WO2018076682A1 - Parallel interface time sequence control method and apparatus - Google Patents

Parallel interface time sequence control method and apparatus Download PDF

Info

Publication number
WO2018076682A1
WO2018076682A1 PCT/CN2017/085924 CN2017085924W WO2018076682A1 WO 2018076682 A1 WO2018076682 A1 WO 2018076682A1 CN 2017085924 W CN2017085924 W CN 2017085924W WO 2018076682 A1 WO2018076682 A1 WO 2018076682A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
rate
data communication
adaptive
mclk
Prior art date
Application number
PCT/CN2017/085924
Other languages
French (fr)
Chinese (zh)
Inventor
徐超
周畅
龚晓亮
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2018076682A1 publication Critical patent/WO2018076682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present invention relates to the field of communications, and in particular, to a parallel interface timing control method and apparatus.
  • JESD207 is a radio front-end (Base-to-Plane Integrated Circuit) (RF-based front end integrated circuit (RFIC)).
  • RFIC radio front end-Baseband Digital Parallel
  • RBDP radio front end-Baseband Digital Parallel
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Figure 1 shows JESD207 data.
  • DIQ[11:0] and DIQ[9:0] signals are data bidirectional transmission buses that support transmission in 12-bit and 10-bit data formats, respectively, and can be selected as needed. All data are double data rate (DDR, Double) Data Rate).
  • the JESD207 data interface has the characteristics of less occupied pin resources, low interface rate, and low design difficulty.
  • the FCLK can be regarded as the MCLK homologous clock for the BBIC interface level, the frequency of the clock can be ignored, and only the received MCLK is performed. After the delay, the output can be, but for the latter stage of the BBIC interface, the MCLK clock cycle information is still needed to understand the data communication rate. Therefore, the data communication rate matched with the latter circuit of the BBIC interface is provided to ensure that the data between the RFIC and the BBIC can be correctly transmitted and received. Therefore, when it is necessary to replace different RFICs when testing, it is necessary to meet the requirements of each RFIC.
  • the interface rate is configured to bring inconvenience in testing.
  • embodiments of the present invention are expected to provide a parallel interface timing control method and apparatus, and implement parallel interface rate adaptive configuration.
  • an embodiment of the present invention provides a parallel interface timing control apparatus, where the parallel interface timing control apparatus includes: a register configuration module, a rate adaptation module, an interface timing control module, and a data and timing processing module, where
  • the register configuration module is configured to acquire configuration information of the system
  • the rate adaptation module is configured to generate an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer end when detecting that the first configuration information in the register configuration module is valid, and the updating Data communication rate and adaptive flag are sent to the register configuration module;
  • the register configuration module is further configured to configure a current data communication rate according to the adaptive flag
  • the interface timing control module is configured to generate an interface timing according to the second configuration information and the MCLK information in the register configuration module;
  • the data and timing processing module is configured to transmit data according to the interface timing, and process data according to the number of channels in the register configuration module and the current data communication rate.
  • an embodiment of the present invention provides a parallel interface timing control method, where the method is used for a parallel interface timing control apparatus, where the parallel interface timing control apparatus includes: a register configuration module, a rate adaptation module, and an interface timing control Module and data and timing processing module, The method includes:
  • the register configuration module acquires configuration information of the system
  • the rate adaptation module When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module generates an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer, and Transmitting the updated data communication rate and the adaptive flag to the register configuration module;
  • the register configuration module configures a current data communication rate according to the adaptive flag
  • the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module;
  • the data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate.
  • Embodiments of the present invention provide a parallel interface timing control method and apparatus, the method is used for a parallel interface timing control apparatus, and the parallel interface timing control apparatus includes: a register configuration module, a rate adaptation module, an interface timing control module, and a data and timing processing module, the method comprising: the register configuration module acquiring configuration information of the system; and when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module Generating an updated data communication rate and an adaptive flag by using the period information of the MCLK sent by the opposite end, and transmitting the updated data communication rate and the adaptive flag to the register configuration module; the register configuration module is configured according to the adaptive flag Configuring a current data communication rate; the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module; the data and timing processing module transmits data according to the interface timing, according to the Register configuration module current data pass Data processing rate, enabling parallel interface rate adaptation configuration.
  • Figure 1 is a JESD207 data interface connection diagram
  • FIG. 2 is a schematic diagram of communication interaction between a parallel interface timing control apparatus and a radio frequency front-end integrated circuit according to an embodiment of the present invention
  • FIG. 3 is a timing diagram of data transmission start of JESD 207 according to an embodiment of the present invention.
  • FIG. 4 is a timing diagram of data transmission end of JESD 207 according to an embodiment of the present invention.
  • FIG. 5 is a timing diagram of data reception start of JESD 207 according to an embodiment of the present invention.
  • FIG. 6 is a timing diagram of data reception end of JESD 207 according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a parallel interface timing control circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a parallel interface timing control apparatus according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a rate adaptation module according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a parallel interface timing control method according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of generating an updated data communication rate by an adaptive module according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of processing data by a data and timing processing module according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a communication interaction between a parallel interface timing control device and an RFIC according to an embodiment of the present invention. It can be understood that the schematic diagram is only used to explain the technical solution of the embodiment of the present invention, and is not intended to be The embodiment of the invention is arbitrarily limited.
  • the parallel interface timing control device is located on the BBIC side, and the parallel interface timing control device corresponds to the RBDP related circuit in the BBIC of FIG.
  • Figures 3 and 4 show the timing of the JESD 207 data transmission operation
  • Figures 5 and 6 show the timing of the JESD 207 data reception operation.
  • the indication, TXNRX signal to indicate the direction of data transmission high level indicates transmission, low level indicates low reception, and for transmitting data, RFIC uses FCLK for sampling.
  • BBIC uses MCLK for sampling.
  • an embodiment of the present invention provides a parallel interface timing control method, the parallel interface timing control method is used for a parallel interface timing control device, and FIG. 7 is a schematic structural diagram of a parallel interface timing control circuit, which is implemented by the present invention.
  • the register configuration module acquires configuration information of the system; when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module sends the MCLK period through the peer end.
  • the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module; the data and timing processing module transmits data according to the interface timing, and configures a current data communication rate of the module according to the register. Processing data to achieve parallel connection Rate adaptation configuration.
  • the parallel interface timing control apparatus 80 includes: a register configuration module 801, a rate adaptation module 802, and an interface timing control module. 803 and data and timing processing module 804, wherein
  • the register configuration module 801 is configured to acquire configuration information of the system
  • the rate adaptation module 802 is configured to generate an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer end when detecting that the first configuration information in the register configuration module is valid, and The updated data communication rate and the adaptive flag are sent to the register configuration module;
  • the register configuration module 801 is further configured to configure a current data communication rate according to the adaptive flag
  • the interface timing control module 803 is configured to perform a second according to the register configuration module Configuration information and MCLK information generation interface timing;
  • the data and timing processing module 804 is configured to transmit data according to the interface timing, and process data according to the number of channels in the register configuration module and the current data communication rate.
  • the configuration information includes: interface module enable, channel number, default data communication rate, TDD mode subframe type, adaptive function enable, adaptive successful detection times, and adaptive failure detection times. ;
  • the adaptive function is enabled to correspond to the first configuration information, where the first configuration information is effective to enable the adaptive function in the register configuration module to be valid, for example, the adaptive function is enabled when the high level is enabled; and the TDD mode is used. Corresponding to the second configuration information.
  • the period information of the MCLK sent by the opposite end refers to the period information of the MCLK sent by the RFIC;
  • the adaptive flag includes an adaptive success flag and an adaptive failure flag.
  • the block diagram of the rate adaptation module 802 is as shown in FIG. 9.
  • the rate adaptation module 802 includes: an MCLK period detection sub-module 8021, an MCLK clock stability detection sub-module 8022, a rate adaptive failure detection sub-module 8023, and Rate adaptive information update submodule 8024;
  • the MCLK period detecting sub-module 8021 is configured to acquire the period information of the MCLK through the working clock, and send the period information of the MCLK to the MCLK clock stability detecting sub-module 8022 and the rate adaptive information updating sub-module 8024 in real time;
  • the working clock is not less than 2 times the MCLK clock frequency and is an integer multiple of the MCLK clock frequency;
  • the MCLK clock stability detection sub-module 8022 is configured to trigger the rate adaptive information update sub-module 8024 to generate an updated data communication rate when detecting that the number of consecutive times of the MCLK periodic information coincides with the preset adaptive success value. Sended to the register configuration module 801;
  • rate adaptive information update sub-module 8024 configured to turn off the adaptive function when the number of times of inconsistency of the periodic information of the MCLK that is detected twice consecutive times satisfies the value of the adaptive failure. Yes; among them,
  • the MCLK clock stability detection submodule 8022 is configured to
  • the internal clock stabilization counter When the period information of the MCLK consecutively detected is the same, the internal clock stabilization counter performs an accumulation count to obtain a first accumulated count value; and, when the first accumulated count value reaches a pre-configured adaptive success value, Generating a rate adaptive success flag; and transmitting the rate adaptive success flag to the rate adaptive information update sub-module 8024 and the register configuration module 801.
  • the rate adaptive information update sub-module 8024 is configured to convert the period information of the MCLK into a data communication rate when the rate adaptive success flag is detected; and to use the data communication rate converted by the period information of the MCLK as the updated data.
  • the communication rate is sent to the register configuration module 801.
  • the MCLK clock stability detection sub-module 8022 and the rate adaptive information update sub-module 8024 are configured to implement an updated data communication rate, and send the information to the The process of register configuration module 801.
  • the MCLK clock stability detection sub-module 8022 is further configured to trigger the rate adaptive information update sub-module 8024 to turn off the adaptive function when detecting that the number of times of the inconsistency of the periodic information of the MCLKs of the two consecutive times meets the adaptive failure value;
  • the MCLK clock stability detection sub-module 8022 is further configured to
  • the internal clock stabilization counter When detecting that the period information of the MCLK consecutive times is inconsistent, the internal clock stabilization counter performs an accumulation count clearing to generate an MCLK change flag; and, the MCLK change flag is sent to the rate adaptive failure detection submodule 8023.
  • the rate adaptive fail detection sub-module 8023 is configured to, when detecting the MCLK change flag, perform an accumulative counting operation on the internal clock change counter to obtain a second accumulated count value; and, when the second accumulated count value Upon reaching the pre-configured adaptive failure value, a rate adaptive failure flag is generated; and the rate adaptive failure flag is sent to the rate adaptive information update sub-module 8024 and the register configuration module 801.
  • the rate adaptive information update sub-module 8024 is further configured to turn off the rate adaptation function when the rate adaptation failure flag is detected.
  • the MCLK clock stability detection sub-module 8022, the rate adaptive failure detection sub-module 8023, and the rate adaptive information update sub-module 8024 are configured to implement the shutdown. The process of adapting to functions.
  • the register configuration module 801 is further configured to: configure a current data communication rate according to the adaptive success flag as the updated data communication rate; configure a current data communication rate according to the adaptive failure flag to be configured to be sent by the system to the register Configure the module's default data communication rate.
  • the communication type includes: uplink communication and downlink communication;
  • the interface timing refers to an interface timing that meets the requirements of the JESD207 protocol
  • the interface timing control module 803 is configured to
  • the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, configured to generate an interface timing corresponding to the uplink data communication;
  • the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, configured to generate an interface timing corresponding to the downlink data communication, and generate the same FCLK timing as the MCLK timing according to the MCLK information delay .
  • the data and timing processing module 804 is configured to receive uplink data transmitted by the interface timing control module 803 according to an interface timing corresponding to the uplink data communication when the data communication type is uplink data communication, according to the register configuration module 801. The number of channels in the current data communication rate and the current data communication rate are sent to the BBIC's subsequent stage circuit;
  • the interface timing control module 803 sends data to the data and timing processing module 804, that the interface timing control module 803 corresponds to TXNRX, ENABLE timing signals, and MCLK timing according to uplink data communication.
  • the interface timing control module 803 receives data of the DDR sent by the peer end through the DIQ interface, the interface timing control module 803 converting the data of the DDR
  • the data for the single data rate (SDR) is sent to the data and timing processing module 804 for data processing, and the data and timing processing module 804 finally corresponds to the TXNRX, ENABLE timing signal and MCLK timing according to the uplink data communication.
  • the processed SDR data is sent to the BBIC's subsequent stage circuit;
  • the data communication type is downlink data communication
  • receiving downlink data transmitted by the BBIC subsequent circuit according to the interface timing corresponding to the downlink data communication, according to the number of channels in the register configuration module 801 and the current data communication rate.
  • the downlink data is sent to the interface timing control module 803;
  • the data sent by the subsequent circuit of the BBIC to the data and timing processing module 804 is SDR data
  • the subsequent circuit of the BBIC corresponds to the TXNRX and ENABLE timings according to the downlink data communication.
  • the signal and MCLK timings send SDR data to the data and timing processing module 804, and the data of the SDR processed by the data and timing processing module 804 is finally converted to DDR data by the interface timing control module 803.
  • the data of the DDR is sent by the interface timing control module 803 to the opposite end according to the downlink data communication corresponding TXNRX, ENABLE timing signal and FCLK through the DIQ interface.
  • the present embodiment also uses the rate adaptation module 802 to generate a rate adaptive fail flag off rate adaptation function for the problem that the MCLK frequent jitter causes frequent update of the data communication rate information.
  • the rate adaptation module 802 uses the rate adaptation module 802 to generate a rate adaptive fail flag off rate adaptation function for the problem that the MCLK frequent jitter causes frequent update of the data communication rate information.
  • a rate adaptive invalidation flag is generated and sent to the register configuration module 801.
  • the rate adaptive information update sub-module 8024 detects the rate adaptive invalidation flag and then turns off the rate adaptation function.
  • the embodiment provides a parallel interface timing control device
  • the register configuration module 801 is configured to acquire configuration information of the system
  • the rate adaptation module 802 is configured to detect the first configuration in the register configuration module.
  • the register configuration module 801 is configured to configure a current data communication rate according to the adaptive flag
  • the interface timing control module 803 is configured to be configured according to the register Second configuration information and MCLK information generation interface timing
  • the data and timing processing module 804 is configured to transmit data according to the interface timing, process data according to a current data communication rate of the register configuration module, thereby implementing a parallel interface rate Adaptive configuration.
  • a parallel interface timing control method according to an embodiment of the present invention is shown.
  • the method periodically detects the period information of the MCLK clock of the host RFIC and combines the channel configuration information to obtain the slave BBIC and the host.
  • the communication rate of the RFIC thus, the interface of the slave sends the timing signal required by the host RFIC at the detected rate to complete the communication between the two devices; since the periodic detection is performed, when the host RFIC clock MCLK changes, the communication is changed. Rate to ensure normal communication between the two devices.
  • the method is used for a parallel interface timing control device, and the parallel interface timing control device comprises: a register configuration module, a rate adaptation module, an interface timing control module, and a data and timing processing module, the method comprising:
  • the register configuration module acquires configuration information of the system
  • the rate adaptation module When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module generates an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer end, And transmitting the updated data communication rate and the adaptive flag to the register configuration module;
  • the register configuration module configures a current data communication rate according to the adaptive flag.
  • the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module.
  • the data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate.
  • the configuration information includes: interface module enable, number of channels, default Data communication rate, TDD mode subframe type, adaptive function enable, adaptive successful detection times, adaptive failure detection times;
  • the adaptive function is enabled to correspond to the first configuration information, where the first configuration information is effective to enable the adaptive function in the register configuration module to be valid, for example, the adaptive function is enabled when the high level is enabled; and the TDD mode is used. Corresponding to the second configuration information.
  • the rate adaptation module includes: an MCLK period detection submodule, an MCLK clock stability detection submodule, a rate adaptive failure detection submodule, and a rate adaptive information update submodule;
  • the period information of the MCLK sent by the peer end refers to the period information of the MCLK sent by the RFIC;
  • the adaptive flag includes an adaptive success flag and an adaptive failure flag.
  • FIG. 11 is a flowchart of the adaptive module generating an updated data communication rate.
  • the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module passes The period information of the MCLK sent by the terminal generates an updated data communication rate and an adaptive flag, and sends the updated data communication rate and the adaptive flag to the register configuration module, including:
  • the rate adaptation module acquires period information of the MCLK by using an operating clock; the working clock is not less than twice the MCLK clock frequency and is an integer multiple of the MCLK clock frequency;
  • step S10022 When the rate adaptation module detects that the number of coincidences of the periodic information of the two consecutive MCLKs meets the preset adaptive success value, step S10023 to step S10027 are performed; when the MCLK clock stability detection submodule detects two consecutive When the number of times of inconsistency of the periodicity information of the MCLK meets the adaptive failure value, step S10028 to step S100212 are performed;
  • the clock stabilization counter inside the rate adaptation module performs an accumulation count, and the rate adaptation module obtains a first accumulated count value
  • the rate adaptation module sends the rate adaptive success flag to the registration Device configuration module
  • the rate adaptation module sends a data communication rate of the cycle information conversion of the MCLK to the register configuration module as an updated data communication rate.
  • step S10023 to step S10027 when the rate adaptation module detects that the number of coincidences of the periodic information of the two consecutive times of MCLK meets the preset adaptive success value, an updated data communication rate is generated and sent to the The implementation process of the register configuration module.
  • S10028 The clock stabilization counter inside the rate adaptation module performs an accumulation count clearing, and the rate adaptation module generates an MCLK change flag.
  • the rate adaptation module generates a rate adaptation failure flag when the second accumulated count value reaches a pre-configured adaptive failure value of the rate adaptation module;
  • the rate adaptation module sends the rate adaptation failure flag to the register configuration module.
  • step S10028 to step S100212 is an implementation process for turning off the adaptive function when the rate adaptation module detects that the number of times of coincidence of the periodic information of the MCLKs that are consecutive two times satisfies the adaptive failure value.
  • the register configuration module configures a current data communication rate according to the adaptive flag, including:
  • the register configuration module configures a current data communication rate as the updated data communication rate according to an adaptive success flag
  • the register configuration module configures a current data communication rate according to an adaptive failure flag to configure a default data communication rate that the system sends to the register configuration module.
  • the communication type includes: uplink communication and downlink communication;
  • the interface timing refers to an interface timing that meets the requirements of the JESD207 protocol
  • the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module, including:
  • the interface timing control module When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, the interface timing control module generates an interface timing corresponding to the uplink data communication;
  • the interface timing control module When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, the interface timing control module generates an interface timing corresponding to the downlink data communication, and the interface timing control module according to the MCLK information The delay generates the same FCLK timing as the MCLK timing.
  • the data includes uplink receiving data and downlink sending data
  • FIG. 12 is a flowchart of processing data by the data and timing processing module, the data and timing processing module transmits data according to the interface timing, and processes according to the number of channels in the register configuration module and the current data communication rate.
  • Data including:
  • the data and timing processing module receives uplink data transmitted by the interface timing control module according to an interface timing corresponding to the uplink data communication, where the data and timing processing module is configured according to the register Configuring the number of channels in the module and the current data communication rate to send the uplink data to the subsequent circuit of the BBIC;
  • the data and timing processing module receives downlink data transmitted by the BBIC subsequent circuit according to an interface timing corresponding to the downlink data communication, where the data and timing processing module is configured according to the register The number of channels in the module and the current data communication rate send the downlink data to the interface timing control module.
  • the interface timing control module For step S10051, the interface timing control module
  • the data sent to the data and the timing processing module means that the interface timing control module receives the data of the DDR sent by the opposite end through the DIQ interface according to the uplink data communication corresponding to the TXNRX, the ENABLE timing signal and the MCLK timing, and the interface timing control module Data for converting DDR data into SDR is sent to the data and timing processing module for data processing, and the data and timing processing module finally responds to the TXNRX, ENABLE timing signal and MCLK sequence processed SDR data according to the uplink data communication.
  • the data sent by the subsequent circuit of the BBIC to the data and the timing processing module is data of the SDR
  • the subsequent circuit of the BBIC corresponds to the TXNRX according to the downlink data communication.
  • the ENDR timing signal and the MCLK timing send the SDR data to the data and timing processing module, and the data of the SDR processed by the data and the timing processing module is finally converted into the data of the DDR by the interface timing control module,
  • the data of the DDR is sent to the opposite end by the interface timing control module through the DIQ interface according to the downlink data communication corresponding to the TXNRX, ENABLE timing signal and FCLK.
  • the rate adaptation module generates a rate adaptive failure flag off rate adaptation function for the problem that the MCLK frequent jitter causes the data communication rate information to be frequently updated.
  • a rate adaptive fail flag is generated and sent to the register configuration module and the rate adaptation.
  • the information update sub-module, the rate adaptive information update sub-module detects the rate adaptive invalidation flag and then turns off the rate adaptation function.
  • the embodiment provides a parallel interface timing control method
  • the register configuration module acquires configuration information of the system, and when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate is self-determined.
  • the adaptation module generates an updated data communication rate and an adaptive flag by using the period information of the MCLK sent by the peer end, and sends the updated data communication rate and the adaptive flag to the register configuration module, where the register configuration module is configured according to the Adapting the flag to configure a current data communication rate, the interface timing control module according to the registration
  • the second configuration information in the configuration module selects a timing signal required for the communication type and the communication type, the data and timing processing module transmits data according to the interface timing, and processes data according to the current data communication rate of the register configuration module.
  • embodiments of the present invention can provide a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.
  • These computer program instructions may also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computing and readable memory produce an article of manufacture comprising the instruction device.
  • the instruction means implements the functions specified in one or more blocks of the flow or processes and/or block diagrams in the flowchart.
  • These computer program instructions can also be loaded on a computer or other programmable processing device such that instructions executed on a computer or other programmable device are provided for implementation in a flow or a block diagram of a flow or a block diagram or The steps of the function specified in multiple boxes.
  • the register configuration module acquires configuration information of the system; when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module sends the information through the peer end.
  • the cycle information of the MCLK generates an updated data communication rate and an adaptive flag, and sends the updated data communication rate and the adaptive flag to the register configuration module;
  • the register configuration module configures the current data communication according to the adaptive flag Rate;
  • the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module;
  • the data and timing processing module transmits data according to the interface timing, according to the register configuration module current
  • the data communication rate processes the data to enable parallel interface rate adaptive configuration.

Abstract

Disclosed in the embodiments of the present invention are a parallel interface time sequence control method and apparatus, the parallel interface time sequence control apparatus comprising: a register configuration module, a rate adaptation module, an interface time sequence control module, and a data and time sequence processing module, used for implementing adaptive configuration of the parallel interface rate.

Description

一种并行接口时序控制方法和装置Parallel interface timing control method and device
相关申请的交叉引用Cross-reference to related applications
本申请基于申请号为201610962540.7、申请日为2016年10月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。The present application is based on a Chinese patent application filed on Jan. 28, 2016, the entire disclosure of which is hereby incorporated by reference.
技术领域Technical field
本发明涉及通信领域,尤其涉及一种并行接口时序控制方法和装置。The present invention relates to the field of communications, and in particular, to a parallel interface timing control method and apparatus.
背景技术Background technique
JESD207是射频前端集成电路(RFIC,Radio Front end Integrated Circuit)和基带集成电路(BBIC,Baseband Integrated Circuit)之间的射频前端—基带数字并行(RBDP,Radio front end-Baseband Digital Parallel)接口主要用来传输RFIC和BBIC的数字波形数据,该接口支持时分双工(TDD,Time Division Duplex)和频分双工模式(FDD,Frequency Division Duplex)的单天线和双天线数据的收发,图1为JESD207数据接口连接图,其中MCLK为RFIC发送给BBIC的数据的随路时钟,FCLK为BBIC发送给RFIC的数据的随路时钟,TXNRX是数据方向指示信号,ENABLE信号为数据突发传输的开始与结束指示,DIQ[11:0]和DIQ[9:0]信号为数据的双向传输总线,分别支持12bit和10bit数据格式的传输,可根据需要进行选择,所有数据均采用双倍数据速率(DDR,Double Data Rate)。JESD207 is a radio front-end (Base-to-Plane Integrated Circuit) (RF-based front end integrated circuit (RFIC)). The radio front end-Baseband Digital Parallel (RBDP) interface is mainly used. Transmit RFIC and BBIC digital waveform data, which supports single-antenna and dual-antenna data transmission and reception in Time Division Duplex (TDD) and Frequency Division Duplex (FDD). Figure 1 shows JESD207 data. Interface connection diagram, where MCLK is the associated clock of the data sent by the RFIC to BBIC, FCLK is the associated clock of the data sent by BBIC to RFIC, TXNRX is the data direction indication signal, and ENABLE signal is the start and end indication of data burst transmission The DIQ[11:0] and DIQ[9:0] signals are data bidirectional transmission buses that support transmission in 12-bit and 10-bit data formats, respectively, and can be selected as needed. All data are double data rate (DDR, Double) Data Rate).
JESD207数据接口具有占用管脚资源少,接口速率低,设计难度小等特点,虽然对于BBIC接口层面FCLK可以视作MCLK同源时钟,可以不关心该时钟的频率,只需将接收到的MCLK进行延时后输出即可,但对于BBIC接口的后级电路,仍需要MCLK时钟周期信息来了解数据通信速率, 从而提供与BBIC接口的后级电路匹配的数据通信速率以保证RFIC与BBIC之间数据能够正确收发,因此当遇到测试时需要更换不同的RFIC的情况时,就需要针对每一块RFIC的需求对接口速率进行配置,从而带来测试的不便。The JESD207 data interface has the characteristics of less occupied pin resources, low interface rate, and low design difficulty. Although the FCLK can be regarded as the MCLK homologous clock for the BBIC interface level, the frequency of the clock can be ignored, and only the received MCLK is performed. After the delay, the output can be, but for the latter stage of the BBIC interface, the MCLK clock cycle information is still needed to understand the data communication rate. Therefore, the data communication rate matched with the latter circuit of the BBIC interface is provided to ensure that the data between the RFIC and the BBIC can be correctly transmitted and received. Therefore, when it is necessary to replace different RFICs when testing, it is necessary to meet the requirements of each RFIC. The interface rate is configured to bring inconvenience in testing.
发明内容Summary of the invention
为解决现有存在的技术问题,本发明实施例期望提供一种并行接口时序控制方法和装置,实现并行接口速率自适应配置。In order to solve the existing technical problems, embodiments of the present invention are expected to provide a parallel interface timing control method and apparatus, and implement parallel interface rate adaptive configuration.
本发明实施例的技术方案是这样实现的:The technical solution of the embodiment of the present invention is implemented as follows:
第一方面,本发明实施例提供了一种并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,其中,In a first aspect, an embodiment of the present invention provides a parallel interface timing control apparatus, where the parallel interface timing control apparatus includes: a register configuration module, a rate adaptation module, an interface timing control module, and a data and timing processing module, where
所述寄存器配置模块,配置为获取系统的配置信息;The register configuration module is configured to acquire configuration information of the system;
所述速率自适应模块,配置为当检测所述寄存器配置模块中的第一配置信息有效时,通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给所述寄存器配置模块;The rate adaptation module is configured to generate an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer end when detecting that the first configuration information in the register configuration module is valid, and the updating Data communication rate and adaptive flag are sent to the register configuration module;
所述寄存器配置模块,还配置为根据所述自适应标志配置当前的数据通信速率;The register configuration module is further configured to configure a current data communication rate according to the adaptive flag;
所述接口时序控制模块,配置为根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;The interface timing control module is configured to generate an interface timing according to the second configuration information and the MCLK information in the register configuration module;
所述数据与时序处理模块,配置为根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。The data and timing processing module is configured to transmit data according to the interface timing, and process data according to the number of channels in the register configuration module and the current data communication rate.
第二方面,本发明实施例提供了一种并行接口时序控制方法,所述方法用于并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块, 所述方法包括:In a second aspect, an embodiment of the present invention provides a parallel interface timing control method, where the method is used for a parallel interface timing control apparatus, where the parallel interface timing control apparatus includes: a register configuration module, a rate adaptation module, and an interface timing control Module and data and timing processing module, The method includes:
所述寄存器配置模块获取系统的配置信息;The register configuration module acquires configuration information of the system;
当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module generates an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer, and Transmitting the updated data communication rate and the adaptive flag to the register configuration module;
所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;The register configuration module configures a current data communication rate according to the adaptive flag;
所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;The interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module;
所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。The data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate.
本发明实施例提供了一种并行接口时序控制方法和装置,所述方法用于并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,所述方法包括:所述寄存器配置模块获取系统的配置信息;当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。Embodiments of the present invention provide a parallel interface timing control method and apparatus, the method is used for a parallel interface timing control apparatus, and the parallel interface timing control apparatus includes: a register configuration module, a rate adaptation module, an interface timing control module, and a data and timing processing module, the method comprising: the register configuration module acquiring configuration information of the system; and when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module Generating an updated data communication rate and an adaptive flag by using the period information of the MCLK sent by the opposite end, and transmitting the updated data communication rate and the adaptive flag to the register configuration module; the register configuration module is configured according to the adaptive flag Configuring a current data communication rate; the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module; the data and timing processing module transmits data according to the interface timing, according to the Register configuration module current data pass Data processing rate, enabling parallel interface rate adaptation configuration.
附图说明DRAWINGS
图1为JESD207数据接口连接图; Figure 1 is a JESD207 data interface connection diagram;
图2为本发明实施例提供的一种并行接口时序控制装置与射频前端集成电路之间通信交互示意图;2 is a schematic diagram of communication interaction between a parallel interface timing control apparatus and a radio frequency front-end integrated circuit according to an embodiment of the present invention;
图3为本发明实施例提供的JESD207数据发送开始时序图;FIG. 3 is a timing diagram of data transmission start of JESD 207 according to an embodiment of the present invention;
图4为本发明实施例提供的JESD207数据发送结束时序图;4 is a timing diagram of data transmission end of JESD 207 according to an embodiment of the present invention;
图5为本发明实施例提供的JESD207数据接收开始时序图;FIG. 5 is a timing diagram of data reception start of JESD 207 according to an embodiment of the present invention;
图6为本发明实施例提供的JESD207数据接收结束时序图;FIG. 6 is a timing diagram of data reception end of JESD 207 according to an embodiment of the present invention;
图7为本发明实施例提供的一种并行接口时序控制电路的结构示意图;FIG. 7 is a schematic structural diagram of a parallel interface timing control circuit according to an embodiment of the present disclosure;
图8为本发明实施例提供的一种并行接口时序控制装置的结构框图;FIG. 8 is a structural block diagram of a parallel interface timing control apparatus according to an embodiment of the present invention;
图9为本发明实施例提供的一种速率自适应模块的结构框图;FIG. 9 is a structural block diagram of a rate adaptation module according to an embodiment of the present invention;
图10为本发明实施例提供的一种并行接口时序控制方法的流程图;FIG. 10 is a flowchart of a parallel interface timing control method according to an embodiment of the present invention;
图11为本发明实施例提供的一种自适应模块生成更新的数据通信速率的流程图;FIG. 11 is a flowchart of generating an updated data communication rate by an adaptive module according to an embodiment of the present invention;
图12为本发明实施例提供的一种数据与时序处理模块处理数据的流程图。FIG. 12 is a flowchart of processing data by a data and timing processing module according to an embodiment of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对发明实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings in the embodiments.
参见图2,其示出了本发明实施例提供的一种并行接口时序控制装置与RFIC之间通信交互示意图,可以理解的,该示意图仅用于说明本发明实施例的技术方案,并不对本发明实施例进行任何的限定,从图中可以看出,所述并行接口时序控制装置位于BBIC侧,所述并行接口时序控制装置对应图1中BBIC中的与RBDP相关电路。2 is a schematic diagram of a communication interaction between a parallel interface timing control device and an RFIC according to an embodiment of the present invention. It can be understood that the schematic diagram is only used to explain the technical solution of the embodiment of the present invention, and is not intended to be The embodiment of the invention is arbitrarily limited. As can be seen from the figure, the parallel interface timing control device is located on the BBIC side, and the parallel interface timing control device corresponds to the RBDP related circuit in the BBIC of FIG.
图3和图4展示了JESD207进行数据发送操作的时序,图5和图6展示了JESD207进行数据接收操作的时序。由上述的时序图可以看出JESD207接口数据的接收或发送使用成对的ENABLE信号作为开始和结束 的指示,TXNRX信号来指示数据的传输方向,高电平表示发送,低电平表示低接收,对于发送数据,RFIC使用FCLK进行采样,对于接收数据,BBIC使用MCLK进行采样。Figures 3 and 4 show the timing of the JESD 207 data transmission operation, and Figures 5 and 6 show the timing of the JESD 207 data reception operation. It can be seen from the above timing diagram that the reception or transmission of the JESD207 interface data uses the paired ENABLE signals as the start and end. The indication, TXNRX signal to indicate the direction of data transmission, high level indicates transmission, low level indicates low reception, and for transmitting data, RFIC uses FCLK for sampling. For receiving data, BBIC uses MCLK for sampling.
基于上述示意图,本发明实施例提供了一种并行接口时序控制方法,所述并行接口时序控制方法用于并行接口时序控制装置,图7为一种并行接口时序控制电路的结构示意图,本发明实施例中,所述寄存器配置模块获取系统的配置信息;当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。Based on the above schematic diagram, an embodiment of the present invention provides a parallel interface timing control method, the parallel interface timing control method is used for a parallel interface timing control device, and FIG. 7 is a schematic structural diagram of a parallel interface timing control circuit, which is implemented by the present invention. In an example, the register configuration module acquires configuration information of the system; when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module sends the MCLK period through the peer end. Generating an updated data communication rate and an adaptive flag, and transmitting the updated data communication rate and the adaptive flag to a register configuration module; the register configuration module configuring a current data communication rate according to the adaptive flag; The interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module; the data and timing processing module transmits data according to the interface timing, and configures a current data communication rate of the module according to the register. Processing data to achieve parallel connection Rate adaptation configuration.
参见图8,其示出了本发明实施例提供的一种并行接口时序控制装置80的结构,所述并行接口时序控制装置80包括:寄存器配置模块801、速率自适应模块802、接口时序控制模块803及数据与时序处理模块804,其中,Referring to FIG. 8, a structure of a parallel interface timing control apparatus 80 according to an embodiment of the present invention is shown. The parallel interface timing control apparatus 80 includes: a register configuration module 801, a rate adaptation module 802, and an interface timing control module. 803 and data and timing processing module 804, wherein
所述寄存器配置模块801,配置为获取系统的配置信息;The register configuration module 801 is configured to acquire configuration information of the system;
所述速率自适应模块802,配置为当检测所述寄存器配置模块中的第一配置信息有效时,通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;The rate adaptation module 802 is configured to generate an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer end when detecting that the first configuration information in the register configuration module is valid, and The updated data communication rate and the adaptive flag are sent to the register configuration module;
所述寄存器配置模块801,还配置为根据所述自适应标志配置当前的数据通信速率;The register configuration module 801 is further configured to configure a current data communication rate according to the adaptive flag;
所述接口时序控制模块803,配置为根据所述寄存器配置模块中的第二 配置信息和MCLK信息生成接口时序;The interface timing control module 803 is configured to perform a second according to the register configuration module Configuration information and MCLK information generation interface timing;
所述数据与时序处理模块804,配置为根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。The data and timing processing module 804 is configured to transmit data according to the interface timing, and process data according to the number of channels in the register configuration module and the current data communication rate.
对于所述寄存器配置模块801,所述配置信息包括:接口模块使能,通道数量,默认数据通信速率,TDD模式子帧类型,自适应功能使能,自适应成功检测次数,自适应失败检测次数;For the register configuration module 801, the configuration information includes: interface module enable, channel number, default data communication rate, TDD mode subframe type, adaptive function enable, adaptive successful detection times, and adaptive failure detection times. ;
其中,自适应功能使能对应第一配置信息,所述第一配置信息有效指寄存器配置模块中的自适应功能使能有效,比如:自适应功能使能高电平时有效;TDD模式子帧类型对应第二配置信息。The adaptive function is enabled to correspond to the first configuration information, where the first configuration information is effective to enable the adaptive function in the register configuration module to be valid, for example, the adaptive function is enabled when the high level is enabled; and the TDD mode is used. Corresponding to the second configuration information.
对于所述速率自适应模块802,所述对端发送的MCLK的周期信息指RFIC发送的MCLK的周期信息;For the rate adaptation module 802, the period information of the MCLK sent by the opposite end refers to the period information of the MCLK sent by the RFIC;
所述自适应标志包括:自适应成功标志和自适应失败标志。The adaptive flag includes an adaptive success flag and an adaptive failure flag.
所述速率自适应模块802的结构框图如图9所示,所述速率自适应模块802包括:MCLK周期检测子模块8021、MCLK时钟稳定度检测子模块8022、速率自适应失效检测子模块8023和速率自适应信息更新子模块8024;The block diagram of the rate adaptation module 802 is as shown in FIG. 9. The rate adaptation module 802 includes: an MCLK period detection sub-module 8021, an MCLK clock stability detection sub-module 8022, a rate adaptive failure detection sub-module 8023, and Rate adaptive information update submodule 8024;
对于所述速率自适应模块802,其中,For the rate adaptation module 802, wherein
所述MCLK周期检测子模块8021,配置为通过工作时钟获取MCLK的周期信息,将所述MCLK的周期信息实时发送给所述MCLK时钟稳定度检测子模块8022和速率自适应信息更新子模块8024;所述工作时钟不小于2倍的MCLK时钟频率且为MCLK时钟频率的整数倍;The MCLK period detecting sub-module 8021 is configured to acquire the period information of the MCLK through the working clock, and send the period information of the MCLK to the MCLK clock stability detecting sub-module 8022 and the rate adaptive information updating sub-module 8024 in real time; The working clock is not less than 2 times the MCLK clock frequency and is an integer multiple of the MCLK clock frequency;
MCLK时钟稳定度检测子模块8022,配置为当检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,触发所述速率自适应信息更新子模块8024产生更新的数据通信速率发送给所述寄存器配置模块801;The MCLK clock stability detection sub-module 8022 is configured to trigger the rate adaptive information update sub-module 8024 to generate an updated data communication rate when detecting that the number of consecutive times of the MCLK periodic information coincides with the preset adaptive success value. Sended to the register configuration module 801;
以及,配置为当检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,触发所述速率自适应信息更新子模块8024关闭自适应功 能;其中,And, configured to trigger the rate adaptive information update sub-module 8024 to turn off the adaptive function when the number of times of inconsistency of the periodic information of the MCLK that is detected twice consecutive times satisfies the value of the adaptive failure. Yes; among them,
所述MCLK时钟稳定度检测子模块8022,配置为,The MCLK clock stability detection submodule 8022 is configured to
检测连续两次的MCLK的周期信息一致时,内部的时钟稳定计数器执行一次累加计数,得到一个第一累加计数值;以及,当所述第一累加计数值达到预先配置的自适应成功数值时,产生一个速率自适应成功标志;以及,将所述速率自适应成功标志发送给所述速率自适应信息更新子模块8024和寄存器配置模块801。When the period information of the MCLK consecutively detected is the same, the internal clock stabilization counter performs an accumulation count to obtain a first accumulated count value; and, when the first accumulated count value reaches a pre-configured adaptive success value, Generating a rate adaptive success flag; and transmitting the rate adaptive success flag to the rate adaptive information update sub-module 8024 and the register configuration module 801.
所述速率自适应信息更新子模块8024,配置为当检测到速率自适应成功标志时,将MCLK的周期信息转化为数据通信速率;以及,将MCLK的周期信息转化的数据通信速率作为更新的数据通信速率发送给所述寄存器配置模块801。The rate adaptive information update sub-module 8024 is configured to convert the period information of the MCLK into a data communication rate when the rate adaptive success flag is detected; and to use the data communication rate converted by the period information of the MCLK as the updated data. The communication rate is sent to the register configuration module 801.
需要说明的是,检测连续两次的MCLK的周期信息一致时,上述MCLK时钟稳定度检测子模块8022和速率自适应信息更新子模块8024配置为实现产生更新的数据通信速率,并发送给所述寄存器配置模块801的过程。It should be noted that, when the period information of the MCLKs that are consecutively detected twice is consistent, the MCLK clock stability detection sub-module 8022 and the rate adaptive information update sub-module 8024 are configured to implement an updated data communication rate, and send the information to the The process of register configuration module 801.
MCLK时钟稳定度检测子模块8022,还配置为当检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,触发所述速率自适应信息更新子模块8024关闭自适应功能;其中,The MCLK clock stability detection sub-module 8022 is further configured to trigger the rate adaptive information update sub-module 8024 to turn off the adaptive function when detecting that the number of times of the inconsistency of the periodic information of the MCLKs of the two consecutive times meets the adaptive failure value;
MCLK时钟稳定度检测子模块8022,还配置为,The MCLK clock stability detection sub-module 8022 is further configured to
当检测连续两次的MCLK的周期信息不一致时,内部的时钟稳定计数器执行一次累加计数清零,产生一个MCLK变动标志;以及,将所述MCLK变动标志发送给所述速率自适应失效检测子模块8023。When detecting that the period information of the MCLK consecutive times is inconsistent, the internal clock stabilization counter performs an accumulation count clearing to generate an MCLK change flag; and, the MCLK change flag is sent to the rate adaptive failure detection submodule 8023.
所述速率自适应失效检测子模块8023,配置为检测到MCLK变动标志时,其内部的时钟变化计数器进行一次累加计数操作,得到一个第二累计计数值;以及,当所述第二累加计数值达到预先配置的自适应失败数值时,产生一个速率自适应失败标志;以及,将所述速率自适应失败标志发送给所述速率自适应信息更新子模块8024和寄存器配置模块801。 The rate adaptive fail detection sub-module 8023 is configured to, when detecting the MCLK change flag, perform an accumulative counting operation on the internal clock change counter to obtain a second accumulated count value; and, when the second accumulated count value Upon reaching the pre-configured adaptive failure value, a rate adaptive failure flag is generated; and the rate adaptive failure flag is sent to the rate adaptive information update sub-module 8024 and the register configuration module 801.
所述速率自适应信息更新子模块8024,还配置为当检测到速率自适应失败标志时,关闭速率自适应功能。The rate adaptive information update sub-module 8024 is further configured to turn off the rate adaptation function when the rate adaptation failure flag is detected.
需要说明的是,当检测连续两次的MCLK的周期信息不一致时,上述MCLK时钟稳定度检测子模块8022、速率自适应失效检测子模块8023和速率自适应信息更新子模块8024配置为实现关闭自适应功能的过程。It should be noted that, when the period information of the MCLK that is detected twice consecutive times is inconsistent, the MCLK clock stability detection sub-module 8022, the rate adaptive failure detection sub-module 8023, and the rate adaptive information update sub-module 8024 are configured to implement the shutdown. The process of adapting to functions.
所述寄存器配置模块801,还配置为,根据自适应成功标志配置当前的数据通信速率为所述更新的数据通信速率;根据自适应失败标志配置当前的数据通信速率配置为系统发送给所述寄存器配置模块的默认数据通信速率。The register configuration module 801 is further configured to: configure a current data communication rate according to the adaptive success flag as the updated data communication rate; configure a current data communication rate according to the adaptive failure flag to be configured to be sent by the system to the register Configure the module's default data communication rate.
对于所述接口时序控制模块803,所述通信类型包括:上行通信和下行通信;For the interface timing control module 803, the communication type includes: uplink communication and downlink communication;
所述接口时序,是指符合JESD207协议要求的接口时序;The interface timing refers to an interface timing that meets the requirements of the JESD207 protocol;
在本发明的其他实施例中,所述接口时序控制模块803,配置为,In other embodiments of the present invention, the interface timing control module 803 is configured to
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为上行数据通信时,配置为生成与上行数据通信对应的接口时序;When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, configured to generate an interface timing corresponding to the uplink data communication;
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为下行数据通信时,配置为生成与下行数据通信对应的接口时序,以及根据MCLK信息延时生成与MCLK时序相同的FCLK时序。When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, configured to generate an interface timing corresponding to the downlink data communication, and generate the same FCLK timing as the MCLK timing according to the MCLK information delay .
所述数据与时序处理模块804,配置为,当数据通信类型为上行数据通信时,按照上行数据通信对应的接口时序接收所述接口时序控制模块803传输的上行数据,根据所述寄存器配置模块801中的通道数量及当前的数据通信速率将所述上行数据发送给BBIC的后级电路;The data and timing processing module 804 is configured to receive uplink data transmitted by the interface timing control module 803 according to an interface timing corresponding to the uplink data communication when the data communication type is uplink data communication, according to the register configuration module 801. The number of channels in the current data communication rate and the current data communication rate are sent to the BBIC's subsequent stage circuit;
在本发明的其他实施例中,所述接口时序控制模块803发送给所述数据与时序处理模块804的数据,指所述接口时序控制模块803按照上行数据通信对应TXNRX、ENABLE时序信号及MCLK时序接收对端通过DIQ接口发送的DDR的数据,所述接口时序控制模块803将DDR的数据转化 为单倍数据速率(SDR,Single Data Rate)的数据发送给所述数据与时序处理模块804进行数据处理,所述数据与时序处理模块804最后按照上行数据通信对应TXNRX、ENABLE时序信号及MCLK时序经处理后的SDR的数据发送给BBIC的后级电路;In other embodiments of the present invention, the interface timing control module 803 sends data to the data and timing processing module 804, that the interface timing control module 803 corresponds to TXNRX, ENABLE timing signals, and MCLK timing according to uplink data communication. Receiving data of the DDR sent by the peer end through the DIQ interface, the interface timing control module 803 converting the data of the DDR The data for the single data rate (SDR) is sent to the data and timing processing module 804 for data processing, and the data and timing processing module 804 finally corresponds to the TXNRX, ENABLE timing signal and MCLK timing according to the uplink data communication. The processed SDR data is sent to the BBIC's subsequent stage circuit;
以及,当数据通信类型为下行数据通信时,按照下行数据通信对应的接口时序接收BBIC的后级电路传输的下行数据,根据所述寄存器配置模块801中的通道数量及当前的数据通信速率将所述下行数据发送给所述接口时序控制模块803;And, when the data communication type is downlink data communication, receiving downlink data transmitted by the BBIC subsequent circuit according to the interface timing corresponding to the downlink data communication, according to the number of channels in the register configuration module 801 and the current data communication rate. The downlink data is sent to the interface timing control module 803;
在本发明的其他实施例中,所述BBIC的后级电路发送给所述数据与时序处理模块804的数据为SDR的数据,指所述BBIC的后级电路按照下行数据通信对应TXNRX、ENABLE时序信号及MCLK时序将SDR数据发送给所述数据与时序处理模块804,经过所述数据与时序处理模块804处理后的SDR的数据最终经过所述接口时序控制模块803转为DDR的数据,所述DDR的数据由所述接口时序控制模块803经过DIQ接口按照下行数据通信对应TXNRX、ENABLE时序信号及FCLK发送给对端。In other embodiments of the present invention, the data sent by the subsequent circuit of the BBIC to the data and timing processing module 804 is SDR data, and the subsequent circuit of the BBIC corresponds to the TXNRX and ENABLE timings according to the downlink data communication. The signal and MCLK timings send SDR data to the data and timing processing module 804, and the data of the SDR processed by the data and timing processing module 804 is finally converted to DDR data by the interface timing control module 803. The data of the DDR is sent by the interface timing control module 803 to the opposite end according to the downlink data communication corresponding TXNRX, ENABLE timing signal and FCLK through the DIQ interface.
此外,本实施例还针对MCLK频繁抖动导致数据通信速率信息的频繁更新的问题,采用速率自适应模块802产生速率自适应失效标志关闭速率自适应功能。在本发明的其他实施例中,当MCLK时钟稳定度检测子模块8022检测MCLK频繁抖动次数满足预先配置的关闭速率自适应抖动次数时,产生一个速率自适应失效标志发送给所述寄存器配置模块801和速率自适应信息更新子模块8024,所述速率自适应信息更新子模块8024检测到所述速率自适应失效标志后关闭速率自适应功能。In addition, the present embodiment also uses the rate adaptation module 802 to generate a rate adaptive fail flag off rate adaptation function for the problem that the MCLK frequent jitter causes frequent update of the data communication rate information. In other embodiments of the present invention, when the MCLK clock stability detection sub-module 8022 detects that the MCLK frequent jitter number satisfies the pre-configured off-rate adaptive dithering number, a rate adaptive invalidation flag is generated and sent to the register configuration module 801. And a rate adaptive information update sub-module 8024, the rate adaptive information update sub-module 8024 detects the rate adaptive invalidation flag and then turns off the rate adaptation function.
本实施例提供了一种并行接口时序控制装置,所述寄存器配置模块801,配置为获取系统的配置信息,所述速率自适应模块802,配置为当检测所述寄存器配置模块中的第一配置信息有效时,通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速 率及自适应标志发送给寄存器配置模块,所述寄存器配置模块801,配置为根据所述自适应标志配置当前的数据通信速率,所述接口时序控制模块803,配置为根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序,所述数据与时序处理模块804,配置为根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。The embodiment provides a parallel interface timing control device, the register configuration module 801 is configured to acquire configuration information of the system, and the rate adaptation module 802 is configured to detect the first configuration in the register configuration module. When the information is valid, the updated data communication rate and the adaptive flag are generated by the period information of the MCLK sent by the opposite end, and the updated data communication speed is The rate and the adaptive flag are sent to a register configuration module, the register configuration module 801 is configured to configure a current data communication rate according to the adaptive flag, and the interface timing control module 803 is configured to be configured according to the register Second configuration information and MCLK information generation interface timing, the data and timing processing module 804 is configured to transmit data according to the interface timing, process data according to a current data communication rate of the register configuration module, thereby implementing a parallel interface rate Adaptive configuration.
参见图10,其示出了本发明实施例提供的一种并行接口时序控制方法,该方法中,周期性检测主机RFIC的MCLK时钟的周期信息并且结合通道配置信息,从而得到从机BBIC与主机RFIC的通信速率;从而从机的接口按检测出的速率发送主机RFIC所需时序信号,完成两设备间的通信;由于是进行周期性检测,所以在主机RFIC时钟MCLK发生变化时,就是改变通信速率,保证两设备间的正常通信。该方法用于并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,所述方法包括:Referring to FIG. 10, a parallel interface timing control method according to an embodiment of the present invention is shown. The method periodically detects the period information of the MCLK clock of the host RFIC and combines the channel configuration information to obtain the slave BBIC and the host. The communication rate of the RFIC; thus, the interface of the slave sends the timing signal required by the host RFIC at the detected rate to complete the communication between the two devices; since the periodic detection is performed, when the host RFIC clock MCLK changes, the communication is changed. Rate to ensure normal communication between the two devices. The method is used for a parallel interface timing control device, and the parallel interface timing control device comprises: a register configuration module, a rate adaptation module, an interface timing control module, and a data and timing processing module, the method comprising:
S1001:所述寄存器配置模块获取系统的配置信息;S1001: The register configuration module acquires configuration information of the system;
S1002:当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给所述寄存器配置模块;S1002: When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module generates an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer end, And transmitting the updated data communication rate and the adaptive flag to the register configuration module;
S1003:所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;S1003: The register configuration module configures a current data communication rate according to the adaptive flag.
S1004:所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;S1004: The interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module.
S1005:所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。S1005: The data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate.
对于步骤S1001,所述配置信息包括:接口模块使能,通道数量,默认 数据通信速率,TDD模式子帧类型,自适应功能使能,自适应成功检测次数,自适应失败检测次数;For the step S1001, the configuration information includes: interface module enable, number of channels, default Data communication rate, TDD mode subframe type, adaptive function enable, adaptive successful detection times, adaptive failure detection times;
其中,自适应功能使能对应第一配置信息,所述第一配置信息有效指寄存器配置模块中的自适应功能使能有效,比如:自适应功能使能高电平时有效;TDD模式子帧类型对应第二配置信息。The adaptive function is enabled to correspond to the first configuration information, where the first configuration information is effective to enable the adaptive function in the register configuration module to be valid, for example, the adaptive function is enabled when the high level is enabled; and the TDD mode is used. Corresponding to the second configuration information.
对于步骤S1002,所述速率自适应模块包括:MCLK周期检测子模块、MCLK时钟稳定度检测子模块、速率自适应失效检测子模块和速率自适应信息更新子模块;For the step S1002, the rate adaptation module includes: an MCLK period detection submodule, an MCLK clock stability detection submodule, a rate adaptive failure detection submodule, and a rate adaptive information update submodule;
所述对端发送的MCLK的周期信息指RFIC发送的MCLK的周期信息;The period information of the MCLK sent by the peer end refers to the period information of the MCLK sent by the RFIC;
所述自适应标志包括:自适应成功标志和自适应失败标志。The adaptive flag includes an adaptive success flag and an adaptive failure flag.
对于步骤S1002,图11为自适应模块生成更新的数据通信速率的流程图,当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块,包括:For step S1002, FIG. 11 is a flowchart of the adaptive module generating an updated data communication rate. When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module passes The period information of the MCLK sent by the terminal generates an updated data communication rate and an adaptive flag, and sends the updated data communication rate and the adaptive flag to the register configuration module, including:
S10021:所述速率自适应模块通过工作时钟获取MCLK的周期信息;所述工作时钟不小于2倍的MCLK时钟频率且为MCLK时钟频率的整数倍;S10021: The rate adaptation module acquires period information of the MCLK by using an operating clock; the working clock is not less than twice the MCLK clock frequency and is an integer multiple of the MCLK clock frequency;
S10022:当所述速率自适应模块检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,执行步骤S10023至步骤S10027;当所述MCLK时钟稳定度检测子模块检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,执行步骤S10028至步骤S100212;S10022: When the rate adaptation module detects that the number of coincidences of the periodic information of the two consecutive MCLKs meets the preset adaptive success value, step S10023 to step S10027 are performed; when the MCLK clock stability detection submodule detects two consecutive When the number of times of inconsistency of the periodicity information of the MCLK meets the adaptive failure value, step S10028 to step S100212 are performed;
S10023:所述速率自适应模块内部的时钟稳定计数器执行一次累加计数,所述速率自适应模块得到一个第一累加计数值;S10023: The clock stabilization counter inside the rate adaptation module performs an accumulation count, and the rate adaptation module obtains a first accumulated count value;
S10024:当所述第一累加计数值达到所述速率自适应模块预先配置的自适应成功数值时,所述速率自适应模块产生一个速率自适应成功标志;S10024: When the first accumulated count value reaches a pre-configured adaptive success value of the rate adaptation module, the rate adaptation module generates a rate adaptive success flag;
S10025:所述速率自适应模块将所述速率自适应成功标志发送给寄存 器配置模块;S10025: The rate adaptation module sends the rate adaptive success flag to the registration Device configuration module;
S10026:当所述速率自适应模块检测到速率自适应成功标志时,所述速率自适应模块将MCLK的周期信息转化为数据通信速率;S10026: When the rate adaptation module detects the rate adaptation success flag, the rate adaptation module converts the period information of the MCLK into a data communication rate;
S10027:所述速率自适应模块将MCLK的周期信息转化的数据通信速率作为更新的数据通信速率发送给所述寄存器配置模块;S10027: The rate adaptation module sends a data communication rate of the cycle information conversion of the MCLK to the register configuration module as an updated data communication rate.
需要说明的是,步骤S10023至步骤S10027是针对当所述速率自适应模块检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,产生更新的数据通信速率发送给所述寄存器配置模块的实现过程。It should be noted that, in step S10023 to step S10027, when the rate adaptation module detects that the number of coincidences of the periodic information of the two consecutive times of MCLK meets the preset adaptive success value, an updated data communication rate is generated and sent to the The implementation process of the register configuration module.
S10028:所述速率自适应模块内部的时钟稳定计数器执行一次累加计数清零,所述速率自适应模块产生一个MCLK变动标志;S10028: The clock stabilization counter inside the rate adaptation module performs an accumulation count clearing, and the rate adaptation module generates an MCLK change flag.
S10029:所述速率自适应模块检测到所述MCLK变动标志时,所述速率自适应模块中的时钟变化计数器进行一次累加计数操作,所述速率自适应模块得到一个第二累计计数值;S10029: When the rate adaptation module detects the MCLK change flag, the clock change counter in the rate adaptation module performs an accumulation count operation, and the rate adaptation module obtains a second accumulated count value;
S100210:当所述第二累加计数值达到所述速率自适应模块预先配置的自适应失败数值时,所述速率自适应模块产生一个速率自适应失败标志;S100210: The rate adaptation module generates a rate adaptation failure flag when the second accumulated count value reaches a pre-configured adaptive failure value of the rate adaptation module;
S100211:所述速率自适应模块将所述速率自适应失败标志发送给所述寄存器配置模块;S100211: The rate adaptation module sends the rate adaptation failure flag to the register configuration module.
S100212:当所述速率自适应模块检测到所述速率自适应失败标志时,所述速率自适应模块关闭速率自适应功能。S100212: When the rate adaptation module detects the rate adaptation failure flag, the rate adaptation module turns off the rate adaptation function.
需要说明的是,步骤S10028至步骤S100212是针对当所述速率自适应模块检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,关闭自适应功能的实现过程。It should be noted that step S10028 to step S100212 is an implementation process for turning off the adaptive function when the rate adaptation module detects that the number of times of coincidence of the periodic information of the MCLKs that are consecutive two times satisfies the adaptive failure value.
对于步骤S1003,所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率,包括:For step S1003, the register configuration module configures a current data communication rate according to the adaptive flag, including:
所述寄存器配置模块根据自适应成功标志配置当前的数据通信速率为所述更新的数据通信速率; The register configuration module configures a current data communication rate as the updated data communication rate according to an adaptive success flag;
所述寄存器配置模块根据自适应失败标志配置当前的数据通信速率配置为系统发送给所述寄存器配置模块的默认数据通信速率。The register configuration module configures a current data communication rate according to an adaptive failure flag to configure a default data communication rate that the system sends to the register configuration module.
对于步骤S1004,所述通信类型包括:上行通信和下行通信;For the step S1004, the communication type includes: uplink communication and downlink communication;
所述接口时序,指符合JESD207协议要求的接口时序;The interface timing refers to an interface timing that meets the requirements of the JESD207 protocol;
在本发明的其他实施例中,所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序,包括:In other embodiments of the present invention, the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module, including:
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为上行数据通信时,所述接口时序控制模块生成与上行数据通信对应的接口时序;When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, the interface timing control module generates an interface timing corresponding to the uplink data communication;
当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为下行数据通信时,所述接口时序控制模块生成与下行数据通信对应的接口时序,以及所述接口时序控制模块根据MCLK信息延时生成与MCLK时序相同的FCLK时序。When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, the interface timing control module generates an interface timing corresponding to the downlink data communication, and the interface timing control module according to the MCLK information The delay generates the same FCLK timing as the MCLK timing.
对于步骤S1005,所述数据包括上行接收数据和下行发送数据;For step S1005, the data includes uplink receiving data and downlink sending data;
对于步骤S1005,图12为数据与时序处理模块处理数据的流程图,所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据,包括:For step S1005, FIG. 12 is a flowchart of processing data by the data and timing processing module, the data and timing processing module transmits data according to the interface timing, and processes according to the number of channels in the register configuration module and the current data communication rate. Data, including:
S10051:当数据通信类型为上行数据通信时,所述数据与时序处理模块按照上行数据通信对应的接口时序接收所述接口时序控制模块传输的上行数据,所述数据与时序处理模块根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述上行数据发送给BBIC的后级电路;S10051: when the data communication type is uplink data communication, the data and timing processing module receives uplink data transmitted by the interface timing control module according to an interface timing corresponding to the uplink data communication, where the data and timing processing module is configured according to the register Configuring the number of channels in the module and the current data communication rate to send the uplink data to the subsequent circuit of the BBIC;
S10052:当数据通信类型为下行数据通信时,所述数据与时序处理模块按照下行数据通信对应的接口时序接收BBIC的后级电路传输的下行数据,所述数据与时序处理模块根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述下行数据发送给所述接口时序控制模块。S10052: When the data communication type is downlink data communication, the data and timing processing module receives downlink data transmitted by the BBIC subsequent circuit according to an interface timing corresponding to the downlink data communication, where the data and timing processing module is configured according to the register The number of channels in the module and the current data communication rate send the downlink data to the interface timing control module.
在本发明的其他实施例中,对于步骤S10051,所述接口时序控制模块 发送给所述数据与时序处理模块的数据,指所述接口时序控制模块按照上行数据通信对应TXNRX、ENABLE时序信号及MCLK时序接收对端通过DIQ接口发送的DDR的数据,所述接口时序控制模块将DDR的数据转化为SDR的数据发送给所述数据与时序处理模块进行数据处理,所述数据与时序处理模块最后按照上行数据通信对应TXNRX、ENABLE时序信号及MCLK时序经处理后的SDR的数据发送给BBIC的后级电路;In other embodiments of the present invention, for step S10051, the interface timing control module The data sent to the data and the timing processing module means that the interface timing control module receives the data of the DDR sent by the opposite end through the DIQ interface according to the uplink data communication corresponding to the TXNRX, the ENABLE timing signal and the MCLK timing, and the interface timing control module Data for converting DDR data into SDR is sent to the data and timing processing module for data processing, and the data and timing processing module finally responds to the TXNRX, ENABLE timing signal and MCLK sequence processed SDR data according to the uplink data communication. Send to the rear stage circuit of BBIC;
在本发明的其他实施例中,对于步骤S10052,所述BBIC的后级电路发送给所述数据与时序处理模块的数据为SDR的数据,指所述BBIC的后级电路按照下行数据通信对应TXNRX、ENABLE时序信号及MCLK时序将SDR数据发送给所述数据与时序处理模块,经过所述数据与时序处理模块处理后的SDR的数据最终经过所述接口时序控制模块转为DDR的数据,所述DDR的数据由所述接口时序控制模块经过DIQ接口按照下行数据通信对应TXNRX、ENABLE时序信号及FCLK发送给对端。In other embodiments of the present invention, for the step S10052, the data sent by the subsequent circuit of the BBIC to the data and the timing processing module is data of the SDR, and the subsequent circuit of the BBIC corresponds to the TXNRX according to the downlink data communication. The ENDR timing signal and the MCLK timing send the SDR data to the data and timing processing module, and the data of the SDR processed by the data and the timing processing module is finally converted into the data of the DDR by the interface timing control module, The data of the DDR is sent to the opposite end by the interface timing control module through the DIQ interface according to the downlink data communication corresponding to the TXNRX, ENABLE timing signal and FCLK.
此外,本实施例还针对MCLK频繁抖动导致数据通信速率信息频繁更新的问题,采用速率自适应模块产生速率自适应失效标志关闭速率自适应功能。在本发明的其他实施例中,当MCLK时钟稳定度检测子模块检测MCLK频繁抖动次数满足预先配置的关闭速率自适应抖动次数时,产生一个速率自适应失效标志发送给寄存器配置模块和速率自适应信息更新子模块,速率自适应信息更新子模块检测到速率自适应失效标志后关闭速率自适应功能。In addition, in this embodiment, the rate adaptation module generates a rate adaptive failure flag off rate adaptation function for the problem that the MCLK frequent jitter causes the data communication rate information to be frequently updated. In other embodiments of the present invention, when the MCLK clock stability detection sub-module detects that the MCLK frequent jitter number satisfies a pre-configured off-rate adaptive dither count, a rate adaptive fail flag is generated and sent to the register configuration module and the rate adaptation. The information update sub-module, the rate adaptive information update sub-module detects the rate adaptive invalidation flag and then turns off the rate adaptation function.
本实施例提供了一种并行接口时序控制方法,所述寄存器配置模块获取系统的配置信息,当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块,所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率,所述接口时序控制模块根据所述寄存 器配置模块中的第二配置信息选择通信类型及通信类型所需的时序信号,所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。The embodiment provides a parallel interface timing control method, the register configuration module acquires configuration information of the system, and when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate is self-determined. The adaptation module generates an updated data communication rate and an adaptive flag by using the period information of the MCLK sent by the peer end, and sends the updated data communication rate and the adaptive flag to the register configuration module, where the register configuration module is configured according to the Adapting the flag to configure a current data communication rate, the interface timing control module according to the registration The second configuration information in the configuration module selects a timing signal required for the communication type and the communication type, the data and timing processing module transmits data according to the interface timing, and processes data according to the current data communication rate of the register configuration module. Thereby achieving parallel interface rate adaptive configuration.
本领域内的技术人员应该明白,本发明的实施例可提供方法、系统、或者计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、获结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含由计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that embodiments of the present invention can provide a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.
本发明时参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现程序图和/或方框图中每一流程和/获方框、以及流程图和/或方框图中的流程和/或的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或者其他可编程数据处理设备的处理器易产生一个机器,是的通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或者多个方框中指定的功能的装置。The invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the invention. It will be understood that each flow and/or block of the program diagrams and/or block diagrams, and combinations and/or combinations of flowcharts and/or block diagrams can be implemented by computer program instructions. Processors that provide such computer program instructions to a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device are susceptible to generating a machine that is executed by a processor or other programmable data processing device. Means for implementing the functions specified in one or more flows of the flowchart or in a block or blocks of the flowchart.
这些计算机程序指令也可以存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算及可读存储器中的指令产生包括指令装置的制造品。该指令装置实现在流程图中一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computing and readable memory produce an article of manufacture comprising the instruction device. The instruction means implements the functions specified in one or more blocks of the flow or processes and/or block diagrams in the flowchart.
这些计算机程序指令也可装载在计算机或其他可编程处理设备上,使得在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable processing device such that instructions executed on a computer or other programmable device are provided for implementation in a flow or a block diagram of a flow or a block diagram or The steps of the function specified in multiple boxes.
以上,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。 The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention.
工业实用性Industrial applicability
本发明实施例中,所述寄存器配置模块获取系统的配置信息;当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块当前的数据通信速率处理数据,从而实现并行接口速率自适应配置。 In the embodiment of the present invention, the register configuration module acquires configuration information of the system; when the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module sends the information through the peer end. The cycle information of the MCLK generates an updated data communication rate and an adaptive flag, and sends the updated data communication rate and the adaptive flag to the register configuration module; the register configuration module configures the current data communication according to the adaptive flag Rate; the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module; the data and timing processing module transmits data according to the interface timing, according to the register configuration module current The data communication rate processes the data to enable parallel interface rate adaptive configuration.

Claims (18)

  1. 一种并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,其中,A parallel interface timing control device, the parallel interface timing control device includes: a register configuration module, a rate adaptation module, an interface timing control module, and a data and timing processing module, wherein
    所述寄存器配置模块,配置为获取系统的配置信息;The register configuration module is configured to acquire configuration information of the system;
    所述速率自适应模块,配置为当检测所述寄存器配置模块中的第一配置信息有效时,通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给所述寄存器配置模块;The rate adaptation module is configured to generate an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer end when detecting that the first configuration information in the register configuration module is valid, and the updating Data communication rate and adaptive flag are sent to the register configuration module;
    所述寄存器配置模块,还配置为根据所述自适应标志配置当前的数据通信速率;The register configuration module is further configured to configure a current data communication rate according to the adaptive flag;
    所述接口时序控制模块,配置为根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;The interface timing control module is configured to generate an interface timing according to the second configuration information and the MCLK information in the register configuration module;
    所述数据与时序处理模块,配置为根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。The data and timing processing module is configured to transmit data according to the interface timing, and process data according to the number of channels in the register configuration module and the current data communication rate.
  2. 根据权利要求1所述的装置,其中,所述配置信息包括:接口模块使能,通道数量,默认数据通信速率,TDD模式子帧类型,自适应功能使能,自适应成功检测次数,自适应失败检测次数;其中,自适应功能使能对应第一配置信息,TDD模式子帧类型对应第二配置信息。The apparatus according to claim 1, wherein the configuration information comprises: interface module enable, number of channels, default data communication rate, TDD mode subframe type, adaptive function enable, adaptive successful detection times, and adaptation The number of failure detections; wherein the adaptive function is enabled to correspond to the first configuration information, and the TDD mode subframe type corresponds to the second configuration information.
  3. 根据权利要求1所述的装置,其中,所述自适应标志包括:自适应成功标志和自适应失败标志。The apparatus of claim 1, wherein the adaptive flag comprises an adaptive success flag and an adaptive failure flag.
  4. 根据权利要求1所述的装置,其中,所述速率自适应模块包括:MCLK周期检测子模块、MCLK时钟稳定度检测子模块、速率自适应失效检测子模块和速率自适应信息更新子模块;其中,The apparatus according to claim 1, wherein the rate adaptation module comprises: an MCLK period detection sub-module, an MCLK clock stability detection sub-module, a rate adaptive failure detection sub-module, and a rate adaptive information update sub-module; ,
    所述MCLK周期检测子模块,配置为通过工作时钟获取MCLK的周 期信息,将所述MCLK的周期信息实时发送给所述MCLK时钟稳定度检测子模块和速率自适应信息更新子模块;The MCLK period detection submodule is configured to acquire a week of MCLK through an operating clock Period information, the cycle information of the MCLK is sent to the MCLK clock stability detection sub-module and the rate adaptive information update sub-module in real time;
    所述MCLK时钟稳定度检测子模块,配置为当检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,触发所述速率自适应信息更新子模块产生更新的数据通信速率,并将所述更新的数据通信速率发送给所述寄存器配置模块;The MCLK clock stability detection sub-module is configured to trigger the rate adaptive information update sub-module to generate an updated data communication rate when detecting that the number of consecutive times of the MCLK periodic information coincides with the preset adaptive success value And transmitting the updated data communication rate to the register configuration module;
    所述MCLK时钟稳定度检测子模块,还配置为当检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,触发所述速率自适应信息更新子模块关闭自适应功能。The MCLK clock stability detection sub-module is further configured to trigger the rate adaptive information update sub-module to disable the adaptive function when detecting that the number of times of inconsistency of the periodic information of the two consecutive MCLKs meets the adaptive failure value.
  5. 根据权利要求4所述的装置,其中,所述MCLK时钟稳定度检测子模块,配置为,The apparatus according to claim 4, wherein said MCLK clock stability detection submodule is configured to
    当检测连续两次的MCLK的周期信息一致时,内部的时钟稳定计数器执行一次累加计数,得到一个第一累加计数值;When the period information of the MCLK consecutively detected is consistent, the internal clock stabilization counter performs an accumulation count to obtain a first accumulated count value;
    以及,当所述第一累加计数值达到预先配置的自适应成功数值时,产生一个速率自适应成功标志;And generating a rate adaptive success flag when the first accumulated count value reaches a pre-configured adaptive success value;
    以及,将所述速率自适应成功标志发送给所述速率自适应信息更新子模块和寄存器配置模块;And transmitting the rate adaptive success flag to the rate adaptive information update submodule and the register configuration module;
    所述速率自适应信息更新子模块,配置为当检测到所述速率自适应成功标志时,将MCLK的周期信息转化为数据通信速率;The rate adaptive information update submodule is configured to convert the period information of the MCLK into a data communication rate when the rate adaptive success flag is detected;
    以及,将MCLK的周期信息转化的数据通信速率作为更新的数据通信速率发送给所述寄存器配置模块。And, the data communication rate converted by the cycle information of the MCLK is sent to the register configuration module as an updated data communication rate.
  6. 根据权利要求4所述的装置,其中,所述MCLK时钟稳定度检测子模块,还配置为,The apparatus according to claim 4, wherein the MCLK clock stability detection submodule is further configured to
    当检测连续两次的MCLK的周期信息不一致时,内部的时钟稳定计数器执行一次累加计数清零,产生一个MCLK变动标志;When the period information of the MCLK detected twice consecutive times is inconsistent, the internal clock stabilization counter performs an accumulated count clearing to generate an MCLK change flag;
    以及,将所述MCLK变动标志发送给所述速率自适应失效检测子模 块;And transmitting the MCLK change flag to the rate adaptive failure detection submodule Piece;
    所述速率自适应失效检测子模块,配置为检测到MCLK变动标志时,其内部的时钟变化计数器进行一次累加计数操作,得到一个第二累计计数值;The rate adaptive fail detection sub-module is configured to perform an accumulative counting operation on the internal clock change counter when the MCLK change flag is detected, to obtain a second accumulated count value;
    以及,当所述第二累加计数值达到预先配置的自适应失败数值时,产生一个速率自适应失败标志;And generating a rate adaptation failure flag when the second accumulated count value reaches a pre-configured adaptive failure value;
    以及,将所述速率自适应失败标志发送给所述速率自适应信息更新子模块和寄存器配置模块;And transmitting the rate adaptive failure flag to the rate adaptive information update submodule and the register configuration module;
    所述速率自适应信息更新子模块,还配置为当检测到速率自适应失败标志时,关闭速率自适应功能。The rate adaptive information update submodule is further configured to turn off the rate adaptation function when the rate adaptation failure flag is detected.
  7. 根据权利要求1所述的装置,其中,所述寄存器配置模块,还配置为,The apparatus of claim 1, wherein the register configuration module is further configured to
    根据自适应成功标志配置当前的数据通信速率为所述更新的数据通信速率;Configuring a current data communication rate according to an adaptive success flag as the updated data communication rate;
    以及,根据自适应失败标志配置当前的数据通信速率配置为系统发送给所述寄存器配置模块的默认数据通信速率。And configuring a current data communication rate according to the adaptive failure flag to configure a default data communication rate that the system sends to the register configuration module.
  8. 根据权利要求1所述的装置,其中,所述接口时序控制模块,配置为,The apparatus of claim 1, wherein the interface timing control module is configured to
    当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为上行数据通信时,配置为生成与上行数据通信对应的接口时序;When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, configured to generate an interface timing corresponding to the uplink data communication;
    当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为下行数据通信时,配置为生成与下行数据通信对应的接口时序,以及根据MCLK信息延时生成与MCLK时序相同的FCLK时序。When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, configured to generate an interface timing corresponding to the downlink data communication, and generate the same FCLK timing as the MCLK timing according to the MCLK information delay .
  9. 根据权利要求1所述的装置,其中,所述数据与时序处理模块,配置为,The apparatus of claim 1, wherein the data and timing processing module is configured to
    当数据通信类型为上行数据通信时,按照上行数据通信对应的接口 时序接收所述接口时序控制模块传输的上行数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述上行数据发送给BBIC的后级电路;When the data communication type is uplink data communication, according to the interface corresponding to the uplink data communication Receiving, by the terminal, the uplink data transmitted by the interface timing control module, and transmitting the uplink data to the subsequent circuit of the BBIC according to the number of channels in the register configuration module and the current data communication rate;
    以及,当数据通信类型为下行数据通信时,按照下行数据通信对应的接口时序接收BBIC的后级电路传输的下行数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述下行数据发送给所述接口时序控制模块。And, when the data communication type is downlink data communication, receiving downlink data transmitted by the BBIC subsequent circuit according to the interface timing corresponding to the downlink data communication, according to the number of channels in the register configuration module and the current data communication rate. The downlink data is sent to the interface timing control module.
  10. 一种并行接口时序控制方法,所述方法用于并行接口时序控制装置,所述并行接口时序控制装置包括:寄存器配置模块、速率自适应模块、接口时序控制模块及数据与时序处理模块,所述方法包括:A parallel interface timing control method, the method is used for a parallel interface timing control device, the parallel interface timing control device includes: a register configuration module, a rate adaptation module, an interface timing control module, and a data and timing processing module, Methods include:
    所述寄存器配置模块获取系统的配置信息;The register configuration module acquires configuration information of the system;
    当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块;When the rate adaptation module detects that the first configuration information in the register configuration module is valid, the rate adaptation module generates an updated data communication rate and an adaptive flag by using period information of the MCLK sent by the peer, and Transmitting the updated data communication rate and the adaptive flag to the register configuration module;
    所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率;The register configuration module configures a current data communication rate according to the adaptive flag;
    所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序;The interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module;
    所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据。The data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate.
  11. 根据权利要求10所述的方法,其中,所述配置信息包括:接口模块使能,通道数量,默认数据通信速率,时分双工TDD模式子帧类型,自适应功能使能,自适应成功检测次数,自适应失败检测次数;其中,自适应功能使能对应第一配置信息,TDD模式子帧类型对应第二配置信息。The method according to claim 10, wherein the configuration information comprises: interface module enable, number of channels, default data communication rate, time division duplex TDD mode subframe type, adaptive function enable, adaptive success detection times The number of times of the adaptive failure detection; wherein the adaptive function is enabled to correspond to the first configuration information, and the TDD mode subframe type corresponds to the second configuration information.
  12. 根据权利要求10所述的方法,其中,所述自适应标志包括:自 适应成功标志和自适应失败标志。The method of claim 10 wherein said adaptive flag comprises: Adapt to success flags and adaptive failure flags.
  13. 根据权利要求10所述的方法,其中,所述当所述速率自适应模块检测所述寄存器配置模块中的第一配置信息有效时,所述速率自适应模块通过对端发送的MCLK的周期信息生成更新的数据通信速率及自适应标志,并将所述更新的数据通信速率及自适应标志发送给寄存器配置模块,包括:The method according to claim 10, wherein said rate adaptation module transmits period information of MCLK transmitted by the opposite end when said first configuration information in said register configuration module is valid Generating an updated data communication rate and an adaptive flag, and transmitting the updated data communication rate and the adaptive flag to the register configuration module, including:
    所述速率自适应模块通过工作时钟获取MCLK的周期信息;The rate adaptation module acquires period information of the MCLK by using an operating clock;
    当所述速率自适应模块检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,产生更新的数据通信速率,并将所述更新的数据通信速率发送给所述寄存器配置模块;When the rate adaptation module detects that the number of coincidences of the cycle information of the two consecutive MCLKs meets the preset adaptive success value, generates an updated data communication rate, and sends the updated data communication rate to the register configuration Module
    当所述速率自适应模块检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,关闭自适应功能。When the rate adaptation module detects that the number of times of inconsistency of the period information of the MCLK consecutively meets the adaptive failure value, the adaptive function is turned off.
  14. 根据权利要求13所述的方法,其中,所述当所述速率自适应模块检测连续两次的MCLK的周期信息一致次数满足预设的自适应成功数值时,产生更新的数据通信速率,并将所述更新的数据通信速率发送给所述寄存器配置模块,包括:The method according to claim 13, wherein when the rate adaptation module detects that the number of coincidences of the period information of the two consecutive MCLKs satisfies a preset adaptive success value, an updated data communication rate is generated, and The updated data communication rate is sent to the register configuration module, including:
    当所述速率自适应模块检测连续两次的MCLK的周期信息一致时,所述速率自适应模块内部的时钟稳定计数器执行一次累加计数,所述速率自适应模块得到一个第一累加计数值;When the rate adaptation module detects that the period information of the two consecutive MCLKs is consistent, the clock stabilization counter inside the rate adaptation module performs an accumulation count, and the rate adaptation module obtains a first accumulated count value;
    当所述第一累加计数值达到所述速率自适应模块预先配置的自适应成功数值时,所述速率自适应模块产生一个速率自适应成功标志;The rate adaptation module generates a rate adaptive success flag when the first accumulated count value reaches a pre-configured adaptive success value of the rate adaptation module;
    当所述速率自适应模块检测到所述速率自适应成功标志时,所述速率自适应模块将MCLK的周期信息转化为数据通信速率;When the rate adaptation module detects the rate adaptation success flag, the rate adaptation module converts the period information of the MCLK into a data communication rate;
    所述速率自适应模块将MCLK的周期信息转化的数据通信速率作为更新的数据通信速率发送给所述寄存器配置模块。The rate adaptation module transmits the data communication rate of the cycle information conversion of the MCLK to the register configuration module as an updated data communication rate.
  15. 根据权利要求13所述的方法,其中,当所述MCLK时钟稳定度 检测子模块检测连续两次的MCLK的周期信息不一致次数满足自适应失败数值时,触发所述速率自适应信息更新子模块关闭自适应功能,包括:The method of claim 13 wherein said MCLK clock stability The detecting submodule detects that the number of times of inconsistency of the period information of the MCLK that is consecutively two times meets the value of the adaptive failure, and triggers the rate adaptive information update submodule to turn off the adaptive function, including:
    当所述速率自适应模块检测连续两次的MCLK的周期信息不一致时,所述速率自适应模块内部的时钟稳定计数器执行一次累加计数清零,所述速率自适应模块产生一个MCLK变动标志;When the rate adaptation module detects that the period information of the two consecutive MCLKs is inconsistent, the clock stabilization counter inside the rate adaptation module performs an accumulation count clearing, and the rate adaptation module generates an MCLK change flag;
    所述速率自适应模块检测到所述MCLK变动标志时,所述速率自适应模块中的时钟变化计数器进行一次累加计数操作,所述速率自适应模块得到一个第二累计计数值;When the rate adaptation module detects the MCLK change flag, the clock change counter in the rate adaptation module performs an accumulation count operation, and the rate adaptation module obtains a second accumulated count value;
    当所述第二累加计数值达到所述速率自适应模块预先配置的自适应失败数值时,所述速率自适应模块产生一个速率自适应失败标志;The rate adaptation module generates a rate adaptation failure flag when the second accumulated count value reaches a pre-configured adaptive failure value of the rate adaptation module;
    所述速率自适应模块将所述速率自适应失败标志发送给所述寄存器配置模块;The rate adaptation module sends the rate adaptation failure flag to the register configuration module;
    当所述速率自适应模块检测到所述速率自适应失败标志时,所述速率自适应模块关闭速率自适应功能。The rate adaptation module turns off the rate adaptation function when the rate adaptation module detects the rate adaptation failure flag.
  16. 根据权利要求10所述的方法,其中,所述寄存器配置模块根据所述自适应标志配置当前的数据通信速率,包括:The method of claim 10, wherein the register configuration module configures a current data communication rate based on the adaptive flag, comprising:
    所述寄存器配置模块根据自适应成功标志配置当前的数据通信速率为所述更新的数据通信速率;The register configuration module configures a current data communication rate as the updated data communication rate according to an adaptive success flag;
    所述寄存器配置模块根据自适应失败标志配置当前的数据通信速率配置为系统发送给所述寄存器配置模块的默认数据通信速率。The register configuration module configures a current data communication rate according to an adaptive failure flag to configure a default data communication rate that the system sends to the register configuration module.
  17. 根据权利要求10所述的方法,其中,所述接口时序控制模块根据所述寄存器配置模块中的第二配置信息和MCLK信息生成接口时序,包括:The method of claim 10, wherein the interface timing control module generates an interface timing according to the second configuration information and the MCLK information in the register configuration module, including:
    当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为上行数据通信时,所述接口时序控制模块生成与上行数据通信对应的接口时序; When the data communication type in the TDD mode subframe type in the register configuration module is uplink data communication, the interface timing control module generates an interface timing corresponding to the uplink data communication;
    当所述寄存器配置模块中的TDD模式子帧类型中的数据通信类型为下行数据通信时,所述接口时序控制模块生成与下行数据通信对应的接口时序,以及所述接口时序控制模块根据MCLK信息延时生成与MCLK时序相同的FCLK时序。When the data communication type in the TDD mode subframe type in the register configuration module is downlink data communication, the interface timing control module generates an interface timing corresponding to the downlink data communication, and the interface timing control module according to the MCLK information The delay generates the same FCLK timing as the MCLK timing.
  18. 根据权利要求10所述的方法,其中,所述数据与时序处理模块根据所述接口时序传输数据,根据所述寄存器配置模块中的通道数量及当前的数据通信速率处理数据,包括:The method of claim 10, wherein the data and timing processing module transmits data according to the interface timing, and processes data according to the number of channels in the register configuration module and the current data communication rate, including:
    当数据通信类型为上行数据通信时,所述数据与时序处理模块按照上行数据通信对应的接口时序接收所述接口时序控制模块传输的上行数据,所述数据与时序处理模块根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述上行数据发送给BBIC的后级电路;When the data communication type is uplink data communication, the data and timing processing module receives uplink data transmitted by the interface timing control module according to an interface timing corresponding to the uplink data communication, and the data and timing processing module according to the register configuration module The number of channels in the current data communication rate and the current data communication rate are sent to the BBIC's subsequent stage circuit;
    当数据通信类型为下行数据通信时,所述数据与时序处理模块按照下行数据通信对应的接口时序接收BBIC的后级电路传输的下行数据,所述数据与时序处理模块根据所述寄存器配置模块中的通道数量及当前的数据通信速率将所述下行数据发送给所述接口时序控制模块。 When the data communication type is downlink data communication, the data and timing processing module receives the downlink data transmitted by the subsequent circuit of the BBIC according to the interface timing corresponding to the downlink data communication, and the data and timing processing module is configured according to the register configuration module. The number of channels and the current data communication rate send the downlink data to the interface timing control module.
PCT/CN2017/085924 2016-10-28 2017-05-25 Parallel interface time sequence control method and apparatus WO2018076682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610962540.7 2016-10-28
CN201610962540.7A CN108011703B (en) 2016-10-28 2016-10-28 Parallel interface time sequence control method and device

Publications (1)

Publication Number Publication Date
WO2018076682A1 true WO2018076682A1 (en) 2018-05-03

Family

ID=62024296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085924 WO2018076682A1 (en) 2016-10-28 2017-05-25 Parallel interface time sequence control method and apparatus

Country Status (2)

Country Link
CN (1) CN108011703B (en)
WO (1) WO2018076682A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882287B (en) * 2018-06-07 2021-08-17 烽火通信科技股份有限公司 Method and system for controlling time delay jitter of CPRI data transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567754A (en) * 2003-06-24 2005-01-19 华为技术有限公司 Apparatus and method for implementing automatic detection of communication interface time sequence
US20060043969A1 (en) * 2004-08-31 2006-03-02 Michael Reinhold Integrated circuit for use with an external hall sensor, and hall sensor module
CN103516815A (en) * 2012-06-21 2014-01-15 中兴通讯股份有限公司 Parallel interface sequential control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7684477B1 (en) * 2005-12-20 2010-03-23 Altera Corporation Multi-protocol low latency automatic speed negotiation architecture for an embedded high speed serial interface in a programmable logic device
CN102447525B (en) * 2010-10-13 2014-08-27 大唐移动通信设备有限公司 Method and equipment for speed adaptive matching between RRU (radio remote unit) and BBU (baseband unit)
CN103582026B (en) * 2012-07-19 2017-11-28 中兴通讯股份有限公司 A kind of method and apparatus of CPRI adaptive configurations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567754A (en) * 2003-06-24 2005-01-19 华为技术有限公司 Apparatus and method for implementing automatic detection of communication interface time sequence
US20060043969A1 (en) * 2004-08-31 2006-03-02 Michael Reinhold Integrated circuit for use with an external hall sensor, and hall sensor module
CN103516815A (en) * 2012-06-21 2014-01-15 中兴通讯股份有限公司 Parallel interface sequential control device

Also Published As

Publication number Publication date
CN108011703A (en) 2018-05-08
CN108011703B (en) 2020-05-26

Similar Documents

Publication Publication Date Title
KR102535076B1 (en) Systems and Techniques for Remote Bus Activation
EP3469487B1 (en) Triple-data-rate technique for a synchronous link
KR20160140847A (en) Methods to send extra information in-band on inter-integrated circuit (i2c) bus
US20150234774A1 (en) Coexistence of legacy and next generation devices over a shared multi-mode bus
US20150100711A1 (en) Low power camera control interface bus and devices
US10778281B2 (en) Method and device for controlling frequency hopping, transmitter and receiver
US11249933B2 (en) MIPI D-PHY circuit
US11442888B2 (en) Serial communication apparatus for unidirectional communication between chips of radio frequency front-end module and inside the chips
US10374583B1 (en) Dynamic hysteresis circuit
US20190074026A1 (en) Low power, high bandwidth, low latency data bus
JP2006345487A5 (en)
US9990330B2 (en) Simultaneous edge toggling immunity circuit for multi-mode bus
US6714612B1 (en) Method and device for synchronization of phase mismatch in communication systems employing a common clock period
JP6060538B2 (en) Radio apparatus and signal processing method
US20150234773A1 (en) Technique to avoid metastability condition and avoid unintentional state changes of legacy i2c devices on a multi-mode bus
JP2016515321A (en) Method and apparatus for data assisted timing recovery in 10GBASE-T system
WO2018076682A1 (en) Parallel interface time sequence control method and apparatus
TW201510733A (en) Electronic device and method for reducing power consumption of electronic device
US20180083800A1 (en) Aggregation Device, System, And Method Thereof
US10721055B2 (en) Communication device
JP5704988B2 (en) Communication device
JP2008278459A (en) Communication system, transmitter, receiving apparatus and communication method, and semiconductor device
US20140133377A1 (en) Apparatus and Method for Power Saving
WO2016184018A1 (en) Clock output method and apparatus
JP2018525861A (en) UART with line activity detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865814

Country of ref document: EP

Kind code of ref document: A1