WO2018074661A1 - Coronary artery blood vessel subtraction device and method using vessel correspondence optimization - Google Patents

Coronary artery blood vessel subtraction device and method using vessel correspondence optimization Download PDF

Info

Publication number
WO2018074661A1
WO2018074661A1 PCT/KR2016/014881 KR2016014881W WO2018074661A1 WO 2018074661 A1 WO2018074661 A1 WO 2018074661A1 KR 2016014881 W KR2016014881 W KR 2016014881W WO 2018074661 A1 WO2018074661 A1 WO 2018074661A1
Authority
WO
WIPO (PCT)
Prior art keywords
vessel
blood vessel
point
centerline
branches
Prior art date
Application number
PCT/KR2016/014881
Other languages
French (fr)
Korean (ko)
Inventor
이수찬
신승연
노경진
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Publication of WO2018074661A1 publication Critical patent/WO2018074661A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Definitions

  • the present invention relates to an apparatus and method for extracting coronary blood vessels using angiography, and more particularly, Vessel Correspondence Optimization to which Markov Random Field (MRF) is applied from a fluoroscopic X-ray image frame.
  • MRF Markov Random Field
  • the present invention relates to an apparatus and method for extracting coronary blood vessels using vascular optimization, which can accurately extract blood vessel branches that branch and cross from a blood vessel center line by applying a VCO.
  • one or more of fluoroscopic X-ray (XRA) and computed tomography (CT) angiography are performed to check for lesions of the heart.
  • Fluoroscopy x-ray angiography is used to assess stenosis in coronary arteries and to provide guidance for percutaneous coronary interference.
  • blood vessels extracted by computed tomography may be matched to blood vessels extracted by fluoroscopic X-ray angiography to detect blood vessels.
  • the lesion of the heart is determined from image frames generated by registration of image frames including cardiovascular vessels obtained by fluoroscopic X-ray and computed tomography angiography.
  • an object of the present invention is to apply Vessel Correspondence Optimization (VCO) to which Markov Random Field (MRF) is applied from a fluoroscopic X-ray image frame.
  • VCO Vessel Correspondence Optimization
  • MRF Markov Random Field
  • An object of the present invention is to provide an apparatus and method for extracting coronary blood vessels using vascular response optimization capable of accurately extracting branching and crossing vascular branches.
  • Coronary artery vessel extraction apparatus using the vascular response optimization for achieving the above object: Blood vessel image acquisition unit for outputting a blood vessel image frame sequence for coronary artery by taking a coronary artery; And a consistent centerline reflecting the movement of blood vessels by receiving the vessel image frame sequence, sampling the input vessel image frame sequence, and performing vessel response optimization by applying Markov random field optimization to the sampled vessel image frame sequence. And a blood vessel extracting unit for extracting and displaying coronary blood vessels matching the localized blood vessels further visualized by administration of a contrast agent.
  • the blood vessel extracting unit performs global stiffness by performing chamfer matching according to a comparison between a source frame including a coronary centerline and an object frame, which is the sampled blood vessel image frame, to estimate global shape and translational motion of the coronary artery of the heart.
  • Matching part Local non-rigid registration that detects candidate (vascular) branches along the centerline by a window of constant size with at least two keypoints, determines actual ones of the detected candidate branches, and restores the vascular centerline by contacting the determined branches with the centerline part; New blood vessel branches are detected from the object frame reflecting the contrast medium flow image by the contrast medium until the blood vessels longer than the maximum radius of the blood vessel of the source frame are not detected, and the detected blood vessel branches are connected to the center line and not connected to the center line.
  • Post-processing unit for extracting the entire coronary artery except for the eggplant; And a display unit for visualizing and displaying on the display means a coronary artery including a centerline to which the blood vessel branch is connected.
  • the blood vessel extracting unit may further include a vascular structure analyzing unit configured to analyze branch points at which branches branch and cross points intersecting branches at the centerline of the entire coronary artery, and display analysis information through the display unit. do.
  • a vascular structure analyzing unit configured to analyze branch points at which branches branch and cross points intersecting branches at the centerline of the entire coronary artery, and display analysis information through the display unit. do.
  • the source frame further includes a vessel point
  • the local non-rigid registration unit includes a vessel point sampling unit for sampling vessel points of the centerline by vessel points of the source frame;
  • a blood vessel feature point extracting unit configured to extract a characteristic indicating whether each of the sampled sampling vessel points is a branch point, an intersection point, or an end point;
  • a blood vessel corresponding point candidate detector searching for a corresponding vessel point corresponding to the vessel point of the source frame from an object frame;
  • An MRF optimizer for defining a window, which is a local search region, for the vessel feature point and corresponding vessel points, and performing vessel point search for detecting optimal correspondence point candidates that are optimal correspondence points in the window;
  • a blood vessel centerline restoration unit for restoring the blood vessel centerline by matching the branches at the optimum corresponding point.
  • the MRF optimizer detects an optimal correspondence point according to Equation 2 below.
  • D is a function for the local feature descriptor.
  • a global shape and translational motion of the coronary artery of the heart is estimated by performing a chamfer matching according to a comparison between the source frame including the coronary centerline and the object frame, which is the sampled blood vessel image frame.
  • a global rigid matching step Local non-rigid registration that detects candidate (vascular) branches along the centerline by a window of constant size with at least two keypoints, determines actual ones of the detected candidate branches, and restores the vascular centerline by contacting the determined branches with the centerline step; Reflect the contrast flow image by contrast injection, detect new vessel branches until no vessel longer than the radius of the maximizing vessel is detected, connect the detected vessel branches to the centerline, and exclude the branches not connected to the centerline Post-treatment step of extracting the coronary artery; And a display step of visualizing and displaying on a display means a coronary artery including a centerline to which the blood vessel branch is connected.
  • the blood vessel extracting step may further include a blood vessel structure analyzing step of analyzing a branching point at which a branch branches and an intersection point at which a branch intersects at the center line of the extracted whole coronary artery, and displaying analysis information through a display unit. It is done.
  • the source frame further includes a vessel point
  • the local non-rigid registration step includes: a vessel point sampling step of sampling a vessel point of a centerline by the vessel point of the source frame; A vein feature point extraction step of retrieving feature point branches of feature points having branching, crossing, and end point characteristics for each of the sampled sampling vessel points; A vessel corresponding point candidate detection step of searching for a corresponding vessel point for the sampling vessel point; An MRF optimization step of defining a window that is a local search region for the vessel feature point and corresponding vessel points and performing vessel point search to detect optimal correspondence point candidates that are optimal correspondence points within the window; And restoring a blood vessel centerline by matching the branches at the optimum corresponding point.
  • the MRF optimization step is characterized by detecting the best corresponding point by the following equation (2).
  • D is a function for the local feature descriptor.
  • the present invention has the effect of estimating more precise movements by overcoming an aperture problem and extracting an optimum corresponding point through vascular optimization optimization.
  • the present invention can detect an error generated when the three-dimensional structure is projected to the two-dimensional through the process of determining the branch point, the intersection point, etc. has the effect of more accurate motion estimation.
  • FIG. 1 is a view showing a schematic configuration of a coronary blood vessel extraction apparatus using vascular response optimization according to the present invention.
  • Figure 2 is a view showing the detailed configuration of the blood vessel extraction unit of the coronary vessel extraction apparatus according to the present invention.
  • Figure 3 is a view showing the detailed configuration of the local non-rigid registration part of the blood vessel extraction unit according to the present invention.
  • FIG. 4 is a diagram illustrating a sampled X-ray angiography sequence according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an overall framework for explaining an example of blood vessel extraction according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the effect of the hierarchical branch point search method according to an embodiment of the present invention showing the blood vessel branches of the source frame.
  • FIG. 7 is a view for explaining the effect of the hierarchical branch point searching method according to an embodiment of the present invention.
  • FIG. 1 is a view showing a schematic configuration of a coronary blood vessel extraction apparatus using vascular response optimization according to the present invention.
  • the coronary blood vessel extraction apparatus using vascular optimization includes a blood vessel image acquisition unit 100 and a blood vessel extraction unit 200.
  • the blood vessel image acquisition unit 100 photographs the heart using a fluoroscopic X-ray imaging apparatus (not shown), a computed tomography (CT) apparatus, and the like to output a coronary blood vessel image frame sequence.
  • the blood vessel image acquisition unit 100 may photograph the heart after the contrast medium is added, and thus outputs the coronary blood vessel image frame sequence reflecting the contrast medium input.
  • the blood vessel extraction unit 200 receives a coronary vessel image frame sequence output from the blood vessel image acquisition unit 100 as a target frame sequence, and a vessel to which a Markov Random Field (MRF) according to the present invention is applied.
  • MRF Markov Random Field
  • Corresponding optimization is applied to precisely extract the vessel's vascular centerline and branches (or “vascular branches") that branch and intersect at the vessel centerline, and match the centerline and branches of the extracted vessel to extract the entire coronary vessel Display on the display means.
  • FIG. 2 is a view showing a detailed configuration of the blood vessel extraction unit of the coronary vessel extraction apparatus according to the present invention
  • Figure 4 is a view showing an X-ray imaging sequence sampled according to an embodiment of the present invention.
  • Reference numeral 1 in FIG. 4 is a blood vessel centerline
  • 2 is a blood vessel branch
  • 3 is a branch point
  • 4 is an intersection point.
  • the blood vessel extracting unit 200 includes a global rigid matching unit 300, a local non-rigid matching unit 400, a post processing unit 500, and a display unit 700, and according to an embodiment, the vascular structure analyzing unit 600. ) May be further included.
  • the global rigid matching unit 300 stores a source frame including a chamfer, a coronary vessel centerline 1, and a vessel point, and coronary vessel image as a target frame from the vessel image acquisition unit 100.
  • the frame sequence is input and sampled to a certain number. 4 shows only some of the object frames selected so that the dynamics among the object frames sampled by the global rigid matching unit 300 can be clearly indicated.
  • the global rigid matching unit 300 compares the sampled object frame with the source frame and performs chamfer matching to estimate the global shape and translational movement of the coronary artery of the heart according to the change of heart rate, breath, or vision. do.
  • the estimation of the translational motion may be estimated according to one or more of the chamfer of the source frame and the centerline of the coronary vessel and the direction and extent of the chamfer and the centerline of the object frame.
  • the local non-rigid matching unit 400 detects candidate (vascular) branches along the centerline by a window having a predetermined size having at least two keypoints, determines an actual branch among the detected candidate branches, and matches the determined branches to the centerline. To restore coronary vessels.
  • the window is a local search region and has a size of w K ⁇ h K. Detailed description of the window will be described later.
  • the post processor 500 detects new blood vessel branches until the blood vessel longer than the radius of the maximized vessel is not detected from the object frame reflecting the contrast medium flow image by the contrast agent input, connects the detected blood vessel branches to the centerline, and connects the centerline. Extract the entire coronary artery except for the branches that are not connected to it. In other words, the post-processing unit extracts and visualizes local blood vessel branches newly appearing as a contrast agent is added.
  • the post-processing unit 500 connects the obtained vessel points after the VCO in the regional non-rigid matching unit 400 to construct the vessel centerline 1 structure by a high speed marching method.
  • the fast marching scheme is described in Yatziv, L., Bartesaghi, A., Sapiro, G .: O (N) Implementation of the Fast Marching Algorithm. As detailed in the Journal of Computational Physics 212 (2), 393-399 (2005), its detailed description is omitted.
  • the post-processing unit 500 combines Vesselness and high speed marching to expand the vessel centerline 1 to include vessels that are additionally visible due to the administration of contrast medium.
  • Vesselness is calculated by Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A .: Multiscale Vessel Enhancement Filtering. In: Wells, W. M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130-137. Springer, Heidelberg (1998) is described in detail, so the detailed description is omitted.
  • Binary segment masks are obtained by thresholding vesselness and exclude areas that are not connected to the vessel centerline 1.
  • the distance transformation DT of the target shape is calculated with the binary segment mask having a non-vascular region as the seed. Based on the binary segment mask and the DT, the following is repeated until no branches longer than the maximal vessel radius are found.
  • the display unit 700 visualizes the coronary artery including the centerline to which the blood vessel branch is connected, and displays the coronary artery on the display means.
  • the vascular structure analyzer 600 analyzes the branch point where the branch branches and the intersection point where the branches intersect in the extracted centerline of the entire coronary artery, and displays the analysis information on the display unit 700.
  • FIG. 3 is a view showing a detailed configuration of the local non-rigid matching portion of the blood vessel extraction unit according to the present invention
  • Figure 5 is a view showing a whole framework for explaining an example of the blood vessel extraction according to an embodiment of the present invention
  • Figure 6 is a view for explaining the effect of the hierarchical branch point search method according to an embodiment of the present invention, showing the blood vessel branches of the source frame
  • Figure 7 is a hierarchical branch point search according to an embodiment of the present invention
  • a diagram for describing the effect of the method is a diagram for explaining a method for retrieving blood vessel branch points in an object frame.
  • the regional non-stiff matching unit 400 of the present invention includes a blood vessel point sampling unit 410, a blood vessel feature point extractor 420, a blood vessel correspondence point candidate detector 430, an MRF optimizer 440, and a blood vessel centerline restoration unit 450. ).
  • the vessel point sampling unit 410 is a blood vessel extracted when the vessel centerline (1-2: green) is extracted from the target frame based on the vessel centerline (1-1: gray) of the source frame in the global rigid matching unit 300.
  • the center line 1-2 and the vessel center line 1-1 of the source frame overlap each other, and the vessel points of the vessel center line of the target frame are sampled by the vessel points of the source frame.
  • the vessel feature point extractor 420 is a branch point for branching of a vessel branch from a vessel centerline, an intersection point at which a vessel centerline intersects a vessel branch, and an end of a vessel centerline and a vessel branch for each of the sampled vessel points. Extract vessel features indicating whether a point.
  • the vessel corresponding point candidate detector 430 detects a corresponding vessel point corresponding to the vessel point of the source frame from the target frame.
  • the MRF optimizer 440 defines the window, which is a local search region, for the vessel feature point and the corresponding vessel points, and performs a vessel point search that detects optimal correspondence point candidates that are optimal correspondence points in the window. .
  • the MRF pair graph is constructed from the vessel centerline of the source frame.
  • the nodes correspond to sample points from the centerline, and the edges represent the points of connection between the vessel points.
  • MRF energy is defined as in Equation 1 below.
  • x is a vector containing a set of random variables xi at each node with index i.
  • Each xi may be labeled with a different value of Np + 1, and the optimal x is determined by minimizing Equation 1 above.
  • the Np + 1 labeling includes one dummy label assigned to a node when no candidate has a local shape and appearance consistent with the Np corresponding candidates. If an optimal dummy label is found, the node is excluded from the set of VCO points created.
  • D is a function for the local feature descriptor.
  • Outliers can occur when there is no corresponding point due to severe area (region) deformation.
  • the parameter lambda ( ) Controls the amount of normalization in Equation 1 above.
  • the vessel centerline restoration unit 450 restores the vessel centerline by matching branches at the optimum correspondence point.
  • the present invention applies a hierarchical correspondence search method including a chamfer matching global search, a branch search by vascular keypoint correspondence, and a point search.
  • the present invention defines vascular junctions and end points that include intersections and branching points in 3D-2D projections and have intersections and branching points that have a unique shape as vascular keypoints.
  • Vascular branches provide a line connecting two tubercle keypoints.
  • the present invention is to distinguish from the general vessel point p i Denotes the ⁇ th keypoint.
  • the m-th branch is represented by b m .
  • the present invention performs chamfer matching to estimate large global translational motion from heart rate, breathing, or changes in vision.
  • the sample shape is a collection of blood vessel points of the source frame.
  • the target shape is configured by sequentially applying blood vessel enhancement, bordering and skeletalization to the object frame.
  • the present invention minimizes the sum of the distances between each template (sample) point and the target shape by a force force on the distance transformation DT of the target shape and finds a global displacement vector.
  • 5A shows the results of an example of this process.
  • Branch search by vascular keypoint correspondence The present invention provides two keypoints of branch b m in a local search region of size w K ⁇ h K. And Correspondence points for And Search for.
  • the set of candidate branches consists of all the displacement vectors for b m ,
  • the present invention may be up to Nk * 2 candidate branches and may depend on the number of keypoint correspondences.
  • the present invention includes a branch with nothing to replace if all keypoint matches caused by Nk * 2 branch candidates are reliable.
  • Vascular Points in Branches (b m ) The set of corresponding points based on the candidate branches to be.
  • the present invention defines a size w k ⁇ h k size local search region at these points and determines N i optimal correspondence points based on Equation (2).
  • 6 and 7 show an example where the corresponding candidate is improved to a smaller local search area based on the previous branch search.
  • the maximum number of search result candidates is to be. Due to non-maximal suppression, the actual number of candidates Nc may be less than Np based on the composited image. Therefore, the present invention fixes the label number to Np for the vessel points. However, by assigning an infinite unary cost, it invalidates a label larger than Nc without an actual corresponding candidate.
  • FIG. 5 shows the entire framework.
  • the vessel centerline of the object frame is extracted based on the centerline of the source frame that we assume to be given.
  • 5A illustrates global search by chamfer matching as described above, and indicates that the centerline (green) and the tracking vessel centerline (red) of the source frame overlap.
  • (B) shows blood vessel branch search by keypoint correspondence (white).
  • (C) shows the corresponding candidate (green) by vessel point search,
  • (D) shows the optimal point correspondence (white) from MRF optimization, and
  • (E) shows the extraction of new visual vessel branches.
  • Figure 6 shows an example of the vascular branch in the source frame
  • Figure 7 (a) shows the vascular branch is established in the target frame
  • Figure 7 (b) Is the window at the branch vessel point
  • (c) is the response candidates obtained.
  • the upper drawings of (a), (b), and (c) show a case where hierarchical search is not performed
  • the lower drawings show a case where hierarchical search is performed. Branch alignment helps to reduce the size of the window.
  • the present invention is not limited to the above-described typical preferred embodiment, but can be carried out in various ways without departing from the gist of the present invention, various modifications, alterations, substitutions or additions in the art réelle who has this can easily understand it. If the implementation by such improvement, change, replacement or addition falls within the scope of the appended claims, the technical idea should also be regarded as belonging to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Probability & Statistics with Applications (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention relates to a coronary artery blood vessel subtraction device and method using blood vessel angiography and, more particularly, to a coronary artery blood vessel subtraction device and method using vessel correspondence optimization (VCO), which can precisely segment, from a fluorographic X-ray image frame, the center line of a blood vessel as well as blood vessel branches that branch from or intersect at the center line of the blood vessel by applying vessel correspondence optimization for applying a Markov random field (MRF).

Description

혈관대응최적화를 이용한 관상동맥 혈관 추출 장치 및 방법Coronary blood vessel extraction device and method using vascular response optimization
본 발명은 혈관 조영술을 이용한 관상동맥 혈관 추출 장치 및 방법에 관한 것으로, 더욱 상세하게는 형광 투시 엑스레이 영상 프레임으로부터 마르코브 랜덤 필드(Markov Random Field: MRF)가 적용되는 혈관대응최적화(Vessel Correspondence Optimization: VCO)를 적용하여 혈관의 중심선뿐만 아니라 혈관 중심선에서 분기, 교차되는 혈관 가지들을 정확하게 추출할 수 있는 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for extracting coronary blood vessels using angiography, and more particularly, Vessel Correspondence Optimization to which Markov Random Field (MRF) is applied from a fluoroscopic X-ray image frame. The present invention relates to an apparatus and method for extracting coronary blood vessels using vascular optimization, which can accurately extract blood vessel branches that branch and cross from a blood vessel center line by applying a VCO.
일반적으로 심장의 병변을 검사하기 위해 형광 투시법 엑스레이(X-ray) 조영술(XRA) 및 컴퓨터 단층촬영(Computed tomography: CT) 조영술 중 하나 이상을 시행한다.In general, one or more of fluoroscopic X-ray (XRA) and computed tomography (CT) angiography are performed to check for lesions of the heart.
형광 투시법 엑스레이 조영술은 관상동맥에서의 협착을 평가하고, 경피적 관상동맥의 간섭에 대한 가이드를 제공하기 위해 사용된다.Fluoroscopy x-ray angiography is used to assess stenosis in coronary arteries and to provide guidance for percutaneous coronary interference.
그리고 이때 혈관을 검출하기 위해 형광 투시법 엑스레이 조영술에서 추출한 혈관에 컴퓨터 단층촬영 조영술(CTA)에서 추출한 혈관을 정합할 수 있다.In this case, blood vessels extracted by computed tomography (CTA) may be matched to blood vessels extracted by fluoroscopic X-ray angiography to detect blood vessels.
이는 만성 토털 폐색의 경우 조영제의 막힘 때문에 보이지 않는 동맥을 시각화할 수 있다.This can visualize invisible arteries due to blockage of the contrast agent in chronic total occlusion.
상기와 같이 형광 투시법 엑스레이 조영술 및 컴퓨터 단층촬영 조영술에 의해 획득된 심장 혈관을 포함하는 영상 프레임들의 정합에 의해 생성된 영상 프레임들로부터 심장의 병변을 판단한다.The lesion of the heart is determined from image frames generated by registration of image frames including cardiovascular vessels obtained by fluoroscopic X-ray and computed tomography angiography.
영상으로부터 심장의 병변을 판단하기 위해 대부분의 종래 관상동맥 혈관 추출 장치들은 단일 이미지의 해상도 향상, 그리고 정교한 최적화 분할 방법들에 초점을 두어 개발되었다. 또한, 종래 관상동맥 혈관 추출 장치는 상술한 바와 같이 연속성을 고려하지 않은 단일 이미지로부터 혈관을 추출하는 데 중점을 두고 있다.Most conventional coronary artery extraction devices have been developed with the aim of improving the resolution of single images and sophisticated optimization methods to determine heart lesions from images. In addition, the conventional coronary blood vessel extraction apparatus focuses on extracting blood vessels from a single image without considering continuity as described above.
상술한 바와 같이 종래 관상동맥의 혈관 검출 시 연속성을 고려하지 않은 단일 이미지로부터 혈관을 검출함으로써 일관되지 않은 결과를 제공하는 문제점이 있었으며, 이로 인해 관상동맥의 병변을 정확하게 진단할 수 없는 문제점이 있었다.As described above, there was a problem of providing inconsistent results by detecting blood vessels from a single image which does not consider continuity when detecting blood vessels of the conventional coronary arteries, and thus there is a problem in that the lesions of the coronary arteries cannot be accurately diagnosed.
따라서 본 발명의 목적은 형광 투시 엑스레이 영상 프레임으로부터 마르코브 랜덤 필드(Markov Random Field: MRF)가 적용되는 혈관대응최적화(Vessel Correspondence Optimization: VCO)를 적용하여 혈관의 중심선인 혈관 중심선뿐만 아니라 혈관 중심선에서 분기, 교차되는 혈관 가지들을 정확하게 추출할 수 있는 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치 및 방법을 제공함에 있다.Accordingly, an object of the present invention is to apply Vessel Correspondence Optimization (VCO) to which Markov Random Field (MRF) is applied from a fluoroscopic X-ray image frame. An object of the present invention is to provide an apparatus and method for extracting coronary blood vessels using vascular response optimization capable of accurately extracting branching and crossing vascular branches.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치는: 관상동맥을 촬영하여 관상동맥에 대한 혈관 영상 프레임 시퀀스를 출력하는 혈관 영상 획득부; 및 상기 혈관 영상 프레임 시퀀스를 입력받고, 입력되는 혈관 영상 프레임 시퀀스를 샘플링하며, 샘플링된 혈관 영상 프레임 시퀀스에 마르코브 랜덤 필드 최적화를 적용하는 혈관대응최적화를 수행하여 혈관의 움직임을 반영한 일관된 중심선을 포함하는 혈관을 추출하고, 조영제의 투여로 인해 추가적으로 가시화된 국부 혈관을 정합한 관상동맥 혈관을 추출하여 표시하는 혈관 추출부를 포함하는 것을 특징으로 한다.Coronary artery vessel extraction apparatus using the vascular response optimization according to the present invention for achieving the above object: Blood vessel image acquisition unit for outputting a blood vessel image frame sequence for coronary artery by taking a coronary artery; And a consistent centerline reflecting the movement of blood vessels by receiving the vessel image frame sequence, sampling the input vessel image frame sequence, and performing vessel response optimization by applying Markov random field optimization to the sampled vessel image frame sequence. And a blood vessel extracting unit for extracting and displaying coronary blood vessels matching the localized blood vessels further visualized by administration of a contrast agent.
상기 혈관 추출부는, 관상동맥 중심선을 포함하는 소스프레임과 상기 샘플링된 혈관 영상 프레임인 목적프레임의 비교에 따른 챔퍼 매칭을 수행하여 심장의 관상동맥에 대한 전역적인 형상 및 병진운동을 추정하는 전역적 강직 정합부; 적어도 둘 이상의 키포인트를 가지는 일정 크기의 윈도우에 의해 상기 중심선을 따라 후보 (혈관) 가지를 검출하고 검출된 후보 가지들 중 실제 가지를 결정하고 결정된 가지들을 중심선에 접하여 혈관 중심선을 복원하는 지역적 비강직 정합부; 조영제 투입에 의한 조영제 흐름 영상이 반영된 상기 목적프레임으로부터 소스프레임의 혈관의 최대 반경보다 긴 혈관이 검출되지 않을 때까지 새로운 혈관 가지들을 검출하고, 상기 검출된 혈관 가지들을 중심선에 연결하고 중심선에 연결되지 않는 가지는 제외하여 전체 관상동맥을 추출하는 후 처리부; 및 상기 혈관 가지가 연결된 중심선을 포함하는 관상동맥을 시각화하여 디스플레이 수단에 표시하는 디스플레이부를 포함하는 것을 특징으로 한다.The blood vessel extracting unit performs global stiffness by performing chamfer matching according to a comparison between a source frame including a coronary centerline and an object frame, which is the sampled blood vessel image frame, to estimate global shape and translational motion of the coronary artery of the heart. Matching part; Local non-rigid registration that detects candidate (vascular) branches along the centerline by a window of constant size with at least two keypoints, determines actual ones of the detected candidate branches, and restores the vascular centerline by contacting the determined branches with the centerline part; New blood vessel branches are detected from the object frame reflecting the contrast medium flow image by the contrast medium until the blood vessels longer than the maximum radius of the blood vessel of the source frame are not detected, and the detected blood vessel branches are connected to the center line and not connected to the center line. Post-processing unit for extracting the entire coronary artery except for the eggplant; And a display unit for visualizing and displaying on the display means a coronary artery including a centerline to which the blood vessel branch is connected.
상기 혈관 추출부는, 추출된 상기 전체 관상동맥의 중심선에서 가지가 분기하는 분기 포인트 및 가지가 교차하는 교차 포인트를 분석하고, 분석정보를 상기 디스플레이부를 통해 표시하는 혈관구조 분석부를 더 포함하는 것을 특징으로 한다.The blood vessel extracting unit may further include a vascular structure analyzing unit configured to analyze branch points at which branches branch and cross points intersecting branches at the centerline of the entire coronary artery, and display analysis information through the display unit. do.
상기 소스프레임은 혈관 포인트를 더 포함하고, 상기 지역적 비강직 정합부는, 상기 소스프레임의 혈관 포인트에 의해 중심선의 혈관 포인트를 샘플링하는 혈관 포인트 샘플링부; 상기 샘플링된 샘플링 혈관 포인트 각각이 분기 포인트인지, 교차 포인트인지, 끝 포인트 인지를 타나내는 특성을 추출하는 혈관 특징 포인트 추출부; 상기 소스프레임의 혈관 포인트에 대응하는 대응 혈관 포인트를 목적프레임으로부터 검색하는 혈관 대응 포인트 후보 검출부; 상기 혈관 특징 포인트 및 대응 혈관 포인트들에 대해 국부 검색 영역인 상기 윈도우를 정의하고 상기 윈도우 내에서 최적의 대응 포인트인 최적 대응 포인트 후보들을 검출하는 혈관 포인트 검색을 수행하는 MRF 최적화부; 및 상기 최적 대응 포인트에서 가지들을 정합하여 혈관 중심선을 복원하는 혈관 중심선 복원부를 포함하는 것을 특징으로 한다.The source frame further includes a vessel point, and the local non-rigid registration unit includes a vessel point sampling unit for sampling vessel points of the centerline by vessel points of the source frame; A blood vessel feature point extracting unit configured to extract a characteristic indicating whether each of the sampled sampling vessel points is a branch point, an intersection point, or an end point; A blood vessel corresponding point candidate detector searching for a corresponding vessel point corresponding to the vessel point of the source frame from an object frame; An MRF optimizer for defining a window, which is a local search region, for the vessel feature point and corresponding vessel points, and performing vessel point search for detecting optimal correspondence point candidates that are optimal correspondence points in the window; And a blood vessel centerline restoration unit for restoring the blood vessel centerline by matching the branches at the optimum corresponding point.
상기 MRF 최적화부는, 하기 수학식 2에 의해 최적 대응 포인트를 검출하는 것을 특징으로 한다.The MRF optimizer detects an optimal correspondence point according to Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2016014881-appb-I000001
Figure PCTKR2016014881-appb-I000001
Figure PCTKR2016014881-appb-I000002
Figure PCTKR2016014881-appb-I000003
는 각각 소스프레임과 목적프레임을 나타내고, pi
Figure PCTKR2016014881-appb-I000004
는 각각 상기 소스 혈관 구조의 i 번째 노드의 좌표와 목적프레임에서 xi 번째 대응후보를 나타낸다. D는 로컬 특징 디스크립터를 위한 함수이다.
Figure PCTKR2016014881-appb-I000002
And
Figure PCTKR2016014881-appb-I000003
Denotes a source frame and a target frame, respectively, p i and
Figure PCTKR2016014881-appb-I000004
Represents the coordinates of the i-th node of the source blood vessel structure and the xi-th corresponding candidate in the object frame, respectively. D is a function for the local feature descriptor.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 혈관대응최적화를 이용한 관상동맥 혈관 추출 방법은: 관상동맥을 촬영하여 관상동맥에 대한 혈관 영상 프레임 시퀀스를 출력하는 혈관 영상 획득 단계; 및 상기 혈관 영상 프레임 시퀀스를 입력받고, 입력되는 혈관 영상 프레임 시퀀스를 샘플링하며, 샘플링된 혈관 영상 프레임 시퀀스에 혈관대응최적화를 수행하여 혈관 중심선을 포함하는 혈관을 추출하고, 마르코브 랜덤 필드 최적화를 수행하여 움직임이 반영된 일관성 있는 국부 혈관을 추출하고 추출된 혈관 중심선 및 국부 혈관을 정합한 관상동맥 혈관을 추출하여 표시하는 혈관 추출 단계를 포함하는 것을 특징으로 한다.Coronary artery extraction method using vascular response optimization according to the present invention for achieving the above object comprises: taking a coronary artery to obtain a blood vessel image frame step for outputting a vascular image frame sequence for the coronary artery; And receiving the blood vessel image frame sequence, sampling the input blood vessel image frame sequence, performing blood vessel response optimization on the sampled blood vessel image frame sequence, extracting blood vessels including a blood vessel centerline, and performing Markov random field optimization. And a blood vessel extraction step of extracting and displaying a consistent local blood vessel reflecting the movement, and extracting and displaying a coronary blood vessel matching the extracted blood vessel centerline and the local blood vessel.
상기 혈관 추출 단계는, 관상동맥 중심선을 포함하는 소스프레임과 상기 샘플링된 혈관 영상 프레임인 목적프레임의 비교에 따른 챔퍼(Chamfer) 매칭을 수행하여 심장의 관상동맥에 대한 전역적인 형상 및 병진운동을 추정하는 전역적 강직 정합 단계; 적어도 둘 이상의 키포인트를 가지는 일정 크기의 윈도우에 의해 상기 중심선을 따라 후보 (혈관) 가지를 검출하고 검출된 후보 가지들 중 실제 가지를 결정하고 결정된 가지들을 중심선에 접하여 혈관 중심선을 복원하는 지역적 비강직 정합 단계; 조영제 투입에 의한 조영제 흐름 영상을 반영하되, 최대화 혈관의 반경보다 긴 혈관이 검출되지 않을 때까지 새로운 혈관 가지들을 검출하고, 상기 검출된 혈관 가지들을 중심선에 연결하고 중심선에 연결되지 않는 가지는 제외하여 전체 관상동맥을 추출하는 후 처리 단계; 및 상기 혈관 가지가 연결된 중심선을 포함하는 관상동맥을 시각화하여 디스플레이 수단에 표시하는 디스플레이 단계를 포함하는 것을 특징으로 한다.In the blood vessel extraction step, a global shape and translational motion of the coronary artery of the heart is estimated by performing a chamfer matching according to a comparison between the source frame including the coronary centerline and the object frame, which is the sampled blood vessel image frame. A global rigid matching step; Local non-rigid registration that detects candidate (vascular) branches along the centerline by a window of constant size with at least two keypoints, determines actual ones of the detected candidate branches, and restores the vascular centerline by contacting the determined branches with the centerline step; Reflect the contrast flow image by contrast injection, detect new vessel branches until no vessel longer than the radius of the maximizing vessel is detected, connect the detected vessel branches to the centerline, and exclude the branches not connected to the centerline Post-treatment step of extracting the coronary artery; And a display step of visualizing and displaying on a display means a coronary artery including a centerline to which the blood vessel branch is connected.
상기 혈관 추출 단계는, 추출된 상기 전체 관상동맥의 중심선에서 가지가 분기하는 분기 포인트 및 가지가 교차하는 교차 포인트를 분석하고, 분석정보를 디스플레이부를 통해 표시하는 혈관구조 분석 단계를 더 포함하는 것을 특징으로 한다.The blood vessel extracting step may further include a blood vessel structure analyzing step of analyzing a branching point at which a branch branches and an intersection point at which a branch intersects at the center line of the extracted whole coronary artery, and displaying analysis information through a display unit. It is done.
상기 소스프레임은 혈관 포인트를 더 포함하고, 상기 지역적 비강직 정합 단계는, 상기 소스프레임의 혈관 포인트에 의해 중심선의 혈관 포인트를 샘플링하는 혈관 포인트 샘플링 단계; 상기 샘플링된 샘플링 혈관 포인트 각각에 대해 분기, 교차 및 끝 포인트 특성을 가지는 특징 포인트의 특징 포인트 가지를 검색하는 혈관 특징 포인트 추출 단계; 상기 샘플링 혈관 포인트에 대한 대응 혈관 포인트를 검색하는 혈관 대응 포인트 후보 검출 단계; 상기 혈관 특징 포인트 및 대응 혈관 포인트들에 대해 국부 검색 영역인 상기 윈도우를 정의하고 상기 윈도우 내에서 최적의 대응 포인트인 최적 대응 포인트 후보들을 검출하는 혈관 포인트 검색을 수행하는 MRF 최적화 단계; 및 상기 최적 대응 포인트에서 가지들을 정합하여 혈관 중심선을 복원하는 혈관 중심선 복원 단계를 포함하는 것을 특징으로 한다.The source frame further includes a vessel point, and the local non-rigid registration step includes: a vessel point sampling step of sampling a vessel point of a centerline by the vessel point of the source frame; A vein feature point extraction step of retrieving feature point branches of feature points having branching, crossing, and end point characteristics for each of the sampled sampling vessel points; A vessel corresponding point candidate detection step of searching for a corresponding vessel point for the sampling vessel point; An MRF optimization step of defining a window that is a local search region for the vessel feature point and corresponding vessel points and performing vessel point search to detect optimal correspondence point candidates that are optimal correspondence points within the window; And restoring a blood vessel centerline by matching the branches at the optimum corresponding point.
상기 MRF 최적화 단계는, 하기 수학식 2에 의해 최적 대응 포인트를 검출하는 것을 특징으로 한다.The MRF optimization step is characterized by detecting the best corresponding point by the following equation (2).
[수학식 2][Equation 2]
Figure PCTKR2016014881-appb-I000005
Figure PCTKR2016014881-appb-I000005
Figure PCTKR2016014881-appb-I000006
Figure PCTKR2016014881-appb-I000007
는 각각 소스프레임과 목적프레임을 나타내고, pi
Figure PCTKR2016014881-appb-I000008
는 각각 상기 소스 혈관 구조의 i 번째 노드의 좌표와 목적프레임에서 xi 번째 대응후보를 나타낸다. D는 로컬 특징 디스크립터를 위한 함수이다.
Figure PCTKR2016014881-appb-I000006
And
Figure PCTKR2016014881-appb-I000007
Denotes a source frame and a target frame, respectively, p i and
Figure PCTKR2016014881-appb-I000008
Represents the coordinates of the i-th node of the source blood vessel structure and the xi-th corresponding candidate in the object frame, respectively. D is a function for the local feature descriptor.
본 발명은 혈관대응최적화 방식을 통해 구멍(aperture)문제를 극복하고 최적의 대응 포인트를 추출0하여 보다 정밀한 움직임을 추정할 수 있는 효과를 갖는다.The present invention has the effect of estimating more precise movements by overcoming an aperture problem and extracting an optimum corresponding point through vascular optimization optimization.
또한, 본 발명은 분기점, 교차점 등을 판별하는 과정을 통해 3차원 구조가 2차원에 투영됨에 따라 발생하는 오류를 검출할 수 있으므로 더 정밀한 움직임 추정이 가능한 효과를 갖는다. In addition, the present invention can detect an error generated when the three-dimensional structure is projected to the two-dimensional through the process of determining the branch point, the intersection point, etc. has the effect of more accurate motion estimation.
도 1은 본 발명에 따른 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치의 개략적인 구성을 나타낸 도면이다.1 is a view showing a schematic configuration of a coronary blood vessel extraction apparatus using vascular response optimization according to the present invention.
도 2는 본 발명에 따른 관상동맥 혈관 추출 장치의 혈관 추출부의 상세 구성을 나타낸 도면이다.Figure 2 is a view showing the detailed configuration of the blood vessel extraction unit of the coronary vessel extraction apparatus according to the present invention.
도 3은 본 발명에 따른 혈관 추출부의 지역적 비강직 정합부의 상세 구성을 나타낸 도면이다.Figure 3 is a view showing the detailed configuration of the local non-rigid registration part of the blood vessel extraction unit according to the present invention.
도 4는 본 발명의 일실시예에 따라 샘플링된 엑스레이 조영술 시퀀스를 나타낸 도면이다.4 is a diagram illustrating a sampled X-ray angiography sequence according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 혈관 추출 예를 설명하기 위한 전체 프레임워크를 나타낸 도면이다.5 is a diagram showing an overall framework for explaining an example of blood vessel extraction according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 계층적 가지 포인트 검색 방법의 효과를 설명하기 위한 도면으로 소스프레임의 혈관 가지를 나타낸 도면이다.6 is a view for explaining the effect of the hierarchical branch point search method according to an embodiment of the present invention showing the blood vessel branches of the source frame.
도 7은 본 발명의 일실시예에 따른 계층적 가지 포인트 검색 방법의 효과를 설명하기 위한 도면으로 목적프레임에서 혈관 가지 포인트 검색 방법을 설명하기 위한 도면이다.FIG. 7 is a view for explaining the effect of the hierarchical branch point searching method according to an embodiment of the present invention.
이하 첨부된 도면을 참조하여 본 발명에 따른 관상동맥 혈관 추출 장치의 구성 및 동작을 설명하고, 상기 장치에서의 혈관 추출 방법을 설명한다.Hereinafter, with reference to the accompanying drawings will be described the configuration and operation of the coronary vessel extraction apparatus according to the present invention, the blood vessel extraction method in the device will be described.
도 1은 본 발명에 따른 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치의 개략적인 구성을 나타낸 도면이다.1 is a view showing a schematic configuration of a coronary blood vessel extraction apparatus using vascular response optimization according to the present invention.
도 1을 참조하면, 본 발명에 따른 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치는 혈관 영상 획득부(100) 및 혈관 추출부(200)를 포함한다.Referring to FIG. 1, the coronary blood vessel extraction apparatus using vascular optimization according to the present invention includes a blood vessel image acquisition unit 100 and a blood vessel extraction unit 200.
혈관 영상 획득부(100)는 형광 투시법 X-ray 촬영 장치(미도시), 컴퓨터 단층촬영(Computed tomography: CT) 장치 등으로서 심장을 촬영하여 관상동맥 혈관 영상 프레임 시퀀스를 출력한다. 상기 혈관 영상 획득부(100)는 조영제의 투입 후 심장을 촬영할 수 있으며, 이에 따라 조영제 투입이 반영된 상기 관상동맥 혈관 영상 프레임 시퀀스를 출력할 것이다.The blood vessel image acquisition unit 100 photographs the heart using a fluoroscopic X-ray imaging apparatus (not shown), a computed tomography (CT) apparatus, and the like to output a coronary blood vessel image frame sequence. The blood vessel image acquisition unit 100 may photograph the heart after the contrast medium is added, and thus outputs the coronary blood vessel image frame sequence reflecting the contrast medium input.
혈관 추출부(200)는 상기 혈관 영상 획득부(100)로부터 출력되는 관상동맥 혈관 영상 프레임 시퀀스를 목적프레임 시퀀스로 입력받고 본 발명에 따른 마르코브 랜덤 필드(Markov Random Field: MRF)가 적용되는 혈관대응최적화를 적용하여 혈관의 혈관 중심선 및 혈관 중심선에서 분기 및 교차되는 가지(또는 "혈관 가지"라 함)들을 정밀하게 추출하고, 추출된 혈관의 중심선 및 가지들과 정합하여 전체 관상동맥 혈관을 추출하여 디스플레이 수단에 표시한다.The blood vessel extraction unit 200 receives a coronary vessel image frame sequence output from the blood vessel image acquisition unit 100 as a target frame sequence, and a vessel to which a Markov Random Field (MRF) according to the present invention is applied. Corresponding optimization is applied to precisely extract the vessel's vascular centerline and branches (or "vascular branches") that branch and intersect at the vessel centerline, and match the centerline and branches of the extracted vessel to extract the entire coronary vessel Display on the display means.
도 2는 본 발명에 따른 관상동맥 혈관 추출 장치의 혈관 추출부의 상세 구성을 나타낸 도면이고, 도 4는 본 발명의 일실시예에 따라 샘플링된 엑스레이 조영술 시퀀스를 나타낸 도면이다. 이하 도 2 및 도 4를 참조하여 설명한다. 도 4의 참조부호 1은 혈관 중심선이고, 2는 혈관 가지이고, 3은 분기 포인트이며, 4는 교차 포인트이다.2 is a view showing a detailed configuration of the blood vessel extraction unit of the coronary vessel extraction apparatus according to the present invention, Figure 4 is a view showing an X-ray imaging sequence sampled according to an embodiment of the present invention. A description with reference to FIGS. 2 and 4 is as follows. Reference numeral 1 in FIG. 4 is a blood vessel centerline, 2 is a blood vessel branch, 3 is a branch point, and 4 is an intersection point.
혈관 추출부(200)는 전역적 강직 정합부(300), 지역적 비강직 정합부(400), 후 처리부(500) 및 디스플레이부(700)를 포함하고, 실시예에 따라 혈관 구조 분석부(600)를 더 포함할 수도 있을 것이다.The blood vessel extracting unit 200 includes a global rigid matching unit 300, a local non-rigid matching unit 400, a post processing unit 500, and a display unit 700, and according to an embodiment, the vascular structure analyzing unit 600. ) May be further included.
전역적 강직 정합부(300)는 챔퍼(Chamfer), 관상동맥 혈관 중심선(1), 혈관 포인트를 포함하는 소스프레임을 저장하고 있으며, 상기 혈관 영상 획득부(100)로부터 목적프레임인 관상동맥 혈관 영상 프레임 시퀀스를 입력받아 일정 개수로 샘플링을 수행한다. 도 4는 상기 전역적 강직 정합부(300)에서 샘플링된 목적프레임들 중 역동성을 명확하게 나타낼 수 있도록 일부 목적프레임들만 선택하여 나타낸 것이다.The global rigid matching unit 300 stores a source frame including a chamfer, a coronary vessel centerline 1, and a vessel point, and coronary vessel image as a target frame from the vessel image acquisition unit 100. The frame sequence is input and sampled to a certain number. 4 shows only some of the object frames selected so that the dynamics among the object frames sampled by the global rigid matching unit 300 can be clearly indicated.
상기 전역적 강직 정합부(300)는 샘플링된 목적프레임과 소스프레임을 비교하여 챔퍼 매칭을 수행하여 심장 박동, 숨 쉼 또는 시각의 변경에 따른 심장의 관상동맥에 대한 전역적인 형상 및 병진운동을 추정한다. 상기 병진운동의 추정은 소스프레임의 챔퍼, 관상동맥 혈관의 중심선 중 하나 이상과 목적프레임의 챔퍼 및 중심선의 벗어난 방향 및 정도에 따라 추정될 수 있을 것이다.The global rigid matching unit 300 compares the sampled object frame with the source frame and performs chamfer matching to estimate the global shape and translational movement of the coronary artery of the heart according to the change of heart rate, breath, or vision. do. The estimation of the translational motion may be estimated according to one or more of the chamfer of the source frame and the centerline of the coronary vessel and the direction and extent of the chamfer and the centerline of the object frame.
지역적 비강직 정합부(400)는 적어도 둘 이상의 키포인트를 가지는 일정 크기의 윈도우에 의해 상기 중심선을 따라 후보 (혈관) 가지를 검출하고 검출된 후보 가지들 중 실제 가지를 결정하고 결정된 가지들을 중심선에 정합하여 관상동맥 혈관을 복원한다. 상기 윈도우는 국부 검색 영역으로, wK×hK의 크기를 갖는다. 상기 윈도우에 대한 상세한 설명은 후술한다.The local non-rigid matching unit 400 detects candidate (vascular) branches along the centerline by a window having a predetermined size having at least two keypoints, determines an actual branch among the detected candidate branches, and matches the determined branches to the centerline. To restore coronary vessels. The window is a local search region and has a size of w K × h K. Detailed description of the window will be described later.
후 처리부(500)는 조영제 투입에 의한 조영제 흐름 영상이 반영된 상기 목적프레임으로부터 최대화 혈관의 반경보다 긴 혈관이 검출되지 않을 때까지 새로운 혈관 가지들을 검출하고, 상기 검출된 혈관 가지들을 중심선에 연결하고 중심선에 연결되지 않는 가지는 제외하여 전체 관상동맥을 추출한다. 즉, 후 처리부는 조영제 투입에 따라 새롭게 나타나는 국부 혈관 가지들을 추출하여 시각화한다.The post processor 500 detects new blood vessel branches until the blood vessel longer than the radius of the maximized vessel is not detected from the object frame reflecting the contrast medium flow image by the contrast agent input, connects the detected blood vessel branches to the centerline, and connects the centerline. Extract the entire coronary artery except for the branches that are not connected to it. In other words, the post-processing unit extracts and visualizes local blood vessel branches newly appearing as a contrast agent is added.
상기 후 처리부(500)는 지역적 비강직 정합부(400)에서 VCO의 수행 후, 획득된 혈관 포인트들을 고속 마칭 방식에 의해 혈관 중심선(1) 구조를 구성하기 위해 연결한다. 상기 고속 마칭 방식은 Yatziv, L., Bartesaghi, A., Sapiro, G.: O(N) Implementation of the Fast Marching Algorithm. Journal of Computational Physics 212(2), 393-399 (2005)에 상세히 설명되어 있으므로 그 상세 설명을 생략한다.The post-processing unit 500 connects the obtained vessel points after the VCO in the regional non-rigid matching unit 400 to construct the vessel centerline 1 structure by a high speed marching method. The fast marching scheme is described in Yatziv, L., Bartesaghi, A., Sapiro, G .: O (N) Implementation of the Fast Marching Algorithm. As detailed in the Journal of Computational Physics 212 (2), 393-399 (2005), its detailed description is omitted.
상기 후 처리부(500)는 조영제의 투여로 인해 추가적으로 가시화된 혈관을 포함하도록 혈관 중심선(1)을 확장하기 위해 베슬니스(Vesselness)와 고속 마칭 방식을 결합한다. 베슬니스의 계산 방식은 Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A., Delp, S.(eds.) MICCAI 1998.LNCS, vol. 1496, pp.130-137. Springer, Heidelberg(1998)에 상세히 설명되어 있으므로 그 상세 설명을 생략한다.The post-processing unit 500 combines Vesselness and high speed marching to expand the vessel centerline 1 to include vessels that are additionally visible due to the administration of contrast medium. Vesselness is calculated by Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A .: Multiscale Vessel Enhancement Filtering. In: Wells, W. M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130-137. Springer, Heidelberg (1998) is described in detail, so the detailed description is omitted.
이진 세그먼트 마스크는 베슬니스(vesselness)를 임계화함에 의해 획득되고, 혈관 중심선(1)에 연결되지 않는 영역은 제외된다.Binary segment masks are obtained by thresholding vesselness and exclude areas that are not connected to the vessel centerline 1.
상기 목표 형상의 거리변환(DT)는 시드와 같은 비혈관 영역을 가지는 상기 이진 세그먼트 마스크로 계산된다. 상기 이진 세그먼트 마스크 및 상기 DT에 기초하여 최대화 혈관 반경보다 더 긴 가지가 발견되지 않을 때까지 다음을 반복한다.The distance transformation DT of the target shape is calculated with the binary segment mask having a non-vascular region as the seed. Based on the binary segment mask and the DT, the following is repeated until no branches longer than the maximal vessel radius are found.
i) 속도 매칭으로서 DT 값과 시드로서의
Figure PCTKR2016014881-appb-I000009
를 가지고 빠른 매칭을 수행
i) DT value as velocity matching and as seed
Figure PCTKR2016014881-appb-I000009
Take a quick match
ii)
Figure PCTKR2016014881-appb-I000010
에 최근 도착 시간을 가지고
Figure PCTKR2016014881-appb-I000011
에 추가되는 상기 픽셀에서 가장 짧은 경로를 발견. 상기 픽셀에서 가장 짧은 경로를 발견하는 방식은 Van Uitert, R., Bitter, I.: Subvoxel precise skeletons of volumetric data based on fast marching methods. Medical physics 34(2), 627-638(2007)에서 상세하게 설명되어 있으므로 그 설명을 생략한다.
ii)
Figure PCTKR2016014881-appb-I000010
Have a recent arrival time in
Figure PCTKR2016014881-appb-I000011
Found the shortest path from the pixel to be added to. The method of finding the shortest path in the pixel is Van Uitert, R., Bitter, I .: Subvoxel precise skeletons of volumetric data based on fast marching methods. Medical physics 34 (2) and 627-638 (2007) are described in detail, and thus description thereof is omitted.
디스플레이부(700)는 상기 혈관 가지가 연결된 중심선을 포함하는 관상동맥을 시각화하여 디스플레이 수단에 표시한다.The display unit 700 visualizes the coronary artery including the centerline to which the blood vessel branch is connected, and displays the coronary artery on the display means.
혈관구조 분석부(600)는 추출된 상기 전체 관상동맥의 중심선에서 가지가 분기하는 분기 포인트 및 가지가 교차하는 교차 포인트를 분석하고, 분석정보를 상기 디스플레이부(700)를 통해 표시한다.The vascular structure analyzer 600 analyzes the branch point where the branch branches and the intersection point where the branches intersect in the extracted centerline of the entire coronary artery, and displays the analysis information on the display unit 700.
도 3은 본 발명에 따른 혈관 추출부의 지역적 비강직 정합부의 상세 구성을 나타낸 도면이고, 도 5는 본 발명의 일실시예에 따른 혈관 추출 예를 설명하기 위한 전체 프레임워크를 나타낸 도면이이며, 도 6은 본 발명의 일실시예에 따른 계층적 가지 포인트 검색 방법의 효과를 설명하기 위한 도면으로 소스프레임의 혈관 가지를 나타낸 도면이고, 도 7은 본 발명의 일실시예에 따른 계층적 가지 포인트 검색 방법의 효과를 설명하기 위한 도면으로 목적프레임에서 혈관 가지 포인트 검색 방법을 설명하기 위한 도면이다. 이하 도 3, 도 5 내지 도 7을 참조하여 설명한다.3 is a view showing a detailed configuration of the local non-rigid matching portion of the blood vessel extraction unit according to the present invention, Figure 5 is a view showing a whole framework for explaining an example of the blood vessel extraction according to an embodiment of the present invention, Figure 6 is a view for explaining the effect of the hierarchical branch point search method according to an embodiment of the present invention, showing the blood vessel branches of the source frame, Figure 7 is a hierarchical branch point search according to an embodiment of the present invention A diagram for describing the effect of the method is a diagram for explaining a method for retrieving blood vessel branch points in an object frame. Hereinafter, a description will be given with reference to FIGS. 3 and 5 to 7.
본 발명의 지역적 비강직 정합부(400)는 혈관 포인트 샘플링부(410), 혈관 특징점 추출부(420), 혈관 대응 포인트 후보 검출부(430), MRF 최적화부(440) 및 혈관 중심선 복원부(450)를 포함한다.The regional non-stiff matching unit 400 of the present invention includes a blood vessel point sampling unit 410, a blood vessel feature point extractor 420, a blood vessel correspondence point candidate detector 430, an MRF optimizer 440, and a blood vessel centerline restoration unit 450. ).
혈관 포인트 샘플링부(410)는 전역적 강직 정합부(300)에서 소스프레임의 혈관 중심선(1-1: 회색)에 근거하여 목적프레임으로부터 혈관 중심선(1-2: 초록)이 추출되면 추출된 혈관 중심선(1-2)과 소스프레임의 혈관 중심선(1-1)은 중첩되고, 소스프레임의 혈관 포인트들에 의해 목적프레임의 혈관 중심선의 혈관 포인트를 샘플링한다.The vessel point sampling unit 410 is a blood vessel extracted when the vessel centerline (1-2: green) is extracted from the target frame based on the vessel centerline (1-1: gray) of the source frame in the global rigid matching unit 300. The center line 1-2 and the vessel center line 1-1 of the source frame overlap each other, and the vessel points of the vessel center line of the target frame are sampled by the vessel points of the source frame.
혈관 특징점 추출부(420)는 상기 샘플링된 혈관 포인트 각각에 대해 해당 포인트가 혈관 중심선으로부터 혈관 가지가 분기되는 분기 포인트인지, 혈관 중심선과 혈관 가지가 교차하는 교차 포인트인지, 혈관 중심선 및 혈관 가지의 끝 포인트인지를 나타내는 혈관 특징을 추출한다.The vessel feature point extractor 420 is a branch point for branching of a vessel branch from a vessel centerline, an intersection point at which a vessel centerline intersects a vessel branch, and an end of a vessel centerline and a vessel branch for each of the sampled vessel points. Extract vessel features indicating whether a point.
혈관 대응 포인트 후보 검출부(430)는 상기 소스프레임의 혈관 포인트에 대응하는 대응 혈관 포인트를 목적프레임으로부터 검출한다.The vessel corresponding point candidate detector 430 detects a corresponding vessel point corresponding to the vessel point of the source frame from the target frame.
MRF 최적화부(440)는 상기 혈관 특징 포인트 및 대응 혈관 포인트들에 대해 국부 검색 영역인 상기 윈도우를 정의하고 상기 윈도우 내에서의 최적의 대응 포인트인 최적 대응 포인트 후보들을 검출하는 혈관 포인트 검색을 수행한다.The MRF optimizer 440 defines the window, which is a local search region, for the vessel feature point and the corresponding vessel points, and performs a vessel point search that detects optimal correspondence point candidates that are optimal correspondence points in the window. .
MRF에 대해 좀 더 상세히 설명하면, MRF 쌍 그래프는 소스프레임의 혈관 중심선으로부터 구성된다. 노드는 중심선으로부터 표본 지점에 대응하고, 에지는 혈관 포인트들 사이의 연결 지점을 나타낸다.In more detail about MRF, the MRF pair graph is constructed from the vessel centerline of the source frame. The nodes correspond to sample points from the centerline, and the edges represent the points of connection between the vessel points.
MRF 에너지는 하기 수학식 1과 같이 정의된다.MRF energy is defined as in Equation 1 below.
Figure PCTKR2016014881-appb-M000001
Figure PCTKR2016014881-appb-M000001
여기서 x는 인덱스 i를 가지는 각 노드에서 랜덤 변수들 xi의 셋을 포함하는 벡터이다. 각 xi는 Np+1의 다른 값으로 라벨링될 수 있고, 최적 x는 상기 수학식 1을 최소화함에 의해 결정된다. 상기 Np+1 라벨링은 Np 대응 후보들과 일관된 국부 모양 및 외관을 가지는 후보가 없을 때 어떤 노드에 할당되는 1 더미 라벨을 포함한다. 만일 최적의 더미 라벨이 발견되면, 상기 노드는 생성된 VCO 포인트 셋으로부터 제외된다.Where x is a vector containing a set of random variables xi at each node with index i. Each xi may be labeled with a different value of Np + 1, and the optimal x is determined by minimizing Equation 1 above. The Np + 1 labeling includes one dummy label assigned to a node when no candidate has a local shape and appearance consistent with the Np corresponding candidates. If an optimal dummy label is found, the node is excluded from the set of VCO points created.
단항 비용 함수
Figure PCTKR2016014881-appb-I000012
는 i 번째 노드의 국부 모양 사이의 유사함에 의존한다. 유사한 모양을 가지는 대응 포인트들을 찾았을 때, 하기 수학식 2와같이 국부 모양 유사성 증가만큼
Figure PCTKR2016014881-appb-I000013
가 감소하는 것으로 정의한다.
Unary cost function
Figure PCTKR2016014881-appb-I000012
Depends on the similarity between the local shapes of the i th node. When the corresponding points having similar shapes are found, as shown in Equation 2
Figure PCTKR2016014881-appb-I000013
Is defined as decreasing.
Figure PCTKR2016014881-appb-M000002
Figure PCTKR2016014881-appb-M000002
Figure PCTKR2016014881-appb-I000014
Figure PCTKR2016014881-appb-I000015
는 각각 소스프레임과 목적프레임을 나타내고, pi
Figure PCTKR2016014881-appb-I000016
는 각각 상기 소스프레임 혈관 구조의 i 번째 노드의 좌표와 목적프레임에서 xi 번째 대응후보를 나타낸다.
Figure PCTKR2016014881-appb-I000014
And
Figure PCTKR2016014881-appb-I000015
Denotes a source frame and a target frame, respectively, p i and
Figure PCTKR2016014881-appb-I000016
Respectively represent the coordinates of the i-th node of the source frame blood vessel structure and the xi-th corresponding candidate in the object frame.
D는 로컬 특징 디스크립터를 위한 함수이다.D is a function for the local feature descriptor.
Figure PCTKR2016014881-appb-I000017
는 이상점(Outlier)에 대한 견고성을 보장하기 위해
Figure PCTKR2016014881-appb-I000018
에 의해 절단되어 있음을 보인다.
Figure PCTKR2016014881-appb-I000017
To ensure robustness against outliers
Figure PCTKR2016014881-appb-I000018
Seems to have been cut by
이상점들은 심한 영역(지역)의 변형으로 인해 해당하는 포인트가 없는 경우 발생할 수 있다.Outliers can occur when there is no corresponding point due to severe area (region) deformation.
페어와이즈 비용
Figure PCTKR2016014881-appb-I000019
은 이웃 포인트들 사이의 유사한 변위 벡터들을 강화한다. 이것은 수학식 3과 같이 정의될 수 있다.
Fairwise Cost
Figure PCTKR2016014881-appb-I000019
Reinforces similar displacement vectors between neighboring points. This may be defined as in Equation 3.
Figure PCTKR2016014881-appb-M000003
Figure PCTKR2016014881-appb-M000003
여기서, pi 및 pj는 i 번째 및 j 번째 소스프레임 노드의 좌표이고,
Figure PCTKR2016014881-appb-I000020
Figure PCTKR2016014881-appb-I000021
는 xi 및 xj의 대응 후보들의 목적프레임에서 좌표이다.
Where p i and p j are the coordinates of the i th and j th sourceframe nodes,
Figure PCTKR2016014881-appb-I000020
And
Figure PCTKR2016014881-appb-I000021
Is the coordinate in the object frame of the corresponding candidates of x i and x j .
Figure PCTKR2016014881-appb-I000022
는 i 번째 소스 노드의 변위 벡터이다. 또 한 번의 잘림은 쓰레숄드
Figure PCTKR2016014881-appb-I000023
에 기반하여 포함된다.
Figure PCTKR2016014881-appb-I000022
Is the displacement vector of the i th source node. Another cut is the threshold
Figure PCTKR2016014881-appb-I000023
Included on the basis of
상기 파라미터 람다(
Figure PCTKR2016014881-appb-I000024
)는 상기 수학식 1에서 정규화의 양을 제어한다.
The parameter lambda (
Figure PCTKR2016014881-appb-I000024
) Controls the amount of normalization in Equation 1 above.
혈관 중심선 복원부(450)는 상기 최적 대응 포인트에서 가지들을 정합하여 혈관 중심선을 복원한다.The vessel centerline restoration unit 450 restores the vessel centerline by matching branches at the optimum correspondence point.
상술한 바와 같이 본 발명은 챔퍼 매칭 전역검색, 혈관 키포인트 대응에 의한 가지 검색 및 포인트 검색을 포함하는 계층적인 대응 검색 방식을 적용한다. 본 발명은 3D-2D 프로젝션에서 교차 및 분기점을 포함하고, 혈관 키포인트들로서 독특한 모양을 가지는 교차 및 분기점을 가지는 혈관 접합 및 끝 포인트를 정의한다.As described above, the present invention applies a hierarchical correspondence search method including a chamfer matching global search, a branch search by vascular keypoint correspondence, and a point search. The present invention defines vascular junctions and end points that include intersections and branching points in 3D-2D projections and have intersections and branching points that have a unique shape as vascular keypoints.
혈관 가지는 두 개의 결관 키포인트를 연결하는 라인을 제공한다.Vascular branches provide a line connecting two tubercle keypoints.
본 발명은 일반적인 혈관 포인트 pi와 구분하기 위해서
Figure PCTKR2016014881-appb-I000025
로 α 번째 키포인트를 나타낸다. 상기 m 번째 가지는 bm으로 나타낸다.
The present invention is to distinguish from the general vessel point p i
Figure PCTKR2016014881-appb-I000025
Denotes the α th keypoint. The m-th branch is represented by b m .
챔퍼 매칭 전역 검색: 본 발명은 심장 박동, 숨 쉼, 또는 시각의 변경으로부터 큰 전역적인 병진 운동을 추정하기 위해 챔퍼 매칭을 수행한다. Chamfer Matching Global Search : The present invention performs chamfer matching to estimate large global translational motion from heart rate, breathing, or changes in vision.
상기 견본 모양은 소스프레임의 혈관 포인트들의 집합이다.The sample shape is a collection of blood vessel points of the source frame.
상기 타깃 모양은 목적프레임에 혈관향상, 경계화 그리고 골격화를 순차적으로 적용함에 의해 구성된다.The target shape is configured by sequentially applying blood vessel enhancement, bordering and skeletalization to the object frame.
본 발명은 목표 형상의 거리변환(DT) 상에서 강제적인 힘(brute force)에 의해 각 템플릿(견본) 포인트 및 타깃 모양 사이의 거리의 합을 최소화하고 전역적인 변위 벡터를 찾는다.The present invention minimizes the sum of the distances between each template (sample) point and the target shape by a force force on the distance transformation DT of the target shape and finds a global displacement vector.
도 5의 (가)는 이 과정의 실시예 결과를 나타낸다.5A shows the results of an example of this process.
혈관 키포인트 대응에 의한 가지 검색: 본 발명은 wK×hK 크기의 국부 검색 영역 내에서 가지 bm의 두 키포인트
Figure PCTKR2016014881-appb-I000026
Figure PCTKR2016014881-appb-I000027
에 대한 대응 포인트
Figure PCTKR2016014881-appb-I000028
Figure PCTKR2016014881-appb-I000029
를 검색한다.
Branch search by vascular keypoint correspondence : The present invention provides two keypoints of branch b m in a local search region of size w K × h K.
Figure PCTKR2016014881-appb-I000026
And
Figure PCTKR2016014881-appb-I000027
Correspondence points for
Figure PCTKR2016014881-appb-I000028
And
Figure PCTKR2016014881-appb-I000029
Search for.
대응은 국부모양의 유사성에 의해 결정되고, 수학식 2를 이용하여 측정된다.Correspondence is determined by local similarity and measured using equation (2).
최대가 아닌 억제는 인접한 매치들을 피하기 위해 적용될 수 있고,
Figure PCTKR2016014881-appb-I000030
까지 가능한 대응은 두 키포인트
Figure PCTKR2016014881-appb-I000031
Figure PCTKR2016014881-appb-I000032
에 대해 획득된다.
Suppression that is not maximum can be applied to avoid adjacent matches,
Figure PCTKR2016014881-appb-I000030
Possible correspondence up to two keypoints
Figure PCTKR2016014881-appb-I000031
And
Figure PCTKR2016014881-appb-I000032
Is obtained for.
후보 가지들의 집합은 bm에 대한 모든 변위 벡터들,The set of candidate branches consists of all the displacement vectors for b m ,
Figure PCTKR2016014881-appb-I000033
Figure PCTKR2016014881-appb-I000033
을 적용함에 의해 bm에 대해 생성된다.Is generated for b m by applying.
본 발명은 후보 가지들이 Nk*2까지 될 수 있고 키포인트 대응 수에 의존할 수 있다는 것을 알아야 한다.It should be appreciated that the present invention may be up to Nk * 2 candidate branches and may depend on the number of keypoint correspondences.
본 발명은 Nk*2 개의 가지 후보들이에 의해 초래되는 모든 키포인트 매치들이 신뢰할 수 있는 경우에 대체할 어떤한 것도 없는 가지를 포함한다.The present invention includes a branch with nothing to replace if all keypoint matches caused by Nk * 2 branch candidates are reliable.
혈관 포인트 검색에 의한 대응 후보 생성: 가지(bm)에 포함되는 혈관 포인트(
Figure PCTKR2016014881-appb-I000034
)의 경우 후보 가지들에 기초하는 대응 포인트의 집합은
Figure PCTKR2016014881-appb-I000035
이다.
Generation of Corresponding Candidates by Vascular Point Search: Vascular Points in Branches (b m )
Figure PCTKR2016014881-appb-I000034
), The set of corresponding points based on the candidate branches
Figure PCTKR2016014881-appb-I000035
to be.
본 발명은 이러한 포인트들에서 크기 wk×hk 크기 국부 검색 영역을 정의하고, 수학식 2에 기초하여 Ni개의 최적 대응 포인트들을 결정한다.The present invention defines a size w k × h k size local search region at these points and determines N i optimal correspondence points based on Equation (2).
도 6 및 도 7은 대응 후보가 이전 가지 검색에 기초하여 더 작은 국부 검색 영역으로 개선되는 예를 나타낸다.6 and 7 show an example where the corresponding candidate is improved to a smaller local search area based on the previous branch search.
검색결과 후보의 최대 수는
Figure PCTKR2016014881-appb-I000036
이다. 최대가 아닌 억제 때문에, 실제 후보 수 Nc는 복합하게 실행되는 영상에 근거한 Np보다 적을 수 있다. 따라서 본 발명은 혈관 포인트들에 대해 라벨수를 Np로 고정하지만. 하지만, 무한 단항 비용을 할당함에 의해 실제 대응 후보 없이 Nc보다 더 큰 라벨은 무효화한다.
The maximum number of search result candidates is
Figure PCTKR2016014881-appb-I000036
to be. Due to non-maximal suppression, the actual number of candidates Nc may be less than Np based on the composited image. Therefore, the present invention fixes the label number to Np for the vessel points. However, by assigning an infinite unary cost, it invalidates a label larger than Nc without an actual corresponding candidate.
도 5를 좀 더 구체적으로 설명하면 도 5는 전체 프레임웍크를 나타낸다. 목적프레임의 혈관 중심선은 우리가 주어질 것으로 추정하는 소스프레임의 중심선에 근거하여 추출된다.Referring to FIG. 5 in more detail, FIG. 5 shows the entire framework. The vessel centerline of the object frame is extracted based on the centerline of the source frame that we assume to be given.
도 5의 (가)는 상술한 바와 같이 챔퍼 매칭에 의한 전역적 검색을 나타내고, 소스프레임의 중심선(녹색) 및 추적 혈관 중심선(적색)이 중첩됨을 나타낸다.5A illustrates global search by chamfer matching as described above, and indicates that the centerline (green) and the tracking vessel centerline (red) of the source frame overlap.
(나)는 키포인트 대응(흰색)에 의한 혈관 가지 검색을 나타내고. (다)는 혈관 포인트 검색에 의한 대응후보(그린)를 나타내며, (라)는 MRF 최적화로부터 최적 포인트 대응(흰색)을 나타내고, (마)는 새로운 시각적인 혈관 가지들의 추출을 나타낸다. (B) shows blood vessel branch search by keypoint correspondence (white). (C) shows the corresponding candidate (green) by vessel point search, (D) shows the optimal point correspondence (white) from MRF optimization, and (E) shows the extraction of new visual vessel branches.
도 6 및 도 7을 좀 더 설명하면, 도 6은 소스프레임에서 혈관 가지의 예를 나타낸 것이고, 도 7의 (가)는 목적 프레임에서 위치가 확립된 혈관 가지를 나타내고, 도 7의 (나)는 가지 혈관 포인트에서 윈도우를 나타낸 것이며, (다)는 획득된 응답 후보들을 나타낸 것이다. 또한 (가), (나), (다)의 상부 도면은 계층 검색을 수행하지 않은 경우를 나타낸 것이고, 하부 도면은 계층 검색을 수행한 경우를 나타낸 것이다. 가지 정렬은 윈도우의 크기를 줄일 수 있도록 한다.6 and 7 will be described in more detail, Figure 6 shows an example of the vascular branch in the source frame, Figure 7 (a) shows the vascular branch is established in the target frame, Figure 7 (b) Is the window at the branch vessel point and (c) is the response candidates obtained. In addition, the upper drawings of (a), (b), and (c) show a case where hierarchical search is not performed, and the lower drawings show a case where hierarchical search is performed. Branch alignment helps to reduce the size of the window.
한편, 본 발명은 전술한 전형적인 바람직한 실시예에만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지로 개량, 변경, 대체 또는 부가하여 실시할 수 있는 것임은 당해 기술분야에서 통상의 지식을 가진 자라면 용이하게 이해할 수 있을 것이다. 이러한 개량, 변경, 대체 또는 부가에 의한 실시가 이하의 첨부된 특허청구범위의 범주에 속하는 것이라면 그 기술사상 역시 본 발명에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited to the above-described typical preferred embodiment, but can be carried out in various ways without departing from the gist of the present invention, various modifications, alterations, substitutions or additions in the art Anyone who has this can easily understand it. If the implementation by such improvement, change, replacement or addition falls within the scope of the appended claims, the technical idea should also be regarded as belonging to the present invention.
[부호의 설명][Description of the code]
100: 혈관 영상 획득부 200: 혈관 추출부100: blood vessel image acquisition unit 200: blood vessel extraction unit
300: 전역적 강직 정합부 400: 지역적 비강직 정합부300: global rigid matching 400: local non-rigid matching
410: 혈관 포인트 샘플링부 420: 혈관 특징점 추출부410: blood vessel point sampling unit 420: blood vessel feature point extraction unit
430: 혈관 대응 포인트 후보 검출부 440: MRF 최적화부430: blood vessel correspondence point candidate detector 440: MRF optimizer
450: 혈관 중심선 복원부 500: 후 처리부450: blood vessel centerline restoration unit 500: post-processing unit
600: 혈관 구조 분석부 700: 디스플레이부600: blood vessel structure analysis unit 700: display unit

Claims (10)

  1. 관상동맥을 촬영하여 관상동맥에 대한 혈관 영상 프레임 시퀀스를 출력하는 혈관 영상 획득부; 및A blood vessel image acquisition unit for photographing the coronary artery and outputting a blood vessel image frame sequence for the coronary artery; And
    상기 혈관 영상 프레임 시퀀스를 입력받고, 입력되는 혈관 영상 프레임 시퀀스를 샘플링하며, 샘플링된 혈관 영상 프레임 시퀀스에 마르코브 랜덤 필드 최적화를 적용하는 혈관대응최적화를 수행하여 혈관의 움직임을 반영한 일관된 중심선을 포함하는 혈관을 추출하고, 조영제의 투여로 인해 추가적으로 가시화된 국부 혈관을 정합한 관상동맥 혈관을 추출하여 표시하는 혈관 추출부를 포함하는 것을 특징으로 하는 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치.The vascular image frame sequence is input, the vascular image frame sequence is sampled, and the vascular response optimization by applying Markov random field optimization to the sampled vascular image frame sequence includes a consistent center line reflecting the movement of blood vessels. And a blood vessel extracting unit for extracting and displaying a coronary vessel in which local blood vessels are visually matched by administration of a contrast agent.
  2. 제1항에 있어서,The method of claim 1,
    상기 혈관 추출부는,The blood vessel extracting unit,
    관상동맥 중심선을 포함하는 소스프레임과 상기 샘플링된 혈관 영상 프레임인 목적프레임의 비교에 따른 챔퍼 매칭을 수행하여 심장의 관상동맥에 대한 전역적인 형상 및 병진운동을 추정하는 전역적 강직 정합부;A global stiffness matching unit which estimates global shape and translational motion of the coronary artery of the heart by performing chamfer matching according to a comparison between a source frame including a coronary centerline and an object frame which is the sampled blood vessel image frame;
    적어도 둘 이상의 키포인트를 가지는 일정 크기의 윈도우에 의해 상기 중심선을 따라 후보 (혈관) 가지를 검출하고 검출된 후보 가지들 중 실제 가지를 결정하고 결정된 가지들을 중심선에 접하여 혈관 중심선을 복원하는 지역적 비강직 정합부;Local non-rigid registration that detects candidate (vascular) branches along the centerline by a window of constant size with at least two keypoints, determines actual ones of the detected candidate branches, and restores the vascular centerline by contacting the determined branches with the centerline part;
    조영제 투입에 의한 조영제 흐름 영상이 반영된 상기 목적프레임으로부터 소스프레임의 혈관의 최대 반경보다 긴 혈관이 검출되지 않을 때까지 새로운 혈관 가지들을 검출하고, 상기 검출된 혈관 가지들을 중심선에 연결하고 중심선에 연결되지 않는 가지는 제외하여 전체 관상동맥을 추출하는 후 처리부; 및New blood vessel branches are detected from the object frame reflecting the contrast medium flow image by the contrast medium until the blood vessels longer than the maximum radius of the blood vessel of the source frame are not detected, and the detected blood vessel branches are connected to the center line and not connected to the center line. Post-processing unit for extracting the entire coronary artery except for the eggplant; And
    상기 혈관 가지가 연결된 중심선을 포함하는 관상동맥을 시각화하여 디스플레이 수단에 표시하는 디스플레이부를 포함하는 것을 특징으로 하는 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치.And a display unit for visualizing and displaying on the display means a coronary artery including a centerline to which the blood vessel branch is connected.
  3. 제2항에 있어서,The method of claim 2,
    상기 혈관 추출부는,The blood vessel extracting unit,
    추출된 상기 전체 관상동맥의 중심선에서 가지가 분기하는 분기 포인트 및 가지가 교차하는 교차 포인트를 분석하고, 분석정보를 상기 디스플레이부를 통해 표시하는 혈관구조 분석부를 더 포함하는 것을 특징으로 하는 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치.Analyzing the vascular response optimization, characterized in that further comprising a vascular structure analysis unit for analyzing the branching point and the branch intersects branch intersected in the extracted center line of the entire coronary artery, and displays the analysis information through the display unit Coronary blood vessel extraction device used.
  4. 제2항에 있어서,The method of claim 2,
    상기 소스프레임은 혈관 포인트를 더 포함하고,The source frame further includes a blood vessel point,
    상기 지역적 비강직 정합부는,The local non-rigid registration part,
    상기 소스프레임의 혈관 포인트에 의해 중심선의 혈관 포인트를 샘플링하는 혈관 포인트 샘플링부;A blood vessel point sampling unit configured to sample blood vessel points of a center line by the vessel points of the source frame;
    상기 샘플링된 샘플링 혈관 포인트 각각이 분기 포인트인지, 교차 포인트인지, 끝 포인트 인지를 타나내는 특성을 추출하는 혈관 특징 포인트 추출부;A blood vessel feature point extracting unit configured to extract a characteristic indicating whether each of the sampled sampling vessel points is a branch point, an intersection point, or an end point;
    상기 소스프레임의 혈관 포인트에 대응하는 대응 혈관 포인트를 목적프레임으로부터 검색하는 혈관 대응 포인트 후보 검출부;A blood vessel corresponding point candidate detector searching for a corresponding vessel point corresponding to the vessel point of the source frame from an object frame;
    상기 혈관 특징 포인트 및 대응 혈관 포인트들에 대해 국부 검색 영역인 상기 윈도우를 정의하고 상기 윈도우 내에서 최적의 대응 포인트인 최적 대응 포인트 후보들을 검출하는 혈관 포인트 검색을 수행하는 MRF 최적화부; 및An MRF optimizer for defining a window, which is a local search region, for the vessel feature point and corresponding vessel points, and performing vessel point search for detecting optimal correspondence point candidates that are optimal correspondence points in the window; And
    상기 최적 대응 포인트에서 가지들을 정합하여 혈관 중심선을 복원하는 혈관 중심선 복원부를 포함하는 것을 특징으로 하는 혈관 대응최적화를 이용한 관상동맥 혈관 추출 장치.Coronary blood vessel extraction apparatus using a vessel corresponding optimization, characterized in that it comprises a blood vessel center line restoration unit for restoring the vessel center line by matching the branches at the optimum corresponding point.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 MRF 최적화부는,The MRF optimizer,
    하기 수학식 2에 의해 최적 대응 포인트를 검출하는 것을 특징으로 하는 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치.An apparatus for extracting coronary blood vessels using vascular response optimization, characterized by detecting an optimum correspondence point according to Equation 2 below.
    [수학식 2][Equation 2]
    Figure PCTKR2016014881-appb-I000037
    Figure PCTKR2016014881-appb-I000037
    Figure PCTKR2016014881-appb-I000038
    Figure PCTKR2016014881-appb-I000039
    는 각각 소스프레임과 목적프레임을 나타내고, pi
    Figure PCTKR2016014881-appb-I000040
    는 각각 상기 소스 혈관 구조의 i 번째 노드의 좌표와 목적프레임에서 xi 번째 대응후보를 나타낸다. D는 로컬 특징 디스크립터를 위한 함수이다.
    Figure PCTKR2016014881-appb-I000038
    And
    Figure PCTKR2016014881-appb-I000039
    Denotes a source frame and a target frame, respectively, p i and
    Figure PCTKR2016014881-appb-I000040
    Represents the coordinates of the i-th node of the source blood vessel structure and the xi-th corresponding candidate in the object frame, respectively. D is a function for the local feature descriptor.
  6. 관상동맥을 촬영하여 관상동맥에 대한 혈관 영상 프레임 시퀀스를 출력하는 혈관 영상 획득 단계; 및Taking a coronary artery and acquiring a blood vessel image frame sequence for outputting a vascular image frame sequence for the coronary artery; And
    상기 혈관 영상 프레임 시퀀스를 입력받고, 입력되는 혈관 영상 프레임 시퀀스를 샘플링하며, 샘플링된 혈관 영상 프레임 시퀀스에 혈관대응최적화를 수행하여 혈관 중심선을 포함하는 혈관을 추출하고, 마르코브 랜덤 필드 최적화를 수행하여 움직임이 반영된 일관성 있는 국부 혈관을 추출하고 추출된 혈관 중심선 및 국부 혈관을 정합한 관상동맥 혈관을 추출하여 표시하는 혈관 추출 단계를 포함하는 것을 특징으로 하는 혈관대응최적화를 이용한 관상동맥 혈관 추출 방법.Receiving the blood vessel image frame sequence, sampling the input blood vessel image frame sequence, performing blood vessel response optimization on the sampled blood vessel image frame sequence, extracting blood vessels including a blood vessel centerline, and performing Markov random field optimization. And a blood vessel extraction step of extracting and displaying a consistent local vessel reflecting movement, and extracting and displaying a coronary vessel in which the extracted vessel centerline and the local vessel are matched.
  7. 제6항에 있어서,The method of claim 6,
    상기 혈관 추출 단계는,The blood vessel extraction step,
    관상동맥 중심선을 포함하는 소스프레임과 상기 샘플링된 혈관 영상 프레임인 목적프레임의 비교에 따른 챔퍼 매칭을 수행하여 심장의 관상동맥에 대한 전역적인 형상 및 병진운동을 추정하는 전역적 강직 정합 단계;A global stiffness matching step of estimating global shape and translational movement of the coronary artery of the heart by performing chamfer matching according to a comparison between a source frame including a coronary centerline and an object frame that is the sampled vascular image frame;
    적어도 둘 이상의 키포인트를 가지는 일정 크기의 윈도우에 의해 상기 중심선을 따라 후보 (혈관) 가지를 검출하고 검출된 후보 가지들 중 실제 가지를 결정하고 결정된 가지들을 중심선에 접하여 혈관 중심선을 복원하는 지역적 비강직 정합 단계;Local non-rigid registration that detects candidate (vascular) branches along the centerline by a window of constant size with at least two keypoints, determines actual ones of the detected candidate branches, and restores the vascular centerline by contacting the determined branches with the centerline step;
    조영제 투입에 의한 조영제 흐름 영상을 반영하되, 최대화 혈관의 반경보다 긴 혈관이 검출되지 않을 때까지 새로운 혈관 가지들을 검출하고, 상기 검출된 혈관 가지들을 중심선에 연결하고 중심선에 연결되지 않는 가지는 제외하여 전체 관상동맥을 추출하는 후 처리 단계; 및Reflect the contrast flow image by contrast injection, detect new vessel branches until no vessel longer than the radius of the maximizing vessel is detected, connect the detected vessel branches to the centerline, and exclude the branches not connected to the centerline Post-treatment step of extracting the coronary artery; And
    상기 혈관 가지가 연결된 중심선을 포함하는 관상동맥을 시각화하여 디스플레이 수단에 표시하는 디스플레이 단계를 포함하는 것을 특징으로 하는 혈관대응최적화를 이용한 관상동맥 혈관 추출 장치.And a display step of visualizing and displaying the coronary artery including the centerline to which the blood vessel branch is connected to the display means.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 혈관 추출 단계는,The blood vessel extraction step,
    추출된 상기 전체 관상동맥의 중심선에서 가지가 분기하는 분기 포인트 및 가지가 교차하는 교차 포인트를 분석하고, 분석정보를 디스플레이부를 통해 표시하는 혈관구조 분석 단계를 더 포함하는 것을 특징으로 하는 혈관대응최적화를 이용한 관상동맥 혈관 추출 방법.Analyzing the blood vessel response optimization, characterized in that further comprising the step of analyzing the branching point branching and the branching point intersecting the branch in the center line of the entire coronary artery extracted, and displaying the analysis information on the display unit Coronary blood vessel extraction method.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 소스프레임은 혈관 포인트를 더 포함하고,The source frame further includes a blood vessel point,
    상기 지역적 비강직 정합 단계는,The regional non-rigid registration step,
    상기 소스프레임의 혈관 포인트에 의해 중심선의 혈관 포인트를 샘플링하는 혈관 포인트 샘플링 단계;A vessel point sampling step of sampling a vessel point of a centerline by the vessel point of the source frame;
    상기 샘플링된 샘플링 혈관 포인트 각각에 대해 분기, 교차 및 끝 포인트 특성을 가지는 특징 포인트의 특징 포인트 가지를 검색하는 혈관 특징 포인트 추출 단계;A vein feature point extraction step of retrieving feature point branches of feature points having branching, crossing, and end point characteristics for each of the sampled sampling vessel points;
    상기 샘플링 혈관 포인트에 대한 대응 혈관 포인트를 검색하는 혈관 대응 포인트 후보 검출 단계;A vessel corresponding point candidate detection step of searching for a corresponding vessel point for the sampling vessel point;
    상기 혈관 특징 포인트 및 대응 혈관 포인트들에 대해 국부 검색 영역인 상기 윈도우를 정의하고 상기 윈도우 내에서 최적의 대응 포인트인 최적 대응 포인트 후보들을 검출하는 혈관 포인트 검색을 수행하는 MRF 최적화 단계; 및An MRF optimization step of defining a window that is a local search region for the vessel feature point and corresponding vessel points and performing vessel point search to detect optimal correspondence point candidates that are optimal correspondence points within the window; And
    상기 최적 대응 포인트에서 가지들을 정합하여 혈관 중심선을 복원하는 혈관 중심선 복원 단계를 포함하는 것을 특징으로 하는 혈관 대응최적화를 이용한 관상동맥 혈관 추출 방법.And a vessel centerline restoration step of restoring the vessel center line by matching the branches at the optimum correspondence point.
  10. 제9항에 있어서,The method of claim 9,
    상기 MRF 최적화 단계는,The MRF optimization step,
    하기 수학식 2에 의해 최적 대응 포인트를 검출하는 것을 특징으로 하는 혈관대응최적화를 이용한 관상동맥 혈관 추출 방법.A method for extracting coronary blood vessels using vascular response optimization, characterized by detecting an optimum correspondence point according to Equation 2 below.
    [수학식 2][Equation 2]
    Figure PCTKR2016014881-appb-I000041
    Figure PCTKR2016014881-appb-I000041
    Figure PCTKR2016014881-appb-I000042
    Figure PCTKR2016014881-appb-I000043
    는 각각 소스프레임과 목적프레임을 나타내고, pi
    Figure PCTKR2016014881-appb-I000044
    는 각각 상기 소스 혈관 구조의 i 번째 노드의 좌표와 목적프레임에서 xi 번째 대응후보를 나타낸다. D는 로컬 특징 디스크립터를 위한 함수이다.
    Figure PCTKR2016014881-appb-I000042
    And
    Figure PCTKR2016014881-appb-I000043
    Denotes a source frame and a target frame, respectively, p i and
    Figure PCTKR2016014881-appb-I000044
    Represents the coordinates of the i-th node of the source blood vessel structure and the xi-th corresponding candidate in the object frame, respectively. D is a function for the local feature descriptor.
PCT/KR2016/014881 2016-10-19 2016-12-19 Coronary artery blood vessel subtraction device and method using vessel correspondence optimization WO2018074661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160135961A KR101852689B1 (en) 2016-10-19 2016-10-19 Coronary Vessel extraction apparatus using vessel correspondence optimization and method thereof
KR10-2016-0135961 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074661A1 true WO2018074661A1 (en) 2018-04-26

Family

ID=62018569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014881 WO2018074661A1 (en) 2016-10-19 2016-12-19 Coronary artery blood vessel subtraction device and method using vessel correspondence optimization

Country Status (2)

Country Link
KR (1) KR101852689B1 (en)
WO (1) WO2018074661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113269806A (en) * 2021-04-30 2021-08-17 北京阅影科技有限公司 Method, device and processor for measuring blood flow inside blood vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542972B1 (en) * 2022-07-04 2023-06-15 재단법인 아산사회복지재단 Method and apparatus for generating three-dimensional blood vessel structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201730A (en) * 2002-12-24 2004-07-22 Hitachi Ltd Generating method of three-dimensional profile using projection image in two or more directions
KR20150058948A (en) * 2013-11-21 2015-05-29 삼성전자주식회사 Apparatus por processing a medical image and method for processing a medical image
US20150327780A1 (en) * 2014-05-16 2015-11-19 Kabushiki Kaisha Toshiba Image processing apparatus, image processing method, and storage medium
KR20160005256A (en) * 2014-07-04 2016-01-14 연세대학교 산학협력단 Seed point detection method for coronary artery extraction from CCTA
KR101663601B1 (en) * 2015-07-09 2016-10-07 성균관대학교산학협력단 Method and device for obtaining dynamic angiograms based on projection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630231B1 (en) 2014-10-29 2016-06-27 연세대학교 산학협력단 Method and apparatus for detecting vascular based on medical image

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201730A (en) * 2002-12-24 2004-07-22 Hitachi Ltd Generating method of three-dimensional profile using projection image in two or more directions
KR20150058948A (en) * 2013-11-21 2015-05-29 삼성전자주식회사 Apparatus por processing a medical image and method for processing a medical image
US20150327780A1 (en) * 2014-05-16 2015-11-19 Kabushiki Kaisha Toshiba Image processing apparatus, image processing method, and storage medium
KR20160005256A (en) * 2014-07-04 2016-01-14 연세대학교 산학협력단 Seed point detection method for coronary artery extraction from CCTA
KR101663601B1 (en) * 2015-07-09 2016-10-07 성균관대학교산학협력단 Method and device for obtaining dynamic angiograms based on projection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113269806A (en) * 2021-04-30 2021-08-17 北京阅影科技有限公司 Method, device and processor for measuring blood flow inside blood vessel
CN113269806B (en) * 2021-04-30 2023-04-14 北京阅影科技有限公司 Method, device and processor for measuring blood flow inside blood vessel

Also Published As

Publication number Publication date
KR101852689B1 (en) 2018-06-11

Similar Documents

Publication Publication Date Title
Chen et al. Curve-like structure extraction using minimal path propagation with backtracking
CN107249464B (en) Robust calcification tracking in fluorescence imaging
Grasa et al. EKF monocular SLAM with relocalization for laparoscopic sequences
Srivastav et al. MVOR: A multi-view RGB-D operating room dataset for 2D and 3D human pose estimation
US8867822B2 (en) Model-based coronary artery calcium scoring
Chung et al. Individual tooth detection and identification from dental panoramic x-ray images via point-wise localization and distance regularization
US20110184276A1 (en) Apparatus and method for automatic image guided accuracy verification
Meyer et al. Online marker labeling for fully automatic skeleton tracking in optical motion capture
JP4640845B2 (en) Image processing apparatus and program thereof
US8712177B2 (en) Motion compensated overlay
CN113274129A (en) Cardiothoracic surgery auxiliary control system based on virtual reality
WO2018074661A1 (en) Coronary artery blood vessel subtraction device and method using vessel correspondence optimization
Dubuisson-Jolly et al. Optimal polyline tracking for artery motion compensation in coronary angiography
JP7266599B2 (en) Devices, systems and methods for sensing patient body movement
Zhang et al. Wearable heading estimation for motion tracking in health care by adaptive fusion of visual–inertial measurements
Jeon et al. Maximum a posteriori estimation method for aorta localization and coronary seed identification
Sánchez et al. Navigation path retrieval from videobronchoscopy using bronchial branches
Gooßen et al. A stitching algorithm for automatic registration of digital radiographs
JP5525727B2 (en) 3D-CT registration with guidance method based on 3D-2D pose estimation and application to raw bronchoscopy
Suinesiaputra et al. Detecting regional abnormal cardiac contraction in short-axis MR images using independent component analysis
Kim et al. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention
Wang et al. Automatic localization of balloon markers and guidewire in rotational fluoroscopy with application to 3d stent reconstruction
M'hiri et al. Hierarchical segmentation and tracking of coronary arteries in 2D X-ray Angiography sequences
Dong et al. A novel method for enhanced needle localization using ultrasound-guidance
Gayhart et al. Automated Detection of Healthy and Diseased Aortae from Images Obtained by Contrast‐Enhanced CT Scan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919216

Country of ref document: EP

Kind code of ref document: A1