의 선간 간격, 코일의 직경 등은 목적에 따라 달리 설계될 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다. 또한, 안테나의 재질 역시 공지된 안테나 재질을 이용할 수 있고, 일예로 구리선일 수 있다. 또한, 비접촉식 전자결제용 안테나는 2개 이상이 구비되어 안테나 코어를 방향을 달리하여 권회할 수 있다. 일예로, 안테나 코어의 x, y, z축 세 축을 중심으로 3개의 안테나가 권회되고 권회된 각각의 안테나가 직교하도록 구현될 수도 있다.The contactless electronic payment antenna 1200 may wind the antenna core in a clockwise or counterclockwise direction, wherein the axial direction of the antenna core and the angle of the wound antenna, the line spacing of the antenna coil, the diameter of the coil, and the like According to the present invention, the present invention is not particularly limited thereto. In addition, the material of the antenna may also use a known antenna material, for example, may be a copper wire. In addition, two or more contactless electronic payment antennas may be provided to wind the antenna core in different directions. For example, three antennas may be wound around three x, y, and z axes of the antenna core, and each wound antenna may be implemented to be orthogonal.
또한, 도 6에 도시된 것과 같이 비접촉식 전자결제모듈(2000)은 요홈이 형성된 안테나코어(2100) 부분에 권회하여 형성된 비접촉식 전자결제용 안테나(2200)를 포함하여 구현될 수 있고, 상기 안테나코어(2100)의 일부분에는 천공된 홀(P)을 포함할 수 있다. 상기 홀(P)은 안테나 코어의 뒤틀림을 방지할 수 있다. 상기 홀(P)의 형상은 제한이 없으며, 크기는 목적에 따라 적절히 변경될 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다. In addition, as shown in FIG. 6, the non-contact electronic payment module 2000 may be implemented to include a non-contact electronic payment antenna 2200 formed by winding a portion of the antenna core 2100 having a recess, and the antenna core ( A portion of the 2100 may include a perforated hole (P). The hole P may prevent distortion of the antenna core. The shape of the hole P is not limited, and the present invention is not particularly limited as the size may be appropriately changed according to the purpose.
또한, 본 발명의 일 실시예에 의하면, 도 6에 도시된 것과 같이 비접촉식 전자결제용 안테나(2200)가 형성되지 않은 안테나 코어의 다른 영역 상에 이종의 기능을 수행하는 제1안테나(2300)가 구비될 수 있다. 이 경우 안테나 코어는 제1안테나(2300)로 자속을 집속하고 제1안테나의 특성을 향상시키는 기능을 동시에 수행할 수 있다.In addition, according to an embodiment of the present invention, as shown in FIG. 6, the first antenna 2300 for performing heterogeneous functions on another area of the antenna core in which the non-contact electronic payment antenna 2200 is not formed is provided. It may be provided. In this case, the antenna core may simultaneously perform a function of concentrating magnetic flux to the first antenna 2300 and improving characteristics of the first antenna.
상기 제1안테나(2300)는 근거리통신(NFC)용 안테나 및 무선전력전송(WPT)용 안테나 중 어느 하나 이상일 수 있다. 상기 제1안테나의 구체적인 형상, 재질, 구조는 목적하는 제1안테나의 기능, 동작 주파수대역을 고려하여 적절히 변경될 수 있음에 따라서 본 발명은 이에 대해 구체적으로 한정하지 않는다. 또한, 상기 무선전력전송(WPT)용 안테나는 Qi 방식에 적용될 수도 있고, 영구자석에서 발생되는 자기력선의 일부가 어트랙터(미도시)를 통해 유도되는 PMA 방식의 무선전력 전송에 적용될 수 있는 것일 수도 있다. 더불어, 수십 ㎑ ~ 6.78MHz의 주파수에서 무선전력 전송이 이루어지는 자기공진방식에도 적용될 수 있다. 한편, 상술한 MST용 안테나, WPT용 안테나 및 NFC용 안테나는 신호를 송출하거나 수신하는 용도에 모두 사용될 수 있음을 밝혀둔다. The first antenna 2300 may be at least one of an antenna for near field communication (NFC) and an antenna for wireless power transmission (WPT). As the specific shape, material, and structure of the first antenna may be appropriately changed in consideration of the function and operating frequency band of the first antenna, the present invention is not specifically limited thereto. In addition, the antenna for wireless power transmission (WPT) may be applied to the Qi method, or a part of the magnetic force lines generated in the permanent magnet may be applied to the wireless power transmission of the PMA method induced through an attractor (not shown). have. In addition, it can be applied to a magnetic resonance method in which wireless power transmission is performed at a frequency of several tens of kHz to 6.78 MHz. On the other hand, the above-described antenna for MST, antenna for WPT and antenna for NFC will be found that all can be used for the purpose of transmitting or receiving signals.
또한, 도 6과 같은 비접촉식 전자결제모듈(2000)은 안테나코어가 일체형으로 구현된 것이거나 도 7과 같이 제1안테나코어(2100A) 및 제2안테나코어(2100B)가 결합하여 안테나코어(2100)로 구현된 것일 수 있다. 이때, 제2안테나코어(2100B)는 제1안테나코어(2100A)를 권회하여 형성된 비접촉식 전자결제용 안테나(2200)의 내부 이격공간에 수용되어 하나의 안테나코어(2100)로 조립될 수 있다. 이를 위해 상기 비접촉식 전자결제용 안테나(2200)는 제2안테나코어(2100B)를 코일 내부에 수용할 수 있도록 제2안테나코어(2100B)의 두께를 고려하여 제1안테나코어(2100A)에 권회되거나, 제1안테나코어(2100A) 및 제2안테나코어(2100B)의 돌출부를 겹친 상태에서 권선공정을 수행하여 일체로 조립된 비접촉식 전자결제모듈(2000)을 구현할 수 있다. In addition, the non-contact electronic payment module 2000 as shown in FIG. 6 is an antenna core integrally implemented, or as shown in FIG. 7, the first antenna core 2100A and the second antenna core 2100B are coupled to the antenna core 2100. It may be implemented as. In this case, the second antenna core 2100B may be accommodated in an inner space of the contactless electronic payment antenna 2200 formed by winding the first antenna core 2100A and assembled into one antenna core 2100. To this end, the contactless electronic payment antenna 2200 is wound around the first antenna core 2100A in consideration of the thickness of the second antenna core 2100B to accommodate the second antenna core 2100B in the coil, The contactless electronic payment module 2000 may be integrally assembled by performing a winding process in a state where the protrusions of the first antenna core 2100A and the second antenna core 2100B overlap.
또한, 도 7에서 제1안테나코어(2100A) 및 제2안테나코어(2100B)는 동일한 조성의 Fe계 합금일 수 있고, 또는 이종의 조성을 갖는 Fe계 합금일 수 있다. 일예로, 제1안테나코어(2100A)는 규소강일 수 있고, 제2안테나코어(2100B)는 Si, B, Cu 및 Nb를 포함하는 5원소계 합금일 수 있다. In addition, in FIG. 7, the first antenna core 2100A and the second antenna core 2100B may be Fe-based alloys having the same composition, or Fe-based alloys having heterogeneous compositions. For example, the first antenna core 2100A may be silicon steel, and the second antenna core 2100B may be a five-element-based alloy including Si, B, Cu, and Nb.
한편, 상술한 본 발명의 일실시예에 의한 안테나 코어는 구비된 자성체의 총 두께가 72㎛일 때, 상기 비접촉식 전자결제용 안테나의 인덕턴스(Ls)에 대한 상대이득이 5 이상, 바람직하게는 5 ~ 15일 수 있다. 상기 전자결제신호에 대한 비접촉식 전자결제용 안테나 인덕턴스의 상대이득이란 안테나코어를 통해 얻게 되는 인덕턴스의 이득을 나타내는 것으로써, 상대이득이 높을수록 안테나코어를 통해 목적하는 물성의 발현이 유리할 수 있다.On the other hand, the antenna core according to an embodiment of the present invention described above, when the total thickness of the magnetic material provided is 72㎛, the relative gain with respect to the inductance (Ls) of the contactless electronic payment antenna is 5 or more, preferably 5 It may be 15. The relative gain of the noncontact electronic payment antenna inductance with respect to the electronic payment signal indicates the gain of the inductance obtained through the antenna core. The higher the relative gain, the more advantageous the expression of the desired physical property through the antenna core.
[식] [expression]
상대이득 = 안테나코어 구비시 전자결제용 안테나 인덕턴스(μH) ÷ 안테나코어 미구비시 전자결제용 안테나 인덕턴스(μH)Relative gain = antenna inductance for electronic payment (μH) with antenna core ÷ antenna inductance for electronic payment (μH)
즉, 상기 상대이득이란 안테나코어의 유무를 달리할뿐, 동일한 비접촉식 전자결제용 안테나에 대해 동일한 주파수와 전압조건으로 일예로 LCR미터를 통해 전자결제용 안테나에 대한 인덕턴스를 측정하는 것이며, 이러한 상대이득을 통해 안테나코어에 따른 효과를 명확히 알 수 있다. That is, the relative gain is to measure the inductance of the electronic payment antenna through the LCR meter, for example, under the same frequency and voltage conditions for the same non-contact electronic payment antenna, which is different from the presence or absence of the antenna core. Through the antenna core can be clearly seen the effect.
본 발명의 일 실시예에 의한 안테나 코어는 구비된 자성체의 총두께가 72㎛일 때, 안테나 인덕턴스의 상대이득이 5이상을 만족함에 따라서 매우 슬림화된 안테나 코어임에도 비접촉식 전자결제용 안테나의 특성을 현저히 향상시킬 수 있고, 안테나 코어가 구비되는 휴대기기의 커버가 도전성 메탈인 경우에도 전면 및 후면 모두 양방향으로 전자결제용 신호의 송수신이 가능할 수 있다. 만일 자성체의 두께가 72㎛에서 상대이득이 5 미만인 경우 비접촉식 전자결제용 안테나특성을 향상시키기에 안테나 코어의 물성이 부족하고, 전자결제가 가능한 거리가 매우 짧아질 수 있고, 특히 휴대기기의 커버가 메탈인 경우에 어느 일방향으로만 전자결제 신호를 송수신할 수 있다거나, 송수신 거리가 매우 짧아질 수 있으며, 이를 해소하기 위해서는 안테나 코어에 구비되는 자성체의 두께를 증가시켜야 하나 이 경우 경박단소형화 추세의 휴대기기에는 장착이 어려워 매우 바람직하지 못하다.According to an embodiment of the present invention, when the total thickness of the provided magnetic material is 72 μm, the relative gain of the antenna inductance satisfies 5 or more, thereby significantly reducing the characteristics of the non-contact electronic payment antenna. Even if the cover of the portable device having the antenna core is a conductive metal, both front and rear surfaces may transmit and receive signals for electronic payment in both directions. If the thickness of the magnetic material is 72 μm and the relative gain is less than 5, the properties of the antenna core may be insufficient to improve the characteristics of the non-contact electronic payment antenna, and the electronic payment distance may be very short. In the case of metal, the electronic payment signal can be transmitted / received in only one direction or the transmission / reception distance can be very short. In order to solve this problem, the thickness of the magnetic material provided in the antenna core should be increased. It is difficult to mount in a mobile device, which is very undesirable.
상술한 비접촉식 전자결제모듈(1000,2000)은 비접촉식 전자결제용 신호의 발신 및 수신을 위한 POS단말기 등의 전자기기에 포함될 수 있다. 또한, 상기 비접촉식 전자결제모듈(1000,2000)을 수신용 모듈로 포함하는 휴대용 기기로 구현될 수 있다. 본 발명에 따른 비접촉식 전자결제모듈(1000,2000)은 어느 일방향이 아니라 양방향으로 형성/송신되는 자기장 필드 신호를 인식할 수 있음에 따라서 이를 구비한 기기를 특정방향으로 위치시켜 신호를 인식할 필요가 없음에 따라서 전자결제신호의 송수신을 통한 비접촉식 전자결제 기능을 손쉽게 이용할 수 있는 이점이 있다. The above-described contactless electronic payment module 1000 and 2000 may be included in an electronic device such as a POS terminal for transmitting and receiving a contactless electronic payment signal. In addition, the contactless electronic payment module (1000,2000) may be implemented as a portable device including a receiving module. The non-contact electronic payment module (1000,2000) according to the present invention can recognize the magnetic field signal is formed / transmitted in both directions rather than in one direction, it is necessary to position the device having it in a specific direction to recognize the signal As a result, there is an advantage that a non-contact electronic payment function can be easily used through transmission and reception of an electronic payment signal.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components Other embodiments may be easily proposed by changing, deleting, adding, and the like, but this will also fall within the spirit of the present invention.

Claims (13)

  1. 비접촉식 전자결제용 안테나코일의 내부에 배치되며, Fe계 합금을 포함하는 자성체;를 포함하는 비접촉식 전자결제용 안테나코어.A non-contact electronic payment antenna core disposed within the contactless electronic payment antenna coil, a magnetic material containing a Fe-based alloy.
  2. 제1항에 있어서,The method of claim 1,
    상기 Fe계 합금은 철(Fe), 규소(Si) 및 붕소(B)를 포함하는 3원소계 합금 또는 철(Fe), 규소(Si), 붕소(B), 구리(Cu) 및 니오븀(Nb)을 포함하는 5원소계 합금인 비접촉식 전자결제용 안테나코어.The Fe-based alloy is a three-element alloy including iron (Fe), silicon (Si) and boron (B) or iron (Fe), silicon (Si), boron (B), copper (Cu) and niobium (Nb) Antenna element for contactless electronic payment is a five-element-based alloy comprising a).
  3. 제1항에 있어서,The method of claim 1,
    상기 안테나코어는 복수의 자성체가 적층되어 형성된 비접촉식 전자결제용 안테나코어. The antenna core is a non-contact electronic payment antenna core formed by stacking a plurality of magnetic material.
  4. 제3항에 있어서,The method of claim 3,
    적층된 복수의 자성체 사이에는 접착층이 더 개재된 비접촉식 전자결제용 안테나코어.An antenna core for contactless electronic payment, wherein an adhesive layer is further interposed between the stacked magnetic bodies.
  5. 제1항에 있어서,The method of claim 1,
    상기 자성체는 단일층의 두께가 15 내지 35㎛인 비접촉식 전자결제용 안테나코어.The magnetic material is a non-contact electronic payment antenna core having a single layer thickness of 15 to 35㎛.
  6. 제1항에 있어서,The method of claim 1,
    상기 안테나 코어는 자성체의 상,하부를 덮는 제1보호부 및The antenna core may include a first protective part covering upper and lower portions of the magnetic material;
    상기 제1보호부에서 연장되고, 내식성을 향상시키기 위하여 소정의 폭으로 테두리를 형성하며 자성체 측부를 둘러싸는 제2보호부를 포함하는 보호부재를 더 구비한 비접촉식 전자결제용 안테나.The contactless electronic payment antenna further comprising a protection member extending from the first protection portion, the second protection portion to form a rim with a predetermined width to surround the magnetic body side to improve the corrosion resistance.
  7. 제6항에 있어서,The method of claim 6,
    상기 제2보호부의 폭은 100㎛ ~ 1㎜인 비접촉식 전자결제용 안테나 코어.The width of the second protective part is 100㎛ ~ 1㎜ non-contact electronic payment antenna core.
  8. 제6항에 있어서,The method of claim 6,
    상기 보호부재의 두께는 5 내지 100㎛인 비접촉식 전자결제용 안테나코어.The protective member has a thickness of 5 to 100㎛ non-contact electronic payment antenna core.
  9. 제3항에 있어서,The method of claim 3,
    상기 안테나코어는 2 내지 4개의 자성체가 적층된 비접촉식 전자결제용 안테나코어.The antenna core is an antenna core for contactless electronic payment in which two to four magnetic materials are stacked.
  10. 제1항에 따른 비접촉식 전자결제용 안테나코어; 및The non-contact electronic payment antenna core according to claim 1; And
    상기 안테나 코어를 권회하여 형성된 비접촉식 전자결제용 안테나;를 포함하는 비접촉식 전자결제모듈.And a contactless electronic payment antenna formed by winding the antenna core.
  11. 제10항에 있어서,The method of claim 10,
    상기 안테나 코어에 구비된 자성체의 총 두께가 72㎛일 때, 상기 비접촉식 전자결제용 안테나의 인덕턴스(Ls)에 대한 상대이득이 5 이상인 비접촉식 전자결제모듈.The contactless electronic payment module having a relative gain of 5 or more relative to the inductance (Ls) of the contactless electronic payment antenna when the total thickness of the magnetic material provided in the antenna core is 72㎛.
  12. 제10항에 따른 비접촉식 전자결제모듈을 수신용 모듈로 포함하는 휴대용 기기.A portable device comprising the contactless electronic payment module according to claim 10 as a receiving module.
  13. 제10항에 따른 비접촉식 전자결제모듈을 포함하는 전자기기.Electronic device comprising a non-contact electronic payment module according to claim 10.
PCT/KR2017/013595 2016-11-25 2017-11-27 Antenna core for contactless electronic payment and contactless electronic payment module including same WO2018097676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0158383 2016-11-25
KR20160158383 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018097676A1 true WO2018097676A1 (en) 2018-05-31

Family

ID=62196010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013595 WO2018097676A1 (en) 2016-11-25 2017-11-27 Antenna core for contactless electronic payment and contactless electronic payment module including same

Country Status (2)

Country Link
KR (1) KR102001432B1 (en)
WO (1) WO2018097676A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102622085B1 (en) * 2023-05-17 2024-01-09 주식회사 대현텔레메트리 An Antenna Capable of Preventing a Core from Being Damaged

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080023694A (en) * 2005-07-07 2008-03-14 도다 고교 가부시끼가이샤 Magnetic antenna
WO2013095036A1 (en) * 2011-12-21 2013-06-27 주식회사 아모센스 Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
KR20130142991A (en) * 2010-08-04 2013-12-30 도다 고교 가부시끼가이샤 Rf tag, magnetic antenna, substrate with the rf tag mounted thereon, and communication system
KR20150032382A (en) * 2013-09-16 2015-03-26 (주)상아프론테크 Ultra-thin and high-permeability magnetic sheet commonly used by wireless charging and near field communication, and method for manufacturing the same
US20160233585A1 (en) * 2015-02-10 2016-08-11 Samsung Electro-Mechanics Co., Ltd. Near field communications antenna and terminal including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW531976B (en) * 2001-01-11 2003-05-11 Hanex Co Ltd Communication apparatus and installing structure, manufacturing method and communication method
KR20020066828A (en) 2001-02-14 2002-08-21 주식회사 카티스 Control method of electronic commerce with non-contacting RF-card reader
KR101232222B1 (en) * 2011-10-26 2013-02-12 한국기계연구원 A composite film for absorption emi and the method for preparation of the same
KR102327621B1 (en) * 2015-04-30 2021-11-17 주식회사 아모센스 Magnetic Secure Transmission Antenna Device
KR102085643B1 (en) * 2015-10-05 2020-03-06 주식회사 아모그린텍 Magnetic shielding unit, module comprising the same and portable device comprising the module
KR20170040775A (en) * 2015-10-05 2017-04-13 주식회사 아모그린텍 Magnetic shielding unit, module comprising the same and portable device comprising the module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080023694A (en) * 2005-07-07 2008-03-14 도다 고교 가부시끼가이샤 Magnetic antenna
KR20130142991A (en) * 2010-08-04 2013-12-30 도다 고교 가부시끼가이샤 Rf tag, magnetic antenna, substrate with the rf tag mounted thereon, and communication system
WO2013095036A1 (en) * 2011-12-21 2013-06-27 주식회사 아모센스 Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
KR20150032382A (en) * 2013-09-16 2015-03-26 (주)상아프론테크 Ultra-thin and high-permeability magnetic sheet commonly used by wireless charging and near field communication, and method for manufacturing the same
US20160233585A1 (en) * 2015-02-10 2016-08-11 Samsung Electro-Mechanics Co., Ltd. Near field communications antenna and terminal including the same

Also Published As

Publication number Publication date
KR20180059384A (en) 2018-06-04
KR102001432B1 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
KR101724596B1 (en) Sheet for Shielding Magnetic Field, and Antenna Module Using the Same
EP2482382B1 (en) Antenna device and communication terminal device
US10658870B2 (en) Combo antenna unit and wireless power receiving module comprising same
WO2017078481A1 (en) Combination-type antenna module
KR101926594B1 (en) Antenna unit for a wireless charging and wireless charging module having the same
WO2017061772A1 (en) Multifunctional hybrid module and portable device comprising same
US20150116178A1 (en) Combined radio frequency identification (rfid) and wireless charging electromagnetic wave absorber, combined rfid and wireless charging wireless antenna including same, and method for manufacturing same
CN203056103U (en) Antenna apparatus and communication terminal apparatus
KR101656260B1 (en) Shielding unit for a wireless charging and wireless charging module having the same
KR102175375B1 (en) Attractor for a wireless charging receiver module and a wireless charging receiver module having the same
KR101939664B1 (en) Hybrid metal sheet for magnetic shielding and wireless power transfer module including the same
CN103515698A (en) NFC (Near Field Communication) antenna and electronic equipment
EP2752943A1 (en) Soft magnetic layer, receiving antenna, and wireless power receiving apparatus comprising the same
KR101939663B1 (en) Shielding sheet for wireless charging and wireless charging receive module having the same
WO2016186444A1 (en) Shield unit for wireless charging and wireless power transmission module comprising same
WO2019151746A1 (en) Antenna module comprising shield layer and wireless power receiving device
US20160056536A1 (en) Electromagnetic Wave Absorbing Sheet and Antenna Module Having Same
KR20180112354A (en) Magnetic sheet and wireless power charging apparatus including the same
CN105229853A (en) NFC antenna module and consisting of carried terminal
WO2018097676A1 (en) Antenna core for contactless electronic payment and contactless electronic payment module including same
KR20130127103A (en) Electromagnetic shielding sheet using non-sintered ferrite ceramic thick film
WO2016111496A1 (en) Magnetic field shielding sheet and wireless power transmitting module including same
CN107818857B (en) Magnetic sheet and electronic device
JP2023516688A (en) High intrinsic quality receiver structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873898

Country of ref document: EP

Kind code of ref document: A1