WO2018092258A1 - Air conditioner and air-conditioning system - Google Patents

Air conditioner and air-conditioning system Download PDF

Info

Publication number
WO2018092258A1
WO2018092258A1 PCT/JP2016/084231 JP2016084231W WO2018092258A1 WO 2018092258 A1 WO2018092258 A1 WO 2018092258A1 JP 2016084231 W JP2016084231 W JP 2016084231W WO 2018092258 A1 WO2018092258 A1 WO 2018092258A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
neural network
air conditioner
unit
indoor unit
Prior art date
Application number
PCT/JP2016/084231
Other languages
French (fr)
Japanese (ja)
Inventor
吉秋 小泉
雅史 冨田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16904841.0A priority Critical patent/EP3348924B1/en
Priority to PCT/JP2016/084231 priority patent/WO2018092258A1/en
Priority to JP2018550954A priority patent/JP6625239B2/en
Priority to CN201680090745.9A priority patent/CN109937331B/en
Priority to US16/328,878 priority patent/US11486594B2/en
Publication of WO2018092258A1 publication Critical patent/WO2018092258A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present invention relates to an air conditioner and an air conditioning system for estimating a failure factor.
  • a remote controller provided in a conventional air conditioner management system is connected to an indoor unit via a transmission line, and holds data such as an operation history and a fault code received from the indoor unit.
  • the remote controller can transmit the stored data to a mobile terminal such as a user's mobile phone.
  • the remote controller includes operating information such as the set temperature of the air conditioner, information indicating the type of model, operating time of the air conditioner, current consumption and rotation speed of the compressor in the outdoor unit, code indicating the cause of the failure, and It holds data such as outside temperature. Since such various information can be transmitted from the mobile terminal to a service store that performs maintenance or the like, the service store specifies service information related to inspection based on the received various information (for example, Patent Document 1). reference).
  • a hot water supply device that acquires data composed of detection signals of various sensors and command values such as burner operation at preset times, and identifies a failure site based on the acquired data (for example, Patent Document 2).
  • data consisting of the detection signals and command values of the various sensors described above are stored as saved data, and when an abnormality occurs in the device, the latest data of the saved data before the occurrence of the abnormality of the device, The number corresponding to the device abnormality is displayed on the display unit of the remote control.
  • workers who repair hot water supply equipment can easily identify the faulty part of the hot water supply equipment based on the displayed contents without using a dedicated measuring instrument, etc. Etc. can be achieved.
  • JP 2009-14233 A Japanese Patent No. 3897680
  • the obtained operation history such as the current value of the compressor is compared with the average value in the same region, the same model, and the same condition.
  • the increase or decrease in the operation history with respect to the average value exceeds a preset threshold value, it is considered that there is some abnormality in the compressor or other parts.
  • the air conditioner does not cool
  • the failure factor since the failure factor is affected by the difference due to the installation condition and the difference depending on the model, the failure factor cannot be accurately estimated by displaying the fixed failure code.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an air conditioner and an air conditioning system capable of accurately estimating a failure factor and improving the detection accuracy of an abnormal location. To do.
  • An air conditioner is an air conditioner including an outdoor unit and an indoor unit provided with respective devices and pipes forming a refrigerant circuit, and a remote controller connected to the indoor unit, Sensors for detecting the temperature state of the device and the pipe are provided in each of the outdoor unit and the indoor unit, and store sensor information indicating a detection result by the sensor and control information indicating a control state of the device.
  • a memory is provided in the outdoor unit or the indoor unit, and the remote controller uses information indicating the state of each unit based on the sensor information and the control information at the same time acquired from the memory as an input value,
  • a neural network that uses the estimated failure factor as an output value and calculates the possibility of the failure factor using a neural network.
  • network operation means and has a display means for displaying a calculation result by the neural network calculating means.
  • the present invention by estimating a failure factor using a neural network, it is possible to accurately estimate the failure factor and improve the detection accuracy of the abnormal part.
  • FIG. 1 It is a block diagram which shows an example of a structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is the schematic for demonstrating the neural network calculation process performed by the neural network calculation means of FIG. It is the schematic for demonstrating the result of a neural network calculation process.
  • It is a block diagram which shows an example of a structure of the air conditioner which concerns on Embodiment 2.
  • FIG. It is a block diagram which shows an example of a structure of the air conditioner which concerns on Embodiment 3.
  • Embodiment 1 FIG.
  • the air conditioner according to the first embodiment will be described.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the air conditioner 1 according to the first embodiment.
  • the air conditioner 1 includes an outdoor unit 10, an indoor unit 20, and a remote controller (hereinafter referred to as “remote controller” as appropriate) 30.
  • the outdoor unit 10 and the indoor unit 20 are connected by a first communication method using a first connection line 2 that is wired or wireless.
  • the indoor unit 20 and the remote controller 30 are connected by a second connection method 3 using a second communication method by a wired or wireless second connection line 3.
  • the remote controller 30 is connected to the information terminal 40 using the third communication method by the third connection line 4 by radio.
  • the third communication method for example, short-range wireless communication using BLE (Bluetooth (registered trademark) Low Energy) technology can be used.
  • the remote controller 30 can be connected to a general-purpose device such as a temperature / humidity sensor (not shown) installed in the air-conditioning target space using the third communication method.
  • the information terminal 40 is capable of notifying the user of information related to the air conditioner 1 such as the control state of each part in the air conditioner 1.
  • a mobile terminal such as a smartphone, a tablet terminal, and a notebook PC (Personal Computer) can be used.
  • the information terminal 40 is not limited to this, and a terminal that is fixedly installed such as a stationary PC may be used.
  • each device and piping forming a refrigerant circuit such as a compressor and a heat exchanger are provided in the outdoor unit 10 or the indoor unit 20.
  • the air conditioner 1 is provided with one outdoor unit 10 and one indoor unit 20, but is not limited thereto.
  • one of the outdoor unit 10 and the indoor unit 20 is provided.
  • One side may be provided in plural, or both may be provided in plural. That is, the number of outdoor units 10 and indoor units 20 can be appropriately determined according to the situation where the air conditioner 1 is installed.
  • the outdoor unit 10 includes one or a plurality of sensors 11, a microcomputer (hereinafter appropriately referred to as “microcomputer”) 12, a first communication unit 13, a memory 14, and a compressor 15 and an expansion device that form a refrigerant circuit.
  • a valve 16 is provided.
  • Sensor 11 is installed in each part of outdoor unit 10, and detects the state of a measuring object.
  • each sensor 11 is a temperature sensor, and detects the temperature state of each part such as the outside air temperature, the compressor 15 temperature, and the piping temperature.
  • the detected temperature information and the like are supplied to the microcomputer 12 as sensor information related to the outdoor unit 10 (hereinafter referred to as “outdoor unit sensor information” as appropriate).
  • the sensor 11 is not limited to a temperature sensor, and for example, a pressure sensor or the like may be used to detect the pressure of each part.
  • the microcomputer 12 controls the entire outdoor unit 10 such as controlling the operation of devices forming a refrigerant circuit such as the compressor 15 and the expansion valve 16. For example, the microcomputer 12 instructs the compressor frequency of the compressor 15 and the opening degree of the expansion valve 16.
  • the microcomputer 12 sets and changes the state of the outdoor unit 10 based on the control instruction information received from the remote controller 30 via the indoor unit 20. Further, the microcomputer 12 acquires outdoor unit sensor information detected by the sensor 11 and control information indicating the control state of the equipment provided in the outdoor unit 10 such as the compressor frequency of the compressor 15, and the memory described later 14 and the communication of the first communication means 13 to be described later. Details of the control instruction information will be described later.
  • the first communication means 13 controls communication performed with the indoor unit 20 using the first communication method based on a command from the microcomputer 12. For example, the first communication unit 13 receives sensor information (hereinafter referred to as “indoor unit sensor information”) relating to the indoor unit 20 supplied from the indoor unit 20 and sends the received indoor unit sensor information to the microcomputer 12. Supply.
  • sensor information hereinafter referred to as “indoor unit sensor information”
  • the first communication means 13 receives control instruction information from the remote controller 30 via the indoor unit 20 and supplies the received control instruction information to the microcomputer 12. Further, the first communication means 13 receives outdoor unit sensor information, indoor unit sensor information, and control information held in a memory 14 described later from the microcomputer 12 and transmits them to the indoor unit 20.
  • outdoor unit sensor information and indoor unit sensor information will be collectively referred to as “sensor information” as appropriate.
  • the memory 14 is data holding means for holding various data.
  • the memory 14 writes and reads outdoor unit sensor information detected by the sensor 11 under the control of the microcomputer 12. Further, the memory 14 writes and reads the indoor unit sensor information such as the suction temperature of the indoor unit 20 and the temperature of the piping acquired through the first communication unit 13 under the control of the microcomputer 12.
  • the indoor unit 20 includes one or more sensors 21, a microcomputer 22, second communication means 23, third communication means 24, and a memory 25.
  • each sensor 21 is a temperature sensor, and detects the temperature state of each part such as the air suction temperature and the piping temperature in the air-conditioning target space.
  • the detected temperature information and the like are supplied to the microcomputer 22 as indoor unit sensor information.
  • the sensor 21 is not limited to a temperature sensor, and for example, a pressure sensor or the like may be used to detect the pressure of each part.
  • the microcomputer 22 controls the whole indoor unit 20 such as performing operation control of devices forming the refrigerant circuit. For example, the microcomputer 22 sets and changes the state of the indoor unit 20 based on control instruction information received from the remote controller 30 described later, and transfers the received control instruction information to the outdoor unit 10 as necessary.
  • the microcomputer 12 acquires indoor unit sensor information indicating the state of each part such as the suction temperature and the pipe temperature detected by the sensor 21, controls writing to a memory 25 described later, and second communication described later. The communication between the means 23 and the third communication means 24 is controlled.
  • the second communication means 23 controls communication performed with the outdoor unit 10 using the first communication method based on a command from the microcomputer 22.
  • the second communication means 23 receives the indoor unit sensor information detected by the sensor 21 and the control instruction information from the remote controller 30 from the microcomputer 22 and transmits them to the outdoor unit 10.
  • the second communication unit 23 receives sensor information and control information from the outdoor unit 10 and supplies the received information to the microcomputer 22.
  • the third communication means 24 controls communication performed with the remote controller 30 using the second communication method based on a command from the microcomputer 22.
  • the third communication unit 24 receives control instruction information from the remote controller 30 and supplies the received control instruction information to the microcomputer 22.
  • the third communication unit 24 receives sensor information and control information from the microcomputer 22 and transmits them to the remote controller 30.
  • the memory 25 is data holding means for holding various data.
  • the memory 25 writes and reads the indoor unit sensor information detected by the sensor 11 under the control of the microcomputer 22.
  • the remote controller 30 includes a fourth communication unit 31, a microcomputer 32, a memory 33, a fifth communication unit 34, a display unit 35, and an operation unit 36.
  • the fourth communication unit 31 controls communication performed with the indoor unit 20 using the second communication method based on a command from the microcomputer 32. For example, the fourth communication unit 31 transmits control instruction information for controlling operations of the outdoor unit 10 and the indoor unit 20 from the microcomputer 32 to the indoor unit 20. The fourth communication means 31 receives sensor information and control information from the indoor unit 20 and supplies them to the microcomputer 32.
  • the microcomputer 32 controls the entire remote controller 30 based on a user operation on an operation means 36 described later. For example, the microcomputer 32 generates control instruction information for controlling the operations of the outdoor unit 10 and the indoor unit 20 based on an operation signal obtained by a user operation.
  • the microcomputer 32 is provided with a neural network calculation means 39.
  • the neural network calculation means 39 probabilistically estimates the state of the air conditioner 1 using a neural network. Specifically, the neural network calculation means 39 determines whether the operation of the air conditioner 1 is normal or some trouble may occur based on various information acquired via the indoor unit 20. To do. Then, the microcomputer 32 supplies determination information indicating the determination result by the neural network calculation means 39 to the memory 33. The details of the calculation processing by the neural network calculation means 39 will be described later.
  • the memory 33 is data holding means for holding various data. Under the control of the microcomputer 32, the memory 33 writes and reads determination information indicating the result of determination by the neural network calculation means 39.
  • the fifth communication means 34 controls communication performed with the information terminal 40 using the third communication method based on a command from the microcomputer 32.
  • the fifth communication unit 34 transmits the determination information read from the memory 33 under the control of the microcomputer 32 to the information terminal 40.
  • the information terminal 40 transmits the determination information received from the remote controller 30 to the cloud 50 connected via the network 5 such as the Internet and stores it on the cloud 50.
  • the display means 35 is composed of, for example, an LCD (Liquid Crystal Display), an organic EL (Electro Luminescence) display, and the like, and displays a determination result based on the determination information.
  • an LCD Liquid Crystal Display
  • organic EL Electro Luminescence
  • As the display unit 35 not only the determination result but also a touch panel display in which a touch panel having a touch sensor is stacked on an LCD or an organic EL display can be used.
  • the operation means 36 is provided with various buttons or keys used for operating the air conditioner 1, and outputs an operation signal corresponding to the operation on each button or key. As described above, when the display unit 35 is a touch panel display, various buttons or keys may be displayed on the display unit 35 as software buttons or software keys.
  • the neural network calculation unit 39 probabilistically estimates the state of the air conditioner 1 using the neural network. Such state determination of the air conditioner 1 is performed, for example, when an abnormality is detected while the air conditioner 1 is operating.
  • FIG. 2 is a schematic diagram for explaining a neural network calculation process performed by the neural network calculation means 39 of FIG.
  • the neural network 100 used in the first embodiment is a hierarchical network including an input layer 110, an intermediate layer 120, and an output layer 130 composed of a plurality of units.
  • the intermediate layer 120 includes two layers, a first intermediate layer 121 and a second intermediate layer 122.
  • the input layer 110 transmits a signal based on the input information to the intermediate layer 120.
  • Each of the units constituting the input layer 110 is coupled to all the units constituting the first intermediate layer 121 which is the next layer.
  • the intermediate layer 120 performs arithmetic processing based on a signal input from the immediately preceding layer and outputs a calculation result.
  • Each of the units constituting the intermediate layer 120 is combined with all the units constituting the next layer.
  • the output layer 130 performs arithmetic processing based on the signal input from the immediately preceding second intermediate layer 122 and outputs the calculation result as an output signal.
  • information indicating the state of the air conditioner 1 is input to the input layer 110 as an input signal.
  • “compressor frequency”, “high pressure”, “low pressure”, and “superheat” at the same time are input to the input layer 110 as input signals.
  • These input signals can be acquired based on sensor information and control information held in the memory 14 of the outdoor unit 10.
  • a failure factor in the air conditioner 1 is output as an output signal.
  • “normal”, “evaporator airflow reduction”, “compressor abnormality”, “refrigerant shortage”, and “condenser airflow reduction” as estimated failure factors are output signals from the output layer 130. Is output.
  • weights w ij are accumulated for the transmitted signals.
  • the weight w ij is preset in the neural network calculation process, and reflects the content learned by the neural network 100.
  • the subscript “i” in the weight w ij indicates the unit number in the layer that is the start point of the network, and the subscript “j” indicates the unit number in the layer that is the end point of the network.
  • This weight w ij is stored in the memory 33 of the remote controller 30 as a weighting table. Details of the weight w ij will be described later.
  • each unit of the input layer 110 transmits the received input signal to each unit of the first intermediate layer 121. That is, all input signals input to the input layer 110 are input to each unit of the first intermediate layer 121.
  • each unit of the first intermediate layer 121 integrates the input signal received from each unit of the input layer 110 and the weight w ij corresponding to the input signal, and all signals obtained by the integration are obtained. Generate the added signal.
  • Each unit of the first intermediate layer 121 transmits the first intermediate layer signal obtained based on the generated signal to each unit of the second intermediate layer 122.
  • Each unit of the second intermediate layer 122 integrates the first intermediate layer signal received from each unit of the first intermediate layer 121 and the weight w ij corresponding to the signal, and all signals obtained by the integration. To generate a signal. Each unit of the second intermediate layer 122 transmits a second intermediate layer signal obtained based on the generated signal to each unit of the output layer 130.
  • Each unit of the output layer 130 integrates the second intermediate layer signal received from each unit of the second intermediate layer 122 and the weight w ij corresponding to the signal, and adds all signals obtained by the integration. Generated signal. Each unit of the output layer 130 outputs an output signal obtained based on the generated signal. At this time, the sum of the values of the output signals output from the output layer 130 is set to “1”.
  • the neural network calculation unit 39 acquires the output signal based on the input signal obtained based on the sensor information and the control information and the weight w ij obtained by referring to the weighting table stored in the memory 33. To do.
  • FIG. 3 is a schematic diagram for explaining the result of the neural network calculation process.
  • FIG. 3 is a graph showing a possibility of an abnormality that may occur when an abnormality is detected during operation of the air conditioner 1, for example.
  • values obtained by normalizing the values of the output signals corresponding to the respective failure factors with reference to the value indicating “normal” are shown. That is, the failure factor corresponding to the output signal having a value larger than the value “1” indicating “normal” may be a cause of abnormality. Therefore, in the example illustrated in FIG. 3, “shortage of refrigerant” indicates the highest possibility of being a failure factor when an abnormality is detected.
  • a graph indicating the determination result of such a failure factor is displayed on the display means 35 of the remote controller 30, for example. Thereby, at the time of maintenance etc., an operator can estimate a failure factor easily, and maintainability can be improved.
  • Weight change In the first embodiment, it is possible to change the weight w ij included in the weighting table to an optimum one by answering whether or not the calculation result obtained as described above is correct.
  • the calculation result is correct means that the cause of the abnormality is the most likely cause of the failure factor obtained by the neural network calculation processing.
  • the updated weight w ij in this case is calculated by, for example, error back propagation.
  • error back propagation is a method that is generally used when calculating weights in the neural network 100, and thus description thereof is omitted here.
  • the recalculation of the weight w ij using error back propagation or the like is performed by, for example, an external PC or the like connected to the network 5.
  • the remote controller 30 transmits answer information indicating the input answer to an external PC.
  • the PC recalculates the weight w ij based on the response information, sensor information, and control information using back propagation.
  • the remote controller 30 receives the recalculated weight w ij from the external PC via the network 5, the information terminal 40, and the fifth communication means 34. Then, the microcomputer 32 of the remote controller 30 updates the weighting table by storing the received weight w ij in the weighting table stored in the memory 33.
  • the air conditioner 1 includes the outdoor unit 10 and the indoor unit 20 provided with the devices and pipes forming the refrigerant circuit, and the remote controller 30 connected to the indoor unit 20.
  • the outdoor unit 10 or the indoor unit 20 is provided with a memory 14 or 25 that stores control information to be shown.
  • the remote controller 30 uses information indicating the state of each part based on sensor information and control information at the same time acquired from the memory 14 or 25 as an input value, and uses an estimated failure factor as an output value. It has a neural network calculation means 39 for calculating the possibility of a failure factor, and a display means 35 for displaying a calculation result by the neural network calculation means 39.
  • the failure factor is probabilistically estimated using the neural network 100, it is possible to accurately estimate the failure factor and improve the detection accuracy of the abnormal part.
  • the value of the weight w ij used in the arithmetic processing by the neural network 100 is recalculated and updated based on the response information indicating whether the failure factor is correct, sensor information, and control information, the accuracy of the failure factor estimation is increased. It can be improved further. Further, by performing recalculation of the value of the weight w ij described above by an external PC or the like, a low-performance microcomputer 32 of the remote controller 30 can be used, and as a result, the cost can be reduced.
  • Embodiment 2 an air conditioner according to Embodiment 2 will be described.
  • the air conditioner according to the second embodiment is different from the above-described first embodiment in that the information terminal 40 includes a neural network calculation unit.
  • FIG. 4 is a block diagram showing an example of the configuration of the air conditioner 1 according to the second embodiment.
  • the information terminal 40 is provided with a neural network calculation means 49.
  • portions common to the above-described first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the microcomputer 32 in the remote controller 30 receives the sensor information and the control information transmitted from the outdoor unit 10 via the fourth communication unit 31 and supplies them to the fifth communication unit 34.
  • the fifth communication unit 34 performs communication processing similar to that of the first embodiment, and transmits the sensor information and control information received from the microcomputer 32 to the information terminal 40.
  • the information terminal 40 performs a neural network calculation process based on the sensor information and control information received from the remote controller 30.
  • the arithmetic processing performed by the neural network arithmetic means 49 is the same as the arithmetic processing by the neural network arithmetic means 39 in the first embodiment.
  • the remote controller 30 receives information indicating the possibility of a failure factor as a calculation result from the information terminal 40 via the fifth communication unit 34.
  • the microcomputer 32 causes the display unit 35 to display information indicating the possibility of the failure factor received from the information terminal 40.
  • the weighting table used for the neural network calculation process is held by, for example, the application of the information terminal 40, and whether or not the calculation result obtained by the calculation process is correct as in the first embodiment.
  • the weight w ij can be updated. Therefore, when the reply information from the remote controller 30 is transmitted to an external PC and the weight w ij is recalculated by the PC, the information terminal 40 obtains the weight w ij from the PC as in the first embodiment. And update the weighting table.
  • the updated weight w ij is acquired by the information terminal 40 by, for example, manual input by the user to the information terminal 40, reading of a QR (Quick Response) code (QR code is a registered trademark), and USB (Universal Serial Bus) connection. Or by using an input / output interface such as a network connection.
  • QR Quick Response
  • USB Universal Serial Bus
  • the second embodiment can provide the same effects as the first embodiment.
  • the load on the microcomputer 32 in the remote controller 30 can be reduced.
  • Embodiment 3 FIG. Next, an air conditioner according to Embodiment 3 will be described.
  • the air conditioner according to the third embodiment is different from the first and second embodiments described above in that a neural network calculation unit is provided on the cloud 50.
  • FIG. 5 is a block diagram showing an example of the configuration of the air conditioner 1 according to the third embodiment.
  • a neural network calculation unit 59 is provided on the cloud 50.
  • parts common to those in the first and second embodiments described above are denoted by the same reference numerals and description thereof is omitted.
  • the microcomputer 32 in the remote controller 30 receives the sensor information and the control information transmitted from the outdoor unit 10 via the fourth communication unit 31 and supplies them to the fifth communication unit 34.
  • the fifth communication unit 34 performs the communication process in the first embodiment and transmits the sensor information and control information received from the microcomputer 32 to the information terminal 40.
  • the information terminal 40 transmits the sensor information and control information received from the remote controller 30 to the cloud 50 via the network 5.
  • the cloud 50 performs a neural network calculation process based on the sensor information and control information received from the information terminal 40.
  • the arithmetic processing performed by the neural network arithmetic means 59 is the same as the arithmetic processing by the neural network arithmetic means 39 in the first embodiment and the neural network arithmetic means 49 in the second embodiment.
  • the remote controller 30 receives information indicating the possibility of a failure factor as a calculation result from the cloud 50 via the information terminal 40 and the fifth communication unit 34.
  • the microcomputer 32 causes the display unit 35 to display information indicating the possibility of the failure factor received from the cloud 50.
  • the weighting table used for the neural network calculation process is held by, for example, the application of the cloud 50, and whether or not the calculation result obtained by the calculation process is a correct answer as in the first and second embodiments.
  • the weight w ij can be updated. Accordingly, when the reply information from the remote controller 30 is transmitted to an external PC and the weight w ij is recalculated by the PC, the cloud 50 receives the weight w ij from the PC as in the first and second embodiments. Acquire and update the weighting table.
  • the flow path switching valve according to the third embodiment can achieve the same effects as those of the first embodiment.
  • the load on the microcomputer 32 in the remote controller 30 can be reduced.
  • both the outdoor unit sensor information and the indoor unit sensor information have been described as being stored in the memory 14 of the outdoor unit 10.
  • the present invention is not limited thereto, and both the outdoor unit sensor information and the indoor unit sensor information are stored. May be stored in the memory 25 of the indoor unit 20.
  • the number of intermediate layers 120 is two has been described.
  • the number of intermediate layers 120 is not limited to this.
  • the number of intermediate layers 120 may be one or more.
  • the number of intermediate layers 120 can be appropriately set in consideration of the accuracy of the state determination of the air conditioner 1 and the like.
  • the input signal in the neural network calculation process is not limited to the above-described example, and for example, the discharge temperature of the compressor 15, the evaporation temperature of the heat exchanger, the outside air temperature, the set temperature, the opening degree of the expansion valve 16, or the like.
  • a signal indicating this information may be used as an input signal.
  • the input signal to the input layer 110 may be based on a plurality of pieces of information acquired at preset time intervals such as 1 minute intervals.
  • the failure factor is estimated when an abnormality of the air conditioner 1 is detected.
  • the present invention is not limited to this.
  • the failure factor can be estimated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner comprises: an outdoor unit and an indoor unit that are provided with devices and pipes which form a refrigerant circuit; and a remote controller that is connected to the indoor unit. Sensors for detecting the temperature states of the devices and pipes are provided to each of the outdoor unit and the indoor unit, and a memory for storing sensor information showing the results detected by the sensors and control information showing the controlled states of the devices is provided to the outdoor unit or the indoor unit. The remote controller has: a neural-network calculation means to calculate the possibility of failure factors by using a neural network with the information showing the state of each portion based on the sensor information and control information acquired at the same time from the memory as input values and estimated failure factors as output values; and a display means for displaying the results calculated by the neural-network calculation means.

Description

空気調和機および空気調和システムAir conditioner and air conditioning system
 本発明は、故障要因を推定する空気調和機および空気調和システムに関するものである。 The present invention relates to an air conditioner and an air conditioning system for estimating a failure factor.
 従来の空気調和機の管理システムに備えられたリモートコントローラは、伝送線を介して室内機と接続されており、室内機から受け取った運転履歴および故障コード等のデータを保持している。また、リモートコントローラは、保持しているデータをユーザの携帯電話等の携帯端末に送信することができる。 A remote controller provided in a conventional air conditioner management system is connected to an indoor unit via a transmission line, and holds data such as an operation history and a fault code received from the indoor unit. In addition, the remote controller can transmit the stored data to a mobile terminal such as a user's mobile phone.
 さらに、リモートコントローラは、空気調和機の設定温度等の運転情報、機種の種類を示す情報、空気調和機の運転時間、室外機における圧縮機の消費電流および回転数、故障原因を示すコード、ならびに外気温度等のデータを保持している。このような各種情報は、携帯端末からメンテナンス等を行うサービス店に送信することができるので、サービス店では、受信した各種情報に基づき、点検に関するサービス情報を特定している(例えば、特許文献1参照)。 Furthermore, the remote controller includes operating information such as the set temperature of the air conditioner, information indicating the type of model, operating time of the air conditioner, current consumption and rotation speed of the compressor in the outdoor unit, code indicating the cause of the failure, and It holds data such as outside temperature. Since such various information can be transmitted from the mobile terminal to a service store that performs maintenance or the like, the service store specifies service information related to inspection based on the received various information (for example, Patent Document 1). reference).
 また、予め設定された時間毎に各種センサの検知信号およびバーナ運転時等の指令値からなるデータを取得し、取得したデータに基づき、故障部位を特定する給湯機器が提案されている(例えば、特許文献2参照)。この給湯機器では、上述した各種センサの検知信号および指令値からなるデータを保存データとして記憶しておき、機器に異常が発生した場合に、当該機器の異常発生前の保存データの最新データと、機器の異常に対応した番号とをリモコンの表示部に表示させる。これにより、給湯機器の修理を行う作業者等は、専用の測定器等を使用することなく、表示内容に基づいて給湯機器の故障部位を容易に特定することができるため、修理作業時間の短縮等を図ることができる。 In addition, a hot water supply device has been proposed that acquires data composed of detection signals of various sensors and command values such as burner operation at preset times, and identifies a failure site based on the acquired data (for example, Patent Document 2). In this hot water supply device, data consisting of the detection signals and command values of the various sensors described above are stored as saved data, and when an abnormality occurs in the device, the latest data of the saved data before the occurrence of the abnormality of the device, The number corresponding to the device abnormality is displayed on the display unit of the remote control. As a result, workers who repair hot water supply equipment can easily identify the faulty part of the hot water supply equipment based on the displayed contents without using a dedicated measuring instrument, etc. Etc. can be achieved.
特開2009-14233号公報JP 2009-14233 A 特許第3897680号公報Japanese Patent No. 3897680
 ところで、特許文献1に記載の発明では、取得した圧縮機の電流値等の運転履歴を、同一地域、同一機種、および同一条件での平均値と比較する。そして、比較の結果、平均値に対する運転履歴の増減が予め設定された閾値を超えた場合に、圧縮機またはその他の部品に何らかの異常があると見なしている。 By the way, in the invention described in Patent Document 1, the obtained operation history such as the current value of the compressor is compared with the average value in the same region, the same model, and the same condition. As a result of the comparison, when the increase or decrease in the operation history with respect to the average value exceeds a preset threshold value, it is considered that there is some abnormality in the compressor or other parts.
 例えば、「空調機が冷えない」という場合には、圧縮機または冷媒回路の運転状態を観測する必要がある。そのため、単に個別部品に対して閾値判定を行うだけでは、故障要因を特定することが困難である。また、故障要因は、設置条件による差異、および機種による差異の影響を受けるため、固定的な故障コードの表示では、故障要因を精度よく推定することができない。 For example, when “the air conditioner does not cool”, it is necessary to observe the operating state of the compressor or the refrigerant circuit. For this reason, it is difficult to specify the cause of failure only by performing threshold determination for individual components. In addition, since the failure factor is affected by the difference due to the installation condition and the difference depending on the model, the failure factor cannot be accurately estimated by displaying the fixed failure code.
 さらに、特許文献2に記載の発明では、表示部に表示された情報に基づき、作業者が故障部位を特定するため、正確に故障部位を特定できるかどうかは、作業者の技量および経験に依存してしまう。すなわち、特許文献2に記載の発明では、故障部位を精度よく推定することが困難である。 Furthermore, in the invention described in Patent Document 2, since the operator specifies the failure part based on the information displayed on the display unit, whether or not the failure part can be specified accurately depends on the skill and experience of the operator. Resulting in. That is, in the invention described in Patent Document 2, it is difficult to accurately estimate the failure site.
 本発明は、上記課題に鑑みてなされたものであって、故障要因を精度よく推定し、異常箇所の検出精度を向上させることが可能な空気調和機および空気調和システムを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an air conditioner and an air conditioning system capable of accurately estimating a failure factor and improving the detection accuracy of an abnormal location. To do.
 本発明に係る空気調和機は、冷媒回路を形成する各機器および配管が設けられた室外機および室内機と、該室内機に接続されるリモートコントローラとを備えた空気調和機であって、前記機器および前記配管の温度状態を検出するセンサが前記室外機および前記室内機のそれぞれに設けられており、前記センサによる検出結果を示すセンサ情報、および前記機器の制御状態を示す制御情報を記憶するメモリが前記室外機または前記室内機に設けられており、前記リモートコントローラは、前記メモリから取得した同一時刻における前記センサ情報および前記制御情報に基づく各部の状態を示す情報を入力値とするとともに、推定される故障要因を出力値とし、ニューラルネットワークを用いて前記故障要因の可能性を演算するニューラルネットワーク演算手段と、前記ニューラルネットワーク演算手段による演算結果を表示する表示手段とを有するものである。 An air conditioner according to the present invention is an air conditioner including an outdoor unit and an indoor unit provided with respective devices and pipes forming a refrigerant circuit, and a remote controller connected to the indoor unit, Sensors for detecting the temperature state of the device and the pipe are provided in each of the outdoor unit and the indoor unit, and store sensor information indicating a detection result by the sensor and control information indicating a control state of the device. A memory is provided in the outdoor unit or the indoor unit, and the remote controller uses information indicating the state of each unit based on the sensor information and the control information at the same time acquired from the memory as an input value, A neural network that uses the estimated failure factor as an output value and calculates the possibility of the failure factor using a neural network. And network operation means, and has a display means for displaying a calculation result by the neural network calculating means.
 以上のように、本発明によれば、ニューラルネットワークを用いて故障要因を推定することにより、故障要因を精度よく推定し、異常箇所の検出精度を向上させることができる。 As described above, according to the present invention, by estimating a failure factor using a neural network, it is possible to accurately estimate the failure factor and improve the detection accuracy of the abnormal part.
実施の形態1に係る空気調和機の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the air conditioner which concerns on Embodiment 1. FIG. 図1のニューラルネットワーク演算手段で行われるニューラルネットワーク演算処理について説明するための概略図である。It is the schematic for demonstrating the neural network calculation process performed by the neural network calculation means of FIG. ニューラルネットワーク演算処理の結果について説明するための概略図である。It is the schematic for demonstrating the result of a neural network calculation process. 実施の形態2に係る空気調和機の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the air conditioner which concerns on Embodiment 2. FIG. 実施の形態3に係る空気調和機の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the air conditioner which concerns on Embodiment 3. FIG.
実施の形態1.
 以下、本実施の形態1に係る空気調和機について説明する。
Embodiment 1 FIG.
Hereinafter, the air conditioner according to the first embodiment will be described.
[空気調和機の構成]
 図1は、本実施の形態1に係る空気調和機1の構成の一例を示すブロック図である。
 図1に示すように、空気調和機1は、室外機10、室内機20およびリモートコントローラ(以下、「リモコン」と適宜称する)30で構成されている。室外機10と室内機20とは、有線または無線による第1の接続線2で、第1の通信方式を用いて接続されている。室内機20とリモコン30とは、有線または無線による第2の接続線3で、第2の通信方式を用いて接続されている。
[Configuration of air conditioner]
FIG. 1 is a block diagram illustrating an example of the configuration of the air conditioner 1 according to the first embodiment.
As shown in FIG. 1, the air conditioner 1 includes an outdoor unit 10, an indoor unit 20, and a remote controller (hereinafter referred to as “remote controller” as appropriate) 30. The outdoor unit 10 and the indoor unit 20 are connected by a first communication method using a first connection line 2 that is wired or wireless. The indoor unit 20 and the remote controller 30 are connected by a second connection method 3 using a second communication method by a wired or wireless second connection line 3.
 また、リモコン30は、無線による第3の接続線4で、第3の通信方式を用いて情報端末40に接続されている。第3の通信方式としては、例えばBLE(Bluetooth(登録商標) Low Energy)技術を用いた近距離無線通信を用いることができる。リモコン30は、この情報端末40以外にも、例えば、空調対象空間内に設置された図示しない温湿度センサ等の汎用機器と第3の通信方式を用いて接続することもできる。 In addition, the remote controller 30 is connected to the information terminal 40 using the third communication method by the third connection line 4 by radio. As the third communication method, for example, short-range wireless communication using BLE (Bluetooth (registered trademark) Low Energy) technology can be used. In addition to the information terminal 40, the remote controller 30 can be connected to a general-purpose device such as a temperature / humidity sensor (not shown) installed in the air-conditioning target space using the third communication method.
 情報端末40は、例えば、空気調和機1における各部の制御状態等の空気調和機1に関する情報をユーザに対して通知することができるものである。情報端末40としては、例えば、スマートフォン、タブレット端末、およびノート型PC(Personal Computer)等の携帯端末を用いることができる。なお、情報端末40は、これに限られず、据え置き型のPC等の固定的に設置される端末を用いてもよい。 The information terminal 40 is capable of notifying the user of information related to the air conditioner 1 such as the control state of each part in the air conditioner 1. As the information terminal 40, for example, a mobile terminal such as a smartphone, a tablet terminal, and a notebook PC (Personal Computer) can be used. The information terminal 40 is not limited to this, and a terminal that is fixedly installed such as a stationary PC may be used.
 なお、空気調和機1においては、圧縮機および熱交換器等の冷媒回路を形成する各機器および配管が室外機10または室内機20に設けられているが、図1では、本実施の形態1の特徴に関連する部分のみを図示し、それ以外の部分については、図示および説明を省略する。また、この例において、空気調和機1は、1台の室外機10と1台の室内機20とが設けられているが、これに限られず、例えば、室外機10および室内機20のいずれか一方が複数設けられてもよいし、両方とも複数設けられてもよい。すなわち、室外機10および室内機20の台数は、空気調和機1が設置される状況に応じて、適宜決定することができる。 In the air conditioner 1, each device and piping forming a refrigerant circuit such as a compressor and a heat exchanger are provided in the outdoor unit 10 or the indoor unit 20. In FIG. Only the part relevant to the feature of FIG. 2 is shown, and the other parts are not shown and described. Further, in this example, the air conditioner 1 is provided with one outdoor unit 10 and one indoor unit 20, but is not limited thereto. For example, one of the outdoor unit 10 and the indoor unit 20 is provided. One side may be provided in plural, or both may be provided in plural. That is, the number of outdoor units 10 and indoor units 20 can be appropriately determined according to the situation where the air conditioner 1 is installed.
(室外機)
 室外機10は、1または複数のセンサ11、マイクロコンピュータ(以下、「マイコン」と適宜称する)12、第1の通信手段13、メモリ14、ならびに冷媒回路を形成する機器としての圧縮機15および膨張弁16を備えている。
(Outdoor unit)
The outdoor unit 10 includes one or a plurality of sensors 11, a microcomputer (hereinafter appropriately referred to as “microcomputer”) 12, a first communication unit 13, a memory 14, and a compressor 15 and an expansion device that form a refrigerant circuit. A valve 16 is provided.
 センサ11は、室外機10の各部に設置され、測定対象の状態を検出する。具体的には、例えば、各センサ11は温度センサであり、外気温度、圧縮機15の温度、および配管の温度等の各部の温度状態を検出する。検出されたこれらの温度情報等は、室外機10に関するセンサ情報(以下、「室外機センサ情報」と適宜称する)としてマイコン12に供給される。なお、センサ11は、温度センサに限られず、例えば圧力センサ等を用いて各部の圧力等を検出してもよい。 Sensor 11 is installed in each part of outdoor unit 10, and detects the state of a measuring object. Specifically, for example, each sensor 11 is a temperature sensor, and detects the temperature state of each part such as the outside air temperature, the compressor 15 temperature, and the piping temperature. The detected temperature information and the like are supplied to the microcomputer 12 as sensor information related to the outdoor unit 10 (hereinafter referred to as “outdoor unit sensor information” as appropriate). Note that the sensor 11 is not limited to a temperature sensor, and for example, a pressure sensor or the like may be used to detect the pressure of each part.
 マイコン12は、例えば圧縮機15および膨張弁16等の冷媒回路を形成する機器の動作制御を行う等、室外機10全体を制御する。例えば、マイコン12は、圧縮機15の圧縮機周波数、および膨張弁16の開度の指示を行う。 The microcomputer 12 controls the entire outdoor unit 10 such as controlling the operation of devices forming a refrigerant circuit such as the compressor 15 and the expansion valve 16. For example, the microcomputer 12 instructs the compressor frequency of the compressor 15 and the opening degree of the expansion valve 16.
 また、マイコン12は、室内機20を介してリモコン30から受信した制御指示情報に基づき、室外機10の状態を設定および変更する。さらに、マイコン12は、センサ11によって検出された室外機センサ情報と、圧縮機15の圧縮機周波数等の室外機10に設けられた機器の制御状態を示す制御情報とを取得し、後述するメモリ14への書き込みを制御するとともに、後述する第1の通信手段13の通信を制御する。なお、制御指示情報の詳細については、後述する。 Further, the microcomputer 12 sets and changes the state of the outdoor unit 10 based on the control instruction information received from the remote controller 30 via the indoor unit 20. Further, the microcomputer 12 acquires outdoor unit sensor information detected by the sensor 11 and control information indicating the control state of the equipment provided in the outdoor unit 10 such as the compressor frequency of the compressor 15, and the memory described later 14 and the communication of the first communication means 13 to be described later. Details of the control instruction information will be described later.
 第1の通信手段13は、第1の通信方式を用いて室内機20との間で行われる通信を、マイコン12の命令に基づいて制御する。例えば、第1の通信手段13は、室内機20から供給された室内機20に関するセンサ情報(以下、「室内機センサ情報」と適宜称する)を受信し、受信した室内機センサ情報をマイコン12に供給する。 The first communication means 13 controls communication performed with the indoor unit 20 using the first communication method based on a command from the microcomputer 12. For example, the first communication unit 13 receives sensor information (hereinafter referred to as “indoor unit sensor information”) relating to the indoor unit 20 supplied from the indoor unit 20 and sends the received indoor unit sensor information to the microcomputer 12. Supply.
 また、第1の通信手段13は、室内機20を介してリモコン30からの制御指示情報を受信し、受信した制御指示情報をマイコン12に供給する。さらに、第1の通信手段13は、後述するメモリ14に保持された室外機センサ情報および室内機センサ情報、ならびに制御情報をマイコン12から受け取り、室内機20に対して送信する。なお、以下では、「室外機センサ情報および室内機センサ情報」を総称して「センサ情報」と適宜称して説明する。 Further, the first communication means 13 receives control instruction information from the remote controller 30 via the indoor unit 20 and supplies the received control instruction information to the microcomputer 12. Further, the first communication means 13 receives outdoor unit sensor information, indoor unit sensor information, and control information held in a memory 14 described later from the microcomputer 12 and transmits them to the indoor unit 20. Hereinafter, “outdoor unit sensor information and indoor unit sensor information” will be collectively referred to as “sensor information” as appropriate.
 メモリ14は、各種のデータを保持するデータ保持手段である。メモリ14は、マイコン12の制御により、センサ11によって検出された室外機センサ情報の書き込みおよび読み出しを行う。また、メモリ14は、マイコン12の制御により、第1の通信手段13を介して取得した室内機20の吸込温度および配管の温度等の室内機センサ情報の書き込みおよび読み出しを行う。 The memory 14 is data holding means for holding various data. The memory 14 writes and reads outdoor unit sensor information detected by the sensor 11 under the control of the microcomputer 12. Further, the memory 14 writes and reads the indoor unit sensor information such as the suction temperature of the indoor unit 20 and the temperature of the piping acquired through the first communication unit 13 under the control of the microcomputer 12.
(室内機)
 室内機20は、1または複数のセンサ21、マイコン22、第2の通信手段23、第3の通信手段24およびメモリ25を備えている。
(Indoor unit)
The indoor unit 20 includes one or more sensors 21, a microcomputer 22, second communication means 23, third communication means 24, and a memory 25.
 センサ21は、室内機20の各部に設置され、測定対象の状態を検出する。具体的には、例えば、各センサ21は温度センサであり、空調対象空間の空気の吸込温度および配管の温度等の各部の温度状態を検出する。検出されたこれらの温度情報等は、室内機センサ情報としてマイコン22に供給される。なお、センサ21は、温度センサに限られず、例えば圧力センサ等を用いて各部の圧力等を検出してもよい。 Sensor 21 is installed in each part of indoor unit 20, and detects the state of a measuring object. Specifically, for example, each sensor 21 is a temperature sensor, and detects the temperature state of each part such as the air suction temperature and the piping temperature in the air-conditioning target space. The detected temperature information and the like are supplied to the microcomputer 22 as indoor unit sensor information. Note that the sensor 21 is not limited to a temperature sensor, and for example, a pressure sensor or the like may be used to detect the pressure of each part.
 マイコン22は、冷媒回路を形成する機器の動作制御を行う等、室内機20全体を制御する。例えば、マイコン22は、後述するリモコン30から受信した制御指示情報に基づき、室内機20の状態を設定および変更するとともに、受信した制御指示情報を必要に応じて室外機10に対して転送する。また、マイコン12は、センサ21によって検出された吸込温度および配管の温度といった各部の状態を示す室内機センサ情報を取得し、後述するメモリ25への書き込みを制御するとともに、後述する第2の通信手段23および第3の通信手段24の通信を制御する。 The microcomputer 22 controls the whole indoor unit 20 such as performing operation control of devices forming the refrigerant circuit. For example, the microcomputer 22 sets and changes the state of the indoor unit 20 based on control instruction information received from the remote controller 30 described later, and transfers the received control instruction information to the outdoor unit 10 as necessary. The microcomputer 12 acquires indoor unit sensor information indicating the state of each part such as the suction temperature and the pipe temperature detected by the sensor 21, controls writing to a memory 25 described later, and second communication described later. The communication between the means 23 and the third communication means 24 is controlled.
 第2の通信手段23は、第1の通信方式を用いて室外機10との間で行われる通信を、マイコン22の命令に基づいて制御する。例えば、第2の通信手段23は、センサ21で検出された室内機センサ情報、およびリモコン30からの制御指示情報をマイコン22から受け取り、室外機10に対して送信する。また、第2の通信手段23は、センサ情報および制御情報を室外機10から受信し、受信したこれらの情報をマイコン22に供給する。 The second communication means 23 controls communication performed with the outdoor unit 10 using the first communication method based on a command from the microcomputer 22. For example, the second communication means 23 receives the indoor unit sensor information detected by the sensor 21 and the control instruction information from the remote controller 30 from the microcomputer 22 and transmits them to the outdoor unit 10. The second communication unit 23 receives sensor information and control information from the outdoor unit 10 and supplies the received information to the microcomputer 22.
 第3の通信手段24は、第2の通信方式を用いてリモコン30との間で行われる通信を、マイコン22の命令に基づいて制御する。例えば、第3の通信手段24は、制御指示情報をリモコン30から受信し、受信した制御指示情報をマイコン22に供給する。また、第3の通信手段24は、センサ情報および制御情報をマイコン22から受け取り、リモコン30に対して送信する。 The third communication means 24 controls communication performed with the remote controller 30 using the second communication method based on a command from the microcomputer 22. For example, the third communication unit 24 receives control instruction information from the remote controller 30 and supplies the received control instruction information to the microcomputer 22. The third communication unit 24 receives sensor information and control information from the microcomputer 22 and transmits them to the remote controller 30.
 メモリ25は、各種のデータを保持するデータ保持手段である。メモリ25は、マイコン22の制御により、センサ11によって検出された室内機センサ情報の書き込みおよび読み出しを行う。 The memory 25 is data holding means for holding various data. The memory 25 writes and reads the indoor unit sensor information detected by the sensor 11 under the control of the microcomputer 22.
(リモートコントローラ)
 リモコン30は、第4の通信手段31、マイコン32、メモリ33、第5の通信手段34、表示手段35および操作手段36を備えている。
(Remote controller)
The remote controller 30 includes a fourth communication unit 31, a microcomputer 32, a memory 33, a fifth communication unit 34, a display unit 35, and an operation unit 36.
 第4の通信手段31は、第2の通信方式を用いて室内機20との間で行われる通信を、マイコン32の命令に基づいて制御する。例えば、第4の通信手段31は、マイコン32から室外機10および室内機20の動作を制御するための制御指示情報を、室内機20に対して送信する。また、第4の通信手段31は、センサ情報および制御情報を室内機20から受信し、マイコン32に供給する。 The fourth communication unit 31 controls communication performed with the indoor unit 20 using the second communication method based on a command from the microcomputer 32. For example, the fourth communication unit 31 transmits control instruction information for controlling operations of the outdoor unit 10 and the indoor unit 20 from the microcomputer 32 to the indoor unit 20. The fourth communication means 31 receives sensor information and control information from the indoor unit 20 and supplies them to the microcomputer 32.
 マイコン32は、後述する操作手段36に対するユーザの操作に基づき、このリモコン30全体を制御する。例えば、マイコン32は、ユーザによる操作によって得られる操作信号に基づき、室外機10および室内機20の動作を制御するための制御指示情報を生成する。 The microcomputer 32 controls the entire remote controller 30 based on a user operation on an operation means 36 described later. For example, the microcomputer 32 generates control instruction information for controlling the operations of the outdoor unit 10 and the indoor unit 20 based on an operation signal obtained by a user operation.
 マイコン32には、ニューラルネットワーク演算手段39が設けられている。ニューラルネットワーク演算手段39は、ニューラルネットワークを用いて、空気調和機1の状態を確率的に推定する。具体的には、ニューラルネットワーク演算手段39は、室内機20を介して取得した各種情報に基づき、空気調和機1の動作が正常であるか、または何らかの不具合が発生する可能性があるかを判定する。そして、マイコン32は、ニューラルネットワーク演算手段39による判定の結果を示す判定情報をメモリ33に供給する。なお、ニューラルネットワーク演算手段39による演算処理の詳細については、後述する。 The microcomputer 32 is provided with a neural network calculation means 39. The neural network calculation means 39 probabilistically estimates the state of the air conditioner 1 using a neural network. Specifically, the neural network calculation means 39 determines whether the operation of the air conditioner 1 is normal or some trouble may occur based on various information acquired via the indoor unit 20. To do. Then, the microcomputer 32 supplies determination information indicating the determination result by the neural network calculation means 39 to the memory 33. The details of the calculation processing by the neural network calculation means 39 will be described later.
 メモリ33は、各種のデータを保持するデータ保持手段である。メモリ33は、マイコン32の制御により、ニューラルネットワーク演算手段39による判定の結果を示す判定情報の書き込みおよび読み出しを行う。 The memory 33 is data holding means for holding various data. Under the control of the microcomputer 32, the memory 33 writes and reads determination information indicating the result of determination by the neural network calculation means 39.
 第5の通信手段34は、第3の通信方式を用いて情報端末40との間で行われる通信を、マイコン32の命令に基づいて制御する。例えば、第5の通信手段34は、マイコン32の制御によってメモリ33から読み出された判定情報を、情報端末40に対して送信する。情報端末40は、リモコン30から受信した判定情報を、インターネット等のネットワーク5を介して接続されたクラウド50に対して送信し、クラウド50上に記憶させる。 The fifth communication means 34 controls communication performed with the information terminal 40 using the third communication method based on a command from the microcomputer 32. For example, the fifth communication unit 34 transmits the determination information read from the memory 33 under the control of the microcomputer 32 to the information terminal 40. The information terminal 40 transmits the determination information received from the remote controller 30 to the cloud 50 connected via the network 5 such as the Internet and stores it on the cloud 50.
 表示手段35は、例えばLCD(Liquid Crystal Display)、有機EL(Electro Luminescence)ディスプレイ等によって構成され、判定情報に基づく判定結果を表示する。なお、表示手段35としては、判定結果を単に表示するだけでなく、例えば、LCDまたは有機ELディスプレイ上にタッチセンサを有するタッチパネルが積層されたタッチパネルディスプレイを用いることができる。 The display means 35 is composed of, for example, an LCD (Liquid Crystal Display), an organic EL (Electro Luminescence) display, and the like, and displays a determination result based on the determination information. As the display unit 35, not only the determination result but also a touch panel display in which a touch panel having a touch sensor is stacked on an LCD or an organic EL display can be used.
 操作手段36は、この空気調和機1を操作するために用いられる各種のボタンまたはキー等が設けられ、各ボタンまたはキー等に対する操作に応じた操作信号を出力する。また、上述したように、表示手段35がタッチパネルディスプレイである場合には、各種ボタンまたはキーがソフトウェアボタンまたはソフトウェアキーとして表示手段35に表示されるようにしてもよい。 The operation means 36 is provided with various buttons or keys used for operating the air conditioner 1, and outputs an operation signal corresponding to the operation on each button or key. As described above, when the display unit 35 is a touch panel display, various buttons or keys may be displayed on the display unit 35 as software buttons or software keys.
[ニューラルネットワーク演算処理]
 次に、ニューラルネットワーク演算手段39で行われるニューラルネットワーク演算処理について説明する。上述したように、ニューラルネットワーク演算手段39は、ニューラルネットワークを用いて、空気調和機1の状態を確率的に推定する。このような空気調和機1の状態判断は、例えば空気調和機1が動作中に異常が検出された場合等に行われる。
[Neural network calculation processing]
Next, a neural network calculation process performed by the neural network calculation means 39 will be described. As described above, the neural network calculation unit 39 probabilistically estimates the state of the air conditioner 1 using the neural network. Such state determination of the air conditioner 1 is performed, for example, when an abnormality is detected while the air conditioner 1 is operating.
 図2は、図1のニューラルネットワーク演算手段39で行われるニューラルネットワーク演算処理について説明するための概略図である。図2に示すように、本実施の形態1で用いられるニューラルネットワーク100は、複数のユニットで構成される入力層110、中間層120、および出力層130からなる階層型のネットワークである。この例では、中間層120が第1中間層121および第2中間層122の2つの層で構成されている。 FIG. 2 is a schematic diagram for explaining a neural network calculation process performed by the neural network calculation means 39 of FIG. As shown in FIG. 2, the neural network 100 used in the first embodiment is a hierarchical network including an input layer 110, an intermediate layer 120, and an output layer 130 composed of a plurality of units. In this example, the intermediate layer 120 includes two layers, a first intermediate layer 121 and a second intermediate layer 122.
 入力層110は、入力された情報に基づく信号を中間層120へ伝達するものである。入力層110を構成するユニットのそれぞれは、次の層である第1中間層121を構成するすべてのユニットと結合されている。中間層120は、直前の層から入力された信号に基づき演算処理を行い、演算結果を出力するものである。中間層120を構成するユニットのそれぞれは、次の層を構成するすべてのユニットと結合されている。出力層130は、直前の第2中間層122から入力された信号に基づき演算処理を行い、演算結果を出力信号として出力する。 The input layer 110 transmits a signal based on the input information to the intermediate layer 120. Each of the units constituting the input layer 110 is coupled to all the units constituting the first intermediate layer 121 which is the next layer. The intermediate layer 120 performs arithmetic processing based on a signal input from the immediately preceding layer and outputs a calculation result. Each of the units constituting the intermediate layer 120 is combined with all the units constituting the next layer. The output layer 130 performs arithmetic processing based on the signal input from the immediately preceding second intermediate layer 122 and outputs the calculation result as an output signal.
 本実施の形態1におけるニューラルネットワーク100において、入力層110には、空気調和機1の状態を示す情報が入力信号として入力される。具体的には、例えば、同一時刻における「圧縮機周波数」、「高圧圧力」、「低圧圧力」および「過熱度」が入力信号として入力層110に入力される。これらの入力信号は、室外機10のメモリ14に保持されたセンサ情報および制御情報に基づいて取得することができる。 In the neural network 100 according to the first embodiment, information indicating the state of the air conditioner 1 is input to the input layer 110 as an input signal. Specifically, for example, “compressor frequency”, “high pressure”, “low pressure”, and “superheat” at the same time are input to the input layer 110 as input signals. These input signals can be acquired based on sensor information and control information held in the memory 14 of the outdoor unit 10.
 また、出力層130からは、空気調和機1における故障要因が出力信号として出力される。具体的には、例えば、推定される故障要因としての「正常」、「蒸発器風量低下」、「圧縮機異常」、「冷媒不足」および「凝縮器風量低下」が出力信号として出力層130から出力される。 Also, from the output layer 130, a failure factor in the air conditioner 1 is output as an output signal. Specifically, for example, “normal”, “evaporator airflow reduction”, “compressor abnormality”, “refrigerant shortage”, and “condenser airflow reduction” as estimated failure factors are output signals from the output layer 130. Is output.
 ニューラルネットワーク100において、各層から次の層に信号がそれぞれ伝達される際には、伝達される信号に対して対応する重みwijが積算される。重みwijは、ニューラルネットワーク演算処理に際して予め設定されたものであり、ニューラルネットワーク100で学習された内容が反映されたものである。重みwijにおける添字「i」は、ネットワークの始点となる層におけるユニットの番号を示し、添字「j」は、ネットワークの終点となる層におけるユニットの番号を示す。この重みwijは、重み付けテーブルとして、リモコン30のメモリ33に記憶されている。なお、重みwijの詳細については、後述する。 In the neural network 100, when signals are transmitted from each layer to the next layer, corresponding weights w ij are accumulated for the transmitted signals. The weight w ij is preset in the neural network calculation process, and reflects the content learned by the neural network 100. The subscript “i” in the weight w ij indicates the unit number in the layer that is the start point of the network, and the subscript “j” indicates the unit number in the layer that is the end point of the network. This weight w ij is stored in the memory 33 of the remote controller 30 as a weighting table. Details of the weight w ij will be described later.
 次に、ニューラルネットワーク100を用いたニューラルネットワーク演算処理の流れについて、図2を参照して説明する。まず、図2に示すニューラルネットワーク100において、「圧縮機周波数」、「高圧圧力」、「低圧圧力」および「過熱度」のそれぞれを示す情報が入力信号として入力層110の各ユニットに入力される。入力層110の各ユニットは、受け取った入力信号を第1中間層121の各ユニットに伝達する。すなわち、第1中間層121の各ユニットには、入力層110に入力されたすべての入力信号が入力される。 Next, the flow of the neural network calculation process using the neural network 100 will be described with reference to FIG. First, in the neural network 100 shown in FIG. 2, information indicating each of “compressor frequency”, “high pressure”, “low pressure”, and “superheat” is input as an input signal to each unit of the input layer 110. . Each unit of the input layer 110 transmits the received input signal to each unit of the first intermediate layer 121. That is, all input signals input to the input layer 110 are input to each unit of the first intermediate layer 121.
 次に、第1中間層121の各ユニットは、入力層110の各ユニットから受け取った入力信号と、当該入力信号に対応する重みwijとをそれぞれ積算し、積算して得られるすべての信号を加算した信号を生成する。そして、第1中間層121の各ユニットは、生成した信号に基づき得られる第1中間層信号を第2中間層122の各ユニットに伝達する。 Next, each unit of the first intermediate layer 121 integrates the input signal received from each unit of the input layer 110 and the weight w ij corresponding to the input signal, and all signals obtained by the integration are obtained. Generate the added signal. Each unit of the first intermediate layer 121 transmits the first intermediate layer signal obtained based on the generated signal to each unit of the second intermediate layer 122.
 第2中間層122の各ユニットは、第1中間層121の各ユニットから受け取った第1中間層信号と、当該信号に対応する重みwijとをそれぞれ積算し、積算して得られるすべての信号を加算した信号を生成する。そして、第2中間層122の各ユニットは、生成した信号に基づき得られる第2中間層信号を出力層130の各ユニットに伝達する。 Each unit of the second intermediate layer 122 integrates the first intermediate layer signal received from each unit of the first intermediate layer 121 and the weight w ij corresponding to the signal, and all signals obtained by the integration. To generate a signal. Each unit of the second intermediate layer 122 transmits a second intermediate layer signal obtained based on the generated signal to each unit of the output layer 130.
 出力層130の各ユニットは、第2中間層122の各ユニットから受け取った第2中間層信号と、当該信号に対応する重みwijとをそれぞれ積算し、積算して得られるすべての信号を加算した信号を生成する。そして、出力層130の各ユニットは、生成した信号に基づき得られる出力信号を出力する。このとき、出力層130から出力される出力信号の値の合計は、「1」となるようにされている。 Each unit of the output layer 130 integrates the second intermediate layer signal received from each unit of the second intermediate layer 122 and the weight w ij corresponding to the signal, and adds all signals obtained by the integration. Generated signal. Each unit of the output layer 130 outputs an output signal obtained based on the generated signal. At this time, the sum of the values of the output signals output from the output layer 130 is set to “1”.
 このように、ニューラルネットワーク演算手段39は、センサ情報および制御情報に基づき得られた入力信号と、メモリ33に記憶された重み付けテーブルを参照して得られる重みwijとに基づき、出力信号を取得する。 As described above, the neural network calculation unit 39 acquires the output signal based on the input signal obtained based on the sensor information and the control information and the weight w ij obtained by referring to the weighting table stored in the memory 33. To do.
 図3は、ニューラルネットワーク演算処理の結果について説明するための概略図である。図3は、例えば空気調和機1が動作中に異常が検出された場合等に発生し得る異常の要因である可能性を示すグラフである。この例では、ニューラルネットワーク100からの出力信号のうち、「正常」を示す値を基準として、それぞれの故障要因に対応する出力信号の値を正規化したものを示す。すなわち、「正常」であることを示す値「1」よりも大きい値となった出力信号に対応する故障要因が、異常の要因である可能性があることを示す。したがって、図3に示す例においては、「冷媒不足」が、異常が検出された際の故障要因である可能性が最も高いことを示す。このような故障要因の判断結果を示すグラフは、例えばリモコン30の表示手段35に表示される。これにより、メンテナンス等の際に、作業者が故障要因を容易に推定することができ、メンテナンス性を向上させることができる。 FIG. 3 is a schematic diagram for explaining the result of the neural network calculation process. FIG. 3 is a graph showing a possibility of an abnormality that may occur when an abnormality is detected during operation of the air conditioner 1, for example. In this example, among the output signals from the neural network 100, values obtained by normalizing the values of the output signals corresponding to the respective failure factors with reference to the value indicating “normal” are shown. That is, the failure factor corresponding to the output signal having a value larger than the value “1” indicating “normal” may be a cause of abnormality. Therefore, in the example illustrated in FIG. 3, “shortage of refrigerant” indicates the highest possibility of being a failure factor when an abnormality is detected. A graph indicating the determination result of such a failure factor is displayed on the display means 35 of the remote controller 30, for example. Thereby, at the time of maintenance etc., an operator can estimate a failure factor easily, and maintainability can be improved.
(重みの変更)
 本実施の形態1では、上述したようにして得られた演算結果が正解であるか否かを回答することにより、重み付けテーブルに含まれる重みwijを最適なものに変更することができる。ここで、「演算結果が正解である」とは、異常の要因が、ニューラルネットワーク演算処理によって得られた故障要因の可能性が最も高い要因であった場合のことをいう。
(Weight change)
In the first embodiment, it is possible to change the weight w ij included in the weighting table to an optimum one by answering whether or not the calculation result obtained as described above is correct. Here, “the calculation result is correct” means that the cause of the abnormality is the most likely cause of the failure factor obtained by the neural network calculation processing.
 この場合の更新される重みwijは、例えば誤差逆伝搬により算出される。なお、誤差逆伝搬は、ニューラルネットワーク100における重みを算出する際に、一般的に用いられる方法であるため、ここでは説明を省略する。 The updated weight w ij in this case is calculated by, for example, error back propagation. Note that error back propagation is a method that is generally used when calculating weights in the neural network 100, and thus description thereof is omitted here.
 誤差逆伝搬等を用いた重みwijの再計算は、例えば、ネットワーク5に接続された外部のPC等で行われる。例えば、作業者が操作手段36を操作して、演算結果に対する回答を入力すると、リモコン30は、入力された回答を示す回答情報を外部のPCに送信する。これにより、PCでは、誤差逆伝搬を用いた、回答情報、センサ情報および制御情報に基づく重みwijの再計算が行われる。 The recalculation of the weight w ij using error back propagation or the like is performed by, for example, an external PC or the like connected to the network 5. For example, when the operator operates the operation means 36 and inputs an answer to the calculation result, the remote controller 30 transmits answer information indicating the input answer to an external PC. As a result, the PC recalculates the weight w ij based on the response information, sensor information, and control information using back propagation.
 リモコン30は、再計算された重みwijを、ネットワーク5、情報端末40、および第5の通信手段34を介して外部のPCから受信する。そして、リモコン30のマイコン32は、受信した重みwijをメモリ33に記憶された重み付けテーブルに格納することにより、重み付けテーブルを更新する。 The remote controller 30 receives the recalculated weight w ij from the external PC via the network 5, the information terminal 40, and the fifth communication means 34. Then, the microcomputer 32 of the remote controller 30 updates the weighting table by storing the received weight w ij in the weighting table stored in the memory 33.
 以上のように、本実施の形態1に係る空気調和機1は、冷媒回路を形成する各機器および配管が設けられた室外機10および室内機20と、室内機20に接続されるリモコン30とを備え、機器および配管の温度状態を検出するセンサ11および21が室外機10および室内機20のそれぞれに設けられており、センサ11および21による検出結果を示すセンサ情報、および機器の制御状態を示す制御情報を記憶するメモリ14または25が室外機10または室内機20に設けられている。リモコン30は、メモリ14または25から取得した同一時刻におけるセンサ情報および制御情報に基づく各部の状態を示す情報を入力値とするとともに、推定される故障要因を出力値とし、ニューラルネットワーク100を用いて故障要因の可能性を演算するニューラルネットワーク演算手段39と、ニューラルネットワーク演算手段39による演算結果を表示する表示手段35とを有する。 As described above, the air conditioner 1 according to the first embodiment includes the outdoor unit 10 and the indoor unit 20 provided with the devices and pipes forming the refrigerant circuit, and the remote controller 30 connected to the indoor unit 20. Are provided in each of the outdoor unit 10 and the indoor unit 20, and sensor information indicating detection results by the sensors 11 and 21 and a control state of the device are provided. The outdoor unit 10 or the indoor unit 20 is provided with a memory 14 or 25 that stores control information to be shown. The remote controller 30 uses information indicating the state of each part based on sensor information and control information at the same time acquired from the memory 14 or 25 as an input value, and uses an estimated failure factor as an output value. It has a neural network calculation means 39 for calculating the possibility of a failure factor, and a display means 35 for displaying a calculation result by the neural network calculation means 39.
 このように、本実施の形態1では、ニューラルネットワーク100を用いて故障要因を確率的に推定するため、故障要因を精度よく推定し、異常箇所の検出精度を向上させることができる。 Thus, in the first embodiment, since the failure factor is probabilistically estimated using the neural network 100, it is possible to accurately estimate the failure factor and improve the detection accuracy of the abnormal part.
 また、故障要因の正否を示す回答情報、センサ情報および制御情報に基づき、ニューラルネットワーク100による演算処理の際に用いられる重みwijの値を再計算して更新するため、故障要因の推定精度をより向上させることができる。さらに、上述した重みwijの値の再計算を外部のPC等によって行うことにより、リモコン30のマイコン32として低性能のものを使用でき、その結果、コストを低減することができる。 Moreover, since the value of the weight w ij used in the arithmetic processing by the neural network 100 is recalculated and updated based on the response information indicating whether the failure factor is correct, sensor information, and control information, the accuracy of the failure factor estimation is increased. It can be improved further. Further, by performing recalculation of the value of the weight w ij described above by an external PC or the like, a low-performance microcomputer 32 of the remote controller 30 can be used, and as a result, the cost can be reduced.
実施の形態2.
 次に、本実施の形態2に係る空気調和機について説明する。本実施の形態2に係る空気調和機は、ニューラルネットワーク演算手段を情報端末40に備えた点で、上述した実施の形態1と相違する。
Embodiment 2. FIG.
Next, an air conditioner according to Embodiment 2 will be described. The air conditioner according to the second embodiment is different from the above-described first embodiment in that the information terminal 40 includes a neural network calculation unit.
 図4は、本実施の形態2に係る空気調和機1の構成の一例を示すブロック図である。図4に示すように、本実施の形態2に係る空気調和機1では、情報端末40にニューラルネットワーク演算手段49が設けられている。なお、以下の説明において、上述した実施の形態1と共通する部分については、同一の符号を付し、説明を省略する。 FIG. 4 is a block diagram showing an example of the configuration of the air conditioner 1 according to the second embodiment. As shown in FIG. 4, in the air conditioner 1 according to the second embodiment, the information terminal 40 is provided with a neural network calculation means 49. In the following description, portions common to the above-described first embodiment are denoted by the same reference numerals and description thereof is omitted.
 リモコン30におけるマイコン32は、室外機10から送信されたセンサ情報および制御情報を、第4の通信手段31を介して受信し、第5の通信手段34に供給する。第5の通信手段34は、実施の形態1と同様の通信処理を行うとともに、マイコン32から受け取ったセンサ情報および制御情報を、情報端末40に対して送信する。 The microcomputer 32 in the remote controller 30 receives the sensor information and the control information transmitted from the outdoor unit 10 via the fourth communication unit 31 and supplies them to the fifth communication unit 34. The fifth communication unit 34 performs communication processing similar to that of the first embodiment, and transmits the sensor information and control information received from the microcomputer 32 to the information terminal 40.
 情報端末40は、リモコン30から受信したセンサ情報および制御情報に基づき、ニューラルネットワーク演算処理を行う。ニューラルネットワーク演算手段49で行われる演算処理は、実施の形態1におけるニューラルネットワーク演算手段39による演算処理と同様である。 The information terminal 40 performs a neural network calculation process based on the sensor information and control information received from the remote controller 30. The arithmetic processing performed by the neural network arithmetic means 49 is the same as the arithmetic processing by the neural network arithmetic means 39 in the first embodiment.
 情報端末40によってニューラルネットワーク演算処理が行われると、リモコン30は、演算結果としての故障要因の可能性を示す情報を、第5の通信手段34を介して情報端末40から受信する。マイコン32は、情報端末40から受信した故障要因の可能性を示す情報を、表示手段35に表示させる。 When the neural network calculation process is performed by the information terminal 40, the remote controller 30 receives information indicating the possibility of a failure factor as a calculation result from the information terminal 40 via the fifth communication unit 34. The microcomputer 32 causes the display unit 35 to display information indicating the possibility of the failure factor received from the information terminal 40.
 このとき、ニューラルネットワーク演算処理に用いられる重み付けテーブルは、例えば情報端末40のアプリケーションで保有しており、実施の形態1と同様に、演算処理によって得られた演算結果が正解であるか否かを回答することにより、重みwijを更新することができる。したがって、リモコン30からの回答情報が外部のPCに送信され、PCによって重みwijが再計算された場合、情報端末40は、上述した実施の形態1と同様に、PCから重みwijを取得し、重み付けテーブルを更新する。 At this time, the weighting table used for the neural network calculation process is held by, for example, the application of the information terminal 40, and whether or not the calculation result obtained by the calculation process is correct as in the first embodiment. By answering, the weight w ij can be updated. Therefore, when the reply information from the remote controller 30 is transmitted to an external PC and the weight w ij is recalculated by the PC, the information terminal 40 obtains the weight w ij from the PC as in the first embodiment. And update the weighting table.
 なお、情報端末40による更新された重みwijの取得は、例えば、情報端末40に対するユーザによる手動入力、QR(Quick Response)コード(QRコードは登録商標)の読み取り、USB(Universal Serial Bus)接続、またはネットワーク接続等の入出力インターフェースを使用することによって行うことができる。 The updated weight w ij is acquired by the information terminal 40 by, for example, manual input by the user to the information terminal 40, reading of a QR (Quick Response) code (QR code is a registered trademark), and USB (Universal Serial Bus) connection. Or by using an input / output interface such as a network connection.
 以上のように、本実施の形態2では、実施の形態1と同様の効果を奏することができる。また、リモコン30に代えて、情報端末40でニューラルネットワーク演算処理を行うことにより、リモコン30におけるマイコン32の負荷を軽減することができる。 As described above, the second embodiment can provide the same effects as the first embodiment. In addition, by performing neural network calculation processing with the information terminal 40 instead of the remote controller 30, the load on the microcomputer 32 in the remote controller 30 can be reduced.
実施の形態3.
 次に、本実施の形態3に係る空気調和機について説明する。本実施の形態3に係る空気調和機は、ニューラルネットワーク演算手段をクラウド50上に備えた点で、上述した実施の形態1および2と相違する。
Embodiment 3 FIG.
Next, an air conditioner according to Embodiment 3 will be described. The air conditioner according to the third embodiment is different from the first and second embodiments described above in that a neural network calculation unit is provided on the cloud 50.
 図5は、本実施の形態3に係る空気調和機1の構成の一例を示すブロック図である。図5に示すように、本実施の形態3に係る空気調和機1では、クラウド50上にニューラルネットワーク演算手段59が設けられている。なお、以下の説明において、上述した実施の形態1および2と共通する部分については、同一の符号を付し、説明を省略する。 FIG. 5 is a block diagram showing an example of the configuration of the air conditioner 1 according to the third embodiment. As shown in FIG. 5, in the air conditioner 1 according to the third embodiment, a neural network calculation unit 59 is provided on the cloud 50. In the following description, parts common to those in the first and second embodiments described above are denoted by the same reference numerals and description thereof is omitted.
 リモコン30におけるマイコン32は、室外機10から送信されたセンサ情報および制御情報を、第4の通信手段31を介して受信し、第5の通信手段34に供給する。第5の通信手段34は、実施の形態1における通信処理を行うとともに、マイコン32から受け取ったセンサ情報および制御情報を、情報端末40に対して送信する。 The microcomputer 32 in the remote controller 30 receives the sensor information and the control information transmitted from the outdoor unit 10 via the fourth communication unit 31 and supplies them to the fifth communication unit 34. The fifth communication unit 34 performs the communication process in the first embodiment and transmits the sensor information and control information received from the microcomputer 32 to the information terminal 40.
 情報端末40は、リモコン30から受信したセンサ情報および制御情報を、ネットワーク5を介してクラウド50に対して送信する。クラウド50は、情報端末40から受信したセンサ情報および制御情報に基づき、ニューラルネットワーク演算処理を行う。ニューラルネットワーク演算手段59で行われる演算処理は、実施の形態1におけるニューラルネットワーク演算手段39、ならびに実施の形態2におけるニューラルネットワーク演算手段49による演算処理と同様である。 The information terminal 40 transmits the sensor information and control information received from the remote controller 30 to the cloud 50 via the network 5. The cloud 50 performs a neural network calculation process based on the sensor information and control information received from the information terminal 40. The arithmetic processing performed by the neural network arithmetic means 59 is the same as the arithmetic processing by the neural network arithmetic means 39 in the first embodiment and the neural network arithmetic means 49 in the second embodiment.
 クラウド50によってニューラルネットワーク演算処理が行われると、リモコン30は、演算結果としての故障要因の可能性を示す情報を、情報端末40および第5の通信手段34を介してクラウド50から受信する。マイコン32は、クラウド50から受信した故障要因の可能性を示す情報を、表示手段35に表示させる。 When the neural network calculation process is performed by the cloud 50, the remote controller 30 receives information indicating the possibility of a failure factor as a calculation result from the cloud 50 via the information terminal 40 and the fifth communication unit 34. The microcomputer 32 causes the display unit 35 to display information indicating the possibility of the failure factor received from the cloud 50.
 このとき、ニューラルネットワーク演算処理に用いられる重み付けテーブルは、例えばクラウド50のアプリケーションで保有しており、実施の形態1および2と同様に、演算処理によって得られた演算結果が正解であるか否かを回答することにより、重みwijを更新することができる。したがって、リモコン30からの回答情報が外部のPCに送信され、PCによって重みwijが再計算された場合、クラウド50は、上述した実施の形態1および2と同様に、PCから重みwijを取得し、重み付けテーブルを更新する。 At this time, the weighting table used for the neural network calculation process is held by, for example, the application of the cloud 50, and whether or not the calculation result obtained by the calculation process is a correct answer as in the first and second embodiments. , The weight w ij can be updated. Accordingly, when the reply information from the remote controller 30 is transmitted to an external PC and the weight w ij is recalculated by the PC, the cloud 50 receives the weight w ij from the PC as in the first and second embodiments. Acquire and update the weighting table.
 以上のように、本実施の形態3に係る流路切替弁では、実施の形態1と同様の効果を奏することができる。また、リモコン30に代えて、クラウド50でニューラルネットワーク演算処理を行うことにより、リモコン30におけるマイコン32の負荷を軽減することができる。 As described above, the flow path switching valve according to the third embodiment can achieve the same effects as those of the first embodiment. In addition, by performing neural network calculation processing with the cloud 50 instead of the remote controller 30, the load on the microcomputer 32 in the remote controller 30 can be reduced.
 以上、実施の形態1~3について説明したが、本発明は、上述した実施の形態1~3に限定されるものではなく、本発明の要旨を逸脱しない範囲内で様々な変形や応用ができる。例えば、上述した例では、室外機センサ情報および室内機センサ情報の両方を室外機10のメモリ14に記憶させるように説明したが、これに限られず、室外機センサ情報および室内機センサ情報の両方を室内機20のメモリ25に記憶させるようにしてもよい。 While the first to third embodiments have been described above, the present invention is not limited to the first to third embodiments described above, and various modifications and applications can be made without departing from the scope of the present invention. . For example, in the above-described example, both the outdoor unit sensor information and the indoor unit sensor information have been described as being stored in the memory 14 of the outdoor unit 10. However, the present invention is not limited thereto, and both the outdoor unit sensor information and the indoor unit sensor information are stored. May be stored in the memory 25 of the indoor unit 20.
 また、上述した例では、中間層120の層数を2層とした場合について説明したが、これに限られず、例えば中間層120の層数は、1層以上であればよい。中間層120の層数は、空気調和機1の状態判断の精度等を考慮して、適宜設定することができる。 In the above-described example, the case where the number of intermediate layers 120 is two has been described. However, the number of intermediate layers 120 is not limited to this. For example, the number of intermediate layers 120 may be one or more. The number of intermediate layers 120 can be appropriately set in consideration of the accuracy of the state determination of the air conditioner 1 and the like.
 さらに、ニューラルネットワーク演算処理の際の入力信号としては、上述した例に限られず、例えば、圧縮機15の吐出温度、熱交換器の蒸発温度、外気温度、設定温度または膨張弁16の開度等の情報を示す信号を入力信号として用いてもよい。また、入力層110への入力信号は、例えば、1分間隔などの予め設定された時間間隔で取得した複数の情報に基づくものであってもよい。 Further, the input signal in the neural network calculation process is not limited to the above-described example, and for example, the discharge temperature of the compressor 15, the evaporation temperature of the heat exchanger, the outside air temperature, the set temperature, the opening degree of the expansion valve 16, or the like. A signal indicating this information may be used as an input signal. Further, the input signal to the input layer 110 may be based on a plurality of pieces of information acquired at preset time intervals such as 1 minute intervals.
 さらにまた、上述した例では、空気調和機1の異常を検出した場合に故障要因を推定するように説明したが、これに限られず、例えば、空気調和機1の設置時および保守時においても、同様に故障要因を推定することができる。 Furthermore, in the above-described example, the failure factor is estimated when an abnormality of the air conditioner 1 is detected. However, the present invention is not limited to this. For example, at the time of installation and maintenance of the air conditioner 1, Similarly, the failure factor can be estimated.
 1 空気調和機、2 第1の接続線、3 第2の接続線、4 第3の接続線、5 ネットワーク、10 室外機、11 センサ、12 マイクロコンピュータ、13 第1の通信手段、14 メモリ、15 圧縮機、16 膨張弁、20 室内機、21 センサ、22 マイクロコンピュータ、23 第2の通信手段、24 第3の通信手段、25 メモリ、30 リモートコントローラ、31 第4の通信手段31、32 マイクロコンピュータ、33 メモリ、34 第5の通信手段、35 表示手段、36 操作手段、39、49、59 ニューラルネットワーク演算手段、40 情報端末、50 クラウド、100 ニューラルネットワーク、110 入力層、120 中間層、121 第1中間層、122 第2中間層、130 出力層。 1 air conditioner, 2nd connection line, 3rd connection line, 4th 3rd connection line, 5 network, 10 outdoor unit, 11 sensor, 12 microcomputer, 13 1st communication means, 14 memory, 15 compressor, 16 expansion valve, 20 indoor unit, 21 sensor, 22 microcomputer, 23 second communication means, 24 third communication means, 25 memory, 30 remote controller, 31 fourth communication means 31, 32 micro Computer, 33 memory, 34 fifth communication means, 35 display means, 36 operation means, 39, 49, 59 neural network operation means, 40 information terminal, 50 cloud, 100 neural network, 110 input layer, 120 intermediate layer, 121 1st intermediate layer, 122 2nd intermediate layer, 130 The output layer.

Claims (6)

  1.  冷媒回路を形成する各機器および配管が設けられた室外機および室内機と、該室内機に接続されるリモートコントローラとを備えた空気調和機であって、
     前記機器および前記配管の温度状態を検出するセンサが前記室外機および前記室内機のそれぞれに設けられており、
     前記センサによる検出結果を示すセンサ情報、および前記機器の制御状態を示す制御情報を記憶するメモリが前記室外機または前記室内機に設けられており、
     前記リモートコントローラは、
     前記メモリから取得した同一時刻における前記センサ情報および前記制御情報に基づく各部の状態を示す情報を入力値とするとともに、推定される故障要因を出力値とし、ニューラルネットワークを用いて前記故障要因の可能性を演算するニューラルネットワーク演算手段と、
     前記ニューラルネットワーク演算手段による演算結果を表示する表示手段と
    を有する
    空気調和機。
    An air conditioner including an outdoor unit and an indoor unit provided with each device and piping forming a refrigerant circuit, and a remote controller connected to the indoor unit,
    Sensors for detecting the temperature state of the equipment and the piping are provided in each of the outdoor unit and the indoor unit,
    A memory for storing sensor information indicating a detection result by the sensor and control information indicating a control state of the device is provided in the outdoor unit or the indoor unit,
    The remote controller is
    The information indicating the state of each unit based on the sensor information and the control information at the same time acquired from the memory is used as an input value, and an estimated failure factor is used as an output value. Neural network computing means for computing sex;
    An air conditioner having display means for displaying a calculation result by the neural network calculation means.
  2.  前記ニューラルネットワークは、
     前記入力値が入力される入力層と、
     前記入力層と結合される中間層と、
     前記中間層と結合される出力層と
    で構成され、
     各層間が結合される際の重みの値が外部で算出され、
     前記ニューラルネットワーク演算手段は、
     算出された前記重みの値を、前記外部から取得して更新する
    請求項1に記載の空気調和機。
    The neural network is
    An input layer into which the input value is input;
    An intermediate layer coupled to the input layer;
    An output layer coupled with the intermediate layer,
    The weight value when the layers are joined is calculated externally,
    The neural network calculation means includes
    The air conditioner according to claim 1, wherein the calculated weight value is acquired from the outside and updated.
  3.  前記重みの値は、前記故障要因の正否を示す情報と、前記センサ情報と、前記制御情報とに基づき算出される
    請求項2に記載の空気調和機。
    The air conditioner according to claim 2, wherein the weight value is calculated based on information indicating whether the failure factor is correct, the sensor information, and the control information.
  4.  前記表示手段は、
     正常な状態を基準として、前記故障要因の可能性を示すグラフを表示する
    請求項1~3のいずれか一項に記載の空気調和機。
    The display means includes
    The air conditioner according to any one of claims 1 to 3, wherein a graph indicating the possibility of the failure factor is displayed on the basis of a normal state.
  5.  請求項1~4のいずれか一項に記載の空気調和機と、
     前記空気調和機に関する情報を通知する情報端末と
    で構成され、
     前記ニューラルネットワーク演算手段は、前記リモートコントローラに代えて、前記情報端末に設けられている
    空気調和システム。
    The air conditioner according to any one of claims 1 to 4,
    An information terminal for notifying information on the air conditioner,
    The neural network calculation means is an air conditioning system provided in the information terminal instead of the remote controller.
  6.  前記情報端末は、ネットワークを介してクラウドに接続されており、
     前記ニューラルネットワーク演算手段は、前記情報端末に代えて、前記クラウドに設けられている
    請求項5に記載の空気調和システム。
    The information terminal is connected to the cloud via a network,
    6. The air conditioning system according to claim 5, wherein the neural network calculation means is provided in the cloud instead of the information terminal.
PCT/JP2016/084231 2016-11-18 2016-11-18 Air conditioner and air-conditioning system WO2018092258A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16904841.0A EP3348924B1 (en) 2016-11-18 2016-11-18 Air conditioner and air-conditioning system
PCT/JP2016/084231 WO2018092258A1 (en) 2016-11-18 2016-11-18 Air conditioner and air-conditioning system
JP2018550954A JP6625239B2 (en) 2016-11-18 2016-11-18 Air conditioner and air conditioning system
CN201680090745.9A CN109937331B (en) 2016-11-18 2016-11-18 Air conditioner and air conditioning system
US16/328,878 US11486594B2 (en) 2016-11-18 2016-11-18 Air-conditioning apparatus and air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084231 WO2018092258A1 (en) 2016-11-18 2016-11-18 Air conditioner and air-conditioning system

Publications (1)

Publication Number Publication Date
WO2018092258A1 true WO2018092258A1 (en) 2018-05-24

Family

ID=62145829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084231 WO2018092258A1 (en) 2016-11-18 2016-11-18 Air conditioner and air-conditioning system

Country Status (5)

Country Link
US (1) US11486594B2 (en)
EP (1) EP3348924B1 (en)
JP (1) JP6625239B2 (en)
CN (1) CN109937331B (en)
WO (1) WO2018092258A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059170A (en) * 2018-06-20 2018-12-21 上海安悦节能技术有限公司 Central air conditioning system based on neural network algorithm
CN109882999A (en) * 2018-12-19 2019-06-14 郑州大学 A kind of method and intelligent air condition based on Internet of Things and machine learning
CN111981635A (en) * 2020-07-21 2020-11-24 沈阳安新自动化控制有限公司 Central air conditioner fault prediction and diagnosis method adopting double intelligent algorithms
JP2020194994A (en) * 2019-05-24 2020-12-03 株式会社Screenホールディングス Data collection method, learning method, data collection system, and learning system
JPWO2021028967A1 (en) * 2019-08-09 2021-02-18
JPWO2021245941A1 (en) * 2020-06-05 2021-12-09
WO2021250787A1 (en) * 2020-06-09 2021-12-16 三菱電機株式会社 Air conditioning system
WO2022247333A1 (en) * 2021-05-26 2022-12-01 青岛海尔空调器有限总公司 Method and apparatus for measuring indoor temperature, and smart air conditioner
WO2023013077A1 (en) * 2021-08-06 2023-02-09 三菱電機株式会社 Air conditioning system and inspection method
WO2023170780A1 (en) * 2022-03-08 2023-09-14 三菱電機株式会社 Component diagnosis device, component diagnosis system, method for diagnosing component of air conditioner, component inventory management system, and component inventory management method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11474485B2 (en) 2018-06-15 2022-10-18 Johnson Controls Tyco IP Holdings LLP Adaptive training and deployment of single chiller and clustered chiller fault detection models for connected chillers
US11859846B2 (en) 2018-06-15 2024-01-02 Johnson Controls Tyco IP Holdings LLP Cost savings from fault prediction and diagnosis
CN109405174A (en) * 2018-10-08 2019-03-01 珠海格力电器股份有限公司 A kind of fault message reports method and device for repairment
CN110500709B (en) * 2019-07-29 2021-04-20 七彩安科智慧科技有限公司 Air conditioner running state online judging method
CN110471380A (en) * 2019-08-15 2019-11-19 四川长虹电器股份有限公司 A kind of air conditioning failure monitoring and method for early warning for smart home system
CN111397107A (en) * 2020-03-31 2020-07-10 广东美的制冷设备有限公司 Screen display method and device of air conditioner and air conditioner
JP2021189964A (en) * 2020-06-03 2021-12-13 日立グローバルライフソリューションズ株式会社 Anomaly diagnostic device and anomaly diagnostic method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161495A (en) * 2001-11-21 2003-06-06 Yamatake Corp Abnormality detecting apparatus, abnormality detecting method and program for air conditioner
JP2005301582A (en) * 2004-04-09 2005-10-27 Toshiba Corp Process management device
JP3897680B2 (en) 2002-10-29 2007-03-28 ヤマハリビングテック株式会社 Hot water supply equipment
JP2009014233A (en) 2007-07-03 2009-01-22 Hitachi Appliances Inc Air conditioner, and management system of air conditioner
US20160140452A1 (en) * 2014-11-17 2016-05-19 Optimitive S.L.U. Methods and systems using a composition of autonomous self-learning software components for performing complex real time data-processing tasks

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372015A (en) * 1991-07-05 1994-12-13 Kabushiki Kaisha Toshiba Air conditioner controller
CN1092151A (en) * 1993-03-08 1994-09-14 三洋电机株式会社 The control method of air conditioner
CN1098186A (en) * 1993-03-29 1995-02-01 三洋电机株式会社 The control device of air conditioner
EP0681232B1 (en) * 1994-05-03 2001-08-01 Yamatake Corporation Set value learning apparatus including neural network.
JP4196804B2 (en) * 2003-10-17 2008-12-17 日立アプライアンス株式会社 Inverter air conditioner
ES2510665T3 (en) * 2005-02-24 2014-10-21 Mitsubishi Electric Corporation Air conditioning system
JP4749369B2 (en) * 2007-03-30 2011-08-17 三菱電機株式会社 Refrigeration cycle apparatus failure diagnosis apparatus and refrigeration cycle apparatus equipped with the same
WO2012118830A2 (en) * 2011-02-28 2012-09-07 Arensmeier Jeffrey N Residential solutions hvac monitoring and diagnosis
US9551504B2 (en) * 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9817375B2 (en) * 2014-02-26 2017-11-14 Board Of Trustees Of The University Of Alabama Systems and methods for modeling energy consumption and creating demand response strategies using learning-based approaches
US10670293B2 (en) * 2014-06-12 2020-06-02 Emerson Electric Co. HVAC system mode detection based on control line current
US10386800B2 (en) * 2015-02-24 2019-08-20 Siemens Industry, Inc. Variable air volume modeling for an HVAC system
US20210287311A1 (en) * 2015-09-11 2021-09-16 Johnson Controls Technology Company Thermostat having network connected branding features
US10410300B2 (en) * 2015-09-11 2019-09-10 Johnson Controls Technology Company Thermostat with occupancy detection based on social media event data
JP6498322B2 (en) * 2016-02-04 2019-04-10 三菱電機株式会社 Air conditioning control evaluation apparatus, air conditioning system, air conditioning control evaluation method, and program
US10496065B2 (en) * 2016-04-11 2019-12-03 Emerson Electric Co. Systems and methods for mobile application for HVAC installation and diagnostics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161495A (en) * 2001-11-21 2003-06-06 Yamatake Corp Abnormality detecting apparatus, abnormality detecting method and program for air conditioner
JP3897680B2 (en) 2002-10-29 2007-03-28 ヤマハリビングテック株式会社 Hot water supply equipment
JP2005301582A (en) * 2004-04-09 2005-10-27 Toshiba Corp Process management device
JP2009014233A (en) 2007-07-03 2009-01-22 Hitachi Appliances Inc Air conditioner, and management system of air conditioner
US20160140452A1 (en) * 2014-11-17 2016-05-19 Optimitive S.L.U. Methods and systems using a composition of autonomous self-learning software components for performing complex real time data-processing tasks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348924A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059170A (en) * 2018-06-20 2018-12-21 上海安悦节能技术有限公司 Central air conditioning system based on neural network algorithm
CN109882999A (en) * 2018-12-19 2019-06-14 郑州大学 A kind of method and intelligent air condition based on Internet of Things and machine learning
JP7263121B2 (en) 2019-05-24 2023-04-24 株式会社Screenホールディングス DATA COLLECTION METHOD, LEARNING METHOD, DATA COLLECTION SYSTEM AND LEARNING SYSTEM
JP2020194994A (en) * 2019-05-24 2020-12-03 株式会社Screenホールディングス Data collection method, learning method, data collection system, and learning system
JPWO2021028967A1 (en) * 2019-08-09 2021-02-18
WO2021245941A1 (en) * 2020-06-05 2021-12-09 三菱電機株式会社 Air conditioner diagnosis system and learning device
JPWO2021245941A1 (en) * 2020-06-05 2021-12-09
JP7325630B2 (en) 2020-06-05 2023-08-14 三菱電機株式会社 Air conditioner diagnostic system and learning device
WO2021250787A1 (en) * 2020-06-09 2021-12-16 三菱電機株式会社 Air conditioning system
CN111981635B (en) * 2020-07-21 2021-12-31 沈阳安新自动化控制有限公司 Central air conditioner fault prediction and diagnosis method adopting double intelligent algorithms
CN111981635A (en) * 2020-07-21 2020-11-24 沈阳安新自动化控制有限公司 Central air conditioner fault prediction and diagnosis method adopting double intelligent algorithms
WO2022247333A1 (en) * 2021-05-26 2022-12-01 青岛海尔空调器有限总公司 Method and apparatus for measuring indoor temperature, and smart air conditioner
WO2023013077A1 (en) * 2021-08-06 2023-02-09 三菱電機株式会社 Air conditioning system and inspection method
JP7403720B2 (en) 2021-08-06 2023-12-22 三菱電機株式会社 Air conditioning system and inspection method
WO2023170780A1 (en) * 2022-03-08 2023-09-14 三菱電機株式会社 Component diagnosis device, component diagnosis system, method for diagnosing component of air conditioner, component inventory management system, and component inventory management method

Also Published As

Publication number Publication date
CN109937331A (en) 2019-06-25
JP6625239B2 (en) 2019-12-25
US11486594B2 (en) 2022-11-01
EP3348924A1 (en) 2018-07-18
CN109937331B (en) 2020-11-24
US20200049363A1 (en) 2020-02-13
EP3348924A4 (en) 2018-07-18
JPWO2018092258A1 (en) 2019-02-21
EP3348924B1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
WO2018092258A1 (en) Air conditioner and air-conditioning system
JP6005304B2 (en) Ventilation control device and ventilation control method
US10077928B2 (en) Air-conditioning system and control method for air-conditioning system
JP5030640B2 (en) Air conditioning system
JP5627504B2 (en) Air conditioning equipment maintenance system and data analysis device
JPWO2015111203A1 (en) Air conditioner trial run application and air conditioner trial run system
EP3795915B1 (en) Malfunction diagnosis system
JP2012127625A (en) Fault diagnosis apparatus to be used for air conditioning apparatus
JP2007212038A (en) Demand control device, demand control method and demand control program
JP6552795B2 (en) Energy saving support device, air conditioning system, and air conditioning network system
CN108885022B (en) Air conditioner outlet air temperature estimation device and computer readable recording medium
EP3745055B1 (en) State analysis system and state analysis device
JP7406060B2 (en) refrigeration system
JP2021042877A (en) Server, control system and control program
WO2021250787A1 (en) Air conditioning system
WO2023013077A1 (en) Air conditioning system and inspection method
JP6227218B2 (en) Air conditioning system controller
WO2023248402A1 (en) Air-conditioning system and abnormality diagnosis method
WO2021124457A1 (en) Abnormality sign estimation device for air conditioner, abnormality sign estimation model learning device for air conditioner, and air conditioner
CN115899971A (en) Air conditioning equipment and fault processing method
JPWO2020261553A1 (en) Remote controller and air conditioning system
JP2008042312A (en) Remote supervisory system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016904841

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE