WO2018070015A1 - Vehicle protrusion determination method and vehicle protrusion determination device - Google Patents

Vehicle protrusion determination method and vehicle protrusion determination device Download PDF

Info

Publication number
WO2018070015A1
WO2018070015A1 PCT/JP2016/080371 JP2016080371W WO2018070015A1 WO 2018070015 A1 WO2018070015 A1 WO 2018070015A1 JP 2016080371 W JP2016080371 W JP 2016080371W WO 2018070015 A1 WO2018070015 A1 WO 2018070015A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
road
intersection
inflow
determined
Prior art date
Application number
PCT/JP2016/080371
Other languages
French (fr)
Japanese (ja)
Inventor
泰久 貴志
博也 藤本
誠司 下平
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2018544641A priority Critical patent/JP6721054B2/en
Priority to PCT/JP2016/080371 priority patent/WO2018070015A1/en
Publication of WO2018070015A1 publication Critical patent/WO2018070015A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle protrusion determination method and a vehicle protrusion determination device that determine the protrusion of a vehicle.
  • Patent Document 1 in the scene where the host vehicle turns right and left at the intersection, the host vehicle is turned right and left at a timing at which the average vehicle speed of the host vehicle and the other vehicle becomes maximum in order to reduce the inhibition of traveling of the following vehicle.
  • An apparatus for guiding is disclosed.
  • Patent Document 1 cannot fully determine the possibility that the host vehicle will protrude onto the road where the host vehicle intersects after the host vehicle has started making a right turn and cannot completely enter the inflow destination road.
  • the present invention allows a vehicle to protrude from a road (intersection road) that intersects a curved road (inflow road) when the vehicle turns right or left. It is an object to provide a determination method and a vehicle protrusion determination device.
  • a vehicle when a vehicle turns right or left at an intersection and enters an inflow road, position information of an object existing on the inflow road within a predetermined distance range from the intersection, Based on the road structure, a margin space of the inflow road is calculated, and based on the margin space and the size of the vehicle, it is determined whether the vehicle may protrude from the intersection road where it intersects the inflow road.
  • a vehicle protrusion determination method and a vehicle protrusion determination device that can determine the possibility of a vehicle protruding from an intersection when the vehicle turns right or left.
  • FIG. 1 is a schematic block diagram mainly illustrating a basic configuration of a vehicle protrusion determination device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a scene in which a vehicle equipped with a vehicle protrusion determination device according to an embodiment of the present invention makes a left turn at an intersection.
  • FIG. 3 is a flowchart for explaining an example of processing by the control necessity determination unit provided in the vehicle protrusion determination device according to the embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining an example of processing by the region calculation unit provided in the vehicle protrusion determination device according to the embodiment of the present invention.
  • FIG. 1 is a schematic block diagram mainly illustrating a basic configuration of a vehicle protrusion determination device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a scene in which a vehicle equipped with a vehicle protrusion determination device according to an embodiment of the present invention makes a left turn at an intersection.
  • FIG. 3 is a flow
  • FIG. 5 is a flowchart for explaining an example of processing by the attitude calculation unit provided in the vehicle protrusion determination device according to the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the occupation length of the vehicle in the vehicle protrusion determination device according to the embodiment of the present invention.
  • FIG. 7 is a flowchart for explaining an example of processing by the alarm generation unit provided in the vehicle protrusion determination device according to the embodiment of the present invention.
  • FIG. 8 is a schematic block diagram mainly illustrating a basic configuration of a vehicle protrusion determination device according to a modification of the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a scene in which a vehicle equipped with a vehicle protrusion determination device according to an embodiment of the present invention makes a right turn at an intersection.
  • FIG. 10 is a diagram illustrating a scene in which a vehicle equipped with a vehicle protrusion determination device according to an embodiment of the present invention makes a left turn at an intersection without a pedestrian crossing.
  • FIG. 1 is a block diagram mainly showing a configuration of a vehicle protrusion determination device 1 according to the present embodiment.
  • the vehicle protrusion determination device 1 is mounted on a vehicle (own vehicle) 2.
  • the vehicle overhang determination device 1 is configured such that the vehicle 2 is an intersection A (two or more roads when a crossroad, a crossing road, or two or more roads intersect (in a road with a distinction between a sidewalk and a roadway,
  • the vehicle is turned right or left (right turn or left turn), the course is blocked, and the possibility of protruding to the intersection road P1 intersecting with the inflow road Q1 of the right turn destination is determined.
  • the vehicle 2 is, for example, an automatic driving vehicle that automatically travels while detecting surrounding information on a preset travel route.
  • the vehicle overhang determination device 1 includes a detector 10, a vehicle sensor 11, a drive unit 12, a map database (DB) 13, an ambient environment storage unit 20, and a travel state storage unit 21. , A processing circuit 22, a vehicle control unit 23, an inter-vehicle communication device 24, and a presentation unit 25.
  • DB map database
  • the detector 10 includes a road-to-vehicle communication device 101, a camera 102, and a radar 103.
  • the detector 10 detects position information of an object existing around the intersection A where the vehicle 2 turns right or left.
  • the detector 10 detects at least position information of an object existing on the inflow road Q1 within a predetermined distance range from the intersection A.
  • the object includes, for example, other vehicles such as a preceding vehicle, an oncoming vehicle, and a parked vehicle, a pedestrian, a road construction site, and the like.
  • the detector 10 detects the state of traffic lights installed around the intersection A.
  • the road-to-vehicle communication device 101 is a communication device that wirelessly communicates with a roadside unit (RSU) 3 installed on the road side.
  • the road-to-vehicle communication device 101 acquires from the RSU 3 the position information of the object existing around the nearest intersection A in the traveling direction (front) of the vehicle 2 and the state of the traffic light installed at the intersection A.
  • the road-to-vehicle communication device 101 may acquire traffic information of roads around the intersection A.
  • the road-to-vehicle communication device 101 detects at least position information of an object existing on the inflow road Q1 within a predetermined distance range from the intersection A.
  • the camera 102 captures a predetermined range around the vehicle 2 and acquires a surrounding image.
  • the camera 102 detects information on an object existing around the acquired image.
  • the objects existing around the vehicle 2 are, for example, a preceding vehicle, a succeeding vehicle, a pedestrian, and the like.
  • the camera 102 detects the speed, acceleration / deceleration, size of the vehicle around the vehicle 2, the state of the brake lamp, the state of the blinker lamp, and the inter-vehicle distance with the surrounding vehicle.
  • the camera 102 may be a stereo camera or an omnidirectional camera, and the number of cameras 102 may be plural.
  • the radar 103 scans a predetermined range around the vehicle 2 and acquires surrounding three-dimensional distance data.
  • the three-dimensional distance data is point cloud data indicating a relative three-dimensional position from the radar 103.
  • the radar 103 detects information on an object existing around the vehicle 2 from the acquired three-dimensional distance data.
  • the radar 103 detects, for example, the speed, acceleration / deceleration, size of the surrounding vehicle, and the inter-vehicle distance from the surrounding vehicle.
  • a laser range finder (LRF) or a ranging radar using millimeter waves or ultrasonic waves can be employed.
  • the vehicle sensor 11 detects motion information including the speed, acceleration, and yaw rate of the vehicle 2 and position information of the vehicle 2.
  • the vehicle sensor 11 includes a speed sensor, an acceleration sensor, an angular velocity sensor, a positioning device, and the like.
  • the vehicle sensor 11 acquires position information of the vehicle 2 using a positioning device such as a global positioning system (GPS) receiver.
  • GPS global positioning system
  • the driving unit 12 includes a brake 121, an accelerator 122, and a steering 123.
  • the drive unit 12 controls driving of the vehicle 2 in accordance with an operation by the driver or control by the vehicle control unit 23.
  • the brake 121 includes a brake actuator that controls the amount of depression of the brake pedal, and a brake sensor that detects the amount of depression of the brake pedal.
  • the accelerator 122 includes an accelerator actuator that controls the opening of the accelerator and an accelerator sensor that detects the opening of the accelerator.
  • the steering 123 includes a steering actuator that controls the steering angle and a steering sensor that detects the steering angle.
  • the map DB 13 is a storage device that stores high-definition map data.
  • map data includes information on road structures such as the position, width, and traffic classification of each lane, as well as information such as traffic lights. Information about the position of the object is recorded.
  • the ambient environment storage unit 20 stores information detected by the detector 10.
  • the ambient environment storage unit 20 stores the position information of the object existing around the nearest intersection A in the traveling direction of the vehicle 2 and the state of the traffic light installed at the intersection A.
  • the ambient environment storage unit 20 cyclically stores information acquired from the detector 10.
  • the ambient environment storage unit 20 may store traffic information of roads around the intersection A.
  • the traveling state storage unit 21 stores information detected by the detector 10, the vehicle sensor 11, or the drive unit 12.
  • the traveling state storage unit 21 includes motion information including the position, speed, acceleration / deceleration, and angular speed of the vehicle 2, drive control information including the accelerator opening, the brake pedal depression amount, and the steering angle, and the position of the vehicle 2.
  • Information is stored as the traveling state of the vehicle 2.
  • the traveling state storage unit 21 stores surrounding vehicle information related to surrounding vehicles including the preceding vehicle and the following vehicle existing around the vehicle 2.
  • the surrounding vehicle information includes the inter-vehicle distance from the vehicle 2 to the surrounding vehicle, the speed of the surrounding vehicle, the acceleration / deceleration, the size, the state of the brake lamp, the state of the blinker lamp, and the like.
  • the processing circuit 22 includes a control necessity determination unit 221, an area calculation unit 222, an attitude calculation unit 223, and an alarm generation unit 224.
  • the processing circuit 22 can be configured by, for example, a microcomputer including a central processing unit (CPU), a memory, an input / output I / F, and the like.
  • the microcomputer functions as the processing circuit 22 by executing a computer program (protrusion determination program) necessary for arithmetic processing by the vehicle protrusion determination device 1.
  • Each part which comprises the processing circuit 22 may be comprised from integral hardware, and may be comprised from separate exclusive hardware.
  • the processing circuit 22 may also be used as an electronic control unit (ECU) used for other control related to the vehicle 2.
  • ECU electronice control unit
  • the control necessity determination unit 221 enters the vehicle 2 on the basis of the position information of an object existing in a predetermined distance range from the intersection A of the inflow road Q1 to which the vehicle 2 turns and the road structure of the inflow road Q1.
  • the marginal space M of the possible inflow road Q1 is calculated.
  • the predetermined distance range is, for example, a range of the length of the vehicle 2 from the boundary between the inflow road Q1 and the intersection A to the inflow road Q1 side.
  • the road structure of the inflow road Q1 includes at least the total width of the lane of the inflow road Q1 into which the vehicle 2 can enter. That is, when the vehicle 2 can enter all lanes of the inflow road Q1, the road structure of the inflow road Q1 includes at least the width of the inflow road Q1. Or you may employ
  • the control necessity determination unit 221 determines the possibility that the vehicle 2 protrudes to the intersection road P1 that intersects the inflow road Q1 at the right or left turn based on the margin space M and the size of the vehicle 2.
  • the marginal space M is set at least in an area where it can be determined whether or not the vehicle 2 protrudes from the inflow road Q1 to the intersection A.
  • the margin space M is, for example, an area surrounded by the length of the vehicle 2 on the inflow road Q1 side from the boundary between the inflow road Q1 and the intersection A and the lane width in the traveling direction on the inflow road Q1.
  • the region calculation unit 222 calculates a minimum travel locus Rmin having a minimum curvature radius and a maximum travel locus Rmax having a maximum curvature radius among the trajectories entering the marginal space M from the lane in which the vehicle 2 travels.
  • the area calculation unit 222 is an area in which the vehicle 2 can travel before turning right and left from the current lane and entering the margin space M based on the margin space M, the minimum traveling locus Rmin, and the maximum traveling locus Rmax.
  • a travelable region R is calculated.
  • the travelable region R is a region surrounded by the end of the margin space M, the minimum travel locus Rmin, and the maximum travel locus Rmax.
  • the posture calculation unit 223 calculates a travel locus from the current position of the vehicle 2 to the end of the travelable region R in the travelable region R, and the vehicle 2 has a posture that fits in the margin space M from the calculated travel locus. Search for a running track.
  • the warning generation unit 224 generates warning information indicating that the vehicle 2 protrudes to the intersection road P1 intersecting with the inflow road Q1 of the right or left turn destination, and the generated warning information is transmitted to the intersection road P1 via the inter-vehicle communication device 24. It transmits to the following vehicle (other vehicle) 4 which drive
  • the vehicle control unit 23 generates a control signal necessary for the vehicle 2 to travel along the travel locus calculated by the attitude calculation unit 223, and outputs the control signal to the drive unit 12, thereby driving the vehicle 2. To control.
  • the inter-vehicle communication device 24 is a communication device that wirelessly communicates with the inter-vehicle communication device 44 mounted on the succeeding vehicle (other vehicle) 4.
  • the inter-vehicle communication device 24 transmits the alarm information generated by the alarm generation unit 224 to the inter-vehicle communication device 44.
  • the presentation unit 25 presents various information to the user according to the control of the processing circuit 22.
  • the presentation unit 25 includes, for example, a speaker that reproduces sound and a display that displays images.
  • the processing circuit 22 notifies the user by presenting notification information to the user via the presentation unit 25 indicating that there is a possibility that the vehicle 2 may protrude from the intersection road P1 that intersects the inflow road Q1 of the right or left turn of the vehicle 2. put out.
  • “extinguish” means that the vehicle 2 is stopped or decelerated to a speed equal to or lower than a predetermined threshold by closing the route when the vehicle 2 turns to the inflow road Q1. It means that a part of 2 remains on the intersection road P1.
  • step S101 the control necessity determination unit 221 determines whether to turn right or left at the nearest intersection A in the traveling direction of the vehicle 2 (downstream of the traveling path of the vehicle 2).
  • the control necessity determination unit 221 determines whether or not to make a right / left turn at the intersection A based on, for example, a preset travel route of the vehicle 2, a blinker state of the vehicle 2, a traffic classification of the travel path of the vehicle 2, and the like. To do. If it is determined to turn right or left, the process proceeds to step S102. If it is determined not to turn right or left, the process ends.
  • step S ⁇ b> 102 the control necessity determination unit 221 reads the surrounding vehicle information stored in the traveling state storage unit 21, and determines whether the subsequent vehicle 4 exists behind the vehicle 2. For example, when the following vehicle 4 exists within a predetermined distance range from the vehicle 2, when the following vehicle 4 approaches the vehicle 2, the vehicle head time of the vehicle 2 and the following vehicle 4 is a predetermined value. It is determined that the following vehicle 4 exists in at least one of the following cases. If it is determined that the succeeding vehicle 4 is present, the process proceeds to step S103. If it is determined that the succeeding vehicle 4 is not present, the process is terminated.
  • step S103 the control necessity determination unit 221 reads the road structure around the intersection A from the map DB 13.
  • step S104 the control necessity determining unit 221 determines that the road flowing in by the right / left turn from the road structure acquired in step S103, that is, the margin length L1 and the road width L2 of the inflow road Q1 of the right / left turn destination, and the vehicle 2
  • the own vehicle information indicating the characteristics is acquired.
  • the margin length L1 is, for example, the distance from the beginning of the inflow road Q1 (the end of the intersection A or the boundary of the intersection road P1) to the pedestrian crossing.
  • the control necessity determination unit 221 calculates a margin space M of the inflow road Q1 into which the vehicle 2 can enter from the margin length L1 and the road width L2.
  • the own vehicle information may be stored in advance in a storage device such as the traveling state storage unit 21 or may be held in advance by the processing circuit 22.
  • the own vehicle information includes the vehicle width and vehicle length of the vehicle 2, the wheel base, the maximum steering angle, and the like.
  • step S105 the control necessity determination unit 221 reads information stored in the surrounding environment storage unit 20, and acquires at least position information of an object existing within a predetermined distance range from the intersection A.
  • step S106 the control necessity determination unit 221 calculates the speed and traveling direction of the object from the position information of the object acquired in step S105. Thereby, the control necessity judgment part 221 predicts the behavior of the pedestrian who walks the pedestrian crossing of the inflow road Q1, and the behavior of the vehicle and the vehicle 2 which exist around the intersection A.
  • step S107 the control necessity determining unit 221 makes a right / left turn toward the inflow road Q1, based on the behavior of the vehicle predicted in step S106, that is, a preceding vehicle that turns right / left in the same direction as the vehicle 2 turns right / left. It is determined whether or not exists. If it is determined that there is a preceding vehicle that turns right or left, the process proceeds to step S108. If it is determined that there is no preceding vehicle that turns right or left, the process proceeds to step S111.
  • step S108 the control necessity determining unit 221 may cross the pedestrian existing on the inflow road Q1 with the preceding vehicle turning right or left from the behavior of the pedestrian and the vehicle predicted in step S106. Determine whether or not. If it is determined that there is a possibility of crossing, the process proceeds to step S109. If it is determined that there is no possibility of crossing, the process proceeds to step S112.
  • step S109 the control necessity determination unit 221 determines that the preceding vehicle whose course has been blocked by a pedestrian existing on the inflow road Q1 from the information on the preceding vehicle stored in the surrounding environment storage unit 20 or the traveling state storage unit 21.
  • the occupied space on the occupied inflow road Q1 is predicted.
  • step S110 the control necessity determination unit 221 corrects the margin length L1 of the margin space M calculated in step S104 using the occupied space of the preceding vehicle predicted in step S109. That is, the control necessity determination unit 221 calculates a space obtained by excluding the occupied space from the margin space M as a new margin space M.
  • the margin length L1 can be calculated for each lane when the number of lanes of the inflow road Q1 is plural.
  • step S111 the control necessity determination unit 221 determines whether or not the vehicle 2 may cross with a pedestrian existing on the inflow road Q1 from the behavior of the pedestrian predicted in step S106. If it is determined that there is a possibility of crossing, the process proceeds to step S112. If it is determined that there is no possibility of crossing, the process ends.
  • step S112 the control necessity determination unit 221 determines whether the margin space M calculated in step S104 or the margin length L1 of the margin space M corrected in step S111 is shorter than the vehicle length of the vehicle 2. . In other words, the control necessity determination unit 221 determines whether or not the vehicle 2 may protrude from the intersection road P1 that intersects the inflow road Q1 based on the margin space M and the size of the vehicle 2. When it is determined that the margin length L1 is shorter than the vehicle length of the vehicle 2, the process proceeds to step S113, and when it is determined that the margin length L1 is greater than or equal to the vehicle length of the vehicle 2, the processing ends.
  • step S113 the control necessity determination unit 221 sets the control necessity flag to ON (1), and ends the process.
  • the control necessity flag indicates that there is a possibility that the vehicle 2 may protrude from the intersection road P1, and a flag indicating that there is a need for control processing by the subsequent area calculation unit 222, posture calculation unit 223, and alarm generation unit 224. It is.
  • step S201 the region calculation unit 222 determines whether or not the control necessity flag is on (1). If it is determined that the control necessity flag is on, the process proceeds to step S202. If it is determined that the control necessity flag is off (0), the process ends.
  • step S202 the area calculation unit 222 makes a right / left turn from the lane in which the vehicle 2 travels and enters the inflow road Q1 based on the road structure of the inflow road Q1 and the own vehicle information indicating the characteristics of the vehicle 2. Among these, the minimum traveling locus Rmin having the smallest curvature radius is calculated.
  • step S203 the area calculation unit 222 makes a right / left turn from the lane in which the vehicle 2 travels and enters the inflow road Q1 based on the road structure of the inflow road Q1 and the own vehicle information indicating the characteristics of the vehicle 2. Among these, the maximum traveling locus Rmax having the maximum curvature radius is calculated.
  • step S204 the region calculation unit 222 calculates the travelable region R based on the margin space M finally calculated by the control necessity determination unit 221 and the minimum travel locus Rmin and the maximum travel locus Rmax.
  • step S205 the area calculation unit 222 crosses the pedestrian existing on the inflow road Q1 by crossing or the like based on the behavior of the object (pedestrian and preceding vehicle) around the intersection A predicted by the control necessity determination unit 221. It is determined whether or not there is a preceding vehicle that may be used. If it is determined that there is a preceding vehicle, the process proceeds to step S206. If it is determined that there is no preceding vehicle, the process ends. Note that the determination result in step S205 is the same as the determination result in step S108 in FIG. 3, so the determination in step S205 may be omitted and the determination result in step S108 may be adopted as the determination result.
  • step S206 the region calculation unit 222 reads the occupied space on the inflow road Q1 that is predicted by the control necessity determination unit 221 and is occupied by a preceding vehicle whose course is blocked by a pedestrian existing on the inflow road Q1.
  • step S207 the area calculation unit 222 corrects the travelable area R calculated in step S204 using the occupied space read in step S206, and ends the process. That is, the area calculation unit 222 calculates an area excluding the occupied space from the travelable area R as a new travelable area R, and ends the process.
  • step S301 the attitude calculation unit 223 determines whether or not the control necessity flag is on (1). If it is determined that the control necessity flag is on, the process proceeds to step S302. If it is determined that the control necessity flag is off (0), the process ends.
  • step S302 the posture calculation unit 223 determines whether or not the travelable region R calculated by the region calculation unit 222 exists. If it is determined that the travelable area R exists, the process proceeds to step S303. If it is determined that the travelable area R does not exist, the process ends.
  • step S303 the posture calculation unit 223 travels from the lane in which the vehicle 2 currently travels to the end of the travelable region R in the travelable region R based on the travelable region R and the host vehicle information. Candidates are calculated.
  • step S304 the posture calculation unit 223 determines whether there is a traveling locus in which the occupation length L3 of the vehicle 2 is equal to or less than the margin length L1 from the traveling locus candidates calculated in step S303.
  • the occupation length L3 is a length that the vehicle 2 occupies in the length direction D of the inflow road Q1 in a posture when the vehicle 2 reaches the end of the travelable region R as shown in FIG. That is, in step S ⁇ b> 304, the posture calculation unit 223 searches for a travel locus in which the vehicle 2 is in a posture that fits in the margin space M.
  • the posture calculation unit 223 determines whether or not the vehicle 2 is blocked from the course when the vehicle turns right and left and protrudes from the intersection road P1 that intersects the inflow road Q1. If it is determined that there is a travel locus in which the occupation length L3 is equal to or less than the margin length L1, the process proceeds to step S305. If it is determined that there is no travel locus in which the occupation length L3 is equal to or less than the margin length L1, the processing ends. .
  • step S305 the posture calculation unit 223 sets a travel locus in which the vehicle 2 is in a posture that fits in the margin space M as the target travel locus, and sets the target travel locus flag to ON (1).
  • the target travel trajectory flag is a flag indicating that there is a travel trajectory in which the vehicle 2 is in an attitude that fits in the marginal space M, and that the vehicle 2 is unlikely to protrude from the intersection road P1.
  • step S306 the posture calculation unit 223 determines whether there are a plurality of lanes to enter based on the target travel locus set in step S305. That is, the posture calculation unit 223 determines whether or not the total number of lanes of the inflow road Q1 connected at each end of the plurality of target travel tracks is plural. If it is determined that there are a plurality of lanes to enter, the process proceeds to step S307, and if it is determined that there are not a plurality of lanes to enter, the process proceeds to step S310.
  • the posture calculation unit 223 determines a candidate lane that the vehicle 2 enters from a plurality of lanes that enter the target travel locus based on the traffic classification of the inflow road Q1. For example, the posture calculation unit 223 sets a right turn dedicated lane if a right turn dedicated lane is included in the lane to be entered by the target travel locus after a left turn at the intersection A and then a right turn at the next intersection is set in advance. Decide as a lane.
  • step S308 the posture calculation unit 223 determines whether there are a plurality of candidate lanes determined in step S307. If it is determined that there are a plurality of candidate lanes, the process proceeds to step S309. If it is determined that there are not a plurality of candidate lanes, the process proceeds to step S310.
  • step S309 the posture calculation unit 223 determines the lane with the longest margin L1 among the plurality of candidate lanes as the target lane.
  • the lane with the longest margin L1 is, for example, the lane with the least number of preceding vehicles turning left.
  • step S310 when it is determined in step S306 that there are not a plurality of lanes to enter, the posture calculation unit 223 determines one lane to enter based on the target travel locus as the target lane. Alternatively, the posture calculation unit 223 determines one candidate lane as the target lane when determining in step S308 that there are not a plurality of candidate lanes.
  • step S311 the posture calculation unit 223 extracts a travel locus in which the vehicle 2 is in the posture toward the center of the target lane at the end of the travel locus from the target travel locus entering the target lane.
  • the posture calculation unit 223 sets the posture at the end of the extracted travel locus as the stop posture.
  • step S312 the posture calculation unit 223 calculates a travel locus that realizes the stop posture set in step S311 and ends the process.
  • step S401 the alarm generation unit 224 determines whether or not the control necessity flag is on (1). If it is determined that the control necessity flag is on, the process proceeds to step S402. If it is determined that the control necessity flag is off (0), the process ends.
  • step S ⁇ b> 402 the alarm generation unit 224 determines whether or not the travelable region R calculated by the region calculation unit 222 exists. If it is determined that the travelable area R exists, the process proceeds to step S403. If it is determined that the travelable area R does not exist, the process ends.
  • step S403 the alarm generation unit 224 determines whether or not the target travel locus flag is on (1). If it is determined that the target travel locus flag is off (0), the process proceeds to step S404. If it is determined that the target travel locus flag is on, the processing ends.
  • step S404 the alarm generation unit 224 determines the vehicle 2 at the end of the travelable region R based on the behavior of the object around the intersection A predicted from the information stored in the ambient environment storage unit 20 and the travel state storage unit 21. The stop position and posture are calculated.
  • step S405 the alarm generation unit 224 calculates a region where the vehicle 2 obstructs the traveling of the succeeding vehicle 4 based on the stop position and posture of the vehicle 2 calculated in step S404 and the margin space M. That is, the alarm generation unit 224 calculates a region that protrudes from the intersection road P1 among regions occupied by the vehicle 2 at the stop position.
  • step S ⁇ b> 406 the alarm generation unit 224 sets alarm information including an area where the vehicle 2 obstructs the traveling of the subsequent vehicle 4 as an alarm to be output to the subsequent vehicle 4.
  • step S407 the alarm generation unit 224 transmits the alarm information set in step S406 to the succeeding vehicle 4 via the inter-vehicle communication device 24, and ends the process.
  • the vehicle protrusion determination method by the vehicle protrusion determination device 1 is executed.
  • the possibility of the vehicle 2 protruding on the intersection road P1 is determined based on the marginal space M of the inflow road Q1 into which the vehicle 2 can enter and the size of the vehicle 2. be able to. Therefore, the vehicle protrusion determination device 1 can take measures prior to obstruction of the traveling path of other vehicles, such as calculating a new traveling locus of the vehicle 2 and issuing an alarm to the following vehicle 4. Thereby, the vehicle overhang
  • judgement determination apparatus 1 can reduce possibility that it will contact with the succeeding vehicle 4 in the scene where the vehicle 2 may protrude on the intersection road P1, and may obstruct the runway of the succeeding vehicle 4.
  • the vehicle protrusion determination device 1 when it is determined that the vehicle 2 may protrude from the intersection road P1, it is possible to search for a travel locus in which the vehicle 2 is placed in the margin space M. Therefore, the vehicle protrusion determination device 1 can reduce the possibility that the vehicle 2 protrudes on the intersection road P1 and contacts the succeeding vehicle 4.
  • the vehicle overhang determination device 1 when it is determined that the vehicle 2 may protrude on the intersection road P1, a warning can be issued to the following vehicle 4 traveling on the intersection road P1. Accordingly, the vehicle overhang determination device 1 can increase the possibility that the succeeding vehicle 4 takes actions such as steering and deceleration for avoiding contact with the vehicle 2, and thus the possibility of contact with the succeeding vehicle 4 is reduced. .
  • the vehicle protrusion determination device 1 when the succeeding vehicle 4 approaches the vehicle 2, it is possible to determine the possibility that the vehicle 2 protrudes on the intersection road P1. Thereby, the vehicle protrusion determination device 1 can omit the determination of the possibility of protrusion in a scene that does not require measures against protrusion, and can reduce the processing load.
  • a margin space M including a plurality of lanes can be calculated. Therefore, when searching for a travel locus in which the vehicle 2 is placed in the margin space M, the possibility of extracting a travel locus that satisfies the condition increases, and thus the possibility of contact with the following vehicle 4 is reduced.
  • the vehicle overhang determination device 1 when it is determined that the vehicle 2 may protrude from the intersection road P1, a notification is given to the user of the vehicle 2.
  • the user for automatic driving can be reduced.
  • position calculation part 223 notifies the driver
  • the vehicle overhang determination device 1 it is possible to determine the presence of the subsequent vehicle 4 based on the head time of the vehicle 2 and the subsequent vehicle 4. Therefore, since the processing circuit 22 can calculate the time until the succeeding vehicle 4 approaches the vehicle 2 with high accuracy, the processing circuit 22 can predict the time until the following vehicle 4 crosses the vehicle 2.
  • the processing circuit 22 may notify the user of the time until the following vehicle 4 crosses the vehicle 2 by the presentation unit 25 or may notify the following vehicle 4 by the inter-vehicle communication device 24. This further reduces the possibility of contact with the following vehicle 4.
  • the vehicle overhang determination device 1 it is possible to predict the behavior of objects around the intersection A and determine the possibility that the vehicle 2 protrudes from the intersection road P1 based on the predicted behavior. Therefore, since the vehicle protrusion determination apparatus 1 considers the behavior of a pedestrian or a preceding vehicle in a real environment, it is possible to improve the accuracy of determining the possibility of protrusion.
  • the vehicle overhang determination device 1 when there is a preceding vehicle that turns right and left toward the inflow road Q1 in the traveling direction of the vehicle 2, the occupied space of the preceding vehicle is predicted, and the inflow road Q1 is used using the occupied space. Can be calculated. Therefore, since the vehicle protrusion determination apparatus 1 considers the behavior of a pedestrian or a preceding vehicle in a real environment, it is possible to improve the accuracy of determining the possibility of protrusion.
  • the margin space M can be calculated based on the traffic classification of the plurality of lanes. For example, by calculating a travel locus that enters a lane suitable for a preset travel route, it is possible to omit the lane change after a right or left turn, and to improve user convenience.
  • the processing circuit 22 can set a lane that is least likely to be a pedestrian among the lanes that enter the target travel locus as a candidate lane or a target lane. Thereby, the possibility that the vehicle 2 intersects with the pedestrian is further reduced.
  • the vehicle protrusion determination device 1 performs communication that communicates wirelessly with the server 8 via a communication line such as the Internet or a dedicated line instead of the road-to-vehicle communication device 101.
  • Machine 14 is provided.
  • Other configurations, operations, and effects of the vehicle protrusion determination device 1 according to the modification of the present embodiment are substantially the same as those of the above-described embodiment, and are omitted because they overlap.
  • the server 8 includes, for example, a driving history DB 81 that stores driving history information of a plurality of general vehicles 5 existing around the intersection A, a pedestrian DB that stores position information of pedestrians existing around the intersection A, and the intersection A. And a traffic situation DB for storing the surrounding traffic situation.
  • the general vehicle 5 includes a driving state storage unit 51 that stores information detected by a camera, a radar, a vehicle sensor, a driving unit, and the like mounted therein, and driving history information that includes information stored in the driving state storage unit 21. Is transmitted to the server 8.
  • the driving history information includes a vehicle identifier (ID) of each general vehicle 5, a running state, and surrounding vehicle information.
  • the driving history DB 81 stores driving history information transmitted from the communication device 54 of each general vehicle 5 in association with map data.
  • the pedestrian DB 82 stores the pedestrian location information transmitted from the RSU 3 in association with the map data.
  • the traffic situation DB 83 stores the traffic situation including the state of the traffic lights in association with the map data.
  • the traffic situation includes traffic information around the intersection A such as traffic information.
  • the server 8 transmits information stored in the driving history DB 81, the pedestrian DB 82, and the traffic situation DB 83 to the vehicle 2 in response to a request from the vehicle 2.
  • the communicator 14 receives at least the information transmitted from the server 8 and detects at least the position information of the object existing on the inflow road Q1 within a predetermined distance range from the intersection A where the vehicle 2 turns right and left. Function. Thereby, the surrounding environment storage unit 20 stores the position information of the object existing around the nearest intersection A in the traveling direction of the vehicle 2 and the state of the traffic lights installed at the intersection A.
  • the driving history DB 81, the pedestrian DB 82, and the traffic situation DB 83 may be configured by separate servers, and may function as a single server 8 by cooperating with each other.
  • the vehicle protrusion determination device 1 determines whether there is an oncoming vehicle (another vehicle) 6 on the intersection road P2 that intersects the inflow road Q2 at the right turn destination.
  • the vehicle overrun determination device 1 calculates the margin space M on the inflow road Q2, and corrects the margin space M using the occupied space of the preceding vehicle if there is a preceding vehicle turning right at the intersection A. Therefore, the vehicle protrusion determination device 1 can determine the possibility that the vehicle 2 protrudes from the intersection road P2 based on the margin space M and the vehicle 2.
  • the effect of reducing the possibility of contact with a vehicle traveling on the opposite lane when turning right and the possibility of contact with the vehicle traveling behind the host vehicle when turning left
  • the present invention is not limited to this.
  • a road environment a right-hand traffic road
  • the possibility of contact with the oncoming vehicle can be reduced.
  • the margin length L1 of the margin space M acquired first based on the road structure has been described as the distance from the starting end of the inflow road Q1 to the pedestrian crossing.
  • the margin length L1 may be a distance from the starting end of the inflow road Q1 to the preceding vehicle 7 existing on the inflow road Q1.
  • the inter-vehicle communication device 24 may acquire information on surrounding vehicles, and may thereby function as a part of the detector 10.
  • the processing circuit includes a programmed processing device such as a processing device including an electrical circuit.
  • the processing circuitry may also include devices such as application specific integrated circuits (ASICs) and circuit components arranged to perform the described functions.
  • ASICs application specific integrated circuits
  • the present invention includes various embodiments and the like that are not described here, such as a configuration in which the above-described configurations are mutually applied. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
  • Vehicle protrusion judgment device 2 Vehicle 4 Car (following vehicle) 6 Oncoming vehicles (other vehicles) 10 detector 22 processing circuit A intersection M marginal space P1, P2 intersection road Q1, Q2 inflow road

Abstract

According to this vehicle protrusion determination method, when a vehicle turns right or left at an intersection and advances into an entering road, the clearance space of the entering road is calculated on the basis of the road structure of the entering road and position information about an object that is present on the entering road in a predetermined range of distance from the intersection, and the possibility that the vehicle protrudes into the road intersecting with the entering road is determined on the basis of the spatial allowance and the size of the vehicle.

Description

車両はみ出し判断方法及び車両はみ出し判断装置Vehicle protrusion determination method and vehicle protrusion determination device
 本発明は、車両のはみ出しを判断する車両はみ出し判断方法及び車両はみ出し判断装置に関する。 The present invention relates to a vehicle protrusion determination method and a vehicle protrusion determination device that determine the protrusion of a vehicle.
 特許文献1は、自車両が交差点を右左折する場面において、後続車両の走行の阻害を低減するために、自車両及び他車両の平均車速が最大となるタイミングで右左折するように自車両を案内する装置を開示する。 In Patent Document 1, in the scene where the host vehicle turns right and left at the intersection, the host vehicle is turned right and left at a timing at which the average vehicle speed of the host vehicle and the other vehicle becomes maximum in order to reduce the inhibition of traveling of the following vehicle. An apparatus for guiding is disclosed.
特開2009-230701号公報JP 2009-230701 A
 しかしながら、特許文献1に記載の技術は、自車両が右折を開始した後、流入先の道路に完全に進入しきれず、自車両が交差する道路にはみ出す可能性を事前に判断することができない。 However, the technique described in Patent Document 1 cannot fully determine the possibility that the host vehicle will protrude onto the road where the host vehicle intersects after the host vehicle has started making a right turn and cannot completely enter the inflow destination road.
 本発明は、上記問題点を鑑み、車両が右折又は左折する際、曲がった先の道路(流入道路)に対して交差する道路(交差道路)に、当該車両がはみ出す可能性を判断できる車両はみ出し判断方法及び車両はみ出し判断装置を提供することを目的とする。 In view of the above-described problems, the present invention allows a vehicle to protrude from a road (intersection road) that intersects a curved road (inflow road) when the vehicle turns right or left. It is an object to provide a determination method and a vehicle protrusion determination device.
 本発明の一態様に係る車両はみ出し判断方法は、車両が交差点を右折又は左折して流入道路に進入する際、交差点から所定の距離範囲の流入道路に存在する物体の位置情報と、流入道路の道路構造とに基づいて流入道路の余裕空間を算出し、余裕空間と車両の大きさとに基づいて、車両が流入道路と交わる交差道路にはみ出す可能性を判断する。 According to an aspect of the present invention, when a vehicle turns right or left at an intersection and enters an inflow road, position information of an object existing on the inflow road within a predetermined distance range from the intersection, Based on the road structure, a margin space of the inflow road is calculated, and based on the margin space and the size of the vehicle, it is determined whether the vehicle may protrude from the intersection road where it intersects the inflow road.
 本発明の一態様によれば、車両が右折又は左折する際、交差道路に当該車両がはみ出す可能性を判断できる車両はみ出し判断方法及び車両はみ出し判断装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a vehicle protrusion determination method and a vehicle protrusion determination device that can determine the possibility of a vehicle protruding from an intersection when the vehicle turns right or left.
図1は、本発明の実施形態に係る車両はみ出し判断装置の基本的な構成を主に説明する模式的なブロック図である。FIG. 1 is a schematic block diagram mainly illustrating a basic configuration of a vehicle protrusion determination device according to an embodiment of the present invention. 図2は、本発明の実施形態に係る車両はみ出し判断装置を搭載した車両が交差点で左折する場面を説明する図である。FIG. 2 is a diagram illustrating a scene in which a vehicle equipped with a vehicle protrusion determination device according to an embodiment of the present invention makes a left turn at an intersection. 図3は、本発明の実施形態に係る車両はみ出し判断装置が備える制御必要性判断部による処理の一例を説明するフローチャートである。FIG. 3 is a flowchart for explaining an example of processing by the control necessity determination unit provided in the vehicle protrusion determination device according to the embodiment of the present invention. 図4は、本発明の実施形態に係る車両はみ出し判断装置が備える領域算出部による処理の一例を説明するフローチャートである。FIG. 4 is a flowchart for explaining an example of processing by the region calculation unit provided in the vehicle protrusion determination device according to the embodiment of the present invention. 図5は、本発明の実施形態に係る車両はみ出し判断装置が備える姿勢算出部による処理の一例を説明するフローチャートである。FIG. 5 is a flowchart for explaining an example of processing by the attitude calculation unit provided in the vehicle protrusion determination device according to the embodiment of the present invention. 図6は、本発明の実施形態に係る車両はみ出し判断装置における車両の占有長を説明する図である。FIG. 6 is a diagram for explaining the occupation length of the vehicle in the vehicle protrusion determination device according to the embodiment of the present invention. 図7は、本発明の実施形態に係る車両はみ出し判断装置が備える警報生成部による処理の一例を説明するフローチャートである。FIG. 7 is a flowchart for explaining an example of processing by the alarm generation unit provided in the vehicle protrusion determination device according to the embodiment of the present invention. 図8は、本発明の実施形態の変形例に係る車両はみ出し判断装置の基本的な構成を主に説明する模式的なブロック図である。FIG. 8 is a schematic block diagram mainly illustrating a basic configuration of a vehicle protrusion determination device according to a modification of the embodiment of the present invention. 図9は、本発明の実施形態に係る車両はみ出し判断装置を搭載した車両が交差点で右折する場面を説明する図である。FIG. 9 is a diagram illustrating a scene in which a vehicle equipped with a vehicle protrusion determination device according to an embodiment of the present invention makes a right turn at an intersection. 図10は、本発明の実施形態に係る車両はみ出し判断装置を搭載した車両が横断歩道のない交差点で左折する場面を説明する図である。FIG. 10 is a diagram illustrating a scene in which a vehicle equipped with a vehicle protrusion determination device according to an embodiment of the present invention makes a left turn at an intersection without a pedestrian crossing.
 図面を参照して、本発明の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。 Embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals, and redundant description is omitted.
 (車両はみ出し判断装置)
 図1は、本実施形態に係る車両はみ出し判断装置1の構成を主に示すブロック図である。車両はみ出し判断装置1は、車両(自車両)2に搭載される。車両はみ出し判断装置1は、図2に示すように、車両2が交差点A(十字路、丁字路その他二以上の道路が交わる場合における当該二以上の道路(歩道と車道の区別のある道路においては、車道)の交わる部分をいう)を右左折(右折又は左折)する際に進路を閉塞され、右左折先の流入道路Q1と交わる交差道路P1にはみ出す可能性を判断する。車両2は、例えば、予め設定された走行経路を周囲の情報を検出しながら自動的に走行する自動運転車両である。
(Vehicle protrusion judgment device)
FIG. 1 is a block diagram mainly showing a configuration of a vehicle protrusion determination device 1 according to the present embodiment. The vehicle protrusion determination device 1 is mounted on a vehicle (own vehicle) 2. As shown in FIG. 2, the vehicle overhang determination device 1 is configured such that the vehicle 2 is an intersection A (two or more roads when a crossroad, a crossing road, or two or more roads intersect (in a road with a distinction between a sidewalk and a roadway, When the vehicle is turned right or left (right turn or left turn), the course is blocked, and the possibility of protruding to the intersection road P1 intersecting with the inflow road Q1 of the right turn destination is determined. The vehicle 2 is, for example, an automatic driving vehicle that automatically travels while detecting surrounding information on a preset travel route.
 車両はみ出し判断装置1は、図1に示すように、検出器10と、車両センサ11と、駆動部12と、地図データベース(DB)13と、周囲環境記憶部20と、走行状態記憶部21と、処理回路22と、車両制御部23と、車々間通信機24と、提示部25とを備える。 As shown in FIG. 1, the vehicle overhang determination device 1 includes a detector 10, a vehicle sensor 11, a drive unit 12, a map database (DB) 13, an ambient environment storage unit 20, and a travel state storage unit 21. , A processing circuit 22, a vehicle control unit 23, an inter-vehicle communication device 24, and a presentation unit 25.
 検出器10は、路車間通信機101と、カメラ102と、レーダ103とを備える。検出器10は、例えば、車両2が右左折する交差点A周辺に存在する物体の位置情報を検出する。検出器10は、少なくとも、交差点Aから所定の距離範囲の流入道路Q1に存在する物体の位置情報を検出する。物体は、例えば、先行車、対向車、駐車車両等の他車両や、歩行者、道路工事現場等を含む。その他、検出器10は、交差点A周辺に設置された信号機の状態を検出する。 The detector 10 includes a road-to-vehicle communication device 101, a camera 102, and a radar 103. For example, the detector 10 detects position information of an object existing around the intersection A where the vehicle 2 turns right or left. The detector 10 detects at least position information of an object existing on the inflow road Q1 within a predetermined distance range from the intersection A. The object includes, for example, other vehicles such as a preceding vehicle, an oncoming vehicle, and a parked vehicle, a pedestrian, a road construction site, and the like. In addition, the detector 10 detects the state of traffic lights installed around the intersection A.
 路車間通信機101は、道路側に設置された路側機(RSU)3と無線通信する通信機である。路車間通信機101は、車両2の進行方向(前方)において直近の交差点A周辺に存在する物体の位置情報と、交差点Aに設置された信号機の状態とをRSU3から取得する。路車間通信機101は、交差点A周辺の道路の交通情報を取得するようにしてもよい。路車間通信機101は、少なくとも、交差点Aから所定の距離範囲の流入道路Q1に存在する物体の位置情報を検出する。 The road-to-vehicle communication device 101 is a communication device that wirelessly communicates with a roadside unit (RSU) 3 installed on the road side. The road-to-vehicle communication device 101 acquires from the RSU 3 the position information of the object existing around the nearest intersection A in the traveling direction (front) of the vehicle 2 and the state of the traffic light installed at the intersection A. The road-to-vehicle communication device 101 may acquire traffic information of roads around the intersection A. The road-to-vehicle communication device 101 detects at least position information of an object existing on the inflow road Q1 within a predetermined distance range from the intersection A.
 カメラ102は、車両2の周囲の所定の範囲を撮像し、周囲の画像を取得する。カメラ102は、取得した画像から、周囲に存在する物体の情報を検出する。車両2の周囲に存在する物体は、例えば、先行車、後続車、歩行者等である。カメラ102は、車両2の周囲の車両の速度、加減速度、大きさ、ブレーキランプの状態、ウインカーランプの状態や、周囲の車両との車間距離を検出する。カメラ102は、ステレオカメラや全方位カメラであってもよく、カメラ102の数は複数であっても構わない。 The camera 102 captures a predetermined range around the vehicle 2 and acquires a surrounding image. The camera 102 detects information on an object existing around the acquired image. The objects existing around the vehicle 2 are, for example, a preceding vehicle, a succeeding vehicle, a pedestrian, and the like. The camera 102 detects the speed, acceleration / deceleration, size of the vehicle around the vehicle 2, the state of the brake lamp, the state of the blinker lamp, and the inter-vehicle distance with the surrounding vehicle. The camera 102 may be a stereo camera or an omnidirectional camera, and the number of cameras 102 may be plural.
 レーダ103は、車両2の周囲の所定の範囲を走査し、周囲の三次元距離データを取得する。三次元距離データは、レーダ103からの相対的な三次元上の位置を示す点群データである。レーダ103は、取得した三次元距離データから車両2の周囲に存在する物体の情報を検出する。レーダ103は、例えば、車両2の周囲の車両の速度、加減速度、大きさ、周囲の車両との車間距離を検出する。レーダ103は、例えば、レーザレンジファインダ(LRF)や、ミリ波や超音波を用いた測距レーダを採用可能である。 The radar 103 scans a predetermined range around the vehicle 2 and acquires surrounding three-dimensional distance data. The three-dimensional distance data is point cloud data indicating a relative three-dimensional position from the radar 103. The radar 103 detects information on an object existing around the vehicle 2 from the acquired three-dimensional distance data. The radar 103 detects, for example, the speed, acceleration / deceleration, size of the surrounding vehicle, and the inter-vehicle distance from the surrounding vehicle. As the radar 103, for example, a laser range finder (LRF) or a ranging radar using millimeter waves or ultrasonic waves can be employed.
 車両センサ11は、車両2の速度、加速度及びヨーレートを含む運動情報と車両2の位置情報とを検出する。車両センサ11は、速度センサ、加速度センサ、角速度センサ、測位装置等から構成される。車両センサ11は、全地球測位システム(GPS)受信機等の測位装置を用いて車両2の位置情報を取得する。 The vehicle sensor 11 detects motion information including the speed, acceleration, and yaw rate of the vehicle 2 and position information of the vehicle 2. The vehicle sensor 11 includes a speed sensor, an acceleration sensor, an angular velocity sensor, a positioning device, and the like. The vehicle sensor 11 acquires position information of the vehicle 2 using a positioning device such as a global positioning system (GPS) receiver.
 駆動部12は、ブレーキ121と、アクセル122と、ステアリング123とを備える。駆動部12は、ドライバによる操作又は車両制御部23による制御に応じて、車両2の駆動を制御する。ブレーキ121は、ブレーキペダルの踏み込み量を制御するブレーキアクチュエータと、ブレーキペダルの踏み込み量を検出するブレーキセンサとを備える。アクセル122は、アクセルの開度を制御するアクセルアクチュエータと、アクセルの開度を検出するアクセルセンサとを備える。ステアリング123は、操舵角を制御するステアリングアクチュエータと、操舵角を検出するステアリングセンサとを備える。 The driving unit 12 includes a brake 121, an accelerator 122, and a steering 123. The drive unit 12 controls driving of the vehicle 2 in accordance with an operation by the driver or control by the vehicle control unit 23. The brake 121 includes a brake actuator that controls the amount of depression of the brake pedal, and a brake sensor that detects the amount of depression of the brake pedal. The accelerator 122 includes an accelerator actuator that controls the opening of the accelerator and an accelerator sensor that detects the opening of the accelerator. The steering 123 includes a steering actuator that controls the steering angle and a steering sensor that detects the steering angle.
 地図DB13は、高精細な地図データを格納する記憶装置である。地図データには、道路や交差点、橋、トンネル等の一般的な地図情報に加えて、各車線の位置、幅及び通行区分等の道路構造に関する情報や、信号機等の道路周辺に設置された地物の位置に関する情報が記録される。 The map DB 13 is a storage device that stores high-definition map data. In addition to general map information such as roads, intersections, bridges, tunnels, etc., map data includes information on road structures such as the position, width, and traffic classification of each lane, as well as information such as traffic lights. Information about the position of the object is recorded.
 周囲環境記憶部20は、検出器10により検出された情報を記憶する。即ち、周囲環境記憶部20は、車両2の進行方向において直近の交差点A周辺に存在する物体の位置情報と、交差点Aに設置された信号機の状態とを記憶する。周囲環境記憶部20は、例えば、検出器10から取得した情報を循環的に記憶する。周囲環境記憶部20は、交差点A周辺の道路の交通情報を記憶するようにしてもよい。 The ambient environment storage unit 20 stores information detected by the detector 10. In other words, the ambient environment storage unit 20 stores the position information of the object existing around the nearest intersection A in the traveling direction of the vehicle 2 and the state of the traffic light installed at the intersection A. For example, the ambient environment storage unit 20 cyclically stores information acquired from the detector 10. The ambient environment storage unit 20 may store traffic information of roads around the intersection A.
 走行状態記憶部21は、検出器10、車両センサ11又は駆動部12により検出された情報を記憶する。即ち、走行状態記憶部21は、車両2の位置、速度、加減速度及び角速度を含む運動情報と、アクセルの開度、ブレーキペダルの踏み込み量及び操舵角を含む駆動制御情報と、車両2の位置情報とを、車両2の走行状態として記憶する。また、走行状態記憶部21は、車両2の周囲に存在する先行車及び後続車を含む周囲車両に関する周囲車両情報を記憶する。周囲車両情報は、車両2から周囲車両までの車間距離、周囲車両の速度、加減速度、大きさ、ブレーキランプの状態、ウインカーランプの状態等を含む。 The traveling state storage unit 21 stores information detected by the detector 10, the vehicle sensor 11, or the drive unit 12. In other words, the traveling state storage unit 21 includes motion information including the position, speed, acceleration / deceleration, and angular speed of the vehicle 2, drive control information including the accelerator opening, the brake pedal depression amount, and the steering angle, and the position of the vehicle 2. Information is stored as the traveling state of the vehicle 2. Further, the traveling state storage unit 21 stores surrounding vehicle information related to surrounding vehicles including the preceding vehicle and the following vehicle existing around the vehicle 2. The surrounding vehicle information includes the inter-vehicle distance from the vehicle 2 to the surrounding vehicle, the speed of the surrounding vehicle, the acceleration / deceleration, the size, the state of the brake lamp, the state of the blinker lamp, and the like.
 処理回路22は、制御必要性判断部221と、領域算出部222と、姿勢算出部223と、警報生成部224とを有する。処理回路22は、例えば、中央処理装置(CPU)、メモリ及び入出力I/F等を備えるマイクロコンピュータにより構成可能である。この場合、マイクロコンピュータは、車両はみ出し判断装置1による演算処理に必要なコンピュータプログラム(はみ出し判断プログラム)を実行することにより、処理回路22として機能する。処理回路22を構成する各部は、一体のハードウェアから構成されてもよく、別個の専用ハードウェアから構成されてもよい。処理回路22は、車両2に関わる他の制御に用いる電子制御ユニット(ECU)と兼用されてもよい。 The processing circuit 22 includes a control necessity determination unit 221, an area calculation unit 222, an attitude calculation unit 223, and an alarm generation unit 224. The processing circuit 22 can be configured by, for example, a microcomputer including a central processing unit (CPU), a memory, an input / output I / F, and the like. In this case, the microcomputer functions as the processing circuit 22 by executing a computer program (protrusion determination program) necessary for arithmetic processing by the vehicle protrusion determination device 1. Each part which comprises the processing circuit 22 may be comprised from integral hardware, and may be comprised from separate exclusive hardware. The processing circuit 22 may also be used as an electronic control unit (ECU) used for other control related to the vehicle 2.
 制御必要性判断部221は、車両2が曲がる先の流入道路Q1の、交差点Aから所定の距離範囲に存在する物体の位置情報と、流入道路Q1の道路構造とに基づいて、車両2が進入可能な流入道路Q1の余裕空間Mを算出する。所定の距離範囲は、例えば、流入道路Q1と交差点Aとの境界から流入道路Q1側に車両2の長さの範囲である。流入道路Q1の道路構造は、少なくとも、流入道路Q1の、車両2が進入し得る車線の総幅を含む。即ち、流入道路Q1が有する全ての車線に車両2が進入可能な場合、流入道路Q1の道路構造は、少なくとも、流入道路Q1の幅を含む。或いは、流入道路Q1の道路構造として、流入道路Q1に連続する、交差点Aを越えた地点の道路の幅又は複数の車線の総幅を採用してもよい。 The control necessity determination unit 221 enters the vehicle 2 on the basis of the position information of an object existing in a predetermined distance range from the intersection A of the inflow road Q1 to which the vehicle 2 turns and the road structure of the inflow road Q1. The marginal space M of the possible inflow road Q1 is calculated. The predetermined distance range is, for example, a range of the length of the vehicle 2 from the boundary between the inflow road Q1 and the intersection A to the inflow road Q1 side. The road structure of the inflow road Q1 includes at least the total width of the lane of the inflow road Q1 into which the vehicle 2 can enter. That is, when the vehicle 2 can enter all lanes of the inflow road Q1, the road structure of the inflow road Q1 includes at least the width of the inflow road Q1. Or you may employ | adopt as the road structure of the inflow road Q1, the width of the road of the point beyond the intersection A which continues to the inflow road Q1, or the total width of several lanes.
 制御必要性判断部221は、余裕空間Mと車両2の大きさとに基づいて、車両2が、右左折先の流入道路Q1と交わる交差道路P1にはみ出す可能性を判断する。余裕空間Mは、少なくとも、流入道路Q1から交差点Aに車両2がはみ出すか否かを判断できるエリアに設定されるものである。余裕空間Mは、例えば、流入道路Q1と交差点Aとの境界から流入道路Q1側に車両2の長さと、流入道路Q1における進行方向の車線幅で囲まれたエリアとする。 The control necessity determination unit 221 determines the possibility that the vehicle 2 protrudes to the intersection road P1 that intersects the inflow road Q1 at the right or left turn based on the margin space M and the size of the vehicle 2. The marginal space M is set at least in an area where it can be determined whether or not the vehicle 2 protrudes from the inflow road Q1 to the intersection A. The margin space M is, for example, an area surrounded by the length of the vehicle 2 on the inflow road Q1 side from the boundary between the inflow road Q1 and the intersection A and the lane width in the traveling direction on the inflow road Q1.
 領域算出部222は、車両2が走行する車線から余裕空間Mに進入する軌跡のうち、曲率半径が最小となる最小走行軌跡Rminと、曲率半径が最大となる最大走行軌跡Rmaxとを算出する。領域算出部222は、余裕空間Mと、最小走行軌跡Rmin及び最大走行軌跡Rmaxとに基づいて、車両2が現在の車線から右左折して余裕空間Mに進入するまでに走行可能な領域である走行可能領域Rを算出する。走行可能領域Rは、余裕空間Mの終端、最小走行軌跡Rmin及び最大走行軌跡Rmaxに囲まれる領域である。 The region calculation unit 222 calculates a minimum travel locus Rmin having a minimum curvature radius and a maximum travel locus Rmax having a maximum curvature radius among the trajectories entering the marginal space M from the lane in which the vehicle 2 travels. The area calculation unit 222 is an area in which the vehicle 2 can travel before turning right and left from the current lane and entering the margin space M based on the margin space M, the minimum traveling locus Rmin, and the maximum traveling locus Rmax. A travelable region R is calculated. The travelable region R is a region surrounded by the end of the margin space M, the minimum travel locus Rmin, and the maximum travel locus Rmax.
 姿勢算出部223は、走行可能領域R内の、車両2の現在位置から走行可能領域Rの終端までの走行軌跡を算出し、算出した走行軌跡から、車両2が余裕空間Mに収まる姿勢となる走行軌跡を探索する。 The posture calculation unit 223 calculates a travel locus from the current position of the vehicle 2 to the end of the travelable region R in the travelable region R, and the vehicle 2 has a posture that fits in the margin space M from the calculated travel locus. Search for a running track.
 警報生成部224は、車両2の右左折先の流入道路Q1と交わる交差道路P1にはみ出すことを示す警報情報を生成し、生成した警報情報を、車々間通信機24を介して、交差道路P1を走行する後続車(他車両)4に送信する。これにより、警報生成部224は後続車4に警報を出す。 The warning generation unit 224 generates warning information indicating that the vehicle 2 protrudes to the intersection road P1 intersecting with the inflow road Q1 of the right or left turn destination, and the generated warning information is transmitted to the intersection road P1 via the inter-vehicle communication device 24. It transmits to the following vehicle (other vehicle) 4 which drive | works. As a result, the alarm generation unit 224 issues an alarm to the following vehicle 4.
 車両制御部23は、姿勢算出部223により算出された走行軌跡に沿って車両2が走行するのに必要な制御信号を生成し、制御信号を駆動部12に出力することにより、車両2の駆動を制御する。 The vehicle control unit 23 generates a control signal necessary for the vehicle 2 to travel along the travel locus calculated by the attitude calculation unit 223, and outputs the control signal to the drive unit 12, thereby driving the vehicle 2. To control.
 車々間通信機24は、後続車(他車両)4に搭載された車々間通信機44と無線通信する通信機である。車々間通信機24は、警報生成部224が生成した警報情報を車々間通信機44に送信する。 The inter-vehicle communication device 24 is a communication device that wirelessly communicates with the inter-vehicle communication device 44 mounted on the succeeding vehicle (other vehicle) 4. The inter-vehicle communication device 24 transmits the alarm information generated by the alarm generation unit 224 to the inter-vehicle communication device 44.
 提示部25は、処理回路22の制御に応じて、種々の情報をユーザに提示する。提示部25は、例えば、音声を再生するスピーカや画像を表示するディスプレイから構成される。処理回路22は、車両2の右左折先の流入道路Q1と交わる交差道路P1にはみ出す可能性があることを示す通知情報を、提示部25を介してユーザに提示することにより、ユーザに通知を出す。 The presentation unit 25 presents various information to the user according to the control of the processing circuit 22. The presentation unit 25 includes, for example, a speaker that reproduces sound and a display that displays images. The processing circuit 22 notifies the user by presenting notification information to the user via the presentation unit 25 indicating that there is a possibility that the vehicle 2 may protrude from the intersection road P1 that intersects the inflow road Q1 of the right or left turn of the vehicle 2. put out.
 なお、本実施形態において、「はみ出す」とは、車両2が流入道路Q1に向けて右左折する際に進路を閉塞されることにより、停止又は所定の閾値以下の速度に減速した状態で、車両2の一部が交差道路P1上に残ることを意味する。 In the present embodiment, “extinguish” means that the vehicle 2 is stopped or decelerated to a speed equal to or lower than a predetermined threshold by closing the route when the vehicle 2 turns to the inflow road Q1. It means that a part of 2 remains on the intersection road P1.
 (制御必要性判断部の処理)
 以下、図3のフローチャートを用いて、制御必要性判断部221の具体的な処理の一例を説明する。図3のフローチャートに示す一連の処理は、例えば、車両2が前方に存在する交差点に到達するまでの時間が所定値以下の場合に開始される。以下において、図2に示すように、車両2が交差点Aを左折する場面を適宜例として用いて説明する。
(Processing of control necessity judgment part)
Hereinafter, an example of specific processing of the control necessity determination unit 221 will be described using the flowchart of FIG. The series of processes shown in the flowchart of FIG. 3 is started when, for example, the time until the vehicle 2 reaches an intersection existing ahead is equal to or less than a predetermined value. Hereinafter, as illustrated in FIG. 2, a case where the vehicle 2 turns left at the intersection A will be described as an example as appropriate.
 先ず、ステップS101において、制御必要性判断部221は、車両2の進行方向(車両2の走路の下流)において直近の交差点Aで右左折するか否か判断する。制御必要性判断部221は、例えば、予め設定された車両2の走行経路、車両2のウインカーの状態、車両2の走路の通行区分等に基づいて、交差点Aで右左折するか否かを判断する。右左折すると判断する場合、ステップS102に処理を進め、右左折しないと判断する場合、処理を終了する。 First, in step S101, the control necessity determination unit 221 determines whether to turn right or left at the nearest intersection A in the traveling direction of the vehicle 2 (downstream of the traveling path of the vehicle 2). The control necessity determination unit 221 determines whether or not to make a right / left turn at the intersection A based on, for example, a preset travel route of the vehicle 2, a blinker state of the vehicle 2, a traffic classification of the travel path of the vehicle 2, and the like. To do. If it is determined to turn right or left, the process proceeds to step S102. If it is determined not to turn right or left, the process ends.
 ステップS102において、制御必要性判断部221は、走行状態記憶部21に記憶された周囲車両情報を読み込み、車両2の後方に後続車4が存在するか否かを判断する。制御必要性判断部221は、例えば、後続車4が車両2から所定の距離範囲内に存在する場合、後続車4が車両2に接近する場合、車両2と後続車4の車頭時間が所定値以下の場合の少なくとも何れかの場合に、後続車4が存在すると判断する。後続車4が存在すると判断する場合、ステップS103に処理を進め、後続車4が存在しないと判断する場合、処理を終了する。 In step S <b> 102, the control necessity determination unit 221 reads the surrounding vehicle information stored in the traveling state storage unit 21, and determines whether the subsequent vehicle 4 exists behind the vehicle 2. For example, when the following vehicle 4 exists within a predetermined distance range from the vehicle 2, when the following vehicle 4 approaches the vehicle 2, the vehicle head time of the vehicle 2 and the following vehicle 4 is a predetermined value. It is determined that the following vehicle 4 exists in at least one of the following cases. If it is determined that the succeeding vehicle 4 is present, the process proceeds to step S103. If it is determined that the succeeding vehicle 4 is not present, the process is terminated.
 ステップS103において、制御必要性判断部221は、地図DB13から交差点A周辺の道路構造を読み込む。 In step S103, the control necessity determination unit 221 reads the road structure around the intersection A from the map DB 13.
 ステップS104において、制御必要性判断部221は、ステップS103で取得した道路構造から、右左折により流入する道路、即ち、右左折先の流入道路Q1の余裕長L1及び道路幅L2と、車両2の特性を示す自車両情報とを取得する。余裕長L1は、例えば、流入道路Q1の始端(交差点Aの終端又は交差道路P1の境界)から横断歩道までの距離である。制御必要性判断部221は、余裕長L1及び道路幅L2から、車両2が進入可能な流入道路Q1の余裕空間Mを算出する。自車両情報は、走行状態記憶部21等の記憶装置に予め記憶されてもよく、処理回路22が予め保持してもよい。自車両情報は、車両2の車幅及び車長等の大きさや、ホイールベース、最大舵角等を含む。 In step S104, the control necessity determining unit 221 determines that the road flowing in by the right / left turn from the road structure acquired in step S103, that is, the margin length L1 and the road width L2 of the inflow road Q1 of the right / left turn destination, and the vehicle 2 The own vehicle information indicating the characteristics is acquired. The margin length L1 is, for example, the distance from the beginning of the inflow road Q1 (the end of the intersection A or the boundary of the intersection road P1) to the pedestrian crossing. The control necessity determination unit 221 calculates a margin space M of the inflow road Q1 into which the vehicle 2 can enter from the margin length L1 and the road width L2. The own vehicle information may be stored in advance in a storage device such as the traveling state storage unit 21 or may be held in advance by the processing circuit 22. The own vehicle information includes the vehicle width and vehicle length of the vehicle 2, the wheel base, the maximum steering angle, and the like.
 ステップS105において、制御必要性判断部221は、周囲環境記憶部20に記憶された情報を読み込み、少なくとも、交差点Aから所定の距離範囲に存在する物体の位置情報を取得する。 In step S105, the control necessity determination unit 221 reads information stored in the surrounding environment storage unit 20, and acquires at least position information of an object existing within a predetermined distance range from the intersection A.
 ステップS106において、制御必要性判断部221は、ステップS105で取得した物体の位置情報から、物体の速度及び進行方向を算出する。これにより、制御必要性判断部221は、流入道路Q1の横断歩道を歩行する歩行者の挙動と、交差点A周辺に存在する車両及び車両2の挙動とを予測する。 In step S106, the control necessity determination unit 221 calculates the speed and traveling direction of the object from the position information of the object acquired in step S105. Thereby, the control necessity judgment part 221 predicts the behavior of the pedestrian who walks the pedestrian crossing of the inflow road Q1, and the behavior of the vehicle and the vehicle 2 which exist around the intersection A.
 ステップS107において、制御必要性判断部221は、ステップS106で予測した車両の挙動から、流入道路Q1に向けて右左折する、即ち、車両2が右左折する方向と同じ方向に右左折する先行車が存在するか否かを判断する。右左折する先行車が存在すると判断する場合、ステップS108に処理を進め、右左折する先行車が存在しないと判断する場合、ステップS111に処理を進める。 In step S107, the control necessity determining unit 221 makes a right / left turn toward the inflow road Q1, based on the behavior of the vehicle predicted in step S106, that is, a preceding vehicle that turns right / left in the same direction as the vehicle 2 turns right / left. It is determined whether or not exists. If it is determined that there is a preceding vehicle that turns right or left, the process proceeds to step S108. If it is determined that there is no preceding vehicle that turns right or left, the process proceeds to step S111.
 ステップS108において、制御必要性判断部221は、ステップS106で予測した歩行者及び車両の挙動から、右左折する先行車が、横断等により流入道路Q1に存在する歩行者と交錯する可能性があるか否かを判断する。交錯する可能性があると判断する場合、ステップS109に処理を進め、交錯する可能性がないと判断する場合、ステップS112に処理を進める。 In step S108, the control necessity determining unit 221 may cross the pedestrian existing on the inflow road Q1 with the preceding vehicle turning right or left from the behavior of the pedestrian and the vehicle predicted in step S106. Determine whether or not. If it is determined that there is a possibility of crossing, the process proceeds to step S109. If it is determined that there is no possibility of crossing, the process proceeds to step S112.
 ステップS109において、制御必要性判断部221は、周囲環境記憶部20又は走行状態記憶部21に記憶された先行車の情報から、流入道路Q1に存在する歩行者により進路を閉塞された先行車が占有する流入道路Q1における占有空間を予測する。 In step S109, the control necessity determination unit 221 determines that the preceding vehicle whose course has been blocked by a pedestrian existing on the inflow road Q1 from the information on the preceding vehicle stored in the surrounding environment storage unit 20 or the traveling state storage unit 21. The occupied space on the occupied inflow road Q1 is predicted.
 ステップS110において、制御必要性判断部221は、ステップS109で予測した先行車の占有空間を用いて、ステップS104で算出した余裕空間Mの余裕長L1を補正する。即ち、制御必要性判断部221は、余裕空間Mから占有空間を除外した空間を新たな余裕空間Mとして算出する。余裕長L1は、流入道路Q1の車線数が複数の場合、車線毎に算出され得る。 In step S110, the control necessity determination unit 221 corrects the margin length L1 of the margin space M calculated in step S104 using the occupied space of the preceding vehicle predicted in step S109. That is, the control necessity determination unit 221 calculates a space obtained by excluding the occupied space from the margin space M as a new margin space M. The margin length L1 can be calculated for each lane when the number of lanes of the inflow road Q1 is plural.
 ステップS111において、制御必要性判断部221は、ステップS106で予測した歩行者の挙動から、車両2が流入道路Q1に存在する歩行者と交錯する可能性があるか否かを判断する。交錯する可能性があると判断する場合、ステップS112に処理を進め、交錯する可能性がないと判断する場合、処理を終了する。 In step S111, the control necessity determination unit 221 determines whether or not the vehicle 2 may cross with a pedestrian existing on the inflow road Q1 from the behavior of the pedestrian predicted in step S106. If it is determined that there is a possibility of crossing, the process proceeds to step S112. If it is determined that there is no possibility of crossing, the process ends.
 ステップS112において、制御必要性判断部221は、ステップS104で算出された余裕空間M又はステップS111で補正された余裕空間Mの余裕長L1が、車両2の車長より短いか否かを判断する。言い換えれば、制御必要性判断部221は、余裕空間Mと車両2の大きさとに基づいて、車両2が流入道路Q1と交わる交差道路P1にはみ出す可能性があるか否かを判断する。余裕長L1が車両2の車長より短いと判断する場合、ステップS113に処理を進め、余裕長L1が車両2の車長以上と判断する場合、処理を終了する。 In step S112, the control necessity determination unit 221 determines whether the margin space M calculated in step S104 or the margin length L1 of the margin space M corrected in step S111 is shorter than the vehicle length of the vehicle 2. . In other words, the control necessity determination unit 221 determines whether or not the vehicle 2 may protrude from the intersection road P1 that intersects the inflow road Q1 based on the margin space M and the size of the vehicle 2. When it is determined that the margin length L1 is shorter than the vehicle length of the vehicle 2, the process proceeds to step S113, and when it is determined that the margin length L1 is greater than or equal to the vehicle length of the vehicle 2, the processing ends.
 ステップS113において、制御必要性判断部221は、制御必要性フラグをオン(1)に設定し、処理を終了する。制御必要性フラグは、車両2が交差道路P1にはみ出す可能性があることを示し、後に続く領域算出部222、姿勢算出部223及び警報生成部224による制御処理の必要性があることを示すフラグである。 In step S113, the control necessity determination unit 221 sets the control necessity flag to ON (1), and ends the process. The control necessity flag indicates that there is a possibility that the vehicle 2 may protrude from the intersection road P1, and a flag indicating that there is a need for control processing by the subsequent area calculation unit 222, posture calculation unit 223, and alarm generation unit 224. It is.
 (領域算出部の処理)
 以下、図4のフローチャートを用いて、領域算出部222の具体的な処理の一例を説明する。図4のフローチャートに示す一連の処理は、図3のフローチャートに示す一連の処理が終了した場合に開始される。
(Processing of area calculation unit)
Hereinafter, an example of specific processing of the region calculation unit 222 will be described with reference to the flowchart of FIG. The series of processes shown in the flowchart of FIG. 4 is started when the series of processes shown in the flowchart of FIG.
 先ず、ステップS201において、領域算出部222は、制御必要性フラグがオン(1)か否かを判断する。制御必要性フラグがオンと判断する場合、ステップS202に処理を進め、制御必要性フラグがオフ(0)と判断する場合、処理を終了する。 First, in step S201, the region calculation unit 222 determines whether or not the control necessity flag is on (1). If it is determined that the control necessity flag is on, the process proceeds to step S202. If it is determined that the control necessity flag is off (0), the process ends.
 ステップS202において、領域算出部222は、流入道路Q1の道路構造と、車両2の特性を示す自車両情報とに基づいて、車両2が走行する車線から右左折して流入道路Q1に進入する軌跡のうち、曲率半径が最小となる最小走行軌跡Rminを算出する。 In step S202, the area calculation unit 222 makes a right / left turn from the lane in which the vehicle 2 travels and enters the inflow road Q1 based on the road structure of the inflow road Q1 and the own vehicle information indicating the characteristics of the vehicle 2. Among these, the minimum traveling locus Rmin having the smallest curvature radius is calculated.
 ステップS203において、領域算出部222は、流入道路Q1の道路構造と、車両2の特性を示す自車両情報とに基づいて、車両2が走行する車線から右左折して流入道路Q1に進入する軌跡のうち、曲率半径が最大となる最大走行軌跡Rmaxを算出する。 In step S203, the area calculation unit 222 makes a right / left turn from the lane in which the vehicle 2 travels and enters the inflow road Q1 based on the road structure of the inflow road Q1 and the own vehicle information indicating the characteristics of the vehicle 2. Among these, the maximum traveling locus Rmax having the maximum curvature radius is calculated.
 ステップS204において、領域算出部222は、制御必要性判断部221により最終的に算出された余裕空間Mと、最小走行軌跡Rmin及び最大走行軌跡Rmaxとに基づいて、走行可能領域Rを算出する。 In step S204, the region calculation unit 222 calculates the travelable region R based on the margin space M finally calculated by the control necessity determination unit 221 and the minimum travel locus Rmin and the maximum travel locus Rmax.
 ステップS205において、領域算出部222は、制御必要性判断部221が予測した交差点A周辺の物体(歩行者及び先行車)の挙動に基づいて、横断等により流入道路Q1に存在する歩行者と交錯する可能性がある先行車が存在するか否かを判断する。先行車が存在すると判断する場合、ステップS206に処理を進め、先行車が存在しないと判断する場合、処理を終了する。なお、ステップS205における判断結果は、図3のステップS108における判断結果と同一であるため、ステップS205における判断を省略し、判断結果としてステップS108の判断結果を採用してもよい。 In step S205, the area calculation unit 222 crosses the pedestrian existing on the inflow road Q1 by crossing or the like based on the behavior of the object (pedestrian and preceding vehicle) around the intersection A predicted by the control necessity determination unit 221. It is determined whether or not there is a preceding vehicle that may be used. If it is determined that there is a preceding vehicle, the process proceeds to step S206. If it is determined that there is no preceding vehicle, the process ends. Note that the determination result in step S205 is the same as the determination result in step S108 in FIG. 3, so the determination in step S205 may be omitted and the determination result in step S108 may be adopted as the determination result.
 ステップS206において、領域算出部222は、制御必要性判断部221により予測された、流入道路Q1に存在する歩行者により進路を閉塞された先行車が占有する流入道路Q1における占有空間を読み込む。 In step S206, the region calculation unit 222 reads the occupied space on the inflow road Q1 that is predicted by the control necessity determination unit 221 and is occupied by a preceding vehicle whose course is blocked by a pedestrian existing on the inflow road Q1.
 ステップS207において、領域算出部222は、ステップS206で読み込んだ占有空間を用いて、ステップS204で算出した走行可能領域Rを補正し、処理を終了する。即ち、領域算出部222は、走行可能領域Rから占有空間を除外した領域を新たな走行可能領域Rとして算出し、処理を終了する。 In step S207, the area calculation unit 222 corrects the travelable area R calculated in step S204 using the occupied space read in step S206, and ends the process. That is, the area calculation unit 222 calculates an area excluding the occupied space from the travelable area R as a new travelable area R, and ends the process.
 (姿勢算出部の処理)
 以下、図5のフローチャートを用いて、姿勢算出部223の具体的な処理の一例を説明する。図5のフローチャートに示す一連の処理は、図4のフローチャートに示す一連の処理が終了した場合に開始される。
(Processing of posture calculation unit)
Hereinafter, an example of specific processing of the posture calculation unit 223 will be described with reference to the flowchart of FIG. The series of processes shown in the flowchart of FIG. 5 is started when the series of processes shown in the flowchart of FIG.
 先ず、ステップS301において、姿勢算出部223は、制御必要性フラグがオン(1)か否かを判断する。制御必要性フラグがオンと判断する場合、ステップS302に処理を進め、制御必要性フラグがオフ(0)と判断する場合、処理を終了する。 First, in step S301, the attitude calculation unit 223 determines whether or not the control necessity flag is on (1). If it is determined that the control necessity flag is on, the process proceeds to step S302. If it is determined that the control necessity flag is off (0), the process ends.
 ステップS302において、姿勢算出部223は、領域算出部222により算出された走行可能領域Rが存在するか否か判断する。走行可能領域Rが存在すると判断する場合、ステップS303に処理を進め、走行可能領域Rが存在しないと判断する場合、処理を終了する。 In step S302, the posture calculation unit 223 determines whether or not the travelable region R calculated by the region calculation unit 222 exists. If it is determined that the travelable area R exists, the process proceeds to step S303. If it is determined that the travelable area R does not exist, the process ends.
 ステップS303において、姿勢算出部223は、走行可能領域R及び自車両情報に基づいて、走行可能領域R内の、車両2が現在走行する車線から走行可能領域Rの終端に到達するまでの走行軌跡の候補を算出する。 In step S303, the posture calculation unit 223 travels from the lane in which the vehicle 2 currently travels to the end of the travelable region R in the travelable region R based on the travelable region R and the host vehicle information. Candidates are calculated.
 ステップS304において、姿勢算出部223は、ステップS303で算出した走行軌跡の候補から、車両2の占有長L3が余裕長L1以下となる走行軌跡が存在するか否かを判断する。占有長L3は、図6に示すように、車両2が走行可能領域Rの終端に到達するときの姿勢で、流入道路Q1の長さ方向Dにおいて車両2が占有する長さである。即ち、ステップS304において、姿勢算出部223は、車両2が余裕空間Mに収まる姿勢となる走行軌跡を探索する。言い換えれば、姿勢算出部223は、車両2が右左折時の進路を閉塞され、流入道路Q1と交わる交差道路P1にはみ出すか否かを判断する。占有長L3が余裕長L1以下となる走行軌跡が存在すると判断する場合、ステップS305に処理を進め、占有長L3が余裕長L1以下となる走行軌跡が存在しないと判断する場合、処理を終了する。 In step S304, the posture calculation unit 223 determines whether there is a traveling locus in which the occupation length L3 of the vehicle 2 is equal to or less than the margin length L1 from the traveling locus candidates calculated in step S303. The occupation length L3 is a length that the vehicle 2 occupies in the length direction D of the inflow road Q1 in a posture when the vehicle 2 reaches the end of the travelable region R as shown in FIG. That is, in step S <b> 304, the posture calculation unit 223 searches for a travel locus in which the vehicle 2 is in a posture that fits in the margin space M. In other words, the posture calculation unit 223 determines whether or not the vehicle 2 is blocked from the course when the vehicle turns right and left and protrudes from the intersection road P1 that intersects the inflow road Q1. If it is determined that there is a travel locus in which the occupation length L3 is equal to or less than the margin length L1, the process proceeds to step S305. If it is determined that there is no travel locus in which the occupation length L3 is equal to or less than the margin length L1, the processing ends. .
 ステップS305において、姿勢算出部223は、車両2が余裕空間Mに収まる姿勢となる走行軌跡を対象走行軌跡に設定し、対象走行軌跡フラグをオン(1)に設定する。対象走行軌跡フラグは、車両2が余裕空間Mに収まる姿勢となる走行軌跡が存在することを示し、車両2が交差道路P1にはみ出す可能性がないことを示すフラグである。 In step S305, the posture calculation unit 223 sets a travel locus in which the vehicle 2 is in a posture that fits in the margin space M as the target travel locus, and sets the target travel locus flag to ON (1). The target travel trajectory flag is a flag indicating that there is a travel trajectory in which the vehicle 2 is in an attitude that fits in the marginal space M, and that the vehicle 2 is unlikely to protrude from the intersection road P1.
 ステップS306において、姿勢算出部223は、ステップS305で設定した対象走行軌跡により進入する車線が複数存在するか否かを判断する。即ち、姿勢算出部223は、複数の対象走行軌跡の各終端において連結する流入道路Q1の車線数の合計が複数か否かを判断する。進入する車線が複数存在すると判断する場合、ステップS307に処理を進め、進入する車線が複数存在しないと判断する場合、ステップS310に処理を進める。 In step S306, the posture calculation unit 223 determines whether there are a plurality of lanes to enter based on the target travel locus set in step S305. That is, the posture calculation unit 223 determines whether or not the total number of lanes of the inflow road Q1 connected at each end of the plurality of target travel tracks is plural. If it is determined that there are a plurality of lanes to enter, the process proceeds to step S307, and if it is determined that there are not a plurality of lanes to enter, the process proceeds to step S310.
 ステップS307において、姿勢算出部223は、流入道路Q1の通行区分に基づいて、対象走行軌跡により進入する複数の車線から、車両2が進入する候補車線を決定する。例えば、姿勢算出部223は、交差点Aにおいて左折した後に次の交差点で右折する走行経路が予め設定されており、対象走行軌跡により進入する車線に右折専用レーンが含まれる場合、右折専用レーンを候補車線として決定する。 In step S307, the posture calculation unit 223 determines a candidate lane that the vehicle 2 enters from a plurality of lanes that enter the target travel locus based on the traffic classification of the inflow road Q1. For example, the posture calculation unit 223 sets a right turn dedicated lane if a right turn dedicated lane is included in the lane to be entered by the target travel locus after a left turn at the intersection A and then a right turn at the next intersection is set in advance. Decide as a lane.
 ステップS308において、姿勢算出部223は、ステップS307で決定された候補車線が複数存在するか否かを判断する。候補車線が複数存在すると判断する場合、ステップS309に処理を進め、候補車線が複数存在しないと判断する場合、ステップS310に処理を進める。 In step S308, the posture calculation unit 223 determines whether there are a plurality of candidate lanes determined in step S307. If it is determined that there are a plurality of candidate lanes, the process proceeds to step S309. If it is determined that there are not a plurality of candidate lanes, the process proceeds to step S310.
 ステップS309において、姿勢算出部223は、複数の候補車線のうち、余裕長L1が最も長い車線をターゲット車線として決定する。余裕長L1が最も長い車線は、例えば、左折する先行車の数が最も少ない車線である。 In step S309, the posture calculation unit 223 determines the lane with the longest margin L1 among the plurality of candidate lanes as the target lane. The lane with the longest margin L1 is, for example, the lane with the least number of preceding vehicles turning left.
 ステップS310において、姿勢算出部223は、ステップS306で進入する車線が複数存在しないと判断する場合、対象走行軌跡により進入する1つの車線をターゲット車線として決定する。又は、姿勢算出部223は、ステップS308で候補車線が複数存在しないと判断する場合、1つの候補車線をターゲット車線として決定する。 In step S310, when it is determined in step S306 that there are not a plurality of lanes to enter, the posture calculation unit 223 determines one lane to enter based on the target travel locus as the target lane. Alternatively, the posture calculation unit 223 determines one candidate lane as the target lane when determining in step S308 that there are not a plurality of candidate lanes.
 ステップS311において、姿勢算出部223は、ターゲット車線に進入する対象走行軌跡のうち、車両2が、走行軌跡の終端において最もターゲット車線のセンターに向かう姿勢となる走行軌跡を抽出する。姿勢算出部223は、抽出した走行軌跡の終端における姿勢を停止姿勢として設定する。 In step S311, the posture calculation unit 223 extracts a travel locus in which the vehicle 2 is in the posture toward the center of the target lane at the end of the travel locus from the target travel locus entering the target lane. The posture calculation unit 223 sets the posture at the end of the extracted travel locus as the stop posture.
 ステップS312において、姿勢算出部223は、ステップS311で設定した停止姿勢を実現する走行軌跡を算出し、処理を終了する。 In step S312, the posture calculation unit 223 calculates a travel locus that realizes the stop posture set in step S311 and ends the process.
 (警報生成部の処理)
 以下、図7のフローチャートを用いて、警報生成部224の具体的な処理の一例を説明する。図7のフローチャートに示す一連の処理は、図5のフローチャートに示す一連の処理が終了した場合に開始される。
(Processing of alarm generator)
Hereinafter, an example of specific processing of the alarm generation unit 224 will be described with reference to the flowchart of FIG. The series of processes shown in the flowchart of FIG. 7 is started when the series of processes shown in the flowchart of FIG.
 先ず、ステップS401において、警報生成部224は、制御必要性フラグがオン(1)か否かを判断する。制御必要性フラグがオンと判断する場合、ステップS402に処理を進め、制御必要性フラグがオフ(0)と判断する場合、処理を終了する。 First, in step S401, the alarm generation unit 224 determines whether or not the control necessity flag is on (1). If it is determined that the control necessity flag is on, the process proceeds to step S402. If it is determined that the control necessity flag is off (0), the process ends.
 ステップS402において、警報生成部224は、領域算出部222により算出された走行可能領域Rが存在するか否か判断する。走行可能領域Rが存在すると判断する場合、ステップS403に処理を進め、走行可能領域Rが存在しないと判断する場合、処理を終了する。 In step S <b> 402, the alarm generation unit 224 determines whether or not the travelable region R calculated by the region calculation unit 222 exists. If it is determined that the travelable area R exists, the process proceeds to step S403. If it is determined that the travelable area R does not exist, the process ends.
 ステップS403において、警報生成部224は、対象走行軌跡フラグがオン(1)か否かを判断する。対象走行軌跡フラグがオフ(0)と判断する場合、ステップS404に処理を進め、対象走行軌跡フラグがオンと判断する場合、処理を終了する。 In step S403, the alarm generation unit 224 determines whether or not the target travel locus flag is on (1). If it is determined that the target travel locus flag is off (0), the process proceeds to step S404. If it is determined that the target travel locus flag is on, the processing ends.
 ステップS404において、警報生成部224は、周囲環境記憶部20及び走行状態記憶部21に記憶された情報から予測された交差点A周辺の物体の挙動に基づいて、走行可能領域Rの終端における車両2の停止位置及び姿勢を算出する。 In step S404, the alarm generation unit 224 determines the vehicle 2 at the end of the travelable region R based on the behavior of the object around the intersection A predicted from the information stored in the ambient environment storage unit 20 and the travel state storage unit 21. The stop position and posture are calculated.
 ステップS405において、警報生成部224は、ステップS404で算出した車両2の停止位置及び姿勢と余裕空間Mとに基づいて、車両2が後続車4の走行を妨害する領域を算出する。即ち、警報生成部224は、停止位置における車両2が占有する領域のうち、交差道路P1にはみ出す領域を算出する。 In step S405, the alarm generation unit 224 calculates a region where the vehicle 2 obstructs the traveling of the succeeding vehicle 4 based on the stop position and posture of the vehicle 2 calculated in step S404 and the margin space M. That is, the alarm generation unit 224 calculates a region that protrudes from the intersection road P1 among regions occupied by the vehicle 2 at the stop position.
 ステップS406において、警報生成部224は、車両2が後続車4の走行を妨害する領域を含む警報情報を、後続車4に出す警報として設定する。 In step S <b> 406, the alarm generation unit 224 sets alarm information including an area where the vehicle 2 obstructs the traveling of the subsequent vehicle 4 as an alarm to be output to the subsequent vehicle 4.
 ステップS407において、警報生成部224は、ステップS406で設定した警報情報を、車々間通信機24を介して、後続車4に送信し、処理を終了する。以上のように、車両はみ出し判断装置1による車両はみ出し判断方法が実行される。 In step S407, the alarm generation unit 224 transmits the alarm information set in step S406 to the succeeding vehicle 4 via the inter-vehicle communication device 24, and ends the process. As described above, the vehicle protrusion determination method by the vehicle protrusion determination device 1 is executed.
 本実施形態に係る車両はみ出し判断装置1によれば、車両2が侵入可能な流入道路Q1の余裕空間Mと車両2の大きさとに基づいて、車両2が交差道路P1にはみ出す可能性を判断することができる。よって、車両はみ出し判断装置1は、車両2の新たな走行軌跡を算出する、後続車4に警報を出すなど、他車両の走路の妨害に先立って対策を取ることができる。これにより、車両はみ出し判断装置1は、車両2が交差道路P1にはみ出して後続車4の走路を妨害する可能性がある場面において、後続車4と接触する可能性を低減できる。 According to the vehicle protrusion determination device 1 according to the present embodiment, the possibility of the vehicle 2 protruding on the intersection road P1 is determined based on the marginal space M of the inflow road Q1 into which the vehicle 2 can enter and the size of the vehicle 2. be able to. Therefore, the vehicle protrusion determination device 1 can take measures prior to obstruction of the traveling path of other vehicles, such as calculating a new traveling locus of the vehicle 2 and issuing an alarm to the following vehicle 4. Thereby, the vehicle overhang | judgement determination apparatus 1 can reduce possibility that it will contact with the succeeding vehicle 4 in the scene where the vehicle 2 may protrude on the intersection road P1, and may obstruct the runway of the succeeding vehicle 4. FIG.
 また、車両はみ出し判断装置1によれば、車両2が交差道路P1にはみ出す可能性があると判断する場合、車両2が余裕空間Mに収まる姿勢となる走行軌跡を探索することができる。よって、車両はみ出し判断装置1は、車両2が交差道路P1にはみ出して後続車4と接触する可能性を低減できる。 Further, according to the vehicle protrusion determination device 1, when it is determined that the vehicle 2 may protrude from the intersection road P1, it is possible to search for a travel locus in which the vehicle 2 is placed in the margin space M. Therefore, the vehicle protrusion determination device 1 can reduce the possibility that the vehicle 2 protrudes on the intersection road P1 and contacts the succeeding vehicle 4.
 また、車両はみ出し判断装置1によれば、車両2が交差道路P1にはみ出す可能性があると判断する場合、交差道路P1を走行する後続車4に警報を出すことができる。よって、車両はみ出し判断装置1は、後続車4が車両2との接触を回避するための操舵や減速等の行動をとる可能性を増加できるため、後続車4と接触する可能性が低減される。 Further, according to the vehicle overhang determination device 1, when it is determined that the vehicle 2 may protrude on the intersection road P1, a warning can be issued to the following vehicle 4 traveling on the intersection road P1. Accordingly, the vehicle overhang determination device 1 can increase the possibility that the succeeding vehicle 4 takes actions such as steering and deceleration for avoiding contact with the vehicle 2, and thus the possibility of contact with the succeeding vehicle 4 is reduced. .
 また、車両はみ出し判断装置1によれば、後続車4が車両2に接近する場合に、車両2が交差道路P1にはみ出す可能性を判断することができる。これにより、車両はみ出し判断装置1は、はみ出しへの対策が不要な場面においてはみ出す可能性を判断することを省略することができ、処理負荷を低減することができる。 Further, according to the vehicle overhang determination device 1, when the succeeding vehicle 4 approaches the vehicle 2, it is possible to determine the possibility that the vehicle 2 protrudes on the intersection road P1. Thereby, the vehicle protrusion determination device 1 can omit the determination of the possibility of protrusion in a scene that does not require measures against protrusion, and can reduce the processing load.
 また、車両はみ出し判断装置1によれば、右左折先の流入道路Q1が複数の車線を有する場合、複数の車線を含む余裕空間Mを算出することができる。よって、車両2が余裕空間Mに収まる姿勢となる走行軌跡を探索する場合において、条件を満たす走行軌跡が抽出される可能性が増加するため、後続車4と接触する可能性が低減される。 Further, according to the vehicle overhang determination device 1, when the inflow road Q1 at the right / left turn destination has a plurality of lanes, a margin space M including a plurality of lanes can be calculated. Therefore, when searching for a travel locus in which the vehicle 2 is placed in the margin space M, the possibility of extracting a travel locus that satisfies the condition increases, and thus the possibility of contact with the following vehicle 4 is reduced.
 また、車両はみ出し判断装置1によれば、車両2が交差道路P1にはみ出す可能性があると判断する場合、車両2のユーザに通知を出す。これにより、例えば、車両2が余裕空間Mに収まる姿勢となる走行軌跡が、はみ出す可能性がないと判断する場合の走行軌跡(通常の走行軌跡)と異なる場合であっても、自動運転に対するユーザの違和感を低減することができる。或いは、姿勢算出部223が、ターゲット車線に向かう停止位置を、提示部25を介して車両2の運転者に通知すれば、運転者は自発的に停止位置に向けて車両2を運転することができるため、後続車4と接触する可能性が低減される。 Further, according to the vehicle overhang determination device 1, when it is determined that the vehicle 2 may protrude from the intersection road P1, a notification is given to the user of the vehicle 2. Thereby, for example, even when the travel locus in which the vehicle 2 is placed in the marginal space M is different from the travel locus (normal travel locus) when it is determined that there is no possibility of protruding, the user for automatic driving Can be reduced. Or if the attitude | position calculation part 223 notifies the driver | operator of the vehicle 2 through the presentation part 25 of the stop position which goes to a target lane, a driver | operator can drive the vehicle 2 toward a stop position voluntarily. Therefore, the possibility of contact with the following vehicle 4 is reduced.
 また、車両はみ出し判断装置1によれば、車両2と後続車4の車頭時間に基づいて、後続車4の存在を判断することができる。よって、処理回路22は、後続車4が車両2に接近するまでの時間を高精度に算出することができるため、後続車4が車両2に交錯するまでの時間を予測することができる。処理回路22は、後続車4が車両2に交錯するまでの時間を提示部25によりユーザに通知してもよく、車々間通信機24により後続車4に通知するようにしてもよい。これにより、後続車4と接触する可能性が更に低減される。 Further, according to the vehicle overhang determination device 1, it is possible to determine the presence of the subsequent vehicle 4 based on the head time of the vehicle 2 and the subsequent vehicle 4. Therefore, since the processing circuit 22 can calculate the time until the succeeding vehicle 4 approaches the vehicle 2 with high accuracy, the processing circuit 22 can predict the time until the following vehicle 4 crosses the vehicle 2. The processing circuit 22 may notify the user of the time until the following vehicle 4 crosses the vehicle 2 by the presentation unit 25 or may notify the following vehicle 4 by the inter-vehicle communication device 24. This further reduces the possibility of contact with the following vehicle 4.
 また、車両はみ出し判断装置1によれば、交差点A周辺の物体の挙動を予測し、予測した挙動に基づいて、車両2が交差道路P1にはみ出す可能性を判断することができる。よって、車両はみ出し判断装置1は、実環境における歩行者や先行車の挙動を考慮するため、はみ出す可能性の判断の精度を向上することができる。 Further, according to the vehicle overhang determination device 1, it is possible to predict the behavior of objects around the intersection A and determine the possibility that the vehicle 2 protrudes from the intersection road P1 based on the predicted behavior. Therefore, since the vehicle protrusion determination apparatus 1 considers the behavior of a pedestrian or a preceding vehicle in a real environment, it is possible to improve the accuracy of determining the possibility of protrusion.
 また、車両はみ出し判断装置1によれば、車両2の進行方向に流入道路Q1に向けて右左折する先行車が存在する場合、先行車の占有空間を予測し、占有空間を用いて流入道路Q1の余裕空間Mを算出することができる。よって、車両はみ出し判断装置1は、実環境における歩行者や先行車の挙動を考慮するため、はみ出す可能性の判断の精度を向上することができる。 Further, according to the vehicle overhang determination device 1, when there is a preceding vehicle that turns right and left toward the inflow road Q1 in the traveling direction of the vehicle 2, the occupied space of the preceding vehicle is predicted, and the inflow road Q1 is used using the occupied space. Can be calculated. Therefore, since the vehicle protrusion determination apparatus 1 considers the behavior of a pedestrian or a preceding vehicle in a real environment, it is possible to improve the accuracy of determining the possibility of protrusion.
 また、車両はみ出し判断装置1によれば、流入道路Q1が複数の車線を有する場合、複数の車線の通行区分に基づいて、余裕空間Mを算出することができる。例えば、予め設定された走行経路に対して適した車線に進入する走行軌跡を算出することにより、右左折後の車線変更を省略することができ、ユーザの利便性を向上することができる。 Further, according to the vehicle overhang determination device 1, when the inflow road Q1 has a plurality of lanes, the margin space M can be calculated based on the traffic classification of the plurality of lanes. For example, by calculating a travel locus that enters a lane suitable for a preset travel route, it is possible to omit the lane change after a right or left turn, and to improve user convenience.
 また、車両はみ出し判断装置1によれば、車両2が余裕空間Mに収まる姿勢となる走行軌跡のうち、車両2が歩行者と交錯する可能性が最も低い走行軌跡を選択することができる。即ち、処理回路22は、対象走行軌跡により進入する車線のうち、歩行者が存在する可能性が最も低い車線を候補車線又はターゲット車線として設定し得る。これにより、車両2が歩行者と交錯する可能性が更に低減される。 Further, according to the vehicle overhang determination device 1, it is possible to select a travel trajectory in which the possibility that the vehicle 2 intersects with a pedestrian is the lowest among travel trajectories in which the vehicle 2 is placed in the marginal space M. That is, the processing circuit 22 can set a lane that is least likely to be a pedestrian among the lanes that enter the target travel locus as a candidate lane or a target lane. Thereby, the possibility that the vehicle 2 intersects with the pedestrian is further reduced.
 (変形例)
 上述の実施形態において、交差点A周辺に存在する車両の位置情報と、交差点Aに設置された信号機の状態とを含む情報が、RSU3から取得される例を説明したが、データセンター等に設備されたサーバから取得されるようにしてもよい。
(Modification)
In the above-described embodiment, the example in which the information including the position information of the vehicle existing around the intersection A and the state of the traffic signal installed at the intersection A is acquired from the RSU 3 is described. It may be obtained from another server.
 図8に示すように、本実施形態の変形例に係る車両はみ出し判断装置1は、路車間通信機101の代わりに、例えばインターネットや専用回線等の通信回線を介してサーバ8と無線通信する通信機14を備える。本実施形態の変形例に係る車両はみ出し判断装置1の他の構成、作用及び効果は、上述の実施形態と実質的に同様であり、重複するため省略する。 As illustrated in FIG. 8, the vehicle protrusion determination device 1 according to the modification of the present embodiment performs communication that communicates wirelessly with the server 8 via a communication line such as the Internet or a dedicated line instead of the road-to-vehicle communication device 101. Machine 14 is provided. Other configurations, operations, and effects of the vehicle protrusion determination device 1 according to the modification of the present embodiment are substantially the same as those of the above-described embodiment, and are omitted because they overlap.
 サーバ8は、例えば、交差点A周辺に存在する複数の一般車両5の運転履歴情報を記憶する運転履歴DB81と、交差点A周辺に存在する歩行者の位置情報を記憶する歩行者DBと、交差点A周辺の交通状況を記憶する交通状況DBとを備える。 The server 8 includes, for example, a driving history DB 81 that stores driving history information of a plurality of general vehicles 5 existing around the intersection A, a pedestrian DB that stores position information of pedestrians existing around the intersection A, and the intersection A. And a traffic situation DB for storing the surrounding traffic situation.
 一般車両5は、それぞれに搭載されたカメラ、レーダ、車両センサ及び駆動部等により検出された情報を記憶する走行状態記憶部51と、走行状態記憶部21に記憶された情報を含む運転履歴情報をサーバ8に送信する通信機54とを備える。運転履歴情報は、各一般車両5の車両識別子(ID)、走行状態、周囲車両情報を含む。 The general vehicle 5 includes a driving state storage unit 51 that stores information detected by a camera, a radar, a vehicle sensor, a driving unit, and the like mounted therein, and driving history information that includes information stored in the driving state storage unit 21. Is transmitted to the server 8. The driving history information includes a vehicle identifier (ID) of each general vehicle 5, a running state, and surrounding vehicle information.
 運転履歴DB81は、各一般車両5の通信機54から送信された運転履歴情報を地図データに関連付けて記憶する。歩行者DB82は、RSU3から送信された歩行者の位置情報を地図データに関連付けて記憶する。交通状況DB83は、信号機の状態を含む交通状況を地図データに関連付けて記憶する。交通状況は、渋滞情報等、交差点A周辺の交通情報を含む。サーバ8は、車両2の要求に応じて、運転履歴DB81、歩行者DB82及び交通状況DB83にそれぞれ記憶される情報を車両2に送信する。 The driving history DB 81 stores driving history information transmitted from the communication device 54 of each general vehicle 5 in association with map data. The pedestrian DB 82 stores the pedestrian location information transmitted from the RSU 3 in association with the map data. The traffic situation DB 83 stores the traffic situation including the state of the traffic lights in association with the map data. The traffic situation includes traffic information around the intersection A such as traffic information. The server 8 transmits information stored in the driving history DB 81, the pedestrian DB 82, and the traffic situation DB 83 to the vehicle 2 in response to a request from the vehicle 2.
 通信機14は、サーバ8から送信された情報を受信することにより、少なくとも、車両2が右左折する交差点Aから所定の距離範囲の流入道路Q1に存在する物体の位置情報を検出する検出器として機能する。これにより、周囲環境記憶部20は、車両2の進行方向において直近の交差点A周辺に存在する物体の位置情報と、交差点Aに設置された信号機の状態とを記憶する。 The communicator 14 receives at least the information transmitted from the server 8 and detects at least the position information of the object existing on the inflow road Q1 within a predetermined distance range from the intersection A where the vehicle 2 turns right and left. Function. Thereby, the surrounding environment storage unit 20 stores the position information of the object existing around the nearest intersection A in the traveling direction of the vehicle 2 and the state of the traffic lights installed at the intersection A.
 なお、運転履歴DB81、歩行者DB82及び交通状況DB83は、それぞれ別個のサーバから構成され、互いに協働することにより単一のサーバ8として機能するようにしてもよい。 The driving history DB 81, the pedestrian DB 82, and the traffic situation DB 83 may be configured by separate servers, and may function as a single server 8 by cooperating with each other.
 (その他の実施形態)
 上記のように、本発明を上記の実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by said embodiment, it should not be understood that the statement and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 例えば、既に述べた実施形態において、車両2が交差点Aで左折する場面を、図2を用いて説明したが、車両はみ出し判断装置1は、図9に示すように、車両2が交差点Aで右折する場面であっても同様に適用可能である。 For example, in the above-described embodiment, the scene in which the vehicle 2 turns left at the intersection A has been described with reference to FIG. 2, but the vehicle overrun determination device 1 makes a right turn at the intersection A as shown in FIG. 9. The same applies to scenes to be performed.
 即ち、車両はみ出し判断装置1は、交差点Aで右折すると判断した場合において、右折先の流入道路Q2に交差する交差道路P2に対向車(他車両)6が存在するか否かを判断する。車両はみ出し判断装置1は、流入道路Q2における余裕空間Mを算出し、交差点Aを右折する先行車が存在すれば先行車の占有空間を用いて余裕空間Mを補正する。よって、車両はみ出し判断装置1は、余裕空間Mと車両2とに基づいて、車両2が交差道路P2にはみ出す可能性を判断することができる。 That is, when the vehicle protrusion determination device 1 determines to turn right at the intersection A, the vehicle protrusion determination device 1 determines whether there is an oncoming vehicle (another vehicle) 6 on the intersection road P2 that intersects the inflow road Q2 at the right turn destination. The vehicle overrun determination device 1 calculates the margin space M on the inflow road Q2, and corrects the margin space M using the occupied space of the preceding vehicle if there is a preceding vehicle turning right at the intersection A. Therefore, the vehicle protrusion determination device 1 can determine the possibility that the vehicle 2 protrudes from the intersection road P2 based on the margin space M and the vehicle 2.
 上記のように、既に述べた実施形態では、右折時における対向車線を走行する車両との接触の可能性が低減できる効果や、左折時における自車両の後ろを走行する車両との接触の可能性が低減できる効果を挙げたが、これに限定されるものではない。例えば、対向車線がない道路において右折する場合においては、後続車両との接触の可能性が低減できる効果がある。また、左折時に対向車線を跨いで走行する道路環境(右側通行の道路)においては、対向車両との接触の可能性が低減できる。 As described above, in the embodiment described above, the effect of reducing the possibility of contact with a vehicle traveling on the opposite lane when turning right, and the possibility of contact with the vehicle traveling behind the host vehicle when turning left However, the present invention is not limited to this. For example, when making a right turn on a road without an oncoming lane, there is an effect of reducing the possibility of contact with the following vehicle. Further, in a road environment (a right-hand traffic road) that travels across the opposite lane when making a left turn, the possibility of contact with the oncoming vehicle can be reduced.
 また、既に述べた実施形態において、道路構造に基づいて始めに取得される余裕空間Mの余裕長L1を、流入道路Q1の始端から横断歩道までの距離として説明したが、例示である。例えば、図10に示すように、余裕長L1は、流入道路Q1の始端から流入道路Q1に存在する先行車7までの距離であってもよい。これにより、流入道路Q1に横断歩道が存在しない場合や、渋滞、駐車車両又は道路工事等により車両2が進入可能な流入道路Q1の余裕が制限される場合であっても、余裕空間Mの算出精度を向上することができる。 In the above-described embodiment, the margin length L1 of the margin space M acquired first based on the road structure has been described as the distance from the starting end of the inflow road Q1 to the pedestrian crossing. For example, as shown in FIG. 10, the margin length L1 may be a distance from the starting end of the inflow road Q1 to the preceding vehicle 7 existing on the inflow road Q1. Thereby, even when there is no pedestrian crossing on the inflow road Q1 or when the margin of the inflow road Q1 into which the vehicle 2 can enter is restricted due to traffic jams, parked vehicles or road construction, etc., the margin space M is calculated. Accuracy can be improved.
 また、既に述べた実施の形態において、車々間通信機24は、周囲車両の情報を取得するようにしてもよく、これにより検出器10の一部として機能するようにしてもよい。 In the above-described embodiment, the inter-vehicle communication device 24 may acquire information on surrounding vehicles, and may thereby function as a part of the detector 10.
 上述の実施形態に記載される各機能は、1または複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理回路は、また、記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や回路部品等の装置を含むようにしてもよい。 Each function described in the above embodiment can be implemented by one or a plurality of processing circuits. The processing circuit includes a programmed processing device such as a processing device including an electrical circuit. The processing circuitry may also include devices such as application specific integrated circuits (ASICs) and circuit components arranged to perform the described functions.
 その他、上記の各構成を相互に応用した構成等、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 Of course, the present invention includes various embodiments and the like that are not described here, such as a configuration in which the above-described configurations are mutually applied. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
1 車両はみ出し判断装置
2 車両
4 後続車(他車両)
6 対向車(他車両)
10 検出器
22 処理回路
A 交差点
M 余裕空間
P1,P2 交差道路
Q1,Q2 流入道路
1 Vehicle protrusion judgment device 2 Vehicle 4 Car (following vehicle)
6 Oncoming vehicles (other vehicles)
10 detector 22 processing circuit A intersection M marginal space P1, P2 intersection road Q1, Q2 inflow road

Claims (7)

  1.  車両が交差点を右折又は左折する際、前記車両が曲がる先の流入道路と交わる交差道路にはみ出す可能性を判断する車両はみ出し判断方法であって、
     前記交差点から所定の距離範囲の前記流入道路に存在する物体の位置情報と、前記流入道路の道路構造とに基づいて、前記車両が進入可能な前記流入道路の余裕空間を算出し、
     前記余裕空間と前記車両の大きさとに基づいて、前記車両が前記交差道路にはみ出す可能性を判断することを特徴とする車両はみ出し判断方法。
    When a vehicle turns right or left at an intersection, the vehicle is an overrun determination method for determining the possibility of protruding on an intersection road that intersects an inflow road to which the vehicle turns.
    Based on the position information of the object existing on the inflow road within a predetermined distance range from the intersection and the road structure of the inflow road, the margin space of the inflow road into which the vehicle can enter is calculated,
    A vehicle overrun determination method, characterized in that, based on the margin space and the size of the vehicle, the possibility of the vehicle overhanging the intersection road is determined.
  2.  前記車両がはみ出す可能性があると判断する場合、前記車両が前記余裕空間に収まる姿勢となる走行軌跡を探索することを特徴とする請求項1に記載の車両はみ出し判断方法。 The vehicle protrusion determination method according to claim 1, wherein when it is determined that the vehicle may protrude, a vehicle trajectory in which the vehicle is in an attitude that fits in the margin space is searched.
  3.  前記車両がはみ出す可能性があると判断する場合、前記交差道路を走行する他車両に警報を出すことを特徴とする請求項1又は2に記載の車両はみ出し判断方法。 3. The vehicle overhang determination method according to claim 1 or 2, wherein when it is determined that the vehicle may protrude, an alarm is issued to another vehicle traveling on the intersection road.
  4.  前記車両の後続車が前記車両に接近する場合、前記車両がはみ出す可能性を判断することを特徴とする請求項1乃至3の何れか1項に記載の車両はみ出し判断方法。 4. The vehicle overrun determination method according to any one of claims 1 to 3, wherein when a vehicle following the vehicle approaches the vehicle, the possibility of the vehicle overhang is determined.
  5.  前記流入道路が複数の車線を有する場合、前記複数の車線を含む前記余裕空間を算出することを特徴とする請求項1乃至4の何れか1項に記載の車両はみ出し判断方法。 5. The vehicle overrun determination method according to any one of claims 1 to 4, wherein, when the inflow road has a plurality of lanes, the margin space including the plurality of lanes is calculated.
  6.  前記車両がはみ出す可能性があると判断する場合、前記車両のユーザに通知を出すことを特徴とする請求項1乃至5の何れか1項に記載の車両はみ出し判断方法。 6. The vehicle protrusion determination method according to claim 1, wherein when it is determined that the vehicle is likely to protrude, a notification is issued to a user of the vehicle.
  7.  車両が交差点を右折又は左折する際、前記車両が曲がる先の流入道路と交わる交差道路にはみ出す可能性を判断する処理回路と、前記交差点から所定の距離範囲の前記流入道路に存在する物体の位置情報を検出する検出器とを備える車両はみ出し判断装置であって、
     前記処理回路は、前記位置情報と前記流入道路の道路構造とに基づいて、前記車両が進入可能な前記流入道路の余裕空間を算出し、前記余裕空間と前記車両の大きさとに基づいて、前記車両が前記交差道路にはみ出す可能性を判断することを特徴とする車両はみ出し判断装置。
    When a vehicle turns right or left at an intersection, a processing circuit that determines the possibility of the vehicle protruding to an intersection road that intersects the inflow road to which the vehicle turns, and a position of an object existing on the inflow road within a predetermined distance from the intersection A vehicle protrusion determination device comprising a detector for detecting information,
    The processing circuit calculates a margin space of the inflow road into which the vehicle can enter based on the position information and a road structure of the inflow road, and based on the margin space and the size of the vehicle, A vehicle overrun determination device that determines the possibility of a vehicle overhanging the intersection road.
PCT/JP2016/080371 2016-10-13 2016-10-13 Vehicle protrusion determination method and vehicle protrusion determination device WO2018070015A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018544641A JP6721054B2 (en) 2016-10-13 2016-10-13 Vehicle protrusion determination method and vehicle protrusion determination device
PCT/JP2016/080371 WO2018070015A1 (en) 2016-10-13 2016-10-13 Vehicle protrusion determination method and vehicle protrusion determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080371 WO2018070015A1 (en) 2016-10-13 2016-10-13 Vehicle protrusion determination method and vehicle protrusion determination device

Publications (1)

Publication Number Publication Date
WO2018070015A1 true WO2018070015A1 (en) 2018-04-19

Family

ID=61905407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080371 WO2018070015A1 (en) 2016-10-13 2016-10-13 Vehicle protrusion determination method and vehicle protrusion determination device

Country Status (2)

Country Link
JP (1) JP6721054B2 (en)
WO (1) WO2018070015A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101745A (en) * 2018-12-25 2020-07-02 株式会社デンソー Map data generation device, on-vehicle machine, map data generation system, map data generation program, map data use program and storage medium
CN114206699A (en) * 2019-06-14 2022-03-18 日产自动车株式会社 Vehicle travel control method and travel control device
US20220281451A1 (en) * 2021-03-04 2022-09-08 GM Global Technology Operations LLC Target vehicle state identification for automated driving adaptation in vehicles control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416915A (en) * 1987-07-10 1989-01-20 Aisin Aw Co Intersection information output system for navigation system
JP2005138748A (en) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd Device for controlling travel for vehicle
JP2009146288A (en) * 2007-12-17 2009-07-02 Toyota Motor Corp Travel supporting device for vehicle
JP2009265755A (en) * 2008-04-22 2009-11-12 Toyota Motor Corp Traveling support system and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782708B2 (en) * 2010-12-03 2015-09-24 日産自動車株式会社 Driving support device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416915A (en) * 1987-07-10 1989-01-20 Aisin Aw Co Intersection information output system for navigation system
JP2005138748A (en) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd Device for controlling travel for vehicle
JP2009146288A (en) * 2007-12-17 2009-07-02 Toyota Motor Corp Travel supporting device for vehicle
JP2009265755A (en) * 2008-04-22 2009-11-12 Toyota Motor Corp Traveling support system and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101745A (en) * 2018-12-25 2020-07-02 株式会社デンソー Map data generation device, on-vehicle machine, map data generation system, map data generation program, map data use program and storage medium
WO2020137380A1 (en) * 2018-12-25 2020-07-02 株式会社デンソー Map data generation device, in-vehicle device, map data generation system, map data generation program, program for using map data, and storage medium
JP7238393B2 (en) 2018-12-25 2023-03-14 株式会社デンソー Map data generation device, map data generation system, map data generation program and storage medium
CN114206699A (en) * 2019-06-14 2022-03-18 日产自动车株式会社 Vehicle travel control method and travel control device
US11524704B2 (en) 2019-06-14 2022-12-13 Nissan Motor Co., Ltd. Vehicle travel control method and travel control device
US20220281451A1 (en) * 2021-03-04 2022-09-08 GM Global Technology Operations LLC Target vehicle state identification for automated driving adaptation in vehicles control

Also Published As

Publication number Publication date
JPWO2018070015A1 (en) 2019-07-25
JP6721054B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6566132B2 (en) Object detection method and object detection apparatus
US11433894B2 (en) Driving assistance method and driving assistance device
WO2018134973A1 (en) Vehicle behavior prediction method and vehicle behavior prediction apparatus
KR20190014871A (en) Apparatus and method for changing driving route of a vehicle based on a emergency vehicle located at the rear of the vehicle
WO2021070451A1 (en) Vehicle control device, vehicle control method, autonomous driving device, and autonomous driving method
WO2020008220A1 (en) Travel trajectory generation method and travel trajectory generation device
CN109917783B (en) Driving support device
JP7251611B2 (en) Mobile object behavior prediction method, behavior prediction device, and vehicle
RU2755425C1 (en) Method for assisting the movement of a vehicle and apparatus for assisting the movement of a vehicle
US11541892B2 (en) Vehicle control method and vehicle control device
JP2015032028A (en) Driving support device and driving support method
JP7037956B2 (en) Vehicle course prediction method, vehicle travel support method, and vehicle course prediction device
CN114516329A (en) Vehicle adaptive cruise control system, method, and computer readable medium
JP2017001596A (en) Stop position setting device and method
WO2018070015A1 (en) Vehicle protrusion determination method and vehicle protrusion determination device
CN114194186B (en) Vehicle travel control device
JP2019073039A (en) Vehicle control device
JP7129495B2 (en) Driving support method and driving support device
JP7259939B2 (en) Behavior prediction method, behavior prediction device, and vehicle control device
JP7145178B2 (en) Travel control device, travel control method and program
JP7334107B2 (en) Vehicle control method and vehicle control device
JP7143893B2 (en) Vehicle behavior prediction method and vehicle behavior prediction device
JP7398236B2 (en) Vehicle control method and vehicle control device
JP7374722B2 (en) Driving support method and driving support device
JP7277202B2 (en) Vehicle behavior prediction method, vehicle behavior prediction device, and vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018544641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918819

Country of ref document: EP

Kind code of ref document: A1