WO2018044133A1 - Method for selecting decline curve method in accordance with cumulative production increase rate index in unconventional gas field - Google Patents

Method for selecting decline curve method in accordance with cumulative production increase rate index in unconventional gas field Download PDF

Info

Publication number
WO2018044133A1
WO2018044133A1 PCT/KR2017/009673 KR2017009673W WO2018044133A1 WO 2018044133 A1 WO2018044133 A1 WO 2018044133A1 KR 2017009673 W KR2017009673 W KR 2017009673W WO 2018044133 A1 WO2018044133 A1 WO 2018044133A1
Authority
WO
WIPO (PCT)
Prior art keywords
production
cumulative
decay curve
data
decay
Prior art date
Application number
PCT/KR2017/009673
Other languages
French (fr)
Korean (ko)
Inventor
권순일
한동권
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Publication of WO2018044133A1 publication Critical patent/WO2018044133A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a method for suggesting an index for selecting a decay curve method for predicting ultimate value and cumulative production in non-traditional gas fields. More specifically, the present invention provides an index for productivity evaluation and productivity prediction for economic analysis in developing non-traditional gas fields. It is a method to select the decay curve method using the cumulative output growth rate indicator in non-traditional gas field to use the decay curve method.
  • Shale gas is being actively produced due to the recent economic development due to the development of hydraulic fracturing and horizontal drilling technology, and commercial production is being carried out mainly in North America where pipelines and natural gas infrastructure are developed.
  • reserve assessments and productivity predictions for production oil fields are performed through production data analysis or reservoir simulation.
  • the analysis of production data is divided into production transition flow analysis, Decline Curve Analysis (DCA), and mass balance method.
  • DCA Decline Curve Analysis
  • the double decay curve analysis method is used to predict future production behavior using only time and yield, and is widely used because it is possible to quickly calculate yield and estimated ultiate recovery (EUR) using a simple program in the field.
  • the decay trend of production data varies according to the flow characteristics.
  • the production decline rate indicator is used to select the decline curve analysis, but the actual field data is highly volatile and it is difficult to select a constant decline rate.
  • the production decay rate index is used to predict ultimate value and cumulative production using the decay curve method, and this index is volatilized due to reasons such as production interruption due to oil well maintenance when analyzing the decay method at actual production sites. Because of this and the decay rate is not constant, the conventional decay curve analysis method has a limitation in selecting a variable in accordance with the judgment of the engineer (expert), in addition to the disadvantage that the uncertainty component increases by that amount.
  • the decay rate is not constant due to volatility due to oil well maintenance or production interruption in actual production sites.
  • the reservoir properties or the oil well such as, for example, the cumulative yield growth index
  • the present invention is a heterogeneous hydraulic fracturing leveling by using the cumulative output growth rate indicator
  • the present invention has been made to solve the above problems, in the case of using the Arps empirical formula when performing the productivity analysis using the decay curve method for predicting future productivity, such as cumulative production or ultimate value in non-traditional gas field
  • the decay rate indicator when applying the decay curve method causes volatility due to oil well maintenance or production interruption at actual production sites, resulting in uneven decay rates.
  • the decay curve method is selected according to the cumulative yield growth index when predicting the ultimate value and cumulative yield in the non-traditional gas field using the cumulative yield growth index. It is to provide a way to predict productivity through the method.
  • another object of the present invention when using the production decline rate in the analysis of the decay curve method to predict the productivity as described above because the actual production data variability occurs because the decay rate is not constant judgment of the engineer (expert)
  • the engineer's judgment is made by using the cumulative yield growth index using only the production data and the time data acquired in the field. It is designed to replace the production decay rate indicator that should be intervened, so that the decay curve method can be selected using the cumulative output growth rate indicator in non-traditional gas fields configured to be applied irrespective of reservoir properties and well-completed data. It is to provide.
  • Another object of the present invention by using the cumulative output growth rate indicator that can be applied irrespective of the reservoir properties and well completion data as described above, it is possible to replace the production decline rate indicator and the judgment of the engineer (expert) Instead of declining production rates to be intervened, this study aims to provide a method of predicting productivity through the decay curve selection method according to the cumulative output growth rate indicators when predicting ultimate value and cumulative production in non-traditional gas fields.
  • the method of selecting the decay curve method according to the cumulative production growth rate indicators includes: a data collection step of acquiring data through daily output production data from actual field data; Calculating a cumulative production growth rate indicator using the data obtained in the data collection step; Selecting a decay curve method based on a value calculated from the cumulative yield increase index; And predicting the cumulative production amount and the ultimate value of the non-traditional gas field using the selected decay curve method.
  • the present invention when predicting the non-traditional gas field ultimate value and cumulative production of the non-traditional gas field productivity prediction using the cumulative production growth rate indicator configured to reduce the error generated by using the existing Arps empirical formula
  • the method of selecting the production decline curve analysis method it is possible to solve the shortcomings of the selection method by using the reservoir property data or the well completion method data that are difficult to obtain in actual field and have high uncertainty, and it is generated by using the widely used production decline rate.
  • the volatility of actual production data is so severe that the decay rate is not constant, it is possible to solve the problem of selecting the decay curve method when calculating the ultimate value and cumulative production of the prior art, which has the disadvantage of involving the judgment of engineers (experts).
  • the decay curve method when using the decay curve method in the production prediction as described above, is selected according to the reservoir properties or the oil well completion conditions when selecting the analysis method, but the data used for this is obtained in the field
  • the method of selecting the decay curve method when predicting ultimate yield and cumulative yield which consists of a system that selects the decay curve method using the cumulative yield growth index that can only be analyzed with production data over time to solve the problem of high uncertainty that is difficult to do. This provides an alternative to the production decay rate indicators that require the judgment of engineers (experts) when analyzing traditional Arps decay curves.
  • 1 is a flow chart showing a method of selecting a decay curve method according to the cumulative output growth rate indicator in the non-traditional gas field
  • 3 is a comparison of cumulative output growth rate indicators of field data and simulation data.
  • the present invention relates to a method for suggesting an index for selecting a decay curve method for predicting ultimate value and cumulative production in non-traditional gas fields. More specifically, the present invention provides an index for productivity evaluation and productivity prediction for economic analysis in developing non-traditional gas fields. It is a method to select the decay curve method using the cumulative output growth rate indicator in non-traditional gas field to use the decay curve method.
  • the first step is a data collection step (S10). Specifically, the step of acquiring data and collecting data through the daily production data obtained over time from actual field data.
  • the second step is to calculate the cumulative output growth rate indicator (S20). Specifically, the step of calculating the cumulative output growth rate indicator using the data obtained in the data collection step.
  • the improved Duong's method was most accurate when the transmittance was less than 0.001md, and that the YM-SEPD method simulated the production trend best in the 0.1 ⁇ 0.001md reservoir layer.
  • the decay rate limit index may have a variable decay rate due to variability due to production stoppage due to oil well maintenance during site analysis, and the decay rate may not be constant. Uncertainty in the data is not applicable.
  • Equation 1 the cumulative yield growth index applicable to the reservoir properties and the well completion condition is proposed in Equation 1 below.
  • G p (t n ) cumulative output value of n hours (day)
  • G p (t n + 1 ) cumulative output value of n + 1 hour (day)
  • the cumulative output growth rate indicator is less volatile according to the production data and the decay tendency is constant, so there is an advantage that it is easy to apply compared to the production decay rate.
  • the simulation data and the actual field data compared with the cumulative output growth rate graph the trend was confirmed that the trend is constant compared to the production decline rate.
  • a third step is to select a decay curve method (S30). Specifically, the step of selecting the decay curve method based on the value calculated from the cumulative output growth rate indicator.
  • the decay curve method is a method of predicting future productivity based on past production data, and is one of the widely used productivity analysis techniques because it can be simply calculated as a graph of output over time using only production data.
  • An empirical formula for predicting future production trends was proposed by analyzing the production history using the time, output, and cumulative output proposed by Arps (1945). The trend of production varies depending on the decay index.
  • the hyperbolic equation of Arps in traditional gas wells shows a value between 0 and 1, but the hyperbolic decay curve shows more than 1 when the production decline is large and decreases later as Shale gas wells.
  • Super Hyperbolic Decline superbolic Therefore, when predicting the productivity of non-traditional gas reservoirs with very low permeability, future production trends are predicted by using the superbolic method applying the number of the decay index of the hyperbolic decay curve method in the transition flow section more than one (Kupchenko et al., 2008). However, since the decay index is between 0.5 and 1 in the flow zone where boundary-bound flow occurs, it is necessary to carry out production prediction analysis by changing the decay index value according to the flow zone, or appropriate production prediction analysis for various scenarios.
  • n is the time index
  • D ⁇ is the infinite rate of production decline rate
  • D i is D 1 / n to be.
  • the PLE method has the following disadvantages: First, there are four variables (n, q i , D ⁇ , D 1 ) that need to be adjusted to match the production data. Secondly, it is difficult to determine the D i variable, and the rate of change in initial production declines later. Third, when predicting recoverable reserves, the yield changes sensitively by adjusting the time index n. Lastly, when D ⁇ is incorrectly selected in the initial production data, the late production deviation due to the variable adjustment is large.
  • Yu et al. (2013) proposed a method for determining the variables of the Duong decay curve under various reservoir conditions where boundary effect flows occur.
  • Valko's (2009) proposed Decech Curve Streched Exponential Production Decline (SEPD) expresses yields as potential recoveries ( p ) and t, n, and ⁇ variables based on the Exponential function, which represents 10,000 US Barnett shale wells. Verified by Valko and Lee (2010) improved SEPD in a way that is applicable to a wide range of dense and shale gas reservoirs. Potential recoveries and recoverable reserves in the SEPD equation are expressed as in Equations 8 to 9 below.
  • the recoverable reserve amount refers to the cumulative output when the production data is based on the minimum economic yield, which can be expressed by Equation 9 as the initial output q 0 , two variables n and ⁇ . If p and cumulative output are plotted on the graph, the slope of the straight line is 1 and the recoverable amount can be derived from the value of x-intercept. Yu (2013) used the SEPD method to predict the productivity of Canadian dense gas fields, and the analysis shows that when the slope of the straight line is 1, it is out of production history and conservatively predicts. Yu et al. (2013) proposed the Yu Modified-SEPD (YM-SEPD) to solve the problem of the SEPD decay curve, which conservatively predicts productivity.
  • YM-SEPD Yu Modified-SEPD
  • Equation 10 when Ln (q / q (t)) and t are plotted on a log-log graph, a trend of a straight line is derived, and n and ⁇ can be derived through slope and intercept.
  • the proposed decay curve method was verified through simulation model and field data analysis to simulate multi-level hydraulic fracturing horizontal well.
  • the fourth step is a step of predicting the cumulative production amount and the ultimate value of the non-traditional gas field (S40). Specifically, it is a step of predicting the cumulative production and the ultimate value of the non-traditional gas field using the selected decay curve method.
  • a heterogeneous multistage hydraulic fracturing horizontal well model was set up using a reservoir simulator to perform a productivity prediction analysis according to a production decline trend of shale gas wells.
  • the model has a horizontal length of 7,000 ft and a crushing step of 20 stages, a crushing length of at least 483 ft, a maximum of 1,129 ft, a storage layer thickness of 607 ft, a crushing gap of 350 ft, and a crushing permeability of 0.7 md.
  • the permeability of the rock body is 0.0004 md.
  • the production data used in the analysis is based on a minimum economic yield of 300 Mscf / day, with a total production period of about 25 years and a recoverable reserve (EUR) of 7.79 bcf.
  • the analysis of production history shows that the transition flow period is 5.5 years and boundary effect flows have appeared since this point.
  • the cumulative output growth rate used for the sensitivity analysis is 8 values (0.5 to 0.03%), which is expressed as a production period, at least 120 days (0.5%) to 1,750 days (0.03). %)to be.
  • the Duong method is the most suitable method when the cumulative output growth rate is 0.25%, the production tendency is consistent and the recoverable reserve error is the smallest, and YM-SPED is the cumulative output growth rate less than 0.05%. It was confirmed to be. Superbolic tended to be overestimated in the boundary effect flow as a result of the production trend analysis, and the production decline rate was about 30% lower, which was not suitable for late production simulation.
  • the PLE method had the lowest mean error according to each cumulative output growth index, but it was difficult to analyze due to the large error caused by the selection of variables in the relational expression.
  • Table 4 below shows the relative errors for the yield of Canadian A field data.
  • the Duong method was most consistent with the production trends compared to the other three decay curve methods, and the relative error on the output was calculated to be small as 1.35%.
  • the PLE method and the YM-SPED conservatively predicted the production trend, and the relative errors were -6.37% and -8.08%, respectively.
  • the relative error value of the superbolic method is 3.31% and compared with Duong, the decrease in production decreases slowly as the production period increases, and the actual yield and error tended to increase over time.
  • Table 5 below shows the relative errors for US B field data output.
  • the Duong method excludes highly volatile periods (70-100 months) compared with the other three decay curve methods. The production trends were consistent. In addition, the relative error of output was the lowest at -1.56%. Both the PLE and YM-SPED methods conservatively predicted productivity, with relative errors of -13.40% and -17.22%, respectively. Superbolic showed a slow decline in production from the 20th month, resulting in overpredicted production, with a relative error of 7.79%. This result shows that Duong's method is consistent with the production trend and the lowest relative error when the cumulative output growth rate is 0.25%, similar to the Canadian A production well.
  • Cumulative incline rate (0.5%) Cumulative incline rate (0.25%) Duong -1.56 7.31 Superbolic 7.79 11.63 PLE -13.40 -5.92 YM-SPED -17.22 0.04
  • the present invention when predicting the non-traditional gas field ultimate value and cumulative production of the non-traditional gas field productivity prediction using the cumulative production growth rate indicator configured to reduce the error generated by using the existing Arps empirical formula
  • the method of selecting the production decline curve analysis method it is possible to solve the shortcomings of the selection method by using the reservoir property data or the well completion method data that are difficult to obtain in actual field and have high uncertainty, and it is generated by using the widely used production decline rate.
  • the volatility of actual production data is so severe that the decay rate is not constant, it is possible to solve the problem of selecting the decay curve method when calculating the ultimate value and cumulative production of the prior art, which has the disadvantage of involving the judgment of engineers (experts).
  • the decay curve selection method when predicting ultimate yield and cumulative yield is composed of a system for selecting a decay curve method using the cumulative yield growth index which can be analyzed only with production data over time.
  • the present invention when predicting the non-traditional gas field ultimate value and cumulative production of the non-traditional gas field productivity prediction using the cumulative production growth rate indicator configured to reduce the error generated by using the existing Arps empirical formula
  • the method of selecting the production decline curve analysis method it is possible to solve the shortcomings of the selection method by using the reservoir property data or the well completion method data that are difficult to obtain in actual field and have high uncertainty, and it is generated by using the widely used production decline rate.
  • the volatility of actual production data is so severe that the decay rate is not constant, it is possible to solve the problem of selecting the decay curve method when calculating the ultimate value and cumulative production of the prior art, which has the disadvantage of involving the judgment of engineers (experts).
  • the decay curve selection method when predicting ultimate yield and cumulative yield is composed of a system for selecting a decay curve method using the cumulative yield growth index which can be analyzed only with production data over time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Databases & Information Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a method having presented an index for selecting a decline curve method in ultimate recovery and cumulative production prediction in an unconventional gas field and, more specifically, to a method capable of selecting a decline curve method by using a cumulative production increase rate index in an unconventional gas field such that the decline curve method can be used by using the index during productivity evaluation and productivity prediction for economic analysis in the development of the unconventional gas field. According to the present invention, the method for selecting a decline curve method in accordance with a cumulative production increase rate index in an unconventional gas field comprises: a data collection step of acquiring data through daily output production data from actual field data; a step of calculating a cumulative production increase rate index by using the data acquired in the data collection step; a step of selecting a decline curve method by means of a value calculated from the cumulative production increase rate index; and predicting the cumulative production and ultimate recovery of an unconventional gas field by using the selected decline curve method.

Description

비전통가스전에서 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법Decline curve selection method according to cumulative output growth rate indicator in non-traditional gas field
본 발명은 비전통가스전에서 궁극가채량 및 누적생산량 예측에 있어 감퇴곡선법을 선정하는 지표를 제안한 방법에 관한 것으로, 더 상세하게는, 비전통가스전 개발 시 경제성 분석을 위해 생산성 평가 및 생산성 예측 시 지표를 이용하여 감퇴곡선법을 이용할 수 있도록 비전통가스전에서 누적생산량증가율 지표를 이용하여 감퇴곡선법을 선정할 수 있는 방법에 관한 것이다.The present invention relates to a method for suggesting an index for selecting a decay curve method for predicting ultimate value and cumulative production in non-traditional gas fields. More specifically, the present invention provides an index for productivity evaluation and productivity prediction for economic analysis in developing non-traditional gas fields. It is a method to select the decay curve method using the cumulative output growth rate indicator in non-traditional gas field to use the decay curve method.
셰일가스는 최근 수압파쇄 및 수평 시추 기술의 발달로 경제성이 높아짐에 따라 생산이 활발히 진행되고 있으며 파이프라인 및 천연가스 인프라가 발달한 북미를 중심으로 상업적 생산이 이루어지고 있다. 일반적으로 생산 유가스전에 대한 매장량 평가 및 생산성 예측은 생산자료 분석기법이나 저류층 시뮬레이션을 통해 수행된다. 이중 생산자료 분석 기법은 생산천이유동분석과 감퇴곡선분석(Decline Curve Analysis): DCA), 물질평형법으로 나뉜다. 이중 감퇴곡선분석법은 시간과 생산량만을 이용하여 미래의 생산거동을 예측하는 방법으로 현장에서 간편한 프로그램을 이용하여 신속히 생산량과 회수가능매장량(Estimated ultiate recovery: EUR)을 산출할 수 있어 널리 활용되고 있다. Shale gas is being actively produced due to the recent economic development due to the development of hydraulic fracturing and horizontal drilling technology, and commercial production is being carried out mainly in North America where pipelines and natural gas infrastructure are developed. Generally, reserve assessments and productivity predictions for production oil fields are performed through production data analysis or reservoir simulation. The analysis of production data is divided into production transition flow analysis, Decline Curve Analysis (DCA), and mass balance method. The double decay curve analysis method is used to predict future production behavior using only time and yield, and is widely used because it is possible to quickly calculate yield and estimated ultiate recovery (EUR) using a simple program in the field.
그러나 생산초기 셰일가스정의 경우 생산자료의 감퇴경향이 유동특성에 따라 달라지기 때문에 생산감퇴경향에 따른 적절한 감퇴곡선분석 선정 연구가 요구되고 있다. 일반적으로 감퇴곡선분석 선정을 위해서는 생산감퇴율 지표를 이용하고 있으나 실제 현장자료는 변동성이 심해 일정한 감퇴율을 선정하기 어렵다. However, in the case of initial shale wells, the decay trend of production data varies according to the flow characteristics. Generally, the production decline rate indicator is used to select the decline curve analysis, but the actual field data is highly volatile and it is difficult to select a constant decline rate.
또한, 오일필드에서 궁극가채량 및 누적생산량 예측에 관한 종래 기술은 미국특허공보 US 2015-0331976호, 미국특허공보 US 2013-0346040호 및 미국특허공보 US 2014-0136111호가 있다. In addition, the prior art for predicting ultimate yield and cumulative production in the oil field is US Patent Publication US 2015-0331976, US Patent Publication US 2013-0346040 and US Patent Publication US 2014-0136111.
그러나 종래에는, 감퇴곡선법을 이용한 궁극가채량 및 누적생산량 예측 시 생산감퇴율 지수를 이용하고 있으며, 이 지표는 실제 생산현장에서 감퇴곡선법 분석 시 유정 유지보수로 인한 생산중단 등의 이유로 인해 변동성이 발생하여 감퇴율이 일정하지 않음으로 인해, 종래의 감퇴곡선법 분석 방법은 엔지니어(전문가)의 판단에 따라 변수를 선정하는 한계가 있는 데 더하여, 그만큼 불확실성 요소가 증가하게 되는 단점이 있는 것이었다. However, conventionally, the production decay rate index is used to predict ultimate value and cumulative production using the decay curve method, and this index is volatilized due to reasons such as production interruption due to oil well maintenance when analyzing the decay method at actual production sites. Because of this and the decay rate is not constant, the conventional decay curve analysis method has a limitation in selecting a variable in accordance with the judgment of the engineer (expert), in addition to the disadvantage that the uncertainty component increases by that amount.
상기한 바와 같이 비전통가스전에서 궁극가채량 및 누적생산량 예측에 있어서 감퇴곡선법 분석 시 생산감퇴율 지수를 이용 시 실제 생산현장에서 유정 유지보수나 생산중단 등의 이유로 변동성이 발생하여 감퇴율이 일정하지 않음으로 인해 분석을 수행 시 엔지니어(전문가)의 판단이 개입되어야 하는 단점이 있었던 종래기술의 생산감퇴곡선법 분석 방법들의 문제점을 해결하기 위해서는, 예를 들면, 누적생산량증가율 지표와 같은 저류층 물성이나 유정완결 자료와 같은 많은 자료가 없이 생산량, 시간 자료를 이용하여 구성되는 새로운 감퇴곡선분석 방법을 제공하는 것이 바람직하나, 아직까지 그러한 요구를 모두 만족시키는 지표나 방법은 제시되지 못하고 있는 실정이다.As described above, when the decay curve method is used to predict ultimate value and cumulative production in the non-traditional gas field, the decay rate is not constant due to volatility due to oil well maintenance or production interruption in actual production sites. In order to solve the problems of the conventional production decay curve analysis method, in which the judgment of an engineer (expert) is involved when performing the analysis, the reservoir properties or the oil well such as, for example, the cumulative yield growth index It is desirable to provide a new decay curve analysis method that uses output and time data without much data such as complete data. However, there are no indicators or methods that satisfy all of these requirements.
따라서 변동성이 적고 일정한 생산감퇴경향을 모사 할 수 있으며, 저류층 물성 및 유정완결 방법 조건과 관계없이 적용 가능한 새로운 지표가 필요한 실정이며, 본 발명은 누적생산량 증가율 지표를 이용하여 불균질한 수압파쇄 수평정을 모사한 셰일가스정 시뮬레이션 자료와 현장자료에 대한 분석을 통해 생산감퇴경향에 따라 적합한 감퇴곡선분석 방법을 결정하는 방법에 관하여 연구하였다.Therefore, there is little volatility and it is possible to simulate a certain trend of production decline, a new indicator that can be applied irrespective of the reservoir properties and oil well completion method conditions is required, the present invention is a heterogeneous hydraulic fracturing leveling by using the cumulative output growth rate indicator This study studied the method of deciding the appropriate decay curve analysis method according to the trend of production decline through analysis of shale gas well simulation data and field data.
본 발명은 상기의 문제점을 해결하기 위해서 안출된 것으로서, 비전통가스전에서 누적생산량이나 궁극가채량과 같은 미래의 생산성 예측을 위해 감퇴곡선법을 이용하여 생산성 분석을 수행 시, Arps의 경험식을 이용할 경우 생산성 예측 오차가 크게 발생하는 문제가 발생하는 점에 더하여, 감퇴곡선법 적용시 생산감퇴율 지표를 이용할 경우 실제 생산현장에서 유정 유지보수나 생산중단 등의 이유로 변동성이 발생하여 감퇴율이 일정하지 않음으로 인해 감퇴곡선법 이용시 엔지니어(전문가)의 판단이 개입되어야 하는 문제점을 해결하기 위해, 누적생산량증가율 지표를 이용하여 비전통가스전에서 궁극가채량 및 누적생산량 예측 시 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법을 통해 생산성을 예측하는 방법을 제공하고자 하는 것이다. The present invention has been made to solve the above problems, in the case of using the Arps empirical formula when performing the productivity analysis using the decay curve method for predicting future productivity, such as cumulative production or ultimate value in non-traditional gas field In addition to the problem of large production forecasting errors, the decay rate indicator when applying the decay curve method causes volatility due to oil well maintenance or production interruption at actual production sites, resulting in uneven decay rates. In order to solve the problem that the judgment of engineers (experts) should be involved when using the decay curve method, the decay curve method is selected according to the cumulative yield growth index when predicting the ultimate value and cumulative yield in the non-traditional gas field using the cumulative yield growth index. It is to provide a way to predict productivity through the method.
또한, 본 발명의 다른 목적은, 상기한 바와 같이 생산성 예측을 위해 감퇴곡선법 분석시 생산감퇴율을 이용할 경우 실제 생산자료의 변동성이 발생하여 감퇴율이 일정하지 않음으로 인해 엔지니어(전문가)의 판단이 요구되는 단점이 있었던 종래기술의 비전통가스전에 감퇴곡선법 선정 및 생산성 예측방법들의 문제점을 해결하기 위해, 현장에서 획득한 생산자료와 시간자료만을 이용하여, 누적생산량증가율 지표를 통해 엔지니어의 판단이 개입되어야 하는 생산감퇴율 지표를 대신할 수 있도록 구성됨으로써, 저류층 물성 및 유정완결 자료와 관계없이 적용할 수 있도록 구성되는 비전통가스전에서 누적생산량증가율 지표를 이용하여 감퇴곡선법을 선정할 수 있는 방법을 제공하고자 하는 것이다. In addition, another object of the present invention, when using the production decline rate in the analysis of the decay curve method to predict the productivity as described above because the actual production data variability occurs because the decay rate is not constant judgment of the engineer (expert) In order to solve the problems of the decay curve selection and productivity prediction methods of the conventional non-traditional gas field which had this required disadvantage, the engineer's judgment is made by using the cumulative yield growth index using only the production data and the time data acquired in the field. It is designed to replace the production decay rate indicator that should be intervened, so that the decay curve method can be selected using the cumulative output growth rate indicator in non-traditional gas fields configured to be applied irrespective of reservoir properties and well-completed data. It is to provide.
아울러, 본 발명의 또 다른 목적은, 상기한 바와 같이 저류층 물성 및 유정완결 자료와 관계없이 적용할 수 있는 누적생산량증가율 지표를 이용하여 생산감퇴율 지표를 대신할 수 있고 엔지니어(전문가)의 판단이 개입되어야 하는 생산감퇴율을 대신하여 비전통가스전에서 궁극가채량 및 누적생산량 예측 시 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법을 통해 생산성을 예측하는 방법을 제공하고자 하는 것이다. In addition, another object of the present invention, by using the cumulative output growth rate indicator that can be applied irrespective of the reservoir properties and well completion data as described above, it is possible to replace the production decline rate indicator and the judgment of the engineer (expert) Instead of declining production rates to be intervened, this study aims to provide a method of predicting productivity through the decay curve selection method according to the cumulative output growth rate indicators when predicting ultimate value and cumulative production in non-traditional gas fields.
발명이 해결하고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be solved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명에 따른 비전통가스전에서 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법은, 실제 현장자료에서 일일생산량 생산자료를 통해 데이터를 획득하는 데이터 수집단계; 상기 데이터 수집단계에서 획득된 데이터를 이용하여 누적생산량증가율 지표를 산출하는 단계; 상기 누적생산량증가율 지표에서 산출된 값에 의해 감퇴곡선법을 선정하는 단계; 및 상기 선정된 감퇴곡선법을 이용하여 비전통가스전의 누적생산량 및 궁극가채량을 예측하는 단계;을 포함하는 것을 특징으로 한다.In the non-traditional gas field according to the present invention, the method of selecting the decay curve method according to the cumulative production growth rate indicators includes: a data collection step of acquiring data through daily output production data from actual field data; Calculating a cumulative production growth rate indicator using the data obtained in the data collection step; Selecting a decay curve method based on a value calculated from the cumulative yield increase index; And predicting the cumulative production amount and the ultimate value of the non-traditional gas field using the selected decay curve method.
상기 과제의 해결 수단에 의해, 본 발명은 비전통가스전 궁극가채량 및 누적생산량 예측 시 기존의 Arps 경험식을 이용하여 발생하는 오차를 감소시킬 수 있도록 구성되는 누적생산량증가율 지표를 이용한 비전통가스전 생산성 예측 시 생산감퇴곡선분석법 선정 방법이 제공됨으로써, 실제 현장에서 획득하기 어렵고 불확실성이 높은 저류층 물성이나 유정완결 방법 자료를 이용하여 선정하는 방법의 단점을 해결가능하며, 일반적으로 널리 쓰이는 생산감퇴율을 이용함으로써 발생하는 실제 생산자료의 변동성이 심해 감퇴율을 일정하지 않음으로 인해 엔지니어(전문가)의 판단이 개입되는 단점이 있었던 종래기술의 궁극가채량 및 누적생산량 산출 시 감퇴곡선법 선정 문제점을 해결할 수 있다. By the means for solving the above problems, the present invention when predicting the non-traditional gas field ultimate value and cumulative production of the non-traditional gas field productivity prediction using the cumulative production growth rate indicator configured to reduce the error generated by using the existing Arps empirical formula By providing the method of selecting the production decline curve analysis method, it is possible to solve the shortcomings of the selection method by using the reservoir property data or the well completion method data that are difficult to obtain in actual field and have high uncertainty, and it is generated by using the widely used production decline rate. As the volatility of actual production data is so severe that the decay rate is not constant, it is possible to solve the problem of selecting the decay curve method when calculating the ultimate value and cumulative production of the prior art, which has the disadvantage of involving the judgment of engineers (experts).
또한, 본 발명에 따르면, 상기한 바와 같이 생산량 예측에 있어 감퇴곡선법을 이용할 경우 분석방법 선정시 저류층 물성이나 유정완결 조건에 따라 상기 감퇴곡선법을 선정하나 이에 활용되는 상기 자료들을 실제 현장에서 획득하기 어려우며 불확실성이 높은 문제점을 해결하기 위해 시간에 따른 생산자료로만 분석이 가능한 상기 누적생산량증가율 지표를 이용하여 감퇴곡선법을 선정하는 시스템으로 구성되는 궁극가채량 및 누적생산량 예측시 감퇴곡선법 선정방법이 제공됨으로써 기존의 Arps 감퇴곡선법 분석시 엔지니어(전문가)의 판단이 개입되어야 하는 생산감퇴율 지표를 대신할 수 있다.In addition, according to the present invention, when using the decay curve method in the production prediction as described above, the decay curve method is selected according to the reservoir properties or the oil well completion conditions when selecting the analysis method, but the data used for this is obtained in the field The method of selecting the decay curve method when predicting ultimate yield and cumulative yield, which consists of a system that selects the decay curve method using the cumulative yield growth index that can only be analyzed with production data over time to solve the problem of high uncertainty that is difficult to do. This provides an alternative to the production decay rate indicators that require the judgment of engineers (experts) when analyzing traditional Arps decay curves.
도 1은 비전통가스전에서 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법을 나타내는 순서도1 is a flow chart showing a method of selecting a decay curve method according to the cumulative output growth rate indicator in the non-traditional gas field
도 2는 현장자료와 시뮬레이션 자료의 생산감퇴율지표 비교2 is a comparison of production decline index between field data and simulation data.
도 3은 현장자료와 시뮬레이션 자료의 누적생산량증가율 지표 비교3 is a comparison of cumulative output growth rate indicators of field data and simulation data.
도 4는 셰일가스정의 생산감퇴경향에 따른 생산성 예측 분석 시뮬레이션 4 is a productivity prediction analysis simulation according to the production trend of shale gas well
도 5는 누적생산량증가율 분류에 따른 분석 그래프5 is an analysis graph according to the cumulative output growth rate classification
도 6은 캐나다 A 분지 셰일가스전에서 누적생산량증가율 0.5%일 때 감퇴곡선방법 비교6 is a comparison of the decay curve method when the cumulative output growth rate is 0.5% in the Canadian A basin shale gas field.
도 7은 캐나다 A 분지 셰일가스전에서 누적생산량증가율 0.25%일 때 감퇴곡선방법 비교7 is a comparison of the decay curve method when the cumulative output growth rate is 0.25% in the Canadian A basin shale gas field.
도 8은 미국 B 분지 셰일가스전에서 누적생산량증가율 0.5%일 때 감퇴곡선방법 비교8 is a comparison of the decay curve method when the cumulative output growth rate is 0.5% in the US B-branch shale gas field
도 9는 미국 B 분지 셰일가스전에서 누적생산량증가율 0.25%일 때 감퇴곡선방법 비교9 is a comparison of the decay curve method when the cumulative output growth rate of 0.25% in the US B basin shale gas field
이상과 같은 본 발명에 대한 해결하려는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 일실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 일실시예를 참조하면 명확해질 것이다.Specific matters including the problem to be solved, the solution to the problem, and the effects of the present invention as described above are included in the embodiments and drawings to be described below. Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
본 발명은 비전통가스전에서 궁극가채량 및 누적생산량 예측에 있어 감퇴곡선법을 선정하는 지표를 제안한 방법에 관한 것으로, 더 상세하게는, 비전통가스전 개발 시 경제성 분석을 위해 생산성 평가 및 생산성 예측 시 지표를 이용하여 감퇴곡선법을 이용할 수 있도록 비전통가스전에서 누적생산량증가율 지표를 이용하여 감퇴곡선법을 선정할 수 있는 방법에 관한 것이다.The present invention relates to a method for suggesting an index for selecting a decay curve method for predicting ultimate value and cumulative production in non-traditional gas fields. More specifically, the present invention provides an index for productivity evaluation and productivity prediction for economic analysis in developing non-traditional gas fields. It is a method to select the decay curve method using the cumulative output growth rate indicator in non-traditional gas field to use the decay curve method.
하기에는 상기 제시된 비전통가스전에서 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법에 대하여 도면을 이용하여 상세하게 설명한다. Hereinafter, a method of selecting the decay curve method according to the cumulative yield growth index in the non-traditional gas field will be described in detail with reference to the accompanying drawings.
먼저, 제1단계는 데이터 수집단계(S10)이다. 구체적으로, 실제 현장자료에서 시간에 따라 획득되는 일일생산량 자료를 통해 데이터를 획득하고 데이터를 수집하는 단계이다. First, the first step is a data collection step (S10). Specifically, the step of acquiring data and collecting data through the daily production data obtained over time from actual field data.
다음으로, 제2단계는 누적생산량증가율 지표를 산출하는 단계(S20)이다. 구체적으로, 상기 데이터 수집단계에서 획득된 데이터를 이용하여 누적생산량증가율 지표를 산출하는 단계이다. Next, the second step is to calculate the cumulative output growth rate indicator (S20). Specifically, the step of calculating the cumulative output growth rate indicator using the data obtained in the data collection step.
셰일가스정은 일반가스정과 달리 생산초기 생산감퇴가 급격하게 발생하며 생산후기 감퇴경향이 둔화되는 현상이 나타난다. 따라서 생산감퇴경향에 따라 적합한 감퇴곡선분석(Decline Curve Analysis): DCA) 적용이 필요하다. Maley(1985) Kupchenko(2008)는 생산감퇴경향에 미치는 인자로 생산감퇴율을 이용한 연구를 수행하였는데 셰일 및 치밀가스정의 경우 생산후기 감퇴율이 너무 작으므로 더 이상 감퇴경향이 나타나지 않아 쌍곡선감퇴곡선법 적용 시 생산이 과대예측되었다. 이를 개선하고자 감퇴율한계지수를 활용해 감퇴율이 어느 시점에 도달 했을 때 감퇴지수값을 변경하여 분석하는 변형쌍곡선감퇴곡선법을 제안하였다. Yu(2013)는 투과도가 0.001md 미만인 경우 개선된 Duong의 방법이 가장 정확성이 높으며, 0.1~0.001md 저류층은 YM-SEPD 방법이 가장 생산경향을 잘 모사하는 것을 확인하였다. 그러나 감퇴율한계지수는, 도 2에 나타난 바와 같이, 현장자료 분석 시 유정 유지보수로 인한 생산중단 등의 이유로 변동성이 발생하여 감퇴율이 일정하지 않을 수 있으며, 투과도의 경우 대상 저류층 물성자료가 없거나 자료의 불확실성이 크므로 적용이 용의치 않다. Unlike general gas wells, shale gas wells produce rapid declines in initial production and slow down late production trends. Therefore, it is necessary to apply the appropriate Decline Curve Analysis (DCA) according to the trend of production decline. Maley (1985) and Kupchenko (2008) conducted a study using the production decline rate as a factor for the production decline trend. The shale and dense gas wells are too small in late production, so the decline trend does not appear anymore. Production was overpredicted when applied. To improve this problem, we proposed the modified hyperbolic decay curve method that analyzes by changing the decay index value when the decay rate reaches a certain point using the decay rate limit index. Yu (2013) confirmed that the improved Duong's method was most accurate when the transmittance was less than 0.001md, and that the YM-SEPD method simulated the production trend best in the 0.1 ~ 0.001md reservoir layer. However, as shown in Fig. 2, the decay rate limit index may have a variable decay rate due to variability due to production stoppage due to oil well maintenance during site analysis, and the decay rate may not be constant. Uncertainty in the data is not applicable.
따라서 상기 문제점을 보완할 수 있는 정량적이고 일반적인 지표가 필요하다. 본 발명에서는 저류층 물성 및 유정완결 조건과 관계없이 적용 가능한 누적생산량증가율 지표를 하기 수학식 1에 제안하였다. Therefore, there is a need for a quantitative and general indicator that can supplement the above problems. In the present invention, the cumulative yield growth index applicable to the reservoir properties and the well completion condition is proposed in Equation 1 below.
Figure PCTKR2017009673-appb-M000001
Figure PCTKR2017009673-appb-M000001
IGp = 누적생산량증가율 지표IG p = cumulative output growth indicator
Gp(tn) = n시간(day)의 누적생산량 값G p (t n ) = cumulative output value of n hours (day)
Gp(tn+1) = n+1시간(day)의 누적생산량 값G p (t n + 1 ) = cumulative output value of n + 1 hour (day)
상기 누적생산량증가율 지표는 생산자료에 따른 변동성이 적으며 감퇴경향이 일정하므로 생산감퇴율에 비해 적용이 용이한 장점이 있다. 또한, 도 3에 나타난 바와 같이, 시뮬레이션 자료와 실제 현장자료 누적생산량증가율 그래프와 비교한 결과 생산감퇴율에 비해 그 경향이 일정함을 확인할 수 있었다. The cumulative output growth rate indicator is less volatile according to the production data and the decay tendency is constant, so there is an advantage that it is easy to apply compared to the production decay rate. In addition, as shown in Figure 3, the simulation data and the actual field data compared with the cumulative output growth rate graph, the trend was confirmed that the trend is constant compared to the production decline rate.
다음으로, 제3단계는 감퇴곡선법을 선정하는 단계(S30)이다. 구체적으로, 상기 누적생산량증가율 지표에서 산출된 값에 의해 감퇴곡선법을 선정하는 단계이다. Next, a third step is to select a decay curve method (S30). Specifically, the step of selecting the decay curve method based on the value calculated from the cumulative output growth rate indicator.
감퇴곡선법은 과거 생산자료를 기반으로 미래의 생산성을 예측하는 방법으로 생산자료만을 이용하여 시간에 따른 생산량의 그래프로 간단히 산출할 수 있어 널리 활용되는 생산성 분석 기법 중 하나이다. Arps(1945)가 제안한 시간, 생산량, 누적생산량 등을 이용하여 도식화하여 생산이력을 분석하여 미래생산경향을 예측하는 경험식을 제안하였다. 생산경향은 감퇴지수에 따라 감퇴경향이 달라지는데 전통 유가스전의 경우 감퇴지수값이 지수감퇴곡선법(b=0), 쌍곡선감퇴곡선법(0<b<1), 조화감퇴곡선법(b=1)이 사용된다. The decay curve method is a method of predicting future productivity based on past production data, and is one of the widely used productivity analysis techniques because it can be simply calculated as a graph of output over time using only production data. An empirical formula for predicting future production trends was proposed by analyzing the production history using the time, output, and cumulative output proposed by Arps (1945). The trend of production varies depending on the decay index. For traditional oil fields, the decay index value is the exponential decay curve (b = 0), the hyperbolic decay curve (0 <b <1), and the harmonic decay curve (b = 1). ) Is used.
하기에는 비전통가스전에 적합한 감퇴곡선법에 대해 설명하고자 한다. The following describes a decay curve method suitable for non-traditional gas fields.
1) 초쌍곡선감퇴곡선(Superbolic Decline method, 1<b<4)1) Superbolic Decline Method (1 <b <4)
일반적으로 전통가스정에서 Arps의 Hyperbolic 식은 감퇴지수값이 0에서 1사이의 값을 나타내지만 셰일가스정과 같이 초기에 생산감퇴가 크고 후기로 갈수록 작아지는 경우 감퇴지수값이 1이상을 나타내는 초쌍곡선감퇴곡선(Super Hyperbolic Decline : superbolic) 거동을 보인다. 그래서 투과도가 매우 낮은 비전통가스 저류층의 생산성 예측 시 천이유동 구간에서의 쌍곡선감퇴곡선법의 감퇴지수값이 1이상 초과하는 수를 적용한 superbolic method을 사용하여 미래생산경향을 예측한다(Kupchenko et al., 2008). 하지만 경계영향 유동이 발생하는 유동영역에는 감퇴지수가 0.5에서 1사이이므로 유동영역에 따라 감퇴지수값을 변경하여 생산 예측분석을 수행하거나 다양한 시나리오에 대해 적절한 생산 예측분석이 필요하다.In general, the hyperbolic equation of Arps in traditional gas wells shows a value between 0 and 1, but the hyperbolic decay curve shows more than 1 when the production decline is large and decreases later as Shale gas wells. Super Hyperbolic Decline: superbolic Therefore, when predicting the productivity of non-traditional gas reservoirs with very low permeability, future production trends are predicted by using the superbolic method applying the number of the decay index of the hyperbolic decay curve method in the transition flow section more than one (Kupchenko et al., 2008). However, since the decay index is between 0.5 and 1 in the flow zone where boundary-bound flow occurs, it is necessary to carry out production prediction analysis by changing the decay index value according to the flow zone, or appropriate production prediction analysis for various scenarios.
Figure PCTKR2017009673-appb-M000002
Figure PCTKR2017009673-appb-M000002
2) 멱함수 법칙 감퇴곡선법(PLE method)2) PLE method
Ilk 등(2008)은 치밀가스전에서 생산이력 분석을 통해 생산감퇴율과 감퇴지수를 추정한 그래프에서 감퇴지수가 일정하지 않은 비쌍곡선 감퇴거동을 분석하였다. 쌍곡선감퇴곡선을 벗어나는 거동을 보이는 원인은 생산감퇴율과 감퇴지수에 영향을 미치는 요소인 천이유동 자료의 존재 때문인 것으로 제시하였다. 치밀가스전의 생산감퇴율을 그래프에 도시하면 쌍곡선감퇴곡선법과는 달리 오랫동안 일정하게 감퇴하는 멱함수 법칙의 형태를 따르는데 이를 멱함수 법칙 감퇴곡선법(PLE)이라고 한다. 이 방법의 장점은 수압파쇄에 의한 생산 거동이 우세한 저류층의 회수가능매장량 예측 및 생산자료 분석 시 유동영역에 상관없이 하나의 식으로 예측이 가능하다.Ilk et al. (2008) analyzed non-hyperbolic decay behavior in which the decay index was not constant in the graph that estimated the decay rate and decay index through production history analysis in dense gas fields. The reason behind the hyperbolic decline is suggested to be due to the presence of the transitional flow data, which are factors influencing the production decline rate and the decline index. The graph shows the decay rate of dense gas fields in the graph, which is different from the hyperbolic decay method, which follows the form of the power law that decays continuously for a long time. This is called the power function decay curve method (PLE). The advantage of this method is that it can be predicted in one way regardless of flow area when forecasting recoverable reserves and production data analysis of reservoirs where the production behavior by hydraulic fracturing is superior.
Figure PCTKR2017009673-appb-M000003
Figure PCTKR2017009673-appb-M000003
상기 수학식 3에서 n은 시간지수, qi는 t=0일 때의 생산량이며, D는 무한시간의 생산감퇴율 D1은 t=1일 때 생산감퇴율이며 Di는 D1/n이다. 생산초기의 천이유동 생산감퇴율은 경계영향유동이 발생하기 전까지 쌍곡선 감퇴곡선보다 PLE법이 더 일치하는 것으로 나타났다. 하지만 PLE법은 다음과 같은 단점이 존재하는데, 첫째 생산자료와 매칭하기 위해 조정해야 하는 변수가 네 가지(n, qi, D, D1)로 많다. 둘째 Di 변수를 결정하기 어려우며 생산 초기 감퇴율이 후기로 가면서 변화한다. 셋째 회수가능매장량 예측 시 시간지수 n값의 조정에 따라 생산량이 민감하게 변화한다. 마지막으로 생산초기자료에서 D를 잘못 선정했을 때 변수 조정에 따른 생산후기 생산량 편차가 크다.In Equation 3, n is the time index, q i is the production when t = 0, D is the infinite rate of production decline rate D 1 is the production decline rate when t = 1 and D i is D 1 / n to be. In the early stage of production, the PLE method was more consistent than the hyperbolic decay curve until the boundary effect flow occurred. However, the PLE method has the following disadvantages: First, there are four variables (n, q i , D , D 1 ) that need to be adjusted to match the production data. Secondly, it is difficult to determine the D i variable, and the rate of change in initial production declines later. Third, when predicting recoverable reserves, the yield changes sensitively by adjusting the time index n. Lastly, when D is incorrectly selected in the initial production data, the late production deviation due to the variable adjustment is large.
3)Duong method 3) Duong method
Lee 와 Wattenbarger(1996)는 수압파쇄 저류층의 생산량 및 누적생산량의 관계식은 하기 수학식 4 내지 5와 같으며, 무한전도파쇄의 선형유동에 대한 n은 0.5이며, 이중선형유동에 대한 n은 0.25임을 밝혔다. Duong(2010)은 셰일 및 치밀가스전에서 다단계 수압파쇄 시 초기 생산경향과 자극을 받지 않은 암체의 후기경향까지 고려한 감퇴곡선분석 방법을 제안하였는데 이는 하기 수학식 6과 같다. y축 누적생산량에 대한 생산량 비, x축 시간을 로그-로그 그래프에 도시하면 직선의 경향을 나타내는데 변수 a와 m은 특정그래프의 기울기와 절편값으로 쉽게 도출이 가능하며 생산량과 누적생산량의 관계식은 하기 수학식 7과 같이 나타낼 수 있다.Lee and Wattenbarger (1996) show that the relationship between the yield and cumulative production of hydraulic fracturing reservoirs is shown in Equations 4 to 5, where n is 0.5 for linear flow of infinite conduction fracture and n is 0.25 for double linear flow. Said. Duong (2010) proposed a decay curve analysis method considering the initial production trend and the late trend of unstimulated rock bodies in multi-stage hydraulic fracturing in shale and dense gas fields. The ratio of the yield to the y-axis cumulative output and the x-axis time are shown in the log-log graph to show the trend of the straight line. The variables a and m can be easily derived from the slope and intercept of the specific graph. It can be expressed as Equation 7 below.
Figure PCTKR2017009673-appb-M000004
Figure PCTKR2017009673-appb-M000004
Figure PCTKR2017009673-appb-M000005
Figure PCTKR2017009673-appb-M000005
Figure PCTKR2017009673-appb-M000006
Figure PCTKR2017009673-appb-M000006
Figure PCTKR2017009673-appb-M000007
Figure PCTKR2017009673-appb-M000007
Yu 등(2013)은 경계영향유동이 발생하는 다양한 저류층 조건에서 Duong 감퇴곡선법의 변수를 결정하는 방법을 제안하였다. 균질한 다단계 수압파쇄 수평정을 저류층 시뮬레이션 모델을 통해 다양한 투과도(0.1~0.0001md)에서의 생산이력을 도출하여 직선관계식을 분석한 결과, 저류층 투과도가 큰 경우(0.1~0.01md) 직선 경향이 나타나지 않으며 회수가능매장량 도출 시 과대예측되는 것으로 확인되었고 투과도가 낮은 경우(0.001~0.0001md)에서는 직선의 경향을 보이며 생산이력이 일치하고 회수가능매장량 오차가 낮은 것으로 확인되었다.Yu et al. (2013) proposed a method for determining the variables of the Duong decay curve under various reservoir conditions where boundary effect flows occur. As a result of analyzing the linear relation by deriving the production history of various homogeneous hydraulic fracturing horizontal wells at various transmittances (0.1 ~ 0.0001md) through the reservoir model, the linear tendency is appeared when the reservoir transmittance is large (0.1 ~ 0.01md). In addition, when deriving recoverable reserves, it was found to be overestimated. In the case of low permeability (0.001 ~ 0.0001md), linear trends were observed, production history was consistent, and recoverable reserve errors were low.
4) YM-SEPD (Yu Modified-Streched Exponential Production Decline)4) YM-SEPD (Yu Modified-Streched Exponential Production Decline)
Valko(2009)가 제안한 감퇴곡선법 Streched Exponential Production Decline(SEPD)는 Exponential 함수를 기본으로 생산량을 잠재적 회수량(p)과 t, n, τ 변수로 나타내었으며, 이 식은 10,000개 미국 Barnett shale 가스정을 통해 검증되었다. Valko 와 Lee (2010)는 SEPD를 광범위한 치밀 및 셰일가스 저류층에 적용가능한 식으로 개선하였다. SEPD 식 중 잠재적 회수량과 회수가능매장량은 하기 수학식 8 내지 9와 같이 표현하였다.Valko's (2009) proposed Decech Curve Streched Exponential Production Decline (SEPD) expresses yields as potential recoveries ( p ) and t, n, and τ variables based on the Exponential function, which represents 10,000 US Barnett shale wells. Verified by Valko and Lee (2010) improved SEPD in a way that is applicable to a wide range of dense and shale gas reservoirs. Potential recoveries and recoverable reserves in the SEPD equation are expressed as in Equations 8 to 9 below.
Figure PCTKR2017009673-appb-M000008
Figure PCTKR2017009673-appb-M000008
Figure PCTKR2017009673-appb-M000009
Figure PCTKR2017009673-appb-M000009
회수가능매장량은 생산자료가 최소 경제적 생산량 기준일 때의 누적생산량을 말하며 이는 초기 생산량 q0, 두 가지 변수 n과 τ로 상기 수학식 9로 나타낼 수 있다. 이는 p와 누적생산량을 그래프에 도시하면 직선의 기울기가 1이며 x절편의 값을 통해 회수가능매장량을 도출할 수 있다. Yu (2013)는 캐나다 치밀가스전의 생산성 예측에 SEPD 방법을 이용하였는데 분석결과 직선의 기울기가 1일 경우 생산이력에서 벗어나며 보수적인 예측을 하는 것으로 확인되었다. Yu 등(2013)은 보수적으로 생산성을 예측하는 SEPD 감퇴곡선법의 문제를 해결하기 위해 SEPD를 변형한 감퇴곡선법(Yu Modified- SEPD : YM-SEPD)을 제안하였다. 하기 수학식 10에 나타난 바와 같이, Ln(q/q(t))와 t를 로그-로그 그래프에 도시하면 직선의 경향이 도출되는데 기울기와 절편을 통해 n과 τ가 도출가능하다. 상기 제시한 감퇴곡선법은 다단계 수압파쇄 수평정을 모사한 시뮬레이션 모델 및 현장자료 분석을 통해 정확성을 검증하였다.The recoverable reserve amount refers to the cumulative output when the production data is based on the minimum economic yield, which can be expressed by Equation 9 as the initial output q 0 , two variables n and τ. If p and cumulative output are plotted on the graph, the slope of the straight line is 1 and the recoverable amount can be derived from the value of x-intercept. Yu (2013) used the SEPD method to predict the productivity of Canadian dense gas fields, and the analysis shows that when the slope of the straight line is 1, it is out of production history and conservatively predicts. Yu et al. (2013) proposed the Yu Modified-SEPD (YM-SEPD) to solve the problem of the SEPD decay curve, which conservatively predicts productivity. As shown in Equation 10, when Ln (q / q (t)) and t are plotted on a log-log graph, a trend of a straight line is derived, and n and τ can be derived through slope and intercept. The proposed decay curve method was verified through simulation model and field data analysis to simulate multi-level hydraulic fracturing horizontal well.
Figure PCTKR2017009673-appb-M000010
Figure PCTKR2017009673-appb-M000010
다음으로, 제4단계는 비전통가스전의 누적생산량 및 궁극가채량을 예측하는 단계(S40)이다. 구체적으로, 상기 선정된 감퇴곡선법을 이용하여 비전통가스전의 누적생산량 및 궁극가채량을 예측하는 단계이다. Next, the fourth step is a step of predicting the cumulative production amount and the ultimate value of the non-traditional gas field (S40). Specifically, it is a step of predicting the cumulative production and the ultimate value of the non-traditional gas field using the selected decay curve method.
상기 제3단계(S30)에서 시행한 누적생산량증가율 지표와 감퇴곡선분석 방법을 적용하여 생산성 예측을 수행한 결과, 누적 생산량증가율이 0.25% 이상일 경우 Duong 방법이 생산경향이 일치하며 회수가능매장량 오차가 가장 작았다. 또한, 누적생산량증가율이 0.05% 이하인 경우 YM-SEPD 방법이 생산경향을 정확히 모사하며 회수가능매장량 오차도 작은 것을 확인하였다. As a result of productivity prediction by applying the cumulative output growth rate indicator and the decay curve analysis method performed in the third step (S30), when the cumulative output growth rate is more than 0.25%, the Duong method is consistent with the production trend and the recoverable amount of reserve error is The smallest. In addition, when the cumulative output growth rate is less than 0.05%, the YM-SEPD method accurately simulates the production trend and confirms that the recoverable amount of storage error is small.
상기 비전통가스전의 누적생산량 및 궁극가채량 예측은 하기 시뮬레이션 모델 분석 결과에서 자세하게 설명하였다. The cumulative production and ultimate value estimate of the non-traditional gas field was described in detail in the following simulation model analysis results.
ㄱ. 시뮬레이션 모델G. Simulation model
도 4에 나타난 바와 같이, 본 발명에서는 셰일가스정의 생산감퇴경향에 따른 생산성 예측 분석을 수행하기 위해 저류층 시뮬레이터를 이용하여 불균질 다단계 수압파쇄 수평정 모델을 설정하였다. 하기 표 1에 나타난 바와 같이, 상기 모델의 수평정 길이는 7,000 ft이며 파쇄단계는 20 stage, 파쇄길이는 최소 483 ft이고 최대 1,129 ft, 저류층 두께는 607 ft, 파쇄 간격 350 ft, 파쇄 투과도 0.7 md 및 암체의 투과도는 0.0004 md 이다. As shown in FIG. 4, in the present invention, a heterogeneous multistage hydraulic fracturing horizontal well model was set up using a reservoir simulator to perform a productivity prediction analysis according to a production decline trend of shale gas wells. As shown in Table 1 below, the model has a horizontal length of 7,000 ft and a crushing step of 20 stages, a crushing length of at least 483 ft, a maximum of 1,129 ft, a storage layer thickness of 607 ft, a crushing gap of 350 ft, and a crushing permeability of 0.7 md. And the permeability of the rock body is 0.0004 md.
수평정 길이(ft)Horizontal length (ft) 7,0007,000
파쇄단계 (stage)Crushing stage 2020
파쇄길이 (ft)Crushing Length (ft) 483(min.), 802(mean), 1,129(max)483 (min.), 802 (mean), 1,129 (max)
저류층 두께 (ft)Reservoir Thickness (ft) 607607
파쇄 간격 (ft)Shredding Thickness (ft) 350350
파쇄 투과도 (md)Shred Permeability (md) 0.70.7
암체의 투과도 (md)Permeability of Rock Body (md) 0.00040.0004
분석에 활용한 생산자료는 최소 경제적 생산량 300 Mscf/day를 고려하였을 때 총 생산기간이 약 25년 이고 회수가능매장량(EUR)은 7.79bcf이다. 도 5(a)에 나타난 바와 같이, 생산이력 분석 결과 천이유동기간은 5.5년이고 이 시점 이후로 경계영향유동이 나타났다.The production data used in the analysis is based on a minimum economic yield of 300 Mscf / day, with a total production period of about 25 years and a recoverable reserve (EUR) of 7.79 bcf. As shown in FIG. 5 (a), the analysis of production history shows that the transition flow period is 5.5 years and boundary effect flows have appeared since this point.
또한, 하기 표 2에 나타난 바와 같이, 상기 시뮬레이션을 통해 산출된 생산자료에서 8개 누적생산량 증가율 값을 선정하고 그 시점부터 Duong, Superbolic, PLE, YM-SPED로 생산성을 예측하여 시뮬레이션 결과와 비교하는 민감도 분석을 수행하였다. 하기 표 2는 누적생산량증가율 지표에 다른 궁극가채량 산출 및 시뮬레이션 자료 비교 결과를 나타낸 것이다. In addition, as shown in Table 2 below, eight cumulative output growth rate values are selected from the production data calculated through the simulation, and from that point, the productivity is predicted by Duong, Superbolic, PLE, and YM-SPED to compare with the simulation results. Sensitivity analysis was performed. Table 2 below shows the results of the calculation of the ultimate yield and simulation data in the cumulative output growth rate index.
0.5%120day(EUR, Bcf)0.5% 120day (EUR, Bcf) 0.25%230day(EUR, Bcf)0.25% 230day (EUR, Bcf) 0.15%375day(EUR, Bcf)0.15% 375day (EUR, Bcf) 0.1%550day(EUR, Bcf)0.1% 550 day (EUR, Bcf) 0.075%730day(EUR, Bcf)0.075% 730 day (EUR, Bcf) 0.05%1100day(EUR, Bcf)0.05% 1100day (EUR, Bcf) 0.04%1340day(EUR, Bcf)0.04% 1340 day (EUR, Bcf) 0.03%1750day(EUR, Bcf)0.03% 1750 day (EUR, Bcf)
DuongDuong 7.1%(8.34)7.1% (8.34) 5.0%(8.18)5.0% (8.18) 35.6%(10.56)35.6% (10.56) 38.0%(10.75)38.0% (10.75) 52.5%(11.88)52.5% (11.88) 65.5%(12.89)65.5% (12.89) 65.5%(12.89)65.5% (12.89) 65.7%(12.91)65.7% (12.91)
SuperbolicSuperbolic 46.5%(11.41)46.5% (11.41) 54.0%(12.00)54.0% (12.00) 57.3%(12.25)57.3% (12.25) 58.0%(12.31)58.0% (12.31) 62.1%(12.63)62.1% (12.63) 74.5%(13.59)74.5% (13.59) 74.6%(13.60)74.6% (13.60) 75.6%(13.68)75.6% (13.68)
PLEPLE -15.1%(6.61)-15.1% (6.61) -13.4%(6.75)-13.4% (6.75) -12.7%(6.80)-12.7% (6.80) -9.6%(7.04)-9.6% (7.04) -7.7%(7.19)-7.7% (7.19) -3.7%(7.50)-3.7% (7.50) -3.4%(7.53)-3.4% (7.53) -4.2%(7.46)-4.2% (7.46)
YM-SEPDYM-SEPD -52.1%(3.73)-52.1% (3.73) -36.6%(4.94)-36.6% (4.94) -27.9%(5.62)-27.9% (5.62) -25.5%(5.80)-25.5% (5.80) -23.6%(5.95)-23.6% (5.95) 1.8%(7.93)1.8% (7.93) 3.4%(8.06)3.4% (8.06) 2.1%(7.95)2.1% (7.95)
SimulationSimulation (7.79)(7.79)
도 5(b)에 나타난 바와 같이, 상기 민감도 분석에 사용된 누적생산량증가율은 총 8개의 값 (0.5~0.03%)이고, 이를 생산기간으로 나타내면 최소 120일(0.5%)에서 최대 1,750일(0.03%)이다. As shown in FIG. 5 (b), the cumulative output growth rate used for the sensitivity analysis is 8 values (0.5 to 0.03%), which is expressed as a production period, at least 120 days (0.5%) to 1,750 days (0.03). %)to be.
상기 시뮬레이션 자료를 통해 분석한 결과, Duong 방법은 누적생산량증가율이 0.25%일 때 생산경향이 일치하고 회수가능매장량 오차가 가장 작았으며, YM-SPED은 누적생산량증가율이 0.05% 이하 일 때 가장 적합한 방법인 것으로 확인되었다. Superbolic은 생산경향 분석결과 경계영향유동에서 전반적으로 과대예측되는 경향이 나타나고 생산감퇴율이 약 30% 낮은 것으로 산출되어 생산후기 모사에 적합하지 않았다. 또한, PLE방법은 각 누적생산량증가율 지수에 따른 평균오차는 가장 낮으나 관계식의 변수 선정에 따라 오차가 크게 발생하여 분석에 어려움이 있었다. As a result of analysis through the simulation data, the Duong method is the most suitable method when the cumulative output growth rate is 0.25%, the production tendency is consistent and the recoverable reserve error is the smallest, and YM-SPED is the cumulative output growth rate less than 0.05%. It was confirmed to be. Superbolic tended to be overestimated in the boundary effect flow as a result of the production trend analysis, and the production decline rate was about 30% lower, which was not suitable for late production simulation. In addition, the PLE method had the lowest mean error according to each cumulative output growth index, but it was difficult to analyze due to the large error caused by the selection of variables in the relational expression.
하기에는 상기 시뮬레이션 분석 결과를 현장자료와 비교하는 연구를 수행하였다. 상기 분석에 활용된 현장자료는 캐나다 A, 미국 B 셰일가스전 자료이며, 각각 저류층 자료는 하기 표 3과 같다. 생산기간은 각각 2.8년, 10.2년이고, 유동영역 분석결과 캐나다 A 생산자료는 천이유동단계이고, 미국 B 생산자료는 8년이 지난 시점이후 경계영향 유동이 발생하였다. 누적생산량증가율을 도시한 결과, 감퇴경향을 정량적으로 수치화할 수 있을 만큼 일정한 경향을 도출할 수 있었다. 캐나다 A 생산정은 누적생산량증가율이 0.5%(생산기간 140일), 0.25%(생산기간 520일)인 시점 이후부터 생산성을 예측하여 현장자료와 비교분석 하였고, 미국 B 생산정은 0.25%(생산기간 0.9년), 0.05%(생산기간 2.9년)인 시점부터 생산성을 예측하여 분석하였다. In the following, a study comparing the simulation analysis results with field data was conducted. Field data used in the analysis is Canada A, US B shale gas field data, each reservoir data is shown in Table 3 below. The production period was 2.8 years and 10.2 years, respectively. The flow area analysis showed that Canada A production data is in the transition phase, and US B production data has occurred since eight years. As a result of the cumulative production growth rate, a certain trend can be derived to quantify the decline trend. Canada A production wells were compared with field data by predicting productivity from the point of time when the cumulative output growth rate was 0.5% (140 days for production period) and 0.25% (520 days for production period). Year) and 0.05% (production period of 2.9 years) to predict productivity.
parameterparameter 캐나다 ACanada A 미국 BAmerican B
horizontal well length (ft)horizontal well length (ft) 3,1113,111 4,4004,400
fracture stagefracture stage 2828 1616
target depth (ft)target depth (ft) 2,4632,463 5,0815,081
fracture spacing (ft)fracture spacing (ft) 110110 270270
initial production rate (Mscf/d)initial production rate (Mscf / d) 2525 2727
ㄴ. 현장자료 분석결과 캐나다 AN. Field data analysis result Canada A
하기 표 4에는 캐나다 A 현장자료의 생산량에 대한 상대오차를 나타내었다. 도 6에 나타난 바와 같이, 누적생산량 증가율이 0.5%일 때 Duong 방법이 다른 세 가지 감퇴곡선법에 비해 생산경향이 가장 일치하였고 또한 생산량에 대한 상대오차도 1.35%로 작게 산출되었다. PLE법 및 YM-SPED는 생산경향을 보수적으로 예측하였으며 상대오차는 각각 -6.37% 및 -8.08%이다. Superbolic 방법의 상대오차값은 3.31%이며 Duong에 비해 생산기간이 증가할수록 생산감퇴가 천천히 감소하여 시간이 지날수록 실제 생산량과 오차가 커지는 경향을 보였다. Table 4 below shows the relative errors for the yield of Canadian A field data. As shown in FIG. 6, when the cumulative output growth rate was 0.5%, the Duong method was most consistent with the production trends compared to the other three decay curve methods, and the relative error on the output was calculated to be small as 1.35%. The PLE method and the YM-SPED conservatively predicted the production trend, and the relative errors were -6.37% and -8.08%, respectively. The relative error value of the superbolic method is 3.31% and compared with Duong, the decrease in production decreases slowly as the production period increases, and the actual yield and error tended to increase over time.
도 7에 나타난 바와 같이, 누적생산량 증가율이 0.25%일 때는 Duong 방법이 생산경향이 가장 일치하는 것으로 확인되었으며, 생산량 상대오차는 0.16%로 0.5%인 경우 보다 더 작아진 것으로 나타났다. PLE법 및 YM-SPED 방법은 누적생산량증가율 0.5%일 때 보다 상대오차가 작았으나(-4.45%, -6.29%) 여전히 생산성을 보수적으로 예측하였다. Superbolic은 Duong 방법에 비해 누적생산량증가율이 감소할수록 생산감퇴가 둔화하여 생산후기 생산량이 과대예측되었다. As shown in FIG. 7, when the cumulative production increase rate was 0.25%, the Duong method was found to have the best agreement with the production trend, and the relative error of the production was 0.16%, which was smaller than that of 0.5%. The PLE and YM-SPED methods had a smaller relative error than the cumulative output growth rate of 0.5% (-4.45%, -6.29%), but still predicted productivity conservatively. Superbolic showed that the cumulative output growth rate slowed down compared to Duong's method.
Cumulative incline rate (0.5%)Cumulative incline rate (0.5%) Cumulative incline rate (0.25%)Cumulative incline rate (0.25%)
DuongDuong 1.351.35 0.160.16
SuperbolicSuperbolic 3.313.31 5.585.58
PLEPLE -6.37-6.37 -4.45-4.45
YM-SPEDYM-SPED -8.08-8.08 -6.29-6.29
ㄷ. 현장자료 분석결과 미국 BC. Field data analysis result USA B
하기 표 5에는 미국 B 현장자료 생산량에 대한 상대오차를 나타내었다. 미국 B 생산정 자료 분석 결과, 하기 도 8에 나타난 바와 같이, 누적생산량증가율이 0.25%일 때 Duong 방법은 다른 세 가지 감퇴곡선법과 비교해 생산 중후반(70~100개월)의 변동성이 심한 구간을 제외하고 생산경향이 일치하였다. 또한, 생산량 상대오차는 -1.56%로 가장 작은 것으로 나타났다. PLE 및 YM-SPED 두 방법은 생산성을 보수적으로 예측하였으며 상대오차는 각각 -13.40% 및 -17.22%이었다. Superbolic은 20개월 지점부터 생산감퇴가 천천히 감소하여 생산량이 과대예측되는 것으로 나타났고, 상대오차는 7.79%이었다. 이 결과는 캐나다 A 생산정과 마찬가지로 누적생산량 증가율이 0.25%일 때 Duong의 방법이 생산경향이 일치하고 상대오차가 가장 작은 것으로 도출되었다. Table 5 below shows the relative errors for US B field data output. As a result of analyzing the US B production data, as shown in FIG. 8, when the cumulative output growth rate is 0.25%, the Duong method excludes highly volatile periods (70-100 months) compared with the other three decay curve methods. The production trends were consistent. In addition, the relative error of output was the lowest at -1.56%. Both the PLE and YM-SPED methods conservatively predicted productivity, with relative errors of -13.40% and -17.22%, respectively. Superbolic showed a slow decline in production from the 20th month, resulting in overpredicted production, with a relative error of 7.79%. This result shows that Duong's method is consistent with the production trend and the lowest relative error when the cumulative output growth rate is 0.25%, similar to the Canadian A production well.
도 9에 나타난 바와 같이, 누적생산량 증가율이 0.05%인 경우 Duong과 Superbolic 방법이 나머지 두 감퇴곡선법에 비해 생산중반(60개월) 이후 감퇴경향이 둔화되어 생산경향이 일치하지 않으며 과대예측 되었고 상대오차는 각각 7.31% 및 11.63%로 나타났다. PLE의 경우 YM-SPED보다 생산 초기 감퇴경향이 크며 보수적으로 예측하였고 상대오차는 -5.92%이다. YM-SPED는 상대오차값이 0.04%로 네 가지 감퇴곡선법 중 가장 생산경향이 일치하였다. As shown in Fig. 9, when the cumulative production growth rate is 0.05%, the Duong and Superbolic methods have slowed the decay tendency after mid-production (60 months) compared to the other two decay curves, resulting in inconsistent production trends and overestimated relative errors. Were 7.31% and 11.63%, respectively. In the case of PLE, the initial production decline tends to be more conservative than YM-SPED, and the relative error is -5.92%. The YM-SPED had a relative error value of 0.04%, which was the most consistent among the four decay curves.
Cumulative incline rate (0.5%)Cumulative incline rate (0.5%) Cumulative incline rate (0.25%)Cumulative incline rate (0.25%)
DuongDuong -1.56-1.56 7.317.31
SuperbolicSuperbolic 7.797.79 11.6311.63
PLEPLE -13.40-13.40 -5.92-5.92
YM-SPEDYM-SPED -17.22-17.22 0.040.04
상기 과제의 해결 수단에 의해, 본 발명은 비전통가스전 궁극가채량 및 누적생산량 예측 시 기존의 Arps 경험식을 이용하여 발생하는 오차를 감소시킬 수 있도록 구성되는 누적생산량증가율 지표를 이용한 비전통가스전 생산성 예측 시 생산감퇴곡선분석법 선정 방법이 제공됨으로써, 실제 현장에서 획득하기 어렵고 불확실성이 높은 저류층 물성이나 유정완결 방법 자료를 이용하여 선정하는 방법의 단점을 해결가능하며, 일반적으로 널리 쓰이는 생산감퇴율을 이용함으로써 발생하는 실제 생산자료의 변동성이 심해 감퇴율을 일정하지 않음으로 인해 엔지니어(전문가)의 판단이 개입되는 단점이 있었던 종래기술의 궁극가채량 및 누적생산량 산출 시 감퇴곡선법 선정 문제점을 해결할 수 있다. By the means for solving the above problems, the present invention when predicting the non-traditional gas field ultimate value and cumulative production of the non-traditional gas field productivity prediction using the cumulative production growth rate indicator configured to reduce the error generated by using the existing Arps empirical formula By providing the method of selecting the production decline curve analysis method, it is possible to solve the shortcomings of the selection method by using the reservoir property data or the well completion method data that are difficult to obtain in actual field and have high uncertainty, and it is generated by using the widely used production decline rate. As the volatility of actual production data is so severe that the decay rate is not constant, it is possible to solve the problem of selecting the decay curve method when calculating the ultimate value and cumulative production of the prior art, which has the disadvantage of involving the judgment of engineers (experts).
또한, 본 발명에 따르면, 상기한 바와 같이 생산량 예측에 있어 감퇴곡선법 이용할 경우 분석방법 선정시 저류층 물성이나 유정완결 조건에 따라 상기 감퇴곡선법을 선정하나 이에 활용되는 상기 자료들을 실제 현장에서 획득하기 어려우며 불확실성이 높은 문제점을 해결하기 위해 시간에 따른 생산자료로만 분석이 가능한 상기 누적생산량증가율 지표를 이용하여 감퇴곡선법을 선정하는 시스템으로 구성되는 궁극가채량 및 누적생산량 예측시 감퇴곡선법 선정방법이 제공됨으로써 기존의 Arps 감퇴곡선법 분석시 엔지니어(전문가)의 판단이 개입되어야 하는 생산감퇴율 지표를 대신할 수 있다.In addition, according to the present invention, when using the decay curve method in the production forecast as described above, selecting the decay curve method in accordance with the storage properties or the completion conditions of the well when selecting the analysis method, but to obtain the data used in the actual field In order to solve the problem of difficulty and high uncertainty, the decay curve selection method when predicting ultimate yield and cumulative yield is composed of a system for selecting a decay curve method using the cumulative yield growth index which can be analyzed only with production data over time. By providing an alternative to the production decay rate indicators, the judgment of engineers (experts) should be involved in the traditional Arps decay analysis.
상기 과제의 해결 수단에 의해, 본 발명은 비전통가스전 궁극가채량 및 누적생산량 예측 시 기존의 Arps 경험식을 이용하여 발생하는 오차를 감소시킬 수 있도록 구성되는 누적생산량증가율 지표를 이용한 비전통가스전 생산성 예측 시 생산감퇴곡선분석법 선정 방법이 제공됨으로써, 실제 현장에서 획득하기 어렵고 불확실성이 높은 저류층 물성이나 유정완결 방법 자료를 이용하여 선정하는 방법의 단점을 해결가능하며, 일반적으로 널리 쓰이는 생산감퇴율을 이용함으로써 발생하는 실제 생산자료의 변동성이 심해 감퇴율을 일정하지 않음으로 인해 엔지니어(전문가)의 판단이 개입되는 단점이 있었던 종래기술의 궁극가채량 및 누적생산량 산출 시 감퇴곡선법 선정 문제점을 해결할 수 있다. By the means for solving the above problems, the present invention when predicting the non-traditional gas field ultimate value and cumulative production of the non-traditional gas field productivity prediction using the cumulative production growth rate indicator configured to reduce the error generated by using the existing Arps empirical formula By providing the method of selecting the production decline curve analysis method, it is possible to solve the shortcomings of the selection method by using the reservoir property data or the well completion method data that are difficult to obtain in actual field and have high uncertainty, and it is generated by using the widely used production decline rate. As the volatility of actual production data is so severe that the decay rate is not constant, it is possible to solve the problem of selecting the decay curve method when calculating the ultimate value and cumulative production of the prior art, which has the disadvantage of involving the judgment of engineers (experts).
또한, 본 발명에 따르면, 상기한 바와 같이 생산량 예측에 있어 감퇴곡선법 이용할 경우 분석방법 선정시 저류층 물성이나 유정완결 조건에 따라 상기 감퇴곡선법을 선정하나 이에 활용되는 상기 자료들을 실제 현장에서 획득하기 어려우며 불확실성이 높은 문제점을 해결하기 위해 시간에 따른 생산자료로만 분석이 가능한 상기 누적생산량증가율 지표를 이용하여 감퇴곡선법을 선정하는 시스템으로 구성되는 궁극가채량 및 누적생산량 예측시 감퇴곡선법 선정방법이 제공됨으로써 기존의 Arps 감퇴곡선법 분석시 엔지니어(전문가)의 판단이 개입되어야 하는 생산감퇴율 지표를 대신할 수 있다.In addition, according to the present invention, when using the decay curve method in the production forecast as described above, selecting the decay curve method in accordance with the storage properties or the completion conditions of the well when selecting the analysis method, but to obtain the data used in the actual field In order to solve the problem of difficulty and high uncertainty, the decay curve selection method when predicting ultimate yield and cumulative yield is composed of a system for selecting a decay curve method using the cumulative yield growth index which can be analyzed only with production data over time. By providing an alternative to the production decay rate indicators, the judgment of engineers (experts) should be involved in the traditional Arps decay analysis.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, the technical configuration of the present invention described above can be understood by those skilled in the art that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the above-described embodiments are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and their All changes or modifications derived from an equivalent concept should be construed as being included in the scope of the present invention.
[부호의 설명][Description of the code]
S10. 실제 현장자료에서 일일생산량 생산자료 데이터를 획득하는 데이터 수집단계 S10. Data collection stage to obtain daily yield production data data from actual field data
S20. 상기 데이터 수집단계에서 획득된 데이터를 이용하여 누적생산량증가율 지표를 산출하는 단계 S20. Computing the cumulative production growth rate indicator using the data obtained in the data collection step
S30. 상기 누적생산량증가율 지표에서 산출된 값에 의해 감퇴곡선법을 선정하는 단계S30. Selecting a decay curve method based on a value calculated from the cumulative output growth index;
S40. 상기 선정된 감퇴곡선법을 이용하여 비전통가스전의 누적생산량 및 궁극가채량을 예측하는 단계S40. Predicting the cumulative production and the ultimate value of the non-traditional gas field using the selected decay curve method

Claims (5)

  1. 누적생산량증가율 지표를 이용하여 셰일가스 생산감퇴곡선법을 선정하는 방법에 있어서,In the method of selecting the shale gas production decay curve method using the cumulative production growth rate index,
    실제 현장자료에서 일일생산량 생산자료 데이터를 획득하는 데이터 수집단계; A data collection step of acquiring daily yield production data data from actual field data;
    상기 데이터 수집단계에서 획득된 데이터를 이용하여 누적생산량증가율 지표를 산출하는 단계; Calculating a cumulative production growth rate indicator using the data obtained in the data collection step;
    상기 누적생산량증가율 지표에서 산출된 값에 의해 감퇴곡선법을 선정하는 단계; 및Selecting a decay curve method based on a value calculated from the cumulative yield increase index; And
    상기 선정된 감퇴곡선법을 이용하여 비전통가스전의 누적생산량 및 궁극가채량을 예측하는 단계;를 포함하는 비전통가스전에서 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법Estimating the cumulative production and ultimate value of the non-traditional gas field using the selected decay curve method;
  2. 제1항에 있어서, The method of claim 1,
    상기 누적생산량증가율 지표는 아래식에 의해 산출하는 비전통가스전에서 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법The cumulative output growth index is a decay curve selection method according to the cumulative output growth index in the non-traditional gas field calculated by the following equation.
    Figure PCTKR2017009673-appb-I000001
    Figure PCTKR2017009673-appb-I000001
    IGp = 누적생산량증가율 지표IG p = cumulative output growth indicator
    Gp(tn) = n시간(day)의 누적생산량 값G p (t n ) = cumulative output value of n hours (day)
    Gp(tn+1) = n+1시간(day)의 누적생산량 값G p (t n + 1 ) = cumulative output value of n + 1 hour (day)
  3. 제1항에 있어서,The method of claim 1,
    감퇴곡선법은 초쌍곡선감퇴곡선법(Super Hyperbolic Decline : Superbolic), 멱함수 법칙 감퇴곡선법(PLE), Duong감퇴곡선법, YM-SEPD감퇴곡선법 중 선택된 어느 하나인 비전통가스전에서 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법Decay curve method is an indicator of cumulative production growth in non-traditional gas field, which is selected from Super Hyperbolic Decline (Superbolic), Power Law Decay (PLE), Duong Decay Curve, and YM-SEPD Decay Curve. Decay curve selection method
  4. 제1항에 있어서,The method of claim 1,
    상기 비전통가스전의 누적생산량 및 궁극가채량 예측은,The cumulative production and ultimate value of the non-traditional gas field prediction is,
    상기 누적생산량증가율 지표가 0.5% 및 0.25%인 경우 Duong감퇴곡선법을 이용하며, When the cumulative output growth rate is 0.5% and 0.25%, using the Duong decay curve method,
    상기 누적생산량증가율 지표가 0.05% 이하인 경우 YM-SEPD 방법을 이용하는 비전통가스전에서 누적생산량증가율 지표에 따른 감퇴곡선법 선정 방법If the cumulative output growth rate is less than 0.05%, the decay curve selection method according to the cumulative output growth rate in the non-traditional gas field using the YM-SEPD method
  5. 제1항 내지 4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 누적생산량증가율 지표와 감퇴곡선법 선정이 컴퓨터 프로그램에서 기록이 가능한 기록매체The recording medium in which the cumulative output growth rate indicator and the decay curve method can be recorded by a computer program.
PCT/KR2017/009673 2016-09-05 2017-09-05 Method for selecting decline curve method in accordance with cumulative production increase rate index in unconventional gas field WO2018044133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0113642 2016-09-05
KR1020160113642A KR101904278B1 (en) 2016-09-05 2016-09-05 Method for decline curve analysis according to cumulative production incline rate in unconventional gas field

Publications (1)

Publication Number Publication Date
WO2018044133A1 true WO2018044133A1 (en) 2018-03-08

Family

ID=61309225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009673 WO2018044133A1 (en) 2016-09-05 2017-09-05 Method for selecting decline curve method in accordance with cumulative production increase rate index in unconventional gas field

Country Status (2)

Country Link
KR (1) KR101904278B1 (en)
WO (1) WO2018044133A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112308269A (en) * 2019-07-30 2021-02-02 中国石油化工股份有限公司 Yield prediction method and device for low-permeability oil and gas reservoir
CN112392478A (en) * 2020-12-15 2021-02-23 西南石油大学 Method for rapidly predicting economical recoverable reserve of low-permeability tight oil reservoir
CN113033859A (en) * 2019-12-24 2021-06-25 中国石油天然气股份有限公司 Method and device for predicting cumulative yield of crude oil in straight descending period

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064321B1 (en) 2018-05-16 2020-01-09 인하대학교 산학협력단 Apparatus for prediction of sagd production curve
CN109252855B (en) * 2018-10-15 2022-02-01 中国石油天然气股份有限公司 Method and device for determining final cumulative yield of gas well
KR101975436B1 (en) * 2018-10-25 2019-05-07 동아대학교 산학협력단 Apparatus and method for forecasting production for shale gas well in transient flow using machine learning method
CN113006781B (en) * 2021-03-26 2023-09-26 中国石油天然气股份有限公司 Horizontal well group yield prediction method and device, computer equipment and storage medium
KR102612959B1 (en) * 2023-03-29 2023-12-12 공주대학교 산학협력단 System and method for predicting shale gas production based on deep learning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110138088A (en) * 2010-06-18 2011-12-26 한양대학교 산학협력단 Method for oil prediction in fractured reservoirs and recording media therefor
KR101506321B1 (en) * 2014-10-24 2015-03-26 한국지질자원연구원 Method for analyzing multi phase and heat flow of fluids in reservoir and Recording media therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519880B2 (en) 2007-05-16 2010-08-04 株式会社エヌ・ティ・ティ・データ Index extracting apparatus, index extracting method and computer program therefor
KR101647921B1 (en) 2015-03-27 2016-08-12 서울대학교산학협력단 Method for selecting model similar to real gas production and method for predicting gas production from oil and gas reservoir

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110138088A (en) * 2010-06-18 2011-12-26 한양대학교 산학협력단 Method for oil prediction in fractured reservoirs and recording media therefor
KR101506321B1 (en) * 2014-10-24 2015-03-26 한국지질자원연구원 Method for analyzing multi phase and heat flow of fluids in reservoir and Recording media therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN, DONG KWON ET AL.: "A Study on Production Forecasting Using Production Data of Transient Flow for a Shale Gas Production Well", PROCEEDINGS OF THE KOREAN INSTITUTE OF GAS CONFERENCE, June 2014 (2014-06-01), The Korean Institute of Gas, pages 42 - 43 *
HAN, DONG KWON ET AL.: "Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well", JOURNAL OF THE KOREAN INSTITUTE OF GAS, vol. 20, no. 1, February 2016 (2016-02-01), pages 13 - 22, XP055469938 *
LEE, SUN MIN ET AL.: "Study on Production Performance of Shale Gas Reservoir Using Production Data Analysis", J OURNAL OF THE KOREAN INSTITUTE OF GAS, vol. 17, no. 4, 2013, pages 58 - 69 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112308269A (en) * 2019-07-30 2021-02-02 中国石油化工股份有限公司 Yield prediction method and device for low-permeability oil and gas reservoir
CN113033859A (en) * 2019-12-24 2021-06-25 中国石油天然气股份有限公司 Method and device for predicting cumulative yield of crude oil in straight descending period
CN112392478A (en) * 2020-12-15 2021-02-23 西南石油大学 Method for rapidly predicting economical recoverable reserve of low-permeability tight oil reservoir

Also Published As

Publication number Publication date
KR101904278B1 (en) 2018-10-04
KR20180026842A (en) 2018-03-14

Similar Documents

Publication Publication Date Title
WO2018044133A1 (en) Method for selecting decline curve method in accordance with cumulative production increase rate index in unconventional gas field
WO2020085617A1 (en) Device and method for predicting productivity of shale gas well in transition flow region by using machine learning technique
AU2019312330A1 (en) Method for predicting mine strata pressure behavior data of stoping tunnel
CN104747185A (en) Heterogeneous reservoir stratum synthetic classifying evaluation method
Wang et al. A risk evaluation method with an improved scale for tunnel engineering
CN112131748B (en) Deformation prediction method and system for composite layering stratum in urban tunnel construction
CN102536200A (en) Method for predicting primary capacity of compact carbonate rock gas bearing formations
CN115267905B (en) Method for predicting crack lost circulation in drilling engineering of complex structural area
CN110656915B (en) Shale gas multi-section fracturing horizontal well multi-working-system productivity prediction method
WO2020101128A1 (en) Method for predicting shale gas production by using deep learning
CN109252855B (en) Method and device for determining final cumulative yield of gas well
CN110469299A (en) A kind of exploitation of oil-extracting well water injection takes effect effect evaluation method
CN113375753B (en) Method for monitoring and analyzing influence of mining on underground water by coal mine fully-mechanized mining face
CN116128084A (en) Prediction method for volume fracture network control reserves of tight oil reservoir horizontal well
CN116976519A (en) Shale oil reservoir single well recoverable reserve prediction method and system
CN108119121A (en) A kind of horizontal well refracturing potentiality well rapid screening method
CN105550412B (en) A kind of determination method and system of reality drilling well and planned well coincidence rate
CN111738501A (en) Medium-short term prediction method for mine area surface deformation caused by underground mining
CN105157664B (en) A kind of method for determining Construction Stage of Slop Engineering deformation dynamics monitor control index
CN111985146B (en) Method and device for determining measure potential well
CN114386305A (en) Pre-drilling mud loss prediction method and system based on main control factor analogy
CN108491663B (en) Coal mine underground space gas distribution rule calculation method based on mass conservation
He et al. A review of soft computing techniques in predicting overbreak induced by tunnel blasting
CN111274736A (en) Water flowing fractured zone prediction method based on supervised learning neural network algorithm
CN111222261A (en) Dynamic and static parameter combined yield splitting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17847058

Country of ref document: EP

Kind code of ref document: A1