WO2018047704A1 - Apparatus for producing electronic device, method for controlling same, electronic device and method for producing electronic device - Google Patents

Apparatus for producing electronic device, method for controlling same, electronic device and method for producing electronic device Download PDF

Info

Publication number
WO2018047704A1
WO2018047704A1 PCT/JP2017/031324 JP2017031324W WO2018047704A1 WO 2018047704 A1 WO2018047704 A1 WO 2018047704A1 JP 2017031324 W JP2017031324 W JP 2017031324W WO 2018047704 A1 WO2018047704 A1 WO 2018047704A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
manufacturing apparatus
support
substrate
chamber
Prior art date
Application number
PCT/JP2017/031324
Other languages
French (fr)
Japanese (ja)
Inventor
大塚 寛治
橋本 薫
義博 清宮
Original Assignee
株式会社Mirai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Mirai filed Critical 株式会社Mirai
Publication of WO2018047704A1 publication Critical patent/WO2018047704A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to a manufacturing apparatus for manufacturing an electronic device and a control method thereof, and an electronic device and a manufacturing method thereof.
  • the electronic device also includes a semiconductor device.
  • a manufacturing apparatus for manufacturing an electronic device also includes a manufacturing apparatus for manufacturing a semiconductor.
  • the present invention relates to a technique for separating an epitaxial film (hereinafter referred to as a thin film) grown from a substrate, or a technique for bonding the separated epitaxial film (thin film) to another substrate (or transfer material).
  • Patent Document 1 As an apparatus for separating an epitaxial film from a substrate, for example, there is a configuration disclosed in Patent Document 1 (FIG. 3).
  • the apparatus disclosed in Patent Document 1 includes a substrate holding portion that has a suction groove and holds the semiconductor substrate on a curved suction surface by bending the semiconductor substrate by vacuum suction, and a wedge between the semiconductor substrate and the semiconductor thin film (porous).
  • a wedge portion that peels the semiconductor thin film from the semiconductor substrate by pressing against the substrate layer
  • a semiconductor thin film holding portion that has suction holes and buffer portions and sucks and holds the semiconductor thin film by vacuum suction, and a structure thereof. Is done.
  • Patent Document 2 in a peeling apparatus that peels the network film from the Si substrate, the network film that has grown on the Si substrate is pressed from above and the inside of the peeling apparatus is evacuated.
  • a structure is disclosed in which the reticulated film is sucked and the peeling device is pulled up.
  • a thin film is formed by applying a thermal shock to a nitride-based semiconductor crystal having a heating part such as a hot plate and epitaxially grown on a first substrate.
  • a peeling structure is disclosed.
  • a structure in which separation is performed by mechanical impact (fluid ejection) and a structure in which separation is performed by vibration impact (ultrasonic oscillator) are also disclosed.
  • Patent Document 4 is a film peeling detection device that detects the peeling of a thin film adhered to the surface of a substrate in a non-contact manner, and the substrate is irradiated with laser light.
  • An optical system, an image sensor that receives scattered light from a thin film and optically detects a speckle pattern contained in the scattered light, and a peeling determination unit that determines peeling of the thin film based on the output of the image sensor are disclosed. Is done.
  • the manufacturing apparatus disclosed in Patent Document 1 includes a controller, and the controller is configured to remove the peeling wafer according to the difference in the peeling strength of the porous layer that is the separation layer (a place where peeling is difficult and a place where peeling is easy). Constant speed rotation, wedge insertion amount, and wedge pressure must be adjusted. This is an increase in the number of parts of the manufacturing apparatus, resulting in an increase in cost.
  • the semiconductor thin film holding portion is provided so that the compression spring pushes up the shaft so that the upward tension is always applied.
  • the tension in the direction of peeling from the semiconductor substrate is always applied to promote peeling. That is, since the compression spring unilaterally promotes peeling of the thin film being peeled by the wedge regardless of the control of the controller, the reliability of the thin film is reduced.
  • the structure disclosed in Patent Document 2 is the same.
  • Patent Document 3 a structure in which the thin film is peeled by three methods (thermal shock, mechanical shock, vibration shock) is disclosed, but the reliability of the thin film being peeled is maintained.
  • the method and its structure are not disclosed. It is desirable that at least one of the plurality of problems described above is solved from the viewpoint of improving the reliability of the peeled thin film or reducing the cost of these devices.
  • the manufacturing apparatus of the present invention includes a substrate holder that holds a growth substrate for obtaining a thin film, a substrate support that supports the substrate holder, a thin film holder that holds a thin film peeled off from the growth substrate, and a thin film holder.
  • a first chamber composed of a substrate support and a thin film support
  • a second chamber composed of the substrate support and the substrate support
  • a third chamber composed of the thin film support and the thin film support
  • a pressure device that applies first, second, and third air pressures corresponding to the first, second, and third chambers, respectively.
  • FIG. 3 is an enlarged view of a part of FIG. 2 when not heated. It is an enlarged view at the time of the heat application of FIG. It is an enlarged view of the thin film support body (1st example) of FIG.
  • FIG. 6 is a top view (first example) of FIG. 5. It is a modification of the thin film support body of FIG. It is an enlarged view of the thin film support body (2nd example) of FIG. It is an enlarged view of the thin film support body (3rd example) of FIG. It is an enlarged view of the thin film support body (4th example) of FIG.
  • the joining apparatus (1st example: at the time of a 1st state) included in the manufacturing apparatus of this invention. It is the joining apparatus (1st example: at the time of a 2nd state) contained in the manufacturing apparatus of this invention. It is the joining apparatus (2nd example: at the time of a 1st state) included in the manufacturing apparatus of this invention. It is the joining apparatus (2nd example: at the time of a 2nd state) included in the manufacturing apparatus of this invention. It is the thin film (at the time of a 1st state) which the manufacturing apparatus of this invention handles. It is the thin film (at the time of a 2nd state) which the manufacturing apparatus of this invention handles.
  • the thin film (at the time of a 3rd state) which the manufacturing apparatus of this invention handles It is the thin film (at the time of a 4th state) which the manufacturing apparatus of this invention handles. It is the thin film (at the time of a 5th state) which the manufacturing apparatus of this invention handles. It is the peeling apparatus (2nd example) contained in the manufacturing apparatus of this invention. It is an enlarged view at the time of the heat application of FIG. It is the thin film (at the time of a 6th state) which the manufacturing apparatus of this invention handles. It is the thin film (at the time of a 7th state) which the manufacturing apparatus of this invention handles. It is the thin film (at the time of 8th state) which the manufacturing apparatus of this invention handles.
  • FIG. 1 is one embodiment of a plurality of embodiments that simply show a cross-sectional view of the manufacturing apparatus of the present invention.
  • the manufacturing apparatus 1 disclosed in FIG. 1 includes a peeling apparatus 10, a joining apparatus 20, a pressure apparatus 50, a thin film support transport mechanism 30, and a housing 40.
  • the peeling apparatus 10 includes a substrate support 11 and a movable thin film support 15.
  • the joining device 20 includes a movable transfer support 21 and a movable thin film support 15. That is, one thin film support 15 is used in both the peeling device 10 and the bonding device 20.
  • One thin film support 15 is connected to the thin film support transport mechanism 30. Since the thin film 14 from which one thin film support 15 is peeled is also used in the bonding apparatus 20, it is possible to expect an improvement in the quality of the peeled thin film 14 and a reduction in the throughput of the manufacturing process.
  • the pressure device 50 peels the thin film 14 by supplying optimum air pressure to the three chambers (first, second, and third chambers) of the peeling device 10.
  • a first air pressure higher than atmospheric pressure (about 1 kgf / cm 2) is applied to the first chamber 200, and second and third air lower than atmospheric pressure are applied to the second chamber 210 and the third chamber 220. Apply pressure.
  • At least a difference between the first and third air pressures is applied to both surfaces of the thin film 14. Accordingly, the degree of adsorption between the thin film 14 being peeled and the thin film holder 16 is increased, and the degree of peeling of the thin film 14 being peeled is increased by increasing the degree of adhesion between the growth substrate 13 and the substrate holder 12. . As a result, the peeling time is increased. As a result, the quality of the thin film 14 can be improved.
  • hydrogen gas is supplied to the first chamber 200.
  • the degree of defects in the separation regions (buffer layers) with different numbers of lattices between the gallium nitride GaN and the epitaxial thin film is further increased. Increase. It is possible to realize both speeding up of cleaving that the thin film 14 peels from the growth substrate 13 and improvement of the quality of the thin film 14. Cleavage refers to the property and phenomenon of tearing in the direction of weak bonding strength.
  • the thin film support 15 includes an elastic strain deformation portion 17. Due to the first air pressure higher than the atmospheric pressure, the elastic strain deforming portion 17 rises (upward in the cross-sectional view of FIG. 1). Both high speed and high quality of the cleavage of the thin film 14 from the growth substrate 13 can be realized.
  • the elastic strain deformation portion 17 can be realized by considering the thickness and shape of the thin film support 15. For example, the notch 18 is an example.
  • the elastic strain deformation part 17 may be simply referred to as a deformation part 17.
  • the peeled thin film 14 is removed using three supports (transfer support 21, thin film support 15, and second thin film support 115 (FIG. 13)). Transfer twice. Since the transfer is performed twice with the transfer support 21 as a reference, the surface of the peeled thin film 14 can be reversed. Therefore, a reduction in the throughput of the manufacturing process can be expected.
  • the inversion means that the peeled cleaved surface (B noodle) and the opposite surface can be freely set with respect to the bonding surface of the transfer material or the bonding surface of the product substrate.
  • the transfer material 23 or the second transfer material 123 can be used as the product substrate 160 of the final product. It can be expected to improve the quality of the peeled thin film 14 and shorten the throughput of the manufacturing process.
  • the peeling apparatus 10 is turned upside down (the thin film holder 16 is on the ground E side and the substrate holder 12 is on the top side), and a third transfer material (for example, a product substrate) is placed on the thin film holder 16.
  • a third transfer material for example, a product substrate
  • the thin film 14 peeled off from the growth substrate 13 can be directly transferred and bonded to the product substrate. It can be expected to improve the quality of the peeled thin film 14 and shorten the throughput of the manufacturing process.
  • the pressure device 50 supplies an optimum air pressure to the third chamber among the three chambers (third, fourth, and fifth chambers) of the bonding device 20, so that the thin film 14 Is transferred to the transfer material 23.
  • a third air pressure higher than atmospheric pressure is applied to the third chamber.
  • a thin film 14 (epitaxial film) handled by the manufacturing apparatus 1 is applied to, for example, various electronic components shown below and a system in which the electronic components are mounted.
  • solar cells Small Cell Module
  • LED lighting LED Lamp, LED Light Light Bulb
  • display PDP
  • Plasma Display Panel LCD
  • Liquid Crystal Display OLED: Organic Light-Emitting Diode
  • semiconductor laser semiconductor laser
  • Sionductor Laser, Laser Diode
  • Optical Image Sensor Photonic Imager
  • Projection Display 2D / 3D Projection Display
  • Virtual Reality / 3D Projection Display Quantantum® Photonic® Imager, Virtual Reality Display (VR), Augmented Reality Display (AR), Mixed Reality Display (MR), Substitutional Reality Display (SR)
  • NAND Flash Memory and other non-volatile memory devices and systems
  • SSD Solid State Drive
  • a peeling apparatus 10 has a mechanism and a structure for peeling a thin film 14 which is an epitaxial film formed on the surface of a growth substrate 13.
  • the growth substrate 13 and the thin film 14 are formed outside the peeling apparatus 10.
  • the peeling apparatus 10 includes a substrate holder 12 that holds a growth substrate 13.
  • the peeling apparatus 10 includes a substrate support 11 that supports the substrate holder 12.
  • the substrate support 11 is fixed to the housing 40 (the fixing location is not shown).
  • the peeling apparatus 10 includes a thin film holder 16 that adsorbs the thin film 14 peeled from the growth substrate 13.
  • the peeling apparatus 10 includes a thin film support 15 that supports the thin film holder 16.
  • the thin film support 15 is detachably connected to the substrate support 11.
  • the peeling apparatus 10 includes three chambers.
  • the first chamber 200 is a space formed by the substrate support 11 and the thin film support 15.
  • the second chamber 210 is a space formed by the substrate support 11 and the substrate holder 12.
  • the third chamber is a space formed by the thin film support 15 and the thin film holder 16. In the first chamber 200, the substrate holder 12 and the thin film holder 16, and the growth substrate 13 and the thin film 14 are arranged.
  • the thin film support 15 includes an elastic strain deformation portion 17.
  • the elastic strain deformation part 17 includes a notch part 18.
  • the shape of the elastic strain deforming portion 17 and the notch portion 18 is temporarily elastically deformed depending on conditions such as the air pressure in the first chamber 200. Details will be described later.
  • the thin film support transport mechanism 30 includes a thin film support moving material 31.
  • the thin film support moving material 31 transports (moves) the thin film support 15 between the peeling apparatus 10 and the bonding apparatus 20.
  • the peeling device 10 includes a pressure device 50 that controls the air pressure in each of the plurality of chambers.
  • the pressure device 50 includes a first pressure device 51 and a second pressure device 52.
  • the first pressure device 51 controls the air pressure in the second chamber 210 and the third chamber 220, respectively.
  • the second pressure device 52 controls the air pressure in the first chamber.
  • the pressure device 50 also controls the air pressure in the plurality of chambers of the bonding device 20.
  • the plurality of arrow symbols input / output from the pressure device 50 described in FIG. 1 correspond to the same arrow symbol corresponding to each of the plurality of chambers described in FIG. Details of the control of the air pressure in each chamber will be described later.
  • An air pressure that is lower in absolute value than atmospheric pressure (1 atm; about 1 kgf / cm 2) is defined as negative pressure. Vacuum (0 atm) is also part of the negative pressure region. An air pressure that is greater in absolute value than atmospheric pressure (1 atm) is defined as positive pressure.
  • the growth substrate 13 and the thin film 14 have a heteroepitaxial relationship, for example, and the lattice constants of the two are different. Therefore, it has a cleavage property.
  • single crystal substrates include sapphire and silicon-based semiconductors such as silicon Si.
  • gallium nitride GaN as a nitride semiconductor, silicon carbide Sic, gallium arsenide GaAs, and the like as compound semiconductors. These materials can be selected.
  • the thin film 14 is a layer epitaxially grown from the growth substrate 13.
  • the thin film 14 has a thickness (layer thickness) of about submicron to 10 microns ( ⁇ m).
  • a thin film obtained by epitaxially growing gallium nitride GaN on a sapphire substrate may also be used.
  • a product substrate 160 to be described later can be selected in the same manner as the material of the growth substrate 13.
  • the product substrate 160 is about 10 to 500 microns thicker than the thickness of the thin film 14 by 10 times or more.
  • the bonding apparatus 20 has a mechanism and a structure for transferring the peeled thin film 14 to a transfer material 23.
  • the thin film support 15 has the thin film 14 adsorbed to the thin film holder 16 in the peeling apparatus 10, and is transferred to the transfer material 23 in the bonding apparatus 20.
  • the joining device 20 includes a transfer holder 22 that holds the transfer material 23.
  • the joining device 20 includes a transfer support 21 that supports the transfer holder 22.
  • the transfer support 21 is fixed to the housing 40 (the fixing location is not shown).
  • the bonding apparatus 20 includes a first slider 130 that supports the thin film support 15.
  • the thin film support 15 is detachably connected to the transfer support 21 via the first slider 130.
  • the joining apparatus 20 includes three chambers.
  • the fourth chamber 300 is a space formed by the transfer support 21, the thin film support 15, and the first slider 130.
  • the fifth chamber 310 is a space formed by the transfer support 21, the transfer material 23, and the transfer holder 22.
  • the third chamber is a space formed by the thin film support 15 and the thin film holder 16. In the fourth chamber 300, the transfer material 23 and the thin film holder 16, and the transfer holder 22 and the thin film 14 are arranged.
  • the pressure device 50 controls the air pressure in the plurality of chambers.
  • the first pressure device 51 controls the air pressure in the third chamber 220. Details of the control of the air pressure in the third chamber 220 will be described later.
  • the joining device 20 includes a gas pressure gauge 120.
  • the gas pressure gauge 120 monitors the gas pressure in the fifth chamber 310.
  • FIG. 2 is an enlarged view of the peeling apparatus 10.
  • the substrate support 11 is disposed on the ground E side and the thin film support 15 is disposed on the top side with respect to the ground E that is the gravity direction G.
  • the peeling apparatus 10 of FIG. 2 further discloses a plurality of other parts not shown in FIG.
  • the peeling apparatus 10 includes a first sealing material 60, a third sealing material 62, and a second sealing material that seal the air pressure of each of the plurality of chambers (first, second, and third chambers).
  • the sealing material 61 is included.
  • the peeling apparatus 10 includes a heater 90 that elastically deforms the substrate holder 12 by heating the substrate holder 12.
  • the peeling apparatus 10 has an infrared local heater 91.
  • the peeling apparatus 10 has an ultrasonic flaw detector 81.
  • the peeling apparatus 10 has a camera 170.
  • the peeling apparatus 10 has an acoustic emission measuring device 80.
  • An infrared local heater 91 such as a laser may be added to the side surface of the growth substrate 13 near the thin film 14.
  • An ultrasonic impact may be applied to the boundary surface between the growth substrate 13 and the thin film 14 by the ultrasonic flaw detector 81.
  • the camera 170, the acoustic emission measuring device 80 and the ultrasonic flaw detector 81 are used to monitor the cleavage and its location and the degree of cleavage.
  • the acoustic emission measuring device 80 monitors a phenomenon in which elastic energy stored therein is released as a sound wave when a material is deformed or broken by a piezoelectric element sensor or the like.
  • a control device (not shown) controls the heater 90 and the like based on these monitor values.
  • the peeling apparatus 10 connects a connector 70 that movably connects the substrate support 11 and the thin film support 15, a connector 72 that connects the thin film support 15 and the thin film holder 16, and connects the substrate support 11 and the substrate holder 12.
  • Connector 71 is provided.
  • the connector 71 has a characteristic that flexibly corresponds to the curvature of the substrate holder 12.
  • FIG. 2 discloses the deformation amount Z1 of the thin film support 15.
  • Z1 is deformed (indicated by a dotted line) to the top side (the side opposite to the gravity direction G).
  • the deformation amount Z1 is about 0.3 mm to 0.5 mm. Since the thin film holder 16 is also connected to the deformed portion 17 of the thin film support 15 by the connector 72, the same effect as the deformation amount Z1 can be obtained.
  • the peeled thin film 14 is attached to the thin film holder 16 together with the negative pressure effect of the third chamber 220 and moves to the top side.
  • the thin film support 15 is, for example, stainless steel.
  • FIG. 2 discloses that the optimum air pressure is supplied from the pressure device 50 to each of the three chambers (first, second, and third chambers).
  • a first air pressure higher than the atmospheric pressure (about 1 kgf / cm 2) (a positive pressure having an absolute value larger than the atmospheric pressure) is applied to the first chamber 200.
  • 1.5 to 3 atmosphere pressures are applied.
  • the air pressure outside the thin film support 15 may be controlled by the pressure device 50. By controlling the outside air pressure, a wide range of differential air pressures can be controlled.
  • a second air pressure lower than atmospheric pressure (a negative pressure smaller in absolute value than atmospheric pressure) is applied to the second chamber 210.
  • zero air pressure (vacuum) is applied.
  • a third air pressure lower than atmospheric pressure (a negative pressure smaller in absolute value than atmospheric pressure) is applied to the third chamber 220.
  • 0 to 0.8 air pressure (vacuum) is applied.
  • the thin film 14 peeled off by the negative pressure is sucked into the third chamber.
  • a differential air pressure between the first air pressure and the third air pressure is applied to both surfaces of the thin film 14 after the cleavage is started.
  • the differential pressure By setting the differential pressure to at least 1.1 atm or higher, the degree of adsorption between the thin film 14 and the thin film holder 16 being peeled is increased, and the degree of adhesion between the growth substrate 13 and the substrate holder 12 is increased. This increases the degree of peeling of the thin film 14 being peeled. As a result, an increase in the peeling time can be expected. Furthermore, the quality improvement of the thin film 14 can be expected by controlling the setting of the differential pressure. Further, the control range of the outside air pressure expands the setting range of the differential air pressure from the third air pressure, and the setting range of the deformation amount of the deformation portion 17 of the thin film support 15 is expanded.
  • each setting range of the deformation amount can be arbitrarily set.
  • a thin film is obtained by a combination of a thermal impact by the heater 90 or the infrared local heater 91 or an acoustic impact (mechanical impact) by the ultrasonic flaw detector 81 and the first air pressure in the first chamber 200.
  • the setting range for each of the 14 peeling times and the quality improvement of the thin film can be arbitrarily set.
  • FIG. 3 is a diagram illustrating a state of the peeling apparatus 10 when it is not heated.
  • FIG. 4 is a diagram illustrating a state of the peeling apparatus 10 during heating.
  • the substrate holder 12 has a plurality of holes 24 penetrating therethrough.
  • the growth substrate 13 is sucked by the negative pressure in the second chamber 210.
  • the thin film holder 16 has a plurality of holes 25 penetrating therethrough.
  • the thin film holder 16 includes two layers of a porous metal pad 100 and a carbon nano pad 101 that are stacked on each other.
  • the peeled thin film 14 is adsorbed by the negative pressure of the third chamber 220 through the thin film holder 16 (including the porous metal pad 100 and the carbon nano pad 101).
  • the thickness of the thin film holder 16 having the plurality of holes 25 is 5 mm.
  • the plurality of holes 25 of the thin film holder 16 are arranged with 2 mm holes (2 mm diameter) developed on the array in units of 4 mm.
  • the thickness of the portion of the porous metal pad 100 having the plurality of holes 25 is 1.5 mm.
  • the plurality of holes 25 of the porous metal pad 100 are arranged so that 20-micron holes (20 ⁇ m diameter) are developed on the array in units of 50 microns.
  • the carbon nano pad 101 composed of fibrous microfibers or nanofibers has a plurality of micropores in micrometer units ( ⁇ m unit diameter) or nanometer units (nm unit diameter).
  • the thin film holder 16 and the porous metal pad 100 are preferably conductive. Electrostatic breakdown of the thin film 14 that occurs during peeling can be prevented.
  • the thin film holder 16 and the carbon nano pad 101 are arranged so as to sandwich the porous metal pad 100.
  • the thin film holder 16 is selected from aluminum or an alloy thereof, brass, steel, stainless steel and the like.
  • the porous metal pad 100 is selected from copper, aluminum, or an alloy containing the same as the main component, and is preferably a material having good heat conduction.
  • the carbon nano pad 101 is preferably a material composed of fibrous microfibers or nanofibers. The shape can be selected from a pad, a sheet, and a cloth.
  • microfiber carbon nano tube carbon nano fiber
  • carbon fiber blended cellulose nano fiber containing carbon powder etc.
  • These have excellent properties such that the linear thermal expansion coefficient is as small as that of glass fiber and the elastic modulus is higher than that of glass fiber.
  • An improvement in the quality of the thin film 14 can be expected.
  • the gas Gas is supplied to the first chamber 200.
  • the gas Gas dry air Air, nitrogen N2 as an inert gas, and hydrogen H2 (hydrogen molecule) as an activation gas can be selected.
  • the Bohr radius ⁇ b 0.0529 nm of the hydrogen atom is the smallest among the atoms.
  • the lattice constant of gallium nitride GaN is 0.539 nm, which is sufficient to allow hydrogen to pass through.
  • the lattice constant of silicon Si is 0.5431 nm.
  • the defect lattice further accelerates hydrogen diffusion.
  • Hydrogen H2 enters the separation region (buffer layer) having a different number of lattices in the region where the surface of the growth substrate 13 and the surface of the separation film 14 are in contact with each other through the gap Z3 and the thin film 14.
  • the smaller the Bohr radius of an atom the larger the diffusion coefficient.
  • Hydrogen H2 penetrates into the lattice in the separation region, thereby further increasing the degree of defects.
  • Hydrogen H2 accelerates the start time of cleavage when the thin film 14 peels from the growth substrate 13.
  • the gas Gas supplied to the first chamber 200 may be helium He.
  • the gas Gas supplied to the first chamber 200, an atom or molecular gas having a Bohr radius smaller than the Bohr radius of the thin film, and another gas may be mixed.
  • the gap Z3 of 0.1 mm or less acts in the direction of canceling the deformation amount Z1 (0.3 mm to 0.5 mm) of the thin film support 15 from the viewpoint of the adsorption performance of the thin film 14 to the thin film holder 12.
  • it can be covered by controlling the setting of the differential pressure described above.
  • nitrogen N2 instead of hydrogen H2.
  • gap Z3 can also be 0.0 mm.
  • the gas Gas supplied to the first chamber 200 is hydrogen H 2, but may be hydrogen atoms H generated by platinum or palladium catalysis in the chamber. Further diffusion is accelerated than the diffusion of the hydrogen molecule H2.
  • the gas Gas having a Bohr radius smaller than the lattice constant of the growth substrate 13 and the release film 14 can be expected to shorten the release time of the thin film 14.
  • the first chamber 200 in the manufacturing apparatus 1 or the peeling apparatus 10 may be provided with a carrier for carrying a supported catalyst at the time of hydrogenation, for example.
  • the metals used as the catalyst are platinum Pt black (black powdery platinum), palladium Pd black (subsurface with intense irregularities on the submicron level), palladium Pd-C (ultrafine Pd metal on activated carbon). Can be selected.
  • As the carrier zeolite is preferable.
  • the hydrogen molecule H2 is changed to two hydrogen atoms 2H (deuterium), and further diffusion acceleration can be expected.
  • the carrier is preferably provided in the gas Gas supply mechanism shown in FIG.
  • the carrier When the carrier is provided in the first chamber 200, it is preferably provided movably between the thin film holder 16 and the thin film 14 (gap Z3) shown in FIG. Prior to the step of heating the substrate holder 12, the movable carrier separates from the gap Z3.
  • FIG. 4 illustrates the state of the peeling apparatus 10 during heating.
  • the substrate holder 12 and the growth substrate 13 are heated to 200 degrees Celsius or less by the heater 90 and gradually bend.
  • cleavage begins from the periphery of the growth substrate 13 to generate a gap Z2.
  • the gap Z ⁇ b> 2 means peeling of the thin film 14 from the growth substrate 13.
  • FIG. 5 is an enlarged cross-sectional view of the thin film support 15.
  • the thicknesses of the deformable portion 17 and the cutout portion 18 and the thin film support 15 are disclosed.
  • the stainless steel thin film support 15 has a basic thickness t0 of stainless steel (standard thickness of a portion that does not deform).
  • the deformed portion 17 includes a thickness t1 to t4 that is smaller than t0 (where t2 indicates a gap that is the width of the groove).
  • the thicknesses of the plurality of thicknesses t1 to t4 are indicated by inequality signs as follows (t4 ⁇ t3 ⁇ t2 ⁇ t1).
  • the notch 18 includes the thinnest thickness t4.
  • the notch 18 is disposed outside the second seal material 61.
  • the notch 18 is disposed corresponding to the first chamber 200.
  • the notch 18 is arranged corresponding to the outside of the thin film support 15.
  • the notch 18 is a hole, groove, stepped portion or the like formed by cutting a part of the stainless material in the thickness direction. That is, it is the place where concentrated stress is most likely to appear.
  • the notch 18 has two grooves.
  • the most effective structure for the deformation amount Z1 (0.3 mm to 0.5 mm) is the groove depth corresponding to t0-t4 (in the Y-axis direction in FIG. 5) and t2.
  • the width of the corresponding groove (X-axis direction in FIG. 5).
  • the diameters of the thin film holder 16 and the thin film 14 and the growth substrate 13 are smaller than 200 mm.
  • t0 10 mm
  • t1 6 mm
  • t2 5 mm
  • t3 4 mm
  • t4 2 mm are preferable.
  • FIG. 6 is a top view of the thin film support 15.
  • FIG. 6 discloses the shape of the notch 18 around the cavity that supplies air pressure to the third chamber 220.
  • the notch 18 in FIG. 6 shows a circle.
  • the thin film support 15 in FIG. 6 corresponds to the shape of the wafer-shaped growth substrate 13 such as silicon and the shape of the thin film 14 corresponding to the wafer shape.
  • the shape of the product substrate 160 also corresponds to the wafer shape.
  • FIG. 7 is a top view showing a thin film support 15A which is a modification of the thin film support 15 of FIG.
  • the notch 18A in FIG. 7 shows a rectangle.
  • the shape of the product substrate 160 corresponds to the rectangular shape. That is, it relates to the shape of the electronic component. Note that the region 19A in FIG. 7 corresponds to the region 19 in FIG.
  • 8 to 10 are enlarged sectional views of the thin film supports 15B, 15C, and 15D, each having a structure different from that shown in FIG. 8 to 10, the same elements as those in FIG. 5 are denoted by the same reference numerals, and redundant description is omitted.
  • 8 to 10 disclose the thicknesses of the deformed portions 17B, 17C, and 17D and the thin film supports 15B, 15C, and 15D, respectively.
  • a stainless steel thin film support 15B has a basic thickness t5 of stainless steel.
  • Deformed portion 17B includes a thickness t6 that is less than t5. The thicknesses of the plurality of thicknesses t5 and t6 are indicated by inequality signs.
  • a stainless steel material having a thickness of t6 is bent.
  • a stainless steel thin film support 15C has a basic thickness t7 of stainless steel.
  • the deformed portion 17C includes a thickness t8 to t10 that is thinner than t7.
  • the thicknesses of the plurality of thicknesses t7 to t10 are indicated by inequality signs as follows (t10 ⁇ t9 ⁇ t8 ⁇ t7).
  • the deformed portion 17C has a structure with thicknesses t8 to t10 that gradually become thinner.
  • a stainless steel thin film support 15D has a basic thickness of stainless steel. Deformation part 17D contains thickness t11 and t12 thinner than basic thickness, and includes spring 110 which is an elastic body.
  • the thicknesses of the plurality of thicknesses t11 and t12 are indicated by inequality signs as follows (t12 ⁇ t11).
  • the deformation portion 17D has a structure in which a deformation amount Z1 is obtained by a combination of the thicknesses t11 and t12 and the spring 110.
  • the spring 110 is an example of an elastic body.
  • FIG. 11 and 12 disclose a cross-sectional view of the bonding apparatus 20 including the thin film support 15.
  • the joining device 20 includes an up-and-down mechanism 140 that moves the transfer support 21 up and down along the vertical direction (gravity direction G).
  • the joining apparatus 20 includes a thin film support 15 and a first slider 130 with respect to the transfer support 21 and includes a bearing 131 that slides them along the top-and-bottom direction (gravity direction G).
  • FIG. 11 shows a first state in which the thin film support 15 having the peeled thin film 14 adsorbed to the thin film holder 16 is set on the transfer support 21.
  • FIG. 12 shows a second state in which the transfer support 21 is raised in the top direction by the vertical mechanism 140 and the thin film 14 and the transfer material 23 are in contact with each other.
  • the distance between the thin film 14 and the transfer material 23 is monitored by the camera 170 and the vertical mechanism 140 is controlled. After the distance between the thin film 14 and the transfer material 23 reaches a predetermined value, the thin film 14 is transferred to the transfer material 23 by controlling the air pressure in the third chamber 220 from negative pressure to positive pressure.
  • the gas pressure gauge 120 indirectly monitors the transfer state by monitoring the gas pressure in the fifth chamber 310, and controls the gas pressure in the third chamber 220 or the vertical mechanism 140.
  • a supply port for adjusting the air pressure in the fourth chamber 300 is not shown. The supply port is connected to the pressure device 50. The pressure device 50 adjusts the air pressure in the fourth chamber 300 when the transfer support 21 moves upward.
  • the air pressure in the fourth chamber 300 can be correlated with the air pressure in the third chamber 220.
  • the thin film 14 is transferred to the transfer material 23 by controlling the air pressure in the third chamber 220 from negative pressure to positive pressure.
  • the air pressure in the fourth chamber 300 is controlled to a negative pressure. This can be expected to improve transfer quality and transfer speed.
  • the air pressure in the fourth chamber 300 and the air pressure in the third chamber 220 can be controlled only by negative pressure.
  • the differential air pressure between the air pressure in the fourth chamber 300 and the air pressure in the third chamber 220 at the time of transfer is important.
  • the transfer material 23 is preferably a transfer material that can be adsorbed and peeled and has a fibrous structure in which carbon nanotubes or graphene are arranged in a direction perpendicular to the support on a film-like or tape-like support (base material).
  • the transfer material 23 adsorbs the thin film 14 by van der Waals force acting between atoms and molecules without using an adhesive. Therefore, the transfer material 23 can prevent the thin film 14 from being contaminated.
  • the conductive transfer material 23 prevents electrostatic breakdown of the thin film 14. Therefore, the transfer material 23 can improve the quality of the thin film 14.
  • the transfer material 23 can be reused. Therefore, the transfer material 23 is useful for cost reduction.
  • transfer material 23 that can be adsorbed and peeled and has a micro level suction cup function on a film-like or tape-like support (base material) and can be reused.
  • the transfer material 23 can be replaced with a product substrate (sapphire, silicon Si, gallium nitride GaN, silicon carbide Sic, gallium arsenide GaAs, or the like).
  • FIGS. 13 and 14 disclose cross-sectional views of the bonding apparatus 20 including the second thin film support 115.
  • the bonding apparatus 20 includes a second thin film support 115 instead of the thin film support 15 of FIGS. 11 and 12.
  • the joining device 20 includes a second thin film support 115 and a second slider 150 with respect to the transfer support 21, and has a bearing that slides them along the top-and-bottom direction (gravity direction G).
  • the bonding apparatus 20 includes a second thin film support 115, a second transfer material 123, and a second thin film holder 116.
  • the second thin film holder 116 is sandwiched and supported by the connector between the second thin film support 115 and the second slider 150.
  • the second slider 150 has a hole 151 that passes therethrough.
  • the second transfer holder 122 is controlled to a negative pressure by the pressure device 50 through the hole 151 and is attracted to the second slider 150.
  • the bonding apparatus 20 including the second thin film support 115 includes a sixth thin film support 115, a second slider 150, a second transfer holder 122, and a second transfer material 123. It has a chamber 320.
  • the second thin film holder 116 is disposed in the sixth chamber 320.
  • the second thin film support 115 has a hole 153.
  • the first pressure device 51 included in the pressure device 50 controls the air pressure in the sixth chamber 320 through the hole 153.
  • the fourth chamber 300 is formed by the transfer support 21, the second slider 150, the second transfer holder 122, and the second transfer material 123.
  • the manufacturing apparatus 1 includes a second thin film support transport mechanism 230 that allows the second thin film support 115 to be attached to and detached from the bonding apparatus 20.
  • the second thin film support transport mechanism 230 includes a second thin film support moving member 231.
  • the second thin film support 115 is connected to the second thin film support moving material 231.
  • FIG. 13 shows a first state in which the second thin film support 115 is set on the transfer support 21.
  • the first state is the state of the thin film 14 bonded to the transfer material 23 as shown in FIG.
  • FIG. 14 shows a second state in which the transfer support 21 is raised in the top direction by the vertical mechanism 140 and the thin film 14 and the second transfer material 123 are in contact with each other.
  • the distance between the thin film 14 and the second transfer material 123 is monitored by a camera (not shown), and the vertical mechanism 140 is controlled.
  • the air pressure in the sixth chamber 320 is controlled from negative pressure to positive pressure through the hole 153 provided in the second thin film support 115.
  • the gas pressure gauge 120 indirectly monitors the transfer state by monitoring the gas pressure in the fifth chamber 310 and controls the gas pressure in the sixth chamber 320 or the vertical mechanism 140.
  • a supply port (a hole 153 provided in the second thin film support 115) for adjusting the air pressure in the sixth chamber 320 is connected to the pressure device 50.
  • the pressure device 50 adjusts the air pressure in the sixth chamber 320 when the transfer support 21 moves upward.
  • the air pressure in the fourth chamber 300 can be correlated with the air pressure in the sixth chamber 320.
  • the thin film 14 is transferred to the second transfer material 123 by controlling the air pressure in the sixth chamber 320 from negative pressure or atmospheric pressure to positive pressure.
  • the air pressure in the fourth chamber 300 is controlled to a negative pressure. Thereafter, this can be expected to improve transfer quality and transfer speed.
  • the air pressure in the fourth chamber 300 and the air pressure in the sixth chamber 320 are negative pressure only, negative pressure and atmospheric pressure, negative pressure and positive pressure, atmospheric pressure and positive pressure, or only positive pressure. It is also possible to control.
  • the differential air pressure between the air pressure in the fourth chamber 300 and the air pressure in the sixth chamber 320 at the time of transfer is important.
  • the second transfer material 123 is preferably a transfer material that can be adsorbed and peeled and has a fibrous structure in which carbon nanotubes or graphene are arranged in a direction perpendicular to the support on a film-like or tape-like support (base material). .
  • the second transfer material 123 adsorbs the thin film 14 by van der Waals force acting between atoms and molecules without using an adhesive. Therefore, the second transfer material 123 can prevent the thin film 14 from being contaminated.
  • the second transfer material 123 having conductivity prevents electrostatic breakdown of the thin film 14. Therefore, the second transfer material 123 can improve the quality of the thin film 14.
  • the second transfer material 123 can be reused. Therefore, the second transfer material 123 is useful for cost reduction.
  • a second transfer material 123 that can be adsorbed and peeled off and reusable with a suction function at a micro level on a film-like or tape-like support (base material).
  • the second transfer material 123 can be replaced with a product substrate (sapphire, silicon Si, gallium nitride GaN, silicon carbide Sic, gallium arsenide GaAs, or the like).
  • FIG. 15 to 19 disclose the first to fifth states of the thin film handled by the manufacturing apparatus (FIGS. 2 to 14) of the present invention.
  • FIG. 15 shows a state in which the growth substrate 13 and the thin film 14 are loaded on the peeling apparatus 10 of FIG.
  • the thin film 14 has an A surface and a B surface opposite to the A surface and corresponding to the surface of the growth substrate 13.
  • the A surface represents a P-type layer
  • the B surface represents an N-type layer.
  • the second compound semiconductor InAsxP1-x 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) on the first compound semiconductor InP substrate (growth substrate).
  • the A plane is AlGaN.
  • the layers and intermediate layers are GaN layers, and the B surface is an AlGaN layer.
  • FIG. 16 shows a state in which the thin film 14 is held by the thin film holder 16 in the peeling apparatus 10.
  • the A plane and the B plane are inverted with respect to FIG.
  • FIG. 17 shows a state in which the thin film 14 is transferred to the transfer material 23 in the bonding apparatus 20.
  • the A side and the B side are forwardly rotated with respect to FIG.
  • FIG. 18 shows a state in which the thin film 14 is transferred to the second transfer material 123 in the bonding apparatus 20.
  • the A plane and the B plane are inverted with respect to FIG.
  • FIG. 19 shows a state where the thin film 14 has been transferred to the product substrate 160.
  • the A side and the B side are forwardly rotated with respect to FIG.
  • the device structure standard for example, FIG.
  • a surface and B surface can be selected suitably.
  • the device structure shown in FIG. 16 or FIG. 18 to FIG. 19 can be realized.
  • the second device structure reference is the reverse of the structure reference of the first device, the device structure opposite to the A and B surfaces in FIG. 19 can be realized from FIG.
  • FIG. 20 is a modification of the peeling apparatus 10 disclosed in FIGS. 2 and 3.
  • the substrate holder 12 and the thin film holder 16 are upside down with respect to FIG. Further, the thin film holder 16 adsorbs and holds the third transfer material 124 through the holes 25. The thin film 14 is transferred to the third transfer material 124. In other words, the thin film 14 is indirectly held by the thin film holder 16 through the adsorbed third transfer material 124. In contrast, the thin film holder 16 of FIG. 3 directly sucks and holds the porous metal pad 100, the carbon nano pad 101, and the thin film 14.
  • the second transfer material 124 can be replaced with a product substrate (sapphire, silicon Si, gallium nitride GaN, silicon carbide Sic, gallium arsenide GaAs, or the like).
  • a product substrate substrate
  • the joining device 20 disclosed in FIG. 20 discloses are the figures explaining the state at the time of non-heating.
  • the substrate holder 12 of the peeling apparatus 10A disclosed in FIG. 20 is composed of a first metal 112 and a second metal 113, whereas the substrate holder 12 of FIG. Has bimetal.
  • the first metal 112 and the second metal 113 have different expansion coefficients with respect to temperature.
  • the bimetal can be replaced with the substrate holder 12 of FIG. Others are the same as described above.
  • FIG. 21 illustrates the state of the peeling apparatus 10A during heating in FIG.
  • the substrate holder 12 and the growth substrate 13 are heated to 200 degrees Celsius or less by the bimetal composed of the first metal 112 and the second metal 113, and gradually bend.
  • cleavage begins from the periphery of the growth substrate 13 to generate a gap Z2.
  • the gap Z ⁇ b> 2 means peeling of the thin film 14 from the growth substrate 13. Others are the same as described above.
  • FIG. 22 to 25 disclose the sixth to ninth states of the thin film handled by the manufacturing apparatus (FIGS. 20 and 21) of the present invention.
  • FIG. 22 shows a state where the growth substrate 13 and the thin film 14 are loaded on the peeling apparatus 10A of FIG. Similarly to FIG. 15, the thin film 14 has an A surface and a B surface.
  • FIG. 23 shows a state in which the thin film 14 is transferred to the third transfer material 124 in the peeling apparatus 10A. The A plane and the B plane are inverted with respect to FIG.
  • FIG. 24 shows a state where the thin film 14 and the third transfer material 124 are unloaded from the peeling apparatus 10A (manufacturing apparatus 1).
  • FIG. 25 shows a state where the back surface of the third transfer material 124 is polished.
  • the third transfer material 124 is polished, and a part thereof becomes the product substrate 160. This is useful when the device structure standard including the thin film 14 required by the semiconductor device mounted on the electronic device is the above-mentioned second device structure standard (device structure opposite to the A and B surfaces in FIG. 19).
  • FIGS. 26 to 28 disclose the tenth to twelfth states of the thin film handled by the manufacturing apparatus of the present invention (the state where the thin film holder 16 of FIG. 20 is installed in the joining device 20 inverted in the vertical direction).
  • FIG. 26 shows a state where the state is shifted from the state of FIG. 23 to the bonding apparatus 20.
  • the thin film 14 has an A surface and a B surface.
  • FIG. 27 shows a state in which the thin film 14 is transferred to the fourth transfer material 125 in the bonding apparatus 20, and the thin film 14 and the fourth transfer material 125 are unloaded from the bonding apparatus 20 (manufacturing apparatus 1). State.
  • the A plane and the B plane are inverted with respect to FIG. FIG.
  • the fourth transfer material 125 is polished, and a part thereof becomes the product substrate 160. This is useful when the device structure standard including the thin film 14 required by the semiconductor device mounted on the electronic device is the above-mentioned first device structure standard (the device structures on the A and B surfaces in FIG. 19).
  • FIG. 29 to 31 disclose a control method and steps of a manufacturing apparatus.
  • FIG. 29 shows a macro viewpoint control method of the manufacturing apparatus.
  • FIG. 30 shows a macro control method of the peeling apparatus.
  • FIG. 31 shows a macro control method of the joining apparatus.
  • Step S200 is a process of peeling the thin film on the growth substrate.
  • step S300 a thin film support that holds the peeled thin film is placed in the bonding apparatus.
  • Step S400 is a bonding process for transferring the thin film to the transfer material.
  • step S210 loads the growth substrate and the thin film onto the peeling apparatus.
  • the third transfer material 124 is placed on the thin film holder 16.
  • Step S220 discloses control of the air pressure of each of the first to third chambers.
  • Step S221 applies the air pressure of each of the second and third chambers. Includes negative pressure including vacuum, atmospheric pressure, and positive pressure greater than atmospheric pressure.
  • Step S225 applies air pressure to the first chamber. Includes negative pressure, atmospheric pressure, and positive pressure greater than atmospheric pressure.
  • step S230 applies gas Gas to the first chamber. In addition, the order of step S220 and step S230 is not ask
  • step S240 heat is applied to the substrate holder to deform the substrate holder.
  • step S 400 corresponds to step S400.
  • step S ⁇ b> 410 the thin film support holding the peeled thin film is installed in the bonding apparatus by the thin film support transport mechanism 30.
  • step S420 discloses a first bonding process for transferring the thin film to the transfer material 23 while controlling the air pressure and pressure gauges of the plurality of chambers formed in the bonding apparatus and the vertical mechanism. This process is performed by controlling the vertical mechanism and applying an air pressure (vacuum, positive atmospheric pressure) in the third chamber 220.
  • step S ⁇ b> 430 the second thin film support 115 is installed in the bonding apparatus 20 instead of the thin film support 15 by the second thin film support transport mechanism 230.
  • step S440 the thin film transferred to the transfer material 23 is further transferred to the second transfer material 123 while controlling the air pressure and pressure gauges of the plurality of chambers formed in the bonding apparatus and the vertical mechanism.
  • a second joining process is disclosed. This process is performed by controlling the vertical mechanism and applying an atmospheric pressure (positive atmospheric pressure) in the sixth chamber 320.
  • Steps S450 and S460 correspond to FIGS. 18 and 19 and transfer the thin film transferred to the second transfer material onto the product substrate.
  • FIGS. 15 to 19 and 22 to 25 described above correspond to the device structure standards (first and second device structure standards) including the thin film 14 required by the semiconductor device mounted on the electronic device. 26 and 28 to 28 can be reflected or incorporated in each step.
  • the pressure device 50 can be provided with a plurality of pressure devices respectively corresponding to a plurality of chambers including the bonding device 20.
  • the substrate supports, substrate supports, thin film holders, thin film supports, transfer supports, transfer supports, and the like, whether or not explicitly specified herein They can be combined as appropriate.
  • the technical scope of the present invention is not limited to the above-described embodiments or combinations thereof, but extends to the matters described in the claims and equivalents or variations thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

[Problem] To provide a production apparatus which separates/bonds a high-quality, highly efficient or low-cost epitaxial thin film. [Solution] A production apparatus which is provided with: a separation device 10 that comprises, for example, a substrate holding body 12 which holds a growth substrate 13 for obtaining a thin film 14 that is an epitaxial film, a substrate supporting body 11 which supports the substrate holding body, a thin film holding body 16 which holds the thin film separated from the growth substrate, a thin film supporting body 15 which supports the thin film holding body, a first chamber 200 which is composed of the substrate supporting body and the thin film holding body, a second chamber 210 which is composed of the substrate holding body and the substrate supporting body, and a third chamber 220 which is composed of the thin film holding body and the thin film supporting body; and a pressure device 50 that applies first, second and third air pressures to the first, second and third chambers, respectively.

Description

電子装置の製造装置及びその制御方法、並びに電子装置及びその製造方法Electronic device manufacturing apparatus and control method thereof, and electronic device and manufacturing method thereof
 本発明は、電子装置を製造する製造装置及びその制御方法、並びに電子装置及びその製造方法に関する。電子装置は、半導体装置も含む。電子装置を製造する製造装置は、半導体を製造する製造装置も含む。例えば、基板から成長されたエピタキシャル膜(以下、薄膜と呼ぶ)を分離する技術、又は分離されたエピタキシャル膜(薄膜)を別の基板(又は転写材)にボンディングする技術に関連する。 The present invention relates to a manufacturing apparatus for manufacturing an electronic device and a control method thereof, and an electronic device and a manufacturing method thereof. The electronic device also includes a semiconductor device. A manufacturing apparatus for manufacturing an electronic device also includes a manufacturing apparatus for manufacturing a semiconductor. For example, the present invention relates to a technique for separating an epitaxial film (hereinafter referred to as a thin film) grown from a substrate, or a technique for bonding the separated epitaxial film (thin film) to another substrate (or transfer material).
 基板からエピタキシャル膜を分離する装置として、例えば特許文献1に開示された構成(図3)がある。特許文献1に開示されている装置は、吸着溝を有し真空吸着によって半導体基板を撓ませて湾曲した吸着面に保持する基板保持部、楔を半導体基板と半導体薄膜との間の層(多孔質層端部)に押圧することにより半導体薄膜を半導体基板から剥離する楔部、及び吸着孔及び緩衝部を有し半導体薄膜を真空吸着によって吸引保持する半導体薄膜保持部、並びにそれらの構造が開示される。 As an apparatus for separating an epitaxial film from a substrate, for example, there is a configuration disclosed in Patent Document 1 (FIG. 3). The apparatus disclosed in Patent Document 1 includes a substrate holding portion that has a suction groove and holds the semiconductor substrate on a curved suction surface by bending the semiconductor substrate by vacuum suction, and a wedge between the semiconductor substrate and the semiconductor thin film (porous). Disclosed are a wedge portion that peels the semiconductor thin film from the semiconductor substrate by pressing against the substrate layer, a semiconductor thin film holding portion that has suction holes and buffer portions and sucks and holds the semiconductor thin film by vacuum suction, and a structure thereof. Is done.
 次に、特許文献2に開示された構造(図4)では、Si基体から網状膜を剥離する剥離装置において、Si基体上に成長した網状膜の上から押し付け、剥離装置の内部を真空引きしながら網状膜を吸引し、剥離装置を上に引き上げる構造が開示される。 Next, in the structure disclosed in Patent Document 2 (FIG. 4), in a peeling apparatus that peels the network film from the Si substrate, the network film that has grown on the Si substrate is pressed from above and the inside of the peeling apparatus is evacuated. A structure is disclosed in which the reticulated film is sucked and the peeling device is pulled up.
 次に、特許文献3に開示された構造(図3)では、ホットプレートなどの加熱部を有し、第1の基板上にエピタキシャル成長させた窒化物系半導体結晶に熱衝撃を付与して薄膜を剥離する構造が開示される。他に、機械的衝撃(流体の噴出)により剥離を行う構造、振動衝撃(超音波発振器)により剥離を行う構造も開示される。 Next, in the structure disclosed in Patent Document 3 (FIG. 3), a thin film is formed by applying a thermal shock to a nitride-based semiconductor crystal having a heating part such as a hot plate and epitaxially grown on a first substrate. A peeling structure is disclosed. In addition, a structure in which separation is performed by mechanical impact (fluid ejection) and a structure in which separation is performed by vibration impact (ultrasonic oscillator) are also disclosed.
 次に、特許文献4に開示された構造(図1)では、基板の表面に密着した薄膜の剥離を非接触で検出する膜剥離検出装置であって、基板にレーザ光を照射するレーザ光照射光学系と、薄膜による散乱光を受光してその散乱光に含まれるスペックルパターンを光学的に検知するイメージセンサ、及びイメージセンサの出力に基づいて、薄膜の剥離を判定する剥離判定手段が開示される。 Next, the structure disclosed in Patent Document 4 (FIG. 1) is a film peeling detection device that detects the peeling of a thin film adhered to the surface of a substrate in a non-contact manner, and the substrate is irradiated with laser light. An optical system, an image sensor that receives scattered light from a thin film and optically detects a speckle pattern contained in the scattered light, and a peeling determination unit that determines peeling of the thin film based on the output of the image sensor are disclosed. Is done.
特開2004-128148号公報JP 2004-128148 A 特開2001-85725号公報JP 2001-85725 A 特開2007-220899号公報JP 2007-220899 A 特開2002-005816号公報JP 2002-005816 A
 剥離装置及びボンディング装置(剥離した薄膜を製品の一部となるその他の基板へボンディングするボンディング装置)それぞれの高精度化による薄膜の信頼性の向上が必要である。また、剥離した薄膜を扱うハンドリング工程(剥離工程からボンディング工程まで)が、剥離された薄膜の信頼性の向上の視点から必要である。更に、剥離された薄膜の信頼性を向上させつつ、これら装置のコストの低減が必要である。 It is necessary to improve the reliability of the thin film by increasing the accuracy of each of the peeling device and the bonding device (bonding device for bonding the peeled thin film to another substrate that is a part of the product). In addition, a handling process (from the peeling process to the bonding process) for handling the peeled thin film is necessary from the viewpoint of improving the reliability of the peeled thin film. Furthermore, it is necessary to reduce the cost of these devices while improving the reliability of the peeled thin film.
 例えば、特許文献1に開示された製造装置は、コントローラを有し、コントローラは、分離層である多孔質層の剥離強度の違い(剥がれ難い箇所、剥がれ易い箇所)に応じて、剥離用ウエハの定速回転、楔の挿入量、及び楔の押し圧力を調整しなければならない。これは製造装置の部品点数の増加であり、コスト増を招く。 For example, the manufacturing apparatus disclosed in Patent Document 1 includes a controller, and the controller is configured to remove the peeling wafer according to the difference in the peeling strength of the porous layer that is the separation layer (a place where peeling is difficult and a place where peeling is easy). Constant speed rotation, wedge insertion amount, and wedge pressure must be adjusted. This is an increase in the number of parts of the manufacturing apparatus, resulting in an increase in cost.
 例えば、特許文献1に開示された構成においては、半導体薄膜保持部は上方向への張力が常に掛かるように圧縮バネが軸を押し上げるように設けてあり、半導体薄膜を吸着した後は半導体薄膜を半導体基板から剥がす方向の張力が常に掛かり剥離を促進する構成になっている。つまり、圧縮バネが、楔によって剥離されつつある薄膜を、コントローラの制御に関連なく一方的に剥離を促進するので、薄膜の信頼性の低下を招く。特許文献2に開示された構造も同様である。 For example, in the configuration disclosed in Patent Document 1, the semiconductor thin film holding portion is provided so that the compression spring pushes up the shaft so that the upward tension is always applied. The tension in the direction of peeling from the semiconductor substrate is always applied to promote peeling. That is, since the compression spring unilaterally promotes peeling of the thin film being peeled by the wedge regardless of the control of the controller, the reliability of the thin film is reduced. The structure disclosed in Patent Document 2 is the same.
 例えば、特許文献3に開示された構成においては、3つ(熱衝撃、機械的衝撃、振動衝撃)の方法で薄膜を剥離する構造が開示されるも、剥離されつつある薄膜の信頼性保持の方法、及びその構造が開示されない。少なくとも前述した複数の課題の一つが、剥離された薄膜の信頼性を向上させつつ、又はこれら装置のコストの低減の視点で、解決されることが望ましい。 For example, in the configuration disclosed in Patent Document 3, a structure in which the thin film is peeled by three methods (thermal shock, mechanical shock, vibration shock) is disclosed, but the reliability of the thin film being peeled is maintained. The method and its structure are not disclosed. It is desirable that at least one of the plurality of problems described above is solved from the viewpoint of improving the reliability of the peeled thin film or reducing the cost of these devices.
 本発明の製造装置は、薄膜を得る成長用基板を保持する基板保持体と、基板保持体を支持する基板支持体と、成長用基板から剥離する薄膜を保持する薄膜保持体と、薄膜保持体を支持する薄膜支持体と、基板支持体及び薄膜保持体による第1のチャンバーと、基板保持体及び基板支持体による第2のチャンバーと、薄膜保持体及び薄膜支持体による第3のチャンバーと、を有する剥離装置と、第1、第2及び第3のチャンバーにそれぞれ対応する第1、第2及び第3の気圧力を印加する圧力装置と、を備える、ことを特徴とする。 The manufacturing apparatus of the present invention includes a substrate holder that holds a growth substrate for obtaining a thin film, a substrate support that supports the substrate holder, a thin film holder that holds a thin film peeled off from the growth substrate, and a thin film holder. A first chamber composed of a substrate support and a thin film support, a second chamber composed of the substrate support and the substrate support, a third chamber composed of the thin film support and the thin film support, And a pressure device that applies first, second, and third air pressures corresponding to the first, second, and third chambers, respectively.
本発明を実現する製造装置の一例(断面図)である。It is an example (sectional drawing) of the manufacturing apparatus which implement | achieves this invention. 本発明の製造装置に含まれる剥離装置(第1例)である。It is the peeling apparatus (1st example) contained in the manufacturing apparatus of this invention. 図2の一部の非加熱時の拡大図である。FIG. 3 is an enlarged view of a part of FIG. 2 when not heated. 図3の熱印加時の拡大図である。It is an enlarged view at the time of the heat application of FIG. 図2の薄膜支持体(第1例)の拡大図である。It is an enlarged view of the thin film support body (1st example) of FIG. 図5の上面図(第1例)である。FIG. 6 is a top view (first example) of FIG. 5. 図6の薄膜支持体の変形例である。It is a modification of the thin film support body of FIG. 図2の薄膜支持体(第2例)の拡大図である。It is an enlarged view of the thin film support body (2nd example) of FIG. 図2の薄膜支持体(第3例)の拡大図である。It is an enlarged view of the thin film support body (3rd example) of FIG. 図2の薄膜支持体(第4例)の拡大図である。It is an enlarged view of the thin film support body (4th example) of FIG. 本発明の製造装置に含まれる接合装置(第1例:第1状態時)である。It is the joining apparatus (1st example: at the time of a 1st state) included in the manufacturing apparatus of this invention. 本発明の製造装置に含まれる接合装置(第1例:第2状態時)である。It is the joining apparatus (1st example: at the time of a 2nd state) contained in the manufacturing apparatus of this invention. 本発明の製造装置に含まれる接合装置(第2例:第1状態時)である。It is the joining apparatus (2nd example: at the time of a 1st state) included in the manufacturing apparatus of this invention. 本発明の製造装置に含まれる接合装置(第2例:第2状態時)である。It is the joining apparatus (2nd example: at the time of a 2nd state) included in the manufacturing apparatus of this invention. 本発明の製造装置が取り扱う薄膜(第1の状態時)である。It is the thin film (at the time of a 1st state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第2の状態時)である。It is the thin film (at the time of a 2nd state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第3の状態時)である。It is the thin film (at the time of a 3rd state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第4の状態時)である。It is the thin film (at the time of a 4th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第5の状態時)である。It is the thin film (at the time of a 5th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置に含まれる剥離装置(第2例)である。It is the peeling apparatus (2nd example) contained in the manufacturing apparatus of this invention. 図20の熱印加時の拡大図である。It is an enlarged view at the time of the heat application of FIG. 本発明の製造装置が取り扱う薄膜(第6の状態時)である。It is the thin film (at the time of a 6th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第7の状態時)である。It is the thin film (at the time of a 7th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第8の状態時)である。It is the thin film (at the time of 8th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第9の状態時)である。It is the thin film (at the time of a 9th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第10の状態時)である。It is the thin film (at the time of a 10th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第11の状態時)である。It is the thin film (at the 11th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置が取り扱う薄膜(第12の状態時)である。It is the thin film (at the time of a 12th state) which the manufacturing apparatus of this invention handles. 本発明の製造装置の制御方法である。It is the control method of the manufacturing apparatus of this invention. 本発明の剥離装置の制御方法である。It is the control method of the peeling apparatus of this invention. 本発明の接合装置の制御方法である。It is the control method of the joining apparatus of this invention.
1 製造装置
10、10A 剥離装置
11 基板支持体
12 基板保持体
13 成長用基板
14 薄膜(エピタキシャル膜)
15、15A、15B、15C、15D 薄膜支持体
16 薄膜保持体
17 (弾性歪み)変形部
18、18A 切り欠き部
19、19A (弾性歪み)変形部の領域
20 接合装置
21 転写支持体
22 転写保持体
23 転写材
24、25、151、153 ホール
30 薄膜支持体搬送機構
31 薄膜支持体移動材
40 筐体(シャーシ)
50 圧力装置
51 第1の圧力装置
52 第2の圧力装置
60 第1のシール材
61 第2のシール材
62 第3のシール材
70、71、72 コネクター
80 アコースティックエミッション測定器
81 超音波探傷器
90 ヒーター
91 赤外線局部加熱器
100 多孔金属パッド
101 カーボン・ナノ・パッド
110 スプリング
112 第1の金属
113 第2の金属
115 第2の薄膜支持体
116 第2の薄膜保持体
120 気圧力計
122 第2の転写保持体
123 第2の転写材
124 第3の転写材
125 第4の転写材
130 第1のスライダー
131 ベアリング
140 上下機構
150 第2のスライダー
160 製品基板
170 カメラ
200 第1のチャンバー
210 第2のチャンバー
220 第3のチャンバー
230 第2の薄膜支持体搬送機構
231 第2の薄膜支持体移動材
300 第4のチャンバー
310 第5のチャンバー
320 第6のチャンバー
Z1、Z2、Z3 ギャップ
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 10, 10A Peeling apparatus 11 Substrate support body 12 Substrate holding body 13 Growth substrate 14 Thin film (epitaxial film)
15, 15A, 15B, 15C, 15D Thin film support 16 Thin film holder 17 (elastic strain) deformed portion 18, 18A Notch portions 19, 19A (elastic strain) deformed region 20 Joining device 21 Transfer support 22 Transfer hold Body 23 Transfer material 24, 25, 151, 153 Hole 30 Thin film support transport mechanism 31 Thin film support moving material 40 Housing (chassis)
50 pressure device 51 first pressure device 52 second pressure device 60 first sealing material 61 second sealing material 62 third sealing materials 70, 71, 72 connector 80 acoustic emission measuring instrument 81 ultrasonic flaw detector 90 Heater 91 Infrared local heater 100 Porous metal pad 101 Carbon nano pad 110 Spring 112 First metal 113 Second metal 115 Second thin film support 116 Second thin film holder 120 Gas pressure gauge 122 Second Transfer holder 123 Second transfer material 124 Third transfer material 125 Fourth transfer material 130 First slider 131 Bearing 140 Vertical mechanism 150 Second slider 160 Product substrate 170 Camera 200 First chamber 210 Second chamber Chamber 220 Third chamber 230 Second thin film support transport mechanism 23 Chamber Z1 of the second thin film support moving member 300 fourth chamber 310 fifth chamber 320 a 6, Z2, Z3 gap
 図1は、本発明の製造装置の断面図を簡素に示す複数の実施例のうちの一つの実施例である。図1が開示する製造装置1は、剥離装置10、接合装置20、圧力装置50、及び薄膜支持体搬送機構30、並びに筐体40が含まれる。 FIG. 1 is one embodiment of a plurality of embodiments that simply show a cross-sectional view of the manufacturing apparatus of the present invention. The manufacturing apparatus 1 disclosed in FIG. 1 includes a peeling apparatus 10, a joining apparatus 20, a pressure apparatus 50, a thin film support transport mechanism 30, and a housing 40.
 本発明の幾つかの特徴を簡素に以下に示す。但し、これら特徴は特許請求項に示す発明の特別な特徴を制限するものではない。 Some features of the present invention are briefly described below. However, these features do not limit the special features of the invention shown in the claims.
 第1の特徴として、剥離装置10は、基板支持体11と可動可能な薄膜支持体15によって構成される。接合装置20は、可動可能な転写支持体21と可動可能な薄膜支持体15によって構成される。つまり、ひとつの薄膜支持体15は、剥離装置10と接合装置20の両方で使用される。ひとつの薄膜支持体15は、薄膜支持体搬送機構30に接続する。ひとつの薄膜支持体15が剥離された薄膜14を接合装置20においても使用するので、剥離された薄膜14の品質向上と、製造工程のスループットの短縮が期待できる。 As a first feature, the peeling apparatus 10 includes a substrate support 11 and a movable thin film support 15. The joining device 20 includes a movable transfer support 21 and a movable thin film support 15. That is, one thin film support 15 is used in both the peeling device 10 and the bonding device 20. One thin film support 15 is connected to the thin film support transport mechanism 30. Since the thin film 14 from which one thin film support 15 is peeled is also used in the bonding apparatus 20, it is possible to expect an improvement in the quality of the peeled thin film 14 and a reduction in the throughput of the manufacturing process.
 第2の特徴として、圧力装置50は、剥離装置10が有する3つのチャンバー(第1、第2、及び第3のチャンバー)にそれぞれ最適な気圧力を供給して、薄膜14を剥離する。第1のチャンバー200に大気圧(約1kgf/cm2)よりも高い第1の気圧力を印加し、第2のチャンバー210及び第3のチャンバー220に大気圧よりも低い第2及び第3の気圧力を印加する。少なくとも第1及び第3の気圧力の差を薄膜14の両面に与える。これによって、剥離されつつある薄膜14と薄膜保持体16との吸着度合いを高め、また成長用基板13と基板保持体12との密着度合いを高めることによって剥離されつつある薄膜14の剥離度合いを高める。その結果として剥離時間が高速化される。また、その結果として薄膜14の品質向上が実現できる。 As a second feature, the pressure device 50 peels the thin film 14 by supplying optimum air pressure to the three chambers (first, second, and third chambers) of the peeling device 10. A first air pressure higher than atmospheric pressure (about 1 kgf / cm 2) is applied to the first chamber 200, and second and third air lower than atmospheric pressure are applied to the second chamber 210 and the third chamber 220. Apply pressure. At least a difference between the first and third air pressures is applied to both surfaces of the thin film 14. Accordingly, the degree of adsorption between the thin film 14 being peeled and the thin film holder 16 is increased, and the degree of peeling of the thin film 14 being peeled is increased by increasing the degree of adhesion between the growth substrate 13 and the substrate holder 12. . As a result, the peeling time is increased. As a result, the quality of the thin film 14 can be improved.
 第3の特徴として、第1のチャンバー200に水素ガスが供給される。例えば、水素が剥離領域へ拡散し、拡散部分の格子間の歪みを増大させることによって、窒化ガリウムGaNとエピタキシャル膜である薄膜間の格子状数の異なる剥離領域(バッファー層)の欠陥度合いを更に高める。成長用基板13から薄膜14が剥離する劈開(へきかい:Cleavage)の高速化と薄膜14の品質向上の両者を実現できる。剥離(Cleavage)とは、結合力の弱い方向に裂ける性質、現象を示す。 As a third feature, hydrogen gas is supplied to the first chamber 200. For example, by diffusing hydrogen into the separation region and increasing the strain between the lattices in the diffusion region, the degree of defects in the separation regions (buffer layers) with different numbers of lattices between the gallium nitride GaN and the epitaxial thin film is further increased. Increase. It is possible to realize both speeding up of cleaving that the thin film 14 peels from the growth substrate 13 and improvement of the quality of the thin film 14. Cleavage refers to the property and phenomenon of tearing in the direction of weak bonding strength.
 第4の特徴として、薄膜支持体15が弾性歪み変形部17を備えている。大気圧よりも高い第1の気圧力によって、弾性歪み変形部17が上昇(図1の断面図の上の方向)する。成長用基板13から薄膜14が剥離する劈開の高速化その品質向上の両者を実現できる。弾性歪み変形部17は、薄膜支持体15の厚みや形状を考慮することによって実現できる。例えば、切り欠き部18はその一例である。弾性歪み変形部17は、単に変形部17と呼ぶことがある。 As a fourth feature, the thin film support 15 includes an elastic strain deformation portion 17. Due to the first air pressure higher than the atmospheric pressure, the elastic strain deforming portion 17 rises (upward in the cross-sectional view of FIG. 1). Both high speed and high quality of the cleavage of the thin film 14 from the growth substrate 13 can be realized. The elastic strain deformation portion 17 can be realized by considering the thickness and shape of the thin film support 15. For example, the notch 18 is an example. The elastic strain deformation part 17 may be simply referred to as a deformation part 17.
 第5の特徴にとして、接合装置20において、3つの支持体(転写支持体21、薄膜支持体15、及び第2の薄膜支持体115(図13))を使って、剥離された薄膜14を2回転転写する。転写支持体21を基準に2回転写するので、剥離された薄膜14の表面を反転できる。よって、製造工程のスループットの短縮が期待できる。ここで反転とは、剥離された劈開面(B麺)及びその反対面を、転写材の接合面または製品基板の接合面に対して自由に設定できることを意味する。 As a fifth feature, in the bonding apparatus 20, the peeled thin film 14 is removed using three supports (transfer support 21, thin film support 15, and second thin film support 115 (FIG. 13)). Transfer twice. Since the transfer is performed twice with the transfer support 21 as a reference, the surface of the peeled thin film 14 can be reversed. Therefore, a reduction in the throughput of the manufacturing process can be expected. Here, the inversion means that the peeled cleaved surface (B noodle) and the opposite surface can be freely set with respect to the bonding surface of the transfer material or the bonding surface of the product substrate.
 第6の特徴として、転写材23または第2の転写材123を最終製品の製品基板160として利用できる。剥離された薄膜14の品質向上と、製造工程のスループットの短縮が期待できる。 As a sixth feature, the transfer material 23 or the second transfer material 123 can be used as the product substrate 160 of the final product. It can be expected to improve the quality of the peeled thin film 14 and shorten the throughput of the manufacturing process.
 第7の特徴として、剥離装置10を天地逆転する(薄膜保持体16を大地E側、基板保持体12を天側)し、薄膜保持体16に第3の転写材(例えば、製品基板)をセットすることにより、成長用基板13から剥離された薄膜14を直接に製品基板に転写及び接合することができる。剥離された薄膜14の品質向上と、製造工程のスループットの短縮が期待できる。 As a seventh feature, the peeling apparatus 10 is turned upside down (the thin film holder 16 is on the ground E side and the substrate holder 12 is on the top side), and a third transfer material (for example, a product substrate) is placed on the thin film holder 16. By setting, the thin film 14 peeled off from the growth substrate 13 can be directly transferred and bonded to the product substrate. It can be expected to improve the quality of the peeled thin film 14 and shorten the throughput of the manufacturing process.
 第8の特徴として、圧力装置50は、接合装置20が有する3つのチャンバー(第3、第4、及び第5のチャンバー)のうち第3のチャンバーに最適な気圧力を供給して、薄膜14を転写材23に転写する。第3のチャンバーに大気圧よりも高い第3の気圧力を印加する。薄膜14及び薄膜保持体16の固定、並びに成長用基板13及び基板保持体12の固定を確実なものにし、その結果としての転写時間の高速化とその品質向上の両者を実現できる。 As an eighth feature, the pressure device 50 supplies an optimum air pressure to the third chamber among the three chambers (third, fourth, and fifth chambers) of the bonding device 20, so that the thin film 14 Is transferred to the transfer material 23. A third air pressure higher than atmospheric pressure is applied to the third chamber. The fixing of the thin film 14 and the thin film holding body 16 and the fixing of the growth substrate 13 and the substrate holding body 12 can be ensured, and as a result, the transfer time can be increased and the quality can be improved.
 図1において、製造装置1がハンドリングする薄膜14(エピタキシャル膜)は、例えば、次に示される様々な電子部品及びその電子部品が搭載されたシステムに適用される。例えば、太陽電池(Solar Cell Module)、LED照明(LED Lamp, LED Light Bulb)、ディスプレイ(PDP;Plasma Display Panel、LCD;Liquid Crystal Display、OLED:Organic Light-Emitting Diode)、半導体レーザ(Semiconductor Laser, Laser Diode)、光イメージセンサ(Photonic Imager)、プロジェクションディスプレイ(2D/3D Projection Display)、仮想現実・3D投影ディスプレイ(Quantum Photonic Imager, Virtual Reality Display(VR), Augmented Reality Display(AR), Mixed Reality Display(MR), Substitutional Reality Display(SR))、NAND Flash Memory等の不揮発性メモリデバイス及びそのシステム(SSD;Solid State Drive)である。後述する製品基板160(図19、図25及び図28)も薄膜14と同様に、電子部品及びその電子部品が搭載されたシステムに適用される。 In FIG. 1, a thin film 14 (epitaxial film) handled by the manufacturing apparatus 1 is applied to, for example, various electronic components shown below and a system in which the electronic components are mounted. For example, solar cells (Solar Cell Module), LED lighting (LED Lamp, LED Light Light Bulb), display (PDP; Plasma Display Panel, LCD; Liquid Crystal Display, OLED: Organic Light-Emitting Diode), semiconductor laser (Semiconductor Laser, Laser (Diode), Optical Image Sensor (Photonic Imager), Projection Display (2D / 3D Projection Display), Virtual Reality / 3D Projection Display (Quantum® Photonic® Imager, Virtual Reality Display (VR), Augmented Reality Display (AR), Mixed Reality Display (MR), Substitutional Reality Display (SR)), NAND Flash Memory, and other non-volatile memory devices and systems (SSD: Solid State Drive). Similarly to the thin film 14, a product substrate 160 (FIGS. 19, 25, and 28) to be described later is also applied to an electronic component and a system on which the electronic component is mounted.
 図1において、剥離装置10は、成長用基板13がその表面に形成されたエピタキシャル膜である薄膜14を、剥離する機構及び構造である。成長用基板13及び薄膜14は、剥離装置10の外部で形成される。剥離装置10は、成長用基板13を保持する基板保持体12を有する。剥離装置10は、基板保持体12を支持する基板支持体11を有する。基板支持体11は、筐体40に固定される(固定場所は不図示)。剥離装置10は、成長用基板13から剥離された薄膜14を吸着する薄膜保持体16を有する。剥離装置10は、薄膜保持体16を支持する薄膜支持体15を有する。薄膜支持体15は、基板支持体11に脱着可能に接続される。 In FIG. 1, a peeling apparatus 10 has a mechanism and a structure for peeling a thin film 14 which is an epitaxial film formed on the surface of a growth substrate 13. The growth substrate 13 and the thin film 14 are formed outside the peeling apparatus 10. The peeling apparatus 10 includes a substrate holder 12 that holds a growth substrate 13. The peeling apparatus 10 includes a substrate support 11 that supports the substrate holder 12. The substrate support 11 is fixed to the housing 40 (the fixing location is not shown). The peeling apparatus 10 includes a thin film holder 16 that adsorbs the thin film 14 peeled from the growth substrate 13. The peeling apparatus 10 includes a thin film support 15 that supports the thin film holder 16. The thin film support 15 is detachably connected to the substrate support 11.
 剥離装置10は、3つのチャンバーを備える。第1のチャンバー200は、基板支持体11及び薄膜支持体15によって形成される空間である。第2のチャンバー210は、基板支持体11及び基板保持体12によって形成される空間である。第3のチャンバーは、薄膜支持体15及び薄膜保持体16によって形成される空間である。第1のチャンバー200内には、基板保持体12及び薄膜保持体16、並びに成長用基板13及び薄膜14が配置される。 The peeling apparatus 10 includes three chambers. The first chamber 200 is a space formed by the substrate support 11 and the thin film support 15. The second chamber 210 is a space formed by the substrate support 11 and the substrate holder 12. The third chamber is a space formed by the thin film support 15 and the thin film holder 16. In the first chamber 200, the substrate holder 12 and the thin film holder 16, and the growth substrate 13 and the thin film 14 are arranged.
 薄膜支持体15は、弾性歪み変形部17を含む。弾性歪み変形部17は、切り欠き部18を含む。弾性歪み変形部17及び切り欠き部18は、第1のチャンバー200内の気圧力などの条件によって、一時的にその形状が弾性的に変形する。詳細は、後述する。 The thin film support 15 includes an elastic strain deformation portion 17. The elastic strain deformation part 17 includes a notch part 18. The shape of the elastic strain deforming portion 17 and the notch portion 18 is temporarily elastically deformed depending on conditions such as the air pressure in the first chamber 200. Details will be described later.
 薄膜支持体搬送機構30は、薄膜支持体移動材31を含む。薄膜支持体移動材31は、薄膜支持体15を剥離装置10及び接合装置20の間で搬送(移動)させる。 The thin film support transport mechanism 30 includes a thin film support moving material 31. The thin film support moving material 31 transports (moves) the thin film support 15 between the peeling apparatus 10 and the bonding apparatus 20.
 剥離装置10は、複数のチャンバー内の気圧力をそれぞれ制御する圧力装置50を有する。圧力装置50は、第1の圧力装置51及び第2の圧力装置52を含む。第1の圧力装置51は、第2のチャンバー210及び第3のチャンバー220の気圧力をそれぞれ制御する。第2の圧力装置52は、第1のチャンバーの気圧力を制御する。尚、圧力装置50は、接合装置20の複数のチャンバーの気圧力も制御する。図1に記述される圧力装置50から入出力される複数の矢印シンボルは、図1に記述される複数のチャンバーにそれぞれ対応する同一の矢印シンボルに対応している。各チャンバーの気圧力の制御の詳細は、後述する。尚、大気圧(1気圧;約1kgf/cm2)よりも絶対値で低い気圧力を、負圧と定義する。真空(0気圧)も負圧の領域の一部である。大気圧(1気圧)よりも絶対値で大きい気圧力を、正圧と定義する。 The peeling device 10 includes a pressure device 50 that controls the air pressure in each of the plurality of chambers. The pressure device 50 includes a first pressure device 51 and a second pressure device 52. The first pressure device 51 controls the air pressure in the second chamber 210 and the third chamber 220, respectively. The second pressure device 52 controls the air pressure in the first chamber. The pressure device 50 also controls the air pressure in the plurality of chambers of the bonding device 20. The plurality of arrow symbols input / output from the pressure device 50 described in FIG. 1 correspond to the same arrow symbol corresponding to each of the plurality of chambers described in FIG. Details of the control of the air pressure in each chamber will be described later. An air pressure that is lower in absolute value than atmospheric pressure (1 atm; about 1 kgf / cm 2) is defined as negative pressure. Vacuum (0 atm) is also part of the negative pressure region. An air pressure that is greater in absolute value than atmospheric pressure (1 atm) is defined as positive pressure.
 本発明の実施例として、成長用基板13及び薄膜14は、例えばヘテロエピタキシャルの関係であり、両者の格子定数は異なる。よって、劈開性を有する。単結晶基板の例示としてサファイア、シリコン系半導体としてシリコンSi、等がある。その他に、窒化物系半導体として窒化ガリウムGaN、化合物系半導体として炭化ケイ素Sic及びガリウム砒素GaAs、等がある。これらの素材を選択できる。薄膜14は、成長用基板13からエピタキシャル成長した層である。薄膜14の厚み(層の厚み)は、サブミクロンから10ミクロン(μm)程度である。尚、サファイア基板(成長基板)上に窒化ガリウムGaNをエピタキシャル成長した薄膜でもよい。後述する製品基板160も成長用基板13の素材同様に選択できる。製品基板160は、薄膜14の厚みよりも10倍以上厚い10ミクロンから500ミクロン程度である。 As an example of the present invention, the growth substrate 13 and the thin film 14 have a heteroepitaxial relationship, for example, and the lattice constants of the two are different. Therefore, it has a cleavage property. Examples of single crystal substrates include sapphire and silicon-based semiconductors such as silicon Si. In addition, there are gallium nitride GaN as a nitride semiconductor, silicon carbide Sic, gallium arsenide GaAs, and the like as compound semiconductors. These materials can be selected. The thin film 14 is a layer epitaxially grown from the growth substrate 13. The thin film 14 has a thickness (layer thickness) of about submicron to 10 microns (μm). A thin film obtained by epitaxially growing gallium nitride GaN on a sapphire substrate (growth substrate) may also be used. A product substrate 160 to be described later can be selected in the same manner as the material of the growth substrate 13. The product substrate 160 is about 10 to 500 microns thicker than the thickness of the thin film 14 by 10 times or more.
 図1において、接合装置20は、剥離された薄膜14を転写材23に転写する機構及び構造である。薄膜支持体15は、剥離装置10において薄膜保持体16に吸着された薄膜14を有し、接合装置20において転写材23に転写される。接合装置20は、転写材23を保持する転写保持体22を有する。接合装置20は、転写保持体22を支持する転写支持体21を有する。転写支持体21は、筐体40に固定される(固定場所は不図示)。接合装置20は、薄膜支持体15を支持する第1のスライダー130を有する。薄膜支持体15は、第1のスライダー130を介して転写支持体21に脱着可能に接続される。 1, the bonding apparatus 20 has a mechanism and a structure for transferring the peeled thin film 14 to a transfer material 23. The thin film support 15 has the thin film 14 adsorbed to the thin film holder 16 in the peeling apparatus 10, and is transferred to the transfer material 23 in the bonding apparatus 20. The joining device 20 includes a transfer holder 22 that holds the transfer material 23. The joining device 20 includes a transfer support 21 that supports the transfer holder 22. The transfer support 21 is fixed to the housing 40 (the fixing location is not shown). The bonding apparatus 20 includes a first slider 130 that supports the thin film support 15. The thin film support 15 is detachably connected to the transfer support 21 via the first slider 130.
 接合装置20は、3つのチャンバーを備える。第4のチャンバー300は、転写支持体21及び薄膜支持体15並びに第1のスライダー130によって形成される空間である。第5のチャンバー310は、転写支持体21及び転写材23並びに転写保持体22によって形成される空間である。第3のチャンバーは、薄膜支持体15及び薄膜保持体16によって形成される空間である。第4のチャンバー300内には、転写材23及び薄膜保持体16、並びに転写保持体22及び薄膜14が配置される。 The joining apparatus 20 includes three chambers. The fourth chamber 300 is a space formed by the transfer support 21, the thin film support 15, and the first slider 130. The fifth chamber 310 is a space formed by the transfer support 21, the transfer material 23, and the transfer holder 22. The third chamber is a space formed by the thin film support 15 and the thin film holder 16. In the fourth chamber 300, the transfer material 23 and the thin film holder 16, and the transfer holder 22 and the thin film 14 are arranged.
 圧力装置50は、複数のチャンバー内の気圧力をそれぞれ制御する。第1の圧力装置51は、第3のチャンバー220の気圧力を制御する。第3のチャンバー220の気圧力の制御の詳細は、後述する。 The pressure device 50 controls the air pressure in the plurality of chambers. The first pressure device 51 controls the air pressure in the third chamber 220. Details of the control of the air pressure in the third chamber 220 will be described later.
 接合装置20は、気圧力計120を備える。気圧力計120は、第5のチャンバー310内の気圧力をモニターする。 The joining device 20 includes a gas pressure gauge 120. The gas pressure gauge 120 monitors the gas pressure in the fifth chamber 310.
 図2は、剥離装置10の拡大図である。剥離装置10は、重力方向Gである大地Eを基準として、大地E側に基板支持体11、天側に薄膜支持体15が配置される。図2の剥離装置10は、図1に図示されていないその他の複数のパーツが更に開示される。剥離装置10は、複数のチャンバー(第1、第2、及び第3のチャンバー)のそれぞれの気圧力をシールする(Seal)する第1のシール材60、第3のシール材62、及び第2のシール材61を含む。剥離装置10は、基板保持体12を加熱することによって基板保持体12を弾性的に変形させるヒーター90を有する。剥離装置10は、赤外線局部加熱器91を有する。剥離装置10は、超音波探傷器81を有する。剥離装置10は、カメラ170を有する。剥離装置10は、アコースティックエミッション測定器80を有する。ヒーター90によって、基板保持体及び成長用基板13を徐々に湾曲させることで、成長用基板13の周辺、並びに成長用基板13及び薄膜14の周辺の界面に集中的に引っ張りの外力を与える。レーザなどの赤外線局部加熱器91を薄膜14付近の成長用基板13の側面に加えてもよい。超音波探傷器81によって、成長用基板13及び薄膜14の境界面に超音波衝撃を加えてもよい。これらのパーツによって、薄膜14の周辺に劈開が生ずる。カメラ170、アコースティックエミッション測定器80及び超音波探傷器81によって劈開及びその場所、並びに劈開の度合いをモニターする。アコースティックエミッション測定器80は、材料が変形あるいは破壊する際に、内部に蓄えていた弾性エネルギーを音波として放出する現象を、圧電素子センサ等でモニターする。これらモニター値によって、制御装置(不図示)がヒーター90等を制御する。剥離装置10は、基板支持体11及び薄膜支持体15を可動的に接続するコネクター70、薄膜支持体15及び薄膜保持体16を接続するコネクター72、並びに基板支持体11及び基板保持体12を接続するコネクター71を有する。コネクター71は、基板保持体12の湾曲にフレキシブルに対応する特性を有する。 FIG. 2 is an enlarged view of the peeling apparatus 10. In the peeling apparatus 10, the substrate support 11 is disposed on the ground E side and the thin film support 15 is disposed on the top side with respect to the ground E that is the gravity direction G. The peeling apparatus 10 of FIG. 2 further discloses a plurality of other parts not shown in FIG. The peeling apparatus 10 includes a first sealing material 60, a third sealing material 62, and a second sealing material that seal the air pressure of each of the plurality of chambers (first, second, and third chambers). The sealing material 61 is included. The peeling apparatus 10 includes a heater 90 that elastically deforms the substrate holder 12 by heating the substrate holder 12. The peeling apparatus 10 has an infrared local heater 91. The peeling apparatus 10 has an ultrasonic flaw detector 81. The peeling apparatus 10 has a camera 170. The peeling apparatus 10 has an acoustic emission measuring device 80. By gradually bending the substrate holder and the growth substrate 13 by the heater 90, an external force is applied to the periphery of the growth substrate 13 and the interface between the growth substrate 13 and the thin film 14 in a concentrated manner. An infrared local heater 91 such as a laser may be added to the side surface of the growth substrate 13 near the thin film 14. An ultrasonic impact may be applied to the boundary surface between the growth substrate 13 and the thin film 14 by the ultrasonic flaw detector 81. These parts cause cleavage around the thin film 14. The camera 170, the acoustic emission measuring device 80 and the ultrasonic flaw detector 81 are used to monitor the cleavage and its location and the degree of cleavage. The acoustic emission measuring device 80 monitors a phenomenon in which elastic energy stored therein is released as a sound wave when a material is deformed or broken by a piezoelectric element sensor or the like. A control device (not shown) controls the heater 90 and the like based on these monitor values. The peeling apparatus 10 connects a connector 70 that movably connects the substrate support 11 and the thin film support 15, a connector 72 that connects the thin film support 15 and the thin film holder 16, and connects the substrate support 11 and the substrate holder 12. Connector 71 is provided. The connector 71 has a characteristic that flexibly corresponds to the curvature of the substrate holder 12.
 図2は、薄膜支持体15の変形量Z1を開示する。Z1は天側(重力方向Gと反対側)に変形(点線で表記)する。変形量Z1は、0.3mm~0.5mm程度である。薄膜保持体16も、コネクター72によって薄膜支持体15の変形部17に接続されているので、変形量Z1と同様の効果が得られる。剥離された薄膜14は、第3のチャンバー220の負圧効果と共に薄膜保持体16に付帯して天側に移動する。薄膜支持体15は、例えばステンレスである。 FIG. 2 discloses the deformation amount Z1 of the thin film support 15. Z1 is deformed (indicated by a dotted line) to the top side (the side opposite to the gravity direction G). The deformation amount Z1 is about 0.3 mm to 0.5 mm. Since the thin film holder 16 is also connected to the deformed portion 17 of the thin film support 15 by the connector 72, the same effect as the deformation amount Z1 can be obtained. The peeled thin film 14 is attached to the thin film holder 16 together with the negative pressure effect of the third chamber 220 and moves to the top side. The thin film support 15 is, for example, stainless steel.
 図2は、圧力装置50から3つのチャンバー(第1、第2、及び第3のチャンバー)にそれぞれ最適な気圧力が供給されることを開示する。第1のチャンバー200へは、大気圧(約1kgf/cm2)よりも高い第1の気圧力(大気圧よりも絶対値で大きな正圧)が印加される。好ましくは、1.5気圧力から3気圧力が、印加される。薄膜支持体15の変形部17は、第1のチャンバーの気圧力(1.5~3.0気圧力)と、対応する薄膜支持体15の外側の気圧力(例えば大気圧=1気圧)と、の差気圧力(0.5~2.0気圧力)によって変形する。尚、前記薄膜支持体15の外側の気圧力を圧力装置50によって制御してもよい。この外側の気圧力の制御によって、幅広い差気圧力の制御が可能である。第2のチャンバー210へは、大気圧よりも低い第2の気圧力(大気圧よりも絶対値で小さい負圧)が印加される。好ましくは、0気圧力(真空)が印加される。第3のチャンバー220へは、大気圧よりも低い第3の気圧力(大気圧よりも絶対値で小さい負圧)が印加される。好ましくは、0気圧力(真空)から0.8気圧力が印加される。負圧によって剥離された薄膜14は、第3のチャンバーに吸引される。劈開が開始された後の薄膜14の両面には、第1の気圧力と第3の気圧力との差気圧力が印加される。差気圧力を少なくとも1.1気圧以上に設定することにより、剥離されつつある薄膜14及び薄膜保持体16との吸着度合いを高め、また成長用基板13及び基板保持体12との密着度合いを高めることによって剥離されつつある薄膜14の剥離度合いを高める。その結果として、剥離時間の高速化が期待できる。更に、差気圧力の設定を制御することにより、薄膜14の品質向上が期待できる。更に、外側の気圧力の制御により第3の気圧力との差気圧力の設定範囲が広がり、薄膜支持体15の変形部17の変形量の設定範囲が広がる。つまり、第1のチャンバー200の第1の気圧力、第3のチャンバー220の第3の気圧力及び外側の気圧力のコンビネーションによって、薄膜14の剥離時間、薄膜の品質向上、及び変形部17の変形量のそれぞれの設定範囲が任意に設定できる。更に、ヒーター90または赤外線局部加熱器91による熱的衝撃、若しくは超音波探傷器81による音響的衝撃(機械的衝撃)と、第1のチャンバー200の第1の気圧力と、のコンビネーションにより、薄膜14の剥離時間、及び薄膜の品質向上それぞれの設定範囲が任意に設定できる。 FIG. 2 discloses that the optimum air pressure is supplied from the pressure device 50 to each of the three chambers (first, second, and third chambers). A first air pressure higher than the atmospheric pressure (about 1 kgf / cm 2) (a positive pressure having an absolute value larger than the atmospheric pressure) is applied to the first chamber 200. Preferably, 1.5 to 3 atmosphere pressures are applied. The deformation portion 17 of the thin film support 15 includes the air pressure (1.5 to 3.0 air pressure) in the first chamber and the corresponding air pressure outside the thin film support 15 (for example, atmospheric pressure = 1 atm). It is deformed by the differential air pressure (0.5 to 2.0 air pressure). The air pressure outside the thin film support 15 may be controlled by the pressure device 50. By controlling the outside air pressure, a wide range of differential air pressures can be controlled. A second air pressure lower than atmospheric pressure (a negative pressure smaller in absolute value than atmospheric pressure) is applied to the second chamber 210. Preferably, zero air pressure (vacuum) is applied. A third air pressure lower than atmospheric pressure (a negative pressure smaller in absolute value than atmospheric pressure) is applied to the third chamber 220. Preferably, 0 to 0.8 air pressure (vacuum) is applied. The thin film 14 peeled off by the negative pressure is sucked into the third chamber. A differential air pressure between the first air pressure and the third air pressure is applied to both surfaces of the thin film 14 after the cleavage is started. By setting the differential pressure to at least 1.1 atm or higher, the degree of adsorption between the thin film 14 and the thin film holder 16 being peeled is increased, and the degree of adhesion between the growth substrate 13 and the substrate holder 12 is increased. This increases the degree of peeling of the thin film 14 being peeled. As a result, an increase in the peeling time can be expected. Furthermore, the quality improvement of the thin film 14 can be expected by controlling the setting of the differential pressure. Further, the control range of the outside air pressure expands the setting range of the differential air pressure from the third air pressure, and the setting range of the deformation amount of the deformation portion 17 of the thin film support 15 is expanded. That is, by the combination of the first air pressure in the first chamber 200, the third air pressure in the third chamber 220, and the outside air pressure, the peeling time of the thin film 14, the quality improvement of the thin film, and the deformation portion 17 Each setting range of the deformation amount can be arbitrarily set. Further, a thin film is obtained by a combination of a thermal impact by the heater 90 or the infrared local heater 91 or an acoustic impact (mechanical impact) by the ultrasonic flaw detector 81 and the first air pressure in the first chamber 200. The setting range for each of the 14 peeling times and the quality improvement of the thin film can be arbitrarily set.
 図3は、剥離装置10の非加熱時の状態を説明する図である。図4は、剥離装置10の加熱時の状態を説明する図である。基板保持体12は、貫通する複数のホール24を有する。第2のチャンバー210の負圧により成長用基板13を吸引する。薄膜保持体16は、貫通する複数のホール25を有する。薄膜保持体16は、互いに積層された2層の多孔金属パッド100及びカーボン・ナノ・パッド101を含む。第3のチャンバー220の負圧により、薄膜保持体16(多孔金属パッド100及びカーボン・ナノ・パッド101を含む)を介して、剥離された薄膜14を吸着する。複数のホール25を有する薄膜保持体16の部分の厚さは、5mmである。薄膜保持体16の複数のホール25は、2mm孔(2mm径)が4mm単位でアレイ上に展開して配置される。複数のホール25を有する多孔金属パッド100の部分の厚さは、1.5mmである。多孔金属パッド100の複数のホール25は、20ミクロン孔(20μm径)が50ミクロン単位でアレイ上に展開して配置される。後述するように、繊維状のマイクロファイバー又はナノファイバーで構成されたカーボン・ナノ・パッド101は、マイクロメータ単位(μm単位径)またはナノメータ単位(nm単位径)の複数の微細孔を有する。薄膜保持体16及び多孔金属パッド100は、導電性が望ましい。剥離中に起きる薄膜14の静電破壊が防止できる。薄膜保持体16及びカーボン・ナノ・パッド101は、多孔金属パッド100を挟むように配置される。薄膜保持体16は、アルミニウムまたはその合金、真鍮類、鋼、ステンレスなどから選択される。多孔金属パッド100は、銅、アルミあるいはそれを主成分とする合金などから選択されで、熱伝導の良い材料が望ましい。カーボン・ナノ・パッド101は、繊維状のマイクロファイバー又はナノファイバーで構成された材料が望ましい。その形状は、パッド、シート、及びクロスから選択できる。マイクロファイバーカーボン・ナノ・チューブ、カーボン・ナノ・ファイバー、カーボン粉末を含むカーボン繊維混紡セルロース・ナノ・ファイバーなどから選択できる。これらは、線熱膨張係数はガラス繊維並みに小さく、弾性率はガラス繊維より高いという優れた特性を有する。薄膜14の品質向上が期待できる。 FIG. 3 is a diagram illustrating a state of the peeling apparatus 10 when it is not heated. FIG. 4 is a diagram illustrating a state of the peeling apparatus 10 during heating. The substrate holder 12 has a plurality of holes 24 penetrating therethrough. The growth substrate 13 is sucked by the negative pressure in the second chamber 210. The thin film holder 16 has a plurality of holes 25 penetrating therethrough. The thin film holder 16 includes two layers of a porous metal pad 100 and a carbon nano pad 101 that are stacked on each other. The peeled thin film 14 is adsorbed by the negative pressure of the third chamber 220 through the thin film holder 16 (including the porous metal pad 100 and the carbon nano pad 101). The thickness of the thin film holder 16 having the plurality of holes 25 is 5 mm. The plurality of holes 25 of the thin film holder 16 are arranged with 2 mm holes (2 mm diameter) developed on the array in units of 4 mm. The thickness of the portion of the porous metal pad 100 having the plurality of holes 25 is 1.5 mm. The plurality of holes 25 of the porous metal pad 100 are arranged so that 20-micron holes (20 μm diameter) are developed on the array in units of 50 microns. As will be described later, the carbon nano pad 101 composed of fibrous microfibers or nanofibers has a plurality of micropores in micrometer units (μm unit diameter) or nanometer units (nm unit diameter). The thin film holder 16 and the porous metal pad 100 are preferably conductive. Electrostatic breakdown of the thin film 14 that occurs during peeling can be prevented. The thin film holder 16 and the carbon nano pad 101 are arranged so as to sandwich the porous metal pad 100. The thin film holder 16 is selected from aluminum or an alloy thereof, brass, steel, stainless steel and the like. The porous metal pad 100 is selected from copper, aluminum, or an alloy containing the same as the main component, and is preferably a material having good heat conduction. The carbon nano pad 101 is preferably a material composed of fibrous microfibers or nanofibers. The shape can be selected from a pad, a sheet, and a cloth. It can be selected from microfiber carbon nano tube, carbon nano fiber, carbon fiber blended cellulose nano fiber containing carbon powder, etc. These have excellent properties such that the linear thermal expansion coefficient is as small as that of glass fiber and the elastic modulus is higher than that of glass fiber. An improvement in the quality of the thin film 14 can be expected.
 図3の非加熱時の剥離装置10の状態を説明する。薄膜14及び薄膜保持体16(多孔金属パッド100及びカーボン・ナノ・パッド101を含む)の間には、0.1mm程度のギャップZ3を有する。図2に開示されるように、第1のチャンバー200へは、ガスGasが供給される。ガスGasは、ドライエアAir、不活性ガスとしての窒素N2、活性化ガスとしての水素H2(水素分子)を選択できる。水素原子のボーア半径(Bohr radius)αb =0.0529nmは原子の中では一番小さい。窒化ガリウムGaNの格子定数は、水素を通すに十分な格子定数0.539nmである。シリコンSiの格子定数は、0.5431nmである。欠陥格子は、更に水素の拡散を加速する。水素H2は、ギャップZ3を及び薄膜14を介して、成長用基板13の面及び剥離膜14の面が互いに接する領域でありその領域が有する格子状数の異なる剥離領域(バッファー層)に侵入し拡散する。原子のボーア半径が小さいほど拡散係数は大きくなる。その結果、水素H2が、剥離領域の格子内に侵入することで欠陥度合いを更に高める。水素H2は、成長用基板13から薄膜14が剥離する劈開の開始時間を早める。更に、劈開が完了する終了時間を早めるので、劈開期間中の時間を短くできる。また、第1のチャンバー200へ供給するガスGasは、ヘリウムHeでもよい。また、第1のチャンバー200へ供給するガスGas、薄膜のボーア半径よりも小さいボーア半径の原子または分子のガスと、その他のガスと、の混合でもよい。尚、0.1mm以下のギャップZ3は、薄膜14の薄膜保持体12への吸着性能の視点で薄膜支持体15の変形量Z1(0.3mm~0.5mm)をキャンセルする方向に働く。しかし、前述した差気圧力の設定を制御することにより、カバーできる。また、水素H2に代えて窒素N2を供給することも可能である。尚、水素H2に代えてドライエアAirを供給する場合、ギャップZ3は0.0mmとすることも可能である。 The state of the peeling apparatus 10 when not heated in FIG. 3 will be described. There is a gap Z3 of about 0.1 mm between the thin film 14 and the thin film holder 16 (including the porous metal pad 100 and the carbon nano pad 101). As disclosed in FIG. 2, the gas Gas is supplied to the first chamber 200. As the gas Gas, dry air Air, nitrogen N2 as an inert gas, and hydrogen H2 (hydrogen molecule) as an activation gas can be selected. The Bohr radius αb = 0.0529 nm of the hydrogen atom is the smallest among the atoms. The lattice constant of gallium nitride GaN is 0.539 nm, which is sufficient to allow hydrogen to pass through. The lattice constant of silicon Si is 0.5431 nm. The defect lattice further accelerates hydrogen diffusion. Hydrogen H2 enters the separation region (buffer layer) having a different number of lattices in the region where the surface of the growth substrate 13 and the surface of the separation film 14 are in contact with each other through the gap Z3 and the thin film 14. Spread. The smaller the Bohr radius of an atom, the larger the diffusion coefficient. As a result, hydrogen H2 penetrates into the lattice in the separation region, thereby further increasing the degree of defects. Hydrogen H2 accelerates the start time of cleavage when the thin film 14 peels from the growth substrate 13. Furthermore, since the end time for completing the cleavage is advanced, the time during the cleavage period can be shortened. Further, the gas Gas supplied to the first chamber 200 may be helium He. Alternatively, the gas Gas supplied to the first chamber 200, an atom or molecular gas having a Bohr radius smaller than the Bohr radius of the thin film, and another gas may be mixed. Note that the gap Z3 of 0.1 mm or less acts in the direction of canceling the deformation amount Z1 (0.3 mm to 0.5 mm) of the thin film support 15 from the viewpoint of the adsorption performance of the thin film 14 to the thin film holder 12. However, it can be covered by controlling the setting of the differential pressure described above. It is also possible to supply nitrogen N2 instead of hydrogen H2. In addition, when supplying dry air Air instead of hydrogen H2, gap Z3 can also be 0.0 mm.
 また、第1のチャンバー200へ供給するガスGasは、水素H2であるがチャンバー内で白金またはパラジウム触媒作用で発生した水素原子Hでもよい。水素分子H2の拡散よりも更なる拡散が加速する。成長用基板13及び剥離膜14の格子定数よりも小さなボーア半径のガスGasは、薄膜14の剥離時間の短縮が期待できる。 The gas Gas supplied to the first chamber 200 is hydrogen H 2, but may be hydrogen atoms H generated by platinum or palladium catalysis in the chamber. Further diffusion is accelerated than the diffusion of the hydrogen molecule H2. The gas Gas having a Bohr radius smaller than the lattice constant of the growth substrate 13 and the release film 14 can be expected to shorten the release time of the thin film 14.
 尚、製造装置1、又は剥離装置10内の第1のチャンバー200には、例えば水素添加のときの担持触媒させる担体を備えていてもよい。触媒として利用する金属は、プラチナPt黒(黒色の粉末状の白金)、パラジウムPd黒(表面をサブミクロンレベルで激しく凹凸をつけたもの)、パラジウムPdーC(活性炭に超微粒子のPd金属を吸着させたもの)を選択できる。担体としては、ゼオライトが好ましい。水素分子H2を2つの水素原子2H(重水素)に変化させ、更なる拡散の加速が期待できる。担体が製造装置1に備えられる場合、好ましくは図2に示されるガスGas供給機構に担体が備えられる。担体が第1のチャンバー200に備えられる場合、好ましくは図3に示される薄膜保持体16と薄膜14の間(ギャップZ3)に可動式で備えられる。基板保持体12が加熱される工程の前に、可動式の担体がギャップZ3から離脱する。 It should be noted that the first chamber 200 in the manufacturing apparatus 1 or the peeling apparatus 10 may be provided with a carrier for carrying a supported catalyst at the time of hydrogenation, for example. The metals used as the catalyst are platinum Pt black (black powdery platinum), palladium Pd black (subsurface with intense irregularities on the submicron level), palladium Pd-C (ultrafine Pd metal on activated carbon). Can be selected. As the carrier, zeolite is preferable. The hydrogen molecule H2 is changed to two hydrogen atoms 2H (deuterium), and further diffusion acceleration can be expected. When the carrier is provided in the manufacturing apparatus 1, the carrier is preferably provided in the gas Gas supply mechanism shown in FIG. When the carrier is provided in the first chamber 200, it is preferably provided movably between the thin film holder 16 and the thin film 14 (gap Z3) shown in FIG. Prior to the step of heating the substrate holder 12, the movable carrier separates from the gap Z3.
 図4に、加熱時の剥離装置10の状態を説明する。基板保持体12及び成長用基板13は、ヒーター90によって摂氏200度以下に加熱され、徐々に湾曲する。その結果、成長用基板13の周辺から劈開が始まり、ギャップZ2が生ずる。ギャップZ2は、成長用基板13から薄膜14の剥離を意味する。 FIG. 4 illustrates the state of the peeling apparatus 10 during heating. The substrate holder 12 and the growth substrate 13 are heated to 200 degrees Celsius or less by the heater 90 and gradually bend. As a result, cleavage begins from the periphery of the growth substrate 13 to generate a gap Z2. The gap Z <b> 2 means peeling of the thin film 14 from the growth substrate 13.
 図5は、薄膜支持体15の拡大断面図である。変形部17及び切り欠き部18、並びに薄膜支持体15の厚みが開示される。ステンレス材の薄膜支持体15は、ステンレス材の基本の厚みt0(変形しない部分の標準厚さ)を有する。変形部17は、t0よりも薄い厚さt1~t4を含む(但し、t2は溝の幅であるギャップを示す)。複数の厚さt1~t4の厚さは、次のように不等号で示される(t4<t3<t2<t1)。切り欠き部18は、最も薄い厚さt4を含む。切り欠き部18は、第2のシール材61の外側に配置される。つまり、切り欠き部18が、第1のチャンバー200に対応して配置される。切り欠き部18が、薄膜支持体15の外側に対応して配置される。切り欠き部18は、ステンレス材の一部を厚さ方向に切り取ってできた穴・溝・段付きなどの部分である。つまり、最も、集中応力が現れやすい場所である。切り欠き部18は、溝を2つ有する。変形部の構造として、変形量Z1(0.3mm~0.5mm)に対して最も効果がある構造は、t0-t4に相当する溝の深さ(図面5においてY軸方向)、及びt2に相当する溝の幅(図面5においてX軸方向)である。図5が示す変形部17の領域19は、おおよそ200mm径である。よって、薄膜保持体16及び薄膜14、並びに成長用基板13の径は200mmよりも小さい。例えば、t0=10mm、t1=6mm、t2=5mm、t3=4mm、t4=2mmが、好ましい。 FIG. 5 is an enlarged cross-sectional view of the thin film support 15. The thicknesses of the deformable portion 17 and the cutout portion 18 and the thin film support 15 are disclosed. The stainless steel thin film support 15 has a basic thickness t0 of stainless steel (standard thickness of a portion that does not deform). The deformed portion 17 includes a thickness t1 to t4 that is smaller than t0 (where t2 indicates a gap that is the width of the groove). The thicknesses of the plurality of thicknesses t1 to t4 are indicated by inequality signs as follows (t4 <t3 <t2 <t1). The notch 18 includes the thinnest thickness t4. The notch 18 is disposed outside the second seal material 61. That is, the notch 18 is disposed corresponding to the first chamber 200. The notch 18 is arranged corresponding to the outside of the thin film support 15. The notch 18 is a hole, groove, stepped portion or the like formed by cutting a part of the stainless material in the thickness direction. That is, it is the place where concentrated stress is most likely to appear. The notch 18 has two grooves. As the structure of the deformed portion, the most effective structure for the deformation amount Z1 (0.3 mm to 0.5 mm) is the groove depth corresponding to t0-t4 (in the Y-axis direction in FIG. 5) and t2. The width of the corresponding groove (X-axis direction in FIG. 5). The region 19 of the deformed portion 17 shown in FIG. 5 is approximately 200 mm in diameter. Therefore, the diameters of the thin film holder 16 and the thin film 14 and the growth substrate 13 are smaller than 200 mm. For example, t0 = 10 mm, t1 = 6 mm, t2 = 5 mm, t3 = 4 mm, and t4 = 2 mm are preferable.
 図6は、薄膜支持体15の上面図である。図6は、第3のチャンバー220へ気圧力を供給する空洞部を中心として、切り欠き部18の形状を開示する。図6の切り欠き部18は、円形を示している。図6の薄膜支持体15は、例えばシリコンなどのウェハー形状の成長用基板13、そのウェハー形状に対応した薄膜14の形状に対応している。製品基板160の形状もそのウェハー形状に対応する。図7は、図6の薄膜支持体15の変形例である薄膜支持体15Aを示す上面図である。以下図7について、図6との相違点のみ説明する。図7の切り欠き部18Aは、矩形を示している。図7の薄膜支持体15Aは、例えばディスプレイなどの矩形形状の成長用基板13、その矩形形状に対応した薄膜14の形状に対応している。製品基板160の形状もその矩形形状に対応する。つまり、電子部品の形状に関連している。なお図7の領域19Aは図6の領域19に対応している。 FIG. 6 is a top view of the thin film support 15. FIG. 6 discloses the shape of the notch 18 around the cavity that supplies air pressure to the third chamber 220. The notch 18 in FIG. 6 shows a circle. The thin film support 15 in FIG. 6 corresponds to the shape of the wafer-shaped growth substrate 13 such as silicon and the shape of the thin film 14 corresponding to the wafer shape. The shape of the product substrate 160 also corresponds to the wafer shape. FIG. 7 is a top view showing a thin film support 15A which is a modification of the thin film support 15 of FIG. Hereinafter, only differences from FIG. 6 will be described with reference to FIG. The notch 18A in FIG. 7 shows a rectangle. 7 corresponds to the shape of the rectangular growth substrate 13 such as a display and the shape of the thin film 14 corresponding to the rectangular shape. The shape of the product substrate 160 also corresponds to the rectangular shape. That is, it relates to the shape of the electronic component. Note that the region 19A in FIG. 7 corresponds to the region 19 in FIG.
 図8~図10は、それぞれ図5と異なる構造である薄膜支持体15B、15C、15Dの拡大断面図である。図8~10において、図5と同様の要素に関しては同一の符号を用いて重複した説明を省略する。図8~10は、それぞれ変形部17B、17C、17D及び薄膜支持体15B、15C、15Dの厚みが開示される。図8において、ステンレス材の薄膜支持体15Bは、ステンレス材の基本の厚みt5を有する。変形部17Bは、t5よりも薄い厚さt6を含む。複数の厚さt5、t6の厚さは、不等号で示される。厚さt6のステンレス材が撓んでいる構造である。図9において、ステンレス材の薄膜支持体15Cは、ステンレス材の基本の厚みt7を有する。変形部17Cは、t7よりも薄い厚さt8~t10を含む。複数の厚さt7~t10の厚さは、次のように不等号で示される(t10<t9<t8<t7)。変形部17Cは、徐々に薄くなる厚さt8~t10の構造である。図10において、ステンレス材の薄膜支持体15Dは、ステンレス材の基本の厚みを有する。変形部17Dは、基本の厚みよりも薄い厚さt11、t12を含み、弾性体であるスプリング110を含む。複数の厚さt11、t12の厚さは、次のように不等号で示される(t12<t11)。変形部17Dは、厚さt11、t12及びスプリング110のコンビネーションによって、変形量Z1が得られる構造である。尚、スプリング110は弾性体の一例である。 8 to 10 are enlarged sectional views of the thin film supports 15B, 15C, and 15D, each having a structure different from that shown in FIG. 8 to 10, the same elements as those in FIG. 5 are denoted by the same reference numerals, and redundant description is omitted. 8 to 10 disclose the thicknesses of the deformed portions 17B, 17C, and 17D and the thin film supports 15B, 15C, and 15D, respectively. In FIG. 8, a stainless steel thin film support 15B has a basic thickness t5 of stainless steel. Deformed portion 17B includes a thickness t6 that is less than t5. The thicknesses of the plurality of thicknesses t5 and t6 are indicated by inequality signs. In this structure, a stainless steel material having a thickness of t6 is bent. In FIG. 9, a stainless steel thin film support 15C has a basic thickness t7 of stainless steel. The deformed portion 17C includes a thickness t8 to t10 that is thinner than t7. The thicknesses of the plurality of thicknesses t7 to t10 are indicated by inequality signs as follows (t10 <t9 <t8 <t7). The deformed portion 17C has a structure with thicknesses t8 to t10 that gradually become thinner. In FIG. 10, a stainless steel thin film support 15D has a basic thickness of stainless steel. Deformation part 17D contains thickness t11 and t12 thinner than basic thickness, and includes spring 110 which is an elastic body. The thicknesses of the plurality of thicknesses t11 and t12 are indicated by inequality signs as follows (t12 <t11). The deformation portion 17D has a structure in which a deformation amount Z1 is obtained by a combination of the thicknesses t11 and t12 and the spring 110. The spring 110 is an example of an elastic body.
 図11及び図12は、薄膜支持体15を含む接合装置20の断面図を開示する。接合装置20は、転写支持体21を天地方向(重力方向G)に沿って上下移動させる上下機構140を備える。接合装置20は、転写支持体21に対して薄膜支持体15及び第1のスライダー130を備え、それらを天地方向(重力方向G)に沿ってスライドさせるベアリング131を有する。図11は、剥離された薄膜14が薄膜保持体16に吸着された薄膜支持体15が、転写支持体21にセッティングされた第1の状態を示す。図12は、上下機構140によって、転写支持体21が天側方向に上昇し、薄膜14と転写材23が接している第2の状態を示す。カメラ170によって薄膜14と転写材23の間の距離をモニターし、上下機構140を制御する。薄膜14と転写材23間の距離が所定値に到達した後、第3のチャンバー220の気圧力を負圧から正圧に制御して薄膜14を転写材23に転写する。気圧力計120は、第5のチャンバー310内の気圧力をモニターすることによって、転写状態を間接的に把握し、第3のチャンバー220の気圧力または上下機構140を制御する。尚、第4のチャンバー300内の気圧力を調整する供給口は、不図示である。その供給口は圧力装置50に接続する。圧力装置50は、転写支持体21が天側方向に上昇する場合、第4のチャンバー300内の気圧力を調整する。更に、第4のチャンバー300内の気圧力は、第3のチャンバー220の気圧力と連動して関連づけできる。例えば、第3のチャンバー220の気圧力を負圧から正圧に制御して薄膜14を転写材23に転写する。その時、第4のチャンバー300内の気圧力を負圧に制御する。これによって、転写の品質及び転写速度の向上が期待できる。尚、第4のチャンバー300内の気圧力、及び第3のチャンバー220の気圧力は、負圧のみで制御することも可能である。転写時の第4のチャンバー300内の気圧力と第3のチャンバー220の気圧力との差気圧力が、重要である。転写材23は、フィルム状またはテープ状の支持体(基材)にカーボンナノチューブやグラフェンを支持体に対して垂直方向に配置した繊維構造体を有する吸着及び剥離可能な転写材が好ましい。転写材23は、粘着剤を使わずに、原子や分子間に働くファンデルワールス力によって薄膜14を吸着する。よって、転写材23は、薄膜14の汚染を防止できる。導電性を有する転写材23は、薄膜14の静電破壊を防止する。よって、転写材23は、薄膜14の品質を向上できる。転写材23は、再利用可能である。よって、転写材23は、コスト削減に有用である。また、フィルム状またはテープ状の支持体(基材)にミクロレベルの吸盤機能を有した吸着及び剥離可能であり再利用可能な転写材23を選択することも可能である。転写材23は、製品基板(サファイア、シリコンSi、窒化ガリウムGaN、炭化ケイ素Sic又はガリウム砒素GaAs、等)に置換することも可能である。 11 and 12 disclose a cross-sectional view of the bonding apparatus 20 including the thin film support 15. The joining device 20 includes an up-and-down mechanism 140 that moves the transfer support 21 up and down along the vertical direction (gravity direction G). The joining apparatus 20 includes a thin film support 15 and a first slider 130 with respect to the transfer support 21 and includes a bearing 131 that slides them along the top-and-bottom direction (gravity direction G). FIG. 11 shows a first state in which the thin film support 15 having the peeled thin film 14 adsorbed to the thin film holder 16 is set on the transfer support 21. FIG. 12 shows a second state in which the transfer support 21 is raised in the top direction by the vertical mechanism 140 and the thin film 14 and the transfer material 23 are in contact with each other. The distance between the thin film 14 and the transfer material 23 is monitored by the camera 170 and the vertical mechanism 140 is controlled. After the distance between the thin film 14 and the transfer material 23 reaches a predetermined value, the thin film 14 is transferred to the transfer material 23 by controlling the air pressure in the third chamber 220 from negative pressure to positive pressure. The gas pressure gauge 120 indirectly monitors the transfer state by monitoring the gas pressure in the fifth chamber 310, and controls the gas pressure in the third chamber 220 or the vertical mechanism 140. A supply port for adjusting the air pressure in the fourth chamber 300 is not shown. The supply port is connected to the pressure device 50. The pressure device 50 adjusts the air pressure in the fourth chamber 300 when the transfer support 21 moves upward. Further, the air pressure in the fourth chamber 300 can be correlated with the air pressure in the third chamber 220. For example, the thin film 14 is transferred to the transfer material 23 by controlling the air pressure in the third chamber 220 from negative pressure to positive pressure. At that time, the air pressure in the fourth chamber 300 is controlled to a negative pressure. This can be expected to improve transfer quality and transfer speed. Note that the air pressure in the fourth chamber 300 and the air pressure in the third chamber 220 can be controlled only by negative pressure. The differential air pressure between the air pressure in the fourth chamber 300 and the air pressure in the third chamber 220 at the time of transfer is important. The transfer material 23 is preferably a transfer material that can be adsorbed and peeled and has a fibrous structure in which carbon nanotubes or graphene are arranged in a direction perpendicular to the support on a film-like or tape-like support (base material). The transfer material 23 adsorbs the thin film 14 by van der Waals force acting between atoms and molecules without using an adhesive. Therefore, the transfer material 23 can prevent the thin film 14 from being contaminated. The conductive transfer material 23 prevents electrostatic breakdown of the thin film 14. Therefore, the transfer material 23 can improve the quality of the thin film 14. The transfer material 23 can be reused. Therefore, the transfer material 23 is useful for cost reduction. It is also possible to select a transfer material 23 that can be adsorbed and peeled and has a micro level suction cup function on a film-like or tape-like support (base material) and can be reused. The transfer material 23 can be replaced with a product substrate (sapphire, silicon Si, gallium nitride GaN, silicon carbide Sic, gallium arsenide GaAs, or the like).
 図13及び図14は、第2の薄膜支持体115を含む接合装置20の断面図を開示する。接合装置20は、図11及び図12の薄膜支持体15に代えて、第2の薄膜支持体115を有する。接合装置20は、転写支持体21に対して第2の薄膜支持体115及び第2のスライダー150を備え、それらを天地方向(重力方向G)に沿ってスライドさせるベアリングを有する。接合装置20は、第2の薄膜支持体115及び第2の転写材123、並びに第2の薄膜保持体116を有する。第2の薄膜保持体116は、コネクターで第2の薄膜支持体115及び第2のスライダー150の間に挟まれ支持される。第2のスライダー150は、貫通するホール151を有する。第2の転写保持体122は、そのホール151を介して圧力装置50で負圧に制御され、第2のスライダー150に吸着される。第2の薄膜支持体115を含む接合装置20は、第2の薄膜支持体115、第2のスライダー150、第2の転写保持体122、及び第2の転写材123で形成される第6のチャンバー320を有する。第2の薄膜保持体116は、第6のチャンバー320内に配置される。第2の薄膜支持体115は、ホール153を有する。例えば圧力装置50が含む第1の圧力装置51(図1を参照)は、そのホール153を介して第6のチャンバー320の気圧力を制御する。第4のチャンバー300は、転写支持体21、第2のスライダー150、第2の転写保持体122、及び第2の転写材123によって形成される。製造装置1は、第2の薄膜支持体115を接合装置20に脱着可能にする第2の薄膜支持体搬送機構230を備える。第2の薄膜支持体搬送機構230は、第2の薄膜支持体移動材231を含む。第2の薄膜支持体115は、第2の薄膜支持体移動材231に接続する。 FIGS. 13 and 14 disclose cross-sectional views of the bonding apparatus 20 including the second thin film support 115. The bonding apparatus 20 includes a second thin film support 115 instead of the thin film support 15 of FIGS. 11 and 12. The joining device 20 includes a second thin film support 115 and a second slider 150 with respect to the transfer support 21, and has a bearing that slides them along the top-and-bottom direction (gravity direction G). The bonding apparatus 20 includes a second thin film support 115, a second transfer material 123, and a second thin film holder 116. The second thin film holder 116 is sandwiched and supported by the connector between the second thin film support 115 and the second slider 150. The second slider 150 has a hole 151 that passes therethrough. The second transfer holder 122 is controlled to a negative pressure by the pressure device 50 through the hole 151 and is attracted to the second slider 150. The bonding apparatus 20 including the second thin film support 115 includes a sixth thin film support 115, a second slider 150, a second transfer holder 122, and a second transfer material 123. It has a chamber 320. The second thin film holder 116 is disposed in the sixth chamber 320. The second thin film support 115 has a hole 153. For example, the first pressure device 51 (see FIG. 1) included in the pressure device 50 controls the air pressure in the sixth chamber 320 through the hole 153. The fourth chamber 300 is formed by the transfer support 21, the second slider 150, the second transfer holder 122, and the second transfer material 123. The manufacturing apparatus 1 includes a second thin film support transport mechanism 230 that allows the second thin film support 115 to be attached to and detached from the bonding apparatus 20. The second thin film support transport mechanism 230 includes a second thin film support moving member 231. The second thin film support 115 is connected to the second thin film support moving material 231.
 図13は、第2の薄膜支持体115が、転写支持体21にセッティングされた第1の状態を示す。その第1の状態は、図12によって転写材23に接合された薄膜14の状態である。図14は、上下機構140によって、転写支持体21が天側方向に上昇し、薄膜14と第2の転写材123が接している第2の状態を示す。不図示のカメラによって薄膜14と第2の転写材123の間の距離をモニターし、上下機構140を制御する。薄膜14と第2の転写材123間の距離が所定値に到達した後、第6のチャンバー320の気圧力を第2の薄膜支持体115が有するホール153を介して負圧から正圧に制御して薄膜14を第2の転写材123に転写する。気圧力計120は、第5のチャンバー310内の気圧力をモニターすることによって、転写状態を間接的に把握し、第6のチャンバー320の気圧力または上下機構140を制御する。尚、第6のチャンバー320内の気圧力を調整する供給口(第2の薄膜支持体115が有するホール153)は、圧力装置50に接続する。圧力装置50は、転写支持体21が天側方向に上昇する場合、第6のチャンバー320内の気圧力を調整する。更に、第4のチャンバー300内の気圧力は、第6のチャンバー320の気圧力と連動して関連づけできる。例えば、第6のチャンバー320の気圧力を負圧又は大気圧から正圧に制御して薄膜14を第2の転写材123に転写する。その時、第4のチャンバー300内の気圧力を負圧に制御する。その後、これによって、転写の品質及び転写速度の向上が期待できる。尚、第4のチャンバー300内の気圧力、及び第6のチャンバー320の気圧力は、負圧のみ、負圧と大気圧、負圧と正圧、大気圧と正圧、または正圧のみで制御することも可能である。転写時の第4のチャンバー300内の気圧力と第6のチャンバー320の気圧力との差気圧力が、重要である。第2の転写材123は、フィルム状またはテープ状の支持体(基材)にカーボンナノチューブやグラフェンを支持体に対して垂直方向に配置した繊維構造体を有する吸着及び剥離可能な転写材が好ましい。第2の転写材123は、粘着剤を使わずに、原子や分子間に働くファンデルワールス力によって薄膜14を吸着する。よって、第2の転写材123は、薄膜14の汚染を防止できる。導電性を有する第2の転写材123は、薄膜14の静電破壊を防止する。よって、第2の転写材123は、薄膜14の品質を向上できる。第2の転写材123は、再利用可能である。よって、第2の転写材123は、コスト削減に有用である。第2の転写材123の吸着力は、転写材23の吸着力よりも大きい設計値にすることで、薄膜14の転写材23から第2の転写材123への転写が容易に実現できる。また、フィルム状またはテープ状の支持体(基材)にミクロレベルの吸盤機能を有した吸着及び剥離可能であり再利用可能な第2の転写材123を選択することも可能である。第2の転写材123は、製品基板(サファイア、シリコンSi、窒化ガリウムGaN、炭化ケイ素Sic又はガリウム砒素GaAs、等)に置換することも可能である。 FIG. 13 shows a first state in which the second thin film support 115 is set on the transfer support 21. The first state is the state of the thin film 14 bonded to the transfer material 23 as shown in FIG. FIG. 14 shows a second state in which the transfer support 21 is raised in the top direction by the vertical mechanism 140 and the thin film 14 and the second transfer material 123 are in contact with each other. The distance between the thin film 14 and the second transfer material 123 is monitored by a camera (not shown), and the vertical mechanism 140 is controlled. After the distance between the thin film 14 and the second transfer material 123 reaches a predetermined value, the air pressure in the sixth chamber 320 is controlled from negative pressure to positive pressure through the hole 153 provided in the second thin film support 115. Then, the thin film 14 is transferred to the second transfer material 123. The gas pressure gauge 120 indirectly monitors the transfer state by monitoring the gas pressure in the fifth chamber 310 and controls the gas pressure in the sixth chamber 320 or the vertical mechanism 140. A supply port (a hole 153 provided in the second thin film support 115) for adjusting the air pressure in the sixth chamber 320 is connected to the pressure device 50. The pressure device 50 adjusts the air pressure in the sixth chamber 320 when the transfer support 21 moves upward. Furthermore, the air pressure in the fourth chamber 300 can be correlated with the air pressure in the sixth chamber 320. For example, the thin film 14 is transferred to the second transfer material 123 by controlling the air pressure in the sixth chamber 320 from negative pressure or atmospheric pressure to positive pressure. At that time, the air pressure in the fourth chamber 300 is controlled to a negative pressure. Thereafter, this can be expected to improve transfer quality and transfer speed. The air pressure in the fourth chamber 300 and the air pressure in the sixth chamber 320 are negative pressure only, negative pressure and atmospheric pressure, negative pressure and positive pressure, atmospheric pressure and positive pressure, or only positive pressure. It is also possible to control. The differential air pressure between the air pressure in the fourth chamber 300 and the air pressure in the sixth chamber 320 at the time of transfer is important. The second transfer material 123 is preferably a transfer material that can be adsorbed and peeled and has a fibrous structure in which carbon nanotubes or graphene are arranged in a direction perpendicular to the support on a film-like or tape-like support (base material). . The second transfer material 123 adsorbs the thin film 14 by van der Waals force acting between atoms and molecules without using an adhesive. Therefore, the second transfer material 123 can prevent the thin film 14 from being contaminated. The second transfer material 123 having conductivity prevents electrostatic breakdown of the thin film 14. Therefore, the second transfer material 123 can improve the quality of the thin film 14. The second transfer material 123 can be reused. Therefore, the second transfer material 123 is useful for cost reduction. By making the adsorption force of the second transfer material 123 larger than the adsorption force of the transfer material 23, the transfer of the thin film 14 from the transfer material 23 to the second transfer material 123 can be easily realized. It is also possible to select a second transfer material 123 that can be adsorbed and peeled off and reusable with a suction function at a micro level on a film-like or tape-like support (base material). The second transfer material 123 can be replaced with a product substrate (sapphire, silicon Si, gallium nitride GaN, silicon carbide Sic, gallium arsenide GaAs, or the like).
 図15~図19は、本発明の製造装置(図2~図14)が取り扱う薄膜の第1~第5の状態を開示する。図15は、図2の剥離装置10に成長用基板13及び薄膜14がローディングされた状態である。薄膜14は、A面、及びA面と反対側であり成長用基板13の面に対応するB面を有する。例えば、A面はP型層、B面はN型層を示す。例えば、第1化合物半導体InP基板(成長用基板)上に、第2化合物半導体InAsxP1-x(x=0.05,0.10,0.15,0.20,0.25,0.30)からなる複数の組成勾配層(複数の薄膜)を順次形成する場合、A面は第1の層(最終層;x=0.30;InAs0.30P0.70)、B面は第2の層(x=0.05;InAs0.05P0.95)を示す。例えば、サファイア成長用基板上に、GaN、AlN、InN、およびこれらの混晶を最適な構造で順次積層成長させたIII?V族窒化物系の半導体エピタキシャルウェハに於いては、A面はAlGaN層、中間層はGaN層、B面はAlGaN層を示す。 15 to 19 disclose the first to fifth states of the thin film handled by the manufacturing apparatus (FIGS. 2 to 14) of the present invention. FIG. 15 shows a state in which the growth substrate 13 and the thin film 14 are loaded on the peeling apparatus 10 of FIG. The thin film 14 has an A surface and a B surface opposite to the A surface and corresponding to the surface of the growth substrate 13. For example, the A surface represents a P-type layer, and the B surface represents an N-type layer. For example, the second compound semiconductor InAsxP1-x (x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) on the first compound semiconductor InP substrate (growth substrate). When a plurality of composition gradient layers (a plurality of thin films) are sequentially formed, the A plane is the first layer (final layer; x = 0.30; InAs0.30P0.70), and the B plane is the second layer ( x = 0.05; InAs0.05P0.95). For example, in a group III-V nitride-based semiconductor epitaxial wafer in which GaN, AlN, InN, and mixed crystals of these are sequentially stacked and grown on a sapphire growth substrate in an optimum structure, the A plane is AlGaN. The layers and intermediate layers are GaN layers, and the B surface is an AlGaN layer.
 図16は、剥離装置10において、薄膜14が薄膜保持体16に保持された状態である。A面及びB面は、図15に対して反転している。図17は、接合装置20において、薄膜14が転写材23に転写された状態である。A面及びB面は、図15に対して正転している。図18は、接合装置20において、薄膜14が第2の転写材123に転写された状態である。A面及びB面は、図15に対して反転している。図19は、薄膜14が製品基板160に転写された状態である。A面及びB面は、図15に対して正転している。電子装置に搭載される半導体装置が要求する薄膜14を含むデバイス構造基準(例えば図19;第1のデバイス構造基準)に従って、A面及びB面を適宜選択できる。尚、図16又は図18から図19のデバイス構造を実現できる。第1のデバイスの構造基準の逆の第2のデバイス構造基準であるときは、図17から、図19のA面及びB面と逆のデバイス構造を実現できる。 FIG. 16 shows a state in which the thin film 14 is held by the thin film holder 16 in the peeling apparatus 10. The A plane and the B plane are inverted with respect to FIG. FIG. 17 shows a state in which the thin film 14 is transferred to the transfer material 23 in the bonding apparatus 20. The A side and the B side are forwardly rotated with respect to FIG. FIG. 18 shows a state in which the thin film 14 is transferred to the second transfer material 123 in the bonding apparatus 20. The A plane and the B plane are inverted with respect to FIG. FIG. 19 shows a state where the thin film 14 has been transferred to the product substrate 160. The A side and the B side are forwardly rotated with respect to FIG. According to the device structure standard (for example, FIG. 19; 1st device structure standard) containing the thin film 14 which the semiconductor device mounted in an electronic device requires, A surface and B surface can be selected suitably. The device structure shown in FIG. 16 or FIG. 18 to FIG. 19 can be realized. When the second device structure reference is the reverse of the structure reference of the first device, the device structure opposite to the A and B surfaces in FIG. 19 can be realized from FIG.
 図20は、図2及び図3で開示した剥離装置10の変形例である。図20が開示する剥離装置10Aは、基板保持体12と薄膜保持体16が、図3に対して天地が逆転している。更に、薄膜保持体16は、ホール25を介して第3の転写材124を吸着し保持する。薄膜14は、第3の転写材124に転写される。言い換えれば、薄膜14は、吸着された第3の転写材124を介して間接的に薄膜保持体16に保持される。対して、図3の薄膜保持体16は、多孔金属パッド100及びカーボン・ナノ・パッド101、並びに薄膜14の3つを直接的に吸引し保持する。図20が開示する剥離装置10Aは、薄膜14が成長用基板13から剥離され第3の転写材124に転写される時、重力を利用している。第1のチャンバー200が大気圧に制御されるとき、その重力は更に有効に作用する。第3の転写材124は、製品基板(サファイア、シリコンSi、窒化ガリウムGaN、炭化ケイ素Sic又はガリウム砒素GaAs、等)に置換することも可能である。図20が開示する剥離装置10Aに対応して、図1が開示する接合装置20も天地が逆転する。尚、図20が開示する剥離装置10Aは、非加熱時の状態を説明する図である。 FIG. 20 is a modification of the peeling apparatus 10 disclosed in FIGS. 2 and 3. In the peeling apparatus 10A disclosed in FIG. 20, the substrate holder 12 and the thin film holder 16 are upside down with respect to FIG. Further, the thin film holder 16 adsorbs and holds the third transfer material 124 through the holes 25. The thin film 14 is transferred to the third transfer material 124. In other words, the thin film 14 is indirectly held by the thin film holder 16 through the adsorbed third transfer material 124. In contrast, the thin film holder 16 of FIG. 3 directly sucks and holds the porous metal pad 100, the carbon nano pad 101, and the thin film 14. The peeling apparatus 10A disclosed in FIG. 20 uses gravity when the thin film 14 is peeled off from the growth substrate 13 and transferred to the third transfer material 124. When the first chamber 200 is controlled to atmospheric pressure, the gravity acts more effectively. The third transfer material 124 can be replaced with a product substrate (sapphire, silicon Si, gallium nitride GaN, silicon carbide Sic, gallium arsenide GaAs, or the like). Corresponding to the peeling device 10A disclosed in FIG. 20, the joining device 20 disclosed in FIG. In addition, 10 A of peeling apparatuses which FIG. 20 discloses are the figures explaining the state at the time of non-heating.
 図20が開示する剥離装置10Aの基板保持体12は、図3の基板保持体12がヒーター90を有しているのに対して、第1の金属112及び第2の金属113で構成されるバイメタルを有している。第1の金属112及び第2の金属113は、温度に対して互いに異なる膨張係数を有する。バイメタルは、図3の基板保持体12にも置換できる。その他は、前述と同様である。 The substrate holder 12 of the peeling apparatus 10A disclosed in FIG. 20 is composed of a first metal 112 and a second metal 113, whereas the substrate holder 12 of FIG. Has bimetal. The first metal 112 and the second metal 113 have different expansion coefficients with respect to temperature. The bimetal can be replaced with the substrate holder 12 of FIG. Others are the same as described above.
 図21に、図20の加熱時の剥離装置10Aの状態を説明する。基板保持体12及び成長用基板13は、第1の金属112及び第2の金属113で構成されるバイメタルによって摂氏200度以下に加熱され、徐々に湾曲する。その結果、成長用基板13の周辺から劈開が始まり、ギャップZ2が生ずる。ギャップZ2は、成長用基板13から薄膜14の剥離を意味する。その他は、前述と同様である。 FIG. 21 illustrates the state of the peeling apparatus 10A during heating in FIG. The substrate holder 12 and the growth substrate 13 are heated to 200 degrees Celsius or less by the bimetal composed of the first metal 112 and the second metal 113, and gradually bend. As a result, cleavage begins from the periphery of the growth substrate 13 to generate a gap Z2. The gap Z <b> 2 means peeling of the thin film 14 from the growth substrate 13. Others are the same as described above.
 図22~図25は、本発明の製造装置(図20及び図21)が取り扱う薄膜の第6~第9の状態を開示する。図22は、図20の剥離装置10Aに成長用基板13及び薄膜14がローディングされた状態である。図15と同様に、薄膜14は、A面及びB面を有する。図23は、剥離装置10Aにおいて、薄膜14が第3の転写材124に転写された状態である。A面及びB面は、図22に対して反転している。図24は、薄膜14及び第3の転写材124が、剥離装置10A(製造装置1)からアン・ローディングされた状態である。図25は、第3の転写材124の背面を研磨した状態である。第3の転写材124は研磨され、その一部が製品基板160となる。電子装置に搭載される半導体装置が要求する薄膜14を含むデバイス構造基準が、前述の第2のデバイス構造基準(図19のA面及びB面と逆のデバイス構造)であるとき有用である。 22 to 25 disclose the sixth to ninth states of the thin film handled by the manufacturing apparatus (FIGS. 20 and 21) of the present invention. FIG. 22 shows a state where the growth substrate 13 and the thin film 14 are loaded on the peeling apparatus 10A of FIG. Similarly to FIG. 15, the thin film 14 has an A surface and a B surface. FIG. 23 shows a state in which the thin film 14 is transferred to the third transfer material 124 in the peeling apparatus 10A. The A plane and the B plane are inverted with respect to FIG. FIG. 24 shows a state where the thin film 14 and the third transfer material 124 are unloaded from the peeling apparatus 10A (manufacturing apparatus 1). FIG. 25 shows a state where the back surface of the third transfer material 124 is polished. The third transfer material 124 is polished, and a part thereof becomes the product substrate 160. This is useful when the device structure standard including the thin film 14 required by the semiconductor device mounted on the electronic device is the above-mentioned second device structure standard (device structure opposite to the A and B surfaces in FIG. 19).
 図26~図28は、本発明の製造装置(図20の薄膜保持体16が、天地逆転された接合装置20に設置されている状態)が取り扱う薄膜の第10~第12の状態を開示する。図26は、図23の状態から、接合装置20に移行した状態を示す。図23と同様に、薄膜14は、A面及びB面を有する。図27は、接合装置20において、薄膜14が第4の転写材125に転写された状態、且つ薄膜14及び第4の転写材125が、接合装置20(製造装置1)からアン・ローディングされた状態である。A面及びB面は、図26に対して反転している。図28は、第4の転写材125の背面を研磨した状態である。第4の転写材125は研磨され、その一部が製品基板160となる。電子装置に搭載される半導体装置が要求する薄膜14を含むデバイス構造基準が、前述の第1のデバイス構造基準(図19のA面及びB面のデバイス構造)であるとき有用である。 FIGS. 26 to 28 disclose the tenth to twelfth states of the thin film handled by the manufacturing apparatus of the present invention (the state where the thin film holder 16 of FIG. 20 is installed in the joining device 20 inverted in the vertical direction). . FIG. 26 shows a state where the state is shifted from the state of FIG. 23 to the bonding apparatus 20. Similarly to FIG. 23, the thin film 14 has an A surface and a B surface. FIG. 27 shows a state in which the thin film 14 is transferred to the fourth transfer material 125 in the bonding apparatus 20, and the thin film 14 and the fourth transfer material 125 are unloaded from the bonding apparatus 20 (manufacturing apparatus 1). State. The A plane and the B plane are inverted with respect to FIG. FIG. 28 shows a state where the back surface of the fourth transfer material 125 is polished. The fourth transfer material 125 is polished, and a part thereof becomes the product substrate 160. This is useful when the device structure standard including the thin film 14 required by the semiconductor device mounted on the electronic device is the above-mentioned first device structure standard (the device structures on the A and B surfaces in FIG. 19).
 図29~図31は、製造装置の制御方法及びステップを開示する。図29は、製造装置のマクロ的な視点の制御方法である。図30は、剥離装置のマクロ的な制御方法である。図31は、接合装置のマクロ的な制御方法である。 29 to 31 disclose a control method and steps of a manufacturing apparatus. FIG. 29 shows a macro viewpoint control method of the manufacturing apparatus. FIG. 30 shows a macro control method of the peeling apparatus. FIG. 31 shows a macro control method of the joining apparatus.
 図29において、ステップS100は、薄膜支持体を剥離装置に設置する。ステップS200は、成長用基板の薄膜を剥離する処理である。ステップS300は、剥離された薄膜を保持する薄膜支持体を接合装置に設置する。ステップS400は、薄膜を転写材に転写する接合処理である。 29, in step S100, the thin film support is installed in the peeling apparatus. Step S200 is a process of peeling the thin film on the growth substrate. In step S300, a thin film support that holds the peeled thin film is placed in the bonding apparatus. Step S400 is a bonding process for transferring the thin film to the transfer material.
 図30の処理は、ステップS200に対応する。図30において、ステップS210は、成長用基板及び薄膜を剥離装置にローディングする。図20に関連して、第3の転写材124を薄膜保持体16に設置する。ステップS220は、第1~第3のチャンバーのそれぞれの気圧力の制御を開示する。ステップS221は、第2及び第3のチャンバーのそれぞれの気圧力を印加する。真空を含む負圧、大気圧、及び大気圧よりも大きな正圧を含む。ステップS225は、第1のチャンバーに気圧力を印加する。負圧、大気圧、及び大気圧よりも大きな正圧を含む。ステップS230は、第1のチャンバーにガスGasを印加する。尚、ステップS220とステップS230の順序は、問わない。ステップS240は、基板保持体に熱を印加して基板保持体を変形させる。 30 corresponds to step S200. In FIG. 30, step S210 loads the growth substrate and the thin film onto the peeling apparatus. In relation to FIG. 20, the third transfer material 124 is placed on the thin film holder 16. Step S220 discloses control of the air pressure of each of the first to third chambers. Step S221 applies the air pressure of each of the second and third chambers. Includes negative pressure including vacuum, atmospheric pressure, and positive pressure greater than atmospheric pressure. Step S225 applies air pressure to the first chamber. Includes negative pressure, atmospheric pressure, and positive pressure greater than atmospheric pressure. Step S230 applies gas Gas to the first chamber. In addition, the order of step S220 and step S230 is not ask | required. In step S240, heat is applied to the substrate holder to deform the substrate holder.
 図31の処理は、ステップS400に対応する。図31において、ステップS410は、剥離された薄膜を保持する薄膜支持体を、薄膜支持体搬送機構30によって接合装置に設置する。ステップS420は、接合装置に形成される複数のチャンバーの気圧力及び気圧力計、並びに上下機構をそれぞれ制御しつつ、薄膜を転写材23に転写する第1の接合処理を開示する。この処理は上下機構を制御し、第3のチャンバー220内に気圧力(真空、正気圧)を印加することで行う。ステップS430において、第2の薄膜支持体搬送機構230によって第2の薄膜支持体115を、薄膜支持体15に代えて接合装置20に設置する。これにより第2の転写保持体122は、第2のスライダー150に吸着される。ステップS440は、接合装置に形成される複数のチャンバーの気圧力及び気圧力計、並びに上下機構をそれぞれ制御しつつ、転写材23に転写された薄膜を、更に第2の転写材123に転写する第2の接合処理を開示する。この処理は上下機構を制御し、第6のチャンバー320内に気圧力(正気圧)を印加することで行う。ステップS450及びステップS460は、図18及び図19に対応し、第2の転写材に転写された薄膜を、製品基板に転写する。尚、電子装置に搭載される半導体装置が要求する薄膜14を含むデバイス構造基準(第1及び第2のデバイス構造基準)にそれぞれ対応して、前述した図15~図19、図22~図25、及び図26~図28の変形をそれぞれのステップに反映または組み入れることが可能である。 The processing in FIG. 31 corresponds to step S400. In FIG. 31, in step S <b> 410, the thin film support holding the peeled thin film is installed in the bonding apparatus by the thin film support transport mechanism 30. Step S420 discloses a first bonding process for transferring the thin film to the transfer material 23 while controlling the air pressure and pressure gauges of the plurality of chambers formed in the bonding apparatus and the vertical mechanism. This process is performed by controlling the vertical mechanism and applying an air pressure (vacuum, positive atmospheric pressure) in the third chamber 220. In step S <b> 430, the second thin film support 115 is installed in the bonding apparatus 20 instead of the thin film support 15 by the second thin film support transport mechanism 230. As a result, the second transfer holder 122 is attracted to the second slider 150. In step S440, the thin film transferred to the transfer material 23 is further transferred to the second transfer material 123 while controlling the air pressure and pressure gauges of the plurality of chambers formed in the bonding apparatus and the vertical mechanism. A second joining process is disclosed. This process is performed by controlling the vertical mechanism and applying an atmospheric pressure (positive atmospheric pressure) in the sixth chamber 320. Steps S450 and S460 correspond to FIGS. 18 and 19 and transfer the thin film transferred to the second transfer material onto the product substrate. Note that FIGS. 15 to 19 and 22 to 25 described above correspond to the device structure standards (first and second device structure standards) including the thin film 14 required by the semiconductor device mounted on the electronic device. 26 and 28 to 28 can be reflected or incorporated in each step.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で他の様々な形態で実施可能である。例えば、圧力装置50は、接合装置20を含む複数のチャンバーにそれぞれ対応した複数の圧力装置を設置できる。例えば、開示された複数の構造の基板保持体、基板支持体、薄膜保持体、薄膜支持体、転写保持体、及び転写支持体、等を、本明細書において明記または明示されていないに係わらず適宜組み合わせることができる。本発明の技術的範囲は、上述した複数の実施例またはそれらの組み合わせに限定されず、特許請求の範囲に記載された事項とその均等物または変形物まで及ぶ。 As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the main point of this invention, it can implement with another various form. For example, the pressure device 50 can be provided with a plurality of pressure devices respectively corresponding to a plurality of chambers including the bonding device 20. For example, disclosed substrate supports, substrate supports, thin film holders, thin film supports, transfer supports, transfer supports, and the like, whether or not explicitly specified herein They can be combined as appropriate. The technical scope of the present invention is not limited to the above-described embodiments or combinations thereof, but extends to the matters described in the claims and equivalents or variations thereof.

Claims (47)

  1.  エピタキシャル膜である薄膜を得る成長用基板を保持する基板保持体と、
     前記基板保持体を支持する基板支持体と、
     前記成長用基板から剥離する前記薄膜を保持する薄膜保持体と、
     前記薄膜保持体を支持する薄膜支持体と、
     前記基板支持体及び前記薄膜保持体による第1のチャンバーと、
     前記基板保持体及び前記基板支持体による第2のチャンバーと、
     前記薄膜保持体及び前記薄膜支持体による第3のチャンバーと、を有する剥離装置と、
     前記第1、第2及び第3のチャンバーにそれぞれ対応する第1、第2及び第3の気圧力を印加する圧力装置と、を備える製造装置。
    A substrate holder for holding a growth substrate for obtaining a thin film which is an epitaxial film;
    A substrate support for supporting the substrate holder;
    A thin film holder for holding the thin film peeled off from the growth substrate;
    A thin film support for supporting the thin film holder;
    A first chamber comprising the substrate support and the thin film holder;
    A second chamber by the substrate holder and the substrate support;
    A peeling device having a third chamber by the thin film holder and the thin film support;
    And a pressure device that applies first, second, and third air pressures respectively corresponding to the first, second, and third chambers.
  2.  前記第1及び第3の気圧力の気圧力差を、前記薄膜に印加する、ことを特徴とする請求項1に記載の製造装置。 The manufacturing apparatus according to claim 1, wherein an air pressure difference between the first and third air pressures is applied to the thin film.
  3.  前記薄膜支持体は、前記第1の気圧力によって弾性歪みを生ずる変形部を有する、ことを特徴とする請求項1及び2のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 1 and 2, wherein the thin film support includes a deforming portion that generates an elastic strain by the first air pressure.
  4.  前記変形部は、前記薄膜支持体の厚み方向に溝を有する切り欠き部を有する、ことを特徴とする請求項3に記載の製造装置。 4. The manufacturing apparatus according to claim 3, wherein the deforming portion has a notch portion having a groove in a thickness direction of the thin film support.
  5.  前記変形部の厚みは、前記変形部の外周の厚みよりも薄い、ことを特徴とする請求項3及び4のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 3 and 4, wherein a thickness of the deforming portion is thinner than a thickness of an outer periphery of the deforming portion.
  6.  前記薄膜保持体は、前記変形部に取り付けられる、ことを特徴とする請求項3から5のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 3 to 5, wherein the thin film holder is attached to the deformable portion.
  7.  前記第1の気圧力及び前記第2の気圧力の圧力差、並びに前記第1の気圧力及び第3の気圧力の圧力差は、大気圧を1気圧として1.3気圧から3.0気圧である、ことを特徴とする請求項2から6のいずれか一項に記載の製造装置。 The pressure difference between the first air pressure and the second air pressure, and the pressure difference between the first air pressure and the third air pressure are 1.3 atm to 3.0 atm, where atmospheric pressure is 1 atm. The manufacturing apparatus according to any one of claims 2 to 6, wherein:
  8.  前記第2及び第3の気圧力は大気圧よりも低い負圧であり、前記第1の気圧力は大気圧より高い正圧である、ことを特徴とする請求項2から6のいずれか一項に記載の製造装置。 The said 2nd and 3rd air pressure is a negative pressure lower than atmospheric pressure, and said 1st air pressure is a positive pressure higher than atmospheric pressure, The any one of Claim 2 to 6 characterized by the above-mentioned. The manufacturing apparatus according to item.
  9.  前記第1のチャンバーには、ドライエアガスまたは窒素ガスが供給される、ことを特徴とする請求項2から8のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 2 to 8, wherein dry air gas or nitrogen gas is supplied to the first chamber.
  10.  前記第1のチャンバーには、少なくとも前記成長用基板または前記薄膜のボーア半径よりも小さいボーア半径の原子または分子のガスが供給される、ことを特徴とする請求項2から8のいずれか一項に記載の製造装置。 9. The atom or molecular gas having a Bohr radius smaller than the Bohr radius of the growth substrate or the thin film is supplied to the first chamber. The manufacturing apparatus described in 1.
  11.  前記第1のチャンバーには、少なくとも水素ガス、またはヘリウムガスが供給される、ことを特徴とする請求項2から8のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 2 to 8, wherein at least hydrogen gas or helium gas is supplied to the first chamber.
  12.  前記半導体装置または前記第1のチャンバーは、更に担体を備える、ことを特徴とする請求項9から11のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 9 to 11, wherein the semiconductor device or the first chamber further includes a carrier.
  13.  前記基板保持体は、更に加熱部を含む、ことを特徴とする請求項2から9のいずれか一項に記載の製造装置。 10. The manufacturing apparatus according to claim 2, wherein the substrate holder further includes a heating unit.
  14.  前記加熱部は、バイメタルである、ことを特徴とする請求項13に記載の製造装置。 The manufacturing apparatus according to claim 13, wherein the heating unit is a bimetal.
  15.  前記剥離装置は、更に、前記薄膜支持体及び前記基板支持体の間に、前記第1の気圧力を維持する第1のシール材を含む、請求項1から14のいずれか一項に記載の製造装置。 The said peeling apparatus further contains the 1st sealing material which maintains the said 1st air pressure between the said thin film support body and the said board | substrate support body. Manufacturing equipment.
  16.  前記薄膜支持体は、前記第1のシール材により前記基板支持体から脱着可能である、ことを特徴とする請求項15に記載の製造装置。 The manufacturing apparatus according to claim 15, wherein the thin film support is detachable from the substrate support by the first sealing material.
  17.  前記剥離装置は、更に、前記薄膜支持体及び前記薄膜保持体の間に、前記第3の気圧力を維持する第2のシール材を含む、請求項1から16のいずれか一項に記載の製造装置。 The said peeling apparatus further contains the 2nd sealing material which maintains the said 3rd air pressure between the said thin film support body and the said thin film holding body. Manufacturing equipment.
  18.  前記薄膜保持体は、前記第2のシール材により前記薄膜支持体から脱着可能である、ことを特徴とする請求項17に記載の製造装置。 The manufacturing apparatus according to claim 17, wherein the thin film holder is detachable from the thin film support by the second sealing material.
  19.  前記剥離装置は、更に、前記基板支持体及び前記基板保持体の間に、前記第2の気圧力を維持する第3のシール材を含む、請求項1から18のいずれか一項に記載の製造装置。 The said peeling apparatus further contains the 3rd sealing material which maintains the said 2nd air pressure between the said board | substrate support body and the said board | substrate holding body. Manufacturing equipment.
  20.  前記基板保持体は、前記第3のシール材により前記基板支持体から脱着可能である、ことを特徴とする請求項19記載の製造装置。 The manufacturing apparatus according to claim 19, wherein the substrate holder is detachable from the substrate support by the third sealing material.
  21.  前記薄膜保持体は、前記薄膜の領域に関連する所定単位面積あたり前記薄膜保持体を貫通する複数の第1の孔を有し、更に、前記薄膜及び前記薄膜保持体の間に、前記複数の第1の孔の数よりも多い前記所定単位面積あたり複数の第2の貫通孔を有する多孔金属パッドを含む、ことを特徴とする請求項1から20のいずれか一項に記載の製造装置。 The thin film holder has a plurality of first holes penetrating the thin film holder per predetermined unit area related to the region of the thin film, and further, the plurality of the plurality of first holes between the thin film and the thin film holder. 21. The manufacturing apparatus according to claim 1, further comprising a porous metal pad having a plurality of second through holes per predetermined unit area larger than the number of first holes.
  22.  前記薄膜保持体は、更に、前記薄膜及び前記多孔金属パッドの間に、前記複数の第2の貫通孔の数よりも多い前記所定単位面積あたり複数の第3の貫通孔を有するカーボン・ナノ・パッドを含む、ことを特徴とする請求項21に記載の製造装置。 The thin film holder further includes a plurality of carbon nano-pores having a plurality of third through holes per predetermined unit area larger than the number of the plurality of second through holes between the thin film and the porous metal pad. The manufacturing apparatus according to claim 21, comprising a pad.
  23.  前記基板保持体は、重力方向を基準として前記薄膜保持体の上側に配置する、ことを特徴とする請求項1から14のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 1 to 14, wherein the substrate holder is disposed on an upper side of the thin film holder with respect to a direction of gravity.
  24.  前記薄膜保持体は、前記薄膜を第3の転写材を介して保持する、ことを特徴とする請求項1から14、及び23のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 1 to 14 and 23, wherein the thin film holder holds the thin film via a third transfer material.
  25.  前記第3の転写材は、製品基板である、ことを特徴とする請求項24に記載の製造装置。 25. The manufacturing apparatus according to claim 24, wherein the third transfer material is a product substrate.
  26.  前記製造装置は、更に接合装置を含み、
     前記接合装置は、
     前記薄膜支持体と脱着可能であり、前記薄膜保持体に保持した前記薄膜を転写する転写材を支持する転写支持体を含む、ことを特徴とする請求項1に記載の製造装置。
    The manufacturing apparatus further includes a joining device,
    The joining device includes:
    The manufacturing apparatus according to claim 1, further comprising a transfer support that is detachable from the thin film support and supports a transfer material that transfers the thin film held by the thin film support.
  27.  前記薄膜支持体及び前記転写支持体の少なくとも一方は、互いの距離を変更できるように可動可能である、ことを特徴とする請求項26に記載の製造装置。 27. The manufacturing apparatus according to claim 26, wherein at least one of the thin film support and the transfer support is movable so that a distance between the thin film support and the transfer support can be changed.
  28.  前記接合装置は、更に、前記薄膜支持体及び前記転写支持体の間に、第1のスライダー又はベアリングを含む、ことを特徴とする請求項27に記載の製造装置。 28. The manufacturing apparatus according to claim 27, wherein the joining device further includes a first slider or a bearing between the thin film support and the transfer support.
  29.  前記薄膜支持体及び前記転写支持体の他方は、互いの距離を変更できるように可動可能である、ことを特徴とする請求項27及び28のいずれか一項に記載の製造装置。 29. The manufacturing apparatus according to claim 27, wherein the other of the thin film support and the transfer support is movable so that a distance between each other can be changed.
  30.  前記接合装置は、更に、前記転写支持体を可動させる上下機構を含む、ことを特徴とする請求項29に記載の製造装置。 30. The manufacturing apparatus according to claim 29, wherein the joining device further includes a vertical mechanism for moving the transfer support.
  31.  前記第3のチャンバーに印加する第3の気圧力は、大気圧より高い正圧である、ことを特徴とする請求項26から30のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 26 to 30, wherein the third air pressure applied to the third chamber is a positive pressure higher than the atmospheric pressure.
  32.  前記接合装置は、
     前記薄膜支持体及び前記転写支持体による第4のチャンバーと、
     前記転写材及び前記転写支持体による第5のチャンバーと、
     前記第5のチャンバーの気圧力を測定する気圧力計と、を含む、ことを特徴とする請求項26から31のいずれか一項に記載の製造装置。
    The joining device includes:
    A fourth chamber with the thin film support and the transfer support;
    A fifth chamber by the transfer material and the transfer support;
    32. The manufacturing apparatus according to claim 26, further comprising a gas pressure gauge that measures a gas pressure in the fifth chamber.
  33.  前記転写材は、製品基板である、ことを特徴とする請求項26から32のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 26 to 32, wherein the transfer material is a product substrate.
  34.  前記接合装置は、
     前記転写支持体と脱着可能であり、前記転写材に保持した前記薄膜を更に転写する第2の転写材を支持する第2の薄膜支持体を含む、ことを特徴とする請求項26に記載の製造装置。
    The joining device includes:
    27. The method according to claim 26, further comprising a second thin film support that is detachable from the transfer support and supports a second transfer material that further transfers the thin film held on the transfer material. Manufacturing equipment.
  35.  前記第2の薄膜支持体及び前記転写支持体の少なくとも一方は、互いの距離を変更できるように可動可能である、ことを特徴とする請求項34に記載の製造装置。 35. The manufacturing apparatus according to claim 34, wherein at least one of the second thin film support and the transfer support is movable so that a distance between them can be changed.
  36.  前記接合装置は、更に、前記第2の薄膜支持体及び前記転写支持体の間に、第2のスライダー又はベアリングを含む、ことを特徴とする請求項35に記載の製造装置。 36. The manufacturing apparatus according to claim 35, wherein the joining device further includes a second slider or a bearing between the second thin film support and the transfer support.
  37.  前記第2の薄膜支持体及び前記転写支持体の他方は、互いの距離を変更できるように可動可能である、ことを特徴とする請求項35及び36のいずれか一項に記載の製造装置。 37. The manufacturing apparatus according to claim 35, wherein the other of the second thin film support and the transfer support is movable so that the distance between them can be changed.
  38.  前記接合装置は、更に、前記転写支持体を可動させる上下機構を含む、ことを特徴とする請求項37に記載の製造装置。 38. The manufacturing apparatus according to claim 37, wherein the joining device further includes a vertical mechanism for moving the transfer support.
  39.  前記接合装置は、前記第2の薄膜支持体及び前記第2の転写材による第6のチャンバーを含む、ことを特徴とする請求項34に記載の製造装置。 The manufacturing apparatus according to claim 34, wherein the bonding apparatus includes a sixth chamber made of the second thin film support and the second transfer material.
  40.  前記圧力装置は、更に、前記第6のチャンバーに、大気圧より高い正圧である第4の気圧力を印加する、ことを特徴とする請求項39に記載の製造装置。 40. The manufacturing apparatus according to claim 39, wherein the pressure device further applies a fourth air pressure that is a positive pressure higher than an atmospheric pressure to the sixth chamber.
  41.  前記接合装置は、更に、前記第2の薄膜支持体及び前記第2の転写材の間に、且つ、前記第6のチャンバーに配置される第2の薄膜保持体を含む、ことを特徴とする請求項39に記載の製造装置。 The bonding apparatus further includes a second thin film holder disposed between the second thin film support and the second transfer material and disposed in the sixth chamber. 40. The manufacturing apparatus according to claim 39.
  42.  前記接合装置は、更に、前記第2の転写材を保持し、前記第2の薄膜支持体及び前記第2の転写材との間に配置される第2の薄膜保持体を含む、ことを特徴とする請求項35に記載の製造装置。 The bonding apparatus further includes a second thin film holder that holds the second transfer material and is disposed between the second thin film support and the second transfer material. The manufacturing apparatus according to claim 35.
  43.  前記接合装置は、更に、前記第2の薄膜支持体及び前記第2の薄膜保持体の間に配置される第2のスライダーを含む、ことを特徴とする請求項42に記載の製造装置。 43. The manufacturing apparatus according to claim 42, wherein the joining apparatus further includes a second slider disposed between the second thin film support and the second thin film holder.
  44.  前記第2のスライダーは、前記圧力装置から供給される気圧力によって前記第2の薄膜保持体を保持する貫通孔を有する、ことを特徴とする請求項43に記載の製造装置。 44. The manufacturing apparatus according to claim 43, wherein the second slider has a through hole that holds the second thin film holder by an air pressure supplied from the pressure device.
  45.  前記第2の転写材は、製品基板である、ことを特徴とする請求項34から44のいずれか一項に記載の製造装置。 The manufacturing apparatus according to any one of claims 34 to 44, wherein the second transfer material is a product substrate.
  46.  前記製造装置は、更に薄膜支持体搬送機構を含み、
     前記薄膜支持体搬送機構は、前記薄膜支持体を前記剥離装置及び前記接合装置間で搬送する薄膜支持体移動材を含む、ことを特徴とする請求項26に記載の製造装置。
    The manufacturing apparatus further includes a thin film support transport mechanism,
    27. The manufacturing apparatus according to claim 26, wherein the thin film support transport mechanism includes a thin film support moving member that transports the thin film support between the peeling device and the bonding device.
  47.  前記製造装置は、更に第2の薄膜支持体搬送機構を含み、
     前記第2の薄膜支持体搬送機構は、前記第2の薄膜支持体を前記剥離装置及びその他の装置間で搬送する第2の薄膜支持体移動材を含む、ことを特徴とする請求項34に記載の製造装置。
    The manufacturing apparatus further includes a second thin film support transport mechanism,
    35. The second thin film support transport mechanism includes a second thin film support moving material that transports the second thin film support between the peeling device and other devices. The manufacturing apparatus as described.
PCT/JP2017/031324 2016-09-07 2017-08-31 Apparatus for producing electronic device, method for controlling same, electronic device and method for producing electronic device WO2018047704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-174146 2016-09-07
JP2016174146A JP2020061388A (en) 2016-09-07 2016-09-07 Manufacturing device for electronic apparatus, control method therefor, electronic apparatus, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018047704A1 true WO2018047704A1 (en) 2018-03-15

Family

ID=61562387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031324 WO2018047704A1 (en) 2016-09-07 2017-08-31 Apparatus for producing electronic device, method for controlling same, electronic device and method for producing electronic device

Country Status (3)

Country Link
JP (1) JP2020061388A (en)
TW (1) TWI649791B (en)
WO (1) WO2018047704A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022135105A (en) 2021-03-04 2022-09-15 キオクシア株式会社 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249631A (en) * 2002-02-25 2003-09-05 Sony Corp Manufacturing method of semiconductor substrate and semiconductor substrate as well as semiconductor device
JP2013179237A (en) * 2012-02-29 2013-09-09 Disco Abrasive Syst Ltd Lift-off device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852696B2 (en) * 2008-05-30 2014-10-07 Alta Devices, Inc. Method for vapor deposition
US10259206B2 (en) * 2010-03-02 2019-04-16 Alta Devices, Inc. Epitaxial lift off systems and methods
US20120244684A1 (en) * 2011-03-24 2012-09-27 Kunihiko Suzuki Film-forming apparatus and method
JP6320831B2 (en) * 2014-04-16 2018-05-09 株式会社ニューフレアテクノロジー Susceptor processing method and susceptor processing plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249631A (en) * 2002-02-25 2003-09-05 Sony Corp Manufacturing method of semiconductor substrate and semiconductor substrate as well as semiconductor device
JP2013179237A (en) * 2012-02-29 2013-09-09 Disco Abrasive Syst Ltd Lift-off device

Also Published As

Publication number Publication date
TWI649791B (en) 2019-02-01
TW201812856A (en) 2018-04-01
JP2020061388A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US11018112B2 (en) Bonding method of semiconductor chip and bonding apparatus of semiconductor chip
CN103620732B (en) The equipment departed from for making product substrate and carrier substrates and method
TW200949923A (en) Method and apparatus for peeling electronic component
US20090252939A1 (en) Wafer structures and wafer bonding methods
GB2502303A (en) Method of handling a substrate using a pressure variance
JP2008533312A (en) Diamond-based substrate for electronic devices
JP6671518B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JP2009010072A (en) Substrate-sticking device
JP2006278971A (en) Method for manufacturing laminated wafer and wafer holding tool used for it
WO2018047704A1 (en) Apparatus for producing electronic device, method for controlling same, electronic device and method for producing electronic device
US9548202B2 (en) Method for bonding by means of molecular adhesion
US20030037874A1 (en) Semiconductor substrate bonding by mass transport growth fusion
JP2003191191A (en) Vacuum suction device
JP5441094B2 (en) Semiconductor substrate manufacturing method and semiconductor substrate
KR100876965B1 (en) Chip pick-up tool for manufacturing semiconductor package
JPWO2021019855A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing system
JP5211541B2 (en) Manufacturing method of bonded substrate and manufacturing method of semiconductor device
JP5081423B2 (en) Seed crystal fixing device
JP2003273049A (en) Vacuum bonding device of wafer
US20230377935A1 (en) Temporary bonding method
KR20120125418A (en) An Apparatus for attaching and detaching a substrate using a ring shape adhesive
US9865492B2 (en) Receiving device for handling structured substrates
JP5641401B2 (en) Method for manufacturing group III nitride crystal substrate
JP2002154647A (en) Substrate holder, holding method for substrate, and manufacturing method for liquid crystal display element using substrate holder
JP2002231980A (en) Thin film semiconductor processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 01/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17848644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP