WO2018043519A1 - Brake system, vehicle, and vehicle platoon - Google Patents

Brake system, vehicle, and vehicle platoon Download PDF

Info

Publication number
WO2018043519A1
WO2018043519A1 PCT/JP2017/031037 JP2017031037W WO2018043519A1 WO 2018043519 A1 WO2018043519 A1 WO 2018043519A1 JP 2017031037 W JP2017031037 W JP 2017031037W WO 2018043519 A1 WO2018043519 A1 WO 2018043519A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
vehicle
fluid pressure
input amount
input
Prior art date
Application number
PCT/JP2017/031037
Other languages
French (fr)
Japanese (ja)
Inventor
裕樹 長谷部
Original Assignee
ナブテスコオートモーティブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコオートモーティブ株式会社 filed Critical ナブテスコオートモーティブ株式会社
Priority to JP2018537318A priority Critical patent/JP7036730B2/en
Publication of WO2018043519A1 publication Critical patent/WO2018043519A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking

Definitions

  • the present invention relates to a brake system used for a vehicle capable of both automatic driving and normal driving.
  • the present invention also relates to a vehicle including a brake system and a convoy travel vehicle group including the vehicle.
  • the relationship between the brake input amount given to the vehicle (the amount of operation of the brake means) and the actual deceleration of the vehicle varies depending on the environment in which the vehicle travels and the vehicle state.
  • the actual deceleration of the vehicle differs depending on whether the road surface on which the vehicle travels is dry or wet, even if the same brake input amount is applied to the vehicle.
  • the actual deceleration of the vehicle with respect to the same brake input amount varies depending on the weight of the vehicle load.
  • the brake input amount given to the vehicle is uniformly determined based on information obtained from the leading vehicle.
  • the relationship between the brake input amount given to the vehicle and the actual deceleration realized by the brake input amount is not constant, and the actual deceleration greatly differs from the target deceleration.
  • the amount of brake input given to the vehicle is adjusted by the person driving the vehicle sensing changes in the driving environment and the vehicle state.
  • the brake input amount may not be appropriately adjusted according to changes in the driving environment and vehicle state, and the actual deceleration may be significantly different from the target deceleration.
  • it is complicated to drive while constantly detecting changes in the driving environment and the vehicle state, and there is a problem from the viewpoint of driving comfort.
  • An object of the present invention is to provide a vehicle in which braking of the vehicle is controlled so that a difference between a target deceleration expected from the brake input amount and an actual deceleration is suppressed.
  • the brake system comprises: A brake system used for a vehicle capable of both automatic driving for automatically controlling the vehicle and normal driving for manipulating the vehicle, Brake means having a conduit and a shoe that operates by fluid pressure in the conduit; An input means capable of inputting a brake input amount by a human operation; Automatic operation control means for automatically inputting the brake input amount; Brake control means for adjusting the fluid pressure in the pipe line according to the brake input amount input from the input means and the automatic operation control means, When the brake control unit receives the brake input amount and adjusts the fluid pressure, the brake control unit calculates an actual deceleration of the vehicle and a target deceleration determined from a relationship set in advance according to the brake input amount.
  • the brake control means has information related to a preset relationship between the brake input amount and the fluid pressure, and when the brake input amount is input, the brake input amount is received based on the information.
  • a corresponding target fluid pressure may be determined, and the fluid pressure in the conduit may be adjusted to the target fluid pressure.
  • a target fluid pressure corresponding to the received brake input amount may be determined based on a corrected relationship obtained by correcting the preset relationship with the fluid pressure.
  • the vehicle according to the present invention is A vehicle capable of both automatic driving and normal driving, A brake system as described above is provided.
  • the convoy travel vehicle group according to the present invention is: The top vehicle, A following vehicle that follows the leading vehicle, and The subsequent vehicle is the vehicle described above.
  • the braking of the vehicle is performed with the target deceleration expected from the brake input amount and the actual deceleration. Can be controlled so as to be within a certain range.
  • FIG. 2 is a diagram for explaining an embodiment of the present invention and showing a convoy traveling vehicle group. It is a figure explaining one embodiment of the present invention, and is a block diagram showing the whole composition of vehicles.
  • the flowchart which shows the control method of the fluid pressure in a brake control means.
  • FIG. 1 is a diagram for explaining an embodiment of a convoy travel vehicle group according to the present invention
  • FIG. 2 is a diagram of a vehicle used as a succeeding vehicle following the leading vehicle in the convoy travel vehicle group of FIG. It is a block diagram which shows the whole structure.
  • the convoy travel vehicle group 1 of the present embodiment includes a leading vehicle 5 that is manually operated or automatically operated, and a subsequent vehicle 10 that follows the leading vehicle 5.
  • the convoy travel vehicle group 1 includes one subsequent vehicle 10, but may include a plurality of subsequent vehicles 10.
  • the following vehicle 10 included in the platooning vehicle group 1 is a vehicle 10 capable of both an automatic operation in which the vehicle 10 is automatically controlled and a normal operation in which the vehicle 10 is operated by a person.
  • the leading vehicle 5 and the following vehicle 10 respectively have communication devices 105 and 110 for performing inter-vehicle communication between the vehicles 5 and 10, and the leading vehicle 5 controls the automatic driving of the following vehicle 10 through the communication device 105.
  • the following vehicle 10 can acquire information issued from the communication device 105 through the communication device 110.
  • the information necessary for controlling the automatic driving of the succeeding vehicle 10 issued from the communication device 105 is, for example, a target steering angle, a target acceleration, a target deceleration, and the like.
  • the vehicle 10 of the present embodiment includes a brake system 15, wheels 20 including a pair of front wheels 20 a and a pair of rear wheels 20 b, a power unit 30 including an engine and a motor, Accelerator amount input means 35 for determining a target acceleration, steering means 40 for changing the traveling direction of the vehicle 10 by changing the direction of the front wheels 20a and / or the rear wheels 20b, and the rotational speed of each wheel 20 are detected to detect the vehicle. And a rotational speed sensor 70 that acquires information on 10 actual traveling speeds, accelerations, and decelerations.
  • the accelerator amount input means 35 is a means for determining a target acceleration of the vehicle 10 corresponding to a desired acceleration of the vehicle 10 during a normal operation in which a person operates to drive the vehicle 10.
  • the accelerator amount input means 35 detects an accelerator pedal 35a that is operated by a person to input a desired accelerator amount, and a depression angle of the accelerator pedal 35a, that is, an accelerator input amount that is input by a person.
  • an accelerator amount detection sensor 35b an accelerator amount detection sensor 35b.
  • Steering means 40 is means for steering the vehicle 10 at a desired steering angle in response to a desired change in the traveling direction of the vehicle 10.
  • the steering means 40 detects a steering amount input means 41 for a person to input a desired steering input amount, and a steering input amount input from the steering amount input means 41, and sets the steering input amount.
  • the steering actuator 42 which changes the angle R of the front wheel 20a and / or the rear wheel 20b based on it is included.
  • the steering actuator 42 is disposed on the rod 21 connected to the front wheel 20a and / or the rear wheel 20b, and the angle R of the front wheel 20a and / or the rear wheel 20b is changed by operating the rod 21. Can be done.
  • the angle R of the front wheel 20a and / or the rear wheel 20b refers to a plane P1 parallel to a plane perpendicular to the width direction of the vehicle 10 and the front wheels 20a and / or the rear when the vehicle 10 is viewed in plan view. This is an angle formed by the plane P2 perpendicular to the rotation axis of the wheel 20b.
  • the brake system 15 includes a brake unit 50 provided on each wheel 20, a brake amount input unit 64 for a person to input a desired brake input amount during normal operation, and a brake input amount during automatic operation.
  • An automatic operation control means 67 for automatically inputting, and a brake control means 60 for driving the brake means 50 in accordance with the brake input amount inputted from the brake amount input means 64 and the automatic control means 67 are provided.
  • the brake means 50 is provided in each wheel 20, and reduces rotation of each wheel 20 by frictional resistance.
  • the brake means 50 is a fluid pressure brake that is driven by fluid pressure to brake the vehicle 10, and includes a pipe line 53 and a shoe 52 that is operated by the fluid pressure in the pipe line 53. Have.
  • each brake means 50 includes a brake actuator 51, a shoe 52, and an actuator drive line 53 in which one end is connected to the brake actuator 51 and the other end is connected to the brake control means 60. And.
  • the brake actuator 51 is driven by the fluid pressure in the actuator drive conduit 53 so as to press the corresponding shoe 52 against the corresponding wheel 20.
  • the brake amount input unit 64 is a unit that is operated by a person and inputs a desired brake input amount during a normal operation in which the vehicle 10 is operated by a person.
  • the brake amount input means 64 includes a brake pedal 64a and a brake input amount detection sensor 64b that detects a depression angle of the brake pedal 64a, that is, a brake input amount input by a person.
  • the automatic driving control means 67 controls the automatic driving of the vehicle 10 based on the information acquired by the communication device 110. Specifically, a steering input amount, an accelerator input amount, a brake input amount, and the like are automatically input based on information acquired by the communication device 110.
  • the brake control means 60 adjusts the fluid pressure in the actuator drive line 53 in accordance with the brake input amount input from the brake amount input means 64 and the automatic control means 67.
  • the brake control means 60 includes a fluid tank 61, and normal brake control means 65 and automatic brake control means 66 that control the brake means 50 by controlling the fluid pressure input to the actuator drive pipe 53.
  • the fluid tank 61 stores a compressed fluid, for example, compressed air, by a compressor (not shown) driven by the engine, and the fluid pressure in the fluid tank 61 is maintained at a predetermined pressure.
  • a compressed fluid for example, compressed air
  • the normal brake control means 65 adjusts the fluid pressure input from the fluid tank 61 to the actuator drive pipe 53 according to the brake input amount input from the brake amount input means 64.
  • the normal brake control means 65 is disposed on the first fluid conduit 65a and a first fluid conduit 65a having one end connected to the fluid tank 61 and the other end connected to the actuator drive conduit 53.
  • the first regulating valve 65b for communicating or blocking the fluid tank 61 and the actuator driving pipeline 53 via the first fluid pipeline 65a by performing the opening / closing operation, and the first regulating valve 65b for controlling the opening / closing of the first regulating valve 65b.
  • 1 adjustment valve control means 65c 1 adjustment valve control means 65c.
  • the first regulating valve 65b is normally closed as long as there is no input from the first regulating valve control means 65c.
  • a known regulating valve such as a solenoid valve can be adopted.
  • the first regulating valve control means 65c determines the target fluid pressure in the actuator drive line 53 based on the brake input amount input by the brake amount input means 64. Then, the first adjustment valve control means 65c determines the opening / closing amount of the first adjustment valve 65b according to the determined target fluid pressure, and opens the first adjustment valve 65b by the determined opening / closing amount. ing.
  • the automatic brake control means 66 adjusts the fluid pressure input from the fluid tank 61 to the actuator drive line 53 in accordance with the brake input amount input from the automatic operation control means 67.
  • the automatic brake control means 66 is disposed on the second fluid conduit 66a, the second fluid conduit 66a having one end connected to the fluid tank 61 and the other end connected to the actuator drive conduit 53.
  • the second regulating valve 66b for communicating or blocking the fluid tank 61 and the actuator driving pipeline 53 via the second fluid pipeline 66a by performing the opening / closing operation, and the second regulating valve 66b for controlling the opening / closing of the second regulating valve 66b. 2 adjustment valve control means 66c.
  • the second regulating valve 66b is normally closed unless there is an input from the second regulating valve control means 66c.
  • a known regulating valve such as a solenoid valve can be adopted.
  • the second regulating valve control means 66 c is for determining the target fluid pressure in the actuator drive line 53 based on the brake input amount input by the automatic operation control means 67. Then, the second adjustment valve control means 66c determines the opening / closing amount of the second adjustment valve 66b according to the determined target fluid pressure, and opens the second adjustment valve 66b by the determined opening / closing amount. ing.
  • the brake control means 60 has information relating to a preset relationship between the brake input amount and the fluid pressure. Specifically, the first regulating valve control unit 65c and the second regulating valve control unit 66c each hold information indicating the condition A that defines the relationship between the brake input amount and the fluid pressure, as shown in FIG. is doing.
  • the first adjustment valve control unit 65c and the second adjustment valve control unit 66c respectively set the target fluid pressure p corresponding to the brake input amount received based on the condition A.
  • the first adjusting valve 65b or the second adjusting valve 66b is opened by an amount corresponding to the determined target fluid pressure p, and the fluid pressure in the actuator drive line 53 is adjusted to the target fluid pressure p. It has become.
  • the relationship between the fluid pressure in the actuator drive pipe and the actual deceleration of the vehicle varies depending on the environment in which the vehicle travels and the vehicle state.
  • the actual deceleration of the vehicle differs depending on whether the road surface on which the vehicle travels is dry or wet, even if the fluid pressure in the actuator drive conduit is the same.
  • the actual deceleration of the vehicle for the same fluid pressure varies depending on the weight of the vehicle load. This means that the relationship between the brake input amount given to the vehicle and the actual deceleration of the vehicle varies depending on the environment and vehicle state in which the vehicle travels.
  • the brake control means 60 of the present invention is preset according to the actual deceleration of the vehicle 10 and the brake input amount when the brake input amount is received and the fluid pressure is adjusted. The target deceleration determined from the relationship is confirmed.
  • each of the first adjustment valve control means 65c and the second adjustment valve control means 66c includes information indicating the condition B that defines the relationship between the brake input amount and the target deceleration as shown in FIG. keeping.
  • the first adjustment valve control means 65c and the second adjustment valve control means 66c are determined by the condition B according to the actual deceleration of the vehicle 10 acquired from the speed sensor 70 shown in FIG.
  • the set target deceleration rate ⁇ is confirmed.
  • the brake control means 60 of the present invention can increase the value based on the relationship between the actual deceleration and the target deceleration ⁇ to a threshold value or higher if the value exceeds a preset threshold value. If so, the fluid pressure can be further adjusted.
  • the first adjustment valve 65b or the second adjustment valve The opening amount of 66b is changed to further adjust the fluid pressure in the actuator drive pipe 53.
  • the adjustment of the fluid pressure in the actuator drive pipe line by the brake control means is preferably performed frequently so that the actual deceleration of the vehicle quickly approaches the target deceleration.
  • repeated changes in the deceleration of the vehicle may cause the driver of the vehicle to feel uncomfortable.
  • the threshold t2 applied to the brake input amount input from the automatic operation control unit 67 in the brake control unit 60 of the present invention is the brake input from the brake amount input unit 64. It is smaller than the threshold value t1 applied to the input amount.
  • the target deceleration that changes according to the brake input amount is ⁇
  • the actual deceleration of the vehicle 10 with respect to the brake input amount input from the brake amount input means 64 is obtained.
  • the allowable lower limit deceleration L1 ⁇ t1
  • the value based on the relationship between the actual deceleration and the target deceleration is not limited to the difference between the actual deceleration and the target deceleration.
  • the ratio between the actual deceleration and the target deceleration is used. May be represented.
  • the target deceleration with respect to the brake input amount is ⁇
  • the lower limit allowed as the actual deceleration of the vehicle 10 with respect to the brake input amount input from the brake amount input means 64 when the target deceleration with respect to the brake input amount is ⁇ , the lower limit allowed as the actual deceleration of the vehicle 10 with respect to the brake input amount input from the brake amount input means 64.
  • the relationship after the change is generally considered to last for a certain period. It is done. For example, a change in the relationship due to a wet road surface on which the vehicle travels will last until the road surface dries, and a change in the relationship due to the heavy weight of the vehicle load until the load is removed from the vehicle. Will last.
  • the result of confirming the actual deceleration and the target deceleration of the vehicle is also used for the subsequent adjustment of the fluid pressure, the frequency and amount of adjustment of the vehicle deceleration are suppressed, and the vehicle is decelerated. It is thought that it can be performed stably.
  • the brake control means 60 of the present embodiment determines that the value based on the relationship between the actual deceleration and the target deceleration exceeds a preset threshold or is equal to or greater than the threshold. If so, the preset relationship between the brake input amount and the fluid pressure is corrected. Specifically, when the difference between the actual deceleration of the vehicle 10 and the target deceleration rate ⁇ with respect to the brake input amount input from the automatic operation control means 67 is less than the lower limit deceleration L2 shown in FIG. As shown in FIG. 7, the fluid pressure p is corrected in the direction of increasing the brake input amount to obtain a corrected fluid pressure pc, and the correction condition Ac is determined.
  • the correction condition Ac is determined by correcting in the direction in which the fluid pressure p is reduced. At this time, how much the fluid pressure set with respect to the brake input amount is increased / decreased is determined based on the difference between the actual deceleration of the vehicle 10 and the target deceleration ⁇ , but is not limited thereto. Absent.
  • the vehicle 10 includes a road surface state detection sensor that detects the state of the road surface on which the vehicle 10 travels, a wheel state detection sensor that detects the state of the wheels 20, and a vehicle weight detection sensor that detects the total weight or the loading amount of the vehicle 10.
  • the fluid pressure set for the brake input amount may be corrected based on detection results detected by various sensors.
  • examples of the road surface state detected by the road surface state detection sensor include a change in the frictional force of the road surface due to weather and a change in the material of the road surface, and a slope of the road surface.
  • the state of the wheel 20 detected by the wheel state detection sensor includes the degree of tire wear of the wheel 20, the temperature and air pressure of the tire, the degree of deterioration of the shoe 52 provided corresponding to each wheel 20, Temperature.
  • the brake control means 60 of this Embodiment determines the target fluid pressure corresponding to the received brake input amount based on the obtained relationship after correction. That is, the target fluid pressure pc corresponding to the received brake input amount is determined based on the correction condition Ac.
  • the accelerator pedal 35a when the vehicle 10 is traveling in normal operation, when the accelerator pedal 35a is depressed by a person, the stepping angle of the accelerator pedal 35a is detected by the accelerator amount detection sensor 35b, and the accelerator input amount corresponding to the stepping angle is the power. Input to the unit 30.
  • the accelerator input amount is input from the accelerator amount detection sensor 35b to the power unit 30, the engine output is controlled so that the engine output becomes the engine output corresponding to the accelerator input amount.
  • the acceleration information necessary for acceleration control of the vehicle 10 is acquired by the communication device 110 shown in FIG. 1, the acceleration information is detected by the automatic driving control means 67, An accelerator input amount corresponding to the acceleration information is input to the power unit 30.
  • the accelerator input amount is input from the accelerator amount detection sensor 35b to the power unit 30, the engine output is controlled so that the engine output becomes the engine output corresponding to the accelerator input amount.
  • the steering input amount is input to the steering amount input means 41 by a person
  • the input steering input amount is detected by the steering actuator 42.
  • the rod 21 is operated by the steering actuator 42 based on the detected steering input amount.
  • the steering information necessary for steering control of the vehicle 10 is acquired by the communication device 110 shown in FIG. 1, the steering information is detected by the automatic driving control means 67, A steering input amount corresponding to the steering information is determined. Then, the rod 21 is operated by the steering actuator 42 based on the determined steering input amount.
  • FIG. 8 is a flowchart showing a fluid pressure control method in the brake control means 60.
  • a brake operation is input to the brake amount input means 64 when the brake pedal 64a is depressed by a person operating the vehicle 10.
  • the brake input amount corresponding to the depression angle of the brake pedal 64a is determined by the brake input amount detection sensor 64b.
  • the said brake input amount as an electrical signal is input into the 1st regulating valve control means 65c (step S1).
  • the first adjustment valve control means 65c determines the target fluid pressure in the actuator drive line 53 according to the brake input amount. Specifically, the target fluid pressure p corresponding to the brake input amount is determined with reference to the condition A shown in FIG. 3 (step S2), and the opening / closing amount of the first adjustment valve 65b is based on the target fluid pressure p. Is determined. When the opening / closing amount of the first adjustment valve 65b is determined, the first adjustment valve 65b is opened by the opening / closing amount.
  • the fluid tank 61 and the actuator drive line 53 are communicated with each other via the first fluid line 65a, and the fluid pressure in the actuator drive line 53 is increased.
  • the fluid pressure corresponds to the opening / closing amount of the 1 regulating valve 65b.
  • the fluid pressure in the actuator drive line 53 becomes equal to the target fluid pressure p.
  • the brake actuator 51 is driven corresponding to the target fluid pressure p.
  • the shoe 52 is pressed against the corresponding wheel 20 with a pressure corresponding to the target fluid pressure p.
  • the vehicle 10 is braked and the vehicle 10 starts to decelerate.
  • the first adjusting valve control means 65c confirms the actual deceleration and the target deceleration ⁇ determined from the relationship set in advance according to the brake input amount. It is determined whether or not the magnitude of the difference from the deceleration ⁇ is equal to or greater than the threshold value t1 (step S3). As a result, if the magnitude of the difference is smaller than the threshold value t1 (NO), the adjustment of the fluid pressure in the actuator drive line 53 by the first adjustment valve control means 65c is ended.
  • the condition A is set based on the difference between the actual deceleration and the target deceleration ⁇ .
  • the correction condition Ac is determined after correction. For example, when the actual deceleration is lower than the lower limit deceleration L1 permitted as the actual deceleration shown in FIG. 5, the fluid pressure p set for the brake input amount is as shown in FIG. The corrected fluid pressure pc is corrected in the increasing direction to determine the corrected condition Ac.
  • the set fluid pressure p is corrected in a decreasing direction to determine the correction condition Ac. Then, based on the correction condition Ac, the target fluid pressure pc in the actuator drive line 53 is determined again (step S4), and the opening / closing amount of the first adjustment valve 65b is corrected based on the target fluid pressure pc. .
  • the opening / closing amount of the first adjusting valve 65b is corrected, the opening / closing amount of the first adjusting valve 65b is adjusted based on the corrected opening / closing amount.
  • the fluid pressure in the actuator drive line 53 becomes the corrected target fluid pressure pc corresponding to the opening / closing amount after the adjustment of the first adjustment valve 65b.
  • the brake actuator 51 is driven with the target fluid pressure pc, and the shoe 52 is pressed against the corresponding wheel 20 with the pressure corresponding to the target fluid pressure pc.
  • the deceleration of the vehicle 10 becomes closer to the target deceleration ⁇ .
  • the actual deceleration of the vehicle 10 is detected by the rotational speed sensor 70 shown in FIG. Then, the actual deceleration and the target deceleration ⁇ determined from the relationship set in advance according to the brake input amount are confirmed again by the first regulating valve control means 65c, and the actual deceleration and the target are determined. Whether the magnitude of the difference from the deceleration ⁇ is equal to or greater than the threshold value t1 is determined again (step S3). In this way, the correction of the condition A is repeated until the magnitude of the difference between the actual deceleration and the target deceleration ⁇ becomes smaller than the threshold value t1, and the target fluid pressure in the actuator drive line 53 is corrected. .
  • the automatic driving control means 67 determines the brake input amount based on the received information. And as shown in FIG. 8, the said brake input amount as an electrical signal is input into the 2nd regulating valve control means 66c (step S1).
  • the second adjustment valve control unit 66c determines the target fluid pressure in the actuator drive line 53 according to the brake input amount. Specifically, the target fluid pressure p corresponding to the brake input amount is determined with reference to the condition A shown in FIG. 3 (step S2), and the opening / closing amount of the second adjustment valve 66b is determined based on the target fluid pressure p. Is determined. When the opening / closing amount of the second adjustment valve 66b is determined, the second adjustment valve 66b is opened by the opening / closing amount.
  • the fluid tank 61 and the actuator drive line 53 are communicated with each other via the second fluid line 66a, and the fluid pressure in the actuator drive line 53 is increased. 2
  • the fluid pressure corresponds to the opening / closing amount of the regulating valve 66b.
  • the fluid pressure in the actuator drive line 53 becomes equal to the target fluid pressure p.
  • the brake actuator 51 is driven corresponding to the target fluid pressure p.
  • the shoe is pressed against the corresponding wheel 20 with a pressure corresponding to the target fluid pressure p.
  • the vehicle 10 is braked and the vehicle 10 starts to decelerate.
  • the second adjusting valve control means 66c confirms the actual deceleration and the target deceleration ⁇ determined from the relationship set in advance according to the brake input amount, and the actual deceleration and the target It is determined whether or not the magnitude of the difference from the deceleration ⁇ is equal to or greater than the threshold value t2 (step S3). As a result, if the magnitude of the difference is smaller than the threshold value t2 (NO), the adjustment of the fluid pressure in the actuator drive line 53 by the second adjustment valve control means 66c is ended.
  • the condition A is set based on the difference between the actual deceleration and the target deceleration ⁇ .
  • the correction condition Ac is determined after correction. For example, when the actual deceleration is lower than the lower limit deceleration L2 permitted as the actual deceleration shown in FIG. 5, the fluid pressure p set for the brake input amount is as shown in FIG. The corrected fluid pressure pc is corrected in the increasing direction to determine the corrected condition Ac.
  • the set fluid pressure p is corrected in a decreasing direction to determine the correction condition Ac. Then, based on the correction condition Ac, the target fluid pressure pc in the actuator drive pipe 53 is determined again (step S4), and the opening / closing amount of the second adjustment valve 66b is corrected based on the target fluid pressure pc. .
  • the opening / closing amount of the second adjustment valve 66b is corrected, the opening / closing amount of the second adjustment valve 66b is adjusted based on the corrected opening / closing amount.
  • the fluid pressure in the actuator drive line 53 becomes the corrected target fluid pressure pc corresponding to the adjusted opening / closing amount of the second adjustment valve 66b.
  • the brake actuator 51 is driven with the target fluid pressure pc, and the shoe is pressed against the corresponding wheel 20 with the pressure corresponding to the target fluid pressure pc.
  • the deceleration of the vehicle 10 becomes closer to the target deceleration ⁇ .
  • the second adjusting valve control means 66c reconfirms the actual deceleration and the target deceleration ⁇ determined from the relationship set in advance according to the brake input amount, and the actual deceleration and the target Whether or not the magnitude of the difference from the deceleration ⁇ is equal to or greater than the threshold value t2 is determined again (step S3).
  • the correction of the condition A is repeated until the magnitude of the difference between the actual deceleration and the target deceleration ⁇ becomes smaller than the threshold value t2, and the target fluid pressure in the actuator drive line 53 is corrected. .
  • the threshold value t2 applied to the brake input amount input from the automatic operation control means 67 in the case of automatic operation is the brake amount input means 64 in the case of normal operation. It is smaller than the threshold value t1 applied to the brake input amount input from. For this reason, the deceleration of the vehicle 10 is adjusted more frequently in the case of the automatic operation in the case of the normal operation and the case of the automatic operation.
  • the brake system 15 is used in the vehicle 10 capable of both automatic driving for automatically controlling the vehicle 10 and normal driving for operating the vehicle 10 by a human operation.
  • a brake means 50 having a pipe line 53 and a shoe 52 operated by a fluid pressure in the pipe line 53, an input means 64 capable of inputting a brake input amount by a human operation, and a brake Automatic operation control means 67 for automatically inputting an input amount
  • brake control means 15 for adjusting the fluid pressure in the pipe line 53 in accordance with the brake input amount input from the input means 64 and the automatic operation control means 67.
  • the brake control means 15 When the brake control means 15 receives the brake input amount and adjusts the fluid pressure, the brake control means 15 has a function set in advance according to the actual deceleration of the vehicle 10 and the brake input amount.
  • the target deceleration ⁇ determined from the above is confirmed, and if the value based on the relationship between the actual deceleration and the target deceleration ⁇ exceeds the preset threshold values t1, t2, or more than the threshold values t1, t2. If so, further adjust the fluid pressure.
  • the brake control means 60 compares the actual deceleration of the vehicle 10 with the target deceleration ⁇ after operating the shoe 52 of the brake means 50. If the difference between the two is large, the pressing force of the shoe 52 is adjusted by adjusting the fluid pressure for operating the shoe 52. As a result, even if the traveling environment or the vehicle state changes, the vehicle 10 can change the shoe so that the actual deceleration approaches the target deceleration rate ⁇ expected from the brake input amount when the brake input amount is input. The pressing force of 52 and hence the braking force of the vehicle 10 are controlled.
  • the threshold value t2 applied to the brake input amount input from the automatic operation control unit 67 is applied to the brake input amount input from the input unit 64. It is smaller than the threshold value t1.
  • the threshold value used for determining whether or not to adjust the fluid pressure in the pipe line 53 is different between the case of the automatic operation and the case of the normal operation, and the former case is better. small. For this reason, the deceleration is frequently adjusted in the case of automatic operation, while the adjustment frequency of the deceleration is suppressed in the case of normal operation. In automatic driving, it is impossible to expect the learning ability of the operator who drives the vehicle, but by adjusting the deceleration at high frequency, high-precision speed control and braking at the expected braking distance can be stabilized. Can be realized.
  • the target deceleration is obtained by changing the threshold applied to the brake input amount input from the automatic operation control means to the threshold applied to the brake input amount input from the input means.
  • the control for realizing the above is appropriately changed according to the operation mode of automatic operation and normal operation.
  • the brake control means 60 has information (information indicating the condition A) regarding a preset relationship between the brake input amount and the fluid pressure, and when the brake input amount is input.
  • the target fluid pressure p corresponding to the received brake input amount is determined based on the information (information indicating the condition A), and the fluid pressure in the pipe 53 is adjusted to the target fluid pressure p. In this case, it is easy to determine the target fluid pressure p based on the brake input amount.
  • the brake control unit 60 determines that the value based on the relationship between the actual deceleration and the target deceleration ⁇ exceeds the preset thresholds t1 and t2, or more than the thresholds t1 and t2. In this case, based on the corrected relationship (correction condition Ac) obtained by correcting the preset relationship (condition A) between the brake input amount and the fluid pressure, the received brake input amount is handled. A target fluid pressure pc is determined. In this case, if the actual deceleration and the target deceleration ⁇ are greatly different, the condition A relating to the relationship between the brake input amount used for determining the fluid pressure and the fluid pressure is corrected, and based on the corrected condition Ac.
  • the target fluid pressure pc is determined.
  • the corrected condition Ac can be used for the subsequent determination of the fluid pressure. Therefore, when it is necessary to continuously correct the preset relationship between the brake input amount and the fluid pressure for a certain period of time as in the case where the traveling environment or the vehicle state changes, the relationship once corrected (correction condition Ac) Can be reflected in the subsequent adjustment of the fluid pressure. As a result, the adjustment frequency and amount of deceleration of the vehicle 10 are suppressed, and the vehicle 10 can be decelerated stably.
  • the vehicle 10 is a vehicle capable of both automatic driving and normal driving, and includes the brake system 15 described above. In this case, even if the driving environment or the vehicle state changes, the vehicle 10 can be used to make the actual deceleration approach the target deceleration rate ⁇ expected from the brake input amount when the brake input amount is input.
  • the pressing force of 52 and hence the braking force of the vehicle 10 are controlled.
  • the row running vehicle group 1 includes the leading vehicle 5 that is manually operated or automatically operated, and the subsequent vehicle 10 that follows the leading vehicle 5, and the subsequent vehicle 10 is the vehicle 10 described above. It is.
  • the succeeding vehicle 10 is arranged so that the actual deceleration approaches the target deceleration rate ⁇ expected from the brake input amount.
  • the pressing force of the shoe 52, and hence the braking force of the vehicle 10, is controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

This brake system (15), upon receiving the braking input amount from an autonomous driving control means (67) or an input means (64) and adjusting the fluid pressure of a braking means (50), checks the actual deceleration of a vehicle (10) against a target deceleration determined from a relationship preset according to the braking input amount, and further adjusts the fluid pressure of the braking means if a value based on the relationship between the actual deceleration and the target deceleration is a preset threshold value or more. The threshold value applied to the braking input amount from the autonomous driving control means (67) is smaller than that applied to the braking input amount from the input means (64).

Description

ブレーキシステム、車両および隊列走行車両群Brake system, vehicle and platooning vehicle group
 本発明は、自動運転と通常運転との両方が可能な車両に用いられるブレーキシステムに関する。また、本発明は、ブレーキシステムを備えた車両、および、当該車両を備える隊列走行車両群に関する。 The present invention relates to a brake system used for a vehicle capable of both automatic driving and normal driving. The present invention also relates to a vehicle including a brake system and a convoy travel vehicle group including the vehicle.
 近年、例えば複数の車両が隊列を組んで走行する際に先頭車両に自動で追随可能な車両等、車両を自動で制御する自動運転が可能な車両が知られている。このような車両は、例えば特許第3237451号公報に開示されているように、先頭車両から加速、減速、制動に関する情報を取得し、これらに基づいて自動でアクセル操作やブレーキ操作の制御がなされている。 In recent years, vehicles capable of automatic driving for automatically controlling vehicles, such as vehicles that can automatically follow a leading vehicle when a plurality of vehicles travel in a row, are known. For example, as disclosed in Japanese Patent No. 3237451, such a vehicle acquires information on acceleration, deceleration, and braking from the leading vehicle, and based on these information, the accelerator operation and the brake operation are automatically controlled. Yes.
 ところで、車両に与えられるブレーキ入力量(ブレーキ手段の動作量)と車両の実際の減速度との関係は、当該車両が走行する環境や車両状態によって異なる。例えば、車両が走行する路面が乾いている場合と濡れている場合とでは、車両に同じブレーキ入力量を与えても当該車両の実際の減速度は異なってしまう。また、車両の積み荷の重さによっても、同じブレーキ入力量に対する当該車両の実際の減速度は異なってしまう。 By the way, the relationship between the brake input amount given to the vehicle (the amount of operation of the brake means) and the actual deceleration of the vehicle varies depending on the environment in which the vehicle travels and the vehicle state. For example, the actual deceleration of the vehicle differs depending on whether the road surface on which the vehicle travels is dry or wet, even if the same brake input amount is applied to the vehicle. Further, the actual deceleration of the vehicle with respect to the same brake input amount varies depending on the weight of the vehicle load.
 ここで、自動運転で隊列走行をしているような車両の場合、車両に与えられるブレーキ入力量は、先頭車両から得た情報に基づいて画一的に決定される。しかし、このような場合、車両に与えたブレーキ入力量と当該ブレーキ入力量によって実現される実際の減速度との関係は一定ではなく、実際の減速度が目標とする減速度と大きく異なってしまうことがある。 Here, in the case of a vehicle that is running in a row with automatic driving, the brake input amount given to the vehicle is uniformly determined based on information obtained from the leading vehicle. However, in such a case, the relationship between the brake input amount given to the vehicle and the actual deceleration realized by the brake input amount is not constant, and the actual deceleration greatly differs from the target deceleration. Sometimes.
 一方、人が操作して車両を運転する通常運転の場合、車両に与えられるブレーキ入力量は、車両を運転する人が走行環境や車両状態の変化を感知して調整される。しかしながら、この場合であっても、走行環境や車両状態の変化に応じたブレーキ入力量の調整が適当になされるとは限らず、実際の減速度が目標とする減速度と大きく異なってしまうことがある。また、走行環境や車両状態の変化を常に感知しながら運転を行うことは煩雑であり、運転の快適性という観点から問題がある。 On the other hand, in the case of normal driving where a person operates to drive the vehicle, the amount of brake input given to the vehicle is adjusted by the person driving the vehicle sensing changes in the driving environment and the vehicle state. However, even in this case, the brake input amount may not be appropriately adjusted according to changes in the driving environment and vehicle state, and the actual deceleration may be significantly different from the target deceleration. There is. In addition, it is complicated to drive while constantly detecting changes in the driving environment and the vehicle state, and there is a problem from the viewpoint of driving comfort.
 したがって、自動運転および通常運転の両方の場合において、走行環境や車両状態が変化しても、車両にブレーキ入力量が与えられた際、当該ブレーキ入力量から期待される目標減速度に近い減速度で減速可能な車両の実現が望まれる。 Therefore, in both automatic driving and normal driving, even when the driving environment or vehicle state changes, when the brake input amount is given to the vehicle, the deceleration is close to the target deceleration expected from the brake input amount. The realization of a vehicle that can be decelerated with this is desired.
 本発明は、このような点を考慮してなされたものであり、自動運転および通常運転の両方の場合において、走行環境や車両状態が変化しても、車両にブレーキ入力量が与えられた際、当該車両の制動が当該ブレーキ入力量から期待される目標減速度と実際の減速度との差が抑制されるように制御される車両を提供することを目的とする。 The present invention has been made in consideration of such points, and in both cases of automatic driving and normal driving, even when the driving environment and the vehicle state change, the brake input amount is given to the vehicle. An object of the present invention is to provide a vehicle in which braking of the vehicle is controlled so that a difference between a target deceleration expected from the brake input amount and an actual deceleration is suppressed.
 本発明によるブレーキシステムは、
 車両を自動で制御する自動運転と人が操作して車両を運転する通常運転との両方が可能な車両に用いられるブレーキシステムであって、
 管路と、前記管路内の流体圧により動作するシューと、を有するブレーキ手段と、
 人が操作することでブレーキ入力量を入力可能な入力手段と、
 ブレーキ入力量を自動入力する自動運転制御手段と、
 前記入力手段および前記自動運転制御手段から入力されたブレーキ入力量に応じて前記管路内の前記流体圧を調節するブレーキ制御手段と、を備え、
 前記ブレーキ制御手段は、前記ブレーキ入力量を受け取って前記流体圧を調節した場合、前記車両の実際の減速度と前記ブレーキ入力量に応じて予め設定された関係から決定される目標減速度とを確認し、前記実際の減速度と前記目標減速度との関係に基づいた値が予め設定された閾値を超えていれば又は閾値以上になっていれば、前記流体圧をさらに調節し、
 前記自動運転制御手段から入力されたブレーキ入力量に対して適用される前記閾値は、前記入力手段から入力されたブレーキ入力量に対して適用される前記閾値よりも、小さい。
The brake system according to the present invention comprises:
A brake system used for a vehicle capable of both automatic driving for automatically controlling the vehicle and normal driving for manipulating the vehicle,
Brake means having a conduit and a shoe that operates by fluid pressure in the conduit;
An input means capable of inputting a brake input amount by a human operation;
Automatic operation control means for automatically inputting the brake input amount;
Brake control means for adjusting the fluid pressure in the pipe line according to the brake input amount input from the input means and the automatic operation control means,
When the brake control unit receives the brake input amount and adjusts the fluid pressure, the brake control unit calculates an actual deceleration of the vehicle and a target deceleration determined from a relationship set in advance according to the brake input amount. Confirm, if the value based on the relationship between the actual deceleration and the target deceleration exceeds a preset threshold value or more than a threshold value, further adjust the fluid pressure,
The threshold value applied to the brake input amount input from the automatic operation control means is smaller than the threshold value applied to the brake input amount input from the input means.
 前記ブレーキ制御手段は、前記ブレーキ入力量と前記流体圧との予め設定された関係に関する情報を有し、前記ブレーキ入力量が入力された際には、前記情報に基づいて受け取ったブレーキ入力量に対応した目標流体圧を決定し、前記管路内の流体圧を前記目標流体圧に調節するようにしてもよい。 The brake control means has information related to a preset relationship between the brake input amount and the fluid pressure, and when the brake input amount is input, the brake input amount is received based on the information. A corresponding target fluid pressure may be determined, and the fluid pressure in the conduit may be adjusted to the target fluid pressure.
 前記ブレーキ制御手段は、前記実際の減速度と前記目標減速度との関係に基づいた前記値が予め設定された閾値を超えていた場合又は閾値以上となっていた場合、前記ブレーキ入力量と前記流体圧との前記予め設定された関係を修正して得られた修正後の関係に基づき、受け取ったブレーキ入力量に対応した目標流体圧を決定するようにしてもよい。 When the value based on the relationship between the actual deceleration and the target deceleration exceeds a preset threshold value or exceeds a threshold value, the brake control means, A target fluid pressure corresponding to the received brake input amount may be determined based on a corrected relationship obtained by correcting the preset relationship with the fluid pressure.
 本発明による車両は、
 自動運転と通常運転の両方が可能な車両であって、
 上述のブレーキシステムを備える。
The vehicle according to the present invention is
A vehicle capable of both automatic driving and normal driving,
A brake system as described above is provided.
 本発明による隊列走行車両群は、
 先頭車両と、
 前記先頭車両を追従する後続車両と、を備え、
 前記後続車両は、上述の車両である。
The convoy travel vehicle group according to the present invention is:
The top vehicle,
A following vehicle that follows the leading vehicle, and
The subsequent vehicle is the vehicle described above.
 本発明によれば、走行環境や車両状態が変化しても、車両にブレーキ入力量が入力された場合、当該車両の制動は、当該ブレーキ入力量から期待される目標減速度と実際の減速度との差が一定範囲内となるように制御され得る。 According to the present invention, when a brake input amount is input to the vehicle even when the traveling environment or the vehicle state changes, the braking of the vehicle is performed with the target deceleration expected from the brake input amount and the actual deceleration. Can be controlled so as to be within a certain range.
本発明の一実施の形態を説明する図であって、隊列走行車両群を示す図。FIG. 2 is a diagram for explaining an embodiment of the present invention and showing a convoy traveling vehicle group. 本発明の一実施の形態を説明する図であって、車両の全体的な構成を示すブロック図である。It is a figure explaining one embodiment of the present invention, and is a block diagram showing the whole composition of vehicles. ブレーキ入力量と流体圧との予め設定された関係の一例を示す図。The figure which shows an example of the preset relationship of brake input amount and fluid pressure. ブレーキ入力量と目標減速度との予め設定された関係の一例を示す図。The figure which shows an example of the preset relationship between brake input amount and target deceleration. ブレーキ入力量に対する目標減速度と下限の減速度と上限の減速度との関係の一例を示す図。The figure which shows an example of the relationship between the target deceleration with respect to the brake input amount, the lower limit deceleration, and the upper limit deceleration. ブレーキ入力量に対する目標減速度と下限の減速度と上限の減速度との関係の他の一例を示す図。The figure which shows another example of the relationship between the target deceleration with respect to the brake input amount, the lower limit deceleration, and the upper limit deceleration. 修正条件の作成方法を示す図。The figure which shows the preparation method of correction conditions. ブレーキ制御手段における流体圧の制御方法を示すフローチャート。The flowchart which shows the control method of the fluid pressure in a brake control means.
 以下、図面を参照して本発明の一実施の形態について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明による隊列走行車両群の一実施の形態を説明するための図であり、図2は、図1の隊列走行車両群において先頭車両に追随する後続車両として使用される車両の全体的な構成を示すブロック図である。 FIG. 1 is a diagram for explaining an embodiment of a convoy travel vehicle group according to the present invention, and FIG. 2 is a diagram of a vehicle used as a succeeding vehicle following the leading vehicle in the convoy travel vehicle group of FIG. It is a block diagram which shows the whole structure.
 本実施の形態の隊列走行車両群1は、手動運転または自動運転される先頭車両5と、先頭車両5を追従する後続車両10と、を含んでいる。図1に示す例においては、隊列走行車両群1は、一台の後続車両10を含んでいるが、複数の後続車両10を含んでいてもよい。 The convoy travel vehicle group 1 of the present embodiment includes a leading vehicle 5 that is manually operated or automatically operated, and a subsequent vehicle 10 that follows the leading vehicle 5. In the example shown in FIG. 1, the convoy travel vehicle group 1 includes one subsequent vehicle 10, but may include a plurality of subsequent vehicles 10.
 隊列走行車両群1に含まれる後続車両10は、車両10を自動で制御する自動運転と、人が操作して車両10を運転する通常運転と、の両方が可能な車両10である。先頭車両5および後続車両10は、それぞれ、車両5,10間で車間通信を行うための通信機器105,110を有しており、先頭車両5は通信機器105を通じて後続車両10の自動運転の制御に必要な情報を発することができるようになっている。また、後続車両10は、通信機器110を通じて通信機器105から発せられた情報を取得することができるようになっている。ここで、通信機器105から発せられる後続車両10の自動運転の制御に必要な情報とは、例えば、目標操舵角度、目標加速度、目標減速度等である。 The following vehicle 10 included in the platooning vehicle group 1 is a vehicle 10 capable of both an automatic operation in which the vehicle 10 is automatically controlled and a normal operation in which the vehicle 10 is operated by a person. The leading vehicle 5 and the following vehicle 10 respectively have communication devices 105 and 110 for performing inter-vehicle communication between the vehicles 5 and 10, and the leading vehicle 5 controls the automatic driving of the following vehicle 10 through the communication device 105. It is now possible to issue information necessary for In addition, the following vehicle 10 can acquire information issued from the communication device 105 through the communication device 110. Here, the information necessary for controlling the automatic driving of the succeeding vehicle 10 issued from the communication device 105 is, for example, a target steering angle, a target acceleration, a target deceleration, and the like.
 以下、図2を参照して、車両10の構成について、より詳細に説明する。本実施の形態の車両10は、図2に示すように、ブレーキシステム15と、一対の前輪20aおよび一対の後輪20bを含む車輪20と、エンジンやモータを含む動力部30と、車両10の目標加速度を決定するアクセル量入力手段35と、前輪20aおよび/または後輪20bの向きを変えて車両10の進行方向を変えるための操舵手段40と、各車輪20の回転速度を検出して車両10の実際の走行速度や加速度、減速度に関する情報を取得する回転速度センサ70と、を有している。 Hereinafter, the configuration of the vehicle 10 will be described in more detail with reference to FIG. As shown in FIG. 2, the vehicle 10 of the present embodiment includes a brake system 15, wheels 20 including a pair of front wheels 20 a and a pair of rear wheels 20 b, a power unit 30 including an engine and a motor, Accelerator amount input means 35 for determining a target acceleration, steering means 40 for changing the traveling direction of the vehicle 10 by changing the direction of the front wheels 20a and / or the rear wheels 20b, and the rotational speed of each wheel 20 are detected to detect the vehicle. And a rotational speed sensor 70 that acquires information on 10 actual traveling speeds, accelerations, and decelerations.
 アクセル量入力手段35は、人が操作して車両10を運転する通常運転の際に、車両10の所望の加速度に対応して車両10の目標加速度を決定する手段である。アクセル量入力手段35は、本実施の形態では、人が操作して所望のアクセル量を入力するアクセルペダル35aと、当該アクセルペダル35aの踏角、すなわち人によって入力されたアクセル入力量、を検出するアクセル量検出センサ35bと、を含む。 The accelerator amount input means 35 is a means for determining a target acceleration of the vehicle 10 corresponding to a desired acceleration of the vehicle 10 during a normal operation in which a person operates to drive the vehicle 10. In this embodiment, the accelerator amount input means 35 detects an accelerator pedal 35a that is operated by a person to input a desired accelerator amount, and a depression angle of the accelerator pedal 35a, that is, an accelerator input amount that is input by a person. And an accelerator amount detection sensor 35b.
 操舵手段40は、車両10の進行方向の所望の変更に対応して所望の操舵角度で車両10を操舵するための手段である。操舵手段40は、本実施の形態では、人が所望の操舵入力量を入力するための操舵量入力手段41と、操舵量入力手段41から入力された操舵入力量を検出し、操舵入力量に基づいて前輪20aおよび/または後輪20bの角度Rを変更する操舵アクチュエータ42を含んでいる。操舵アクチュエータ42は、前輪20aおよび/または後輪20bに接続されたロッド21上に配設されており、当該ロッド21を操作することにより前輪20aおよび/または後輪20bの角度Rを変更することができるようになっている。ここで、前輪20aおよび/または後輪20bの角度Rとは、車両10を平面視で見た場合に、車両10の幅方向に垂直な面に平行な平面P1と、前輪20aおよび/または後輪20bの回転軸に垂直な面P2と、がなす角度のことである。 Steering means 40 is means for steering the vehicle 10 at a desired steering angle in response to a desired change in the traveling direction of the vehicle 10. In the present embodiment, the steering means 40 detects a steering amount input means 41 for a person to input a desired steering input amount, and a steering input amount input from the steering amount input means 41, and sets the steering input amount. The steering actuator 42 which changes the angle R of the front wheel 20a and / or the rear wheel 20b based on it is included. The steering actuator 42 is disposed on the rod 21 connected to the front wheel 20a and / or the rear wheel 20b, and the angle R of the front wheel 20a and / or the rear wheel 20b is changed by operating the rod 21. Can be done. Here, the angle R of the front wheel 20a and / or the rear wheel 20b refers to a plane P1 parallel to a plane perpendicular to the width direction of the vehicle 10 and the front wheels 20a and / or the rear when the vehicle 10 is viewed in plan view. This is an angle formed by the plane P2 perpendicular to the rotation axis of the wheel 20b.
 ブレーキシステム15は、各車輪20に設けられたブレーキ手段50と、通常運転の際に人が所望のブレーキ入力量を入力するためのブレーキ量入力手段64と、自動運転の際にブレーキ入力量を自動入力する自動運転制御手段67と、ブレーキ量入力手段64および自動制御手段67から入力されたブレーキ入力量に応じてブレーキ手段50を駆動するブレーキ制御手段60と、を備えている。 The brake system 15 includes a brake unit 50 provided on each wheel 20, a brake amount input unit 64 for a person to input a desired brake input amount during normal operation, and a brake input amount during automatic operation. An automatic operation control means 67 for automatically inputting, and a brake control means 60 for driving the brake means 50 in accordance with the brake input amount inputted from the brake amount input means 64 and the automatic control means 67 are provided.
 ブレーキ手段50は、各車輪20に設けられており、各車輪20の回転を摩擦抵抗により低減するものである。ブレーキ手段50は、本実施の形態においては、流体圧により駆動して車両10を制動する流体圧ブレーキであって、管路53と、管路53内の流体圧により動作するシュー52と、を有している。 The brake means 50 is provided in each wheel 20, and reduces rotation of each wheel 20 by frictional resistance. In the present embodiment, the brake means 50 is a fluid pressure brake that is driven by fluid pressure to brake the vehicle 10, and includes a pipe line 53 and a shoe 52 that is operated by the fluid pressure in the pipe line 53. Have.
 より詳細には、各ブレーキ手段50は、ブレーキアクチュエータ51と、シュー52と、一方の端部がブレーキアクチュエータ51に接続され、他方の端部がブレーキ制御手段60に接続されたアクチュエータ駆動管路53と、を含んでいる。ブレーキアクチュエータ51は、アクチュエータ駆動管路53内の流体圧によって駆動して、対応するシュー52を対応する車輪20に対して押しつけるようになっている。 More specifically, each brake means 50 includes a brake actuator 51, a shoe 52, and an actuator drive line 53 in which one end is connected to the brake actuator 51 and the other end is connected to the brake control means 60. And. The brake actuator 51 is driven by the fluid pressure in the actuator drive conduit 53 so as to press the corresponding shoe 52 against the corresponding wheel 20.
 ブレーキ量入力手段64は、人が操作して車両10を運転する通常運転の際に、人が操作して所望のブレーキ入力量を入力する手段である。ブレーキ量入力手段64は、本実施の形態では、ブレーキペダル64aと、当該ブレーキペダル64aの踏角、すなわち人によって入力されたブレーキ入力量、を検出するブレーキ入力量検出センサ64bと、を含む。 The brake amount input unit 64 is a unit that is operated by a person and inputs a desired brake input amount during a normal operation in which the vehicle 10 is operated by a person. In the present embodiment, the brake amount input means 64 includes a brake pedal 64a and a brake input amount detection sensor 64b that detects a depression angle of the brake pedal 64a, that is, a brake input amount input by a person.
 自動運転制御手段67は、通信機器110により取得した情報に基づいて、車両10の自動運転の制御を行うものである。具体的には、通信機器110により取得した情報に基づいて、操舵入力量や、アクセル入力量、ブレーキ入力量等を自動入力するようになっている。 The automatic driving control means 67 controls the automatic driving of the vehicle 10 based on the information acquired by the communication device 110. Specifically, a steering input amount, an accelerator input amount, a brake input amount, and the like are automatically input based on information acquired by the communication device 110.
 ブレーキ制御手段60は、ブレーキ量入力手段64および自動制御手段67から入力されたブレーキ入力量に応じてアクチュエータ駆動管路53内の流体圧を調節するものである。ブレーキ制御手段60は、流体タンク61と、アクチュエータ駆動管路53に入力される流体圧を制御してブレーキ手段50を制御する通常ブレーキ制御手段65および自動ブレーキ制御手段66と、を含んでいる。 The brake control means 60 adjusts the fluid pressure in the actuator drive line 53 in accordance with the brake input amount input from the brake amount input means 64 and the automatic control means 67. The brake control means 60 includes a fluid tank 61, and normal brake control means 65 and automatic brake control means 66 that control the brake means 50 by controlling the fluid pressure input to the actuator drive pipe 53.
 流体タンク61は、エンジンで駆動される図示しないコンプレッサにより圧縮流体、例えば圧縮空気、を蓄えるものであり、この流体タンク61内の流体圧は、所定圧に保持されている。 The fluid tank 61 stores a compressed fluid, for example, compressed air, by a compressor (not shown) driven by the engine, and the fluid pressure in the fluid tank 61 is maintained at a predetermined pressure.
 通常ブレーキ制御手段65は、ブレーキ量入力手段64から入力されたブレーキ入力量に応じて、流体タンク61からアクチュエータ駆動管路53に入力される流体圧を調節するものである。通常ブレーキ制御手段65は、一方の端部が流体タンク61に接続され、他方の端部がアクチュエータ駆動管路53に接続された第1流体管路65aと、第1流体管路65a上に配置され、開閉動作を行うことにより第1流体管路65aを介して流体タンク61とアクチュエータ駆動管路53とを連通あるいは遮断させる第1調整弁65bと、第1調整弁65bの開閉を制御する第1調整弁制御手段65cと、を含んでいる。 The normal brake control means 65 adjusts the fluid pressure input from the fluid tank 61 to the actuator drive pipe 53 according to the brake input amount input from the brake amount input means 64. The normal brake control means 65 is disposed on the first fluid conduit 65a and a first fluid conduit 65a having one end connected to the fluid tank 61 and the other end connected to the actuator drive conduit 53. The first regulating valve 65b for communicating or blocking the fluid tank 61 and the actuator driving pipeline 53 via the first fluid pipeline 65a by performing the opening / closing operation, and the first regulating valve 65b for controlling the opening / closing of the first regulating valve 65b. 1 adjustment valve control means 65c.
 第1調整弁65bは、通常、第1調整弁制御手段65cからの入力が無い限り、閉鎖されている。第1調整弁65bとしては、ソレノイドバルブ等、公知の調整弁が採用可能である。第1調整弁制御手段65cは、ブレーキ量入力手段64によって入力されたブレーキ入力量に基づいて、アクチュエータ駆動管路53内の目標流体圧を決定するものである。そして、第1調整弁制御手段65cは、決定された目標流体圧に応じて第1調整弁65bの開閉量を決定し、決定した開閉量の分だけ第1調整弁65bを開放するようになっている。 The first regulating valve 65b is normally closed as long as there is no input from the first regulating valve control means 65c. As the first regulating valve 65b, a known regulating valve such as a solenoid valve can be adopted. The first regulating valve control means 65c determines the target fluid pressure in the actuator drive line 53 based on the brake input amount input by the brake amount input means 64. Then, the first adjustment valve control means 65c determines the opening / closing amount of the first adjustment valve 65b according to the determined target fluid pressure, and opens the first adjustment valve 65b by the determined opening / closing amount. ing.
 自動ブレーキ制御手段66は、自動運転制御手段67から入力されたブレーキ入力量に応じて、流体タンク61からアクチュエータ駆動管路53に入力される流体圧を調節するものである。自動ブレーキ制御手段66は、一方の端部が流体タンク61に接続され、他方の端部がアクチュエータ駆動管路53に接続された第2流体管路66aと、第2流体管路66a上に配置され、開閉動作を行うことにより第2流体管路66aを介して流体タンク61とアクチュエータ駆動管路53とを連通あるいは遮断させる第2調整弁66bと、第2調整弁66bの開閉を制御する第2調整弁制御手段66cと、を含んでいる。 The automatic brake control means 66 adjusts the fluid pressure input from the fluid tank 61 to the actuator drive line 53 in accordance with the brake input amount input from the automatic operation control means 67. The automatic brake control means 66 is disposed on the second fluid conduit 66a, the second fluid conduit 66a having one end connected to the fluid tank 61 and the other end connected to the actuator drive conduit 53. The second regulating valve 66b for communicating or blocking the fluid tank 61 and the actuator driving pipeline 53 via the second fluid pipeline 66a by performing the opening / closing operation, and the second regulating valve 66b for controlling the opening / closing of the second regulating valve 66b. 2 adjustment valve control means 66c.
 第2調整弁66bは、通常、第2調整弁制御手段66cからの入力が無い限り、閉鎖されている。第2調整弁66bとしては、ソレノイドバルブ等、公知の調整弁が採用可能である。第2調整弁制御手段66cは、自動運転制御手段67によって入力されたブレーキ入力量に基づいて、アクチュエータ駆動管路53内の目標流体圧を決定するものである。そして、第2調整弁制御手段66cは、決定された目標流体圧に応じて第2調整弁66bの開閉量を決定し、決定した開閉量の分だけ第2調整弁66bを開放するようになっている。 The second regulating valve 66b is normally closed unless there is an input from the second regulating valve control means 66c. As the second regulating valve 66b, a known regulating valve such as a solenoid valve can be adopted. The second regulating valve control means 66 c is for determining the target fluid pressure in the actuator drive line 53 based on the brake input amount input by the automatic operation control means 67. Then, the second adjustment valve control means 66c determines the opening / closing amount of the second adjustment valve 66b according to the determined target fluid pressure, and opens the second adjustment valve 66b by the determined opening / closing amount. ing.
 ここで、図3乃至図7を参照して、ブレーキ制御手段60における、アクチュエータ駆動管路53内の流体圧の調節方法について、詳細に説明する。 Here, with reference to FIG. 3 to FIG. 7, a method of adjusting the fluid pressure in the actuator drive pipe 53 in the brake control means 60 will be described in detail.
 ブレーキ制御手段60は、ブレーキ入力量と流体圧との予め設定された関係に関する情報を有している。具体的には、第1調整弁制御手段65cおよび第2調整弁制御手段66cは、それぞれ、図3に示すような、ブレーキ入力量と流体圧との関係を規定する条件Aを示す情報を保持している。そして、第1調整弁制御手段65cおよび第2調整弁制御手段66cは、それぞれ、ブレーキ入力量が入力された際には、条件Aに基づいて受け取ったブレーキ入力量に対応した目標流体圧pを決定し、決定された目標流体圧pに応じた量だけ第1調整弁65bまたは第2調整弁66bを開放して、アクチュエータ駆動管路53内の流体圧を目標流体圧pに調節するようになっている。 The brake control means 60 has information relating to a preset relationship between the brake input amount and the fluid pressure. Specifically, the first regulating valve control unit 65c and the second regulating valve control unit 66c each hold information indicating the condition A that defines the relationship between the brake input amount and the fluid pressure, as shown in FIG. is doing. When the brake input amount is input, the first adjustment valve control unit 65c and the second adjustment valve control unit 66c respectively set the target fluid pressure p corresponding to the brake input amount received based on the condition A. The first adjusting valve 65b or the second adjusting valve 66b is opened by an amount corresponding to the determined target fluid pressure p, and the fluid pressure in the actuator drive line 53 is adjusted to the target fluid pressure p. It has become.
 ところで、一般に、アクチュエータ駆動管路内の流体圧と、車両の実際の減速度と、の関係は、当該車両が走行する環境や車両状態によって異なる。例えば、車両が走行する路面が乾いている場合と濡れている場合とでは、アクチュエータ駆動管路内の流体圧が同じであっても、車両の実際の減速度は異なってしまう。また、車両の積み荷の重量によっても、同じ流体圧に対する当該車両の実際の減速度は異なってしまう。このことは、車両に与えられるブレーキ入力量と車両の実際の減速度との関係が、当該車両が走行する環境や車両状態によって異なることを意味する。 Incidentally, in general, the relationship between the fluid pressure in the actuator drive pipe and the actual deceleration of the vehicle varies depending on the environment in which the vehicle travels and the vehicle state. For example, the actual deceleration of the vehicle differs depending on whether the road surface on which the vehicle travels is dry or wet, even if the fluid pressure in the actuator drive conduit is the same. Also, the actual deceleration of the vehicle for the same fluid pressure varies depending on the weight of the vehicle load. This means that the relationship between the brake input amount given to the vehicle and the actual deceleration of the vehicle varies depending on the environment and vehicle state in which the vehicle travels.
 このような事情を考慮して、本発明のブレーキ制御手段60は、ブレーキ入力量を受け取って流体圧を調節した場合、車両10の実際の減速度と、ブレーキ入力量に応じて予め設定された関係から決定される目標減速度と、を確認するようになっている。 In consideration of such circumstances, the brake control means 60 of the present invention is preset according to the actual deceleration of the vehicle 10 and the brake input amount when the brake input amount is received and the fluid pressure is adjusted. The target deceleration determined from the relationship is confirmed.
 具体的には、第1調整弁制御手段65cおよび第2調整弁制御手段66cは、それぞれ、図4に示すような、ブレーキ入力量と目標減速度との関係を規定する条件Bを示す情報を保持している。そして、第1調整弁制御手段65cおよび第2調整弁制御手段66cは、それぞれ、図2に示す速度センサ70から取得した車両10の実際の減速度と、ブレーキ入力量に応じて条件Bにより決定された目標減速度αと、を確認するようになっている。 Specifically, each of the first adjustment valve control means 65c and the second adjustment valve control means 66c includes information indicating the condition B that defines the relationship between the brake input amount and the target deceleration as shown in FIG. keeping. The first adjustment valve control means 65c and the second adjustment valve control means 66c are determined by the condition B according to the actual deceleration of the vehicle 10 acquired from the speed sensor 70 shown in FIG. The set target deceleration rate α is confirmed.
 さらに、上述の事情を考慮して、本発明のブレーキ制御手段60は、実際の減速度と目標減速度αとの関係に基づいた値が予め設定された閾値を超えていれば又は閾値以上になっていれば、流体圧をさらに調節することができるようになっている。 Further, in consideration of the above-described circumstances, the brake control means 60 of the present invention can increase the value based on the relationship between the actual deceleration and the target deceleration α to a threshold value or higher if the value exceeds a preset threshold value. If so, the fluid pressure can be further adjusted.
 具体的には、実際の減速度と目標減速度αとの差の大きさが所定の閾値t1,t2を超えていればまたは所定値以上であれば、第1調整弁65bまたは第2調整弁66bの開放量を変更し、アクチュエータ駆動管路53内の流体圧をさらに調節するようになっている。 Specifically, if the magnitude of the difference between the actual deceleration and the target deceleration α exceeds a predetermined threshold value t1, t2, or more than a predetermined value, the first adjustment valve 65b or the second adjustment valve The opening amount of 66b is changed to further adjust the fluid pressure in the actuator drive pipe 53.
 ここで、ブレーキ制御手段によるアクチュエータ駆動管路内の流体圧の調整は、車両の実際の減速度が迅速に目標減速度に近づくように頻度高く行われることが好ましい。しかしながら、車両が人により操作されて運転される通常運転の場合、車両の減速度の度重なる変化は、車両を運転する人に違和感を生じさせることとなる。 Here, the adjustment of the fluid pressure in the actuator drive pipe line by the brake control means is preferably performed frequently so that the actual deceleration of the vehicle quickly approaches the target deceleration. However, in the case of normal driving where the vehicle is operated and operated by a person, repeated changes in the deceleration of the vehicle may cause the driver of the vehicle to feel uncomfortable.
 このような事情を考慮して、本発明のブレーキ制御手段60において、自動運転制御手段67から入力されたブレーキ入力量に対して適用される閾値t2は、ブレーキ量入力手段64から入力されたブレーキ入力量に対して適用される閾値t1よりも、小さい。 In consideration of such circumstances, the threshold t2 applied to the brake input amount input from the automatic operation control unit 67 in the brake control unit 60 of the present invention is the brake input from the brake amount input unit 64. It is smaller than the threshold value t1 applied to the input amount.
 したがって、図5によく示されているように、ブレーキ入力量に応じて変化する目標減速度をαとすると、ブレーキ量入力手段64から入力されたブレーキ入力量に対する車両10の実際の減速度として許容される下限の減速度L1は、L1=α-t1で表され、上限の減速度H1は、H1=α+t1で表される。一方、自動運転制御手段67から入力されたブレーキ入力量に対する車両10の実際の減速度として許容される下限の減速度L2は、L2=α-t2で表され、上限の減速度H2は、H2=α+t2で表される。 Therefore, as well shown in FIG. 5, if the target deceleration that changes according to the brake input amount is α, the actual deceleration of the vehicle 10 with respect to the brake input amount input from the brake amount input means 64 is obtained. The allowable lower limit deceleration L1 is represented by L1 = α−t1, and the upper limit deceleration H1 is represented by H1 = α + t1. On the other hand, the lower limit deceleration L2 allowed as the actual deceleration of the vehicle 10 with respect to the brake input amount input from the automatic operation control means 67 is expressed by L2 = α−t2, and the upper limit deceleration H2 is H2. = Α + t2.
 なお、実際の減速度と目標減速度との関係に基づいた値は、実際の減速度と目標減速度との差に限られず、例えば、実際の減速度と目標減速度との比を用いて表されてもよい。この場合、図6に示されているように、ブレーキ入力量に対する目標減速度をαとすると、ブレーキ量入力手段64から入力されたブレーキ入力量に対する車両10の実際の減速度として許容される下限の減速度L1は、例えばL1=α(1-t1)で表され、上限の減速度H1は、例えばH1=α(1+t1)で表される。一方、自動運転制御手段67から入力されたブレーキ入力量に対する車両10の実際の減速度として許容される下限の減速度L2は、例えばL2=α(1-t2)で表され、上限の減速度H2は、例えばH2=α(1+t2)で表される。 Note that the value based on the relationship between the actual deceleration and the target deceleration is not limited to the difference between the actual deceleration and the target deceleration. For example, the ratio between the actual deceleration and the target deceleration is used. May be represented. In this case, as shown in FIG. 6, when the target deceleration with respect to the brake input amount is α, the lower limit allowed as the actual deceleration of the vehicle 10 with respect to the brake input amount input from the brake amount input means 64. The deceleration L1 is expressed by, for example, L1 = α (1−t1), and the upper limit deceleration H1 is expressed by, for example, H1 = α (1 + t1). On the other hand, the lower limit deceleration L2 allowed as the actual deceleration of the vehicle 10 with respect to the brake input amount input from the automatic operation control means 67 is expressed by, for example, L2 = α (1-t2), and the upper limit deceleration. H2 is represented by, for example, H2 = α (1 + t2).
 ところで、走行環境や車両状態が変化してブレーキ入力量とアクチュエータ駆動管路内の流体圧との予め設定された関係が変化した場合、この変化後の関係は、一般に一定期間持続するものと考えられる。例えば、車両が走行する路面が濡れていることによる当該関係の変化は、路面が乾くまで持続するであろうし、車両の積み荷の重量が大きいことによる当該関係の変化は、車両から積み荷を下ろすまで持続するであろう。このような場合、車両の実際の減速度と目標減速度との確認結果をその後の流体圧の調節にも利用すれば、車両の減速度の調整頻度および調整量が抑制され、車両の減速を安定して行うことが可能であると考えられる。 By the way, if the preset relationship between the brake input amount and the fluid pressure in the actuator drive line changes due to changes in the driving environment or vehicle condition, the relationship after the change is generally considered to last for a certain period. It is done. For example, a change in the relationship due to a wet road surface on which the vehicle travels will last until the road surface dries, and a change in the relationship due to the heavy weight of the vehicle load until the load is removed from the vehicle. Will last. In such a case, if the result of confirming the actual deceleration and the target deceleration of the vehicle is also used for the subsequent adjustment of the fluid pressure, the frequency and amount of adjustment of the vehicle deceleration are suppressed, and the vehicle is decelerated. It is thought that it can be performed stably.
 このような事情を考慮して、本実施の形態のブレーキ制御手段60は、実際の減速度と目標減速度との関係に基づいた値が予め設定された閾値を超えていた場合又は閾値以上となっていた場合、ブレーキ入力量と流体圧との予め設定された関係を修正するようになっている。具体的には、自動運転制御手段67から入力されたブレーキ入力量に対する車両10の実際の減速度と目標減速度αとの差が、図5に示す下限の減速度L2を下回っていた場合、図7に示すように、ブレーキ入力量に対する流体圧pを増大させる方向に修正して修正後の流体圧pcとし、修正条件Acを決定する。一方、自動運転制御手段67から入力されたブレーキ入力量に対する車両10の実際の減速度と目標減速度αとの差が、図5に示す上限の減速度H2を上回っていた場合、ブレーキ入力量に対する流体圧pを減少させる方向に修正して修正条件Acを決定する。このとき、ブレーキ入力量に対して設定される流体圧をどの程度増大/減少させるかは、車両10の実際の減速度と目標減速度αとの差に基づいて決定するが、これに限られない。例えば、車両10は、車両10が走行する路面の状態を検出する路面状態検出センサや、車輪20の状態を検出する車輪状態検出センサ、車両10の総重量あるいは積載量を検出する車両重量検出センサ等を有していてよく、この場合、各種センサによって検出された検出結果に基づいて、ブレーキ入力量に対して設定される流体圧を修正しても良い。ここで、路面状態検出センサが検出する路面の状態としては、天候や路面の材質の変化による路面の摩擦力の変化や、路面の傾斜度などが挙げられる。また、車輪状態検出センサによって検出される車輪20の状態としては、車輪20のタイヤの摩耗の度合い、当該タイヤの温度や空気圧、各車輪20に対応して設けられたシュー52の劣化の度合いや温度などが挙げられる。 In consideration of such circumstances, the brake control means 60 of the present embodiment determines that the value based on the relationship between the actual deceleration and the target deceleration exceeds a preset threshold or is equal to or greater than the threshold. If so, the preset relationship between the brake input amount and the fluid pressure is corrected. Specifically, when the difference between the actual deceleration of the vehicle 10 and the target deceleration rate α with respect to the brake input amount input from the automatic operation control means 67 is less than the lower limit deceleration L2 shown in FIG. As shown in FIG. 7, the fluid pressure p is corrected in the direction of increasing the brake input amount to obtain a corrected fluid pressure pc, and the correction condition Ac is determined. On the other hand, if the difference between the actual deceleration of the vehicle 10 and the target deceleration rate α with respect to the brake input amount input from the automatic operation control means 67 exceeds the upper limit deceleration H2 shown in FIG. The correction condition Ac is determined by correcting in the direction in which the fluid pressure p is reduced. At this time, how much the fluid pressure set with respect to the brake input amount is increased / decreased is determined based on the difference between the actual deceleration of the vehicle 10 and the target deceleration α, but is not limited thereto. Absent. For example, the vehicle 10 includes a road surface state detection sensor that detects the state of the road surface on which the vehicle 10 travels, a wheel state detection sensor that detects the state of the wheels 20, and a vehicle weight detection sensor that detects the total weight or the loading amount of the vehicle 10. In this case, the fluid pressure set for the brake input amount may be corrected based on detection results detected by various sensors. Here, examples of the road surface state detected by the road surface state detection sensor include a change in the frictional force of the road surface due to weather and a change in the material of the road surface, and a slope of the road surface. Further, the state of the wheel 20 detected by the wheel state detection sensor includes the degree of tire wear of the wheel 20, the temperature and air pressure of the tire, the degree of deterioration of the shoe 52 provided corresponding to each wheel 20, Temperature.
 そして、本実施の形態のブレーキ制御手段60は、得られた修正後の関係に基づき、受け取ったブレーキ入力量に対応した目標流体圧を決定するようになっている。すなわち、修正条件Acに基づいて、受け取ったブレーキ入力量に対応した目標流体圧pcを決定する。 And the brake control means 60 of this Embodiment determines the target fluid pressure corresponding to the received brake input amount based on the obtained relationship after correction. That is, the target fluid pressure pc corresponding to the received brake input amount is determined based on the correction condition Ac.
 次に、本実施の形態の車両10の作用について説明する。 Next, the operation of the vehicle 10 of the present embodiment will be described.
 まず、車両10におけるアクセル量入力手段35の作用について、図1を参照して説明する。 First, the operation of the accelerator amount input means 35 in the vehicle 10 will be described with reference to FIG.
 まず、車両10が通常運転で走行中の場合、人によってアクセルペダル35aが踏み込まれると、アクセルペダル35aの踏角がアクセル量検出センサ35bによって検出され、当該踏角に対応するアクセル入力量が動力部30に入力される。アクセル入力量がアクセル量検出センサ35bから動力部30に入力されると、エンジン出力が当該アクセル入力量に対応するエンジン出力となるよう、エンジン出力が制御される。 First, when the vehicle 10 is traveling in normal operation, when the accelerator pedal 35a is depressed by a person, the stepping angle of the accelerator pedal 35a is detected by the accelerator amount detection sensor 35b, and the accelerator input amount corresponding to the stepping angle is the power. Input to the unit 30. When the accelerator input amount is input from the accelerator amount detection sensor 35b to the power unit 30, the engine output is controlled so that the engine output becomes the engine output corresponding to the accelerator input amount.
 一方、車両10が自動運転で走行中の場合、図1に示す通信機器110によって車両10の加速度制御に必要な加速度情報が取得されると、当該加速度情報が自動運転制御手段67によって検出され、当該加速度情報に対応するアクセル入力量が動力部30に入力される。アクセル入力量がアクセル量検出センサ35bから動力部30に入力されると、エンジン出力が当該アクセル入力量に対応するエンジン出力となるよう、エンジン出力が制御される。 On the other hand, when the vehicle 10 is traveling in automatic driving, when the acceleration information necessary for acceleration control of the vehicle 10 is acquired by the communication device 110 shown in FIG. 1, the acceleration information is detected by the automatic driving control means 67, An accelerator input amount corresponding to the acceleration information is input to the power unit 30. When the accelerator input amount is input from the accelerator amount detection sensor 35b to the power unit 30, the engine output is controlled so that the engine output becomes the engine output corresponding to the accelerator input amount.
 次に、車両10における操舵手段40の作用について、図1を参照して説明する。 Next, the operation of the steering means 40 in the vehicle 10 will be described with reference to FIG.
 まず、車両10が通常運転で走行中の場合、人によって操舵量入力手段41に操舵入力量が入力されると、入力された操舵入力量が操舵アクチュエータ42によって検出される。そして、検出された操舵入力量に基づいて、操舵アクチュエータ42によるロッド21の操作が行われる。 First, when the vehicle 10 is traveling in normal driving, when the steering input amount is input to the steering amount input means 41 by a person, the input steering input amount is detected by the steering actuator 42. Then, the rod 21 is operated by the steering actuator 42 based on the detected steering input amount.
 一方、車両10が自動運転で走行中の場合、図1に示す通信機器110によって車両10の操舵制御に必要な操舵情報が取得されると、当該操舵情報が自動運転制御手段67によって検出され、当該操舵情報に対応する操舵入力量が決定される。そして、決定された操舵入力量に基づいて、操舵アクチュエータ42によるロッド21の操作が行われる。 On the other hand, when the vehicle 10 is traveling in automatic driving, when the steering information necessary for steering control of the vehicle 10 is acquired by the communication device 110 shown in FIG. 1, the steering information is detected by the automatic driving control means 67, A steering input amount corresponding to the steering information is determined. Then, the rod 21 is operated by the steering actuator 42 based on the determined steering input amount.
 次に、車両10におけるブレーキシステム15の作用について、図1乃至図8を参照して説明する。図8は、ブレーキ制御手段60における流体圧の制御方法を示すフローチャートである。 Next, the operation of the brake system 15 in the vehicle 10 will be described with reference to FIGS. 1 to 8. FIG. 8 is a flowchart showing a fluid pressure control method in the brake control means 60.
 まず、車両10が通常運転で走行中の場合、車両10を操作する人によってブレーキペダル64aが踏まれることによって、ブレーキ量入力手段64にブレーキ操作が入力される。ブレーキ量入力手段64にブレーキ操作が入力されると、ブレーキ入力量検出センサ64bによって、ブレーキペダル64aの踏角に対応するブレーキ入力量が決定される。そして、図8に示すように、電気信号としての当該ブレーキ入力量は、第1調整弁制御手段65cに入力される(ステップS1)。 First, when the vehicle 10 is traveling in normal driving, a brake operation is input to the brake amount input means 64 when the brake pedal 64a is depressed by a person operating the vehicle 10. When a brake operation is input to the brake amount input means 64, the brake input amount corresponding to the depression angle of the brake pedal 64a is determined by the brake input amount detection sensor 64b. And as shown in FIG. 8, the said brake input amount as an electrical signal is input into the 1st regulating valve control means 65c (step S1).
 ブレーキ入力量が第1調整弁制御手段65cに入力されると、第1調整弁制御手段65cにおいて、当該ブレーキ入力量に応じてアクチュエータ駆動管路53内の目標流体圧が決定される。具体的には、図3に示す条件Aを参照して、ブレーキ入力量に対応する目標流体圧pが決定され(ステップS2)、当該目標流体圧pに基づいて第1調整弁65bの開閉量が決定される。第1調整弁65bの開閉量が決定されると、第1調整弁65bが当該開閉量の分だけ開放される。 When the brake input amount is input to the first adjustment valve control means 65c, the first adjustment valve control means 65c determines the target fluid pressure in the actuator drive line 53 according to the brake input amount. Specifically, the target fluid pressure p corresponding to the brake input amount is determined with reference to the condition A shown in FIG. 3 (step S2), and the opening / closing amount of the first adjustment valve 65b is based on the target fluid pressure p. Is determined. When the opening / closing amount of the first adjustment valve 65b is determined, the first adjustment valve 65b is opened by the opening / closing amount.
 第1調整弁65bが開放されることにより、流体タンク61とアクチュエータ駆動管路53とが第1流体管路65aを介して連通され、アクチュエータ駆動管路53内の流体圧力が上昇して、第1調整弁65bの開閉量に対応した流体圧力となる。この結果、アクチュエータ駆動管路53内の流体圧が目標流体圧pに等しくなる。アクチュエータ駆動管路53内の流体圧が目標流体圧pに等しくなると、当該目標流体圧pに対応してブレーキアクチュエータ51が駆動される。これにより、シュー52が対応する車輪20に当該目標流体圧力pに対応する圧力で押し付けられる。この結果、車両10が制動されて、車両10が減速を開始する。 When the first adjustment valve 65b is opened, the fluid tank 61 and the actuator drive line 53 are communicated with each other via the first fluid line 65a, and the fluid pressure in the actuator drive line 53 is increased. The fluid pressure corresponds to the opening / closing amount of the 1 regulating valve 65b. As a result, the fluid pressure in the actuator drive line 53 becomes equal to the target fluid pressure p. When the fluid pressure in the actuator drive line 53 becomes equal to the target fluid pressure p, the brake actuator 51 is driven corresponding to the target fluid pressure p. Accordingly, the shoe 52 is pressed against the corresponding wheel 20 with a pressure corresponding to the target fluid pressure p. As a result, the vehicle 10 is braked and the vehicle 10 starts to decelerate.
 車両10が減速を開始すると、図1に示す回転速度センサ70によって、車両10の実際の減速度が検出される。そして、第1調整弁制御手段65cによって、当該実際の減速度と、ブレーキ入力量に応じて予め設定された関係から決定される目標減速度αと、が確認され、実際の減速度と目標の減速度αとの差の大きさが閾値t1以上であるか否かの判断がなされる(ステップS3)。この結果、当該差の大きさが閾値t1より小さければ(NO)、第1調整弁制御手段65cによるアクチュエータ駆動管路53内の流体圧の調整は終了される。 When the vehicle 10 starts decelerating, the actual deceleration of the vehicle 10 is detected by the rotational speed sensor 70 shown in FIG. Then, the first adjusting valve control means 65c confirms the actual deceleration and the target deceleration α determined from the relationship set in advance according to the brake input amount. It is determined whether or not the magnitude of the difference from the deceleration α is equal to or greater than the threshold value t1 (step S3). As a result, if the magnitude of the difference is smaller than the threshold value t1 (NO), the adjustment of the fluid pressure in the actuator drive line 53 by the first adjustment valve control means 65c is ended.
 一方、実際の減速度と目標の減速度αとの差の大きさが閾値t1以上である場合には(YES)、実際の減速度と目標の減速度αとの差に基づいて条件Aが修正されて修正条件Acが決定される。例えば、実際の減速度が図5に示す実際の減速度として許容される下限の減速度L1を下回っている場合、図7に示すように、ブレーキ入力量に対して設定される流体圧pは増大する方向に修正されて修正後の流体圧pcとされ、修正条件Acが決定される。一方、ブレーキ入力量に対する車両10の実際の減速度と目標減速度αとの差が、図5に示す実際の減速度として許容される上限の減速度H1を上回っていた場合、ブレーキ入力量に対して設定される流体圧pは減少する方向に修正されて修正条件Acが決定される。そして、当該修正条件Acに基づいて、再度アクチュエータ駆動管路53内の目標流体圧pcが決定され(ステップS4)、当該目標流体圧pcに基づいて第1調整弁65bの開閉量が修正される。第1調整弁65bの開閉量が修正されると、第1調整弁65bの開閉量が、修正後の開閉量に基づいて調整される。 On the other hand, when the magnitude of the difference between the actual deceleration and the target deceleration α is equal to or greater than the threshold value t1 (YES), the condition A is set based on the difference between the actual deceleration and the target deceleration α. The correction condition Ac is determined after correction. For example, when the actual deceleration is lower than the lower limit deceleration L1 permitted as the actual deceleration shown in FIG. 5, the fluid pressure p set for the brake input amount is as shown in FIG. The corrected fluid pressure pc is corrected in the increasing direction to determine the corrected condition Ac. On the other hand, if the difference between the actual deceleration of the vehicle 10 and the target deceleration rate α with respect to the brake input amount exceeds the upper limit deceleration H1 permitted as the actual deceleration shown in FIG. On the other hand, the set fluid pressure p is corrected in a decreasing direction to determine the correction condition Ac. Then, based on the correction condition Ac, the target fluid pressure pc in the actuator drive line 53 is determined again (step S4), and the opening / closing amount of the first adjustment valve 65b is corrected based on the target fluid pressure pc. . When the opening / closing amount of the first adjusting valve 65b is corrected, the opening / closing amount of the first adjusting valve 65b is adjusted based on the corrected opening / closing amount.
 第1調整弁65bの開閉量が調整されることにより、アクチュエータ駆動管路53内の流体圧力が第1調整弁65bの調整後の開閉量に対応して修正後の目標流体圧pcになる。これにより、ブレーキアクチュエータ51が目標流体圧pcで駆動され、シュー52が対応する車輪20に目標流体圧pcに対応する圧力で押しつけられる。この結果、車両10の減速度が、目標減速度αにより近い減速度となる。 By adjusting the opening / closing amount of the first adjustment valve 65b, the fluid pressure in the actuator drive line 53 becomes the corrected target fluid pressure pc corresponding to the opening / closing amount after the adjustment of the first adjustment valve 65b. As a result, the brake actuator 51 is driven with the target fluid pressure pc, and the shoe 52 is pressed against the corresponding wheel 20 with the pressure corresponding to the target fluid pressure pc. As a result, the deceleration of the vehicle 10 becomes closer to the target deceleration α.
 次に、図2に示す回転速度センサ70によって、車両10の実際の減速度が検出される。そして、第1調整弁制御手段65cによって、当該実際の減速度と、ブレーキ入力量に応じて予め設定された関係から決定される目標減速度αと、が再度確認され、実際の減速度と目標の減速度αとの差の大きさが閾値t1以上であるか否かの判断が再度なされる(ステップS3)。このようにして、実際の減速度と目標減速度αとの差の大きさが閾値t1よりも小さくなるまで条件Aの修正が繰り返され、アクチュエータ駆動管路53内の目標流体圧が修正される。 Next, the actual deceleration of the vehicle 10 is detected by the rotational speed sensor 70 shown in FIG. Then, the actual deceleration and the target deceleration α determined from the relationship set in advance according to the brake input amount are confirmed again by the first regulating valve control means 65c, and the actual deceleration and the target are determined. Whether the magnitude of the difference from the deceleration α is equal to or greater than the threshold value t1 is determined again (step S3). In this way, the correction of the condition A is repeated until the magnitude of the difference between the actual deceleration and the target deceleration α becomes smaller than the threshold value t1, and the target fluid pressure in the actuator drive line 53 is corrected. .
 一方、車両10が自動運転で走行中の場合、通信機器110によって自動運転制御手段67に種々の情報が送信される。自動運転制御手段67には、受信した情報に基づきブレーキ入力量を決定する。そして、図8に示すように、電気信号としての当該ブレーキ入力量は、第2調整弁制御手段66cに入力される(ステップS1)。 On the other hand, when the vehicle 10 is traveling in automatic driving, various information is transmitted to the automatic driving control means 67 by the communication device 110. The automatic operation control means 67 determines the brake input amount based on the received information. And as shown in FIG. 8, the said brake input amount as an electrical signal is input into the 2nd regulating valve control means 66c (step S1).
 ブレーキ入力量が第2調整弁制御手段66cに入力されると、第2調整弁制御手段66cにおいて、当該ブレーキ入力量に応じてアクチュエータ駆動管路53内の目標流体圧が決定される。具体的には、図3に示す条件Aを参照して、ブレーキ入力量に対応する目標流体圧pが決定され(ステップS2)、当該目標流体圧pに基づいて第2調整弁66bの開閉量が決定される。第2調整弁66bの開閉量が決定されると、第2調整弁66bが当該開閉量の分だけ開放される。 When the brake input amount is input to the second adjustment valve control unit 66c, the second adjustment valve control unit 66c determines the target fluid pressure in the actuator drive line 53 according to the brake input amount. Specifically, the target fluid pressure p corresponding to the brake input amount is determined with reference to the condition A shown in FIG. 3 (step S2), and the opening / closing amount of the second adjustment valve 66b is determined based on the target fluid pressure p. Is determined. When the opening / closing amount of the second adjustment valve 66b is determined, the second adjustment valve 66b is opened by the opening / closing amount.
 第2調整弁66bが開放されることにより、流体タンク61とアクチュエータ駆動管路53とが第2流体管路66aを介して連通され、アクチュエータ駆動管路53内の流体圧力が上昇して、第2調整弁66bの開閉量に対応した流体圧力となる。この結果、アクチュエータ駆動管路53内の流体圧が目標流体圧pに等しくなる。アクチュエータ駆動管路53の流体圧力が目標流体圧pに等しくなると、当該目標流体圧力pに対応してブレーキアクチュエータ51が駆動される。これにより、シューが対応する車輪20に当該目標流体圧力pに対応する圧力で押し付けられる。この結果、車両10は制動されて、車両10は減速を開始する。 When the second regulating valve 66b is opened, the fluid tank 61 and the actuator drive line 53 are communicated with each other via the second fluid line 66a, and the fluid pressure in the actuator drive line 53 is increased. 2 The fluid pressure corresponds to the opening / closing amount of the regulating valve 66b. As a result, the fluid pressure in the actuator drive line 53 becomes equal to the target fluid pressure p. When the fluid pressure in the actuator drive line 53 becomes equal to the target fluid pressure p, the brake actuator 51 is driven corresponding to the target fluid pressure p. As a result, the shoe is pressed against the corresponding wheel 20 with a pressure corresponding to the target fluid pressure p. As a result, the vehicle 10 is braked and the vehicle 10 starts to decelerate.
 車両10が減速を開始すると、図1に示す回転速度センサ70によって、車両10の実際の減速度が検出される。そして、第2調整弁制御手段66cによって、当該実際の減速度と、ブレーキ入力量に応じて予め設定された関係から決定される目標減速度αと、が確認され、実際の減速度と目標の減速度αとの差の大きさが閾値t2以上であるか否かの判断がなされる(ステップS3)。この結果、当該差の大きさが閾値t2より小さければ(NO)、第2調整弁制御手段66cによるアクチュエータ駆動管路53内の流体圧の調整は終了される。 When the vehicle 10 starts decelerating, the actual deceleration of the vehicle 10 is detected by the rotational speed sensor 70 shown in FIG. Then, the second adjusting valve control means 66c confirms the actual deceleration and the target deceleration α determined from the relationship set in advance according to the brake input amount, and the actual deceleration and the target It is determined whether or not the magnitude of the difference from the deceleration α is equal to or greater than the threshold value t2 (step S3). As a result, if the magnitude of the difference is smaller than the threshold value t2 (NO), the adjustment of the fluid pressure in the actuator drive line 53 by the second adjustment valve control means 66c is ended.
 一方、実際の減速度と目標の減速度αとの差の大きさが閾値t2以上である場合には(YES)、実際の減速度と目標の減速度αとの差に基づいて条件Aが修正されて修正条件Acが決定される。例えば、実際の減速度が図5に示す実際の減速度として許容される下限の減速度L2を下回っている場合、図7に示すように、ブレーキ入力量に対して設定される流体圧pは増大する方向に修正されて修正後の流体圧pcとされ、修正条件Acが決定される。一方、ブレーキ入力量に対する車両10の実際の減速度と目標減速度αとの差が、図5に示す実際の減速度として許容される上限の減速度H2を上回っていた場合、ブレーキ入力量に対して設定される流体圧pは減少する方向に修正されて修正条件Acが決定される。そして、当該修正条件Acに基づいて、再度アクチュエータ駆動管路53内の目標流体圧pcが決定され(ステップS4)、当該目標流体圧pcに基づいて第2調整弁66bの開閉量が修正される。第2調整弁66bの開閉量が修正されると、第2調整弁66bの開閉量が、修正後の開閉量に基づいて調整される。 On the other hand, when the magnitude of the difference between the actual deceleration and the target deceleration α is equal to or greater than the threshold value t2 (YES), the condition A is set based on the difference between the actual deceleration and the target deceleration α. The correction condition Ac is determined after correction. For example, when the actual deceleration is lower than the lower limit deceleration L2 permitted as the actual deceleration shown in FIG. 5, the fluid pressure p set for the brake input amount is as shown in FIG. The corrected fluid pressure pc is corrected in the increasing direction to determine the corrected condition Ac. On the other hand, when the difference between the actual deceleration of the vehicle 10 and the target deceleration rate α with respect to the brake input amount exceeds the upper limit deceleration H2 permitted as the actual deceleration shown in FIG. On the other hand, the set fluid pressure p is corrected in a decreasing direction to determine the correction condition Ac. Then, based on the correction condition Ac, the target fluid pressure pc in the actuator drive pipe 53 is determined again (step S4), and the opening / closing amount of the second adjustment valve 66b is corrected based on the target fluid pressure pc. . When the opening / closing amount of the second adjustment valve 66b is corrected, the opening / closing amount of the second adjustment valve 66b is adjusted based on the corrected opening / closing amount.
 第2調整弁66bの開閉量が調整されることにより、アクチュエータ駆動管路53内の流体圧力が第2調整弁66bの調整後の開閉量に対応して修正後の目標流体圧pcになる。これにより、ブレーキアクチュエータ51が目標流体圧pcで駆動され、シューが対応する車輪20に目標流体圧pcに対応する圧力で押しつけられる。この結果、車両10の減速度が、目標減速度αにより近い減速度となる。 By adjusting the opening / closing amount of the second adjustment valve 66b, the fluid pressure in the actuator drive line 53 becomes the corrected target fluid pressure pc corresponding to the adjusted opening / closing amount of the second adjustment valve 66b. As a result, the brake actuator 51 is driven with the target fluid pressure pc, and the shoe is pressed against the corresponding wheel 20 with the pressure corresponding to the target fluid pressure pc. As a result, the deceleration of the vehicle 10 becomes closer to the target deceleration α.
 次に、図2に示す回転速度センサ70によって、車両10の実際の減速度が検出される。そして、第2調整弁制御手段66cによって、当該実際の減速度と、ブレーキ入力量に応じて予め設定された関係から決定される目標減速度αと、が再度確認され、実際の減速度と目標の減速度αとの差の大きさが閾値t2以上であるか否かの判断が再度なされる(ステップS3)。このようにして、実際の減速度と目標減速度αとの差の大きさが閾値t2よりも小さくなるまで条件Aの修正が繰り返され、アクチュエータ駆動管路53内の目標流体圧が修正される。 Next, the actual deceleration of the vehicle 10 is detected by the rotational speed sensor 70 shown in FIG. Then, the second adjusting valve control means 66c reconfirms the actual deceleration and the target deceleration α determined from the relationship set in advance according to the brake input amount, and the actual deceleration and the target Whether or not the magnitude of the difference from the deceleration α is equal to or greater than the threshold value t2 is determined again (step S3). In this way, the correction of the condition A is repeated until the magnitude of the difference between the actual deceleration and the target deceleration α becomes smaller than the threshold value t2, and the target fluid pressure in the actuator drive line 53 is corrected. .
 ところで、図5及び図6に示されるように、自動運転の場合に自動運転制御手段67から入力されたブレーキ入力量に対して適用される閾値t2は、通常運転の場合にブレーキ量入力手段64から入力されたブレーキ入力量に対して適用される閾値t1よりも、小さい。このため、通常運転の場合と自動運転の場合とでは、自動運転の場合の方が、頻繁に車両10の減速度の調節がなされることとなる。 By the way, as shown in FIGS. 5 and 6, the threshold value t2 applied to the brake input amount input from the automatic operation control means 67 in the case of automatic operation is the brake amount input means 64 in the case of normal operation. It is smaller than the threshold value t1 applied to the brake input amount input from. For this reason, the deceleration of the vehicle 10 is adjusted more frequently in the case of the automatic operation in the case of the normal operation and the case of the automatic operation.
 以上に説明した一実施の形態において、ブレーキシステム15は、車両10を自動で制御する自動運転と人が操作して車両10を運転する通常運転との両方が可能な車両10に用いられるブレーキシステム15であって、管路53と、管路53内の流体圧により動作するシュー52と、を有するブレーキ手段50と、人が操作することでブレーキ入力量を入力可能な入力手段64と、ブレーキ入力量を自動入力する自動運転制御手段67と、入力手段64および自動運転制御手段67から入力されたブレーキ入力量に応じて管路53内の流体圧を調節するブレーキ制御手段15と、を備え、ブレーキ制御手段15は、ブレーキ入力量を受け取って流体圧を調節した場合、車両10の実際の減速度とブレーキ入力量に応じて予め設定された関係から決定される目標減速度αとを確認し、実際の減速度と目標減速度αとの関係に基づいた値が予め設定された閾値t1,t2を超えていれば又は閾値t1,t2以上になっていれば、流体圧をさらに調節する。 In the embodiment described above, the brake system 15 is used in the vehicle 10 capable of both automatic driving for automatically controlling the vehicle 10 and normal driving for operating the vehicle 10 by a human operation. 15, a brake means 50 having a pipe line 53 and a shoe 52 operated by a fluid pressure in the pipe line 53, an input means 64 capable of inputting a brake input amount by a human operation, and a brake Automatic operation control means 67 for automatically inputting an input amount, and brake control means 15 for adjusting the fluid pressure in the pipe line 53 in accordance with the brake input amount input from the input means 64 and the automatic operation control means 67. When the brake control means 15 receives the brake input amount and adjusts the fluid pressure, the brake control means 15 has a function set in advance according to the actual deceleration of the vehicle 10 and the brake input amount. The target deceleration α determined from the above is confirmed, and if the value based on the relationship between the actual deceleration and the target deceleration α exceeds the preset threshold values t1, t2, or more than the threshold values t1, t2. If so, further adjust the fluid pressure.
 このようなブレーキシステム15によれば、ブレーキ制御手段60が、ブレーキ手段50のシュー52を動作させた後、車両10の実際の減速度と目標減速度αとを比較する。そして、両者の差が大きい場合には、シュー52を動作させる流体圧の調整を行うことによってシュー52の押し付け力の調整を行う。この結果、車両10は、走行環境や車両状態が変化しても、ブレーキ入力量が入力されれば、当該ブレーキ入力量から期待される目標減速度αに実際の減速度が近づくように、シュー52の押し付け力、したがって車両10の制動力、が制御される。 According to such a brake system 15, the brake control means 60 compares the actual deceleration of the vehicle 10 with the target deceleration α after operating the shoe 52 of the brake means 50. If the difference between the two is large, the pressing force of the shoe 52 is adjusted by adjusting the fluid pressure for operating the shoe 52. As a result, even if the traveling environment or the vehicle state changes, the vehicle 10 can change the shoe so that the actual deceleration approaches the target deceleration rate α expected from the brake input amount when the brake input amount is input. The pressing force of 52 and hence the braking force of the vehicle 10 are controlled.
 また、上述した一実施の形態のブレーキシステム15において、自動運転制御手段67から入力されたブレーキ入力量に対して適用される閾値t2は、入力手段64から入力されたブレーキ入力量に対して適用される閾値t1よりも、小さい。 In the brake system 15 according to the embodiment described above, the threshold value t2 applied to the brake input amount input from the automatic operation control unit 67 is applied to the brake input amount input from the input unit 64. It is smaller than the threshold value t1.
 このようなブレーキシステム15によれば、管路53の流体圧の調整を行うか否かの判断に用いられる閾値は、自動運転の場合と通常運転の場合とでは異なり、前者の場合の方が小さい。このため、自動運転の場合には頻繁に減速度の調整がなされる一方、通常運転の場合には、減速度の調整頻度が抑制される。自動運転では、車両を運転する操作者の学習能力を期待することができないが、高頻度で減速度の調整を行うことで、高精度な速度制御および期待した制動距離での制動を安定して実現することができる。一方、通常運転では、車両を操作する運転者に、自身が入力したブレーキ入力量と実際の減速度との相違に起因した違和感を、過度に与えること無く、路面状況や積載重量等の外乱要素に起因した減速度の変動を補正することができる。すなわち、自動運転制御手段から入力されたブレーキ入力量に対して適用される閾値を、入力手段から入力されたブレーキ入力量に対して適用される閾値と、変更することで、目標とする減速度を実現するための制御を、自動運転および通常運転の運転モードに応じて、適切に変更している。 According to such a brake system 15, the threshold value used for determining whether or not to adjust the fluid pressure in the pipe line 53 is different between the case of the automatic operation and the case of the normal operation, and the former case is better. small. For this reason, the deceleration is frequently adjusted in the case of automatic operation, while the adjustment frequency of the deceleration is suppressed in the case of normal operation. In automatic driving, it is impossible to expect the learning ability of the operator who drives the vehicle, but by adjusting the deceleration at high frequency, high-precision speed control and braking at the expected braking distance can be stabilized. Can be realized. On the other hand, in normal operation, disturbance factors such as road surface conditions and load weight are given without excessively giving the driver who operates the vehicle the uncomfortable feeling caused by the difference between the brake input amount input by himself and the actual deceleration. It is possible to correct the fluctuation of the deceleration caused by the above. That is, the target deceleration is obtained by changing the threshold applied to the brake input amount input from the automatic operation control means to the threshold applied to the brake input amount input from the input means. The control for realizing the above is appropriately changed according to the operation mode of automatic operation and normal operation.
 上述した一実施の形態において、ブレーキ制御手段60は、ブレーキ入力量と流体圧との予め設定された関係に関する情報(条件Aを示す情報)を有し、ブレーキ入力量が入力された際には、情報(条件Aを示す情報)に基づいて受け取ったブレーキ入力量に対応した目標流体圧pを決定し、管路53内の流体圧を目標流体圧pに調節する。この場合、ブレーキ入力量に基づいた目標流体圧pの決定が容易である。 In the embodiment described above, the brake control means 60 has information (information indicating the condition A) regarding a preset relationship between the brake input amount and the fluid pressure, and when the brake input amount is input. The target fluid pressure p corresponding to the received brake input amount is determined based on the information (information indicating the condition A), and the fluid pressure in the pipe 53 is adjusted to the target fluid pressure p. In this case, it is easy to determine the target fluid pressure p based on the brake input amount.
 上述した一実施の形態において、ブレーキ制御手段60は、実際の減速度と目標減速度αとの関係に基づいた値が予め設定された閾値t1,t2を超えていた場合又は閾値t1,t2以上となっていた場合、ブレーキ入力量と流体圧との予め設定された関係(条件A)を修正して得られた修正後の関係(修正条件Ac)に基づき、受け取ったブレーキ入力量に対応した目標流体圧pcを決定する。この場合、実際の減速度と目標減速度αとが大きく異なっていれば、流体圧の決定に用いられるブレーキ入力量と流体圧との関係に関する条件Aが修正され、修正後の条件Acに基づいて目標流体圧pcが決定される。そして、修正後の条件Acを、その後の流体圧の決定に用いることが可能である。したがって、走行環境や車両状態が変化した場合のように、ブレーキ入力量と流体圧との予め設定された関係を一定期間継続して修正する必要がある場合、一度修正した関係(修正条件Ac)をその後の流体圧の調整に反映させることが可能である。この結果、車両10の減速度の調整頻度や調整量が抑制され、車両10の減速を安定して行うことが可能である。 In the above-described embodiment, the brake control unit 60 determines that the value based on the relationship between the actual deceleration and the target deceleration α exceeds the preset thresholds t1 and t2, or more than the thresholds t1 and t2. In this case, based on the corrected relationship (correction condition Ac) obtained by correcting the preset relationship (condition A) between the brake input amount and the fluid pressure, the received brake input amount is handled. A target fluid pressure pc is determined. In this case, if the actual deceleration and the target deceleration α are greatly different, the condition A relating to the relationship between the brake input amount used for determining the fluid pressure and the fluid pressure is corrected, and based on the corrected condition Ac. Thus, the target fluid pressure pc is determined. Then, the corrected condition Ac can be used for the subsequent determination of the fluid pressure. Therefore, when it is necessary to continuously correct the preset relationship between the brake input amount and the fluid pressure for a certain period of time as in the case where the traveling environment or the vehicle state changes, the relationship once corrected (correction condition Ac) Can be reflected in the subsequent adjustment of the fluid pressure. As a result, the adjustment frequency and amount of deceleration of the vehicle 10 are suppressed, and the vehicle 10 can be decelerated stably.
 上述した一実施の形態において、車両10は、自動運転と通常運転の両方が可能な車両であって、上述のブレーキシステム15を備える。この場合、車両10は、走行環境や車両状態が変化しても、ブレーキ入力量が入力されれば、当該ブレーキ入力量から期待される目標減速度αに実際の減速度が近づくように、シュー52の押し付け力、したがって車両10の制動力、が制御される。 In the embodiment described above, the vehicle 10 is a vehicle capable of both automatic driving and normal driving, and includes the brake system 15 described above. In this case, even if the driving environment or the vehicle state changes, the vehicle 10 can be used to make the actual deceleration approach the target deceleration rate α expected from the brake input amount when the brake input amount is input. The pressing force of 52 and hence the braking force of the vehicle 10 are controlled.
 上述した一実施の形態において、隊列走行車両群1は、手動運転又は自動運転される先頭車両5と、先頭車両5を追従する後続車両10と、を備え、後続車両10は、上述の車両10である。この場合、後続車両10は、走行環境や車両状態が変化しても、ブレーキ入力量が入力されれば、当該ブレーキ入力量から期待される目標減速度αに実際の減速度が近づくように、シュー52の押し付け力、したがって車両10の制動力、が制御される。 In the above-described embodiment, the row running vehicle group 1 includes the leading vehicle 5 that is manually operated or automatically operated, and the subsequent vehicle 10 that follows the leading vehicle 5, and the subsequent vehicle 10 is the vehicle 10 described above. It is. In this case, if the brake input amount is input even if the traveling environment or the vehicle state changes, the succeeding vehicle 10 is arranged so that the actual deceleration approaches the target deceleration rate α expected from the brake input amount. The pressing force of the shoe 52, and hence the braking force of the vehicle 10, is controlled.

Claims (5)

  1.  車両を自動で制御する自動運転と人が操作して車両を運転する通常運転との両方が可能な車両に用いられるブレーキシステムであって、
     管路と、前記管路内の流体圧により動作するシューと、を有するブレーキ手段と、
     人が操作することでブレーキ入力量を入力可能な入力手段と、
     ブレーキ入力量を自動入力する自動運転制御手段と、
     前記入力手段および前記自動運転制御手段から入力されたブレーキ入力量に応じて前記管路内の前記流体圧を調節するブレーキ制御手段と、を備え、
     前記ブレーキ制御手段は、前記ブレーキ入力量を受け取って前記流体圧を調節した場合、前記車両の実際の減速度と前記ブレーキ入力量に応じて予め設定された関係から決定される目標減速度とを確認し、前記実際の減速度と前記目標減速度との関係に基づいた値が予め設定された閾値を超えていれば又は閾値以上になっていれば、前記流体圧をさらに調節し、
     前記自動運転制御手段から入力されたブレーキ入力量に対して適用される前記閾値は、前記入力手段から入力されたブレーキ入力量に対して適用される前記閾値よりも、小さい、ブレーキシステム。
    A brake system used for a vehicle capable of both automatic driving for automatically controlling the vehicle and normal driving for manipulating the vehicle,
    Brake means having a conduit and a shoe that operates by fluid pressure in the conduit;
    An input means capable of inputting a brake input amount by a human operation;
    Automatic operation control means for automatically inputting the brake input amount;
    Brake control means for adjusting the fluid pressure in the pipe line according to the brake input amount input from the input means and the automatic operation control means,
    When the brake control unit receives the brake input amount and adjusts the fluid pressure, the brake control unit calculates an actual deceleration of the vehicle and a target deceleration determined from a relationship set in advance according to the brake input amount. Confirm, if the value based on the relationship between the actual deceleration and the target deceleration exceeds a preset threshold value or more than a threshold value, further adjust the fluid pressure,
    The brake system, wherein the threshold value applied to the brake input amount input from the automatic operation control means is smaller than the threshold value applied to the brake input amount input from the input means.
  2.  前記ブレーキ制御手段は、前記ブレーキ入力量と前記流体圧との予め設定された関係に関する情報を有し、前記ブレーキ入力量が入力された際には、前記情報に基づいて受け取ったブレーキ入力量に対応した目標流体圧を決定し、前記管路内の流体圧を前記目標流体圧に調節する、請求項1に記載のブレーキシステム。 The brake control means has information related to a preset relationship between the brake input amount and the fluid pressure, and when the brake input amount is input, the brake input amount is received based on the information. The brake system of claim 1, wherein a corresponding target fluid pressure is determined and the fluid pressure in the conduit is adjusted to the target fluid pressure.
  3.  前記ブレーキ制御手段は、前記実際の減速度と前記目標減速度との関係に基づいた前記値が予め設定された閾値を超えていた場合又は閾値以上となっていた場合、前記ブレーキ入力量と前記流体圧との前記予め設定された関係を修正して得られた修正後の関係に基づき、受け取ったブレーキ入力量に対応した目標流体圧を決定する、請求項2に記載のブレーキシステム。 When the value based on the relationship between the actual deceleration and the target deceleration exceeds a preset threshold value or exceeds a threshold value, the brake control means, The brake system according to claim 2, wherein a target fluid pressure corresponding to the received brake input amount is determined based on a corrected relationship obtained by correcting the preset relationship with the fluid pressure.
  4.  自動運転と通常運転の両方が可能な車両であって、
     請求項1~3のいずれか一項に記載のブレーキシステムを備える、車両。
    A vehicle capable of both automatic driving and normal driving,
    A vehicle comprising the brake system according to any one of claims 1 to 3.
  5.  先頭車両と、
     前記先頭車両を追従する後続車両と、を備え、
     前記後続車両は、請求項4に記載の車両である、隊列走行車両群。
    The top vehicle,
    A following vehicle that follows the leading vehicle, and
    The succeeding vehicle is a group running vehicle group that is the vehicle according to claim 4.
PCT/JP2017/031037 2016-08-31 2017-08-29 Brake system, vehicle, and vehicle platoon WO2018043519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537318A JP7036730B2 (en) 2016-08-31 2017-08-29 Brake system, vehicle and platooning vehicle group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169781 2016-08-31
JP2016169781 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043519A1 true WO2018043519A1 (en) 2018-03-08

Family

ID=61301757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031037 WO2018043519A1 (en) 2016-08-31 2017-08-29 Brake system, vehicle, and vehicle platoon

Country Status (2)

Country Link
JP (1) JP7036730B2 (en)
WO (1) WO2018043519A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10216195B2 (en) 2011-07-06 2019-02-26 Peloton Technology, Inc. Applications for using mass estimations for vehicles
US10254764B2 (en) 2016-05-31 2019-04-09 Peloton Technology, Inc. Platoon controller state machine
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10514706B2 (en) 2011-07-06 2019-12-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US10732645B2 (en) 2011-07-06 2020-08-04 Peloton Technology, Inc. Methods and systems for semi-autonomous vehicular convoys
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
CN112141060A (en) * 2019-06-28 2020-12-29 丰田自动车株式会社 Deceleration control device for autonomous vehicle
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
US11161487B2 (en) * 2019-08-15 2021-11-02 Bendix Commercial Vehicle Systems Llc System and method for controlling wheel brakes in a vehicle platooning with another vehicle
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029445A (en) * 1996-07-16 1998-02-03 Nissan Motor Co Ltd Follow-up traveling controller of vehicle
JPH11134600A (en) * 1997-10-31 1999-05-21 Toyota Motor Corp Traveling controller of automatic traveling vehicle
JP2000313330A (en) * 1999-04-28 2000-11-14 Bosch Braking Systems Co Ltd Brake system
JP2000331299A (en) * 1999-05-21 2000-11-30 Honda Motor Co Ltd Column travel device
JP2003137003A (en) * 2001-11-07 2003-05-14 Daihatsu Motor Co Ltd Follow-up traveling device and method of controlling the device
JP2009262629A (en) * 2008-04-22 2009-11-12 Fuji Heavy Ind Ltd Drive assist device of vehicle
JP2013189155A (en) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd Vehicle control apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001327A (en) * 2005-06-21 2007-01-11 Nissan Motor Co Ltd Traveling control device for following proceeding vehicle
JP4930481B2 (en) * 2008-09-26 2012-05-16 トヨタ自動車株式会社 Automatic vehicle braking device
JPWO2014184840A1 (en) * 2013-05-13 2017-02-23 トヨタ自動車株式会社 Brake device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029445A (en) * 1996-07-16 1998-02-03 Nissan Motor Co Ltd Follow-up traveling controller of vehicle
JPH11134600A (en) * 1997-10-31 1999-05-21 Toyota Motor Corp Traveling controller of automatic traveling vehicle
JP2000313330A (en) * 1999-04-28 2000-11-14 Bosch Braking Systems Co Ltd Brake system
JP2000331299A (en) * 1999-05-21 2000-11-30 Honda Motor Co Ltd Column travel device
JP2003137003A (en) * 2001-11-07 2003-05-14 Daihatsu Motor Co Ltd Follow-up traveling device and method of controlling the device
JP2009262629A (en) * 2008-04-22 2009-11-12 Fuji Heavy Ind Ltd Drive assist device of vehicle
JP2013189155A (en) * 2012-03-15 2013-09-26 Nissan Motor Co Ltd Vehicle control apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10216195B2 (en) 2011-07-06 2019-02-26 Peloton Technology, Inc. Applications for using mass estimations for vehicles
US10234871B2 (en) 2011-07-06 2019-03-19 Peloton Technology, Inc. Distributed safety monitors for automated vehicles
US11360485B2 (en) 2011-07-06 2022-06-14 Peloton Technology, Inc. Gap measurement for vehicle convoying
US11334092B2 (en) 2011-07-06 2022-05-17 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10474166B2 (en) 2011-07-06 2019-11-12 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10514706B2 (en) 2011-07-06 2019-12-24 Peloton Technology, Inc. Gap measurement for vehicle convoying
US10520952B1 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Devices, systems, and methods for transmitting vehicle data
US10520581B2 (en) 2011-07-06 2019-12-31 Peloton Technology, Inc. Sensor fusion for autonomous or partially autonomous vehicle control
US10732645B2 (en) 2011-07-06 2020-08-04 Peloton Technology, Inc. Methods and systems for semi-autonomous vehicular convoys
US11294396B2 (en) 2013-03-15 2022-04-05 Peloton Technology, Inc. System and method for implementing pre-cognition braking and/or avoiding or mitigation risks among platooning vehicles
US10254764B2 (en) 2016-05-31 2019-04-09 Peloton Technology, Inc. Platoon controller state machine
US10906544B2 (en) 2016-08-22 2021-02-02 Peloton Technology, Inc. Dynamic gap control for automated driving
US10921822B2 (en) 2016-08-22 2021-02-16 Peloton Technology, Inc. Automated vehicle control system architecture
US10369998B2 (en) 2016-08-22 2019-08-06 Peloton Technology, Inc. Dynamic gap control for automated driving
US10899323B2 (en) 2018-07-08 2021-01-26 Peloton Technology, Inc. Devices, systems, and methods for vehicle braking
US10762791B2 (en) 2018-10-29 2020-09-01 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11341856B2 (en) 2018-10-29 2022-05-24 Peloton Technology, Inc. Systems and methods for managing communications between vehicles
US11427196B2 (en) 2019-04-15 2022-08-30 Peloton Technology, Inc. Systems and methods for managing tractor-trailers
CN112141060A (en) * 2019-06-28 2020-12-29 丰田自动车株式会社 Deceleration control device for autonomous vehicle
CN112141060B (en) * 2019-06-28 2022-09-02 丰田自动车株式会社 Deceleration control device for autonomous vehicle
US11161487B2 (en) * 2019-08-15 2021-11-02 Bendix Commercial Vehicle Systems Llc System and method for controlling wheel brakes in a vehicle platooning with another vehicle

Also Published As

Publication number Publication date
JP7036730B2 (en) 2022-03-15
JPWO2018043519A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
WO2018043519A1 (en) Brake system, vehicle, and vehicle platoon
US8332119B2 (en) System for controlling a motor vehicle driving downhill
US8388071B2 (en) Braking controller
US5315519A (en) Method of sensing excessive slip in a wheel slip control system
US8219297B2 (en) Running control apparatus and running control method for vehicle
JP3926925B2 (en) Preceding vehicle tracking control device
CA2631442A1 (en) Vehicle control device
JP4372253B2 (en) Brake system using torque feedback control using torque level change
US20090287388A1 (en) System for controlling a vehicle driving downhill
GB2276683A (en) A continuously variable transmission controlled to regulate drive slip and/or engine braking
CN114945496A (en) Vehicle motion management based on torque requests with speed limits
JPH08216860A (en) Modular vehicle dynamic characteristics control system
JPH1178600A (en) Vehicle travel control device
JP4973086B2 (en) Vehicle driving support apparatus and method
GB2350700A (en) Controlling the speed of a vehicle when travelling downhill
JP2001047996A (en) Vehicle wheel slip control method and device
US11041563B2 (en) Transmission control device for vehicle
US20170327096A1 (en) Vehicle reverse traveling speed limiting apparatus
JP2007501147A (en) Longitudinal guide device of automobile by intervention in brake system
CN113613966B (en) Brake control device for vehicle
KR102162915B1 (en) Method and device for automatic longitudinal dynamics control of a motor vehicle
US6783194B2 (en) Method and brake system for controlling the braking process in a motor vehicle
JP2000071807A (en) Preceding vehicle following control device
EP1155901B1 (en) Vehicle speed control system using lockup clutch for automotive vehicle
CN114620029A (en) Method, apparatus and computer program product for adjusting speed during parking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846524

Country of ref document: EP

Kind code of ref document: A1