WO2018083772A1 - Microscope system - Google Patents

Microscope system Download PDF

Info

Publication number
WO2018083772A1
WO2018083772A1 PCT/JP2016/082717 JP2016082717W WO2018083772A1 WO 2018083772 A1 WO2018083772 A1 WO 2018083772A1 JP 2016082717 W JP2016082717 W JP 2016082717W WO 2018083772 A1 WO2018083772 A1 WO 2018083772A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
frequency
fluorescence
microscope system
unit
Prior art date
Application number
PCT/JP2016/082717
Other languages
French (fr)
Japanese (ja)
Inventor
文宏 嶽
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2016/082717 priority Critical patent/WO2018083772A1/en
Priority to JP2018548515A priority patent/JP6806161B2/en
Publication of WO2018083772A1 publication Critical patent/WO2018083772A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Definitions

  • the present invention relates to a microscope system.
  • a microscope is known that excites a fluorescent substance with two photons, irradiates a laser beam that induces stimulated emission, acquires fluorescence attenuated by stimulated emission, and constructs an image (see, for example, Non-Patent Document 1). ). In a microscope, it is necessary to acquire an image at high speed. Lu Wei et.al., Biomedical Optics Express 1465-1475, vol. 3, No. 6, 1 June 2012
  • the microscope system includes a first intensity modulation unit that modulates the intensity of the first light that excites the first fluorescent substance included in the sample at a frequency f1, A second intensity modulating unit that modulates the intensity of the second light that causes stimulated emission in the fluorescent substance at a frequency f2 different from the frequency f1, and a scanning unit that scans the first light and the second light on the sample;
  • a detection unit that detects fluorescence from the sample, the scanning unit includes a resonant scanner having a resonance mirror, and the detection unit receives the fluorescence from the sample and detects a component of frequency f1 + f2.
  • the microscope system includes a first light that irradiates the specimen with first light that excites a fluorescent substance contained in the specimen and causes the detection unit to receive fluorescence from the specimen.
  • An observation method, and intensity-modulating the first light with a frequency f1 and irradiating the specimen, and intensity-modulating the second light that causes stimulated emission in the fluorescent material with a frequency f2 different from the frequency f1 The second observation method can be selected so that the sample is irradiated, the fluorescence from the sample is received by the detection unit, and the frequency f1 + f2 component or the frequency f1-f2 component is detected.
  • FIG. 1 is a diagram illustrating a configuration of a microscope system 10 according to the present embodiment. It is a conceptual diagram which shows the relationship between the wavelength of pump light, probe light, and a detection wavelength area
  • FIG. 5 is a flowchart of an operation of automatically selecting whether to perform confocal observation or attenuated fluorescence observation in the microscope system 12.
  • 13 shows a GUI screen 350 used for the operation shown in the flowchart of FIG. It is a figure which shows the structure of other microscope system. It is a figure which shows the structure of the other microscope system 16, The relationship between the excitation / fluorescence spectrum of each fluorescent substance, pump light, probe light, and wavelength in the detection wavelength region is shown. It is a figure which shows the structure of the other microscope system 18.
  • the wavelength relationship between the excitation / fluorescence spectrum, pump light, probe light, and detection wavelength region of each fluorescent material is shown.
  • the relationship between the absorption / fluorescence spectrum and the detection wavelength region when the Stokes shift is small is shown.
  • the relationship between fluorescence and excitation light that can be observed in each of the first detection wavelength region and the second detection wavelength region is shown.
  • (A) shows time waveforms of fluorescence C ′ and fluorescence D ′, and (b) expresses fluorescence C ′ and fluorescence D ′ in a phasor display.
  • the GUI screen 360 used for the two-color observation of FIGS. 15 to 21 is shown. It is a figure which shows the structure of the other microscope system.
  • FIG. 22 It is a figure which shows the structure of the other microscope system 22.
  • FIG. It is a figure which shows the structure of the further microscope system 24.
  • FIG. It is a figure which shows the structure of other microscope system 26.
  • FIG. An example of another light source 101 is shown.
  • the state of the time difference when the optical delay stage 700 is translated is shown.
  • the decaying fluorescence signal reflects the fluorescence lifetime.
  • FIG. 1 is a diagram illustrating a configuration of a microscope system 10 which is an example of a microscope system according to the present embodiment.
  • the microscope system 10 irradiates the sample with the intensity-modulated pump light and the probe light, thereby describing a fluorescence signal attenuated by stimulated emission generated from the fluorescent substance contained in the sample (hereinafter referred to as attenuated fluorescence, attenuated fluorescence signal, etc.). ) Lock-in detection. Thereby, the detection time can be shortened while improving the spatial resolution.
  • the attenuated fluorescence may be collectively referred to as fluorescence.
  • a microscope that acquires attenuated fluorescence is referred to as an attenuated fluorescence microscope.
  • the xyz axis is shown for explanation.
  • the microscope system 10 includes a light source 100 that outputs pump light and probe light, an illumination optical system 140 that illuminates the specimen 186 with the pump light and probe light, an observation optical system 160 that observes light emitted from the specimen 186, A detection unit 136 that detects light via the observation optical system 160 is provided.
  • the microscope system 10 further includes a stage 180 that supports the specimen 186.
  • the microscope system 10 further includes a control unit 130 that controls the entire microscope system 10, an input unit 220 that transmits and receives signals to and from the control unit 130, a display unit 224, and a storage unit 226.
  • the illumination optical system 140 includes an acoustooptic tunable filter 114 (hereinafter also referred to as AOTF), an acoustooptic element 124 (hereinafter also referred to as AOM), dichroic mirrors 141 and 144, mirrors 142 and 143, and a scanning unit 150.
  • the observation optical system 160 includes an objective lens 164, a dichroic mirror 162, an optical filter 166, and a lens pair 172.
  • the specimen 186 has an observation object 184 and a slide glass 182 on which the observation object 184 is placed.
  • the observation object 184 is a biological cell, for example.
  • the observation object 184 contains a fluorescent material.
  • the light source 100 includes a laser light source 102 for pump light, a laser light source 104 for probe light, and a dichroic mirror 106 that combines the pump light and the probe light.
  • the laser light sources 102 and 104 are, for example, continuous oscillation systems and output laser beams having different wavelengths.
  • the pump light excites the fluorescent material to generate fluorescence.
  • the probe light attenuates fluorescence by inducing stimulated emission in the fluorescent material.
  • the wavelength of the pump light is shorter than the wavelength of the probe light. For example, the pump light is 532 nm and the amber probe light is 640 nm.
  • the wavelengths of the pump light and the probe light are appropriately set according to the absorption band (absorption spectrum) and the fluorescence band (fluorescence spectrum) of the fluorescent substance.
  • the wavelengths of the pump light and the probe light may be set automatically, or the input unit 220 may accept input from the user.
  • the AOTF 114 is arranged on the optical path of the laser beam synthesized coaxially by the dichroic mirror 106.
  • the mirrors 142 and 143 constitute an optical path that does not pass through the AOM 124.
  • AOTF 114 functions as a diffraction grating for light.
  • First-order diffracted light generated by the AOTF 114 is guided to the dichroic mirror 141.
  • the voltage of the driver 112 applied to the AOTF 114 By controlling the voltage of the driver 112 applied to the AOTF 114, generation of the first-order diffracted light can be controlled for each wavelength.
  • the first-order diffracted light can always be generated (ON state, that is, the intensity is maximum), or not always generated (OFF state, that is, the intensity is minimum). It is also possible to modulate the light intensity. For example, when a constant voltage value is applied from the driver 112, the light intensity becomes a constant value according to the voltage value.
  • the light intensity is also zero.
  • the voltage waveform of the driver 112 is a sine wave
  • the intensity of light is modulated into a sine wave.
  • the AOTF 114 based on the oscillation from the oscillator 132, the AOTF 114 modulates the intensity of the pump light at the frequency f1, and the probe light is turned on (not modulated).
  • the advantage of AOTF 114 is that the intensity of light having different wavelengths can be controlled independently.
  • the AOTF 114 and the driver 112 constitute the first intensity modulation unit 110.
  • the voltage of the driver 112 applied to the AOTF 114 is controlled so that the pump light is modulated at a predetermined frequency in the AOTF 114.
  • Two acoustic frequencies corresponding to the wavelengths of the pump light and the probe light are given to the AOTF 114.
  • diffracted light of pump light and probe light is generated from the AOTF 114.
  • the amplitude of the electrical signal of the acoustic frequency corresponding to the pump light wavelength is modulated at the modulation frequency f1.
  • the intensity of the pump light transmitted through the AOTF 114 is modulated by f1.
  • the intensity of the probe light is not modulated.
  • the dichroic mirror 141 reflects the pump light modulated by the AOTF 114 while transmitting the probe light. As a result, the probe light is guided to the AOM 124.
  • generation of the first-order diffracted light can be controlled.
  • the first-order diffracted light can always be generated (ON state, that is, the state where the intensity is maximum), or the first-order diffracted light can always be generated (OFF state, that is, the state where the intensity is minimum).
  • the light intensity is also zero.
  • the voltage waveform of the driver 122 is a sine wave
  • the light intensity is modulated into a sine wave.
  • the intensity of the probe light is modulated by the AOM 124 at a frequency f2 different from the frequency f1.
  • An advantage of the AOM 124 is that intensity modulation can be performed at a relatively high frequency of several tens of MHz.
  • the AOM 124 and the driver 122 constitute a second intensity modulation unit 120.
  • the pump light is reflected by the dichroic mirror 141, it is reflected by the mirrors 142 and 143 and enters the dichroic mirror 144.
  • the dichroic mirror 144 coaxially combines the pump light and the probe light whose intensity is modulated respectively.
  • the scanning unit 150 is disposed at a position substantially conjugate with the pupil plane of the objective lens 164. For this reason, it is desirable that a lens pair 173 be installed between the scanning unit 150 and the dichroic mirror 162.
  • An example of the scanning unit 150 is a galvano scanner, which includes a pair of galvanometer mirrors that can rotate in directions orthogonal to each other. The spot position of the laser beam on the specimen 186 is scanned in the xy direction by changing the angles of these galvanometer mirrors.
  • Another example of the scanning unit 150 is a resonant scanner (resonance type scanner).
  • the resonant scanner has a resonant mirror (resonant mirror) that operates by resonance.
  • the resonant scanner includes, for example, a main scanning resonant mirror and a sub scanning galvanometer mirror. By using a resonant scanner, it is possible to scan at higher speed.
  • the laser beam output from the scanning unit 150 passes through the dichroic mirror 162 and is guided to the objective lens 164.
  • the objective lens 164 focuses the laser beam on the sample 186.
  • Fluorescence generated from the fluorescent material of the sample 186 passes through the objective lens 164, is reflected by the dichroic mirror 162, and the pump light and the probe light are removed by the optical filter 166.
  • the fluorescence is incident on the light receiving unit 174 installed at a position substantially conjugate with the objective lens pupil plane by the lens pair 172.
  • the dichroic mirror 162 may be disposed closer to the light source than the lens pair 173 and the scanning unit 150.
  • the detection unit 136 includes a light receiving unit 174 and a lock-in amplifier 134.
  • the light receiving unit 174 is disposed at a position substantially conjugate with the pupil plane of the objective lens 164.
  • An example of the light receiving unit 174 is a photomultiplier tube.
  • the light receiving unit 174 outputs an electrical signal corresponding to the intensity of the received fluorescence by photoelectric conversion.
  • the output of the light receiving unit 174 is input to the lock-in amplifier 134 to detect lock-in. The lock-in detection will be described later.
  • the input unit 220, the display unit 224, the storage unit 226, and the control unit 130 may be, for example, a PC.
  • the input unit 220 receives input from the user to the control unit 130, and is, for example, a keyboard, a touch panel, a mouse, or the like.
  • the display unit 224 is, for example, a display that displays a GUI, a detection result, and an observation image.
  • the storage unit 226 stores a program for controlling the microscope system 10, parameters, and the like, detection results, observation images, and the like.
  • the control unit 130 includes a frequency control unit 229, a scanner control unit 228, and an image generation unit 222.
  • the frequency control unit 229 controls the oscillation frequency generated by the oscillator 132 based on an input from the user or automatically based on the fluorescent material.
  • the scanner control unit 228 controls the scanning unit 150.
  • the image generation unit 222 generates an image based on the detection result of the detection unit 136 and displays the image on the display unit 224.
  • FIG. 2 is a conceptual diagram showing the relationship between the pump light, the probe light, and the wavelength in the detection wavelength region.
  • a broken line indicates an absorption band of a specific fluorescent material
  • a solid line indicates a fluorescent band of the fluorescent material.
  • the wavelength of the pump light is preferably set to be included in the absorption band
  • the probe light is preferably set to a wavelength longer than the intensity peak of the fluorescent band.
  • the wavelength region including the intensity peak of the fluorescent band can be set as a detection wavelength region which is a wavelength region in which the light receiving unit 174 detects fluorescence.
  • FIG. 3 is a conceptual diagram for explaining temporal changes in fluorescence intensity.
  • FIG. 4 is a conceptual diagram illustrating a demodulation frequency in lock-in detection.
  • the pump light and the probe light are intensity-modulated at frequencies f1 and f2 that are temporally different from each other. If the time waveforms are I Pump and I Probe , they are expressed as follows. Here, I1 and I2 are the intensity of pump light and probe light, and m and n are modulation contrasts. Since stimulated emission is proportional to the product of I Pump and I Probe , the fluorescence attenuated by stimulated emission (decayed fluorescence signal) I RF is also proportional to the product of I Pump and I Probe and can be expressed as follows.
  • the time waveform of equation (1.3) is shown in FIG. 3 (normalized with the maximum value). Since the fluorescence signal acquired by the light receiving unit 174 includes a plurality of frequencies, the time waveform is as shown in FIG. Among these, since the fluorescence excited by the pump light is generated at the frequency f1 and the fluorescence excited by the probe light is generated at the frequency f2, the pump light is detected by detecting the component that fluctuates at f1-f2 or f1 + f2 from the equation (1.3). Only the attenuated fluorescence signal can be detected by removing the fluorescence excited by the single light and the probe light alone. Therefore, the detection unit 136 detects only a signal synchronized with a desired frequency by performing demodulation using a lock-in detection technique.
  • FIG. 4 shows time waveforms of the difference frequency (f1-f2) and the sum frequency (f1 + f2) included in the equation (1.3). Since the sum frequency is higher than the difference frequency, the cycle is also shortened. In the lock-in detection, since the period of this demodulation frequency determines the minimum integration time, the shorter the period, the faster the detection becomes possible.
  • demodulation is performed at the sum frequency. More specifically, the sum demodulation frequency is input from the oscillator 132 to the lock-in amplifier 134.
  • the lock-in amplifier 134 extracts a signal synchronized with the demodulation frequency. While the scanning unit 150 scans the sample 186, the lock-in amplifier 134 performs lock-in detection for each pixel, and stores it in the storage unit 226 in association with the position information of the pixel.
  • the image generation unit 222 reads the detection result associated with the position information from the storage unit 226, generates an observation image of attenuated fluorescence, and displays it on the display unit 224.
  • the stimulated emission phenomenon is a non-linear phenomenon
  • the signal generation region of the attenuated fluorescence is limited to a local region where the intensity of the condensed spot of the pump light and the probe light is high. Thereby, the spatial resolution can be improved.
  • FIG. 5 is a conceptual diagram for explaining the scanning speed and detection speed of the scanning unit 150.
  • the time required for scanning in the main scanning (in the x direction in the figure) is longer than that in the resonant scanner. Therefore, as shown in FIG. It can be considered that the position of the beam is almost unchanged.
  • the time required for scanning in the main scan (x direction in the figure) in the resonant scanner is shorter than that in the galvano scanner, the time required for detection by demodulation of the difference frequency is shown in FIG. As described above, there is a possibility that the position of the beam is greatly changed and it is difficult to obtain an accurate image.
  • the time required for detection is shortened because the demodulation frequency is high, and even if a resonant scanner is used, the position of the beam does not change during the predetermined time required for signal detection at a predetermined position. You can think about it. Therefore, it is possible to obtain an accurate image while detecting at high speed using a resonant scanner.
  • FIG. 6 shows an example of another scanning unit 151.
  • the scanning unit 151 includes a resonant scanner 152, a galvano scanner 153, and a pair of mirrors 154 and 155.
  • the pair of mirrors 154 and 155 are provided so as to be movable in the directions of the arrows in the figure, and based on these positions, it is selected which of the resonant scanner 152 and the galvano scanner 153 is used.
  • FIG. 6 shows a state where the resonant scanner 152 is selected.
  • the mirror 154 is disposed on the optical path of the light emitted from the dichroic mirror 144
  • the mirror 155 is disposed on the optical path of the light emitted from the resonant scanner 152.
  • the light reflected by the mirror 154 enters the resonant scanner 152.
  • the light deflected in the predetermined direction by the resonant scanner 152 is reflected by the mirror 155, passes through the dichroic mirror 162, and enters the objective lens 164.
  • the galvano scanner 153 when the galvano scanner 153 is selected, the mirror 154 is retracted from the optical path of the light emitted from the dichroic mirror 144 and the mirror 155 is retracted from between the galvano scanner 153 and the dichroic mirror 162. As a result, light enters the galvano scanner 153, and light deflected by the galvano scanner 153 passes through the dichroic mirror 162 and enters the objective lens 164.
  • the resonant scanner 152 and the galvano scanner 153 can be used properly according to the application.
  • the means for moving the position of the pair of mirrors 154 and 155 includes, for example, a linear motor, but is not limited thereto, and each of them is arranged on a corresponding turret, and the mirrors 154 and 155 move by rotation of the turret. May be.
  • the resonant scanner 152 is used for light having a wavelength that reflects the pair of dichroic mirrors, and the wavelength that passes through the pair of dichroic mirrors.
  • the galvano scanner 153 can be used with respect to the light.
  • the positions of the resonant scanner 152 and the galvano scanner 153 may be opposite to those in FIG.
  • FIG. 7 shows another example of the scanning unit 156.
  • the same components as those of FIG. 7 are identical to those of FIG. 7 in FIG. 7, the same components as those of FIG. 7
  • the scanning unit 156 includes a mirror 157 in which they are integrated instead of the pair of mirrors 154 and 155 of the scanning unit 151.
  • the mirror 157 is provided to be movable in a direction perpendicular to the paper surface.
  • the state of FIG. 7 corresponds to the state of FIG. 6, and shows a state in which the resonant scanner 152 is used when light is reflected by the mirror 157.
  • the mirror 157 moves in the direction perpendicular to the paper surface from the state of FIG. As a result, the galvano scanner 153 is used.
  • FIG. 8 is a diagram showing the configuration of another microscope system 12. Similar to the microscope system 10, the microscope system 12 can be used as an attenuated fluorescence microscope, and can also be used as a confocal microscope. In the microscope system 12, the same components as those in the microscope system 10 are denoted by the same reference numerals and description thereof is omitted.
  • a dichroic mirror 402 that reflects fluorescence and transmits pump light and probe light is disposed on an optical path between the dichroic mirror 144 and the scanning unit 150. Furthermore, the optical filter 404, the lens 406, and the light-receiving part 410 which the light reflected by the dichroic mirror 402 injects are provided.
  • the optical filter 404 and the light receiving unit 410 may have the same configuration as the optical filter 166 and the light receiving unit 174 of the microscope system 10.
  • the microscope system 12 further includes a pinhole 408 as an example of an opening member having an opening.
  • the pinhole 408 is arranged at a position conjugate with the specimen.
  • the lens 406 collects light in the pinhole 408.
  • the light receiving unit 410 is installed in the vicinity of the pinhole 408. Or it is good also as a structure by which a light-receiving part is installed in a pinhole and a substantially conjugate position with a lens not shown.
  • the fluorescence from the sample 186 passes through the scanning unit 150, is reflected by the dichroic mirror 402, and is received by the light receiving unit 410 via the optical filter 404, the lens 406, and the pinhole 408. Thereby, even if the observation position of the sample 186 is changed by the scanning unit 150, the scanning unit 150 descans and the spot position in the pinhole 408 remains unchanged.
  • the pinhole 408 has a variable hole size, and details will be described later. With the above configuration, it can be said that the pinhole 408 is provided between the light receiving unit 410 and the dichroic mirror 402. It can also be said that the pinhole 408 is provided between the light receiving unit 410 and the scanning unit 150. Furthermore, it can be said that the pinhole 408 is disposed between the light receiving unit 410 and the objective lens 164.
  • the microscope system 12 further includes a wavelength control unit 230 that controls the wavelength of light from the laser light sources 102 and 104.
  • FIG. 9 is an example of a GUI screen 300 used in the microscope system 12.
  • the GUI screen 300 is displayed on the display unit 224 and accepts input from the user using the input unit 220.
  • a check box 302 is an input field for determining whether or not to acquire an image for confocal observation.
  • the check box 304 is an input field for designating that the pump light is modulated in the confocal observation, and the check box 306 is an input field for designating that the pump light is not modulated.
  • the input column 308 is an input column for the modulation frequency of the pump light, and the designated modulation frequency is indicated by a thick vertical line together with a numerical scale in units of MHz.
  • the input field 310 is an input field for specifying the size of the pinhole. “OPEN” in the input field 310 indicates that the size of the hole is the maximum. Further, the size of the designated hole is indicated by a vertical thick line along with a scale of “1” as an Airy size.
  • Airy size is the size of a diffraction-limited light spot determined by the wavelength and the numerical aperture, and is a value obtained by standardizing the pinhole diameter.
  • check box 312 is an input field for determining whether or not to acquire a time-lapse image for confocal observation.
  • An input field 314 is an input field for time lapse time intervals.
  • Check box 316 is an input field for determining whether or not to acquire an image of attenuated fluorescence observation.
  • the input column 318 is an input column for the modulation frequency of the pump light, and the designated modulation frequency is indicated by a thick vertical line along with a numerical scale in units of MHz.
  • the input column 320 is an input column for the modulation frequency of the probe light, and the designated modulation frequency is indicated by a vertical thick line together with a numerical scale in units of MHz.
  • the input field 322 is an input field for the size of the pinhole 408 in the attenuated fluorescence observation, and has the same configuration as the input field 310.
  • a check box 324 and an input field 326 are input fields related to time lapse in attenuated fluorescence observation, and have the same configuration as the check box 312 and the input field 314.
  • a confocal observation image 330 and an attenuated fluorescence observation image 332 are displayed side by side. Instead of this, they may be displayed in an overlapping manner. Further, by linking each other, an observation image 332 of attenuated fluorescence may be displayed when a target region of the confocal observation image 330 is clicked. Furthermore, when image acquisition by confocal observation time lapse is designated, time lapse images 334 are displayed side by side in time order. Similarly, when image acquisition by time lapse of attenuated fluorescence observation is designated, time lapse images 335 are displayed side by side in time order.
  • FIG. 10 is a flowchart showing an example of the operation (S10) of the microscope system 12.
  • the control unit 130 determines whether to acquire an image of attenuated fluorescence observation based on the input of the check box 316 of the GUI screen 300 (S100). When the determination in step S100 is Yes, the control unit 130 sets the modulation frequencies of the pump light and the probe light for attenuated fluorescence observation based on the input in the input fields 318 and 320 (S102).
  • the control unit 130 sets the diameter of the pinhole 408 (S104).
  • the pinhole 408 is opened by default, that is, “OPEN” is set by default in the input field 322 of FIG.
  • the size of the pinhole 408 is set based on the changed value.
  • the decay fluorescence observation by opening the pinhole 408, it is possible to detect the fluorescence whose imaging relation is disturbed due to scattering or the like despite being generated from the focal plane which is the pinhole conjugate plane. More photons can be detected, and as a result, the signal-to-noise ratio can be improved.
  • an image of attenuated fluorescence observation is acquired (S106).
  • the demodulation frequency may be a difference frequency or a sum frequency, but is preferably a sum frequency when a resonant scanner is used.
  • the method for acquiring the image of attenuated fluorescence observation is the same as that described in the microscope system 10, and the description thereof is omitted.
  • step S106 determines whether or not to acquire the confocal observation image based on the input of the check box 302 (S108).
  • S108: Yes it is determined whether or not the pump light used for confocal observation is modulated based on the check boxes 304 and 306 (S112) and is modulated. In this case (S112: Yes), the modulation frequency input in the input field 308 is set (S114).
  • the diameter of the pinhole 408 is set based on the input to the input field 310 from the user (S116).
  • the diameter of the pinhole in confocal observation is preferably smaller than the diameter of the pinhole in attenuated fluorescence observation.
  • the confocal observation image is acquired based on the above settings (S118). More specifically, the pump light is turned on or intensity-modulated, the probe light is turned off, the sample 186 is scanned by the scanning unit 150, and the fluorescence is detected by the detection unit 136 pixel by pixel. The detection result is stored in the storage unit 226 in association with the position information.
  • the intensity of the pump light is modulated, lock-in detection is performed at the modulation frequency in the lock-in amplifier. Note that when the pump light is turned on (when intensity modulation is not performed), a lock-in amplifier is not necessary, and thus it is desirable to directly input the output of the light receiving unit 410 to the image generation unit 222.
  • the image generation unit 222 reads out the detection result associated with the position information from the storage unit 226, generates the confocal observation image 330 and the attenuated fluorescence observation image 332, and displays them on the display unit 224 (S120).
  • the microscope system 12 when the acquisition of the time-lapse image for confocal observation is received in the check box 312, the microscope system 12 performs confocal observation at the time interval set in the input field 314 and generates each observation image. Similarly, when the acquisition of the time-lapse image of the attenuated fluorescence observation is received by the check box 324, the microscope system 12 performs the attenuated fluorescence observation at the time interval set in the input field 326 and generates each observation image.
  • FIG. 11 is a flowchart of an operation (S30) for selecting a range of attenuated fluorescence observation based on confocal observation.
  • S30 an operation for selecting a range of attenuated fluorescence observation based on confocal observation.
  • an image is acquired by confocal observation (S300).
  • steps S112 to S118 in the operation (S10) of FIG. 10 are executed.
  • confocal images are subjected to image processing analysis and a range suitable for attenuated fluorescence observation is selected. For example, differential filtering is performed on the image, and a region where many peaks occur is selected.
  • step S304 or S308 Attenuated fluorescence observation is executed to obtain an observation image (S306).
  • steps S102 to S106 in the operation (S10) of FIG. 10 are executed.
  • FIG. 12 is a flowchart of an operation (S20) for automatically selecting whether confocal observation or attenuated fluorescence observation is performed in the microscope system 12, and FIG. 13 shows a GUI screen 350 used in the operation.
  • the storage unit 226 associates the name of the fluorescent substance with the observation method, for example, whether confocal observation is preferable or attenuated fluorescence observation, and the wavelength of pump light in the case of confocal observation or attenuated fluorescence observation. In this case, the wavelengths of the pump light and the probe light are stored.
  • the name 353 of the fluorescent substance stored in the storage unit 226 is displayed together with the check box 352.
  • the fluorescent material is selected by checking the check box 352 by the user (S200).
  • the control unit 130 determines whether confocal observation is preferable or attenuated fluorescence observation is preferable with reference to the storage unit 226 according to the selected fluorescent substance (S202).
  • the pump light box 355 is colored on the GUI screen 350, and the control unit 130 refers to the storage unit 226 to determine the wavelength of the pump light corresponding to the fluorescent substance. Is displayed in the display field 354 (S204). In this case, the probe light box 357 is white, and the wavelength display column 356 is grayed out.
  • the pump light box 355 is colored on the GUI screen 350, and the control unit 130 refers to the storage unit 226 to determine the wavelength of the pump light corresponding to the fluorescent material.
  • the probe light box 357 is colored, and the wavelength of the probe light corresponding to the fluorescent material is determined and displayed in the display field 356 (S204). In either case, the display field 358 shows the relationship among the fluorescent material absorption band, the fluorescent band, the wavelength of the light source, and the detection wavelength region (S206).
  • the wavelength control unit 230 sets the wavelength of the light from the laser light sources 102 and 104 based on the user's execution instruction. Further, the frequency control unit 229 sets the modulation frequency in the oscillator 132. In this case, the input of the modulation frequency may be received on the GUI screen 300 of FIG. 9, or the modulation frequency is associated with the fluorescent material and stored in the storage unit 226, and the storage unit 226 is selected along with the selection of the fluorescent material.
  • the control unit 130 may automatically determine the modulation frequency by referring to FIG. Based on the above settings, an attenuated fluorescence observation image is acquired as in steps S102 to S106 of FIG.
  • the wavelength control unit 230 sets the wavelength of the light from the laser light source 102 based on an instruction to be executed by the user. Based on the above settings, confocal observation images are acquired as in steps S112 to S118 of FIG.
  • FIG. 14 is a diagram showing the configuration of still another microscope system 14.
  • the same components as those of the microscope systems 10 and 12 are denoted by the same reference numerals, and description thereof is omitted.
  • the microscope system 14 corresponds to a combination of the microscope system 10 and the microscope system 12. That is, a dichroic mirror 162 is disposed on the optical path between the objective lens 164 and the scanning unit 150, and an optical filter 166, a lens pair 172, and a light receiving unit 174 on which fluorescence reflected by the dichroic mirror 162 is incident are provided. Further, a dichroic mirror 402 is disposed on the optical path between the scanning unit 150 and the dichroic mirror 144, and includes an optical filter 404, a lens 406, a pinhole 408, and a light receiving unit 410 on which fluorescence reflected by the dichroic mirror 402 is incident. .
  • the dichroic mirror 162 When the light receiving unit 174 receives fluorescence, the dichroic mirror 162 is advanced on the optical path between the objective lens 164 and the scanning unit 150, and the dichroic mirror 402 is moved between the scanning unit 150 and the dichroic mirror 144. Evacuate from the street. When the light reflected by the dichroic mirror 162 is received by the light receiving unit 174, a brighter signal can be detected because there are few optical elements through which the fluorescence passes. Therefore, it is preferable to use for attenuated fluorescence observation.
  • the dichroic mirror 162 When fluorescence is received by the light receiving unit 410, the dichroic mirror 162 is retracted from the optical path between the objective lens 164 and the scanning unit 150, and the dichroic mirror 402 is moved between the scanning unit 150 and the dichroic mirror 144. Advance on the street. When the fluorescence reflected by the dichroic mirror 402 is received by the light receiving unit 410, it is descanned by the scanning unit 150. Therefore, it is preferably used for confocal observation using the pinhole 408.
  • FIG. 15 is a diagram showing the configuration of still another microscope system 16, and FIG. 16 shows the relationship between the excitation / fluorescence spectrum, pump light, probe light, and wavelength of the detection wavelength region of each fluorescent substance.
  • the microscope system 16 is used for attenuated fluorescence observation with multicolor fluorescence.
  • the microscope system 16 is used when there are two types of fluorescent materials, the pump light is common, and the probe light is different.
  • the same components as those in the microscope system 12 are denoted by the same reference numerals and description thereof is omitted.
  • the microscope system 16 includes a laser light source 500 for the second probe light in addition to the laser light source 104 for the first probe light, and a dichroic mirror 502 that combines the second probe light and the first probe light. And further.
  • the dichroic mirror 106 combines the pump light with the first and second probe lights.
  • the wavelength of the pump light is in the common part of the absorption spectrum C of the first fluorescent material and the absorption spectrum D of the second fluorescent material, and excites both fluorescent materials.
  • the wavelength of the first probe light is in the fluorescence spectrum A of the first fluorescent material, and induces stimulated emission in the first fluorescent material.
  • the wavelength of the second probe light is in the fluorescence spectrum B of the second fluorescent material, and induces stimulated emission in the second fluorescent material.
  • the specimen 186 contains first and second fluorescent substances.
  • a drive voltage corresponding to each light is applied from the driver 112 to the AOTF 114, the pump light is turned on, the intensity of the first probe light is modulated at the frequency f2, and the intensity of the second probe light is modulated at the frequency f3. .
  • the pump light passes through the dichroic mirror 141, and the first and second probe lights are reflected by the dichroic mirror 141.
  • the pump light is intensity-modulated by the AOM 124 at the frequency f1.
  • the first and second probe lights are reflected by the mirrors 142 and 143 so as to bypass the AOM 124 and are combined with the pump light by the dichroic mirror 144.
  • the pump light, the first probe light, and the second probe light pass through the dichroic mirror 402, pass through the scanning unit 150, and are collected on the sample 186 by the objective lens 164.
  • the frequencies f1, f2, and f3 are set to be different from each other.
  • the pump light I Pump when the first probe light I Probe1, the second probe light and I probe2, each time the waveform is expressed as follows. Note that I1, I2, and I3 are the light intensities of the pump light, the first probe light, and the second probe light, respectively.
  • the microscope system 16 includes a dichroic mirror 402 between the dichroic mirror 144 and the scanning unit 150.
  • the dichroic mirror 402 includes a wavelength region including a wavelength region (first detection wavelength region) for detecting fluorescence from the first fluorescent material and a wavelength region (second detection wavelength region) for detecting fluorescence from the second fluorescent material. Reflect.
  • a dichroic mirror 412 is further arranged on the optical path of the light reflected by the dichroic mirror 402.
  • the dichroic mirror 412 transmits the wavelength region including the first detection wavelength region and reflects the wavelength region including the second detection wavelength region.
  • Fluorescence from the first fluorescent material that has passed through the dichroic mirror 412 is cut in the wavelength region other than the first detection wavelength region by the optical filter 404 and is received by the light receiving unit 410 through the lens 406.
  • the light-receiving signal photoelectrically converted by the light-receiving unit 410 is lock-in detected by the lock-in amplifier 134.
  • the light receiving unit 410 and the lock-in amplifier 134 constitute a first detection unit 136.
  • the fluorescence from the second fluorescent material reflected by the dichroic mirror 412 is cut by the optical filter 414 in the wavelength region other than the second detection wavelength region, and detected by the light receiving unit 420 through the lens 416.
  • the light receiving signal photoelectrically converted by the light receiving unit 420 is lock-in detected by the lock-in amplifier 135.
  • the light receiving unit 420 and the lock-in amplifier 135 constitute a second detection unit 137.
  • the dichroic mirror 412 may reflect the fluorescence in the first detection wavelength region and transmit the fluorescence in the second detection wavelength region.
  • FIG. 17 is a diagram showing the configuration of still another microscope system 18.
  • FIG. 18 shows the relationship between the excitation / fluorescence spectrum, pump light, probe light, and wavelength of the detection wavelength region of each fluorescent substance.
  • the microscope system 18 is also used for attenuated fluorescence observation with multicolor fluorescence.
  • the microscope system 18 is used when there are two types of fluorescent materials, the probe light is common, and the pump light is different.
  • the same components as those in the microscope system 16 are denoted by the same reference numerals and description thereof is omitted.
  • the microscope system 18 includes, in addition to the first pump light laser light source 102, a second pump light laser light source 504, and a dichroic mirror 506 that combines the second pump light and the probe light.
  • the dichroic mirror 106 combines the first pump light with the second pump light and the probe light.
  • the wavelength of the first pump light is within the absorption spectrum H of the first fluorescent material, and excites the first fluorescent material.
  • the wavelength of the second pump light is in the absorption spectrum G of the second fluorescent material, and excites the second fluorescent material.
  • the wavelength of the probe light is at the intersection of the fluorescence spectrum E of the first fluorescent material and the fluorescence spectrum F of the second fluorescent material, and induces stimulated emission in both fluorescent materials.
  • a driving voltage corresponding to each light is applied from the driver 112 to the AOTF 114, the probe light is turned on, the intensity of the first pump light is modulated at the frequency f1, and the intensity of the second pump light is modulated at the frequency f4. .
  • the probe light passes through the dichroic mirror 141, and the first and second pump lights are reflected by the dichroic mirror 141.
  • the probe light is intensity-modulated by the AOM 124 at the frequency f2.
  • the first and second pump lights are reflected by the mirrors 142 and 143 so as to bypass the AOM 124 and are combined with the pump light by the dichroic mirror 144.
  • the first pump light, the second pump light, and the probe light pass through the dichroic mirror 402, pass through the scanning unit 150, and are collected on the sample 186 by the objective lens 164.
  • the frequencies f1, f2, and f4 are set to be different from each other.
  • a first pump light I Pump1, a second pump light I Pump2, when the probe light and I Probe, each time the waveform is represented as follows. Note that I1, I2, and I3 are the light intensities of the first pump light, the second pump light, and the probe light, respectively.
  • the microscope system 18 includes a dichroic mirror 402 between the dichroic mirror 144 and the scanning unit 150.
  • the dichroic mirror 402 includes a wavelength region including a wavelength region (first detection wavelength region) for detecting fluorescence from the first fluorescent material and a wavelength region (second detection wavelength region) for detecting fluorescence from the second fluorescent material. Reflect.
  • a dichroic mirror 412 is further arranged on the optical path of the light reflected by the dichroic mirror 402.
  • the dichroic mirror 412 transmits the wavelength region including the first detection wavelength region and reflects the wavelength region including the second detection wavelength region.
  • Fluorescence from the first fluorescent material that has passed through the dichroic mirror 412 is cut in the wavelength region other than the first detection wavelength region by the optical filter 404 and is received by the light receiving unit 410 through the lens 406.
  • the light-receiving signal photoelectrically converted by the light-receiving unit 410 is lock-in detected by the lock-in amplifier 134.
  • the fluorescence from the second fluorescent material reflected by the dichroic mirror 412 is cut by the optical filter 414 in the wavelength region other than the second detection wavelength region, and detected by the light receiving unit 420 through the lens 416.
  • the light receiving signal photoelectrically converted by the light receiving unit 420 is lock-in detected by the lock-in amplifier 135.
  • the crosstalk of fluorescence becomes a problem.
  • the attenuated fluorescence signal from the first fluorescent material mixed in the second detection wavelength region is generated at the frequency f1 + f2, whereas the attenuated fluorescence signal from the second fluorescent material desired to be acquired in the second detection wavelength region. Occurs at frequency f4 + f2. Therefore, by setting the demodulation frequency in the second detection wavelength region to f4 + f2, fluorescence crosstalk can be suppressed.
  • the modulation frequencies of the two pump lights can be suppressed, so that two colors can be observed simultaneously.
  • FIG. 19 shows the relationship between the absorption / fluorescence spectrum and the detection wavelength region when the Stokes shift is small.
  • the wavelength of the first pump light is located in the absorption spectrum K of the first fluorescent material
  • the wavelength of the second pump light is located in the absorption spectrum L of the second fluorescent material.
  • the probe light is located in the fluorescence spectrum I of the first fluorescent material and the fluorescence spectrum J of the second fluorescent material in order to induce stimulated emission.
  • the first detection wavelength region is set to include the peak of the fluorescence spectrum I of the first fluorescent material
  • the second wavelength region is set to include the peak of the fluorescence spectrum J of the second fluorescent material.
  • FIG. 20 shows the relationship between fluorescence and fluorescent substances that can be observed in each of the first detection wavelength region and the second detection wavelength region. In each detection wavelength region, four types of signals may be observed.
  • the signal to be detected is the fluorescence A from the first fluorescent material excited by the first pump light. Therefore, it is desirable to remove other fluorescence.
  • Fluorescence B and D can be removed by setting the first detection wavelength region so that the fluorescence spectrum from the second fluorescent substance deviates from the first detection wavelength region.
  • the fluorescence C can be removed by utilizing the difference in demodulation frequency.
  • the signal to be detected is the fluorescence D ′ from the second fluorescent material excited by the second pump light. Therefore, it is desirable to remove other fluorescence. Fluorescence A ′ and B ′ can be removed by utilizing the difference in demodulation frequency. This will be described in detail below.
  • the time waveforms of the first pump light, the second pump light, and the probe light are expressed by equations (2.6)-(2.8).
  • the time waveform of the fluorescence A ′ generated from the first fluorescent material by the first pump light and the fluorescence B ′ generated from the second fluorescent material by the first pump light is I RF1
  • the time waveform of fluorescence D ′, which is the desired signal light is I RF2
  • the influence of the fluorescence A ′ and B ′ can be removed by demodulating with f4 + f2.
  • the fluorescence C ′ from the first fluorescent material excited by the second pump light has the same frequency as the fluorescence D ′, which is the desired signal light, and therefore cannot be separated by frequency. .
  • the second pump light does not excite the first fluorescent material. If this is difficult, it is desirable to reduce the contamination of the fluorescence C ′ by utilizing the difference in fluorescence lifetime between the first fluorescent material and the second fluorescent material.
  • the following relationship holds among the fluorescence lifetime ⁇ , the demodulation frequency f, and the phase ⁇ .
  • FIG. 21B represents the signal intensities of fluorescence C ′ and fluorescence D ′ detected in lock-in by phasor display. By selecting ⁇ 2 as the phase of lock-in detection, the magnitude of fluorescence C ′ can be reduced by cos ( ⁇ 1 ⁇ 2).
  • the phase of the first fluorescent material is adjusted in the first detection region. You may detect lock-in. The detection based on the phase may be applied to the case where the pump light is common and there are two types of probe light (for example, described in FIG. 16).
  • the fluorescence from the second fluorescent material by the first pump light is not mixed in the first detection wavelength region, and (ii) the second pump light by the second pump light is in the second detection wavelength region.
  • the number of light receiving units may be one.
  • FIG. 22 shows a GUI screen 360 used for the two-color observation of FIGS. 15 to 21.
  • the check boxes 362 and 364 accept the selection of the fluorescent material.
  • the wavelengths stored in the storage unit 226 in association with the selected fluorescent substance are read, and the wavelengths are displayed in the display columns 366 to 372, respectively.
  • the display column 374 displays the relationship between the excitation / fluorescence spectrum of the selected fluorescent substance, the pump light, the probe light, and the detection wavelength region.
  • the user can arbitrarily select a light source wavelength or a detection wavelength region.
  • FIG. 23 is a diagram showing the configuration of still another microscope system 20.
  • the same components as those of the microscope system 10 and the like are denoted by the same reference numerals and description thereof is omitted.
  • an intensity modulation unit 550 having a driver 552 and an AOTF 554 is disposed.
  • a single AOTF 554 modulates the intensity of both the pump light and the probe light.
  • the pump light is f1 and the probe light is intensity-modulated by f2, and the generated fluorescence is demodulated by the lock-in amplifier 134 at the demodulation frequency of f1 + f2.
  • FIG. 24 is a diagram showing the configuration of still another microscope system 22.
  • the same components as those in the microscope system 10 are denoted by the same reference numerals, and the description thereof is omitted.
  • the microscope system 22 includes a laser light source 504 for the second pump light and a dichroic mirror 506 that multiplexes the second pump light with the probe light in addition to the laser light source 102 for the first pump light.
  • the dichroic mirror 106 combines the first pump light with the second pump light and the probe light.
  • an intensity modulation unit 550 is disposed similarly to the microscope system 20, similarly to the microscope system 20, an intensity modulation unit 550 is disposed.
  • a single AOTF 554 modulates the intensity of all of the two types of pump light and probe light. In this case, in the AOTF 554, the intensity of the first pump light is f1, the second pump light is f4, and the probe light is f2 respectively.
  • the fluorescence corresponding to the first pump light is received by the light receiving unit 410 and demodulated at the demodulation frequency of f1 + f2 by the lock-in amplifier 134.
  • the fluorescence corresponding to the second pump light is received by the light receiving unit 420 and demodulated by the lock-in amplifier 135 at the demodulation frequency of f4 + f2.
  • FIG. 25 is a diagram showing the configuration of still another microscope system 24.
  • the same components as those of the microscope system 10 and the like are denoted by the same reference numerals and description thereof is omitted.
  • an intensity modulation unit 560 is provided for the laser light source 102 for pump light
  • an intensity modulation unit 570 is provided for the laser light source 104 for probe light.
  • the intensity modulation unit 560 includes a driver 562 and an AOM 564, and modulates the intensity of the pump light with f1.
  • the intensity modulation unit 570 includes a driver 572 and an AOM 574, and modulates the intensity of the probe light with f2.
  • the intensity-modulated pump light and probe light are combined by a mirror 452 and a dichroic mirror 450.
  • the fluorescence received by the light receiving unit 410 is demodulated by the lock-in amplifier 134 at a demodulation frequency of f1 + f2. Thereby, it is possible to demodulate at a high modulation frequency, and therefore it is possible to shorten the time for acquiring an observation image of attenuated fluorescence.
  • FIG. 26 is a diagram showing the configuration of still another microscope system 26.
  • the same components as those of the microscope system 10 and the like are denoted by the same reference numerals and description thereof is omitted.
  • an intensity modulator 560 is provided for the first laser light source 102 for pump light
  • an intensity modulator 570 is provided for the laser light source 104 for probe light
  • the second pump light source is provided for the laser light source 504.
  • the intensity modulator 560 modulates the intensity of the first pump light with f1
  • the intensity modulator 570 modulates the intensity of the probe light with f2.
  • the intensity modulation unit 580 includes a driver 582 and an AOM 584, and intensity-modulates the second pump light with f4.
  • the intensity-modulated first pump light, second pump light, and probe light are combined by mirrors 458 and 460 and dichroic mirrors 454 and 456.
  • the fluorescence corresponding to the first pump light is received by the light receiving unit 410 and demodulated at the demodulation frequency of f1 + f2 by the lock-in amplifier 134.
  • the fluorescence corresponding to the second pump light is received by the light receiving unit 420 and demodulated by the lock-in amplifier 135 at the demodulation frequency of f4 + f2.
  • the scanning unit 151 in FIG. 6 or the scanning unit 156 in FIG. 7 may be used instead of the scanning unit 150.
  • the probe light that is turned on by the AOTF 114 is modulated by the AOM 124.
  • the probe light may be modulated by f1 by the AOTF 114, and the pump light may be modulated by f2 by the AOM 124.
  • intensity modulation may be performed using a mechanical shutter such as a chopper instead of the AOM 124 or the like. Instead, intensity modulation may be performed by switching the polarization direction at high speed using an EOM (electro-optical element) and a polarizer.
  • EOM electro-optical element
  • a pulse laser may be used. Since the pulse laser has a higher peak intensity, the stimulated emission is more efficiently generated and the attenuated fluorescence signal is also efficiently generated.
  • the pulse repetition frequency is preferably determined in consideration of the fluorescence lifetime and damage due to the peak power of the pulse.
  • the CW laser has the advantage that the price is lower.
  • a photomultiplier tube is used as the light receiving unit 174 and the like, an avalanche photodiode (APD) may be used.
  • FIG. 27 shows an example of another light source 101.
  • the laser light sources 104 and 102 are pulse lasers. Fluorescence lifetime is measured using these pulse lasers.
  • the light output from the laser light source 104 for probe light is reflected by the mirror 470 and is incident on the optical delay stage 700.
  • the optical delay stage 700 is movable in the direction of the arrow and includes a mirror 471 and a mirror 472. By translating the optical delay stage in the direction of the arrow, the optical path length of the probe light changes, and a time difference can be given to the optical pulses of the pump light and the probe light.
  • the light reflected by the mirror 470 is reflected by the mirror 471 and the mirror 472 and guided to the mirror 473 in parallel with the light introduced from the mirror 470.
  • the light reflected from the mirror 473 is combined with the pump light by the dichroic mirror 106.
  • the subsequent steps are the same as in FIG.
  • FIG. 28 shows the time difference between the pump light pulse and the probe light pulse and the state of the time waveform of fluorescence when the optical delay stage 700 is translated.
  • (A)-(c) shows the relationship between the amount of movement dz of the optical delay stage 700 and the time difference between pulses. When the movement amount dz is small, the time difference is small, and when the movement amount dz is large, the time difference is large.
  • (D) shows a time waveform of fluorescence generated by the pump light. It is generally known that fluorescence decreases exponentially in this way with lifetime. In order to attenuate fluorescence by stimulated emission, the time difference between the probe light and the pump light needs to be shorter than the fluorescence emission duration.
  • the fluorescence lifetime can be measured by adding a time difference by the optical delay stage 700 and acquiring the attenuated fluorescence signal at each time difference. This situation is shown in FIG.
  • the attenuated fluorescence signal shows how the fluorescence lifetime is reflected.
  • fluorescence lifetime imaging can be performed by acquiring attenuated fluorescence images at a plurality of time differences.
  • one-photon excitation is used for excitation, but multiphoton excitation such as two-photon excitation or three-photon excitation may be used.
  • the pinhole 408 or the like may be narrowed down in the configuration in which fluorescence is detected by descanning during attenuated fluorescence observation.
  • the point spread function of the imaging system also contributes to the improvement of the optical resolution, so that the resolution can be further improved.
  • the pinhole 408 or the like be narrowed down.
  • dark fluorescence where the amount of light is not sufficiently secured, it is desirable to open the pinhole 408 and the like.
  • the microscope systems 14 to 26 shown in FIGS. 15 to 26 have the descanning optical system and the pinholes 408 and 418 are arranged, they can be used as a confocal microscope.
  • the spot deviation in the in-plane direction of the pump light and the probe light becomes a problem due to the chromatic aberration of magnification.
  • the spot of the pump light spreads in the in-plane direction and the optical axis direction, and beam overlap becomes easier.
  • the reason for making the beam diameter of the pump light narrower is that the wavelength of the pump light is shorter than that of the probe light. This is because the spot diameter is smaller than that of light.
  • the wavelength controller 230 may be provided to control the wavelength of the light from the laser light source.
  • the dichroic mirrors 162 and 402 transmit the irradiation light and reflect the fluorescence. Alternatively, the dichroic mirrors 162 and 402 may reflect the irradiation light and transmit the fluorescence.
  • the dichroic mirrors such as the dichroic mirrors 162 and 402 are an example of a wavelength separation member that separates light of a predetermined wavelength from light of other wavelengths.
  • the lock-in amplifier has been described as a method for detecting a signal component of a specific frequency, other methods may be used.
  • a signal component having a specific frequency may be detected by performing a Fourier transform on the time signal.
  • a reference signal having a demodulation frequency and signal light may be multiplied by a frequency converter to extract only a direct current component.
  • the DC component here corresponds to a value obtained by converting a vibration component of a sine wave into DC.
  • the polarization of the pump light and the probe light is preferably the same.
  • the same linearly polarized light and circularly polarized light are desirable.
  • Microscope system 100 101 Light source 102, 104, 500, 504 Laser light source 106, 141, 144, 162, 402, 412, 450, 454, 456, 506 Dichroic mirror 110 First intensity modulator 112 Driver 114 Acousto-optic tunable filter 120 Second intensity modulator 122 Driver 124 Acousto-optic device 130 Controller 132 Oscillator 134, 135 Lock-in amplifier 136, 137 Detector 140 Illumination optical system 142 , 143, 154, 155, 157, 452, 458, 460 Mirror 150, 151, 156 Scan unit 152 Resonant scanner 153 Galvano scanner 160 Observation optical system 164 Objective lenses 166, 404, 414 Optical filters 406, 41 6 Lens 172, 173 Lens pair 174, 410, 420 Light receiving unit 180 Stage 182 Slide glass 184 Observation object 186 Sample 220 Input unit 222 Image generating unit 224 Display unit 226 Storage unit 228 S

Abstract

A microscope system provided with: a first intensity modulation unit for modulating the intensity of first light at a frequency f1, the first light for exciting a first fluorescent substance included in a specimen; a second intensity modulation unit for modulating the intensity of second light at a frequency f2 different from the frequency f1, the second light for causing stimulated emission in the first fluorescent substance; a scanning unit for scanning the first light and the second light in the specimen; and a detection unit for detecting fluorescence from the specimen; the scanning unit having a resonant scanner having a resonance mirror, and the detection unit receiving fluorescence from the specimen and detecting a frequency f1 + f2 component.

Description

顕微鏡システムMicroscope system
 本発明は、顕微鏡システムに関する。 The present invention relates to a microscope system.
 蛍光物質を2光子で励起し、誘導放出を誘起するレーザビームを照射して、誘導放出により減衰した蛍光を取得して画像を構築する顕微鏡が知られている(例えば、非特許文献1を参照)。顕微鏡では、高速に画像を取得する必要がある。
Lu Wei et. al., Biomedical Optics Express 1465-1475, vol. 3, No.6, 1 June 2012
A microscope is known that excites a fluorescent substance with two photons, irradiates a laser beam that induces stimulated emission, acquires fluorescence attenuated by stimulated emission, and constructs an image (see, for example, Non-Patent Document 1). ). In a microscope, it is necessary to acquire an image at high speed.
Lu Wei et.al., Biomedical Optics Express 1465-1475, vol. 3, No. 6, 1 June 2012
 本発明の第1の態様においては、顕微鏡システムであって、標本に含まれる第1の蛍光物質を励起する第1の光を周波数f1で強度変調する第1の強度変調部と、第1の蛍光物質において誘導放出を生じさせる第2の光を周波数f1とは異なる周波数f2で強度変調する第2の強度変調部と、第1の光および第2の光を標本において走査する走査部と、標本からの蛍光を検出する検出部とを備え、走査部は、共振ミラーを有するレゾナントスキャナを有し、検出部は、標本からの蛍光を受光し、周波数f1+f2の成分を検出する。 In the first aspect of the present invention, the microscope system includes a first intensity modulation unit that modulates the intensity of the first light that excites the first fluorescent substance included in the sample at a frequency f1, A second intensity modulating unit that modulates the intensity of the second light that causes stimulated emission in the fluorescent substance at a frequency f2 different from the frequency f1, and a scanning unit that scans the first light and the second light on the sample; A detection unit that detects fluorescence from the sample, the scanning unit includes a resonant scanner having a resonance mirror, and the detection unit receives the fluorescence from the sample and detects a component of frequency f1 + f2.
 本発明の第2の態様においては、顕微鏡システムであって、標本に含まれる蛍光物質を励起する第1の光を前記標本に照射し、前記標本からの蛍光を検出部において受光させる第1の観察方法と、前記第1の光を周波数f1で強度変調して前記標本に照射し、前記蛍光物質において誘導放出を生じさせる第2の光を前記周波数f1とは異なる周波数f2で強度変調して前記標本に照射し、前記検出部において前記標本からの蛍光を受光させ、周波数f1+f2の成分または周波数f1-f2の成分を検出させる第2の観察方法とが選択可能に構成された。 In the second aspect of the present invention, the microscope system includes a first light that irradiates the specimen with first light that excites a fluorescent substance contained in the specimen and causes the detection unit to receive fluorescence from the specimen. An observation method, and intensity-modulating the first light with a frequency f1 and irradiating the specimen, and intensity-modulating the second light that causes stimulated emission in the fluorescent material with a frequency f2 different from the frequency f1 The second observation method can be selected so that the sample is irradiated, the fluorescence from the sample is received by the detection unit, and the frequency f1 + f2 component or the frequency f1-f2 component is detected.
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションも発明となりうる。 The above summary of the invention does not enumerate all the features of the present invention. A sub-combination of these feature groups can also be an invention.
本実施形態に係る顕微鏡システム10の構成を示す図である。1 is a diagram illustrating a configuration of a microscope system 10 according to the present embodiment. ポンプ光、プローブ光および検出波長領域の波長の関係を示す概念図である。It is a conceptual diagram which shows the relationship between the wavelength of pump light, probe light, and a detection wavelength area | region. 蛍光の強度の時間変化を説明する概念図である。It is a conceptual diagram explaining the time change of the fluorescence intensity. ロックイン検出における復調周波数を説明する概念図である。It is a conceptual diagram explaining the demodulation frequency in lock-in detection. スキャン速度と検出の速度を説明する概念図である。It is a conceptual diagram explaining the scanning speed and the detection speed. 他の走査部151の例を示す。An example of another scanning unit 151 is shown. さらに他の走査部156の例を示す。Still another example of the scanning unit 156 is shown. 他の顕微鏡システム12の構成を示す図である。It is a figure which shows the structure of the other microscope system. 顕微鏡システム12で用いられるGUI画面300の一例である。3 is an example of a GUI screen 300 used in the microscope system 12. 顕微鏡システム12の動作の一例を示すフローチャートである。3 is a flowchart showing an example of the operation of the microscope system 12. 共焦点観察に基づいて減衰蛍光観察の範囲を選択する動作のフローチャートである。It is a flowchart of the operation | movement which selects the range of attenuation | damping fluorescence observation based on confocal observation. 顕微鏡システム12において、共焦点観察をするか減衰蛍光観察をするかを自動選択する動作のフローチャートである。5 is a flowchart of an operation of automatically selecting whether to perform confocal observation or attenuated fluorescence observation in the microscope system 12. 図12のフローチャートで示される動作に用いられるGUI画面350を示す。13 shows a GUI screen 350 used for the operation shown in the flowchart of FIG. さらに他の顕微鏡システム14の構成を示す図である。It is a figure which shows the structure of other microscope system. さらに他の顕微鏡システム16の構成を示す図であり、It is a figure which shows the structure of the other microscope system 16, 各蛍光物質の励起・蛍光スペクトル、ポンプ光、プローブ光および検出波長領域の波長の関係を示す。The relationship between the excitation / fluorescence spectrum of each fluorescent substance, pump light, probe light, and wavelength in the detection wavelength region is shown. さらに他の顕微鏡システム18の構成を示す図である。It is a figure which shows the structure of the other microscope system 18. FIG. 各蛍光物質の励起・蛍光スペクトル、ポンプ光、プローブ光および検出波長領域の波長関係を示す。The wavelength relationship between the excitation / fluorescence spectrum, pump light, probe light, and detection wavelength region of each fluorescent material is shown. ストークスシフトが小さい場合の吸収・蛍光スペクトルと検出波長領域の関係を示す。The relationship between the absorption / fluorescence spectrum and the detection wavelength region when the Stokes shift is small is shown. 第1検出波長領域、第2検出波長領域のそれぞれにおいて、観測されうる蛍光と励起光の関係を示す。The relationship between fluorescence and excitation light that can be observed in each of the first detection wavelength region and the second detection wavelength region is shown. (a)は蛍光C'と蛍光D'の時間波形を示し、(b)は蛍光C'と蛍光D'をフェーザ表示で表現している。(A) shows time waveforms of fluorescence C ′ and fluorescence D ′, and (b) expresses fluorescence C ′ and fluorescence D ′ in a phasor display. 図15から図21の2色観察に用いられるGUI画面360を示す。The GUI screen 360 used for the two-color observation of FIGS. 15 to 21 is shown. さらに他の顕微鏡システム20の構成を示す図である。It is a figure which shows the structure of the other microscope system. さらに他の顕微鏡システム22の構成を示す図である。It is a figure which shows the structure of the other microscope system 22. FIG. さらに他の顕微鏡システム24の構成を示す図である。It is a figure which shows the structure of the further microscope system 24. FIG. さらに他の顕微鏡システム26の構成を示す図である。It is a figure which shows the structure of other microscope system 26. FIG. 他の光源101の例を示す。An example of another light source 101 is shown. 光学ディレイステージ700を平行移動したときの時間差の様子を示す。The state of the time difference when the optical delay stage 700 is translated is shown. 減衰蛍光信号が、蛍光寿命を反映する様子を示す。The decaying fluorescence signal reflects the fluorescence lifetime.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態に係る顕微鏡システムの一例である顕微鏡システム10の構成を示す図である。顕微鏡システム10は、強度変調させたポンプ光およびプローブ光を標本に照射することで、標本に含まれる蛍光物質より生じる誘導放出により減衰した蛍光信号(以下、減衰蛍光、減衰蛍光信号などと記載する)をロックイン検出する。これにより、空間分解能を向上させつつ検出時間を短縮することができる。なお、以下、減衰蛍光を蛍光と総称して記載する場合もある。また、以下、減衰蛍光を取得する顕微鏡を減衰蛍光顕微鏡と記載する。図1では説明のためにxyz軸を示す。 FIG. 1 is a diagram illustrating a configuration of a microscope system 10 which is an example of a microscope system according to the present embodiment. The microscope system 10 irradiates the sample with the intensity-modulated pump light and the probe light, thereby describing a fluorescence signal attenuated by stimulated emission generated from the fluorescent substance contained in the sample (hereinafter referred to as attenuated fluorescence, attenuated fluorescence signal, etc.). ) Lock-in detection. Thereby, the detection time can be shortened while improving the spatial resolution. Hereinafter, the attenuated fluorescence may be collectively referred to as fluorescence. Hereinafter, a microscope that acquires attenuated fluorescence is referred to as an attenuated fluorescence microscope. In FIG. 1, the xyz axis is shown for explanation.
 顕微鏡システム10は、ポンプ光およびプローブ光を出力する光源100と、ポンプ光およびプローブ光で標本186を照明する照明光学系140と、標本186から発せられた光を観察する観察光学系160と、観察光学系160を介して光を検出する検出部136を備える。顕微鏡システム10はさらに、標本186を支持するステージ180を備える。顕微鏡システム10はさらに、顕微鏡システム10全体を制御する制御部130と、当該制御部130との間で信号を送受信する入力部220、表示部224および記憶部226を備える。 The microscope system 10 includes a light source 100 that outputs pump light and probe light, an illumination optical system 140 that illuminates the specimen 186 with the pump light and probe light, an observation optical system 160 that observes light emitted from the specimen 186, A detection unit 136 that detects light via the observation optical system 160 is provided. The microscope system 10 further includes a stage 180 that supports the specimen 186. The microscope system 10 further includes a control unit 130 that controls the entire microscope system 10, an input unit 220 that transmits and receives signals to and from the control unit 130, a display unit 224, and a storage unit 226.
 照明光学系140は、音響光学チューナブルフィルタ114(以下、AOTFともいう)と、音響光学素子124(以下、AOMともいう)と、ダイクロイックミラー141、144と、ミラー142、143と、走査部150と、レンズペア173と、ダイクロイックミラー162と、対物レンズ164とを有する。
 観察光学系160は、対物レンズ164と、ダイクロイックミラー162と、光学フィルタ166と、レンズペア172とを有する。
The illumination optical system 140 includes an acoustooptic tunable filter 114 (hereinafter also referred to as AOTF), an acoustooptic element 124 (hereinafter also referred to as AOM), dichroic mirrors 141 and 144, mirrors 142 and 143, and a scanning unit 150. A lens pair 173, a dichroic mirror 162, and an objective lens 164.
The observation optical system 160 includes an objective lens 164, a dichroic mirror 162, an optical filter 166, and a lens pair 172.
 標本186は、観察対象物184と、観察対象物184を載置するスライドガラス182とを有する。観察対象物184は例えば生物細胞である。観察対象物184には蛍光物質が含まれている。 The specimen 186 has an observation object 184 and a slide glass 182 on which the observation object 184 is placed. The observation object 184 is a biological cell, for example. The observation object 184 contains a fluorescent material.
 光源100は、ポンプ光用のレーザ光源102、プローブ光用のレーザ光源104、および、これらポンプ光およびプローブ光を合波するダイクロイックミラー106を有する。レーザ光源102、104は例えばいずれも連続発振方式であって、かつ、互いに異なる波長のレーザ光を出力する。ポンプ光は蛍光物質を励起して蛍光を発生させる。プローブ光は蛍光物質において誘導放出を誘起することで、蛍光を減衰させる。ポンプ光の波長はプローブ光の波長より短く、例えば、ポンプ光は532nm, プローブ光は640nmである。これらポンプ光およびプローブ光の波長は蛍光物質の吸収帯(吸収スペクトル)および蛍光帯(蛍光スペクトル)に合せて適宜設定される。これらポンプ光およびプローブ光の波長は自動的に設定されてもよいし、入力部220でユーザからの入力を受け付けてもよい。 The light source 100 includes a laser light source 102 for pump light, a laser light source 104 for probe light, and a dichroic mirror 106 that combines the pump light and the probe light. The laser light sources 102 and 104 are, for example, continuous oscillation systems and output laser beams having different wavelengths. The pump light excites the fluorescent material to generate fluorescence. The probe light attenuates fluorescence by inducing stimulated emission in the fluorescent material. The wavelength of the pump light is shorter than the wavelength of the probe light. For example, the pump light is 532 nm and the amber probe light is 640 nm. The wavelengths of the pump light and the probe light are appropriately set according to the absorption band (absorption spectrum) and the fluorescence band (fluorescence spectrum) of the fluorescent substance. The wavelengths of the pump light and the probe light may be set automatically, or the input unit 220 may accept input from the user.
 AOTF114は、ダイクロイックミラー106により同軸に合成されたレーザ光の光路上に配される。ミラー142、143は、AOM124を透過しない光路を構成する。 The AOTF 114 is arranged on the optical path of the laser beam synthesized coaxially by the dichroic mirror 106. The mirrors 142 and 143 constitute an optical path that does not pass through the AOM 124.
 AOTF114は光にとって回折格子として機能する。AOTF114により生じた1次回折光はダイクロイックミラー141に導かれる。AOTF114に印加するドライバ112の電圧を制御することで、波長ごとに1次回折光の発生を制御することができる。光の波長ごとに、常に1次回折光を生じさせる状態(ON状態、すなわち強度が最大の状態)とすることもできるし、常に生じさせない状態(OFF状態、すなわち強度が最小の状態)とすることもできるし、光強度を変調することもできる。例えば、ドライバ112から時間的に一定の電圧値を付与した場合には、電圧値に応じて光強度は時間的に一定値となる。例えば、ドライバ112から付与される電圧値が時間的にゼロであれば、光強度もゼロになる。例えばドライバ112の電圧波形が正弦波の場合に光の強度を正弦波に変調する。本実施形態では、発振器132からの発振に基づいて、AOTF114によりポンプ光を、周波数f1で強度変調し、プローブ光をON状態(変調しない)とする。AOTF114の利点は複数の波長の異なる光の強度を独立に制御できる点である。なお、これらAOTF114とドライバ112とにより第1強度変調部110が構成される。 AOTF 114 functions as a diffraction grating for light. First-order diffracted light generated by the AOTF 114 is guided to the dichroic mirror 141. By controlling the voltage of the driver 112 applied to the AOTF 114, generation of the first-order diffracted light can be controlled for each wavelength. For each wavelength of light, the first-order diffracted light can always be generated (ON state, that is, the intensity is maximum), or not always generated (OFF state, that is, the intensity is minimum). It is also possible to modulate the light intensity. For example, when a constant voltage value is applied from the driver 112, the light intensity becomes a constant value according to the voltage value. For example, if the voltage value applied from the driver 112 is zero in time, the light intensity is also zero. For example, when the voltage waveform of the driver 112 is a sine wave, the intensity of light is modulated into a sine wave. In this embodiment, based on the oscillation from the oscillator 132, the AOTF 114 modulates the intensity of the pump light at the frequency f1, and the probe light is turned on (not modulated). The advantage of AOTF 114 is that the intensity of light having different wavelengths can be controlled independently. The AOTF 114 and the driver 112 constitute the first intensity modulation unit 110.
 本実施形態では、AOTF114においてポンプ光が所定の周波数で変調されるように、AOTF114に印加するドライバ112の電圧を制御する。AOTF114にはポンプ光と、プローブ光の波長に応じた2つの音響周波数が付与される。これにより、AOTF114よりポンプ光、プローブ光の回折光が生じる。ここでは、ポンプ光のみの強度を変調するために、ポンプ光波長に対応した音響周波数の電気信号の振幅を変調周波数f1で変調する。これにより、AOTF114を透過したポンプ光の強度がf1で変調される。一方、プローブ光波長に対応する音響周波数の電気信号の振幅は変調しないため、プローブ光の強度は変調されない。 In this embodiment, the voltage of the driver 112 applied to the AOTF 114 is controlled so that the pump light is modulated at a predetermined frequency in the AOTF 114. Two acoustic frequencies corresponding to the wavelengths of the pump light and the probe light are given to the AOTF 114. Thereby, diffracted light of pump light and probe light is generated from the AOTF 114. Here, in order to modulate the intensity of only the pump light, the amplitude of the electrical signal of the acoustic frequency corresponding to the pump light wavelength is modulated at the modulation frequency f1. Thereby, the intensity of the pump light transmitted through the AOTF 114 is modulated by f1. On the other hand, since the amplitude of the electrical signal having an acoustic frequency corresponding to the probe light wavelength is not modulated, the intensity of the probe light is not modulated.
 ダイクロイックミラー141は、AOTF114において変調されたポンプ光を反射する一方で、プローブ光を透過する。これにより、プローブ光はAOM124に導かれる。AOM124に印加するドライバ122の電圧を制御することで、一次回折光の発生を制御することができる。常に1次回折光を生じさせる状態(ON状態、すなわち強度が最大の状態)とすることもできるし、常に生じさせない状態(OFF状態、すなわち強度が最小の状態)とすることもできるし、光強度を変調することもできる。例えば、ドライバ122から一定の電圧値を付与した場合には、電圧値に応じて光強度は一定値となる。例えば、ドライバ122から付与される電圧値が時間的にゼロであれば、光強度もゼロになる。例えばドライバ122の電圧波形が正弦波の場合に光の強度を正弦波に変調する。本実施形態では、発振器132からの発振に基づいて、AOM124によりプローブ光を、周波数f1と異なる周波数f2で強度変調する。AOM124の利点は、数十MHzという比較的高い周波数で強度変調できることである。なお、これらAOM124とドライバ122とにより第2強度変調部120が構成される。 The dichroic mirror 141 reflects the pump light modulated by the AOTF 114 while transmitting the probe light. As a result, the probe light is guided to the AOM 124. By controlling the voltage of the driver 122 applied to the AOM 124, generation of the first-order diffracted light can be controlled. The first-order diffracted light can always be generated (ON state, that is, the state where the intensity is maximum), or the first-order diffracted light can always be generated (OFF state, that is, the state where the intensity is minimum). Can also be modulated. For example, when a constant voltage value is applied from the driver 122, the light intensity becomes a constant value according to the voltage value. For example, if the voltage value applied from the driver 122 is zero in time, the light intensity is also zero. For example, when the voltage waveform of the driver 122 is a sine wave, the light intensity is modulated into a sine wave. In the present embodiment, based on the oscillation from the oscillator 132, the intensity of the probe light is modulated by the AOM 124 at a frequency f2 different from the frequency f1. An advantage of the AOM 124 is that intensity modulation can be performed at a relatively high frequency of several tens of MHz. The AOM 124 and the driver 122 constitute a second intensity modulation unit 120.
 一方、ポンプ光はダイクロイックミラー141で反射された後に、ミラー142、143で反射し、ダイクロイックミラー144に入射する。ダイクロイックミラー144は、それぞれに強度変調されたポンプ光とプローブ光とを同軸に合波する。 On the other hand, after the pump light is reflected by the dichroic mirror 141, it is reflected by the mirrors 142 and 143 and enters the dichroic mirror 144. The dichroic mirror 144 coaxially combines the pump light and the probe light whose intensity is modulated respectively.
 走査部150は対物レンズ164の瞳面とほぼ共役な位置に配される。このために、走査部150とダイクロイックミラー162の間にはレンズペア173が設置されていることが望ましい。走査部150の一例はガルバノスキャナであり、互いに直交する方向に回転可能な一対のガルバノミラーを有する。それらガルバノミラーの角度を変化させることで標本186におけるレーザ光のスポット位置をxy方向にスキャンする。走査部150の他の例はレゾナントスキャナ(共振型スキャナ)である。レゾナントスキャナは、共振により動作する共振ミラー(レゾナントミラー)を有する。レゾナントスキャナは、例えば、主走査用のレゾナントミラーと、副走査用のガルバノミラーを備える。レゾナントスキャナを用いることで、より高速なスキャンをすることができる。 The scanning unit 150 is disposed at a position substantially conjugate with the pupil plane of the objective lens 164. For this reason, it is desirable that a lens pair 173 be installed between the scanning unit 150 and the dichroic mirror 162. An example of the scanning unit 150 is a galvano scanner, which includes a pair of galvanometer mirrors that can rotate in directions orthogonal to each other. The spot position of the laser beam on the specimen 186 is scanned in the xy direction by changing the angles of these galvanometer mirrors. Another example of the scanning unit 150 is a resonant scanner (resonance type scanner). The resonant scanner has a resonant mirror (resonant mirror) that operates by resonance. The resonant scanner includes, for example, a main scanning resonant mirror and a sub scanning galvanometer mirror. By using a resonant scanner, it is possible to scan at higher speed.
 走査部150から出力されたレーザ光はダイクロイックミラー162を透過して、対物レンズ164に導かれる。対物レンズ164はレーザ光を標本186に集光する。 The laser beam output from the scanning unit 150 passes through the dichroic mirror 162 and is guided to the objective lens 164. The objective lens 164 focuses the laser beam on the sample 186.
 標本186の蛍光物質から生じた蛍光は対物レンズ164を透過し、ダイクロイックミラー162で反射し、光学フィルタ166によりポンプ光とプローブ光が除去される。蛍光はレンズペア172により対物レンズ瞳面とほぼ共役な位置に設置された受光部174に入射する。なお、ダイクロイックミラー162は、レンズペア173や走査部150よりも光源側に設置されても良い。 Fluorescence generated from the fluorescent material of the sample 186 passes through the objective lens 164, is reflected by the dichroic mirror 162, and the pump light and the probe light are removed by the optical filter 166. The fluorescence is incident on the light receiving unit 174 installed at a position substantially conjugate with the objective lens pupil plane by the lens pair 172. Note that the dichroic mirror 162 may be disposed closer to the light source than the lens pair 173 and the scanning unit 150.
 検出部136は、受光部174およびロックインアンプ134を備える。受光部174は対物レンズ164の瞳面とほぼ共役な位置に配される。受光部174の一例は、光電子増倍管である。受光部174は光電変換によって、受光した蛍光の強度に応じた電気信号を出力する。受光部174の出力はロックインアンプ134に入力されてロックイン検出される。ロックイン検出については後述する。 The detection unit 136 includes a light receiving unit 174 and a lock-in amplifier 134. The light receiving unit 174 is disposed at a position substantially conjugate with the pupil plane of the objective lens 164. An example of the light receiving unit 174 is a photomultiplier tube. The light receiving unit 174 outputs an electrical signal corresponding to the intensity of the received fluorescence by photoelectric conversion. The output of the light receiving unit 174 is input to the lock-in amplifier 134 to detect lock-in. The lock-in detection will be described later.
 入力部220、表示部224、記憶部226および制御部130は例えばPC等であってもよい。入力部220は、ユーザから制御部130への入力を受け付けるものであって、例えば、キーボード、タッチパネル、マウス等である。表示部224は、例えば、GUI、検出結果、観察画像を表示するディスプレイである。記憶部226は、顕微鏡システム10を制御するプログラム、パラメータ等、および、検出結果、観察画像等が記憶される。 The input unit 220, the display unit 224, the storage unit 226, and the control unit 130 may be, for example, a PC. The input unit 220 receives input from the user to the control unit 130, and is, for example, a keyboard, a touch panel, a mouse, or the like. The display unit 224 is, for example, a display that displays a GUI, a detection result, and an observation image. The storage unit 226 stores a program for controlling the microscope system 10, parameters, and the like, detection results, observation images, and the like.
 制御部130は、周波数制御部229、スキャナ制御部228および画像生成部222を有する。周波数制御部229はユーザからの入力により、または、蛍光物質に基づいて自動で、発振器132に発生させる発振周波数を制御する。スキャナ制御部228は、走査部150を制御する。画像生成部222は検出部136の検出結果に基づいて画像を生成し、表示部224に表示する。 The control unit 130 includes a frequency control unit 229, a scanner control unit 228, and an image generation unit 222. The frequency control unit 229 controls the oscillation frequency generated by the oscillator 132 based on an input from the user or automatically based on the fluorescent material. The scanner control unit 228 controls the scanning unit 150. The image generation unit 222 generates an image based on the detection result of the detection unit 136 and displays the image on the display unit 224.
 図2は、ポンプ光、プローブ光および検出波長領域の波長の関係を示す概念図である。図2において破線は特定の蛍光物質の吸収帯を示し、実線は当該蛍光物質の蛍光帯を示す。ポンプ光の波長は吸収帯に含まれるように設定され、プローブ光は蛍光帯の強度のピークよりも長い波長に設定されることが好ましい。これにより、蛍光帯の強度のピークを含む波長領域を、受光部174で蛍光を検出する波長領域である検出波長領域とすることができる。 FIG. 2 is a conceptual diagram showing the relationship between the pump light, the probe light, and the wavelength in the detection wavelength region. In FIG. 2, a broken line indicates an absorption band of a specific fluorescent material, and a solid line indicates a fluorescent band of the fluorescent material. The wavelength of the pump light is preferably set to be included in the absorption band, and the probe light is preferably set to a wavelength longer than the intensity peak of the fluorescent band. Thereby, the wavelength region including the intensity peak of the fluorescent band can be set as a detection wavelength region which is a wavelength region in which the light receiving unit 174 detects fluorescence.
 図3は蛍光の強度の時間変化を説明する概念図である。図4はロックイン検出における復調周波数を説明する概念図である。 FIG. 3 is a conceptual diagram for explaining temporal changes in fluorescence intensity. FIG. 4 is a conceptual diagram illustrating a demodulation frequency in lock-in detection.
 ポンプ光、プローブ光は時間的に互いに異なる周波数f1,f2で強度変調されており、それぞれの時間波形をIPump,IProbeとすると、以下のように表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
ここで、I1,I2はポンプ光, プローブ光の強度であり、m,nは変調のコントラストである。誘導放出はIPumpとIProbeの積に比例するので、誘導放出によって減衰した蛍光(減衰蛍光信号)IRFもIPumpとIProbeの積に比例し、以下のように表せる。
Figure JPOXMLDOC01-appb-M000003
The pump light and the probe light are intensity-modulated at frequencies f1 and f2 that are temporally different from each other. If the time waveforms are I Pump and I Probe , they are expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Here, I1 and I2 are the intensity of pump light and probe light, and m and n are modulation contrasts. Since stimulated emission is proportional to the product of I Pump and I Probe , the fluorescence attenuated by stimulated emission (decayed fluorescence signal) I RF is also proportional to the product of I Pump and I Probe and can be expressed as follows.
Figure JPOXMLDOC01-appb-M000003
 式(1.3)の時間波形を図3に示す(最大値で規格化してある)。受光部174で取得される蛍光信号には、複数の周波数が含まれるので、時間波形は図3のようになる。このうち、ポンプ光が励起する蛍光は周波数f1で、プローブ光が励起する蛍光は周波数f2で生じるので、式(1.3)より、f1-f2あるいはf1+f2で変動する成分を検出することで、ポンプ光単独およびプローブ光単独で励起された蛍光を除去して、減衰蛍光信号のみを検出できる。そこで、検出部136において、ロックイン検出技術を用いて復調することで、所望の周波数に同期した信号のみを検出する。 The time waveform of equation (1.3) is shown in FIG. 3 (normalized with the maximum value). Since the fluorescence signal acquired by the light receiving unit 174 includes a plurality of frequencies, the time waveform is as shown in FIG. Among these, since the fluorescence excited by the pump light is generated at the frequency f1 and the fluorescence excited by the probe light is generated at the frequency f2, the pump light is detected by detecting the component that fluctuates at f1-f2 or f1 + f2 from the equation (1.3). Only the attenuated fluorescence signal can be detected by removing the fluorescence excited by the single light and the probe light alone. Therefore, the detection unit 136 detects only a signal synchronized with a desired frequency by performing demodulation using a lock-in detection technique.
 式(1.3)に含まれる差周波(f1-f2)と和周波(f1+f2)の時間波形を図4に示す。差周波よりも和周波の方が周波数が高いので、周期も短くなる。ロックイン検出では、この復調周波数の周期が最小の積算時間を決めるので、周期が短いほど高速検出が可能となる。 FIG. 4 shows time waveforms of the difference frequency (f1-f2) and the sum frequency (f1 + f2) included in the equation (1.3). Since the sum frequency is higher than the difference frequency, the cycle is also shortened. In the lock-in detection, since the period of this demodulation frequency determines the minimum integration time, the shorter the period, the faster the detection becomes possible.
 そこで、本実施形態では、和周波で復調する。より具体的には発振器132から和周波の復調周波数がロックインアンプ134に入力される。ロックインアンプ134は復調周波数に同期する信号を抽出する。走査部150で標本186を走査しつつ、ロックインアンプ134でピクセルごとにロックイン検出を実施し、当該ピクセルの位置情報に対応付けて記憶部226に記憶する。画像生成部222は、記憶部226から位置情報に対応付けられた検出結果を読み出して、減衰蛍光の観察画像を生成し、表示部224に表示する。 Therefore, in this embodiment, demodulation is performed at the sum frequency. More specifically, the sum demodulation frequency is input from the oscillator 132 to the lock-in amplifier 134. The lock-in amplifier 134 extracts a signal synchronized with the demodulation frequency. While the scanning unit 150 scans the sample 186, the lock-in amplifier 134 performs lock-in detection for each pixel, and stores it in the storage unit 226 in association with the position information of the pixel. The image generation unit 222 reads the detection result associated with the position information from the storage unit 226, generates an observation image of attenuated fluorescence, and displays it on the display unit 224.
 ここで、誘導放出現象が非線形現象なので、減衰蛍光の信号発生領域がポンプ光とプローブ光の集光スポットの強度の高い局所領域に制限される。これにより、空間分解能の向上が可能となる。 Here, since the stimulated emission phenomenon is a non-linear phenomenon, the signal generation region of the attenuated fluorescence is limited to a local region where the intensity of the condensed spot of the pump light and the probe light is high. Thereby, the spatial resolution can be improved.
 図5は、走査部150のスキャン速度と検出の速度を説明する概念図である。ガルバノスキャナにおいて主走査(図中x方向)のスキャンに要する時間はレゾナントスキャナと比較して長いので、図5の(a)に示すように差周波の復調で検出するのにかかる時間の間にビームの位置はほぼ変わらないと考えてよい。しかしながら、レゾナントスキャナにおいて主走査(図中x方向)のスキャンに要する時間はガルバノスキャナと比較して短いので差周波の復調で検出するのにかかる時間の間に、図5の(b)に示すようにビームの位置が大きく変わってしまい正確な画像取得が困難になるというおそれがある。しかしながら、和周波で復調した場合、復調の周波数が高いので検出にかかる時間も短くなり、レゾナントスキャナを用いても所定位置における信号検出に必要な所定時間の間にビームの位置はほぼ変わらないと考えてよい。したがって、レゾナントスキャナを用いて高速で検出しつつ、正確な画像取得をすることができる。 FIG. 5 is a conceptual diagram for explaining the scanning speed and detection speed of the scanning unit 150. In the galvano scanner, the time required for scanning in the main scanning (in the x direction in the figure) is longer than that in the resonant scanner. Therefore, as shown in FIG. It can be considered that the position of the beam is almost unchanged. However, since the time required for scanning in the main scan (x direction in the figure) in the resonant scanner is shorter than that in the galvano scanner, the time required for detection by demodulation of the difference frequency is shown in FIG. As described above, there is a possibility that the position of the beam is greatly changed and it is difficult to obtain an accurate image. However, when demodulating at the sum frequency, the time required for detection is shortened because the demodulation frequency is high, and even if a resonant scanner is used, the position of the beam does not change during the predetermined time required for signal detection at a predetermined position. You can think about it. Therefore, it is possible to obtain an accurate image while detecting at high speed using a resonant scanner.
 図6は、他の走査部151の例を示す。走査部151は、レゾナントスキャナ152、ガルバノスキャナ153および一対のミラー154、155を有する。一対のミラー154、155はそれぞれ図中矢印の方向に移動可能に設けられており、これらの位置に基づいて、レゾナントスキャナ152、ガルバノスキャナ153のいずれを用いるかが選択される。 FIG. 6 shows an example of another scanning unit 151. The scanning unit 151 includes a resonant scanner 152, a galvano scanner 153, and a pair of mirrors 154 and 155. The pair of mirrors 154 and 155 are provided so as to be movable in the directions of the arrows in the figure, and based on these positions, it is selected which of the resonant scanner 152 and the galvano scanner 153 is used.
 図6は、レゾナントスキャナ152が選択された状態が示されている。この場合、ダイクロイックミラー144から出射される光の光路上にミラー154が配され、レゾナントスキャナ152から出射される光の光路上にミラー155が配されている。これにより、ミラー154で反射された光はレゾナントスキャナ152に入射する。レゾナントスキャナ152で所定の方向に偏向された光はミラー155で反射されて、ダイクロイックミラー162を透過して、対物レンズ164に入射する。 FIG. 6 shows a state where the resonant scanner 152 is selected. In this case, the mirror 154 is disposed on the optical path of the light emitted from the dichroic mirror 144, and the mirror 155 is disposed on the optical path of the light emitted from the resonant scanner 152. Thereby, the light reflected by the mirror 154 enters the resonant scanner 152. The light deflected in the predetermined direction by the resonant scanner 152 is reflected by the mirror 155, passes through the dichroic mirror 162, and enters the objective lens 164.
 一方、ガルバノスキャナ153が選択される場合には、ダイクロイックミラー144から出射される光の光路上からミラー154が退避するとともに、ガルバノスキャナ153とダイクロイックミラー162との間からミラー155が退避する。これにより、ガルバノスキャナ153に光が入射し、ガルバノスキャナ153で偏向された光がダイクロイックミラー162を透過して、対物レンズ164に入射する。 On the other hand, when the galvano scanner 153 is selected, the mirror 154 is retracted from the optical path of the light emitted from the dichroic mirror 144 and the mirror 155 is retracted from between the galvano scanner 153 and the dichroic mirror 162. As a result, light enters the galvano scanner 153, and light deflected by the galvano scanner 153 passes through the dichroic mirror 162 and enters the objective lens 164.
 走査部151によれば、用途に応じてレゾナントスキャナ152とガルバノスキャナ153を使い分けることができる。なお、一対のミラー154、155の位置を移動させる手段は、例えばリニアモーターが挙げられるが、これに限られずそれぞれが対応するターレット上に配され、当該ターレットの回転によりミラー154、155が移動してもよい。一対のミラー154、155に代えて、一対のダイクロイックミラーを配することにより、当該一対のダイクロイックミラーを反射する波長の光に対してはレゾナントスキャナ152を用い、当該一対のダイクロイックミラーを透過する波長の光に対してガルバノスキャナ153を用いることができる。なお、レゾナントスキャナ152とガルバノスキャナ153の位置は図6と逆でもよい。 According to the scanning unit 151, the resonant scanner 152 and the galvano scanner 153 can be used properly according to the application. The means for moving the position of the pair of mirrors 154 and 155 includes, for example, a linear motor, but is not limited thereto, and each of them is arranged on a corresponding turret, and the mirrors 154 and 155 move by rotation of the turret. May be. By providing a pair of dichroic mirrors instead of the pair of mirrors 154 and 155, the resonant scanner 152 is used for light having a wavelength that reflects the pair of dichroic mirrors, and the wavelength that passes through the pair of dichroic mirrors. The galvano scanner 153 can be used with respect to the light. The positions of the resonant scanner 152 and the galvano scanner 153 may be opposite to those in FIG.
 図7は、さらに他の走査部156の例を示す。図7において図6と同じ構成については同じ番号を付して説明を省略する。 FIG. 7 shows another example of the scanning unit 156. In FIG. 7, the same components as those of FIG.
 走査部156は、走査部151の一対のミラー154、155に代えて、それらが一体化したミラー157を有する。当該ミラー157は紙面に垂直な方向に移動可能に設けられる。ここで図7の状態は図6の状態に対応しており、ミラー157によって光が反射されることにより、レゾナントスキャナ152が用いられる状態が示されている。一方、図7の状態からミラー157が紙面に垂直な方向に移動して、ダイクロイックミラー144とガルバノスキャナ153との間の光路、および、ガルバノスキャナ153とダイクロイックミラー162との間の光路から同時に退避することで、ガルバノスキャナ153が用いられる状態となる。 The scanning unit 156 includes a mirror 157 in which they are integrated instead of the pair of mirrors 154 and 155 of the scanning unit 151. The mirror 157 is provided to be movable in a direction perpendicular to the paper surface. Here, the state of FIG. 7 corresponds to the state of FIG. 6, and shows a state in which the resonant scanner 152 is used when light is reflected by the mirror 157. On the other hand, the mirror 157 moves in the direction perpendicular to the paper surface from the state of FIG. As a result, the galvano scanner 153 is used.
 図8は他の顕微鏡システム12の構成を示す図である。顕微鏡システム12は顕微鏡システム10と同様に減衰蛍光顕微鏡として用いることができるとともに、共焦点顕微鏡としても用いることができる。顕微鏡システム12において顕微鏡システム10と同じ構成については同じ参照番号を付して説明を省略する。 FIG. 8 is a diagram showing the configuration of another microscope system 12. Similar to the microscope system 10, the microscope system 12 can be used as an attenuated fluorescence microscope, and can also be used as a confocal microscope. In the microscope system 12, the same components as those in the microscope system 10 are denoted by the same reference numerals and description thereof is omitted.
 顕微鏡システム12において、蛍光を反射して、ポンプ光およびプローブ光を透過するダイクロイックミラー402は、ダイクロイックミラー144と走査部150との間の光路上に配される。さらに、ダイクロイックミラー402で反射された光が入射する、光学フィルタ404、レンズ406、受光部410を有する。光学フィルタ404および受光部410は、顕微鏡システム10の光学フィルタ166および受光部174と同様の構成であってよい。顕微鏡システム12はさらに開口部を有する開口部材の一例としてピンホール408を有する。ピンホール408は、標本と共役の位置に配置される。レンズ406はピンホール408に光を集光する。受光部410はピンホール408に近接して設置される。あるいは、不図示のレンズにより、ピンホールと略共役位置に受光部が設置される構成としても良い。 In the microscope system 12, a dichroic mirror 402 that reflects fluorescence and transmits pump light and probe light is disposed on an optical path between the dichroic mirror 144 and the scanning unit 150. Furthermore, the optical filter 404, the lens 406, and the light-receiving part 410 which the light reflected by the dichroic mirror 402 injects are provided. The optical filter 404 and the light receiving unit 410 may have the same configuration as the optical filter 166 and the light receiving unit 174 of the microscope system 10. The microscope system 12 further includes a pinhole 408 as an example of an opening member having an opening. The pinhole 408 is arranged at a position conjugate with the specimen. The lens 406 collects light in the pinhole 408. The light receiving unit 410 is installed in the vicinity of the pinhole 408. Or it is good also as a structure by which a light-receiving part is installed in a pinhole and a substantially conjugate position with a lens not shown.
 上記構成により、標本186からの蛍光は走査部150を通り、ダイクロイックミラー402で反射されて、光学フィルタ404、レンズ406およびピンホール408を介して受光部410で受光される。これにより、走査部150により標本186の観察位置が変わっても、走査部150でデスキャンされて、ピンホール408でのスポット位置は不変である。ピンホール408は穴の大きさが可変となっており、詳細は後述する。上記構成により、ピンホール408は受光部410とダイクロイックミラー402との間に設けられているともいえる。また、ピンホール408は受光部410と走査部150との間に設けられているともいえる。さらには、ピンホール408は受光部410と対物レンズ164との間に配されているともいえる。 With the above configuration, the fluorescence from the sample 186 passes through the scanning unit 150, is reflected by the dichroic mirror 402, and is received by the light receiving unit 410 via the optical filter 404, the lens 406, and the pinhole 408. Thereby, even if the observation position of the sample 186 is changed by the scanning unit 150, the scanning unit 150 descans and the spot position in the pinhole 408 remains unchanged. The pinhole 408 has a variable hole size, and details will be described later. With the above configuration, it can be said that the pinhole 408 is provided between the light receiving unit 410 and the dichroic mirror 402. It can also be said that the pinhole 408 is provided between the light receiving unit 410 and the scanning unit 150. Furthermore, it can be said that the pinhole 408 is disposed between the light receiving unit 410 and the objective lens 164.
 顕微鏡システム12はさらに、レーザ光源102、104の光の波長を制御する波長制御部230を有する。 The microscope system 12 further includes a wavelength control unit 230 that controls the wavelength of light from the laser light sources 102 and 104.
 図9は顕微鏡システム12で用いられるGUI画面300の一例である。GUI画面300は表示部224に表示され、入力部220を用いてユーザからの入力を受け付ける。 FIG. 9 is an example of a GUI screen 300 used in the microscope system 12. The GUI screen 300 is displayed on the display unit 224 and accepts input from the user using the input unit 220.
 チェックボックス302は共焦点観察の画像を取得するか否かの入力欄である。チェックボックス304は共焦点観察においてポンプ光を変調することを指定する入力欄であり、チェックボックス306は変調しないことを指定する入力欄である。 A check box 302 is an input field for determining whether or not to acquire an image for confocal observation. The check box 304 is an input field for designating that the pump light is modulated in the confocal observation, and the check box 306 is an input field for designating that the pump light is not modulated.
 入力欄308はポンプ光の変調周波数の入力欄であり、MHzを単位とした数字の目盛りとともに、指定された変調周波数が縦の太線で示されている。入力欄310はピンホールの大きさを指定する入力欄である。入力欄310の「OPEN」は穴の大きさが最大であることを示す。さらに、「1」をエアリーサイズとしたときの大きさの目盛りとともに、指定された穴の大きさが縦の太線で示されている。ここで、エアリーサイズとは、波長と開口数で決まる回折限界の光スポットの大きさで、ピンホール径を規格化した値である。 The input column 308 is an input column for the modulation frequency of the pump light, and the designated modulation frequency is indicated by a thick vertical line together with a numerical scale in units of MHz. The input field 310 is an input field for specifying the size of the pinhole. “OPEN” in the input field 310 indicates that the size of the hole is the maximum. Further, the size of the designated hole is indicated by a vertical thick line along with a scale of “1” as an Airy size. Here, Airy size is the size of a diffraction-limited light spot determined by the wavelength and the numerical aperture, and is a value obtained by standardizing the pinhole diameter.
 さらに、チェックボックス312は、共焦点観察のタイムラプス画像を取得するか否かの入力欄である。入力欄314はタイムラプスの時間間隔の入力欄である。 Further, the check box 312 is an input field for determining whether or not to acquire a time-lapse image for confocal observation. An input field 314 is an input field for time lapse time intervals.
 チェックボックス316は減衰蛍光観察の画像を取得するか否かの入力欄である。入力欄318はポンプ光の変調周波数の入力欄であり、MHzを単位とした数字の目盛りとともに、指定された変調周波数が縦の太線で示されている。入力欄320はプローブ光の変調周波数の入力欄であり、MHzを単位とした数字の目盛りとともに、指定された変調周波数が縦の太線で示されている。 Check box 316 is an input field for determining whether or not to acquire an image of attenuated fluorescence observation. The input column 318 is an input column for the modulation frequency of the pump light, and the designated modulation frequency is indicated by a thick vertical line along with a numerical scale in units of MHz. The input column 320 is an input column for the modulation frequency of the probe light, and the designated modulation frequency is indicated by a vertical thick line together with a numerical scale in units of MHz.
 入力欄322は減衰蛍光観察におけるピンホール408の穴の大きさの入力欄であって、入力欄310と同様の構成である。また、チェックボックス324および入力欄326は減衰蛍光観察におけるタイムラプスに関する入力欄であり、チェックボックス312、入力欄314と同様の構成である。 The input field 322 is an input field for the size of the pinhole 408 in the attenuated fluorescence observation, and has the same configuration as the input field 310. A check box 324 and an input field 326 are input fields related to time lapse in attenuated fluorescence observation, and have the same configuration as the check box 312 and the input field 314.
 GUI画面300には、共焦点の観察画像330と減衰蛍光の観察画像332とが並べて表示される。これに代えて、重ねて表示されてもよい。また、互いにリンク付けされることで、共焦点の観察画像330の対象領域をクリックすると減衰蛍光の観察画像332が表示されるようにしてもよい。さらに、共焦点観察のタイムラプスによる画像取得が指定されている場合には、タイムラプス画像334が時間順に並べて表示される。同様に、減衰蛍光観察のタイムラプスによる画像取得が指定されている場合には、タイムラプス画像335が時間順に並べて表示される。 On the GUI screen 300, a confocal observation image 330 and an attenuated fluorescence observation image 332 are displayed side by side. Instead of this, they may be displayed in an overlapping manner. Further, by linking each other, an observation image 332 of attenuated fluorescence may be displayed when a target region of the confocal observation image 330 is clicked. Furthermore, when image acquisition by confocal observation time lapse is designated, time lapse images 334 are displayed side by side in time order. Similarly, when image acquisition by time lapse of attenuated fluorescence observation is designated, time lapse images 335 are displayed side by side in time order.
 図10は顕微鏡システム12の動作(S10)の一例を示すフローチャートである。 FIG. 10 is a flowchart showing an example of the operation (S10) of the microscope system 12.
 フローチャートS10において、制御部130は、GUI画面300のチェックボックス316の入力に基づいて、減衰蛍光観察の画像を取得するかどうかを判断する(S100)。ステップS100の判断がYesの場合に、制御部130は入力欄318、320の入力に基づいて、減衰蛍光観察のポンプ光およびプローブ光の変調周波数を設定する(S102)。 In the flowchart S10, the control unit 130 determines whether to acquire an image of attenuated fluorescence observation based on the input of the check box 316 of the GUI screen 300 (S100). When the determination in step S100 is Yes, the control unit 130 sets the modulation frequencies of the pump light and the probe light for attenuated fluorescence observation based on the input in the input fields 318 and 320 (S102).
 制御部130はピンホール408の径を設定する(S104)。減衰蛍光観察時においてピンホール408はデフォルトで開放、すなわち図9の入力欄322においてデフォルトで「OPEN」が設定されている。ユーザが入力欄322の値をデフォルトから変更した場合には、変更された値に基づいてピンホール408の大きさが設定される。減衰蛍光観察時において、ピンホール408を開放することで、ピンホール共役面である焦点面から生じたにも関わらず散乱等により結像関係が乱されてしまった蛍光も検出することができるので、より多くの光子を検出することができ、結果として信号対雑音比の向上が可能となる。 The control unit 130 sets the diameter of the pinhole 408 (S104). During the attenuated fluorescence observation, the pinhole 408 is opened by default, that is, “OPEN” is set by default in the input field 322 of FIG. When the user changes the value of the input field 322 from the default, the size of the pinhole 408 is set based on the changed value. In the decay fluorescence observation, by opening the pinhole 408, it is possible to detect the fluorescence whose imaging relation is disturbed due to scattering or the like despite being generated from the focal plane which is the pinhole conjugate plane. More photons can be detected, and as a result, the signal-to-noise ratio can be improved.
 以上の設定に基づいて、減衰蛍光観察の画像が取得される(S106)。この場合、復調周波数は、差周波であってもよいし、和周波であってもよいが、レゾナントスキャナを使用する場合には和周波であることが好ましい。減衰蛍光観察の画像を取得する方法は、顕微鏡システム10で説明したものと同一であり、説明を省略する。 Based on the above settings, an image of attenuated fluorescence observation is acquired (S106). In this case, the demodulation frequency may be a difference frequency or a sum frequency, but is preferably a sum frequency when a resonant scanner is used. The method for acquiring the image of attenuated fluorescence observation is the same as that described in the microscope system 10, and the description thereof is omitted.
 ステップS106の後、または、ステップS100の判断がNoの場合に、共焦点観察の画像を取得するかどうかが、チェックボックス302の入力に基づいて判断される(S108)。共焦点観察の画像を取得すると判断された場合に(S108:Yes)、チェックボックス304、306に基づいて共焦点観察に用いられるポンプ光を変調するか否かが判断され(S112)、変調する場合には(S112:Yes)、入力欄308に入力された変調周波数が設定される(S114)。 After step S106 or when the determination in step S100 is No, whether or not to acquire the confocal observation image is determined based on the input of the check box 302 (S108). When it is determined that a confocal observation image is acquired (S108: Yes), it is determined whether or not the pump light used for confocal observation is modulated based on the check boxes 304 and 306 (S112) and is modulated. In this case (S112: Yes), the modulation frequency input in the input field 308 is set (S114).
 ステップS114の後にまたはステップS112でポンプ光を変調しない場合に(S112:No)、ユーザからの入力欄310への入力に基づいてピンホール408の径が設定される(S116)。共焦点観察におけるピンホールの径は減衰蛍光観察におけるピンホールの径より小さいことが好ましい。 After step S114 or when pump light is not modulated in step S112 (S112: No), the diameter of the pinhole 408 is set based on the input to the input field 310 from the user (S116). The diameter of the pinhole in confocal observation is preferably smaller than the diameter of the pinhole in attenuated fluorescence observation.
 上記設定に基づいて共焦点観察の画像が取得される(S118)。より詳しくは、ポンプ光をON状態または強度変調し、プローブ光をOFF状態にして、走査部150で標本186を走査しつつ、ピクセルごと検出部136で蛍光を検出する。当該検出結果を位置情報に対応付けて記憶部226に記憶する。ポンプ光を強度変調した場合は、ロックインアンプにおいて、変調周波数でロックイン検出する。なお、ポンプ光をON状態とする場合(強度変調しない場合)には、ロックインアンプは不要であるので、受光部410の出力を画像生成部222に直接入力する構成とすることが望ましい。 The confocal observation image is acquired based on the above settings (S118). More specifically, the pump light is turned on or intensity-modulated, the probe light is turned off, the sample 186 is scanned by the scanning unit 150, and the fluorescence is detected by the detection unit 136 pixel by pixel. The detection result is stored in the storage unit 226 in association with the position information. When the intensity of the pump light is modulated, lock-in detection is performed at the modulation frequency in the lock-in amplifier. Note that when the pump light is turned on (when intensity modulation is not performed), a lock-in amplifier is not necessary, and thus it is desirable to directly input the output of the light receiving unit 410 to the image generation unit 222.
 画像生成部222は、記憶部226から位置情報に対応付けられた検出結果を読み出して、共焦点の観察画像330および減衰蛍光の観察画像332を生成し、表示部224に表示する(S120)。 The image generation unit 222 reads out the detection result associated with the position information from the storage unit 226, generates the confocal observation image 330 and the attenuated fluorescence observation image 332, and displays them on the display unit 224 (S120).
 さらに、チェックボックス312で共焦点観察のタイムラプス画像の取得を受け付けた場合に、顕微鏡システム12は入力欄314で設定された時間間隔で共焦点観察を実行してそれぞれの観察画像を生成する。同様に、チェックボックス324で減衰蛍光観察のタイムラプス画像の取得を受け付けた場合に、顕微鏡システム12は入力欄326で設定された時間間隔で減衰蛍光観察を実行してそれぞれの観察画像を生成する。 Furthermore, when the acquisition of the time-lapse image for confocal observation is received in the check box 312, the microscope system 12 performs confocal observation at the time interval set in the input field 314 and generates each observation image. Similarly, when the acquisition of the time-lapse image of the attenuated fluorescence observation is received by the check box 324, the microscope system 12 performs the attenuated fluorescence observation at the time interval set in the input field 326 and generates each observation image.
 なお、標本186の広い視野の画像を共焦点観察で取得し、共焦点観察の画像のうちの一部の領域を指定して減衰蛍光観察の画像を取得する構成としても良い。この場合、共焦点観察で画像を取得して、減衰蛍光観察に適した範囲が自動で選択されてもよい。 In addition, it is good also as a structure which acquires the image of the wide visual field of the sample 186 by confocal observation, and designates the one part area | region among the images of confocal observation, and acquires the image of attenuation fluorescence observation. In this case, an image may be acquired by confocal observation, and a range suitable for attenuated fluorescence observation may be automatically selected.
 図11は、共焦点観察に基づいて減衰蛍光観察の範囲を選択する動作(S30)のフローチャートである。まず、共焦点観察により画像が取得される(S300)。この場合に、図10の動作(S10)におけるステップS112からS118が実行される。次に、ユーザからの入力に基づいて減衰蛍光観察の範囲を自動選択するか否かが判断される(S302)。 FIG. 11 is a flowchart of an operation (S30) for selecting a range of attenuated fluorescence observation based on confocal observation. First, an image is acquired by confocal observation (S300). In this case, steps S112 to S118 in the operation (S10) of FIG. 10 are executed. Next, it is determined whether to automatically select the range of attenuated fluorescence observation based on the input from the user (S302).
 自動選択する場合には(S302:Yes)、共焦点画像を画像処理解析し、減衰蛍光観察に適した範囲を選択する。例えば、画像を微分フィルタ処理し、ピークが多く生じる領域を選択する。 In the case of automatic selection (S302: Yes), confocal images are subjected to image processing analysis and a range suitable for attenuated fluorescence observation is selected. For example, differential filtering is performed on the image, and a region where many peaks occur is selected.
 一方、自動選択しない場合には(S302:No)、ユーザからの指定に基づいて減衰蛍光観察の領域を設定する(S308)。この場合に、図9の共焦点の観察画像330上で領域指定を受け付けてもよい。 On the other hand, if automatic selection is not performed (S302: No), an area for attenuated fluorescence observation is set based on designation from the user (S308). In this case, region designation may be received on the confocal observation image 330 of FIG.
 ステップS304またはS308で設定された領域について、減衰蛍光観察を実行して観察画像を取得する(S306)。この場合に、図10の動作(S10)におけるステップS102からS106が実行される。 For the region set in step S304 or S308, attenuated fluorescence observation is executed to obtain an observation image (S306). In this case, steps S102 to S106 in the operation (S10) of FIG. 10 are executed.
 図12は、顕微鏡システム12において、共焦点観察をするか減衰蛍光観察をするかを自動選択する動作(S20)のフローチャートであり、図13は当該動作で用いられるGUI画面350を示す。 FIG. 12 is a flowchart of an operation (S20) for automatically selecting whether confocal observation or attenuated fluorescence observation is performed in the microscope system 12, and FIG. 13 shows a GUI screen 350 used in the operation.
 記憶部226には、蛍光物質の名称に対応付けて、観察の方法、例えば共焦点観察が好ましいか減衰蛍光観察が好ましいか、および、共焦点観察の場合のポンプ光の波長または減衰蛍光観察の場合のポンプ光およびプローブ光の波長が記憶されている。GUI画面350には、記憶部226に記憶されている蛍光物質の名称353がチェックボックス352とともに表示される。 The storage unit 226 associates the name of the fluorescent substance with the observation method, for example, whether confocal observation is preferable or attenuated fluorescence observation, and the wavelength of pump light in the case of confocal observation or attenuated fluorescence observation. In this case, the wavelengths of the pump light and the probe light are stored. On the GUI screen 350, the name 353 of the fluorescent substance stored in the storage unit 226 is displayed together with the check box 352.
 ユーザによるチェックボックス352へのチェックにより蛍光物質が選択される(S200)。制御部130は、選択された蛍光物質に応じて、記憶部226を参照して共焦点観察が好ましいか減衰蛍光観察が好ましいかを判断する(S202)。共焦点観察が好ましいと判断した場合には、GUI画面350においてポンプ光のボックス355に色が付き、制御部130は記憶部226を参照して当該蛍光物質に対応したポンプ光の波長を決定し、表示欄354に表示する(S204)。この場合、プローブ光のボックス357は白色であって、波長の表示欄356はグレーアウトされる。減衰蛍光観察が好ましいと判断した場合には、GUI画面350においてポンプ光のボックス355に色が付き、制御部130は記憶部226を参照して当該蛍光物質に対応したポンプ光の波長を決定して表示欄354に表示するとともに、プローブ光のボックス357にも色が付いて、当該蛍光物質に対応したプローブ光の波長を決定し表示欄356に表示する(S204)。いずれの場合も、表示欄358に蛍光物質の吸収帯、蛍光帯、光源の波長および検出波長領域の関係が図示される(S206)。 The fluorescent material is selected by checking the check box 352 by the user (S200). The control unit 130 determines whether confocal observation is preferable or attenuated fluorescence observation is preferable with reference to the storage unit 226 according to the selected fluorescent substance (S202). When it is determined that confocal observation is preferable, the pump light box 355 is colored on the GUI screen 350, and the control unit 130 refers to the storage unit 226 to determine the wavelength of the pump light corresponding to the fluorescent substance. Is displayed in the display field 354 (S204). In this case, the probe light box 357 is white, and the wavelength display column 356 is grayed out. If it is determined that the attenuated fluorescence observation is preferable, the pump light box 355 is colored on the GUI screen 350, and the control unit 130 refers to the storage unit 226 to determine the wavelength of the pump light corresponding to the fluorescent material. The probe light box 357 is colored, and the wavelength of the probe light corresponding to the fluorescent material is determined and displayed in the display field 356 (S204). In either case, the display field 358 shows the relationship among the fluorescent material absorption band, the fluorescent band, the wavelength of the light source, and the detection wavelength region (S206).
 減衰蛍光観察が好ましいと判断された場合には、ユーザの実行の指示に基づき、波長制御部230がレーザ光源102、104の光の波長を設定する。さらに、周波数制御部229が発振器132に変調周波数を設定する。この場合に、図9のGUI画面300で変調周波数の入力を受け付けてもよいし、蛍光物質に変調周波数を対応付けて記憶部226に記憶しておき、蛍光物質の選択に伴って記憶部226を参照することにより制御部130が当該変調周波数を自動的に決定してもよい。上記設定に基づいて、図10のステップS102からS106と同様に減衰蛍光観察の画像が取得される。 When it is determined that the attenuated fluorescence observation is preferable, the wavelength control unit 230 sets the wavelength of the light from the laser light sources 102 and 104 based on the user's execution instruction. Further, the frequency control unit 229 sets the modulation frequency in the oscillator 132. In this case, the input of the modulation frequency may be received on the GUI screen 300 of FIG. 9, or the modulation frequency is associated with the fluorescent material and stored in the storage unit 226, and the storage unit 226 is selected along with the selection of the fluorescent material. The control unit 130 may automatically determine the modulation frequency by referring to FIG. Based on the above settings, an attenuated fluorescence observation image is acquired as in steps S102 to S106 of FIG.
 一方、共焦点観察が好ましいと判断された場合には、ユーザの実行の指示に基づき、波長制御部230がレーザ光源102の光の波長を設定する。上記設定に基づいて、図10のステップS112からS118と同様に共焦点観察の画像が取得される。 On the other hand, when it is determined that confocal observation is preferable, the wavelength control unit 230 sets the wavelength of the light from the laser light source 102 based on an instruction to be executed by the user. Based on the above settings, confocal observation images are acquired as in steps S112 to S118 of FIG.
 図14は、さらに他の顕微鏡システム14の構成を示す図である。顕微鏡システム14において顕微鏡システム10、12と同じ構成については同じ参照番号を付して説明を省略する。 FIG. 14 is a diagram showing the configuration of still another microscope system 14. In the microscope system 14, the same components as those of the microscope systems 10 and 12 are denoted by the same reference numerals, and description thereof is omitted.
 顕微鏡システム14は、顕微鏡システム10と顕微鏡システム12とを組み合わせたものに相当する。すなわち、対物レンズ164と走査部150との間の光路上にダイクロイックミラー162が配され、ダイクロイックミラー162で反射された蛍光が入射する光学フィルタ166、レンズペア172および受光部174が設けられる。さらに、走査部150とダイクロイックミラー144との間の光路上にダイクロイックミラー402が配され、ダイクロイックミラー402で反射された蛍光が入射する光学フィルタ404、レンズ406、ピンホール408および受光部410を有する。 The microscope system 14 corresponds to a combination of the microscope system 10 and the microscope system 12. That is, a dichroic mirror 162 is disposed on the optical path between the objective lens 164 and the scanning unit 150, and an optical filter 166, a lens pair 172, and a light receiving unit 174 on which fluorescence reflected by the dichroic mirror 162 is incident are provided. Further, a dichroic mirror 402 is disposed on the optical path between the scanning unit 150 and the dichroic mirror 144, and includes an optical filter 404, a lens 406, a pinhole 408, and a light receiving unit 410 on which fluorescence reflected by the dichroic mirror 402 is incident. .
 受光部174で蛍光を受光する場合には、ダイクロイックミラー162を対物レンズ164と走査部150との間の光路上に進出させるとともに、ダイクロイックミラー402を走査部150とダイクロイックミラー144との間の光路上から退避させる。ダイクロイックミラー162で反射した蛍光を受光部174で受光する場合には、蛍光が通る光学素子が少ないのでより明るい信号を検出できる。よって、減衰蛍光観察に用いられることが好ましい。 When the light receiving unit 174 receives fluorescence, the dichroic mirror 162 is advanced on the optical path between the objective lens 164 and the scanning unit 150, and the dichroic mirror 402 is moved between the scanning unit 150 and the dichroic mirror 144. Evacuate from the street. When the light reflected by the dichroic mirror 162 is received by the light receiving unit 174, a brighter signal can be detected because there are few optical elements through which the fluorescence passes. Therefore, it is preferable to use for attenuated fluorescence observation.
 受光部410で蛍光を受光する場合には、ダイクロイックミラー162を対物レンズ164と走査部150との間の光路上から退避させるとともに、ダイクロイックミラー402を走査部150とダイクロイックミラー144との間の光路上に進出させる。ダイクロイックミラー402で反射した蛍光を受光部410で受光する場合には、走査部150によりデスキャンされる。よって、ピンホール408を用いる共焦点観察に用いられることが好ましい。 When fluorescence is received by the light receiving unit 410, the dichroic mirror 162 is retracted from the optical path between the objective lens 164 and the scanning unit 150, and the dichroic mirror 402 is moved between the scanning unit 150 and the dichroic mirror 144. Advance on the street. When the fluorescence reflected by the dichroic mirror 402 is received by the light receiving unit 410, it is descanned by the scanning unit 150. Therefore, it is preferably used for confocal observation using the pinhole 408.
 図15はさらに他の顕微鏡システム16の構成を示す図であり、図16は各蛍光物質の励起・蛍光スペクトル、ポンプ光、プローブ光および検出波長領域の波長の関係を示す。顕微鏡システム16は、多色の蛍光による減衰蛍光観察に用いられる。例えば、顕微鏡システム16は、蛍光物質が二種類であって、ポンプ光が共通でプローブ光が異なる場合に用いられる。顕微鏡システム16において顕微鏡システム12と同じ構成については同じ参照番号を付して説明を省略する。 15 is a diagram showing the configuration of still another microscope system 16, and FIG. 16 shows the relationship between the excitation / fluorescence spectrum, pump light, probe light, and wavelength of the detection wavelength region of each fluorescent substance. The microscope system 16 is used for attenuated fluorescence observation with multicolor fluorescence. For example, the microscope system 16 is used when there are two types of fluorescent materials, the pump light is common, and the probe light is different. In the microscope system 16, the same components as those in the microscope system 12 are denoted by the same reference numerals and description thereof is omitted.
 顕微鏡システム16は、第1のプローブ光用のレーザ光源104に加えて、第2のプローブ光用のレーザ光源500と、第2のプローブ光と第1のプローブ光とを合波するダイクロイックミラー502とをさらに有する。ダイクロイックミラー106は、ポンプ光を第1および第2のプローブ光に合波する。図16に示すように、ポンプ光の波長は第1の蛍光物質の吸収スペクトルCと第2の蛍光物質の吸収スペクトルDとの共通部分にあり、両方の蛍光物質を励起する。第1のプローブ光の波長は第1の蛍光物質の蛍光スペクトルA内にあり、第1の蛍光物質において誘導放出を誘起する。第2のプローブ光の波長は第2の蛍光物質の蛍光スペクトルB内にあり、第2の蛍光物質において誘導放出を誘起する。ストークスシフト(吸収スペクトルと蛍光スペクトルの波長差)の大きな蛍光物質を用いてポンプ光を共通にすることで、光源数を減らして装置構成を簡便にすることができる。なお、標本186には第1および第2の蛍光物質が含まれている。 The microscope system 16 includes a laser light source 500 for the second probe light in addition to the laser light source 104 for the first probe light, and a dichroic mirror 502 that combines the second probe light and the first probe light. And further. The dichroic mirror 106 combines the pump light with the first and second probe lights. As shown in FIG. 16, the wavelength of the pump light is in the common part of the absorption spectrum C of the first fluorescent material and the absorption spectrum D of the second fluorescent material, and excites both fluorescent materials. The wavelength of the first probe light is in the fluorescence spectrum A of the first fluorescent material, and induces stimulated emission in the first fluorescent material. The wavelength of the second probe light is in the fluorescence spectrum B of the second fluorescent material, and induces stimulated emission in the second fluorescent material. By using a fluorescent material having a large Stokes shift (wavelength difference between the absorption spectrum and the fluorescence spectrum) and making the pump light common, the number of light sources can be reduced and the apparatus configuration can be simplified. Note that the specimen 186 contains first and second fluorescent substances.
 AOTF114はドライバ112から各光に応じた駆動電圧が印加されており、ポンプ光をON状態とし、第1のプローブ光を周波数f2で強度変調し、第2のプローブ光を周波数f3で強度変調する。AOTF114で回折した光のうち、ポンプ光はダイクロイックミラー141を透過するとともに、第1および第2のプローブ光はダイクロイックミラー141で反射される。ポンプ光はAOM124で周波数f1で強度変調される。一方、第1および第2のプローブ光はAOM124を迂回するようにミラー142、143で反射されてダイクロイックミラー144でポンプ光と合波される。ポンプ光、第1のプローブ光および第2のプローブ光は、ダイクロイックミラー402を透過し、走査部150を経て、対物レンズ164により標本186に集光される。周波数f1、f2、f3は互いに異なるように設定される。 A drive voltage corresponding to each light is applied from the driver 112 to the AOTF 114, the pump light is turned on, the intensity of the first probe light is modulated at the frequency f2, and the intensity of the second probe light is modulated at the frequency f3. . Of the light diffracted by the AOTF 114, the pump light passes through the dichroic mirror 141, and the first and second probe lights are reflected by the dichroic mirror 141. The pump light is intensity-modulated by the AOM 124 at the frequency f1. On the other hand, the first and second probe lights are reflected by the mirrors 142 and 143 so as to bypass the AOM 124 and are combined with the pump light by the dichroic mirror 144. The pump light, the first probe light, and the second probe light pass through the dichroic mirror 402, pass through the scanning unit 150, and are collected on the sample 186 by the objective lens 164. The frequencies f1, f2, and f3 are set to be different from each other.
 ポンプ光をIPump、第1のプローブ光をIProbe1、第2のプローブ光をIProbe2とすると、それぞれの時間波形は、下記の通り表される。
Figure JPOXMLDOC01-appb-M000004
なお、I1、I2、I3はそれぞれ、ポンプ光、第1のプローブ光、第2のプローブ光の光強度である。
The pump light I Pump, when the first probe light I Probe1, the second probe light and I probe2, each time the waveform is expressed as follows.
Figure JPOXMLDOC01-appb-M000004
Note that I1, I2, and I3 are the light intensities of the pump light, the first probe light, and the second probe light, respectively.
 顕微鏡システム16は、ダイクロイックミラー144と走査部150との間にダイクロイックミラー402を有する。ダイクロイックミラー402は、第1の蛍光物質からの蛍光を検出する波長領域(第1検出波長領域)および第2の蛍光物質からの蛍光を検出する波長領域(第2検出波長領域)を含む波長領域を反射する。 The microscope system 16 includes a dichroic mirror 402 between the dichroic mirror 144 and the scanning unit 150. The dichroic mirror 402 includes a wavelength region including a wavelength region (first detection wavelength region) for detecting fluorescence from the first fluorescent material and a wavelength region (second detection wavelength region) for detecting fluorescence from the second fluorescent material. Reflect.
 ダイクロイックミラー402により反射された光の光路上にはさらにダイクロイックミラー412が配される。ダイクロイックミラー412は、第1検出波長領域を含む波長領域を透過し、第2検出波長領域を含む波長領域を反射する。 A dichroic mirror 412 is further arranged on the optical path of the light reflected by the dichroic mirror 402. The dichroic mirror 412 transmits the wavelength region including the first detection wavelength region and reflects the wavelength region including the second detection wavelength region.
 ダイクロイックミラー412を透過した第1の蛍光物質からの蛍光は光学フィルタ404で第1検出波長領域以外の波長領域がカットされ、レンズ406を通って受光部410で受光される。受光部410で光電変換された受光信号はロックインアンプ134でロックイン検出される。受光部410とロックインアンプ134とが第1の検出部136を構成する。 Fluorescence from the first fluorescent material that has passed through the dichroic mirror 412 is cut in the wavelength region other than the first detection wavelength region by the optical filter 404 and is received by the light receiving unit 410 through the lens 406. The light-receiving signal photoelectrically converted by the light-receiving unit 410 is lock-in detected by the lock-in amplifier 134. The light receiving unit 410 and the lock-in amplifier 134 constitute a first detection unit 136.
 一方、ダイクロイックミラー412で反射した第2の蛍光物質からの蛍光は光学フィルタ414で第2検出波長領域以外の波長領域がカットされ、レンズ416を通って受光部420で検出される。受光部420で光電変換された受光信号はロックインアンプ135でロックイン検出される。受光部420とロックインアンプ135とが第2の検出部137を構成する。 On the other hand, the fluorescence from the second fluorescent material reflected by the dichroic mirror 412 is cut by the optical filter 414 in the wavelength region other than the second detection wavelength region, and detected by the light receiving unit 420 through the lens 416. The light receiving signal photoelectrically converted by the light receiving unit 420 is lock-in detected by the lock-in amplifier 135. The light receiving unit 420 and the lock-in amplifier 135 constitute a second detection unit 137.
 受光部410で受光される信号と、受光部420で受光される信号をそれぞれIRF1,IRF2とすると、
Figure JPOXMLDOC01-appb-M000005
 これより、ロックインアンプ134ではf1+f2で、ロックインアンプ135ではf1+f3で、それぞれ復調することが望ましい。
When the signal received by the light receiving unit 410 and the signal received by the light receiving unit 420 are respectively I RF1 and I RF2 ,
Figure JPOXMLDOC01-appb-M000005
Therefore, it is desirable to demodulate with f1 + f2 in the lock-in amplifier 134 and f1 + f3 with the lock-in amplifier 135, respectively.
 図16に示すように、一般的な多色観察において、第2検出波長領域では第1の蛍光物質から生じる蛍光も検出されてしまうため、蛍光のクロストークが課題になる。しかしながら、第2検出波長領域に混入する第1の蛍光物質からの減衰蛍光の信号は、周波数f1+f2で生じるのに対し、第2検出波長領域で取得したい第2の蛍光物質からの減衰蛍光の信号は周波数f1+f3で生じる。従って、第2検出波長領域の復調周波数をf1+f3とすることで、蛍光のクロストークを抑制することができる。このように、2つのプローブ光の変調周波数をそれぞれ異なる値に設定することによって、蛍光信号のクロストークを抑制することができるので、2色同時観察が可能となる。なお、ダイクロイックミラー412により、第1検出波長領域の蛍光が反射され、第2検出波長領域の蛍光が透過する構成としても良い。 As shown in FIG. 16, in general multicolor observation, since fluorescence generated from the first fluorescent material is also detected in the second detection wavelength region, crosstalk of fluorescence becomes a problem. However, the attenuated fluorescence signal from the first fluorescent material mixed in the second detection wavelength region is generated at the frequency f1 + f2, whereas the attenuated fluorescence signal from the second fluorescent material desired to be acquired in the second detection wavelength region. Occurs at frequency f1 + f3. Therefore, the crosstalk of the fluorescence can be suppressed by setting the demodulation frequency in the second detection wavelength region to f1 + f3. Thus, by setting the modulation frequencies of the two probe lights to different values, the crosstalk of the fluorescence signal can be suppressed, so that two-color simultaneous observation becomes possible. The dichroic mirror 412 may reflect the fluorescence in the first detection wavelength region and transmit the fluorescence in the second detection wavelength region.
 図17はさらに他の顕微鏡システム18の構成を示す図であり、図18は各蛍光物質の励起・蛍光スペクトル、ポンプ光、プローブ光および検出波長領域の波長の関係を示す。顕微鏡システム18も顕微鏡システム16と同様に、多色の蛍光による減衰蛍光観察に用いられる。例えば、顕微鏡システム18は、蛍光物質が二種類であって、プローブ光が共通でポンプ光が異なる場合に用いられる。顕微鏡システム18において顕微鏡システム16と同じ構成については同じ参照番号を付して説明を省略する。 FIG. 17 is a diagram showing the configuration of still another microscope system 18. FIG. 18 shows the relationship between the excitation / fluorescence spectrum, pump light, probe light, and wavelength of the detection wavelength region of each fluorescent substance. Similarly to the microscope system 16, the microscope system 18 is also used for attenuated fluorescence observation with multicolor fluorescence. For example, the microscope system 18 is used when there are two types of fluorescent materials, the probe light is common, and the pump light is different. In the microscope system 18, the same components as those in the microscope system 16 are denoted by the same reference numerals and description thereof is omitted.
 顕微鏡システム18は、第1のポンプ光用のレーザ光源102に加えて、第2のポンプ光用のレーザ光源504と、第2のポンプ光とプローブ光とを合波するダイクロイックミラー506を有する。ダイクロイックミラー106は、第1のポンプ光を第2のポンプ光およびプローブ光に合波する。 The microscope system 18 includes, in addition to the first pump light laser light source 102, a second pump light laser light source 504, and a dichroic mirror 506 that combines the second pump light and the probe light. The dichroic mirror 106 combines the first pump light with the second pump light and the probe light.
 図18に示すように、第1のポンプ光の波長は第1の蛍光物質の吸収スペクトルH内にあり、第1の蛍光物質を励起する。第2のポンプ光の波長は第2の蛍光物質の吸収スペクトルG内にあり、第2の蛍光物質を励起する。プローブ光の波長は第1の蛍光物質の蛍光スペクトルEと第2の蛍光物質の蛍光スペクトルFとの共通部分にあり、両方の蛍光物質において誘導放出を誘起する。ストークスシフトの大きな蛍光物質を用いてプローブ光を共通にすることで、光源数を減らして装置構成を簡便にすることができる。なお、標本186には第1および第2の蛍光物質が含まれている。 As shown in FIG. 18, the wavelength of the first pump light is within the absorption spectrum H of the first fluorescent material, and excites the first fluorescent material. The wavelength of the second pump light is in the absorption spectrum G of the second fluorescent material, and excites the second fluorescent material. The wavelength of the probe light is at the intersection of the fluorescence spectrum E of the first fluorescent material and the fluorescence spectrum F of the second fluorescent material, and induces stimulated emission in both fluorescent materials. By using a fluorescent material having a large Stokes shift and sharing the probe light, the number of light sources can be reduced and the apparatus configuration can be simplified. Note that the specimen 186 contains first and second fluorescent substances.
 AOTF114はドライバ112から各光に応じた駆動電圧が印加されており、プローブ光をON状態とし、第1のポンプ光を周波数f1で強度変調し、第2のポンプ光を周波数f4で強度変調する。AOTF114で回折した光のうち、プローブ光はダイクロイックミラー141を透過するとともに、第1および第2のポンプ光はダイクロイックミラー141で反射される。プローブ光はAOM124で周波数f2で強度変調される。一方、第1および第2のポンプ光はAOM124を迂回するようにミラー142、143で反射されてダイクロイックミラー144でポンプ光と合波される。第1のポンプ光、第2のポンプ光およびプローブ光は、ダイクロイックミラー402を透過し、走査部150を経て、対物レンズ164により標本186に集光される。周波数f1、f2、f4は互いに異なるように設定される。 A driving voltage corresponding to each light is applied from the driver 112 to the AOTF 114, the probe light is turned on, the intensity of the first pump light is modulated at the frequency f1, and the intensity of the second pump light is modulated at the frequency f4. . Of the light diffracted by the AOTF 114, the probe light passes through the dichroic mirror 141, and the first and second pump lights are reflected by the dichroic mirror 141. The probe light is intensity-modulated by the AOM 124 at the frequency f2. On the other hand, the first and second pump lights are reflected by the mirrors 142 and 143 so as to bypass the AOM 124 and are combined with the pump light by the dichroic mirror 144. The first pump light, the second pump light, and the probe light pass through the dichroic mirror 402, pass through the scanning unit 150, and are collected on the sample 186 by the objective lens 164. The frequencies f1, f2, and f4 are set to be different from each other.
 第1のポンプ光をIPump1、第2のポンプ光をIPump2、プローブ光をIProbeとすると、それぞれの時間波形は、下記の通り表される。
Figure JPOXMLDOC01-appb-M000006
なお、I1、I2、I3はそれぞれ、第1のポンプ光、第2のポンプ光、プローブ光の光強度である。
A first pump light I Pump1, a second pump light I Pump2, when the probe light and I Probe, each time the waveform is represented as follows.
Figure JPOXMLDOC01-appb-M000006
Note that I1, I2, and I3 are the light intensities of the first pump light, the second pump light, and the probe light, respectively.
 顕微鏡システム18は、ダイクロイックミラー144と走査部150との間にダイクロイックミラー402を有する。ダイクロイックミラー402は、第1の蛍光物質からの蛍光を検出する波長領域(第1検出波長領域)および第2の蛍光物質からの蛍光を検出する波長領域(第2検出波長領域)を含む波長領域を反射する。 The microscope system 18 includes a dichroic mirror 402 between the dichroic mirror 144 and the scanning unit 150. The dichroic mirror 402 includes a wavelength region including a wavelength region (first detection wavelength region) for detecting fluorescence from the first fluorescent material and a wavelength region (second detection wavelength region) for detecting fluorescence from the second fluorescent material. Reflect.
 ダイクロイックミラー402により反射された光の光路上にはさらにダイクロイックミラー412が配される。ダイクロイックミラー412は、第1検出波長領域を含む波長領域を透過し、第2検出波長領域を含む波長領域を反射する。 A dichroic mirror 412 is further arranged on the optical path of the light reflected by the dichroic mirror 402. The dichroic mirror 412 transmits the wavelength region including the first detection wavelength region and reflects the wavelength region including the second detection wavelength region.
 ダイクロイックミラー412を透過した第1の蛍光物質からの蛍光は光学フィルタ404で第1検出波長領域以外の波長領域がカットされ、レンズ406を通って受光部410で受光される。受光部410で光電変換された受光信号はロックインアンプ134でロックイン検出される。 Fluorescence from the first fluorescent material that has passed through the dichroic mirror 412 is cut in the wavelength region other than the first detection wavelength region by the optical filter 404 and is received by the light receiving unit 410 through the lens 406. The light-receiving signal photoelectrically converted by the light-receiving unit 410 is lock-in detected by the lock-in amplifier 134.
 一方、ダイクロイックミラー412で反射した第2の蛍光物質からの蛍光は光学フィルタ414で第2検出波長領域以外の波長領域がカットされ、レンズ416を通って受光部420で検出される。受光部420で光電変換された受光信号はロックインアンプ135でロックイン検出される。 On the other hand, the fluorescence from the second fluorescent material reflected by the dichroic mirror 412 is cut by the optical filter 414 in the wavelength region other than the second detection wavelength region, and detected by the light receiving unit 420 through the lens 416. The light receiving signal photoelectrically converted by the light receiving unit 420 is lock-in detected by the lock-in amplifier 135.
 受光部410で受光される信号と、受光部420で受光される信号をそれぞれIRF1,IRF2とすると、
Figure JPOXMLDOC01-appb-M000007
 これより、ロックインアンプ134ではf1+f2で、ロックインアンプ135ではf4+f2で、それぞれ復調することが望ましい。
When the signal received by the light receiving unit 410 and the signal received by the light receiving unit 420 are respectively I RF1 and I RF2 ,
Figure JPOXMLDOC01-appb-M000007
Therefore, it is desirable to demodulate at f1 + f2 in the lock-in amplifier 134 and at f4 + f2 in the lock-in amplifier 135, respectively.
 図18においても、蛍光のクロストークが課題になる。しかしながら、第2検出波長領域に混入する第1の蛍光物質からの減衰蛍光の信号は、周波数f1+f2で生じるのに対し、第2検出波長領域で取得したい第2の蛍光物質からの減衰蛍光の信号は周波数f4+f2で生じる。従って、第2検出波長領域の復調周波数をf4+f2とすることで、蛍光のクロストークを抑制することができる。このように、2つのポンプ光の変調周波数をそれぞれ異なる値に設定することによって、蛍光信号のクロストークを抑制することができるので、2色同時観察が可能となる。 Also in FIG. 18, the crosstalk of fluorescence becomes a problem. However, the attenuated fluorescence signal from the first fluorescent material mixed in the second detection wavelength region is generated at the frequency f1 + f2, whereas the attenuated fluorescence signal from the second fluorescent material desired to be acquired in the second detection wavelength region. Occurs at frequency f4 + f2. Therefore, by setting the demodulation frequency in the second detection wavelength region to f4 + f2, fluorescence crosstalk can be suppressed. Thus, by setting the modulation frequencies of the two pump lights to different values, the crosstalk of the fluorescence signal can be suppressed, so that two colors can be observed simultaneously.
 ストークスシフトが小さい等の理由により、多色観察において励起のクロストークが問題となる場合に同時観察を実現するための好ましい形態について述べる。図19にストークスシフトが小さい場合の吸収・蛍光スペクトルと検出波長領域の関係を示す。 A preferred mode for realizing simultaneous observation when excitation crosstalk becomes a problem in multicolor observation due to a small Stokes shift or the like will be described. FIG. 19 shows the relationship between the absorption / fluorescence spectrum and the detection wavelength region when the Stokes shift is small.
 図19の例において、第1のポンプ光の波長は第1の蛍光物質の吸収スペクトルKに、第2のポンプ光の波長は第2の蛍光物質の吸収スペクトルLにそれぞれ位置している。プローブ光は誘導放出を誘起するために、第1の蛍光物質の蛍光スペクトルIと第2の蛍光物質の蛍光スペクトルJに位置している。また、第1検出波長領域は第1蛍光物質の蛍光スペクトルIのピークを含むように、第2波長領域は第2蛍光物質の蛍光スペクトルJのピークを含むように設定されている。 In the example of FIG. 19, the wavelength of the first pump light is located in the absorption spectrum K of the first fluorescent material, and the wavelength of the second pump light is located in the absorption spectrum L of the second fluorescent material. The probe light is located in the fluorescence spectrum I of the first fluorescent material and the fluorescence spectrum J of the second fluorescent material in order to induce stimulated emission. Further, the first detection wavelength region is set to include the peak of the fluorescence spectrum I of the first fluorescent material, and the second wavelength region is set to include the peak of the fluorescence spectrum J of the second fluorescent material.
 図20に第1検出波長領域、第2検出波長領域のそれぞれにおいて、観測されうる蛍光と蛍光物質の関係を示す。各検出波長領域において、4種類の信号が観測される可能性がある。 FIG. 20 shows the relationship between fluorescence and fluorescent substances that can be observed in each of the first detection wavelength region and the second detection wavelength region. In each detection wavelength region, four types of signals may be observed.
 第1検出波長領域においては、蛍光A,B,C,Dの4つの信号が検出される可能性がある。このうち、検出したい信号は、第1のポンプ光によって励起される第1の蛍光物質からの蛍光Aである。従って、これ以外の蛍光を除去することが望ましい。蛍光BとDは、第1検出波長領域から第2の蛍光物質からの蛍光スペクトルが外れるように、第1検出波長領域を設定することで除去できる。蛍光Cは復調周波数の違いを利用することで除去できる。 In the first detection wavelength region, four signals of fluorescence A, B, C, and D may be detected. Among these, the signal to be detected is the fluorescence A from the first fluorescent material excited by the first pump light. Therefore, it is desirable to remove other fluorescence. Fluorescence B and D can be removed by setting the first detection wavelength region so that the fluorescence spectrum from the second fluorescent substance deviates from the first detection wavelength region. The fluorescence C can be removed by utilizing the difference in demodulation frequency.
 第2検出波長領域においては、蛍光A',B',C',D'の4つの信号が検出される可能性がある。このうち、検出したい信号は、第2のポンプ光によって励起される第2の蛍光物質からの蛍光D'である。従って、これ以外の蛍光を除去することが望ましい。蛍光A'とB'は復調周波数の違いを利用することで除去できる。これについて、下記に詳細を述べる。 In the second detection wavelength region, there is a possibility that four signals of fluorescence A ′, B ′, C ′, and D ′ are detected. Among these, the signal to be detected is the fluorescence D ′ from the second fluorescent material excited by the second pump light. Therefore, it is desirable to remove other fluorescence. Fluorescence A ′ and B ′ can be removed by utilizing the difference in demodulation frequency. This will be described in detail below.
 第1のポンプ光、第2のポンプ光およびプローブ光の時間波形は式(2.6)-(2.8)で表される。第1のポンプ光により第1の蛍光物質から生じた蛍光A'と第1のポンプ光により第2の蛍光物質から生じた蛍光B'の時間波形をIRF1とすると、
Figure JPOXMLDOC01-appb-M000008
一方、所望の信号光である蛍光D'の時間波形をIRF2とすると、
Figure JPOXMLDOC01-appb-M000009
 従って、f4+f2で復調することにより、蛍光A',B'の影響を除去できる。
The time waveforms of the first pump light, the second pump light, and the probe light are expressed by equations (2.6)-(2.8). When the time waveform of the fluorescence A ′ generated from the first fluorescent material by the first pump light and the fluorescence B ′ generated from the second fluorescent material by the first pump light is I RF1 ,
Figure JPOXMLDOC01-appb-M000008
On the other hand, if the time waveform of fluorescence D ′, which is the desired signal light, is I RF2 ,
Figure JPOXMLDOC01-appb-M000009
Therefore, the influence of the fluorescence A ′ and B ′ can be removed by demodulating with f4 + f2.
 しかしながら、第2検出波長領域において、第2のポンプ光によって励起される第1の蛍光物質からの蛍光C'は所望の信号光である蛍光D'と同じ周波数を持つので、周波数による分離はできない。この場合は、第2のポンプ光が第1の蛍光物質を励起しないようにすることが望ましい。それが難しい場合には、第1の蛍光物質と第2の蛍光物質の蛍光寿命の差を利用して蛍光C'の混入を低減することが望ましい。蛍光寿命τ、復調周波数f、位相θの間には下記の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000010
However, in the second detection wavelength region, the fluorescence C ′ from the first fluorescent material excited by the second pump light has the same frequency as the fluorescence D ′, which is the desired signal light, and therefore cannot be separated by frequency. . In this case, it is desirable that the second pump light does not excite the first fluorescent material. If this is difficult, it is desirable to reduce the contamination of the fluorescence C ′ by utilizing the difference in fluorescence lifetime between the first fluorescent material and the second fluorescent material. The following relationship holds among the fluorescence lifetime τ, the demodulation frequency f, and the phase θ.
Figure JPOXMLDOC01-appb-M000010
 図21(a)に復調周波数f=f4+f2で検出される、蛍光C'と蛍光D'の時間波形を示す。第1の蛍光物質, 第2の蛍光物質の蛍光寿命をそれぞれτ1、τ2とすると、位相はθ1, θ2となる。従って、ロックイン検出において、検出する信号の位相を蛍光D'に設定することで、蛍光C'の影響を低減することができる。図21(b)はロックイン検出される蛍光C'と蛍光D'の信号強度をフェーザ表示で表現している。ロックイン検出の位相としてθ2を選ぶことで、蛍光C'の大きさをcos(θ1-θ2)だけ低減することができる。また、第1のポンプ光が第2蛍光物質を励起し、第1検出波長領域に第2の蛍光物質の蛍光が混入する場合には、第1検出領域において、第1蛍光物質の位相に合わせてロックイン検出しても良い。また、上記位相による検出を、ポンプ光が共通でプローブ光が二種類ある場合(例えば図16に記載)に適用してもよい。 FIG. 21 (a) shows the time waveforms of fluorescence C ′ and fluorescence D ′ detected at the demodulation frequency f = f4 + f2. If the fluorescence lifetimes of the first fluorescent material and the second fluorescent material are τ1 and τ2, respectively, the phases are θ1 and θ2. Therefore, in lock-in detection, the influence of the fluorescence C ′ can be reduced by setting the phase of the signal to be detected to the fluorescence D ′. FIG. 21B represents the signal intensities of fluorescence C ′ and fluorescence D ′ detected in lock-in by phasor display. By selecting θ2 as the phase of lock-in detection, the magnitude of fluorescence C ′ can be reduced by cos (θ1−θ2). In addition, when the first pump light excites the second fluorescent material and the fluorescence of the second fluorescent material is mixed into the first detection wavelength region, the phase of the first fluorescent material is adjusted in the first detection region. You may detect lock-in. The detection based on the phase may be applied to the case where the pump light is common and there are two types of probe light (for example, described in FIG. 16).
 なお、(i)第1検出波長領域に、第1のポンプ光による第2の蛍光物質からの蛍光が混入せず、かつ、(ii)第2検出波長領域に、第2のポンプ光による第1の蛍光物質からの蛍光が混入しない場合には、受光部は1つでも良い。上記、(i)(ii)の条件を満たさない場合には、図17に示すようにダイクロイックミラー412により、蛍光帯域を分離して、それぞれの蛍光を取得することが望ましい。 Note that (i) the fluorescence from the second fluorescent material by the first pump light is not mixed in the first detection wavelength region, and (ii) the second pump light by the second pump light is in the second detection wavelength region. When the fluorescence from one fluorescent material is not mixed, the number of light receiving units may be one. When the above conditions (i) and (ii) are not satisfied, as shown in FIG. 17, it is desirable to separate the fluorescence band by the dichroic mirror 412 and acquire each fluorescence.
 図22は、図15から図21の2色観察に用いられるGUI画面360を示す。チェックボックス362、364で蛍光物質の選択を受け付ける。選択された蛍光物質に対応付けて記憶部226に記憶されている波長を読み出し、表示欄366から372にそれぞれ波長が表示される。さらに、選択された蛍光物質の励起・蛍光スペクトルと、ポンプ光、プローブ光および検出波長領域の関係が表示欄374表示される。なお、自動設定に代えて、ユーザが任意に、光源波長や検出波長領域を選ぶこともできる。 FIG. 22 shows a GUI screen 360 used for the two-color observation of FIGS. 15 to 21. The check boxes 362 and 364 accept the selection of the fluorescent material. The wavelengths stored in the storage unit 226 in association with the selected fluorescent substance are read, and the wavelengths are displayed in the display columns 366 to 372, respectively. Further, the display column 374 displays the relationship between the excitation / fluorescence spectrum of the selected fluorescent substance, the pump light, the probe light, and the detection wavelength region. Instead of automatic setting, the user can arbitrarily select a light source wavelength or a detection wavelength region.
 図23はさらに他の顕微鏡システム20の構成を示す図である。顕微鏡システム20において上記顕微鏡システム10等と同一の構成については同一の参照番号を付して説明を省略する。 FIG. 23 is a diagram showing the configuration of still another microscope system 20. In the microscope system 20, the same components as those of the microscope system 10 and the like are denoted by the same reference numerals and description thereof is omitted.
 顕微鏡システム20では、ドライバ552とAOTF554を有する強度変調部550が配されている。単一のAOTF554によりポンプ光とプローブ光の両方が強度変調される。この場合に当該AOTF554においてポンプ光がf1で、プローブ光がf2でそれぞれ強度変調され、それにより発生した蛍光をロックインアンプ134においてf1+f2の復調周波数で復調する。これにより、簡便な構成で減衰蛍光の観察画像を取得することができる。 In the microscope system 20, an intensity modulation unit 550 having a driver 552 and an AOTF 554 is disposed. A single AOTF 554 modulates the intensity of both the pump light and the probe light. In this case, in the AOTF 554, the pump light is f1 and the probe light is intensity-modulated by f2, and the generated fluorescence is demodulated by the lock-in amplifier 134 at the demodulation frequency of f1 + f2. Thereby, an observation image of attenuated fluorescence can be acquired with a simple configuration.
 図24はさらに他の顕微鏡システム22の構成を示す図である。顕微鏡システム22において上記顕微鏡システム10等と同一の構成については同一の参照番号を付して説明を省略する。 FIG. 24 is a diagram showing the configuration of still another microscope system 22. In the microscope system 22, the same components as those in the microscope system 10 are denoted by the same reference numerals, and the description thereof is omitted.
 顕微鏡システム22では、第1のポンプ光用のレーザ光源102に加えて、第2のポンプ光用のレーザ光源504と、第2のポンプ光をプローブ光に合波するダイクロイックミラー506を有する。ダイクロイックミラー106は、第1のポンプ光を第2のポンプ光およびプローブ光に合波する。さらに、顕微鏡システム20と同様に、強度変調部550が配されている。単一のAOTF554により二種類のポンプ光およびプローブ光の全てが強度変調される。この場合に当該AOTF554において第1のポンプ光がf1で、第2のポンプ光がf4で、プローブ光がf2でそれぞれ強度変調される。顕微鏡システム16と同様に、第1のポンプ光に対応する蛍光を受光部410で受光し、ロックインアンプ134においてf1+f2の復調周波数で復調する。一方、第2のポンプ光に対応する蛍光を受光部420で受光し、ロックインアンプ135においてf4+f2の復調周波数で復調する。これにより、簡便な構成で減衰蛍光の多色の観察画像を取得することができる。 The microscope system 22 includes a laser light source 504 for the second pump light and a dichroic mirror 506 that multiplexes the second pump light with the probe light in addition to the laser light source 102 for the first pump light. The dichroic mirror 106 combines the first pump light with the second pump light and the probe light. Further, similarly to the microscope system 20, an intensity modulation unit 550 is disposed. A single AOTF 554 modulates the intensity of all of the two types of pump light and probe light. In this case, in the AOTF 554, the intensity of the first pump light is f1, the second pump light is f4, and the probe light is f2 respectively. Similarly to the microscope system 16, the fluorescence corresponding to the first pump light is received by the light receiving unit 410 and demodulated at the demodulation frequency of f1 + f2 by the lock-in amplifier 134. On the other hand, the fluorescence corresponding to the second pump light is received by the light receiving unit 420 and demodulated by the lock-in amplifier 135 at the demodulation frequency of f4 + f2. Thereby, a multicolor observation image of attenuated fluorescence can be acquired with a simple configuration.
 図25はさらに他の顕微鏡システム24の構成を示す図である。顕微鏡システム24において上記顕微鏡システム10等と同一の構成については同一の参照番号を付して説明を省略する。 FIG. 25 is a diagram showing the configuration of still another microscope system 24. In the microscope system 24, the same components as those of the microscope system 10 and the like are denoted by the same reference numerals and description thereof is omitted.
 顕微鏡システム24では、ポンプ光用のレーザ光源102に対して強度変調部560が設けられ、プローブ光用のレーザ光源104に対して強度変調部570が設けられる。強度変調部560は、ドライバ562とAOM564を有しており、ポンプ光をf1で強度変調する。また、強度変調部570は、ドライバ572とAOM574を有しており、プローブ光をf2で強度変調する。さらに、強度変調されたポンプ光とプローブ光とはミラー452およびダイクロイックミラー450により合波される。受光部410で受光された蛍光はロックインアンプ134においてf1+f2の復調周波数で復調する。これにより、高い変調周波数で復調でき、従って減衰蛍光の観察画像を取得する時間を短くすることができる。 In the microscope system 24, an intensity modulation unit 560 is provided for the laser light source 102 for pump light, and an intensity modulation unit 570 is provided for the laser light source 104 for probe light. The intensity modulation unit 560 includes a driver 562 and an AOM 564, and modulates the intensity of the pump light with f1. The intensity modulation unit 570 includes a driver 572 and an AOM 574, and modulates the intensity of the probe light with f2. Further, the intensity-modulated pump light and probe light are combined by a mirror 452 and a dichroic mirror 450. The fluorescence received by the light receiving unit 410 is demodulated by the lock-in amplifier 134 at a demodulation frequency of f1 + f2. Thereby, it is possible to demodulate at a high modulation frequency, and therefore it is possible to shorten the time for acquiring an observation image of attenuated fluorescence.
 図26はさらに他の顕微鏡システム26の構成を示す図である。顕微鏡システム26において上記顕微鏡システム10等と同一の構成については同一の参照番号を付して説明を省略する。 FIG. 26 is a diagram showing the configuration of still another microscope system 26. In the microscope system 26, the same components as those of the microscope system 10 and the like are denoted by the same reference numerals and description thereof is omitted.
 顕微鏡システム26では、第1のポンプ光用のレーザ光源102に対して強度変調部560が設けられ、プローブ光用のレーザ光源104に対して強度変調部570が設けられ、第2のポンプ光用のレーザ光源504に対して強度変調部580が設けられる。強度変調部560は第1のポンプ光をf1で強度変調し、強度変調部570はプローブ光をf2で強度変調する。さらに、強度変調部580は、ドライバ582とAOM584を有し、第2のポンプ光をf4で強度変調する。強度変調された第1のポンプ光、第2のポンプ光およびプローブ光は、ミラー458、460およびダイクロイックミラー454、456により合波される。顕微鏡システム16と同様に、第1のポンプ光に対応する蛍光を受光部410で受光し、ロックインアンプ134においてf1+f2の復調周波数で復調する。一方、第2のポンプ光に対応する蛍光を受光部420で受光し、ロックインアンプ135においてf4+f2の復調周波数で復調する。これにより、多色観察においても、高い変調周波数で復調でき、従って減衰蛍光の観察画像を取得する時間を短くすることができる。 In the microscope system 26, an intensity modulator 560 is provided for the first laser light source 102 for pump light, an intensity modulator 570 is provided for the laser light source 104 for probe light, and the second pump light source. An intensity modulator 580 is provided for the laser light source 504. The intensity modulator 560 modulates the intensity of the first pump light with f1, and the intensity modulator 570 modulates the intensity of the probe light with f2. Further, the intensity modulation unit 580 includes a driver 582 and an AOM 584, and intensity-modulates the second pump light with f4. The intensity-modulated first pump light, second pump light, and probe light are combined by mirrors 458 and 460 and dichroic mirrors 454 and 456. Similarly to the microscope system 16, the fluorescence corresponding to the first pump light is received by the light receiving unit 410 and demodulated at the demodulation frequency of f1 + f2 by the lock-in amplifier 134. On the other hand, the fluorescence corresponding to the second pump light is received by the light receiving unit 420 and demodulated by the lock-in amplifier 135 at the demodulation frequency of f4 + f2. Thereby, even in multicolor observation, it is possible to demodulate at a high modulation frequency, and accordingly, it is possible to shorten the time for acquiring an observation image of attenuated fluorescence.
 なお、顕微鏡システム12、14、16、18、20、22、24および26において走査部150に代えて、図6の走査部151または図7の走査部156が用いられてもよい。 In the microscope systems 12, 14, 16, 18, 20, 22, 24, and 26, the scanning unit 151 in FIG. 6 or the scanning unit 156 in FIG. 7 may be used instead of the scanning unit 150.
 また、顕微鏡システム10等においてAOTF114でON状態としたプローブ光をAOM124で変調したが、AOTF114によってプローブ光をf1で変調して、AOM124によってポンプ光をf2で変調する構成としても良い。 In the microscope system 10 or the like, the probe light that is turned on by the AOTF 114 is modulated by the AOM 124. However, the probe light may be modulated by f1 by the AOTF 114, and the pump light may be modulated by f2 by the AOM 124.
 また顕微鏡システム10から26においてAOM124等の代わりに、チョッパーなどのメカニカルシャッターを用いて強度変調しても良い。変わりに、EOM(電気光学素子)と偏光子を用いて、偏光方向を高速に切り替えることで、強度変調しても良い。 In the microscope systems 10 to 26, intensity modulation may be performed using a mechanical shutter such as a chopper instead of the AOM 124 or the like. Instead, intensity modulation may be performed by switching the polarization direction at high speed using an EOM (electro-optical element) and a polarizer.
 レーザ光源102等として連続発振方式を用いたが、パルスレーザを用いてもよい。パルスレーザの方がピーク強度が大きいので誘導放出が効率よく生じ、減衰蛍光信号も効率良く生じるという利点がある。なお、パルスの繰り返し周波数は蛍光寿命やパルスのピークパワーによるダメージを考慮して決定されることが望ましい。一方、CWレーザの方が価格が安いという利点がる。また、受光部174等として光電子増倍管を用いたが、アバランシェフォトダイオード(APD)を用いても良い。 Although a continuous oscillation method is used as the laser light source 102 and the like, a pulse laser may be used. Since the pulse laser has a higher peak intensity, the stimulated emission is more efficiently generated and the attenuated fluorescence signal is also efficiently generated. The pulse repetition frequency is preferably determined in consideration of the fluorescence lifetime and damage due to the peak power of the pulse. On the other hand, the CW laser has the advantage that the price is lower. Further, although a photomultiplier tube is used as the light receiving unit 174 and the like, an avalanche photodiode (APD) may be used.
 図27は他の光源101の例を示す。光源101においてレーザ光源104、102はパルスレーザである。これらのパルスレーザを用いて、蛍光寿命を測定する。光源101において、プローブ光用レーザ光源104から出力された光をミラー470で反射させ、光学ディレイステージ700に入射させる。光学ディレイステージ700は矢印方向に移動可能であり、ミラー471とミラー472により構成されている。光学ディレイステージを矢印方向に平行移動することで、プローブ光の光路長が変化し、ポンプ光とプローブ光の光パルスに時間差をつけることができる。ミラー470で反射した光は、ミラー471とミラー472で反射し、ミラー470から導入された光に対して平行にミラー473へ導かれる。ミラー473を反射した光はダイクロイックミラー106によって、ポンプ光と合成される。以降は図1と同様である。 FIG. 27 shows an example of another light source 101. In the light source 101, the laser light sources 104 and 102 are pulse lasers. Fluorescence lifetime is measured using these pulse lasers. In the light source 101, the light output from the laser light source 104 for probe light is reflected by the mirror 470 and is incident on the optical delay stage 700. The optical delay stage 700 is movable in the direction of the arrow and includes a mirror 471 and a mirror 472. By translating the optical delay stage in the direction of the arrow, the optical path length of the probe light changes, and a time difference can be given to the optical pulses of the pump light and the probe light. The light reflected by the mirror 470 is reflected by the mirror 471 and the mirror 472 and guided to the mirror 473 in parallel with the light introduced from the mirror 470. The light reflected from the mirror 473 is combined with the pump light by the dichroic mirror 106. The subsequent steps are the same as in FIG.
 光学ディレイステージ700を平行移動したときのポンプ光パルスとプローブ光パルスとの時間差および蛍光の時間波形の様子を図28に示す。(a)-(c)は光学ディレイステージ700の移動量dzとパルスの時間差の関係を示している。移動量dzが小さいと時間差も小さく、移動量dzが大きくなると時間差も大きくなる。(d)はポンプ光によって生じる蛍光の時間波形を示している。蛍光は寿命に従ってこのように指数関数的に減少するのが一般的に知られている。誘導放出によって蛍光を減衰させるためには、ポンプ光に対するプローブ光の時間差は蛍光の発光持続時間よりも短い必要がある。また、時間差が短いほど、蛍光が多く減少するので、減衰蛍光信号も大きくなる。従って、光学ディレイステージ700によって時間差をつけて、各時間差で減衰蛍光信号を取得することで、蛍光寿命を測定することができる。この様子を図29に示す。減衰蛍光信号が、蛍光寿命を反映する様子を示している。イメージングにおいて、複数の時間差で減衰蛍光像を取得することで、蛍光寿命イメージングができる。 FIG. 28 shows the time difference between the pump light pulse and the probe light pulse and the state of the time waveform of fluorescence when the optical delay stage 700 is translated. (A)-(c) shows the relationship between the amount of movement dz of the optical delay stage 700 and the time difference between pulses. When the movement amount dz is small, the time difference is small, and when the movement amount dz is large, the time difference is large. (D) shows a time waveform of fluorescence generated by the pump light. It is generally known that fluorescence decreases exponentially in this way with lifetime. In order to attenuate fluorescence by stimulated emission, the time difference between the probe light and the pump light needs to be shorter than the fluorescence emission duration. Also, the shorter the time difference, the more the fluorescence decreases, so the attenuated fluorescence signal also increases. Therefore, the fluorescence lifetime can be measured by adding a time difference by the optical delay stage 700 and acquiring the attenuated fluorescence signal at each time difference. This situation is shown in FIG. The attenuated fluorescence signal shows how the fluorescence lifetime is reflected. In imaging, fluorescence lifetime imaging can be performed by acquiring attenuated fluorescence images at a plurality of time differences.
 また、上記実施形態において励起には一光子励起を用いたが、二光子励起、三光子励起といった多光子励起を用いても良い。 In the above embodiment, one-photon excitation is used for excitation, but multiphoton excitation such as two-photon excitation or three-photon excitation may be used.
 上記実施形態において、減衰蛍光観察時、デスキャンにより蛍光を検出する構成において、ピンホール408等を絞る構成としても良い。その結果、結像系の点像分布関数も光学分解能向上に寄与するため、さらなる分解能向上が可能となる。光量が十分確保される明るい蛍光を観察する場合には、ピンホール408等を絞る構成とすることが望ましい。一方で、光量が十分に確保されない暗い蛍光を観察する場合には、ピンホール408等を開放することが望ましい。また、図15から図26に示す顕微鏡システム14から26においてデスキャン光学系を有しかつピンホール408、418等が配されているので、共焦点顕微鏡としても用いることができる。 In the above embodiment, the pinhole 408 or the like may be narrowed down in the configuration in which fluorescence is detected by descanning during attenuated fluorescence observation. As a result, the point spread function of the imaging system also contributes to the improvement of the optical resolution, so that the resolution can be further improved. In the case of observing bright fluorescence with a sufficient amount of light, it is desirable that the pinhole 408 or the like be narrowed down. On the other hand, when observing dark fluorescence where the amount of light is not sufficiently secured, it is desirable to open the pinhole 408 and the like. In addition, since the microscope systems 14 to 26 shown in FIGS. 15 to 26 have the descanning optical system and the pinholes 408 and 418 are arranged, they can be used as a confocal microscope.
 また、広視野観察時において倍率色収差によりポンプ光とプローブ光の面内方向のスポットズレが問題となる場合や、深部観察において軸上色収差によりポンプ光とプローブ光の光軸方向のスポットずれが問題となる場合は、ポンプ光のビーム径をプローブ光のビーム径に比べて細く(小さく)することが望ましい。これにより、ポンプ光のスポットが面内方向・光軸方向に広がり、ビームのオーバーラップがより容易になる。なお、ポンプ光のビーム径を細くする理由は、ポンプ光はプローブ光に比べて波長が短いことから、同一の対物レンズにおいて同一のビーム径でスポットを生成した際に、ポンプ光の方がプローブ光に比べてスポット径が小さいためである。 Also, when observing a wide field of view, the spot deviation in the in-plane direction of the pump light and the probe light becomes a problem due to the chromatic aberration of magnification. In this case, it is desirable to make the beam diameter of the pump light thinner (smaller) than the beam diameter of the probe light. As a result, the spot of the pump light spreads in the in-plane direction and the optical axis direction, and beam overlap becomes easier. The reason for making the beam diameter of the pump light narrower is that the wavelength of the pump light is shorter than that of the probe light. This is because the spot diameter is smaller than that of light.
 また、顕微鏡システム10、20、22、24、26においても、顕微鏡システム14等と同様に、波長制御部230を設けてレーザ光源の光の波長を制御してもよい。 Also in the microscope systems 10, 20, 22, 24, and 26, similarly to the microscope system 14 and the like, the wavelength controller 230 may be provided to control the wavelength of the light from the laser light source.
 なお、ダイクロイックミラー162、402は照射光を透過して蛍光を反射するが、これに代えて、照射光を反射して蛍光を透過するようにしてもよい。また、ダイクロイックミラー162、402等のダイクロイックミラーは、予め定められた波長の光を他の波長の光から分離する波長分離部材の一例である。 The dichroic mirrors 162 and 402 transmit the irradiation light and reflect the fluorescence. Alternatively, the dichroic mirrors 162 and 402 may reflect the irradiation light and transmit the fluorescence. The dichroic mirrors such as the dichroic mirrors 162 and 402 are an example of a wavelength separation member that separates light of a predetermined wavelength from light of other wavelengths.
 なお、特定の周波数の信号成分を検出する方式としてロックインアンプについて説明したが、他の方法でも良い。例えば、時間信号をフーリエ変換することで特定の周波数の信号成分を検出しても良い。例えば、周波数変換器により、復調周波数を持つ参照信号と信号光を乗算し、直流成分のみを抽出する構成としても良い。なお、ここでいう直流成分とは、正弦波の振動成分を直流に変換した値に相当する。 Although the lock-in amplifier has been described as a method for detecting a signal component of a specific frequency, other methods may be used. For example, a signal component having a specific frequency may be detected by performing a Fourier transform on the time signal. For example, a reference signal having a demodulation frequency and signal light may be multiplied by a frequency converter to extract only a direct current component. Note that the DC component here corresponds to a value obtained by converting a vibration component of a sine wave into DC.
 なお、ポンプ光とプローブ光の偏光は同一であることが望ましい。例えば、同一の直線偏光、円偏光であることが望ましい。あるいは、ポンプ光とプローブ光の偏光を直交する直線偏光とした場合と、平行な直線偏光とした場合でそれぞれ減衰蛍光像を取得し、両者を比較することで、標本の偏光特性を可視化する構成としても良い。これは、誘導放出の効率が偏光に依存するためである。 Note that the polarization of the pump light and the probe light is preferably the same. For example, the same linearly polarized light and circularly polarized light are desirable. Alternatively, a configuration that visualizes the polarization characteristics of the specimen by acquiring attenuated fluorescence images for the case where the polarization of the pump light and the probe light is orthogonal linear polarization and parallel polarization, and comparing them. It is also good. This is because the efficiency of stimulated emission depends on the polarization.
10、12、14、16、18、20、22、24、26 顕微鏡システム
100、101 光源
102、104、500、504 レーザ光源
106、141、144、162、402、412、450、454、456、506 ダイクロイックミラー
110 第1強度変調部
112 ドライバ
114 音響光学チューナブルフィルタ
120 第2強度変調部
122 ドライバ
124 音響光学素子
130 制御部
132 発振器
134、135 ロックインアンプ
136、137 検出部
140 照明光学系
142、143、154、155、157、452、458、460 ミラー
150、151、156 走査部
152 レゾナントスキャナ
153 ガルバノスキャナ
160 観察光学系
164 対物レンズ
166、404、414 光学フィルタ
406、416 レンズ
172、173 レンズペア
174、410、420 受光部
180 ステージ
182 スライドガラス
184 観察対象物
186 標本
220 入力部
222 画像生成部
224 表示部
226 記憶部
228 スキャナ制御部
229 周波数制御部
230 波長制御部
300、350、360 GUI画面
302、304、312、316、324、352、362、364 チェックボックス
354、356、358、366、374 表示欄
308、310、314、318、320、322、326 入力欄
330、332 観察画像
334、335 タイムラプス画像
408、418 ピンホール
550、560、570、580 強度変調部
552、562、572、582 ドライバ
554 AOTF
564、574、584 AOM
10, 12, 14, 16, 18, 20, 22, 24, 26 Microscope system 100, 101 Light source 102, 104, 500, 504 Laser light source 106, 141, 144, 162, 402, 412, 450, 454, 456, 506 Dichroic mirror 110 First intensity modulator 112 Driver 114 Acousto-optic tunable filter 120 Second intensity modulator 122 Driver 124 Acousto-optic device 130 Controller 132 Oscillator 134, 135 Lock-in amplifier 136, 137 Detector 140 Illumination optical system 142 , 143, 154, 155, 157, 452, 458, 460 Mirror 150, 151, 156 Scan unit 152 Resonant scanner 153 Galvano scanner 160 Observation optical system 164 Objective lenses 166, 404, 414 Optical filters 406, 41 6 Lens 172, 173 Lens pair 174, 410, 420 Light receiving unit 180 Stage 182 Slide glass 184 Observation object 186 Sample 220 Input unit 222 Image generating unit 224 Display unit 226 Storage unit 228 Scanner control unit 229 Frequency control unit 230 Wavelength control unit 230 300, 350, 360 GUI screen 302, 304, 312, 316, 324, 352, 362, 364 Check box 354, 356, 358, 366, 374 Display field 308, 310, 314, 318, 320, 322, 326 Input field 330, 332 Observation image 334, 335 Time-lapse image 408, 418 Pinhole 550, 560, 570, 580 Intensity modulation unit 552, 562, 572, 582 Driver 554 AOTF
564, 574, 584 AOM

Claims (22)

  1.  標本に含まれる第1の蛍光物質を励起する第1の光を周波数f1で強度変調する第1の強度変調部と、
     前記第1の蛍光物質において誘導放出を生じさせる第2の光を前記周波数f1とは異なる周波数f2で強度変調する第2の強度変調部と、
     前記第1の光および前記第2の光を前記標本において走査する走査部と、
     前記標本からの蛍光を検出する検出部と
     を備え、
     前記走査部は、共振ミラーを有するレゾナントスキャナを有し、
     前記検出部は、
     前記標本からの蛍光を受光し、周波数f1+f2の成分を検出する
     顕微鏡システム。
    A first intensity modulator that modulates the intensity of the first light that excites the first fluorescent substance contained in the sample at the frequency f1,
    A second intensity modulator that modulates the intensity of the second light that causes stimulated emission in the first fluorescent substance at a frequency f2 different from the frequency f1,
    A scanning unit that scans the first light and the second light on the specimen;
    A detection unit for detecting fluorescence from the specimen,
    The scanning unit includes a resonant scanner having a resonant mirror,
    The detector is
    A microscope system that receives fluorescence from the specimen and detects a component having a frequency of f1 + f2.
  2.  前記検出部は、
     前記標本からの蛍光を受光する受光部と、
     前記受光部で受光した蛍光を周波数f1+f2でロックイン検出するロックインアンプ
     を備える
     請求項1に記載の顕微鏡システム。
    The detector is
    A light receiving portion for receiving fluorescence from the specimen;
    The microscope system according to claim 1, further comprising: a lock-in amplifier that detects lock-in of the fluorescence received by the light receiving unit at a frequency f1 + f2.
  3.  前記走査部は、主走査方向を走査する共振ミラーと副走査方向を走査するガルバノミラーとを有する
     請求項1又は2に記載の顕微鏡システム。
    The microscope system according to claim 1, wherein the scanning unit includes a resonance mirror that scans in a main scanning direction and a galvanometer mirror that scans in a sub-scanning direction.
  4.  前記走査部と、前記標本との間に対物レンズが設けられ、
     前記対物レンズと、前記走査部との間に第1の波長分離部材が設けられ、
     前記検出部は、前記第1の波長分離部材を透過又は反射した蛍光を検出する
     請求項1~3のいずれか1項に記載の顕微鏡システム。
    An objective lens is provided between the scanning unit and the sample,
    A first wavelength separation member is provided between the objective lens and the scanning unit;
    The microscope system according to any one of claims 1 to 3, wherein the detection unit detects fluorescence transmitted or reflected by the first wavelength separation member.
  5.  光源と、前記走査部との間に第2の波長分離部材が配置され、
     前記検出部は、前記第2の波長分離部材を透過又は反射した蛍光を検出する
     請求項1~4のいずれか1項に記載の顕微鏡システム。
    A second wavelength separation member is disposed between the light source and the scanning unit;
    The microscope system according to any one of claims 1 to 4, wherein the detection unit detects fluorescence transmitted or reflected by the second wavelength separation member.
  6.  前記第2の波長分離部材と前記検出部との間に、開口部を有する開口部材が設けられ、
     前記開口部材の開口部の大きさは可変である
     請求項5に記載の顕微鏡システム。
    An opening member having an opening is provided between the second wavelength separation member and the detection unit,
    The microscope system according to claim 5, wherein a size of the opening of the opening member is variable.
  7.  前記走査部は、前記レゾナントスキャナとガルバノスキャナとが選択可能に構成されている
     請求項1~6のいずれか1項に記載の顕微鏡システム。
    The microscope system according to any one of claims 1 to 6, wherein the scanning unit is configured so that the resonant scanner and the galvano scanner can be selected.
  8.  前記第1の光のビーム径は、第2の光のビーム径よりも小さい
     請求項1~7のいずれか1項に記載の顕微鏡システム。
    The microscope system according to any one of claims 1 to 7, wherein a beam diameter of the first light is smaller than a beam diameter of the second light.
  9.  前記第1の蛍光物質と第1の光の波長とを対応付けた情報と、前記第1の蛍光物質と第2の光の波長とを対応付けた情報とを記憶する記憶部と、
     前記第1の蛍光物質の選択を受け付ける受付部と
     制御部と
     をさらに備え、
     前記制御部は、
     前記記憶部を参照して、前記受付部により受け付けられた前記第1の蛍光物質に対応する前記第1の光および第2の光の波長を決定する
     請求項1~8のいずれか1項に記載の顕微鏡システム。
    A storage unit that stores information that associates the first fluorescent substance with the wavelength of the first light, and information that associates the first fluorescent substance with the wavelength of the second light;
    A reception unit that receives selection of the first fluorescent material; and a control unit,
    The controller is
    The wavelength of the first light and the second light corresponding to the first fluorescent material received by the receiving unit is determined with reference to the storage unit. The described microscope system.
  10.  前記記憶部は、
     前記第1の蛍光物質と第1の光の波長と前記第1の光の変調周波数とを対応付けた情報と、前記第1の蛍光物質と前記第2の光の波長と前記第2の光の変調周波数とを対応付けた情報とを記憶し、
     前記制御部は、
     前記記憶部を参照して、前記受付部により受け付けられた前記第1の蛍光物質に対応する前記第1の光および前記第1の光の変調周波数と、第2の光の波長および前記第2の光の変調周波数を決定する
     請求項9に記載の顕微鏡システム。
    The storage unit
    Information associating the first fluorescent substance, the wavelength of the first light, and the modulation frequency of the first light, the wavelength of the first fluorescent substance, the second light, and the second light And stores information that associates the modulation frequency of
    The controller is
    Referring to the storage unit, the modulation frequency of the first light and the first light, the wavelength of the second light, and the second corresponding to the first fluorescent material received by the reception unit The microscope system according to claim 9, wherein a modulation frequency of light is determined.
  11.  前記第1の強度変調部および前記第2の強度変調部の一方は音響チューナブルフィルタを有し、他方は音響光学素子を有する
     請求項1~10のいずれか1項に記載の顕微鏡システム。
    11. The microscope system according to claim 1, wherein one of the first intensity modulation unit and the second intensity modulation unit includes an acoustic tunable filter, and the other includes an acoustooptic element.
  12.  前記標本には、前記第1の蛍光物質と種類が異なる第2の蛍光物質が含まれ、
     前記第1の光は、前記第2の蛍光物質を励起し、
     前記第2の強度変調部は、前記第2の蛍光物質において誘導放出を生じさせる第3の光を前記周波数f1および前記周波数f2と異なる周波数f3で強度変調し、
     前記検出部は、
     前記標本からの蛍光を受光し、周波数f1+f2の成分および周波数f1+f3の成分を検出する
     請求項1~11のいずれか1項に記載の顕微鏡システム。
    The specimen includes a second fluorescent material of a different type from the first fluorescent material,
    The first light excites the second fluorescent material;
    The second intensity modulator modulates the intensity of the third light that causes stimulated emission in the second fluorescent material at a frequency f3 different from the frequency f1 and the frequency f2,
    The detector is
    The microscope system according to any one of claims 1 to 11, wherein fluorescence from the sample is received and a component of frequency f1 + f2 and a component of frequency f1 + f3 are detected.
  13.  前記周波数f1+f2の成分および周波数f1+f3の成分の少なくとも一方の成分について、所定の位相で検出する
     請求項12に記載の顕微鏡システム。
    The microscope system according to claim 12, wherein at least one of the frequency f1 + f2 component and the frequency f1 + f3 component is detected at a predetermined phase.
  14.  前記標本には、前記第1の蛍光物質と種類が異なる第2の蛍光物質が含まれ、
     前記第1の強度変調部は、前記第2の蛍光物質を励起する第4の光を前記周波数f1および前記周波数f2と異なる周波数f4で強度変調し、
     前記第2の光は、前記第2の蛍光物質において誘導放出を生じさせ、
     前記検出部は、
     前記標本からの蛍光を受光し、前記周波数f1+f2の成分および周波数f4+f2の成分を検出する
     請求項1~11のいずれか1項に記載の顕微鏡システム。
    The specimen includes a second fluorescent material of a different type from the first fluorescent material,
    The first intensity modulator modulates the intensity of the fourth light that excites the second fluorescent substance at a frequency f4 different from the frequency f1 and the frequency f2,
    The second light causes stimulated emission in the second fluorescent material;
    The detector is
    The microscope system according to any one of claims 1 to 11, wherein fluorescence from the specimen is received and the component of the frequency f1 + f2 and the component of the frequency f4 + f2 are detected.
  15.  前記周波数f1+f2の成分および前記周波数f4+f2の成分の少なくとも一方の成分について、所定の位相で検出する
     請求項14に記載の顕微鏡システム。
    The microscope system according to claim 14, wherein at least one of the frequency f1 + f2 component and the frequency f4 + f2 component is detected at a predetermined phase.
  16.  標本に含まれる蛍光物質を励起する第1の光を前記標本に照射し、前記標本からの蛍光を検出部において受光させる
     第1の観察方法と、
     前記第1の光を周波数f1で強度変調して前記標本に照射し、
     前記蛍光物質において誘導放出を生じさせる第2の光を前記周波数f1とは異なる周波数f2で強度変調して前記標本に照射し、
     前記検出部において前記標本からの蛍光を受光させ、周波数f1+f2の成分または周波数f1-f2の成分を検出させる
     第2の観察方法と
     が選択可能に構成された顕微鏡システム。
    A first observation method of irradiating the specimen with first light for exciting a fluorescent substance contained in the specimen, and receiving fluorescence from the specimen at a detection unit;
    The first light is intensity-modulated at a frequency f1 and irradiated to the specimen,
    Irradiating the specimen with intensity-modulated second light that causes stimulated emission in the fluorescent material at a frequency f2 different from the frequency f1,
    A microscope system configured to be able to select a second observation method in which the detection unit receives fluorescence from the specimen and detects a component of frequency f1 + f2 or a component of frequency f1-f2.
  17.  前記検出部と前記標本との間には、開口部を有する開口部材が設けられ、
     前記開口部材の開口部の大きさは可変である
     請求項16に記載の顕微鏡システム。
    An opening member having an opening is provided between the detection unit and the sample,
    The microscope system according to claim 16, wherein a size of the opening of the opening member is variable.
  18.  対物レンズを有し、
     前記開口部材は、前記検出部と前記対物レンズとの間に設けられている
     請求項17に記載の顕微鏡システム。
    Having an objective lens,
    The microscope system according to claim 17, wherein the opening member is provided between the detection unit and the objective lens.
  19.  前記対物レンズと前記検出部との間に走査部を有し、
     前記開口部材は、前記検出部と前記走査部との間に設けられている
     請求項18に記載の顕微鏡システム。
    A scanning unit between the objective lens and the detection unit;
    The microscope system according to claim 18, wherein the opening member is provided between the detection unit and the scanning unit.
  20.  前記走査部と前記検出部との間に波長分離部材を有し、
     前記開口部材は、前記検出部と前記波長分離部材との間に設けられている
     請求項19に記載の顕微鏡システム。
    A wavelength separation member between the scanning unit and the detection unit;
    The microscope system according to claim 19, wherein the opening member is provided between the detection unit and the wavelength separation member.
  21.  前記第1の観察方法における前記開口部の前記開口部の大きさは、前記第2の観察方法における前記開口部の大きさよりも小さい
     請求項17~20のいずれか1項に記載の顕微鏡システム。
    The microscope system according to any one of claims 17 to 20, wherein a size of the opening of the opening in the first observation method is smaller than a size of the opening in the second observation method.
  22.  前記蛍光物質の種類に基づいて、前記第1の観察方法または第2の観察方法が選択されるように構成されている
     請求項17~21のいずれか1項に記載の顕微鏡システム。
    The microscope system according to any one of claims 17 to 21, wherein the first observation method or the second observation method is selected based on a type of the fluorescent substance.
PCT/JP2016/082717 2016-11-02 2016-11-02 Microscope system WO2018083772A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/082717 WO2018083772A1 (en) 2016-11-02 2016-11-02 Microscope system
JP2018548515A JP6806161B2 (en) 2016-11-02 2016-11-02 Microscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082717 WO2018083772A1 (en) 2016-11-02 2016-11-02 Microscope system

Publications (1)

Publication Number Publication Date
WO2018083772A1 true WO2018083772A1 (en) 2018-05-11

Family

ID=62075897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082717 WO2018083772A1 (en) 2016-11-02 2016-11-02 Microscope system

Country Status (2)

Country Link
JP (1) JP6806161B2 (en)
WO (1) WO2018083772A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210084605A (en) * 2018-11-01 2021-07-07 허스트-쑤저우 인스티튜트 포 브레인스매틱스 High flux optical tomography imaging method and imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077710A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Optical scan device, optical scan type microscope, observation method, control device, and control program
JP2010505094A (en) * 2006-09-29 2010-02-18 カール ツァイス マイクロイメージング ゲーエムベーハー Luminescence microscopy with increased resolution
WO2015151461A1 (en) * 2014-04-01 2015-10-08 株式会社ニコン Super-resolution observation device and super-resolution observation method
JP2015200693A (en) * 2014-04-04 2015-11-12 浜松ホトニクス株式会社 Stimulated emission depletion microscope apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077710A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Optical scan device, optical scan type microscope, observation method, control device, and control program
JP2010505094A (en) * 2006-09-29 2010-02-18 カール ツァイス マイクロイメージング ゲーエムベーハー Luminescence microscopy with increased resolution
WO2015151461A1 (en) * 2014-04-01 2015-10-08 株式会社ニコン Super-resolution observation device and super-resolution observation method
JP2015200693A (en) * 2014-04-04 2015-11-12 浜松ホトニクス株式会社 Stimulated emission depletion microscope apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN MIYAZAKI ET AL.: "Sub-diffraction resolution pump-probemicroscopy with shot-noise limited sensitivityusing laser diodes", OPTICS EXPRESS, vol. 22, no. 8, 7 April 2014 (2014-04-07), pages 9024 - 9032, XP055481313 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210084605A (en) * 2018-11-01 2021-07-07 허스트-쑤저우 인스티튜트 포 브레인스매틱스 High flux optical tomography imaging method and imaging system
KR102593252B1 (en) 2018-11-01 2023-10-23 허스트-쑤저우 인스티튜트 포 브레인스매틱스 High flux optical tomography imaging method and imaging system

Also Published As

Publication number Publication date
JP6806161B2 (en) 2021-01-06
JPWO2018083772A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US7999935B2 (en) Laser microscope with a physically separating beam splitter
JP4315794B2 (en) Confocal microscope
US7436501B2 (en) Microscope
EP1835323B1 (en) Fluorescence microscope and observation method
JP5208825B2 (en) Optical microscope
US7133130B2 (en) Method for scanning microscopy, scanning microscope, and apparatus for coding an illuminating light beam
US9001321B2 (en) Microscope and observation method
US9404867B2 (en) Luminescence microscopy
US8488118B2 (en) Apparatus and method for multi-modal imaging in nonlinear raman microscopy
JP2011158413A (en) Laser microscope device
US20120050733A1 (en) Laser microscope
US10983323B2 (en) Fluorescence observation device
JP2011257691A (en) Laser microscope device
US10690897B2 (en) Laser scanning microscope apparatus
JP6806161B2 (en) Microscope system
JP2016038218A (en) Optical measuring device and optical measuring method
KR101629576B1 (en) Apprtus and method for obtaining multi-wavelength fluorescence image
JP2003177329A (en) Scanning laser microscope
JP2014170105A (en) Microscope device
JP6673497B2 (en) Fluorescence observation device
JP2004333579A (en) Laser scanning microscope
JP4633386B2 (en) Scanning laser microscope and data acquisition method using the same
JP2016206648A (en) Laser scan microscope device
JP2011100058A (en) Laser scanning microscope
Young Applications of Confocal Microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018548515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920529

Country of ref document: EP

Kind code of ref document: A1