WO2018062249A1 - 無線端末及び基地局 - Google Patents

無線端末及び基地局 Download PDF

Info

Publication number
WO2018062249A1
WO2018062249A1 PCT/JP2017/034905 JP2017034905W WO2018062249A1 WO 2018062249 A1 WO2018062249 A1 WO 2018062249A1 JP 2017034905 W JP2017034905 W JP 2017034905W WO 2018062249 A1 WO2018062249 A1 WO 2018062249A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc
base station
wireless terminal
response
enb
Prior art date
Application number
PCT/JP2017/034905
Other languages
English (en)
French (fr)
Inventor
真人 藤代
空悟 守田
真裕美 甲村
ヘンリー チャン
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018542627A priority Critical patent/JP6768816B2/ja
Publication of WO2018062249A1 publication Critical patent/WO2018062249A1/ja
Priority to US16/369,149 priority patent/US11246185B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers
    • H04W88/023Selective call receivers with message or information receiving capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • H04W74/06Scheduled access using polling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers

Definitions

  • the present invention relates to a radio terminal and a base station used in a mobile communication system.
  • the radio terminal UE: User Equipment
  • RRC Radio Resource ControlRC state
  • RRC idle state is defined.
  • a radio terminal in the RRC connected state is assigned a radio resource from a base station (eNB: evolved Node-B), and communicates with the base station using the assigned radio resource.
  • eNB evolved Node-B
  • the radio terminal in the RRC idle state performs limited operations such as paging reception. Therefore, processing performed by the base station for the wireless terminal differs depending on the RRC state of the wireless terminal. Therefore, the RRC state of the wireless terminal and the RRC state recognized by the base station need to match.
  • a radio terminal detects a radio problem of communication with a base station in an RRC connected state, and attempts to recover from the radio problem, and according to the success of the recovery,
  • a transmission unit that transmits a polling signal for confirming whether or not the base station regards the RRC state as the RRC connected state to the base station.
  • the control unit maintains the RRC connected state in response to receiving a response signal to the polling signal from the base station.
  • the base station includes a transmitter that performs initial transmission and retransmission of a downlink signal to a wireless terminal, and the wireless terminal according to whether a response signal to the downlink signal is received from the wireless terminal. And a control unit that determines whether or not is in the RRC connected state.
  • the transmission unit performs the retransmission at least once after a predetermined time has elapsed from the initial transmission.
  • the predetermined time is equal to or longer than a time from when the wireless terminal detects a wireless problem in communication with the base station until it is determined that a wireless link failure has occurred.
  • a radio terminal receives a RRC connection release message from a base station that instructs a transition from an RRC connected state to an RRC idle state, and receives the RRC connection release message in response to the RRC connection release message.
  • a transmission unit that transmits a response message to the connection release message to the base station, and a control unit that transitions from the RRC connected state to the RRC idle state in response to confirming delivery of the response message.
  • FIG. 1 is a diagram illustrating a configuration of an LTE (Long Term Evolution) system that is a mobile communication system according to an embodiment.
  • the LTE system is a mobile communication system based on the 3GPP standard.
  • the LTE system includes a radio terminal (UE: User Equipment) 100, a radio access network (E-UTRAN: Evolved-UMTS Terrestrial Radio Access Network) 10, and a core network (EPC: Evolved Packet Core) 20. Is provided.
  • UE User Equipment
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 is a mobile communication device.
  • the UE 100 performs radio communication with the eNB 200 that manages a cell (serving cell) in which the UE 100 is located.
  • the E-UTRAN 10 includes a base station (eNB: evolved Node-B) 200.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 manages one or a plurality of cells.
  • eNB200 performs radio
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a wireless communication area.
  • the “cell” is also used as a term indicating a function or resource for performing wireless communication with the UE 100.
  • the EPC 20 includes a mobility management entity (MME) and a serving gateway (S-GW) 300.
  • MME performs various mobility control etc. with respect to UE100.
  • the MME manages information on a tracking area (TA) in which the UE 100 is located by communicating with the UE 100 using NAS (Non-Access Stratum) signaling.
  • the MME performs paging of the UE 100 on a tracking area basis.
  • the S-GW performs data transfer control.
  • the MME and S-GW are connected to the eNB 200 via the S1 interface.
  • FIG. 2 is a diagram illustrating a configuration of the UE 100 (wireless terminal). As illustrated in FIG. 2, the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiving unit 110 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal).
  • the receiver outputs a baseband signal to control unit 130.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmission unit 120 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 130 into a radio signal.
  • the transmitter transmits a radio signal from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes at least one processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes processing to be described later.
  • FIG. 3 is a diagram illustrating a configuration of the eNB 200 (base station). As illustrated in FIG. 3, the eNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmission unit 210 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 230 into a radio signal.
  • the transmitter transmits a radio signal from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiving unit 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal).
  • the receiver outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the eNB 200.
  • the control unit 230 includes at least one processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes processing to be described later.
  • the backhaul communication unit 240 is connected to the adjacent eNB via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the backhaul communication unit 240 is used for communication performed on the X2 interface, communication performed on the S1 interface, and the like.
  • FIG. 4 is a diagram showing a configuration of a protocol stack of a radio interface in the LTE system.
  • the radio interface protocol is divided into first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer constitute an AS (Access Stratum) layer.
  • the PHY layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and resource blocks allocated to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the PHY layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, data and control information are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control information.
  • RRC signaling for various settings is transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the eNB 200
  • the UE 100 is in the RRC connected state.
  • RRC connection between the RRC of the UE 100 and the RRC of the eNB 200
  • the UE 100 is in the RRC idle state.
  • the NAS layer located above the RRC layer performs session management and mobility management.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the MME 300C.
  • the UE 100 has functions such as an application layer in addition to the radio interface protocol.
  • FIG. 5 is a diagram showing a configuration of a radio frame used in the LTE system.
  • the radio frame is composed of 10 subframes on the time axis.
  • Each subframe is composed of two slots on the time axis.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) on the frequency axis, and includes a plurality of symbols on the time axis.
  • Each resource block includes a plurality of subcarriers on the frequency axis.
  • one RB is configured by 12 subcarriers and one slot.
  • One symbol and one subcarrier constitute one resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting downlink control information.
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink data.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the eNB 200 basically transmits downlink control information (DCI) to the UE 100 using the PDCCH, and transmits downlink data to the UE 100 using the PDSCH.
  • the DCI carried by the PDCCH includes uplink scheduling information, downlink scheduling information, and a TPC command.
  • the uplink scheduling information is scheduling information (UL grant) related to uplink radio resource allocation
  • the downlink scheduling information is scheduling information related to downlink radio resource allocation.
  • the TPC command is information instructing increase / decrease in uplink transmission power.
  • the eNB 200 includes, in the DCI, the CRC bits scrambled with the identifier (RNTI: Radio Network Temporary ID) of the destination UE 100 in order to identify the destination UE 100 of the DCI.
  • RTI Radio Network Temporary ID
  • Each UE 100 performs a CRC check on the DCI that may be destined for the own UE after performing descrambling with the RNTI of the own UE, thereby performing blind decoding on the PDCCH, and detects the DCI destined for the own UE.
  • the PDSCH carries downlink data using downlink radio resources (resource blocks) indicated by the downlink scheduling information.
  • both ends in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCH) for transmitting uplink control information.
  • the remaining part in each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting uplink data.
  • PUSCH physical uplink shared channel
  • the UE 100 basically transmits uplink control information (UCI) to the eNB 200 using the PUCCH, and transmits uplink data to the eNB 200 using the PUSCH.
  • UCI carried by PUCCH includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), scheduling request (SR), and HARQ ACK / NACK.
  • CQI is an index indicating downlink channel quality, and is used for determining an MCS to be used for downlink transmission.
  • PMI is an index indicating a precoder matrix that is preferably used for downlink transmission.
  • the RI is an index indicating the number of layers (number of streams) that can be used for downlink transmission.
  • SR is information for requesting allocation of PUSCH resources.
  • HARQ ACK / NACK is delivery confirmation information indicating whether downlink data has been correctly received.
  • a mismatch may occur between the UE and the eNB regarding the RRC state of the UE.
  • FIG. 6 is a diagram illustrating an example of a scenario in which RRC state mismatch occurs.
  • the RRC state of the UE is an RRC connected state (step S1).
  • step S2 downlink radio quality (DL radio quality) between the UE and the eNB deteriorates.
  • the eNB may detect the degradation based on CQI feedback or the like from the UE.
  • the UE detects a radio problem due to degradation of downlink radio quality.
  • step S3 the eNB transmits an RRC connection release message instructing a transition from the RRC connected state to the RRC idle state to the UE.
  • step S4 the UE fails to decode the RRC connection release message due to degradation of downlink radio quality. In other words, the UE cannot receive the RRC connection release message because a radio problem has occurred. The UE does not know whether the eNB has transmitted the RRC Connection Release message while the radio problem is occurring.
  • step S5 the eNB considers that the UE has transitioned to the RRC idle state in response to the transmission of the RRC connection release message.
  • the eNB may perform retransmission processing of the RRC connection release message (downlink signal) in the MAC layer or the RLC layer.
  • the RLC layer performs ARQ retransmission.
  • the eNB may consider that the UE has transitioned to the RRC idle state. In other words, the eNB considers that the radio link failure (RLF) has occurred in the UE due to reaching the RLC retransmission upper limit, and determines that the UE has transitioned to the RRC idle state.
  • RLF radio link failure
  • step S6 the downlink radio quality between the UE and the eNB is improved. Since the eNB recognizes that the UE is in the RRC idle state, the eNB does not notice that the downlink radio quality has improved.
  • step S7 the UE recovers from the radio problem by maintaining the downlink radio quality, and maintains the RRC connected state. That is, the UE maintains the RRC connected state without detecting the RLF due to recovery from the radio problem.
  • step S8 the eNB transmits a paging message to the UE according to the procedure in the RRC idle state.
  • the UE since the UE is actually in the RRC connected state and is not operating according to the procedure of the RRC idle state, the UE fails to receive the paging message. As a result, a situation in which paging of the UE becomes impossible occurs.
  • FIG. 7 is a diagram illustrating an operation of the UE when a radio problem occurs.
  • the UE in the RRC connected state detects a radio problem in response to receiving “out of sync” indication from the lower layer continuously for a predetermined number of times during normal operation. Then, the timer T310 is started.
  • the value of the timer T310 (“T 1 ” time shown in FIG. 7) can be set from the eNB to the UE by SIB (system information block).
  • SIB system information block
  • the UE detects recovery from the radio problem in response to continuously receiving “in sync” indication from the lower layer for a predetermined number of times, and stops the timer T310.
  • the UE determines that a radio link failure (RLF) has occurred.
  • RLF radio link failure
  • the stage from the detection of the radio problem to the detection of RLF is referred to as First Phase.
  • the UE maintains the RRC connected state and maintains the radio resource settings.
  • timer T311 (“T 2 ” time shown in FIG. 7) may be set from eNB to UE by SIB.
  • the UE performs a cell selection operation during the operation of the timer T311, stops the timer T311 in response to selecting an appropriate cell, and transmits an RRC connection re-establishment request message to the cell.
  • the timer T311 expires without selecting an appropriate cell, the UE transitions from the RRC connected state to the RRC idle state.
  • the stage from the detection of RLF to the transition to the RRC idle state is referred to as Second Phase.
  • the UE100 which concerns on 1st Embodiment detects the radio
  • the control part 130 which tries to recover
  • the control unit 130 maintains the RRC connected state in response to receiving a response signal to the polling signal from the eNB 200.
  • the polling signal may be a polling message transmitted / received in a layer higher than the physical layer (for example, MAC, RLC, PDCP, or RRC).
  • a scheduling request (SR) transmitted / received in the physical layer may be used as a polling signal.
  • SR scheduling request
  • a signal that is different from the SR and transmitted by PUCCH or PUSCH may be used as the polling signal.
  • the upper layer may instruct the lower layer (for example, the physical layer) to transmit a polling signal.
  • the UE 100 can confirm whether or not the eNB 200 regards the RRC state of the UE 100 as the RRC connected state. And when the response signal with respect to a polling signal is received from eNB200, UE100 can recognize that eNB200 considers its RRC state as an RRC connected state, and can maintain a RRC connected state. Therefore, it is possible to prevent a mismatch between the UE 100 and the eNB 200 regarding the RRC state of the UE 100.
  • the transmission unit 120 of the UE 100 transmits a polling signal to the eNB 200 according to the success of recovery from the radio problem regardless of the presence or absence of uplink data to be transmitted to the eNB 200.
  • the general UE 100 transmits a scheduling request (SR) to the eNB 200.
  • SR scheduling request
  • the eNB 200 regards the RRC state of the UE 100 as the RRC connected state
  • the UE 100 can maintain the RRC connected state because uplink resources are allocated from the eNB 200.
  • transmission of SR is conditional on the presence of uplink data, such a method cannot be applied when there is no uplink data to be transmitted to eNB 200. Therefore, in the first embodiment, the UE 100 transmits a polling signal to the eNB 200 in response to successful recovery from the radio problem even when there is no uplink data to be transmitted to the eNB 200. Thereby, it is applicable even when there is no uplink data to be transmitted to the eNB 200.
  • control unit 130 of the UE 100 transitions from the RRC connected state to the RRC idle state when the response signal is not received within the first predetermined time from when the polling signal is transmitted or when the polling signal transmission is determined. To do.
  • the UE 100 when the UE 100 does not receive a response signal to the polling signal, the UE 100 can recognize that the eNB 200 regards its own RRC state as the RRC idle state. Therefore, in such a case, it is possible to prevent a mismatch between the UE 100 and the eNB 200 regarding the RRC state of the UE 100 by causing the UE 100 to transition from the RRC connected state to the RRC idle state.
  • the first predetermined time may be set from the eNB 200 to the UE 100.
  • the eNB 200 may set the first predetermined time in the UE 100 by broadcast signaling (for example, SIB), or may set the first predetermined time in the UE 100 by dedicated signaling addressed to the UE 100 (for example, RRC Connection Reconfiguration message). Good.
  • the control unit 130 may determine whether or not the elapsed time from the detection of the radio problem until the recovery is successful exceeds a second predetermined time.
  • the transmission unit 120 may transmit a polling signal to the eNB 200 in response to successful recovery from the radio problem only when the elapsed time exceeds the second predetermined time.
  • the control unit 130 may determine the second predetermined time based on the duration for which the eNB 200 continues the retransmission to the UE 100.
  • the eNB 200 when the UE 100 detects a radio problem, the eNB 200 performs a retransmission process of a downlink signal (for example, RRC Connection Release). While the eNB 200 continues the retransmission, since the eNB 200 regards the RRC state of the UE 100 as the RRC connected state, it is not necessary to transmit a polling signal. Therefore, the UE 100 validates the transmission of the polling signal only when the elapsed time from the detection of the radio problem to the successful recovery exceeds the second predetermined time. Thereby, it is possible to prevent useless transmission of polling signals.
  • a downlink signal for example, RRC Connection Release
  • FIG. 8 is a diagram illustrating an operation example according to the first embodiment.
  • a process indicated by a broken line in FIG. 8 indicates a process that is not essential.
  • the RRC state of the UE 100 is an RRC connected state (step S101).
  • step S102 the eNB 200 transmits a timer value (Timer B value) corresponding to the first predetermined time to the UE 100.
  • the UE 100 stores the timer value (Timer B value) received from the eNB 200.
  • the UE 100 sets a timer value (Timer A value) corresponding to the second predetermined time.
  • the UE 100 determines the second predetermined time based on the duration during which the eNB 200 continues retransmission to the UE 100.
  • ARQ retransmission in the RLC layer is assumed as retransmission processing.
  • the eNB 200 performs retransmission within a range up to the maximum number of retransmissions at a predefined time interval (for example, 8 ms interval).
  • a parameter (maxRetxThreshold) indicating the maximum number of retransmissions is set from the eNB 200 to the UE 100.
  • step S104 the downlink radio quality (DL radio quality) between the UE 100 and the eNB 200 deteriorates.
  • the UE 100 detects a radio problem due to degradation of downlink radio quality.
  • the UE 100 starts a timer (Timer A) corresponding to the second predetermined time.
  • step S105 the downlink radio quality between the UE 100 and the eNB 200 is improved.
  • the UE 100 recovers from the radio problem by improving the downlink radio quality.
  • step S106 the UE 100 confirms whether or not the timer (Timer A) corresponding to the second predetermined time has expired.
  • step S107 the UE 100 determines to transmit a polling signal.
  • the UE 100 starts a timer (Timer B) corresponding to the first predetermined time. That is, the UE 100 starts a timer (Timer B) when attempting to transmit a polling signal.
  • UE100 may start a timer (Timer B) at the time of transmitting a polling signal.
  • the UE 100 transmits a polling signal to the eNB 200.
  • the polling signal is a polling message or SR.
  • the polling message includes at least one of RRC Transaction ID, Cause Value, timing information at the time of occurrence and / or recovery of a radio problem, and UE identifier (for example, C-RNTI).
  • the Cause Value is, for example, information such as “Recovered from radio problem (Radio problem recovery)” or “Radio problem lasted for a timer A period (Radio problem long threshold)”.
  • the timing information may be a subframe number or a system frame number (SFN), or a combination thereof (for example, SFN ⁇ 10 + subframe #).
  • step S109 when the eNB 200 regards the RRC state of the UE 100 as the RRC connected state, the eNB 200 transmits a response signal to the polling signal to the UE 100.
  • the response signal is a polling response or UL grant.
  • UL grant indicates an uplink resource assigned by the eNB 200 to the UE 100.
  • the eNB 200 does not notice the polling signal, and thus does not transmit a response signal to the UE 100.
  • the polling response includes at least one of an RRC Transaction ID, an IE that indicates that the RRC is connected, an identifier of the UE (eg, C-RNTI), and the current DL retransmission number of the eNB.
  • the IE that indicates that the RRC is connected is, for example, an IE such as “Still-connected ENUM (true) OPTIONAL”.
  • the current DL retransmission count of the eNB is used to prevent a misregistration of the retransmission count with the UE 100 when the eNB 200 repeats DL transmission during a radio problem.
  • step S111 If the UE 100 receives a response signal (step S111: YES) before the timer (Timer B) expires (step S110: NO), the UE 100 maintains the RRC connected state in step S112. Further, the UE 100 stops the timer (Timer B).
  • step S110: YES when the timer (Timer B) expires without receiving the response signal (step S110: YES), the UE 100 transitions from the RRC connected state to the RRC idle state in step S113. Further, the UE 100 stops the timer (Timer B).
  • the UE 100 may be prohibited from transmitting a polling signal again while the timer (Timer B) is operating. By not retransmitting the polling signal during the Timer B operation, the amount of signaling can be reduced. Further, when the timer (Timer B) expires, the UE 100 may detect a radio problem even once during the timer operation, and may transmit a polling signal again in response to the recovery of the radio problem. Assuming a case where the UE 100 cannot receive a response signal due to a radio problem occurring during the Timer B operation, the UE 100 becomes unclear whether it can continue to maintain the RRC connected state. Therefore, if a radio problem occurs during Timer B operation and no response signal is received even after waiting for Timer B, UE 100 does not transition to the RRC idle state, but polls again. A signal may be transmitted.
  • Timer B is a timer that defines the waiting time of the response signal.
  • a timer that regulates the polling signal transmission prohibition time may be used separately from Timer B.
  • the other timer may be started at the same timing as Timer B, or may be started at a timing different from Timer B.
  • the UE 100 is in the RRC connected state according to whether or not the transmission unit 210 that performs initial transmission and retransmission of the downlink signal to the UE 100 and a response signal to the downlink signal are received from the UE 100. And a control unit 230 that determines whether or not.
  • the transmission unit 210 performs retransmission at least once after a predetermined time has elapsed from the initial transmission.
  • the predetermined time is equal to or longer than the time (that is, the value of timer T310) from when UE 100 detects a radio problem of communication with eNB 200 until UE 100 determines that the radio link failure (RLF).
  • the predetermined time may be the time from when the UE 100 detects a radio problem of communication with the eNB 200 until the UE 100 transitions to the RRC idle state (that is, the total value of the timer T310 and the timer T311).
  • FIG. 9 is a diagram illustrating an operation example according to the second embodiment.
  • processing indicated by a broken line indicates processing that is not essential.
  • the RRC state of the UE 100 is an RRC connected state (step S201).
  • maxRetxThreshold is “4” (4 retransmissions) will be described.
  • step S202 the downlink radio quality between the UE 100 and the eNB 200 deteriorates.
  • the UE 100 detects a radio problem due to deterioration of downlink radio quality, and starts a timer T310.
  • step S203 the eNB 200 performs initial transmission of a downlink signal to the UE 100 (initial transmission).
  • the downlink signal may be an RRC Connection Release message.
  • the UE 100 since the UE 100 has not recovered from the radio problem, the UE 100 fails to receive the downlink signal and does not transmit ACK (ARQ ACK) to the eNB 200.
  • ARQ ACK ACK
  • step S204 the eNB 200 starts a timer at the time of initial transmission.
  • the value of the timer T310 set in the UE 100 is set (w / T310 value, where “w /” is an abbreviation of “with”).
  • the total value of the timers T310 and T311 set in the UE 100 may be set in the timer.
  • the eNB 200 sets a counter (RETX_COUNT) indicating the number of retransmissions to zero at the time of initial transmission of a PDU (Protocol Data Unit) corresponding to a downlink signal.
  • RETX_COUNT indicating the number of retransmissions to zero at the time of initial transmission of a PDU (Protocol Data Unit) corresponding to a downlink signal.
  • step S205 the eNB 200 performs the first retransmission (1st ReTx) of the downlink signal in response to not receiving the ACK from the UE 100. Also, the eNB 200 increments a counter (RETX_COUNT). Since the UE 100 has not yet recovered from the radio problem, the UE 100 fails to receive the downlink signal and does not transmit an ACK to the eNB 200.
  • RETX_COUNT a counter
  • step S206 the eNB 200 performs the second retransmission (2nd ReTx) of the downlink signal in response to not receiving the ACK from the UE 100. Also, the eNB 200 increments a counter (RETX_COUNT). Since the UE 100 has not yet recovered from the radio problem, the UE 100 fails to receive the downlink signal and does not transmit an ACK to the eNB 200.
  • RETX_COUNT a counter
  • step S207 the UE 100 recovers from the radio problem during the operation of the timer T310, and maintains the RRC connected state.
  • step S208 the eNB 200 detects that the timer set in step S204 has expired.
  • step S209 the eNB 200 performs downlink signal retransmission (last ReTx), that is, the last retransmission in response to the expiration of the timer. Also, the eNB 200 increments a counter (RETX_COUNT). Due to the last retransmission, the counter (RETX_COUNT) reaches maxRetxThreshold. As an example, when the timer T310 is set to 50 ms, the eNB 200 performs the last retransmission after the elapse of 50 ms from the initial transmission.
  • ENB 200 recognizes that UE 100 is in the RRC connected state when the delivery of the last retransmission is confirmed (that is, when ACK is received from UE 100).
  • eNB 200 recognizes that UE 100 is in the RRC idle state when the delivery of the last retransmission is not confirmed (that is, when ACK is not received from UE 100). Therefore, the eNB 200 can correctly recognize the RRC state of the UE 100.
  • the eNB 200 performs the last retransmission after the timer expires, but is not limited to the last retransmission, and may perform the third retransmission (and the last retransmission) after the timer expires.
  • the third embodiment is an embodiment that attempts to solve the RRC state mismatch problem by introducing a response message to the RRC connection release message.
  • the UE 100 receives the RRC connection release message that instructs the transition from the RRC connected state to the RRC idle state from the eNB 200, and releases the RRC connection according to the reception of the RRC connection release message.
  • the transmission part 120 which transmits the response message with respect to a message to eNB200, and the control part 130 which changes from a RRC connected state to a RRC idle state according to confirming delivery of a response message are provided.
  • the RRC connection release message may include instruction information indicating that a response message needs to be transmitted.
  • the transmission unit 120 of the UE 100 may transmit a response message to the eNB 200 in response to reception of the RRC connection release message including the instruction information.
  • FIG. 10 is a diagram illustrating an operation example according to the third embodiment.
  • the RRC state of the UE 100 is an RRC connected state (step S301).
  • the UE 100 may transmit UE capability information indicating support for transmission of a response message to the eNB 200.
  • the eNB 200 may recognize that the UE 100 supports transmission of a response message based on the UE capability information.
  • the eNB 200 transmits an RRC connection release message to the UE 100.
  • the RRC connection release message may include instruction information indicating that a response message (RRC Connection Release Complete message) needs to be transmitted.
  • the UE 100 transmits a response message (RRC Connection Release Complete message) to the eNB 200 in response to the successful reception of the RRC connection release message.
  • the response message may include an RRC Transaction ID.
  • the UE 100 confirms delivery of the response message (for example, when HARQ / ARQ ACK is received from the eNB 200)
  • the UE 100 transits from the RRC connected state to the RRC idle state.
  • the eNB 200 recognizes that the UE 100 has transitioned from the RRC connected state to the RRC idle state in response to the successful reception of the response message.
  • the UE 100 maintains the RRC connected state. Also, the eNB 200 recognizes that the UE 100 maintains the RRC connected state in response to the failure of receiving the response message. Therefore, the eNB 200 can correctly recognize the RRC state of the UE 100.
  • the eNB 200 may perform both the process assuming that the UE 100 is in the RRC connected state and the process assuming that the UE 100 is in the RRC idle state.
  • the eNB 200 may perform both transmission of an RRC idle state paging message and transmission of an RRC Connection Release message. These messages may be integrated into one.
  • a paging message including information for RRC Connection Release may be transmitted, or an RRC Connection Release message including information for paging may be transmitted.
  • the LTE system is exemplified as the mobile communication system.
  • the present invention is not limited to LTE systems.
  • the present invention may be applied to a system other than the LTE system.
  • the present invention is not limited to this.
  • the data communication may be applied to a (temporarily) inactive state (sometimes referred to as Light Connected or Inactive).
  • a message instructing a transition to the inactive state may be used.
  • the present invention is useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係る無線端末は、RRCコネクティッド状態において基地局との通信の無線問題を検知し、前記無線問題からの回復を試みる制御部と、前記回復の成功に応じて、前記無線端末のRRC状態を前記基地局が前記RRCコネクティッド状態とみなしているか否かを確認するためのポーリング信号を前記基地局に送信する送信部と、を備える。前記制御部は、前記ポーリング信号に対する応答信号を前記基地局から受信したことに応じて、前記RRCコネクティッド状態を維持する。

Description

無線端末及び基地局
 本発明は、移動通信システムにおいて用いられる無線端末及び基地局に関する。
 3GPP(3rd Generation Pertnership Project)において仕様が策定されている移動通信システムであるLTE(Long Term Evolution)システムにおいて、無線端末(UE:User Equipment)のRRC(Radio Resource Control)状態として、RRCコネクティッド状態及びRRCアイドル状態が規定されている。
 RRCコネクティッド状態にある無線端末は、基地局(eNB:evolved Node-B)から無線リソースが割り当てられ、割り当て無線リソースを用いて基地局との通信を行う。これに対し、RRCアイドル状態にある無線端末は、ページング受信等の限られた動作を行う。よって、無線端末のRRC状態に応じて、基地局が当該無線端末のために行う処理は異なる。従って、無線端末のRRC状態と基地局が認識しているRRC状態とが一致している必要がある。
 一実施形態に係る無線端末は、RRCコネクティッド状態において基地局との通信の無線問題を検知し、前記無線問題からの回復を試みる制御部と、前記回復の成功に応じて、前記無線端末のRRC状態を前記基地局が前記RRCコネクティッド状態とみなしているか否かを確認するためのポーリング信号を前記基地局に送信する送信部と、を備える。前記制御部は、前記ポーリング信号に対する応答信号を前記基地局から受信したことに応じて、前記RRCコネクティッド状態を維持する。
 一実施形態に係る基地局は、無線端末に対する下りリンク信号の初送及び再送を行う送信部と、前記下りリンク信号に対する応答信号を前記無線端末から受信したか否かに応じて、前記無線端末がRRCコネクティッド状態であるか否かを判定する制御部と、を備える。前記送信部は、前記初送から所定時間の経過後に前記再送を少なくとも1回行う。前記所定時間は、前記無線端末が前記基地局との通信の無線問題を検知してから無線リンク障害が発生したと判定するまでの時間以上である。
 一実施形態に係る無線端末は、RRCコネクティッド状態からRRCアイドル状態への遷移を指示するRRC接続解放メッセージを基地局から受信する受信部と、前記RRC接続解放メッセージの受信に応じて、前記RRC接続解放メッセージに対する応答メッセージを前記基地局に送信する送信部と、前記応答メッセージの送達を確認したことに応じて、前記RRCコネクティッド状態から前記RRCアイドル状態へ遷移する制御部と、を備える。
実施形態に係るLTEシステムの構成を示す図である。 実施形態に係るUE(無線端末)の構成を示す図である。 実施形態に係るeNB(基地局)の構成を示す図である。 実施形態に係るLTEシステムにおける無線インターフェイスのプロトコルスタックの構成を示す図である。 LTEシステムにおいて用いられる無線フレームの構成を示す図である。 RRC状態の不一致が生じるシナリオの一例を示す図である。 無線問題(radio problem)発生時のUEの動作を示す図である。 第1実施形態に係る動作例を示す図である。 第2実施形態に係る動作例を示す図である。 第3実施形態に係る動作例を示す図である。
 [移動通信システム]
 (移動通信システムの構成)
 以下において、実施形態に係る移動通信システムの構成について説明する。図1は、実施形態に係る移動通信システムであるLTE(Long Term Evolution)システムの構成を示す図である。LTEシステムは、3GPP規格に基づく移動通信システムである。
 図1に示すように、LTEシステムは、無線端末(UE:User Equipment)100、無線アクセスネットワーク(E-UTRAN:Evolved-UMTS Terrestrial Radio Access Network)10、及びコアネットワーク(EPC:Evolved Packet Core)20を備える。
 UE100は、移動型の通信装置である。UE100は、自身が在圏するセル(サービングセル)を管理するeNB200との無線通信を行う。
 E-UTRAN10は、基地局(eNB:evolved Node-B)200を含む。eNB200は、X2インターフェイスを介して相互に接続される。eNB200は、1又は複数のセルを管理する。eNB200は、eNB200が管理するセルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。
 EPC20は、モビリティ管理エンティティ(MME)及びサービングゲートウェイ(S-GW)300を含む。MMEは、UE100に対する各種モビリティ制御等を行う。MMEは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100が在圏するトラッキングエリア(TA)の情報を管理する。MMEは、トラッキングエリア単位でUE100のページングを行う。S-GWは、データの転送制御を行う。MME及びS-GWは、S1インターフェイスを介してeNB200と接続される。
 図2は、UE100(無線端末)の構成を示す図である。図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換する。受信機は、ベースバンド信号を制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換する。送信機は、無線信号をアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
 図3は、eNB200(基地局)の構成を示す図である。図3に示すように、eNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換する。送信機は、無線信号をアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換する。受信機は、ベースバンド信号を制御部230に出力する。
 制御部230は、eNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサとCPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
 バックホール通信部240は、X2インターフェイスを介して隣接eNBと接続され、S1インターフェイスを介してMME/S-GW300と接続される。バックホール通信部240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に用いられる。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタックの構成を示す図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1レイヤ乃至第3レイヤに区分されており、第1レイヤは物理(PHY)レイヤである。第2レイヤは、MAC(Medium Access Control)レイヤ、RLC(Radio Link Control)レイヤ、及びPDCP(Packet Data Convergence Protocol)レイヤを含む。第3レイヤは、RRC(Radio Resource Control)レイヤを含む。PHYレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、及びRRCレイヤは、AS(Access Stratum)レイヤを構成する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとeNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御情報を取り扱う制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態である。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドル状態である。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとMME300CのNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等の機能を有する。
 図5は、LTEシステムにおいて用いられる無線フレームの構成を示す図である。図5に示すように、無線フレームは、時間軸上で10個のサブフレームで構成される。各サブフレームは、時間軸上で2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数軸上で複数個のリソースブロック(RB)を含み、時間軸上で複数個のシンボルを含む。各リソースブロックは、周波数軸上で複数個のサブキャリアを含む。具体的には、12個のサブキャリア及び1つのスロットにより1つのRBが構成される。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御情報を伝送するための物理下りリンク制御チャネル(PDCCH)として用いられる領域である。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するための物理下りリンク共有チャネル(PDSCH)として用いることができる領域である。
 eNB200は、基本的には、PDCCHを用いて下りリンク制御情報(DCI)をUE100に送信し、PDSCHを用いて下りリンクデータをUE100に送信する。PDCCHが搬送するDCIは、上りリンクスケジューリング情報、下りリンクスケジューリング情報、TPCコマンドを含む。上りリンクスケジューリング情報は上りリンク無線リソースの割当てに関するスケジューリング情報(UL grant)であり、下りリンクスケジューリング情報は、下りリンク無線リソースの割当てに関するスケジューリング情報である。TPCコマンドは、上りリンクの送信電力の増減を指示する情報である。eNB200は、DCIの送信先のUE100を識別するために、送信先のUE100の識別子(RNTI:Radio Network Temporary ID)でスクランブリングしたCRCビットをDCIに含める。各UE100は、自UE宛ての可能性があるDCIについて、自UEのRNTIでデスクランブリング後、CRCチェックをすることにより、PDCCHをブラインド復号(Blind decoding)し、自UE宛のDCIを検出する。PDSCHは、下りリンクスケジューリング情報が示す下りリンク無線リソース(リソースブロック)により下りリンクデータを搬送する。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御情報を伝送するための物理上りリンク制御チャネル(PUCCH)として用いられる領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するための物理上りリンク共有チャネル(PUSCH)として用いることができる領域である。
 UE100は、基本的には、PUCCHを用いて上りリンク制御情報(UCI)をeNB200に送信し、PUSCHを用いて上りリンクデータをeNB200に送信する。PUCCHが運搬するUCIは、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、スケジューリング要求(SR)、HARQ ACK/NACKを含む。CQIは、下りリンクのチャネル品質を示すインデックスであり、下りリンク伝送に用いるべきMCSの決定等に用いられる。PMIは、下りリンクの伝送のために用いることが望ましいプレコーダマトリックスを示すインデックスである。RIは、下りリンクの伝送に用いることが可能なレイヤ数(ストリーム数)を示すインデックスである。SRは、PUSCHリソースの割り当てを要求する情報である。HARQ ACK/NACKは、下りリンクデータを正しく受信したか否かを示す送達確認情報である。
 [RRC状態の不一致]
 上述した移動通信システムにおいて、UEのRRC状態についてUEとeNBとの間で不一致(mismatch)が生じ得る。
 図6は、RRC状態の不一致が生じるシナリオの一例を示す図である。UEのRRC状態はRRCコネクティッド状態である(ステップS1)。
 図6に示すように、ステップS2において、UEとeNBとの間の下りリンク無線品質(DL radio quality)が劣化する。eNBは、UEからのCQIフィードバック等に基づいて当該劣化を検知してもよい。UEは、下りリンク無線品質の劣化により無線問題(radio problem)を検知する。
 ステップS3において、eNBは、RRCコネクティッド状態からRRCアイドル状態への遷移を指示するRRC接続解放(RRC Connection Release)メッセージをUEに送信する。
 ステップS4において、UEは、下りリンク無線品質の劣化により、RRC接続解放メッセージの復号に失敗する。言い換えると、UEは、無線問題が発生していることから、RRC接続解放メッセージを受信することができない。UEは、無線問題の発生中は、eNBがRRC Connection Releaseメッセージを送信したかどうかも分からない。
 ステップS5において、eNBは、RRC接続解放メッセージの送信に応じて、UEがRRCアイドル状態に遷移したとみなす。ここで、eNBは、MACレイヤ又はRLCレイヤにおいてRRC接続解放メッセージ(下りリンク信号)の再送処理を行ってもよい。一例として、RLCレイヤは、ARQによる再送を行う。eNBは、最大再送回数に達してもRRC接続解放メッセージの送達が確認されない場合(すなわち、ACKをUEから受信しない場合)、UEがRRCアイドル状態に遷移したとみしてもよい。言い換えると、eNBは、RLC再送上限に達したことにより、UEに無線リンク障害(RLF)が発生したとみなし、UEがRRCアイドル状態に遷移したと判断する。
 ステップS6において、UEとeNBとの間の下りリンク無線品質が改善する。eNBは、UEがRRCアイドル状態であると認識しているため、下りリンク無線品質が改善したことに気付かない。
 ステップS7において、UEは、下りリンク無線品質の改善により、無線問題から回復し、RRCコネクティッド状態を維持する。すなわち、UEは、無線問題から回復したことにより、RLFを検知することなくRRCコネクティッド状態を維持する。
 ステップS8において、eNBは、RRCアイドル状態のプロシージャに従って、ページング(Paging)メッセージをUEに送信する。しかしながら、実際にはUEはRRCコネクティッド状態であり、RRCアイドル状態のプロシージャに従って動作していないことから、ページングメッセージの受信に失敗する。その結果、UEのページングが不能になる事態が生じる。
 図7は、無線問題(radio problem)発生時のUEの動作を示す図である。
 図7に示すように、RRCコネクティッド状態のUEは、通常の動作(normal operation)時に、下位レイヤから“out of sync”インディケーションを所定回数連続して受信したことに応じて無線問題を検知し、タイマT310を開始させる。タイマT310の値(図7に示す「T」時間)は、eNBからUEにSIB(system information block)により設定され得る。UEは、タイマT310の動作中に、下位レイヤから“in sync”インディケーションを所定回数連続して受信したことに応じて無線問題からの回復を検知し、タイマT310を停止させる。これに対し、無線問題からの回復を検知することなくタイマT310が満了すると、UEは、無線リンク障害(RLF)が発生したと判定する。無線問題の検知からRLFの検知までの段階はFirst Phaseと称される。First Phaseの間は、UEは、RRCコネクティッド状態を維持するとともに、無線リソース設定を維持する。
 次に、UEは、RLFを検知すると、RRC接続再確立プロシージャを開始するとともに、タイマT311を開始させる。タイマT311の値(図7に示す「T」時間)は、eNBからUEにSIBにより設定され得る。UEは、タイマT311の動作中にセル選択動作を行い、適切なセルを選択したことに応じてタイマT311を停止させるとともに、当該セルにRRC接続再確立要求メッセージを送信する。これに対し、適切なセルを選択することなくタイマT311が満了すると、UEは、RRCコネクティッド状態からRRCアイドル状態に遷移する。RLFの検知からRRCアイドル状態に遷移するまでの段階はSecond Phaseと称される。
 [第1実施形態]
 以下において、第1実施形態について説明する。
 第1実施形態に係るUE100は、RRCコネクティッド状態においてeNB200との通信の無線問題を検知し、無線問題からの回復を試みる制御部130と、当該回復の成功に応じて、UE100のRRC状態をeNB200がRRCコネクティッド状態とみなしているか否かを確認するためのポーリング信号をeNB200に送信する送信部120と、を備える。制御部130は、ポーリング信号に対する応答信号をeNB200から受信したことに応じて、RRCコネクティッド状態を維持する。ポーリング信号は、物理レイヤよりも上位レイヤ(例えば、MAC、RLC、PDCP、又はRRC)において送受信されるポーリングメッセージであってもよい。或いは、物理レイヤにおいて送受信されるスケジューリング要求(SR)をポーリング信号として用いてもよい。或いは、物理レイヤにおいて、SRとは異なる信号であってPUCCH又はPUSCHで送信される信号をポーリング信号として用いてもよい。なお、上位レイヤにおいて無線問題からの回復を検知した場合に、上位レイヤから下位レイヤ(例えば物理レイヤ)に対して、ポーリング信号の送信を指示してもよい。
 これにより、UE100は、無線問題から回復した後、UE100のRRC状態をeNB200がRRCコネクティッド状態とみなしているか否かを確認することができる。そして、ポーリング信号に対する応答信号をeNB200から受信した場合、UE100は、自身のRRC状態をeNB200がRRCコネクティッド状態とみなしていると認識し、RRCコネクティッド状態を維持することができる。よって、UE100のRRC状態についてUE100とeNB200との間で不一致が生じることを防止することができる。
 第1実施形態において、UE100の送信部120は、eNB200に送信する上りリンクデータの有無と無関係に、無線問題からの回復の成功に応じてポーリング信号をeNB200に送信する。
 ここで、eNB200に送信する上りリンクデータが存在する場合には、一般的なUE100は、スケジューリング要求(SR)をeNB200に送信する。UE100のRRC状態をeNB200がRRCコネクティッド状態とみなしている場合、UE100は、eNB200から上りリンクリソースが割り当てられるため、RRCコネクティッド状態を維持することができる。しかしながら、SRの送信は上りリンクデータが存在することが条件となるため、eNB200に送信する上りリンクデータが存在しない場合には、このような方法を適用することができない。そこで、第1実施形態においては、UE100は、eNB200に送信する上りリンクデータが存在しない場合でも、無線問題からの回復の成功に応じてポーリング信号をeNB200に送信する。これにより、eNB200に送信する上りリンクデータが存在しない場合にも適用可能である。
 第1実施形態において、UE100の制御部130は、ポーリング信号の送信時又はポーリング信号の送信決定時から第1の所定時間内に応答信号を受信しない場合、RRCコネクティッド状態からRRCアイドル状態に遷移する。
 ここで、ポーリング信号に対する応答信号をUE100が受信しない場合、UE100は、自身のRRC状態をeNB200がRRCアイドル状態とみなしていると認識することができる。よって、このような場合には、UE100がRRCコネクティッド状態からRRCアイドル状態に遷移することにより、UE100のRRC状態についてUE100とeNB200との間で不一致が生じることを防止することができる。
 第1実施形態において、第1の所定時間は、eNB200からUE100に設定されてもよい。eNB200は、ブロードキャストシグナリング(例えばSIB)により第1の所定時間をUE100に設定してもよいし、UE100宛ての専用シグナリング(例えばRRC Connection Reconfigurationメッセージ)により第1の所定時間をUE100に設定してもよい。
 第1実施形態に係るUE100において、制御部130は、無線問題を検知してから回復に成功するまでの経過時間が第2の所定時間を超えるか否かを判定してもよい。送信部120は、当該経過時間が第2の所定時間を超える場合に限り、無線問題からの回復の成功に応じてポーリング信号をeNB200に送信してもよい。制御部130は、eNB200がUE100に対する再送を継続する持続時間に基づいて第2の所定時間を決定してもよい。
 ここで、UE100が無線問題を検知した場合、eNB200は、下りリンク信号(例えばRRC Connection Release)の再送処理を行う。eNB200が再送を継続する間は、UE100のRRC状態をeNB200がRRCコネクティッド状態とみなしているため、ポーリング信号の送信は不要である。よって、UE100は、無線問題を検知してから回復に成功するまでの経過時間が第2の所定時間を超える場合に限り、ポーリング信号の送信を有効化する。これにより、無駄なポーリング信号の送信を防止することができる。
 図8は、第1実施形態に係る動作例を示す図である。図8において破線で示す処理は、必須ではない処理を示す。UE100のRRC状態はRRCコネクティッド状態である(ステップS101)。
 図8に示すように、ステップS102において、eNB200は、第1の所定時間に対応するタイマ値(Timer B value)をUE100に送信する。UE100は、eNB200から受信したタイマ値(Timer B value)を記憶する。
 ステップS103において、UE100は、第2の所定時間に対応するタイマ値(Timer A value)を設定する。一例として、UE100は、eNB200がUE100に対する再送を継続する持続時間に基づいて第2の所定時間を決定する。ここでは、再送処理として、RLCレイヤにおけるARQ再送を想定する。eNB200は、事前定義された時間間隔(例えば8ms間隔)で、最大再送回数までの範囲内で再送を行う。最大再送回数を示すパラメータ(maxRetxThreshold)は、eNB200からUE100に設定される。一例として、最大再送回数が4回である場合、UE100は、4回×8ms=32msをタイマ値(Timer A value)として設定する。
 ステップS104において、UE100とeNB200との間の下りリンク無線品質(DL radio quality)が劣化する。UE100は、下りリンク無線品質の劣化により無線問題(radio problem)を検知する。UE100は、無線問題を検知した際に、第2の所定時間に対応するタイマ(Timer A)を開始させる。
 ステップS105において、UE100とeNB200との間の下りリンク無線品質が改善する。UE100は、下りリンク無線品質の改善により、無線問題から回復する。
 ステップS106において、UE100は、第2の所定時間に対応するタイマ(Timer A)が満了しているか否かを確認する。
 タイマ(Timer A)が満了している場合(ステップS106:YES)、ステップS107において、UE100は、ポーリング信号の送信を決定する。ここで、UE100は、第1の所定時間に対応するタイマ(Timer B)を開始させる。すなわち、UE100は、ポーリング信号を送信しようとした時点でタイマ(Timer B)を開始させる。或いは、UE100は、ポーリング信号を送信した時点でタイマ(Timer B)を開始させてもよい。
 ステップS108において、UE100は、ポーリング信号をeNB200に送信する。ポーリング信号は、ポーリングメッセージ又はSRである。一例として、ポーリングメッセージは、RRC Transaction ID、Cause Value、無線問題の発生及び/又は回復時のタイミング情報、UEの識別子(例えばC-RNTI)のうち、少なくとも1つを含む。Cause Valueは、例えば、「無線問題から回復した(Radio problem recovery)」又は「無線問題がタイマA期間続いた(Radio problem longer than threshold)」といった情報である。タイミング情報は、サブフレーム番号若しくはシステムフレーム番号(SFN)、又はこれらの組み合わせ(例えば、SFN×10+subframe#)であってもよい。
 ステップS109において、eNB200は、UE100のRRC状態をRRCコネクティッド状態とみなしている場合、ポーリング信号に対する応答信号をUE100に送信する。応答信号は、ポーリング応答又はUL grantである。UL grantは、eNB200がUE100に割り当てた上りリンクリソースを示す。これに対し、UE100のRRC状態をRRCアイドル状態とみなしている場合、eNB200は、ポーリング信号に気付かないため、応答信号をUE100に送信しない。一例として、ポーリング応答は、RRC Transaction ID、RRC Connectedである旨を伝えるIE、UEの識別子(例えばC-RNTI)、eNBの現在のDL再送回数のうち、少なくとも1つを含む。RRC Connectedである旨を伝えるIEは、例えば、「Still-connected ENUM(true) OPTIONAL」といったIEである。eNBの現在のDL再送回数は、無線問題中にeNB200がDL送信を繰り返していた場合に、UE100との再送回数の認識ズレを防止するために用いられる。
 タイマ(Timer B)が満了する前に(ステップS110:NO)、UE100が応答信号を受信した場合(ステップS111:YES)、ステップS112において、UE100は、RRCコネクティッド状態を維持する。また、UE100は、タイマ(Timer B)を停止させる。
 一方、UE100が応答信号を受信することなく、タイマ(Timer B)が満了した場合(ステップS110:YES)、ステップS113において、UE100は、RRCコネクティッド状態からRRCアイドル状態に遷移する。また、UE100は、タイマ(Timer B)を停止させる。
 なお、UE100は、タイマ(Timer B)動作中は再度のポーリング信号の送信が禁止されてもよい。Timer B動作中にポーリング信号の再送を行わないことにより、シグナリング量を削減することができる。また、UE100は、タイマ(Timer B)が満了した場合に、当該タイマ動作中に一度でも無線問題を検知し、当該無線問題が回復したことに応じて、再度ポーリング信号を送信してもよい。Timer B動作中に無線問題が発生したことによりUE100が応答信号を受信できない場合を想定すると、UE100は、RRCコネクティッド状態を維持し続けて良いのか否か不明になる。よって、Timer B動作中に無線問題が発生した場合であって、Timer Bだけ待っても応答信号が来なかった場合には、UE100は、RRCアイドル状態に遷移するのではなく、もう一回ポーリング信号を送信してもよい。
 なお、Timer Bは、応答信号の待ち時間を規定するタイマであるが、Timer Bとは別に、ポーリング信号の送信禁止時間を規定するタイマを用いてもよい。当該別のタイマは、Timer Bと同じタイミングで開始されてもよいし、Timer Bとは異なるタイミングで開始されてもよい。
 [第2実施形態]
 以下において、第2実施形態について、第1実施形態との相違点を主として説明する。第1実施形態は、RRC状態の不一致の問題をUE100側の処理により解決していた。これに対し、第2実施形態は、RRC状態の不一致の問題をeNB200側の処理により解決しようとする実施形態である。
 第2実施形態に係るeNB200は、UE100に対する下りリンク信号の初送及び再送を行う送信部210と、下りリンク信号に対する応答信号をUE100から受信したか否かに応じて、UE100がRRCコネクティッド状態であるか否かを判定する制御部230と、を備える。送信部210は、初送から所定時間の経過後に再送を少なくとも1回行う。当該所定時間は、UE100がeNB200との通信の無線問題を検知してからUE100が無線リンク障害(RLF)と判定するまでの時間(すなわち、タイマT310の値)以上である。当該所定時間は、UE100がeNB200との通信の無線問題を検知してからUE100がRRCアイドル状態に遷移するまでの時間(すなわち、タイマT310及びタイマT311の合計値)であってもよい。
 図9は、第2実施形態に係る動作例を示す図である。図9において破線で示す処理は、必須ではない処理を示す。UE100のRRC状態はRRCコネクティッド状態である(ステップS201)。ここでは、maxRetxThresholdが「4」(4回再送)である一例を説明する。
 図9に示すように、ステップS202において、UE100とeNB200との間の下りリンク無線品質が劣化する。UE100は、下りリンク無線品質の劣化により無線問題(radio problem)を検知し、タイマT310を開始させる。
 ステップS203において、eNB200は、UE100に対する下りリンク信号の初送(initial transmission)を行う。当該下りリンク信号は、RRC Connection Releaseメッセージであってもよい。ここで、UE100は、無線問題から回復していないため、当該下りリンク信号の受信に失敗し、eNB200にACK(ARQ ACK)を送信しない。
 ステップS204において、eNB200は、初送時にタイマを開始させる。当該タイマには、UE100に設定したタイマT310の値が設定される(w/ T310 value、ここで「w/」はwithの略字である)。或いは、当該タイマには、UE100に設定したタイマT310及びT311の合計値が設定されてもよい。eNB200は、下りリンク信号に相当するPDU(Protocol Data Unit)の初送時に、再送回数を示すカウンタ(RETX_COUNT)をゼロに設定する。
 ステップS205において、eNB200は、UE100からACKを受信しないことに応じて、下りリンク信号の1回目の再送(1st ReTx)を行う。また、eNB200は、カウンタ(RETX_COUNT)をインクリメントする。UE100は、無線問題から未だ回復していないため、当該下りリンク信号の受信に失敗し、eNB200にACKを送信しない。
 ステップS206において、eNB200は、UE100からACKを受信しないことに応じて、下りリンク信号の2回目の再送(2nd ReTx)を行う。また、eNB200は、カウンタ(RETX_COUNT)をインクリメントする。UE100は、無線問題から未だ回復していないため、当該下りリンク信号の受信に失敗し、eNB200にACKを送信しない。
 一方、ステップS207において、UE100は、タイマT310の動作中に無線問題から回復し、RRCコネクティッド状態を維持する。
 ステップS208において、eNB200は、ステップS204で設定したタイマが満了したことを検知する。
 ステップS209において、eNB200は、タイマの満了に応じて、下りリンク信号の再送(last ReTx)、すなわち、最後の再送を行う。また、eNB200は、カウンタ(RETX_COUNT)をインクリメントする。最後の再送により、カウンタ(RETX_COUNT)がmaxRetxThresholdに達する。一例として、タイマT310が50msに設定されている場合、eNB200は、最後の再送を初送から50ms経過後に実施する。
 eNB200は、最後の再送の送達が確認された場合(すなわち、ACKをUE100から受信した場合)、UE100がRRCコネクティッド状態にあると認識する。これに対し、eNB200は、最後の再送の送達が確認されない場合(すなわち、ACKをUE100から受信しない場合)、UE100がRRCアイドル状態にあると認識する。よって、eNB200は、UE100のRRC状態を正しく認識することができる。
 なお、図9において、eNB200は、タイマの満了後に最後の再送を行っているが、最後の再送に限らず、タイマの満了後に3回目の再送(及び最後の再送)を行なってもよい。
 [第3実施形態]
 以下において、第3実施形態について、第1及び第2実施形態との相違点を主として説明する。第3実施形態は、RRC接続解放メッセージに対する応答メッセージを導入することにより、RRC状態の不一致の問題を解決しようとする実施形態である。
 第3実施形態に係るUE100は、RRCコネクティッド状態からRRCアイドル状態への遷移を指示するRRC接続解放メッセージをeNB200から受信する受信部110と、RRC接続解放メッセージの受信に応じて、RRC接続解放メッセージに対する応答メッセージをeNB200に送信する送信部120と、応答メッセージの送達を確認したことに応じて、RRCコネクティッド状態からRRCアイドル状態へ遷移する制御部130と、を備える。
 第3実施形態において、RRC接続解放メッセージは、応答メッセージの送信が必要であることを示す指示情報を含んでもよい。UE100の送信部120は、指示情報を含むRRC接続解放メッセージの受信に応じて、応答メッセージをeNB200に送信してもよい。
 図10は、第3実施形態に係る動作例を示す図である。UE100のRRC状態はRRCコネクティッド状態である(ステップS301)。本動作に先立ち、UE100は、応答メッセージの送信をサポートすることを示すUE能力情報をeNB200に送信してもよい。eNB200は、UE能力情報に基づいて、UE100が応答メッセージの送信をサポートすることを認識してもよい。
 図10に示すように、ステップS302において、eNB200は、RRC接続解放(RRC Connection Release)メッセージをUE100に送信する。RRC接続解放メッセージは、応答メッセージ(RRC Connection Release Completeメッセージ)の送信が必要であることを示す指示情報を含んでもよい。
 ステップS303において、UE100は、RRC接続解放メッセージの受信に成功したことに応じて、応答メッセージ(RRC Connection Release Completeメッセージ)をeNB200に送信する。応答メッセージは、RRC Transaction IDを含んでもよい。UE100は、応答メッセージの送達を確認した場合(例えば、HARQ/ARQ ACKをeNB200から受信した場合)、RRCコネクティッド状態からRRCアイドル状態に遷移する。また、eNB200は、応答メッセージの受信に成功したことに応じて、UE100がRRCコネクティッド状態からRRCアイドル状態に遷移したと認識する。
 一方、UE100は、応答メッセージの送達を確認できなかった場合(例えば、HARQ/ARQ ACKをeNB200から受信しない場合)、RRCコネクティッド状態を維持する。また、eNB200は、応答メッセージの受信に失敗したことに応じて、UE100がRRCコネクティッド状態を維持すると認識する。よって、eNB200は、UE100のRRC状態を正しく認識することができる。
 或いは、eNB200は、応答メッセージの受信に失敗した場合、UE100がRRCコネクティッド状態であると想定した処理とUE100がRRCアイドル状態であると想定した処理との両方を行なってもよい。一例として、eNB200は、RRCアイドル状態用のページングメッセージの送信とRRC Connection Releaseメッセージの送信との両方を行なってもよい。これらのメッセージは、1つに統合されてもよい。一例として、RRC Connection Releaseのための情報を含むページングメッセージを送信してもよいし、ページングのための情報を含むRRC Connection Releaseメッセージを送信してもよい。
 [その他の実施形態]
 上述した各実施形態を別個独立に実施する場合に限らず、2以上の実施形態を組み合わせて実施してもよい。例えば、一の実施形態に係る一部の動作を他の実施形態に追加してもよい。或いは、一の実施形態に係る一部の動作を他の実施形態の一部の動作と置換してもよい。
 上述した各実施形態において、移動通信システムとしてLTEシステムを例示した。しかしながら、本発明はLTEシステムに限定されない。LTEシステム以外のシステムに本発明を適用してもよい。
 上述した各実施形態において、RRCコネクティッド状態及びRRCアイドル状態を対象とする一例を説明したが、これには限らない。例えば、RRCアイドル状態に代えて、データ通信が(一時的に)不活性な状態(Light ConnectedやInactiveと称される事もある)に適用されてもよい。この場合、RRC Connection Releaseに代えて、当該不活性な状態への遷移を指示するメッセージを用いてもよい。
 米国仮出願第62/402180号(2016年9月30日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明は移動通信分野において有用である。

Claims (9)

  1.  移動通信システムのための無線端末であって、
     RRCコネクティッド状態において基地局との通信の無線問題を検知し、前記無線問題からの回復を試みる制御部と、
     前記回復の成功に応じて、前記無線端末のRRC状態を前記基地局が前記RRCコネクティッド状態とみなしているか否かを確認するためのポーリング信号を前記基地局に送信する送信部と、を備え、
     前記制御部は、前記ポーリング信号に対する応答信号を前記基地局から受信したことに応じて、前記RRCコネクティッド状態を維持する
     無線端末。
  2.  前記送信部は、前記基地局に送信する上りリンクデータの有無と無関係に、前記回復の成功に応じて前記ポーリング信号を前記基地局に送信する
     請求項1に記載の無線端末。
  3.  前記制御部は、前記ポーリング信号の送信時又は前記ポーリング信号の送信決定時から第1の所定時間内に前記応答信号を受信しない場合、前記RRCコネクティッド状態からRRCアイドル状態に遷移する
     請求項1に記載の無線端末。
  4.  前記第1の所定時間は、前記基地局から前記無線端末に設定される
     請求項3に記載の無線端末。
  5.  前記制御部は、前記無線問題を検知してから前記回復に成功するまでの経過時間が第2の所定時間を超えるか否かを判定し、
     前記送信部は、前記経過時間が前記第2の所定時間を超える場合に限り、前記回復の成功に応じて前記ポーリング信号を前記基地局に送信する
     請求項1に記載の無線端末。
  6.  前記制御部は、前記基地局が前記無線端末に対する再送を継続する持続時間に基づいて前記第2の所定時間を決定する
     請求項5に記載の無線端末。
  7.  移動通信システムのための基地局であって、
     無線端末に対する下りリンク信号の初送及び再送を行う送信部と、
     前記下りリンク信号に対する応答信号を前記無線端末から受信したか否かに応じて、前記無線端末がRRCコネクティッド状態であるか否かを判定する制御部と、を備え、
     前記送信部は、前記初送から所定時間の経過後に前記再送を少なくとも1回行い、
     前記所定時間は、前記無線端末が前記基地局との通信の無線問題を検知してから無線リンク障害が発生したと判定するまでの時間以上である
     基地局。
  8.  移動通信システムのための無線端末であって、
     RRCコネクティッド状態からRRCアイドル状態への遷移を指示するRRC接続解放メッセージを基地局から受信する受信部と、
     前記RRC接続解放メッセージの受信に応じて、前記RRC接続解放メッセージに対する応答メッセージを前記基地局に送信する送信部と、
     前記応答メッセージの送達を確認したことに応じて、前記RRCコネクティッド状態から前記RRCアイドル状態へ遷移する制御部と、
     を備える無線端末。
  9.  前記RRC接続解放メッセージは、前記応答メッセージの送信が必要であることを示す指示情報を含み、
     前記送信部は、前記指示情報を含む前記RRC接続解放メッセージの受信に応じて、前記応答メッセージを前記基地局に送信する
     請求項8に記載の無線端末。
PCT/JP2017/034905 2016-09-30 2017-09-27 無線端末及び基地局 WO2018062249A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018542627A JP6768816B2 (ja) 2016-09-30 2017-09-27 無線端末及び基地局
US16/369,149 US11246185B2 (en) 2016-09-30 2019-03-29 Radio terminal and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662402180P 2016-09-30 2016-09-30
US62/402,180 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,149 Continuation US11246185B2 (en) 2016-09-30 2019-03-29 Radio terminal and base station

Publications (1)

Publication Number Publication Date
WO2018062249A1 true WO2018062249A1 (ja) 2018-04-05

Family

ID=61763364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034905 WO2018062249A1 (ja) 2016-09-30 2017-09-27 無線端末及び基地局

Country Status (3)

Country Link
US (1) US11246185B2 (ja)
JP (1) JP6768816B2 (ja)
WO (1) WO2018062249A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116051A1 (en) * 2016-12-23 2018-06-28 Nokia Technologies Oy Pucch resource allocation for urllc support
EP3666033B1 (en) * 2017-08-11 2022-03-09 Telefonaktiebolaget LM Ericsson (Publ) Aperiodic and periodic indications for blf and rlf
US10667185B2 (en) * 2018-03-28 2020-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Method for avoiding unnecessary actions in resume procedure
US10904939B2 (en) * 2018-08-31 2021-01-26 Samsung Electronics Co., Ltd. User equipment (UE) and method thereof for efficient communication with wireless network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177508A (ja) * 1999-12-20 2001-06-29 Matsushita Electric Ind Co Ltd 無線通信装置
WO2010143428A1 (ja) * 2009-06-12 2010-12-16 パナソニック株式会社 基地局制御装置および携帯端末
WO2013161798A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 通信システム
JP2015512206A (ja) * 2012-02-16 2015-04-23 アップル インコーポレイテッド 同期外れ特定のための方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477811B2 (en) * 2008-02-02 2013-07-02 Qualcomm Incorporated Radio access network (RAN) level keep alive signaling
US9319952B2 (en) * 2012-03-30 2016-04-19 Apple Inc. Apparatus and methods for synchronization recovery in a hybrid network
US9603184B2 (en) * 2012-05-25 2017-03-21 Apple Inc. Tune back coordination with connected mode discontinuous receive
WO2013185031A1 (en) * 2012-06-09 2013-12-12 Apple Inc. Adjusting connection states of a mobile wireless device
US9363694B2 (en) * 2012-06-29 2016-06-07 Apple Inc. Determining connection states of a mobile wireless device
CN104769994B (zh) * 2012-11-04 2018-06-26 Lg电子株式会社 当无线电链路故障已经发生时支持多个无线电接入技术的终端恢复的方法及其设备
US20140269637A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated Detecting missing rrc connection release message
US10178703B2 (en) * 2013-05-09 2019-01-08 Blackberry Limited Stopping a random access procedure
US9661657B2 (en) * 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
US10484905B2 (en) * 2015-01-26 2019-11-19 Apple Inc. Optimizing operation of constrained user equipment
KR102083813B1 (ko) * 2015-08-14 2020-03-03 후아웨이 테크놀러지 컴퍼니 리미티드 업링크 제어 정보 송신 방법과 수신 방법, 및 관련 장치
US20170196025A1 (en) * 2016-03-23 2017-07-06 Mediatek Inc. Random Access Probing Enhancement During State Mismatch Between User Equipment And Network
EP3487258B1 (en) * 2016-08-11 2021-11-10 Samsung Electronics Co., Ltd. Method, terminal and base station for resuming a conection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177508A (ja) * 1999-12-20 2001-06-29 Matsushita Electric Ind Co Ltd 無線通信装置
WO2010143428A1 (ja) * 2009-06-12 2010-12-16 パナソニック株式会社 基地局制御装置および携帯端末
JP2015512206A (ja) * 2012-02-16 2015-04-23 アップル インコーポレイテッド 同期外れ特定のための方法
WO2013161798A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 通信システム

Also Published As

Publication number Publication date
US20190230737A1 (en) 2019-07-25
JPWO2018062249A1 (ja) 2019-07-11
US11246185B2 (en) 2022-02-08
JP6768816B2 (ja) 2020-10-14

Similar Documents

Publication Publication Date Title
US10440764B2 (en) Communication control method, user terminal, processor, and base station
CN112020122B (zh) 无线通信系统中的终端、基站及其方法
US9143282B2 (en) Uplink hybrid-ARQ mechanism for cooperative base stations
EP2182763B1 (en) Method of improving semi-persistent scheduling resources reconfiguration in a wireless communication system and related communication device
JP5048746B2 (ja) 通信システム、移動局装置、無線リンク状態管理方法及び集積回路
JP6806568B2 (ja) ユーザ端末及び基地局
JP6910363B2 (ja) 通信制御方法
US20110305197A1 (en) Random access method using ndi and user equipment for the same
US11246185B2 (en) Radio terminal and base station
US9843970B2 (en) User terminal and base station
US9674882B2 (en) Mobile communication system, user terminal, base station, processor, and communication control method
US10021039B2 (en) Mobile communication system and user terminal
US20150319798A1 (en) Communication control method, user terminal, processor, and storage medium
EP2861026A1 (en) Communication control method, base station, user terminal, processor and recording medium
WO2016171123A1 (ja) 通信制御方法
US20150126211A1 (en) Communication control method and base station
JP6736045B2 (ja) 無線通信装置
WO2015020033A1 (ja) 基地局
JP6230516B2 (ja) 基地局装置、移動局装置、及び処理方法
JP5632883B2 (ja) 通信システム、移動局装置、無線リンク状態管理方法及び集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856198

Country of ref document: EP

Kind code of ref document: A1