WO2018043513A1 - Image display device for vehicle - Google Patents

Image display device for vehicle Download PDF

Info

Publication number
WO2018043513A1
WO2018043513A1 PCT/JP2017/031027 JP2017031027W WO2018043513A1 WO 2018043513 A1 WO2018043513 A1 WO 2018043513A1 JP 2017031027 W JP2017031027 W JP 2017031027W WO 2018043513 A1 WO2018043513 A1 WO 2018043513A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
driver
vehicle
adjustment
display device
Prior art date
Application number
PCT/JP2017/031027
Other languages
French (fr)
Japanese (ja)
Inventor
望 下田
裕司 藤田
壮太 佐藤
昭央 三沢
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2018043513A1 publication Critical patent/WO2018043513A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a vehicle video display device that is suitable for being mounted on a vehicle or the like and displaying various video information.
  • HUD head-up display
  • the basic configuration of the HUD is to project an optically generated image onto a windshield (windshield) or combiner, the reflected image light enters the driver's eyes, and the driver visually recognizes the virtual image in front of the windshield. To do. At that time, the appearance of the image (virtual image) differs depending on the position (eye point) of the driver's eyes. In other words, if the position of the driver's eyes does not exist within the range (eye box) where the image can be viewed, the driver cannot normally view the image.
  • the HUD has a mirror that changes the angle of the mirror (concave mirror) that reflects the image light toward the windshield.
  • An adjustment mechanism is provided (see, for example, Patent Document 1).
  • the driver can move to a position where the image can be easily seen by operating the mirror adjustment mechanism.
  • the driver because of manual adjustment by the driver himself, it takes time for adjustment and is complicated for the driver. It becomes work.
  • an object of the present invention is to provide a vehicle image display device that automatically adjusts a mirror according to the eye level of a driver.
  • the present invention provides a vehicle video display device that is mounted on a vehicle, projects video light onto a windshield, and displays video to the driver.
  • a mirror that reflects the image light emitted from the image display unit toward the windshield, a mirror driving unit that changes an angle or a position of the mirror, and an angle of the mirror that controls the mirror driving unit.
  • a control unit that adjusts the position
  • a detection unit that detects the height of the eyes of the driver
  • a storage unit that stores the adjustment amount of the mirror.
  • the control unit automatically adjusts the mirror by controlling the mirror driving unit according to the eye height of the driver detected by the detection unit, and the adjusted result is set as the driver setting information.
  • the control unit uses the driver setting information stored in the storage unit when the mirror is automatically adjusted again for the same driver as the driver.
  • the mirror is automatically adjusted.
  • the present invention it is possible to provide a video display device for a vehicle that adjusts a mirror in a short time without bothering the driver's hand even if the driver changes and the eye height changes.
  • FIG. 1 is a block diagram illustrating an internal configuration of a head-up display (Example 1).
  • working Example 3).
  • FIG. 6 is a diagram for explaining eyebox automatic adjustment in conjunction with sheet position adjustment.
  • FIG. 1 is a schematic diagram for explaining the outline of a head up display (hereinafter referred to as HUD) mounted on a vehicle.
  • the HUD 100 mounted on the vehicle 1 projects the image light generated by the image display device 2 onto the windshield (hereinafter referred to as a windshield 7) of the vehicle 1 through the mirror 3.
  • the image light reflected by the windshield 7 enters the eyes of the driver, and the driver visually recognizes the image from the HUD.
  • the video to be displayed includes information related to driving and supports driving operation.
  • the HUD 100 includes a vehicle information acquisition unit 5 that acquires various vehicle information 50, a control unit 10 that generates video information to be displayed based on the vehicle information acquisition unit 5, a mirror drive unit 4 that drives the mirror 3, and a driver.
  • a speaker 6 for outputting audio information is included.
  • the vehicle information 50 includes an operation signal by the driver such as a HUD display On / Off signal and a HUD mirror adjustment signal related to the adjustment of the mirror 3 of the HUD. .
  • FIG. 2 is a block diagram showing the internal configuration of the HUD 100.
  • Various vehicle information 50 is input to the vehicle information acquisition unit 5 and sent to the control unit 10.
  • An electronic control unit (ECU, Electronic Control Unit) 11 in the control unit 10 generates a video signal displayed by the HUD based on the input vehicle information. Moreover, based on vehicle information, the control signal with respect to the mirror 3 and the audio
  • the video display device 2 includes a light source 21 such as an LED or a laser, an illumination optical system 22, and a display element 23 such as a liquid crystal element, and emits video light generated by the display element 23 toward the mirror 3.
  • an audio output unit 12 that outputs an audio signal to the speaker 6, a non-volatile memory 13 that stores a program executed by the ECU 11, a memory 14 that stores video information and control information, and a light source of the video display device 2 21, a light source adjustment unit 15 that controls 21, a distortion correction unit 16 that corrects distortion of a video signal to be displayed, a display element driving unit 17 that drives the display element 23 based on the corrected video signal, and a mirror driving unit 4.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration related to the acquisition of the vehicle information 50 in the HUD.
  • a part of the hardware configuration of the vehicle information acquisition unit 5 and the control unit 10 will be mainly shown.
  • Acquisition of the vehicle information 50 is performed by information acquisition devices, such as various sensors connected to ECU11 under control of ECU11, for example.
  • a vehicle speed sensor 101 for example, a vehicle speed sensor 101, a shift position sensor 102, a steering wheel steering angle sensor 103, a headlight sensor 104, an illuminance sensor 105, a chromaticity sensor 106, a distance measuring sensor 107, an infrared sensor 108, an engine start sensor 109, acceleration sensor 110, gyro sensor 111, temperature sensor 112, road-to-vehicle communication wireless receiver 113, vehicle-to-vehicle communication wireless receiver 114, camera (inside the vehicle) 115, camera (outside the vehicle) 116, GPS receiver 117, and VICS (Vehicle Information and Communication System): a device such as a receiver 118, load sensor 119, position sensor 120, HUD display On / Off sensor 121, HUD mirror adjustment sensor 122, etc.
  • VICS Vehicle Information and Communication System
  • attitude sensor is used as an example of the attitude sensor, but other attitude sensors may be used. It is not always necessary to include all these devices, and other types of devices may be included.
  • vehicle information 50 that can be acquired by the equipped device can be used as appropriate.
  • the vehicle speed sensor 101 acquires speed information of the vehicle 1.
  • the shift position sensor 102 acquires current gear information of the vehicle 1.
  • the steering wheel angle sensor 103 acquires steering wheel angle information.
  • the headlight sensor 104 acquires lamp lighting information related to On / Off of the headlight.
  • the illuminance sensor 105 and the chromaticity sensor 106 acquire external light information.
  • the distance measuring sensor 107 acquires distance information between the vehicle 1 and an external object.
  • the infrared sensor 108 acquires infrared information related to the presence / absence and distance of an object at a short distance of the vehicle 1.
  • the engine start sensor 109 detects engine On / Off information.
  • the acceleration sensor 110 and the gyro sensor 111 acquire acceleration gyro information including acceleration and angular velocity as information on the posture and behavior of the vehicle 1.
  • the temperature sensor 112 acquires temperature information inside and outside the vehicle.
  • the road-to-vehicle communication wireless receiver 113 and the vehicle-to-vehicle communication wireless receiver 114 are respectively road-to-vehicle communication information received by road-to-vehicle communication between the vehicle 1 and roads, signs, signals, etc.
  • the vehicle-to-vehicle communication information received by the vehicle-to-vehicle communication with another vehicle is acquired.
  • the camera (inside the vehicle) 115 and the camera (outside the vehicle) 116 respectively capture the moving image of the situation inside and outside the vehicle and acquire camera video information (inside / outside the vehicle).
  • the camera (inside the vehicle) 115 captures, for example, the driver's posture, eye position, movement, and the like. By analyzing the obtained moving image, it is possible to acquire information such as the driver's fatigue status and eye height, for example.
  • the camera (outside the vehicle) 116 captures surrounding conditions such as the front and rear of the vehicle 1. By analyzing the obtained video, for example, it is possible to grasp the presence or absence of moving objects such as other vehicles and people around the building, topography, road surface conditions (rain, snow, freezing, unevenness, etc.) It is.
  • the GPS receiver 117 and the VICS receiver 118 obtain GPS information obtained by receiving the GPS signal and VICS information obtained by receiving the VICS signal, respectively. It may be implemented as a part of a car navigation system that acquires and uses these pieces of information.
  • the load sensor 119 and the position sensor 120 detect the position / posture of the driver.
  • the HUD display On / Off sensor 121 detects whether the HUD power supply is On or Off.
  • the HUD mirror adjustment sensor 122 detects an adjustment signal of the HUD mirror and acquires information on whether or not to perform mirror adjustment processing.
  • HUD-related sensors may be provided inside the HUD.
  • FIG. 4 is a schematic diagram showing a video display state by HUD.
  • Display image light is emitted from the image display device 2 installed at the lower part of the dashboard of the vehicle 1.
  • the image light is reflected by the first mirror 3 b and the second mirror 3 a (for example, a concave mirror, a free-form surface mirror, a mirror having an optical axis asymmetric shape, etc.) and projected toward the windshield 7.
  • the first mirror 3 b is fixed, and the second mirror 3 a can be rotated by the mirror driving unit 4.
  • the rotatable second mirror 3a is simply referred to as “mirror 3”.
  • the image light converged and projected from the mirror 3 is reflected by the windshield 7, enters the driver's eyes 8, and forms an image on the retina so that the image can be visually recognized.
  • the driver sees the virtual image 9 present in front of the windshield 7.
  • the reflection position of the image light on the windshield 7 is indicated by reference numeral 70. That is, the driver sees the virtual image 9 in the forward direction of the reflection position 70.
  • the member to be projected is not limited to the windshield 7 and may be another member such as a combiner as long as the image is projected.
  • FIG. 5 is a flowchart showing the basic operation of the HUD.
  • (A) shows an initial operation, and (b) shows a normal operation including various adjustments.
  • the following processing is controlled by the electronic control unit (ECU) 11 of the control unit 10, and the processing content will be described along the flow.
  • ECU electronice control unit
  • the vehicle information acquisition unit 5 acquires the vehicle information 50 (S102). First, an appropriate brightness level is calculated from external light information from the illuminance sensor 105 (S103), and the brightness level of the light source 21 is set by controlling the light source adjustment unit 15 (S104). Further, information selected by the driver (for example, current vehicle speed information) is extracted from the acquired vehicle information 50, and an image to be displayed is determined (S105). The distortion correction unit 16 corrects the image distortion generated in the projection optical system (for example, the curved shape of the windshield 7) on the display image (S106).
  • the display element drive unit 17 supplies a drive signal to the display element 23 (S107). It is determined whether or not an On signal has been received by the HUD display On / Off sensor 121 (S108) and waits until an On signal is received (S109). When the On signal is received, the light source 21 of the video display device 2 is turned on, and video projection display, that is, normal operation of HUD is started (S110).
  • the vehicle information 50 is continuously acquired via the vehicle information acquisition unit 5 (S111). It is determined whether or not a mirror adjustment signal is received from the HUD mirror adjustment sensor 122 (S112), and if received, mirror adjustment processing is performed (S113). In the mirror adjustment processing, the mirror drive unit 4 adjusts the angle of the mirror 3 and the like, which will be described later. Thereafter, a brightness level adjustment process (S114) of the display image and a change process (S115) of the display image are performed, and the display is updated by controlling the display element (S116). The details will be described later.
  • FIGS. 6A and 6B are flowcharts showing details of the process of FIG. 5, (a) is a mirror adjustment process (S113), (b) is a brightness level adjustment process (S114), and (c) is a display video change process (S115). ).
  • Mirror adjustment processing indicates manual adjustment by the driver.
  • the mirror adjustment unit 18 determines the adjustment amount, and the mirror drive unit 4 rotates the mirror 3 in the forward direction (or the reverse direction) (S201). . It is determined whether or not the mirror adjustment signal is lost (S202), and the rotation is continued during the period of receiving the signal (S203).
  • the driver stops the operation and the signal disappears the rotation operation of the mirror 3 is stopped (S204), and the adjustment process is terminated (S205).
  • the rotation direction (forward / reverse) of the mirror 3 in S201 can be selected by the driver. Alternatively, the rotation direction (forward / reverse) may be automatically switched when the rotation end is reached.
  • the driver can adjust the mirror 3 to an optimum angle while viewing the display image of the HUD.
  • the angle of the mirror 3 can be automatically adjusted according to the height of the driver's eyes, and the automatic adjustment will be described later.
  • an appropriate brightness level is calculated from the current external light information by the illuminance sensor 105 (S211). It is determined whether or not the brightness level needs to be changed (S212). If the change is necessary, the light source adjustment unit 15 is controlled to change and set the brightness level of the light source 21 (S213). This completes the adjustment of the brightness level (S214), and the video is displayed at the changed brightness level thereafter.
  • the content of the display video is changed based on the latest vehicle information 50 (S221).
  • the display speed is changed based on the current speed information from the vehicle speed sensor, or the guidance arrow display is changed based on the navigation information from the GPS receiver or the VICS receiver.
  • the item to be displayed can be selected by the driver, and when the item is changed, the content is switched to the content corresponding to the new item. In this way, the display image based on the latest information is determined and supplied to the display element 23 (S222), and the change process is terminated (S223).
  • eyebox adjustment a mechanism for adjusting the rotation and position of the mirror according to the position of the driver's eyes
  • FIG. 7 is a diagram for explaining eyebox adjustment method 1 using only a mirror rotation mechanism.
  • the video light emitted from the video display device 2 is reflected by the mirror 3, is reflected by the reflection position 70 of the windshield and enters the driver's eyes 8, and the driver visually recognizes it as a virtual image 9.
  • the position of the eye 8 hereinafter referred to as eye point
  • eye point changes as A, B, C depending on the height of the driver
  • the image light emitted from the image display device 2 cannot enter each eye point, or Even if it can be incident, a part of the image may be lost.
  • the adjustment method 1 uses a mechanism in which the mirror 3 is rotated by the mirror driving unit 4. According to this, the position of the eye box can be adjusted to the position of the driver's eye 8 by adjusting the rotation position of the mirror 3 as A, B, C corresponding to the driver's eye point. The driver can visually recognize the virtual image 9 correctly.
  • this adjustment method 1 uses only the mirror rotation mechanism, the following phenomenon is accompanied when the driver visually recognizes the display image. (1) Since the reflection position 70 of the windshield moves like A, B, and C, the position where the driver's line of sight intersects the windshield moves. (2) The line-of-sight angle (the depression angle) at which the driver looks down on the virtual image 9 changes.
  • FIG. 8 is a diagram for explaining an eyebox adjustment method 2 in which a mirror moving mechanism is combined.
  • the phenomenon (1) can be coped with and the reflection position 70 of the windshield can be fixed.
  • Mirror drive unit 4 can move not only the rotation of mirror 3 but also the rotation axis of the mirror in the vertical direction and the front-rear direction.
  • the driver's eye point 8 changes as A, B, C
  • the reflection of the windshield is set by combining the rotation and movement of the mirror 3 as shown in FIG.
  • the position 70 can be fixed to one position without moving.
  • FIG. 9 is a diagram for explaining the eyebox adjustment method 3 using only the mirror moving mechanism.
  • the phenomenon (2) can be dealt with and the driver's depression angle ⁇ 1 can be fixed.
  • the mirror drive unit 4 moves the mirror 3 to the positions A, B, and C while keeping the rotation angle of the mirror 3 constant as shown in FIG.
  • the driver's depression angle ⁇ 1 can be fixed at a constant angle.
  • FIG. 10 is a diagram illustrating an example of an adjustment mechanism of the mirror driving unit 4.
  • (A) is the case of the adjustment method 1
  • (b) is the case of the adjustment methods 2 and 3.
  • the adjusting mechanism is configured such that the mirror driving unit 4 rotates the mirror 3 by a single rotation motor 40 attached to the fixed arm 49.
  • the mirror driving unit 4 is configured to rotate and move the mirror 3 using the three rotary motors 41, 42, 43 and the two movable arms 44, 45. Yes.
  • each adjustment method is selected by first trying adjustment method 1 with only mirror rotation and examining the adjustment result. If the image still does not look correct even when the mirror is rotated to the limit and it is uncomfortable, it is better to try the adjustment method 2 or the adjustment method 3 employing mirror movement.
  • the driver may select an appropriate method according to the driving situation and the visibility situation.
  • the eyebox position is automatically adjusted based on the read setting information.
  • the eye height of the driver is obtained from the camera image.
  • the eyebox position is automatically adjusted based on the eye height.
  • the driver adjusts the manual adjustment switch as necessary.
  • the setting information is stored in association with the driver information (no update is required if the setting information is the same as the stored setting information).
  • the HUD display is switched to the normal mode.
  • Example 1 describes a method of detecting the height of a driver's eyes and automatically adjusting the eyebox position to an optimum state by rotating a mirror in accordance with the detected eye height.
  • the driver's face is photographed by an in-vehicle camera to obtain the eye height.
  • the adjusted data (setting information) is stored for each driver, and the stored data is used when driving next time. That is, the adjustment result is learned, and the learning result is used as a reference for the next setting, thereby eliminating the repeated eye height detection for the same driver and enabling quick mirror adjustment.
  • FIG. 11 is a block diagram showing the internal configuration of the head-up display 100a. Compared to the configuration 100 of FIG. 2, a manual adjustment switch 51 and an automatic adjustment switch 52 are added so that the driver can select manual adjustment / automatic adjustment.
  • the switch detection unit 53 detects the selected switch, and the electronic control unit 11 causes each control unit and drive unit to perform adjustment processing according to manual adjustment / automatic adjustment.
  • FIG. 11 a function for moving the entire HUD 100a to the left and right is added. Also, the case where the image display device 2 is installed on the roof of the vehicle for projection and the case where the light control mirror 30 capable of switching between reflection / non-reflection is used as the mirror 3 are described. Therefore, the following functions have been added.
  • the HUD position adjusting unit 24 determines the moving position of the HUD 100a and sends a control signal to the HUD driving unit 25.
  • the HUD drive unit 25 includes a rail guide and a drive motor, and moves the HUD 100a to the left and right.
  • the projection angle adjustment unit 26 determines the projection direction (projection angle) when the video display device 2 is installed on the roof of the vehicle, and the projection angle drive unit 27 changes the direction of the projection unit of the video display device 2.
  • the dimming mirror control unit 28 When the dimming mirror control unit 28 generates a reflection / non-reflection switching signal for the dimming mirror 30, and the dimming mirror voltage supply unit 29 applies a predetermined voltage to the dimming mirror 30. Is applied to switch between the mirror surface state (ON state) and the transparent state (OFF state).
  • the eye box adjustment operation by the mirror adjustment unit 18 and the mirror drive unit 4 will be mainly described.
  • the HUD position adjustment unit 24 and the HUD drive unit 25 the projection angle adjustment unit 26 and the projection angle drive unit 27, and the dimming mirror
  • FIG. 12 is a diagram showing an installation example of the eyebox adjustment switch.
  • the manual adjustment switch 51 and the automatic adjustment switch 52 that are operated by the driver are installed at positions that can be pushed while maintaining the posture during driving (the posture when viewing the virtual image 9 displayed by the HUD).
  • three types are shown: when the switches 51 and 52 are incorporated in the handle, when installed on the dashboard, and when installed next to the seat.
  • the start may be instructed by voice, gesture, or the like instead of the automatic adjustment switch 52 (both postures must be corrected).
  • the in-vehicle camera 115 captures the posture and face of the driver and detects the eye height. Note that the eyebox adjustment may be automatically started by determining that the preparation for driving is completed from the camera video and the like.
  • FIG. 13 is a diagram showing an adjustment operation by the manual adjustment switch.
  • the manual adjustment switch 51 includes buttons for ascending and descending, and the position of the display image (virtual image 9) seen in front of the windshield moves up and down each time the driver presses the button for ascending or descending. .
  • This figure shows a case where the virtual image 9 moves by a certain distance each time the button is pressed.
  • the adjustment operation may be such that the moving distance of the virtual image 9 changes according to the time the button is pressed. Good.
  • FIG. 14 is a flowchart showing the basic operation of the eyebox automatic adjustment processing. This basic operation is performed when there is no driver's past adjustment data (setting information) and automatic adjustment is performed for the first time. Hereinafter, it demonstrates in order of a step.
  • S300 When the driver selects automatic adjustment, the electronic control unit (ECU) 11 starts an automatic adjustment process for the eyebox.
  • S302 The driver is photographed by the in-vehicle camera 115 to acquire facial image information.
  • S303 The photographed image of the driver's face is analyzed to acquire the driver's characteristics. Specifically, it is desirable to directly obtain the eye height, but the eye height may be estimated from the position of the entire face.
  • S304 When the eye height is obtained, the driver is classified into a plurality of types. Therefore, eye height is divided into a plurality of ranges (plural types) in advance, and it is determined to which range (type) the driver belongs.
  • S305 A target adjustment amount corresponding to the type of driver is acquired. Therefore, a target adjustment amount (mirror rotation angle, mirror movement amount) for each type is determined in advance and is read out. Note that the eye height range for classification into types and the target adjustment amount for each type are stored in the nonvolatile memory 13.
  • S306 According to the read target adjustment amount, the mirror adjustment unit 18 adjusts the angle and position of the mirror 3 via the mirror drive unit 4.
  • S307 The angle and position of the mirror are detected by a sensor included in the mirror driving unit 4, and it is determined whether or not the target adjustment amount has been reached. If reached, the process proceeds to S308, and if not reached, the adjustment in S306 is repeated.
  • S308 The video information of the driver is acquired again by the in-vehicle camera 115.
  • S309 The height of the driver's eyes is obtained again, and it is determined whether or not the value has changed compared with the value obtained in S303. This determination is for performing readjustment (retry) when the driver changes his / her posture during adjustment or when the vehicle interior is dark and face detection is not stable. If changed, the process proceeds to S310, and if not changed, the process proceeds to S313.
  • S310 It is determined whether the number of readjustments (the number of retries) or the adjustment time is equal to or greater than a threshold. If it is equal to or greater than the threshold, the process proceeds to S311. If it is less than the threshold, the process proceeds to S312. S311: Stop readjustment, reset the number of retries, and proceed to S313.
  • S312 A mirror adjustment amount is calculated according to the amount of change in eye height. In step S306, mirror adjustment is performed again.
  • the calculation of the mirror adjustment amount refers to how much the mirror is rotated or moved from the current mirror angle or position (the result of mirror adjustment in S306) to the mirror angle or position that matches the eye level of the driver redetected in S309. This is a process for obtaining the above. Instead of performing the mirror adjustment amount calculation process of S312 and resetting (returning to the origin) the mirror angle and position adjusted in S306, the process after the classification of the driver in S304 may be performed again.
  • S313 The display mode is set to “normal mode” for displaying a normal video (for example, a driving guide sign).
  • S314 The eyebox automatic adjustment process is terminated.
  • the above process may be further simplified, and may be finished after adjustment for a predetermined time (for example, 5 seconds) after the automatic adjustment start button is pressed, and then the driver may make fine adjustment manually.
  • a predetermined time for example, 5 seconds
  • the driver may perform fine adjustment so that the image 9 is positioned most easily by operating the manual adjustment switch 51 as shown in FIG. 13.
  • FIG. 15 is a flowchart showing the setting information storing process. After the eyebox automatic adjustment in FIG. 14 and the manual adjustment in FIG. 14, processing for storing mirror adjustment amount data (setting information) for each driver is performed. A nonvolatile memory 13 is used as the storage unit.
  • S320 The setting information storage process is started. This process may be started when the HUD display On / Off sensor 121 receives an Off signal. Alternatively, it may be started when the in-vehicle camera 115 detects that the current driver has got off while the HUD is On.
  • S321 Referring to the storage unit (nonvolatile memory 13), it is determined whether or not the driver setting information exists. If it exists, the process proceeds to S323, and if it does not exist, the process proceeds to S322.
  • S322 Setting information that is the adjustment result of the driver is newly stored in the storage unit. At that time, it is stored in association with the identification information (driver ID) of the driver. Thereafter, the process proceeds to S326.
  • S323 It is determined whether or not there is an empty area in the setting history of the driver in the storage unit. That is, in the storage unit, a plurality of setting information can be stored for each driver and stored as a setting history. If there is a free area, the process proceeds to S325, and if there is no free area, the process proceeds to S324.
  • S324 Delete the setting information with the oldest date and time in the setting history to provide a free space.
  • S325 The setting information of the driver is stored in the empty area together with the date / time information.
  • S326 The setting information storage process is terminated.
  • the setting information is stored (updated) every time the eye box is adjusted (automatic adjustment and manual adjustment).
  • the storage process of S325 is omitted, and only when the setting information is different (stored ( Update).
  • the next driver will get the optimum driver immediately. It can be adjusted to the position (same position as last time).
  • the driver can select whether to keep the current adjustment state (mirror angle and movement amount) as it is or reset to return to the reference state. If the adjustment state of the mirror is maintained as it is, the adjustment process can be omitted when the same driver gets on the next time.
  • FIG. 16 is a flowchart showing an automatic adjustment process (A) using stored setting information. Here, a case where “final driver setting information” is not stored is shown. A new adjustment process can be omitted (skipped) by using the mirror adjustment setting information stored for each driver described in FIG.
  • S330 The adjustment process is started when the driver presses the eye box automatic adjustment switch 52.
  • S331 A driver discrimination process is performed from the video of the in-vehicle camera 115. Therefore, the driver registers face images in advance. Or you may discriminate
  • S332 The setting information stored for each driver is searched with reference to the storage unit (nonvolatile memory 13).
  • S333 It is determined whether the setting information of the driver exists in the storage unit. If it exists, the process proceeds to S334, and if it does not exist, the process proceeds to S335.
  • S334 The setting information of the driver is read out, and mirror adjustment is performed based on the setting information.
  • S335 The eye level of the driver is detected, and an eye box automatic adjustment process (S300, FIG. 14) corresponding to this is performed.
  • S336 The processing when the eyebox automatic adjustment switch 52 is pressed is terminated.
  • the driver's past setting information when the driver's past setting information is stored, it can be easily adjusted by using the stored setting information, and the eyebox automatic adjustment (S300) of S335 is omitted (skip). can do. Thereby, there is no trouble of automatic adjustment including detection of the eye height of the driver, and there is an effect that the failure occurrence rate of parts can be suppressed by reducing the number of operations of the mirror driving unit and the like.
  • the setting information storage processing of FIG. 15 is not necessary.
  • FIG. 17 is a flowchart showing an automatic adjustment process (B) using stored setting information.
  • “last driver setting information” which is the setting information of the previous driver is stored is shown.
  • S340 When the driver presses the eyebox automatic adjustment switch 52, the adjustment process is started.
  • S341 A driver discrimination process is performed from the video of the in-vehicle camera 115.
  • S342 Referring to the storage unit (nonvolatile memory 13), the driver determines whether or not the driver matches the previous driver. If they match, the process proceeds to S343, and if they do not match, the process proceeds to S344.
  • S343 The last setting information is read with reference to the final driver setting information, and the mirror adjustment is performed based on this. Thereafter, the process proceeds to S348.
  • S344 The setting information stored for each driver is searched with reference to the storage unit (nonvolatile memory 13).
  • S345 It is determined whether the setting information of the driver exists in the storage unit. If it exists, the process proceeds to S346, and if it does not exist, the process proceeds to S347.
  • S346 The setting information of the driver is read out, and mirror adjustment is performed based on the setting information.
  • S347 The eye level of the driver is detected, and an eye box automatic adjustment process (S300, FIG. 14) corresponding to this is performed.
  • S348 The processing when the eyebox automatic adjustment switch is pressed is terminated.
  • the setting information for each driver in S344 can be retrieved by using this setting information. Further, since the eye box automatic adjustment (S300) in S347 can be omitted, the adjustment time can be further shortened.
  • Example 2 describes a screen displayed during eyebox adjustment. At the time of eyebox adjustment, displaying an image different from the normal display screen has an effect of notifying the driver that adjustment is in progress.
  • FIG. 18 is a diagram showing a display screen example of the head-up display.
  • A shows a normal mode, and a normal video 91 (for example, a driving guide sign) is displayed.
  • (B) shows the eye box adjustment mode, and displays an adjustment screen 92 showing the display area of the video.
  • the adjustment screen 92 is configured by, for example, a cross mark or a boundary line indicating a display area, but may be displayed including a vehicle manufacturer or a vehicle name logo. Or after displaying a logo first, you may change to a simple display like (b).
  • This adjustment screen 92 is displayed when the eyebox automatic adjustment processing (FIG. 14, S300) is switched to the display of the eyebox adjustment mode in S301, and is returned to the normal video display in S313.
  • the adjustment screen 92 is displayed.
  • the manual adjustment switch is not operated for a certain period of time, the normal image display 91 is restored.
  • displaying the adjustment screen 92 may hinder driving, so the adjustment screen 92 is not displayed and the normal video display 91 is maintained.
  • FIG. 19 is a diagram illustrating an adjustment method of the adjustment screen 92 using the manual adjustment switch.
  • the reference display position is shown.
  • the manual adjustment switch 51 can be operated to move the display position.
  • a case is shown in which not only the vertical direction but also the horizontal direction can be adjusted.
  • the adjustment in the left-right direction can be performed by, for example, the HUD position adjusting unit 24 and the HUD driving unit 25.
  • the HUD position adjusting unit 24 and the HUD driving unit 25 As a result, as shown in (b) to (i), it is possible to move freely in the vertical and horizontal directions.
  • Example 3 the timing for automatically adjusting the eyebox will be described. That is, the eyebox automatic adjustment is basically performed before the start of driving (while the vehicle is stopped) in consideration of safety. For the convenience of the driver, the operation can be performed while traveling, and in that case, the operation is performed in consideration of safety.
  • FIG. 20 is a diagram showing an example of a selection screen for automatic adjustment during traveling.
  • the driver can select the timing for performing eyebox automatic adjustment. Thus, even when the driver's posture changes during traveling, automatic adjustment is possible.
  • an item of “automatic position adjustment during travel” is provided, and the options are as follows. (1) “Do not perform”: Do not perform automatic adjustment while driving. (2) “Always perform”: Automatic adjustment is performed every time a predetermined time elapses during traveling. This is not related to pressing of the automatic adjustment switch 52. (3) “Only when the automatic adjustment SW is pressed”: Automatic adjustment is performed when the automatic adjustment switch 52 is pressed during traveling.
  • the driver can select (2) or (3) to automatically adjust the eyebox while driving.
  • the adjustment operation during traveling is different from the adjustment operation while the vehicle is stopped, and these operations will be described in detail below.
  • FIG. 21 is a flowchart for determining the timing for performing eyebox automatic adjustment.
  • the automatic adjustment is performed using the depression of the automatic adjustment switch or the elapsed time as a trigger.
  • S400 Start monitoring processing of events relating to automatic adjustment (such as user operations).
  • S401 An event is acquired. The event acquired here is for the elapsed time measured by pressing the automatic adjustment switch or the timer.
  • S402 The event determines whether the eyebox automatic adjustment switch 52 is pressed. If Yes, the process proceeds to S403, and if No, the process proceeds to S407.
  • S403 It is determined whether or not the vehicle is stopped. If Yes, the process proceeds to S404, and if No, the process proceeds to S405.
  • S404 An eye box automatic adjustment process (S300) is performed, and the process proceeds to S410.
  • S405 It is determined whether or not the setting is such that automatic adjustment during traveling is performed only when the automatic adjustment switch is pressed (selection (3) in FIG. 20). In the case of Yes, it progresses to S406, and in No, it progresses to S410.
  • S406 An eyebox automatic adjustment process (C) is performed by pressing the switch while traveling. Details thereof will be described later with reference to FIG.
  • S407 It is determined whether the event is a timer event and a predetermined time has elapsed. In the case of Yes, it progresses to S408, and in No, it progresses to S410.
  • S408 It is determined whether or not the setting is to always perform automatic adjustment during traveling (selection (2) in FIG. 20). If Yes, the process proceeds to S409, and if No, the process proceeds to S410.
  • S409 The eye box automatic adjustment process (D) during traveling is performed. Details thereof will be described later with reference to FIG. S410: The event monitoring process is terminated.
  • the timing of automatic eyebox adjustment is basically performed while the vehicle is stopped in consideration of safety.
  • automatic adjustment during traveling can be performed to improve usability.
  • FIG. 22 is a flowchart showing an automatic adjustment process (C) by pressing a switch while traveling. This is the process of S406 in FIG. 21, and is executed when (3) is selected in FIG.
  • S420 When the automatic adjustment switch 52 is pressed, the automatic adjustment process (C) during running is started.
  • S421 The current driver posture information (eye height) is acquired from the video of the in-vehicle camera 115.
  • S422 It is determined whether or not there is a change from the initial setting posture. If there is a change, the process proceeds to S423, and if there is no change, the process proceeds to S426.
  • S423 The target adjustment amount of the mirror is corrected according to the change amount of the posture.
  • S424 Perform low-speed mirror adjustment processing according to the target adjustment amount.
  • the adjustment is performed at a lower speed (slower) than the mirror adjustment process while the vehicle is stopped. For example, the adjustment may be performed intermittently with a wait time. Further, the display screen during traveling is not changed to the adjustment mode shown in FIG. 18B, but remains in the normal mode shown in FIG. S425: It is determined whether or not the target adjustment amount has been reached. If reached, the process proceeds to S427, and if not reached, the adjustment of S424 is repeated.
  • S426 Notify that the manual adjustment switch 51 is used for adjustment. This is because the driver pushed the automatic adjustment switch 52 during traveling in S420, and is not satisfied with the current adjustment, and the driver's posture has not changed. Is.
  • the notification method will be described with reference to FIG. S427: The automatic adjustment process (C) during traveling is terminated.
  • the low speed mirror adjustment process of S424 performs the adjustment at a low speed (gradually), so that the adjustment is performed as naturally as possible without making the driver aware of it. As a result, it is possible to avoid as much as possible an obstacle to the driving operation during traveling.
  • FIG. 23 is a diagram illustrating an example of a manual adjustment notification method in S426.
  • (A) is a case where guidance is given by voice 61 from the speaker 6 in the vehicle.
  • (B) is a case where the guide 94 is displayed on the HUD display screen 9.
  • the driver operates the manual adjustment switch 51 to adjust the display position.
  • FIG. 24 is a flowchart showing the automatic adjustment process (D) during traveling. This is the process of S409 in FIG. 21 and is automatically executed when (2) is selected in FIG. 20 even if the automatic adjustment switch 52 is not pressed.
  • S430 The automatic adjustment process (D) during traveling is started in response to the timer event.
  • S431 The current driver posture information (eye height) is acquired from the video of the in-vehicle camera 115.
  • S432 It is determined whether there is a change from the posture (eye height) when the mirror adjustment was performed last time. If there is a change, the process proceeds to S433, and if there is no change, the process proceeds to S439. Note that the posture information when the mirror adjustment was performed last time is posture information when automatic adjustment or manual adjustment is performed before the start of traveling, or posture information when automatic adjustment is performed during traveling. S433: It is determined whether or not the current posture is continued for a predetermined time or more. This is to exclude the case where the posture changes instantaneously. If Yes, the process proceeds to S434. If No, the process proceeds to S438.
  • S434 A target adjustment amount of the mirror is calculated according to the change amount of the posture.
  • S435 Perform low-speed mirror adjustment processing according to the target adjustment amount. This low-speed mirror adjustment process is the same as S424 in FIG. 22, and the adjustment is performed at a low speed (gradually) and the display screen remains in the normal mode.
  • S436 It is determined whether or not the target adjustment amount has been reached. If reached, the process proceeds to S437, and if not reached, the adjustment of S435 is repeated.
  • S437 Store (update) the posture information when the mirror adjustment is performed, and proceed to S349. The attitude information at the time of mirror adjustment stored here is used for determining whether or not the attitude at the time of mirror adjustment has changed in S432 the next time automatic adjustment processing during traveling is performed.
  • the driver is classified into a plurality of types and the mirror adjustment is performed based on the reference value of each type in the automatic eyebox adjustment.
  • the driver is classified according to eye height, and a standard that this adjustment should be good for a person with this eye height is determined in advance, and the adjustment is performed with that standard as a target.
  • this type classification process the adjustment process can be simplified and performed in a short time. This will be described with reference to the processing of FIGS.
  • FIG. 25 is a diagram showing an example of driver type classification and target adjustment amount.
  • the type of the driver is determined by measuring the eye height from an image acquired by the camera and classifying the measured eye height to which range. Note that the eye position may be estimated and classified from the position of the entire face (FIG. 14, S303 to S304).
  • Set the reference mirror adjustment amount (target adjustment amount) for each type of driver. Specifically, the rotation direction and rotation amount (angle) of the mirror with respect to the average value of the eye height of each type and the movement direction and movement amount of the mirror position are set as target adjustment amounts.
  • the number of types is three here, the number of types may be set as appropriate from the balance of adjustment time and adjustment accuracy.
  • FIG. 26 is a diagram illustrating an example of a setting history of setting information for each driver.
  • the storage unit nonvolatile memory 13
  • data after manual adjustment is stored (FIG. 15, S322, S325).
  • a driver identification number As storage items, a driver identification number (ID), setting date and time, driver type, mirror rotation amount, mirror movement amount, and the like are stored. For each driver, a plurality of histories having different set dates are stored. This is because the optimum adjustment amount may change as a result of different clothes depending on the season even for the same driver. Further, the setting information need not be updated every time after adjustment, and may be omitted if it is the same as the stored setting information. In FIG. 26, data updated every several months is stored as a result of omitting each update.
  • the driver's setting information is read from the setting history of FIG. 26 and used. At this time, when there are a plurality of setting histories, the latest setting information is read and used for automatic adjustment. If the driver is not satisfied with the result of the automatic adjustment, the automatic adjustment switch can be pressed continuously to perform automatic adjustment based on the setting information that goes back one more time. I can expect.
  • the update frequency of the history is monitored, and when it is updated frequently, there is a suspicion of failure. At that time, the user is encouraged to check or report to the maintenance site.
  • FIG. 27 is a diagram for explaining eyebox automatic adjustment in conjunction with sheet position adjustment.
  • the eyebox automatic adjustment is performed according to the eye level of the driver, but it naturally depends on the position of the seat and the height of the seat. In other words, it is better to adjust the position and height of the seat to make it easier for the driver to drive first, and then adjust the eyebox, and if this is done in the reverse order, the eyebox adjustment will start again from the beginning. become.
  • FIG. 28 is a diagram showing an installation example of a plurality of in-vehicle cameras.
  • the camera for photographing the driver's face is not limited to one, but may be configured to include a plurality of cameras.
  • two cameras, a dashboard camera 115a and a vehicle roof camera 115b, are provided.
  • the eye box can be adjusted more finely and with higher accuracy.
  • the distance to the driver can be accurately obtained, and not only the vertical and horizontal directions but also the longitudinal direction can be adjusted.
  • the method of detecting the eye level of the driver can be other than the camera.
  • the camera 115 and the load sensor 119 are combined, the accuracy is further improved.
  • FIG. 29 is a diagram illustrating a method of starting automatic adjustment by a driver's voice and gesture.
  • the eyebox automatic adjustment is started by pressing the automatic adjustment switch 52 by the driver, but other methods are also possible.
  • (A) is a case where the voice 81 uttered by the driver 80 is recognized and automatic adjustment is started with a specific voice as a trigger.
  • (B) is a case where a facial expression 82 (blink or wink) of the driver 80 is detected by a camera and a specific facial expression is used as a trigger.
  • (C) is a case where a gesture of the driver 80 is detected by a camera and a specific gesture is used as a trigger.
  • the method using the voice 81 and the facial expression 82 as shown in (a) and (b) is advantageous in terms of safety because it hardly affects the driving operation even while driving.
  • the present invention is not limited to the above-described embodiments and modifications, and includes various forms.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

The present invention provides an image display device for a vehicle that automatically adjusts a mirror according to the height of a driver's eyes. A control unit 10 for an image display device 100 for a vehicle automatically adjusts angle and position of a mirror 3 by controlling a mirror drive unit 4 according to the height of the eyes 8 of the driver detected by a detection unit (camera 115) and stores the results of the adjustment in a storage unit (memory 13) as setting information for the driver. Thereafter, when the mirror 3 is automatically adjusted again for a driver that is the same as this driver, the control unit automatically adjusts the mirror using the setting information that has been stored in the storage unit for this driver.

Description

車両用映像表示装置Video display device for vehicle
 本発明は、車両等に搭載し各種映像情報を表示するのに好適な車両用映像表示装置に関するものである。 The present invention relates to a vehicle video display device that is suitable for being mounted on a vehicle or the like and displaying various video information.
 近年、映像を現実空間に重ねて表示する技術の1つとして、車両のフロントガラスに各種情報を表示する車両用映像表示装置(いわゆるヘッドアップディスプレイ(以下、HUD))が実用化されている。例えば表示する映像情報として運転者向けの情報を提供することで、車両の運転操作を支援することができる。 In recent years, a vehicle image display device (so-called head-up display (hereinafter referred to as HUD)) that displays various types of information on a windshield of a vehicle has been put into practical use as one of the technologies for displaying images superimposed on a real space. For example, by providing information for a driver as video information to be displayed, driving operation of the vehicle can be supported.
 HUDの基本構成は、光学的に生成した映像をフロントガラス(ウィンドシールド)またはコンバイナに投射し、反射した映像光が運転者の目に入射し、運転者はその虚像をフロントガラスの前方に視認するものである。その際、運転者の目の位置(アイポイント)によって、映像(虚像)の見え方が異なってくる。すなわち、運転者の目の位置が映像を視認できる範囲(アイボックス)内に存在しないと、運転者は映像を正常に視認できないことになる。 The basic configuration of the HUD is to project an optically generated image onto a windshield (windshield) or combiner, the reflected image light enters the driver's eyes, and the driver visually recognizes the virtual image in front of the windshield. To do. At that time, the appearance of the image (virtual image) differs depending on the position (eye point) of the driver's eyes. In other words, if the position of the driver's eyes does not exist within the range (eye box) where the image can be viewed, the driver cannot normally view the image.
 そこで、運転者の目の位置に合わせて表示位置を調整する(すなわちアイボックスを調整する)ために、HUDには、映像光をフロントガラスに向けて反射させるミラー(凹面鏡)の角度を変えるミラー調整機構が備えられている(例えば特許文献1参照)。 Therefore, in order to adjust the display position according to the position of the driver's eyes (that is, to adjust the eye box), the HUD has a mirror that changes the angle of the mirror (concave mirror) that reflects the image light toward the windshield. An adjustment mechanism is provided (see, for example, Patent Document 1).
特開2003-107391号公報JP 2003-107391 A
 特許文献1を始め従来のHUDでは、運転者はミラー調整機構を操作することで映像を見やすい位置に移動できるが、運転者自身による手動調整のため、調整に時間を要するとともに運転者にとって煩雑な作業となる。 In the conventional HUD including Patent Document 1, the driver can move to a position where the image can be easily seen by operating the mirror adjustment mechanism. However, because of manual adjustment by the driver himself, it takes time for adjustment and is complicated for the driver. It becomes work.
 また、車両の運転者が同一であれば、一度調整すれば繰り返しの調整は不要となるが、1台の自動車を複数の運転者が共用する場合には、一般には運転者ごとに目の高さが異なるので、運転者が交代するごとに調整が必要になる。 In addition, if the driver of the vehicle is the same, repeated adjustment is not necessary once it is adjusted. However, when a single car is shared by a plurality of drivers, generally, each driver has a high eye-open. Because of the differences, adjustments are required each time the driver changes.
 そこで本発明の目的は、運転者の目の高さに応じて自動的にミラーを調整する車両用映像表示装置を提供することである。 Therefore, an object of the present invention is to provide a vehicle image display device that automatically adjusts a mirror according to the eye level of a driver.
 本発明は上記課題を解決するため、車両に搭載し、ウィンドシールドに映像光を投射して運転者に対して映像を表示する車両用映像表示装置において、前記映像光を出射する映像表示部と、前記映像表示部から出射された前記映像光を前記ウィンドシールドに向けて反射させるミラーと、前記ミラーの角度または位置を変化させるミラー駆動部と、前記ミラー駆動部を制御して前記ミラーの角度または位置を調整する制御部と、前記運転者の目の高さを検出する検出部と、前記ミラーの調整量を記憶する記憶部と、を備える。前記制御部は、前記検出部で検出した前記運転者の目の高さに応じて前記ミラー駆動部を制御して前記ミラーを自動調整するとともに、調整した結果を前記運転者の設定情報として前記記憶部に記憶しておき、前記制御部は、前記運転者と同一の運転者に対して再度前記ミラーの自動調整を行うとき、前記記憶部に記憶している前記運転者の設定情報を用いて前記ミラーの自動調整を行う構成とした。 In order to solve the above problems, the present invention provides a vehicle video display device that is mounted on a vehicle, projects video light onto a windshield, and displays video to the driver. A mirror that reflects the image light emitted from the image display unit toward the windshield, a mirror driving unit that changes an angle or a position of the mirror, and an angle of the mirror that controls the mirror driving unit. Alternatively, a control unit that adjusts the position, a detection unit that detects the height of the eyes of the driver, and a storage unit that stores the adjustment amount of the mirror. The control unit automatically adjusts the mirror by controlling the mirror driving unit according to the eye height of the driver detected by the detection unit, and the adjusted result is set as the driver setting information. Stored in the storage unit, the control unit uses the driver setting information stored in the storage unit when the mirror is automatically adjusted again for the same driver as the driver. Thus, the mirror is automatically adjusted.
 本発明によれば、運転者が交代して目の高さが変化しても、運転者の手を煩わせることなく短時間にミラーを調整する車両用映像表示装置を提供することができる。 According to the present invention, it is possible to provide a video display device for a vehicle that adjusts a mirror in a short time without bothering the driver's hand even if the driver changes and the eye height changes.
車両に搭載したヘッドアップディスプレイの概要を説明する模式図。The schematic diagram explaining the outline | summary of the head-up display mounted in the vehicle. ヘッドアップディスプレイの内部構成を示すブロック図。The block diagram which shows the internal structure of a head-up display. 車両情報の取得に係るハードウェア構成の例を示す図。The figure which shows the example of the hardware constitutions which concern on acquisition of vehicle information. ヘッドアップディスプレイによる映像表示状態を示す模式図。The schematic diagram which shows the image display state by a head-up display. ヘッドアップディスプレイの基本動作を示すフローチャート。The flowchart which shows the basic operation | movement of a head up display. 図5の処理の詳細を示すフローチャート。6 is a flowchart showing details of the processing in FIG. 5. アイボックス調整方式1を説明する図。The figure explaining the eyebox adjustment system 1. FIG. アイボックス調整方式2を説明する図。The figure explaining the eyebox adjustment system 2. FIG. アイボックス調整方式3を説明する図。The figure explaining the eyebox adjustment system 3. FIG. ミラー駆動部の調整機構の例を示す図。The figure which shows the example of the adjustment mechanism of a mirror drive part. ヘッドアップディスプレイの内部構成を示すブロック図(実施例1)。FIG. 1 is a block diagram illustrating an internal configuration of a head-up display (Example 1). アイボックス調整スイッチの設置例を示す図。The figure which shows the example of installation of an eyebox adjustment switch. 手動調整スイッチによる調整動作を示す図。The figure which shows the adjustment operation by a manual adjustment switch. アイボックス自動調整処理の基本動作を示すフローチャート。The flowchart which shows the basic operation | movement of an eyebox automatic adjustment process. 設定情報の記憶処理を示すフローチャート。The flowchart which shows the memory | storage process of setting information. 記憶済みの設定情報を利用した自動調整処理(A)を示すフローチャート。The flowchart which shows the automatic adjustment process (A) using the stored setting information. 記憶済みの設定情報を利用した自動調整処理(B)を示すフローチャート。The flowchart which shows the automatic adjustment process (B) using the stored setting information. ヘッドアップディスプレイの表示画面例を示す図(実施例2)。The figure which shows the example of a display screen of a head-up display (Example 2). 手動調整スイッチによる調整画面の調整方法を示す図。The figure which shows the adjustment method of the adjustment screen by a manual adjustment switch. 走行中の自動調整の選択画面の例を示す図(実施例3)。The figure which shows the example of the selection screen of the automatic adjustment in driving | running | working (Example 3). 自動調整を行うタイミングを決定するフローチャート。The flowchart which determines the timing which performs automatic adjustment. 走行中のスイッチ押下による自動調整処理(C)を示すフローチャート。The flowchart which shows the automatic adjustment process (C) by switch pressing in driving | running | working. 手動調整の通知方法の例を示す図。The figure which shows the example of the notification method of manual adjustment. 走行中の自動調整処理(D)を示すフローチャート。The flowchart which shows the automatic adjustment process (D) during driving | running | working. 運転者のタイプ分けと目標調整量の例を示す図(実施例4)。The figure which shows the example of classification of a driver | operator, and a target adjustment amount (Example 4). 運転者ごとの設定情報の設定履歴の例を示す図。The figure which shows the example of the setting history of the setting information for every driver | operator. シート位置調整と連動したアイボックス自動調整を説明する図。FIG. 6 is a diagram for explaining eyebox automatic adjustment in conjunction with sheet position adjustment. 複数の車内カメラの設置例を示す図。The figure which shows the example of installation of a some in-vehicle camera. 運転者の音声やジェスチャにより自動調整を開始する方法を示す図。The figure which shows the method of starting automatic adjustment with a driver | operator's voice and gesture.
 始めに、車両用映像表示装置の基本構成について説明する。
  図1は、車両に搭載したヘッドアップディスプレイ(Head Up Display以下、HUD)の概要を説明する模式図である。車両1に搭載されたHUD100は、映像表示装置2で生成した映像光をミラー3を介して車両1のフロントガラス(以下、ウィンドシールド7と呼ぶ)に投射する。ウィンドシールド7で反射した映像光は運転者の目に入射し、運転者はHUDからの映像を視認する。表示する映像には運転に関連する情報が含まれ、運転操作を支援するものとなる。HUD100の内部は、各種の車両情報50を取得する車両情報取得部5と、これをもとに表示する映像情報を生成する制御部10と、ミラー3を駆動するミラー駆動部4、運転者に音声情報を出力するスピーカ6などを有する。車両情報50には車両の運転状態を示す速度情報やギア情報などの他に、HUDのミラー3の調整に関連するHUD表示On/Off信号やHUDミラー調整信号などの運転者による操作信号を含む。
First, the basic configuration of the vehicle video display device will be described.
FIG. 1 is a schematic diagram for explaining the outline of a head up display (hereinafter referred to as HUD) mounted on a vehicle. The HUD 100 mounted on the vehicle 1 projects the image light generated by the image display device 2 onto the windshield (hereinafter referred to as a windshield 7) of the vehicle 1 through the mirror 3. The image light reflected by the windshield 7 enters the eyes of the driver, and the driver visually recognizes the image from the HUD. The video to be displayed includes information related to driving and supports driving operation. The HUD 100 includes a vehicle information acquisition unit 5 that acquires various vehicle information 50, a control unit 10 that generates video information to be displayed based on the vehicle information acquisition unit 5, a mirror drive unit 4 that drives the mirror 3, and a driver. A speaker 6 for outputting audio information is included. In addition to speed information and gear information indicating the driving state of the vehicle, the vehicle information 50 includes an operation signal by the driver such as a HUD display On / Off signal and a HUD mirror adjustment signal related to the adjustment of the mirror 3 of the HUD. .
 図2は、HUD100の内部構成を示すブロック図である。車両情報取得部5には各種の車両情報50が入力され制御部10へ送られる。制御部10内の電子制御ユニット(ECU、Electronic Control Unit)11は、入力した車両情報に基づきHUDが表示する映像信号を生成する。また、車両情報に基づき、ミラー3に対する制御信号やスピーカ6の音声信号を生成する。映像表示装置2は、LEDやレーザなどの光源21、照明光学系22、液晶素子などの表示素子23からなり、表示素子23で生成された映像光をミラー3に向けて出射する。 FIG. 2 is a block diagram showing the internal configuration of the HUD 100. As shown in FIG. Various vehicle information 50 is input to the vehicle information acquisition unit 5 and sent to the control unit 10. An electronic control unit (ECU, Electronic Control Unit) 11 in the control unit 10 generates a video signal displayed by the HUD based on the input vehicle information. Moreover, based on vehicle information, the control signal with respect to the mirror 3 and the audio | voice signal of the speaker 6 are produced | generated. The video display device 2 includes a light source 21 such as an LED or a laser, an illumination optical system 22, and a display element 23 such as a liquid crystal element, and emits video light generated by the display element 23 toward the mirror 3.
 制御部10内には、スピーカ6に音声信号を出力する音声出力部12、ECU11が実行するプログラムを格納する不揮発性メモリ13、映像情報や制御情報を記憶するメモリ14、映像表示装置2の光源21を制御する光源調整部15、表示する映像信号の歪みを補正する歪み補正部16、補正された映像信号に基づき表示素子23を駆動する表示素子駆動部17、ミラー駆動部4に対して駆動信号を出力するミラー調整部18、運転者の重心位置を算出する重心算出部19などを有する。 In the control unit 10, an audio output unit 12 that outputs an audio signal to the speaker 6, a non-volatile memory 13 that stores a program executed by the ECU 11, a memory 14 that stores video information and control information, and a light source of the video display device 2 21, a light source adjustment unit 15 that controls 21, a distortion correction unit 16 that corrects distortion of a video signal to be displayed, a display element driving unit 17 that drives the display element 23 based on the corrected video signal, and a mirror driving unit 4. It includes a mirror adjustment unit 18 that outputs a signal, a center of gravity calculation unit 19 that calculates the position of the center of gravity of the driver, and the like.
 図3は、HUDにおける車両情報50の取得に係るハードウェア構成の例を示す図である。ここでは主に車両情報取得部5および制御部10の一部のハードウェア構成について示す。車両情報50の取得は、例えば、ECU11の制御の下、ECU11に接続された各種のセンサ等の情報取得デバイスにより行われる。 FIG. 3 is a diagram illustrating an example of a hardware configuration related to the acquisition of the vehicle information 50 in the HUD. Here, a part of the hardware configuration of the vehicle information acquisition unit 5 and the control unit 10 will be mainly shown. Acquisition of the vehicle information 50 is performed by information acquisition devices, such as various sensors connected to ECU11 under control of ECU11, for example.
 これらの情報取得デバイスとして、例えば、車速センサ101、シフトポジションセンサ102、ハンドル操舵角センサ103、ヘッドライトセンサ104、照度センサ105、色度センサ106、測距センサ107、赤外線センサ108、エンジン始動センサ109、加速度センサ110、ジャイロセンサ111、温度センサ112、路車間通信用無線受信機113、車車間通信用無線受信機114、カメラ(車内)115、カメラ(車外)116、GPS受信機117、およびVICS(Vehicle Information and Communication System:道路交通情報通信システム、登録商標(以下同様))受信機118、荷重センサ119、位置センサ120、HUD表示On/Offセンサ121、HUDミラー調整センサ122などの各デバイスを有する。なお、本実施例の説明においては、姿勢センサの一例としてジャイロセンサを用いて説明するが、他の姿勢センサでも構わない。必ずしもこれら全てのデバイスを備えている必要はなく、また、他の種類のデバイスを備えていてもよい。備えているデバイスによって取得できる車両情報50を適宜用いることができる。 As these information acquisition devices, for example, a vehicle speed sensor 101, a shift position sensor 102, a steering wheel steering angle sensor 103, a headlight sensor 104, an illuminance sensor 105, a chromaticity sensor 106, a distance measuring sensor 107, an infrared sensor 108, an engine start sensor 109, acceleration sensor 110, gyro sensor 111, temperature sensor 112, road-to-vehicle communication wireless receiver 113, vehicle-to-vehicle communication wireless receiver 114, camera (inside the vehicle) 115, camera (outside the vehicle) 116, GPS receiver 117, and VICS (Vehicle Information and Communication System): a device such as a receiver 118, load sensor 119, position sensor 120, HUD display On / Off sensor 121, HUD mirror adjustment sensor 122, etc. Have In the description of this embodiment, a gyro sensor is used as an example of the attitude sensor, but other attitude sensors may be used. It is not always necessary to include all these devices, and other types of devices may be included. The vehicle information 50 that can be acquired by the equipped device can be used as appropriate.
 車速センサ101は、車両1の速度情報を取得する。シフトポジションセンサ102は、車両1の現在のギア情報を取得する。ハンドル操舵角センサ103は、ハンドル操舵角情報を取得する。ヘッドライトセンサ104は、ヘッドライトのOn/Offに係るランプ点灯情報を取得する。照度センサ105および色度センサ106は、外光情報を取得する。測距センサ107は、車両1と外部の物体との間の距離情報を取得する。赤外線センサ108は、車両1の近距離における物体の有無や距離等に係る赤外線情報を取得する。エンジン始動センサ109は、エンジンOn/Off情報を検知する。 The vehicle speed sensor 101 acquires speed information of the vehicle 1. The shift position sensor 102 acquires current gear information of the vehicle 1. The steering wheel angle sensor 103 acquires steering wheel angle information. The headlight sensor 104 acquires lamp lighting information related to On / Off of the headlight. The illuminance sensor 105 and the chromaticity sensor 106 acquire external light information. The distance measuring sensor 107 acquires distance information between the vehicle 1 and an external object. The infrared sensor 108 acquires infrared information related to the presence / absence and distance of an object at a short distance of the vehicle 1. The engine start sensor 109 detects engine On / Off information.
 加速度センサ110およびジャイロセンサ111は、車両1の姿勢や挙動の情報として、加速度や角速度からなる加速度ジャイロ情報を取得する。温度センサ112は車内外の温度情報を取得する。路車間通信用無線受信機113および車車間通信用無線受信機114は、それぞれ、車両1と道路や標識、信号等との間の路車間通信により受信した路車間通信情報、および車両1と周辺の他の車両との間の車車間通信により受信した車車間通信情報を取得する。 The acceleration sensor 110 and the gyro sensor 111 acquire acceleration gyro information including acceleration and angular velocity as information on the posture and behavior of the vehicle 1. The temperature sensor 112 acquires temperature information inside and outside the vehicle. The road-to-vehicle communication wireless receiver 113 and the vehicle-to-vehicle communication wireless receiver 114 are respectively road-to-vehicle communication information received by road-to-vehicle communication between the vehicle 1 and roads, signs, signals, etc. The vehicle-to-vehicle communication information received by the vehicle-to-vehicle communication with another vehicle is acquired.
 カメラ(車内)115およびカメラ(車外)116は、それぞれ、車内および車外の状況の動画像を撮影してカメラ映像情報(車内/車外)を取得する。カメラ(車内)115では、例えば、運転者の姿勢や、目の位置、動き等を撮影する。得られた動画像を解析することにより、例えば、運転者の疲労状況や目の高さなどの情報を取得することが可能である。また、カメラ(車外)116では、車両1の前方や後方等の周囲の状況を撮影する。得られた動画像を解析することにより、例えば、周辺の他の車両や人等の移動物の有無、建物や地形、路面状況(雨や積雪、凍結、凹凸等)などを把握することが可能である。 The camera (inside the vehicle) 115 and the camera (outside the vehicle) 116 respectively capture the moving image of the situation inside and outside the vehicle and acquire camera video information (inside / outside the vehicle). The camera (inside the vehicle) 115 captures, for example, the driver's posture, eye position, movement, and the like. By analyzing the obtained moving image, it is possible to acquire information such as the driver's fatigue status and eye height, for example. In addition, the camera (outside the vehicle) 116 captures surrounding conditions such as the front and rear of the vehicle 1. By analyzing the obtained video, for example, it is possible to grasp the presence or absence of moving objects such as other vehicles and people around the building, topography, road surface conditions (rain, snow, freezing, unevenness, etc.) It is.
 GPS受信機117およびVICS受信機118は、それぞれ、GPS信号を受信して得られるGPS情報およびVICS信号を受信して得られるVICS情報を取得する。これらの情報を取得して利用するカーナビゲーションシステムの一部として実装されていてもよい。 The GPS receiver 117 and the VICS receiver 118 obtain GPS information obtained by receiving the GPS signal and VICS information obtained by receiving the VICS signal, respectively. It may be implemented as a part of a car navigation system that acquires and uses these pieces of information.
 荷重センサ119および位置センサ120は、運転者の位置・姿勢を検出する。HUD表示On/Offセンサ121は、HUDの電源がOnかOffかの状態を検出する。HUDミラー調整センサ122は、HUDミラーの調整信号を検出し、ミラー調整処理を実施するか否かの情報を取得する。 The load sensor 119 and the position sensor 120 detect the position / posture of the driver. The HUD display On / Off sensor 121 detects whether the HUD power supply is On or Off. The HUD mirror adjustment sensor 122 detects an adjustment signal of the HUD mirror and acquires information on whether or not to perform mirror adjustment processing.
 なお、各種センサはHUDの外部に存在するものとしたが、HUD関連のセンサ(121,122等)はHUDの内部に備えていてもよい。 Although various sensors are assumed to exist outside the HUD, HUD-related sensors (121, 122, etc.) may be provided inside the HUD.
 図4は、HUDによる映像表示状態を示す模式図である。車両1のダッシュボードの下部に設置された映像表示装置2から、表示用の映像光が出射される。映像光は、第1のミラー3bと第2のミラー3a(例えば、凹面ミラーや自由曲面ミラー、光軸非対称の形状を有するミラー等)で反射され、ウィンドシールド7に向けて投射される。第1のミラー3bは固定されており、第2のミラー3aはミラー駆動部4により回転可能となっている。以下の説明では、回転可能な第2のミラー3aを単に「ミラー3」と呼ぶことにする。 FIG. 4 is a schematic diagram showing a video display state by HUD. Display image light is emitted from the image display device 2 installed at the lower part of the dashboard of the vehicle 1. The image light is reflected by the first mirror 3 b and the second mirror 3 a (for example, a concave mirror, a free-form surface mirror, a mirror having an optical axis asymmetric shape, etc.) and projected toward the windshield 7. The first mirror 3 b is fixed, and the second mirror 3 a can be rotated by the mirror driving unit 4. In the following description, the rotatable second mirror 3a is simply referred to as “mirror 3”.
 ミラー3から収束して投射された映像光は、ウィンドシールド7にて反射され運転者の目8に入射して網膜上に結像することで、映像を視認することができる。そのとき運転者は、ウィンドシールド7の前方に存在する虚像9を見ていることになる。ウィンドシールド7における映像光の反射位置を符号70で示す。すなわち運転者は、反射位置70の前方方向に虚像9を見ることになる。ここで、被投射部材はウィンドシールド7に限られず、映像が投射される部材であれば、コンバイナなど他の部材とすることができる。 The image light converged and projected from the mirror 3 is reflected by the windshield 7, enters the driver's eyes 8, and forms an image on the retina so that the image can be visually recognized. At that time, the driver sees the virtual image 9 present in front of the windshield 7. The reflection position of the image light on the windshield 7 is indicated by reference numeral 70. That is, the driver sees the virtual image 9 in the forward direction of the reflection position 70. Here, the member to be projected is not limited to the windshield 7 and may be another member such as a combiner as long as the image is projected.
 図5は、HUDの基本動作を示すフローチャートである。(a)は初期動作を、(b)は各種調整を含む通常動作を示す。以下の処理は制御部10の電子制御ユニット(ECU)11により制御され、フローに沿って処理内容を説明する。 FIG. 5 is a flowchart showing the basic operation of the HUD. (A) shows an initial operation, and (b) shows a normal operation including various adjustments. The following processing is controlled by the electronic control unit (ECU) 11 of the control unit 10, and the processing content will be described along the flow.
 (a)の初期動作(S100)において、エンジン始動センサ109により電源(イグニッション)Onの信号を受けると(S101)、車両情報取得部5により車両情報50を取得する(S102)。まず、照度センサ105による外光情報から、適切な明るさレベルを算出し(S103)、光源調整部15を制御して光源21の明るさレベルを設定する(S104)。また、取得した車両情報50から運転者が選択した情報(例えば、現在の車速情報)を抽出して、表示する映像を決定する(S105)。表示映像に対し、歪み補正部16により投射光学系(例えばウィンドシールド7の曲面形状)で生じる映像歪みの補正を実施する(S106)。表示素子駆動部17により、表示素子23に対して駆動信号を供給する(S107)。HUD表示On/Offセンサ121によりOn信号を受けたか否かを判定し(S108)、On信号を受けるまで待機する(S109)。On信号を受けると映像表示装置2の光源21を点灯させ、映像の投射表示すなわちHUDの通常動作を開始する(S110)。 In the initial operation (S100) of (a), when the signal of the power source (ignition) On is received by the engine start sensor 109 (S101), the vehicle information acquisition unit 5 acquires the vehicle information 50 (S102). First, an appropriate brightness level is calculated from external light information from the illuminance sensor 105 (S103), and the brightness level of the light source 21 is set by controlling the light source adjustment unit 15 (S104). Further, information selected by the driver (for example, current vehicle speed information) is extracted from the acquired vehicle information 50, and an image to be displayed is determined (S105). The distortion correction unit 16 corrects the image distortion generated in the projection optical system (for example, the curved shape of the windshield 7) on the display image (S106). The display element drive unit 17 supplies a drive signal to the display element 23 (S107). It is determined whether or not an On signal has been received by the HUD display On / Off sensor 121 (S108) and waits until an On signal is received (S109). When the On signal is received, the light source 21 of the video display device 2 is turned on, and video projection display, that is, normal operation of HUD is started (S110).
 (b)の通常動作(S110)では、引き続き車両情報取得部5を介して車両情報50を取得する(S111)。HUDミラー調整センサ122からのミラー調整信号を受けたか否かを判定し(S112)、受けた場合にはミラー調整処理を実施する(S113)。ミラー調整処理ではミラー駆動部4によりミラー3の角度等を調整するが、詳細は後述する。その後、表示映像の明るさレベル調整処理(S114)と、表示映像の変更処理(S115)を実施し、表示素子を制御して表示を更新する(S116)が、詳細は後述する。HUD表示On/Offセンサ121によりOff信号を受けたか否かを判定し(S117)、Off信号を受けるまでS111からの処理を繰り返す。Off信号を受けると映像表示装置2の光源21を消灯し、映像の投射表示を終了する(S118)。 (B) In normal operation (S110), the vehicle information 50 is continuously acquired via the vehicle information acquisition unit 5 (S111). It is determined whether or not a mirror adjustment signal is received from the HUD mirror adjustment sensor 122 (S112), and if received, mirror adjustment processing is performed (S113). In the mirror adjustment processing, the mirror drive unit 4 adjusts the angle of the mirror 3 and the like, which will be described later. Thereafter, a brightness level adjustment process (S114) of the display image and a change process (S115) of the display image are performed, and the display is updated by controlling the display element (S116). The details will be described later. It is determined whether or not an Off signal has been received by the HUD display On / Off sensor 121 (S117), and the processing from S111 is repeated until the Off signal is received. When the Off signal is received, the light source 21 of the video display device 2 is turned off and the video projection display is terminated (S118).
 図6は、図5の処理の詳細を示すフローチャートであり、(a)はミラー調整処理(S113)、(b)は明るさレベル調整処理(S114)、(c)は表示映像変更処理(S115)について示す。 FIGS. 6A and 6B are flowcharts showing details of the process of FIG. 5, (a) is a mirror adjustment process (S113), (b) is a brightness level adjustment process (S114), and (c) is a display video change process (S115). ).
 (a)のミラー調整処理(S200)は、運転者による手動調整を示す。運転者の操作によりHUDミラー調整センサ122からミラー調整信号を受けると、ミラー調整部18が調整量を決定し、ミラー駆動部4はミラー3を順方向(又は逆方向)に回転させる(S201)。ミラー調整信号がなくなったか否かを判定し(S202)、信号を受けている期間は回転を続ける(S203)。運転者が操作を中止して信号がなくなると、ミラー3の回転動作を停止させて(S204)、調整処理を終了する(S205)。S201におけるミラー3の回転方向(順/逆)は運転者が選択可能とするが、あるいは回転終端に達すると自動的に回転方向(順/逆)が切り替わるようにしてもよい。これにより、運転者はHUDの表示映像を見ながらミラー3を最適の角度に調整することができる。なお、本発明では、運転者の目の高さに応じて自動的にミラー3の角度を調整することが可能であり、自動調整については後述する。 (A) Mirror adjustment processing (S200) indicates manual adjustment by the driver. When the mirror adjustment signal is received from the HUD mirror adjustment sensor 122 by the driver's operation, the mirror adjustment unit 18 determines the adjustment amount, and the mirror drive unit 4 rotates the mirror 3 in the forward direction (or the reverse direction) (S201). . It is determined whether or not the mirror adjustment signal is lost (S202), and the rotation is continued during the period of receiving the signal (S203). When the driver stops the operation and the signal disappears, the rotation operation of the mirror 3 is stopped (S204), and the adjustment process is terminated (S205). The rotation direction (forward / reverse) of the mirror 3 in S201 can be selected by the driver. Alternatively, the rotation direction (forward / reverse) may be automatically switched when the rotation end is reached. Thus, the driver can adjust the mirror 3 to an optimum angle while viewing the display image of the HUD. In the present invention, the angle of the mirror 3 can be automatically adjusted according to the height of the driver's eyes, and the automatic adjustment will be described later.
 (b)の明るさレベル調整処理(S210)では、照度センサ105による現在の外光情報から、適切な明るさレベルを算出する(S211)。明るさレベルの変更が必要か否かを判定し(S212)、変更が必要な場合には光源調整部15を制御して光源21の明るさレベルを変更して設定する(S213)。これで明るさレベルの調整を終了し(S214)、以後、変更された明るさレベルで映像の表示が行われる。 In the brightness level adjustment process (S210) of (b), an appropriate brightness level is calculated from the current external light information by the illuminance sensor 105 (S211). It is determined whether or not the brightness level needs to be changed (S212). If the change is necessary, the light source adjustment unit 15 is controlled to change and set the brightness level of the light source 21 (S213). This completes the adjustment of the brightness level (S214), and the video is displayed at the changed brightness level thereafter.
 (c)の表示映像変更処理(S220)では、最新の車両情報50をもとに表示映像の内容を変更する(S221)。例えば、車速センサからの現在の速度情報をもとに表示速度を変更したり、GPS受信機やVICS受信機からのナビゲーション情報をもとに案内矢印表示を変更する。もちろん、表示する項目は運転者が選択可能であり、項目が変更された場合には新たな項目に対応する内容に切り替える。このようにして最新情報に基づく表示映像を決定して表示素子23に供給し(S222)、変更処理を終了する(S223)。 (C) In the display video changing process (S220), the content of the display video is changed based on the latest vehicle information 50 (S221). For example, the display speed is changed based on the current speed information from the vehicle speed sensor, or the guidance arrow display is changed based on the navigation information from the GPS receiver or the VICS receiver. Of course, the item to be displayed can be selected by the driver, and when the item is changed, the content is switched to the content corresponding to the new item. In this way, the display image based on the latest information is determined and supplied to the display element 23 (S222), and the change process is terminated (S223).
 次に、運転者の目の位置に合わせてミラーの回転や位置を調整する機構(以下、アイボックス調整とも呼ぶ)について説明する。 Next, a mechanism for adjusting the rotation and position of the mirror according to the position of the driver's eyes (hereinafter also referred to as eyebox adjustment) will be described.
 図7は、ミラー回転機構のみのアイボックス調整方式1を説明する図である。映像表示装置2から出射された映像光は、ミラー3で反射され、ウィンドシールドの反射位置70で反射されて運転者の目8に入射し、運転者は虚像9として視認する。運転者の身長により目8の位置(以下、アイポイントと呼ぶ)がA,B,Cのように変化すると、映像表示装置2から出射された映像光がそれぞれのアイポイントに入射できない場合、あるいは入射できても映像の一部が欠落する場合ある。言い換えれば、運転者の目8の位置が、虚像9全体を視認できる領域(以下、アイボックスと呼ぶ)内に存在しないと、映像の一部が欠落することになる。これに対応するため調整方式1では、ミラー駆動部4によりミラー3を軸回転させる機構とする。これによれば、運転者のアイポイントに対応してミラー3の回転位置をA,B,Cのように調整することで、アイボックスの位置を運転者の目8の位置に合わせることができ、運転者は虚像9を正しく視認することができる。 FIG. 7 is a diagram for explaining eyebox adjustment method 1 using only a mirror rotation mechanism. The video light emitted from the video display device 2 is reflected by the mirror 3, is reflected by the reflection position 70 of the windshield and enters the driver's eyes 8, and the driver visually recognizes it as a virtual image 9. If the position of the eye 8 (hereinafter referred to as eye point) changes as A, B, C depending on the height of the driver, the image light emitted from the image display device 2 cannot enter each eye point, or Even if it can be incident, a part of the image may be lost. In other words, if the position of the driver's eye 8 does not exist within an area where the entire virtual image 9 can be visually recognized (hereinafter referred to as an eyebox), a part of the video is lost. In order to cope with this, the adjustment method 1 uses a mechanism in which the mirror 3 is rotated by the mirror driving unit 4. According to this, the position of the eye box can be adjusted to the position of the driver's eye 8 by adjusting the rotation position of the mirror 3 as A, B, C corresponding to the driver's eye point. The driver can visually recognize the virtual image 9 correctly.
 しかしながらこの調整方式1ではミラーの回転機構のみとしているので、運転者が表示映像を視認するとき以下の現象が伴う。
(1)ウィンドシールドの反射位置70がA,B,Cのように移動するので、運転者の視線がウィンドシールドと交差する位置が移動する。
(2)運転者が虚像9を見下ろす視線の角度(俯角)が変化する。
However, since this adjustment method 1 uses only the mirror rotation mechanism, the following phenomenon is accompanied when the driver visually recognizes the display image.
(1) Since the reflection position 70 of the windshield moves like A, B, and C, the position where the driver's line of sight intersects the windshield moves.
(2) The line-of-sight angle (the depression angle) at which the driver looks down on the virtual image 9 changes.
 これらの現象は運転者に違和感を与えることになるが、ミラーの回転軸の位置を上下方向と前後方向に移動させるミラー移動機構を組み合わせることで解決できる。以下、具体的な調整方式2,3について説明する。 These phenomena give the driver a sense of incongruity, but can be solved by combining a mirror moving mechanism that moves the position of the rotation axis of the mirror in the vertical direction and the front-rear direction. Hereinafter, specific adjustment methods 2 and 3 will be described.
 図8は、ミラー移動機構を組み合わせたアイボックス調整方式2を説明する図である。調整方式2では、上記(1)の現象に対処し、ウィンドシールドの反射位置70を固定させることができる。 FIG. 8 is a diagram for explaining an eyebox adjustment method 2 in which a mirror moving mechanism is combined. In the adjustment method 2, the phenomenon (1) can be coped with and the reflection position 70 of the windshield can be fixed.
 ミラー駆動部4はミラー3の回転だけでなく、ミラー回転軸を上下方向と前後方向に移動可能としている。運転者のアイポイント8がA,B,Cのように変化した場合、図8のようにミラー3の回転と移動を組み合わせてA,B,Cの状態に設定することで、ウィンドシールドの反射位置70は移動せず1つの位置に固定することができる。 Mirror drive unit 4 can move not only the rotation of mirror 3 but also the rotation axis of the mirror in the vertical direction and the front-rear direction. When the driver's eye point 8 changes as A, B, C, the reflection of the windshield is set by combining the rotation and movement of the mirror 3 as shown in FIG. The position 70 can be fixed to one position without moving.
 図9は、ミラー移動機構のみによるアイボックス調整方式3を説明する図である。調整方式3では、上記(2)の現象に対処し、運転者の俯角θ1を固定させることができる。 FIG. 9 is a diagram for explaining the eyebox adjustment method 3 using only the mirror moving mechanism. In the adjustment method 3, the phenomenon (2) can be dealt with and the driver's depression angle θ1 can be fixed.
 運転者のアイポイント8がA,B,Cのように変化した場合、ミラー駆動部4は図9のようにミラー3の回転角を一定にしたままA,B,Cの位置に移動させることで、運転者の俯角θ1を一定の角度に固定することができる。 When the driver's eye point 8 changes as A, B, and C, the mirror drive unit 4 moves the mirror 3 to the positions A, B, and C while keeping the rotation angle of the mirror 3 constant as shown in FIG. Thus, the driver's depression angle θ1 can be fixed at a constant angle.
 図10は、ミラー駆動部4の調整機構の例を示す図である。(a)は調整方式1の場合、(b)は調整方式2および3の場合である。 FIG. 10 is a diagram illustrating an example of an adjustment mechanism of the mirror driving unit 4. (A) is the case of the adjustment method 1, and (b) is the case of the adjustment methods 2 and 3.
 (a)の調整機構は、ミラー駆動部4は、固定アーム49に取り付けた単一の回転モータ40でミラー3を回転させる構成である。これに対し(b)の調整機構では、ミラー駆動部4は、3個の回転モータ41,42,43と2個の可動アーム44,45とを用いて、ミラー3を回転及び移動させる構成としている。 (A) The adjusting mechanism is configured such that the mirror driving unit 4 rotates the mirror 3 by a single rotation motor 40 attached to the fixed arm 49. On the other hand, in the adjustment mechanism (b), the mirror driving unit 4 is configured to rotate and move the mirror 3 using the three rotary motors 41, 42, 43 and the two movable arms 44, 45. Yes.
 このように、調整方式1に比較し調整方式2、3によれば、違和感がなくより好適な調整が可能となる。各調整方式の選択は、まずミラー回転のみの調整方式1を試みて調整結果を調べる。そして、限界までミラーを回転してもまだ映像が正しく見えず違和感がある場合には、ミラー移動を採用した調整方式2や調整方式3を試みるのがよい。運転者は、運転状況や視界状況に応じて、適切な方式を選択すればよい。 Thus, according to the adjustment methods 2 and 3 as compared with the adjustment method 1, there is no sense of incongruity and a more suitable adjustment is possible. Each adjustment method is selected by first trying adjustment method 1 with only mirror rotation and examining the adjustment result. If the image still does not look correct even when the mirror is rotated to the limit and it is uncomfortable, it is better to try the adjustment method 2 or the adjustment method 3 employing mirror movement. The driver may select an appropriate method according to the driving situation and the visibility situation.
 次に、アイボックスの自動調整について実施例を用いて詳細に説明するが、まず、車両に乗車した運転者の動作と自動調整処理の流れについてその概要を説明する。
(1)運転者がシートに着席し、車のエンジンをかける。
(3)HUDが起動し、起動時の処理を実行する。
(4)エンジンをかけた、運転席に荷重がかかった、などを確認する。
(5)音声でシート位置や高さの調節、姿勢を正すように促す。
(6)音声でアイボックス自動調整スイッチを押すように促す。
(7)運転者がアイボックス自動調整スイッチを押す。
(8)HUD表示をアイボックス調整モードに切り替える。
(9)カメラ映像から運転者を判別する。
(10)判別した当該運転者の記憶済みの設定情報(調整量)を読み出す。
(11)読み出した設定情報に基づいてアイボックス位置を自動調整する。
(12)当該運転者の設定情報がなければ、カメラ映像から運転者の目の高さを求める。
(13)目の高さに基づいてアイボックス位置を自動調整する。
(14)音声で必要に応じて手動調整することを促す。
(15)運転者は必要に応じて手動調整スイッチで調整する。
(16)自動調整および手動調整後は、設定情報を運転者情報と紐づけて記憶する(記憶済みの設定情報と同一ならば更新不要)。
(17)走行準備を始めたら(シフトをパーキングからドライブに変更するなど)、HUD表示を通常モードに切り替える。
Next, the automatic adjustment of the eyebox will be described in detail using an embodiment. First, an outline of the operation of the driver who gets on the vehicle and the flow of automatic adjustment processing will be described.
(1) The driver sits on the seat and starts the car engine.
(3) The HUD is activated and executes the process at the time of activation.
(4) Check that the engine is started and the driver's seat is loaded.
(5) Prompt to adjust the position and height of the seat and correct the posture with voice.
(6) Prompt to press the eyebox automatic adjustment switch with voice.
(7) The driver presses the eyebox automatic adjustment switch.
(8) Switch the HUD display to the eyebox adjustment mode.
(9) The driver is determined from the camera image.
(10) The stored setting information (adjustment amount) of the determined driver is read.
(11) The eyebox position is automatically adjusted based on the read setting information.
(12) If there is no setting information for the driver, the eye height of the driver is obtained from the camera image.
(13) The eyebox position is automatically adjusted based on the eye height.
(14) Prompt to make manual adjustments as needed with voice.
(15) The driver adjusts the manual adjustment switch as necessary.
(16) After automatic adjustment and manual adjustment, the setting information is stored in association with the driver information (no update is required if the setting information is the same as the stored setting information).
(17) When the preparation for traveling is started (for example, the shift is changed from parking to driving), the HUD display is switched to the normal mode.
 実施例1では、運転者の目の高さを検出し、これに応じてミラーを回転させアイボックス位置を最適状態に自動的に調整する方式について説明する。運転者の目の高さを検出するため、本実施例では、車内カメラにより運転者の顔を撮影し、目の高さを求めるようにした。これにより、運転者が他の運転者に交代したとき、あるいは同一の運転者でもその運転姿勢が変化したとき、そのときの運転者の目の高さに追従して最も見やすい映像表示を行うことができる。さらに、調整後のデータ(設定情報)を運転者ごとに記憶しておき、次に運転するときに記憶しているデータを利用するようにした。すなわち、調整結果を学習し、その学習結果を次回設定時の基準として用いることで、同一運転者に対する繰り返しの目の高さの検出を省略し、迅速なミラー調整を可能にした。 Example 1 describes a method of detecting the height of a driver's eyes and automatically adjusting the eyebox position to an optimum state by rotating a mirror in accordance with the detected eye height. In order to detect the height of the driver's eyes, in this embodiment, the driver's face is photographed by an in-vehicle camera to obtain the eye height. As a result, when the driver changes to another driver, or when the driving posture of the same driver changes, the most visible video display follows the eye level of the driver at that time. Can do. Further, the adjusted data (setting information) is stored for each driver, and the stored data is used when driving next time. That is, the adjustment result is learned, and the learning result is used as a reference for the next setting, thereby eliminating the repeated eye height detection for the same driver and enabling quick mirror adjustment.
 図11は、ヘッドアップディスプレイ100aの内部構成を示すブロック図である。前記図2の構成100と比較し、手動調整スイッチ51と自動調整スイッチ52を追加し、運転者が手動調整/自動調整を選択できるようにした。スイッチ検出部53は選択されたスイッチを検出し、電子制御ユニット11は手動調整/自動調整に応じて、各制御部や駆動部に対し調整処理を行わせる。 FIG. 11 is a block diagram showing the internal configuration of the head-up display 100a. Compared to the configuration 100 of FIG. 2, a manual adjustment switch 51 and an automatic adjustment switch 52 are added so that the driver can select manual adjustment / automatic adjustment. The switch detection unit 53 detects the selected switch, and the electronic control unit 11 causes each control unit and drive unit to perform adjustment processing according to manual adjustment / automatic adjustment.
 なお、図11では、HUD100a全体を左右に移動させる機能を追加している。また、映像表示装置2を車両のルーフに設置して投射する場合と、ミラー3として反射/非反射の切換えが可能な調光ミラー30を用いる場合を含めて記載している。そのため、以下の機能を追加している。 In FIG. 11, a function for moving the entire HUD 100a to the left and right is added. Also, the case where the image display device 2 is installed on the roof of the vehicle for projection and the case where the light control mirror 30 capable of switching between reflection / non-reflection is used as the mirror 3 are described. Therefore, the following functions have been added.
 HUD位置調整部24はHUD100aの移動位置を決定し、HUD駆動部25に制御信号を送る。HUD駆動部25はレールガイドや駆動モータを有し、HUD100aを左右に移動させる。投射角調整部26は、映像表示装置2を車両のルーフに設置した場合にその投射方向(投射角)を決定し、投射角駆動部27は映像表示装置2の投射部の方向を変化させる。調光ミラー30を用いる場合、調光ミラー制御部28は、調光ミラー30の反射/非反射の切り替え信号を発生し、調光ミラー電圧供給部29は調光ミラー30に対して所定の電圧を印加して鏡面状態(ON状態)と透明状態(OFF状態)とを切換える。 The HUD position adjusting unit 24 determines the moving position of the HUD 100a and sends a control signal to the HUD driving unit 25. The HUD drive unit 25 includes a rail guide and a drive motor, and moves the HUD 100a to the left and right. The projection angle adjustment unit 26 determines the projection direction (projection angle) when the video display device 2 is installed on the roof of the vehicle, and the projection angle drive unit 27 changes the direction of the projection unit of the video display device 2. When the dimming mirror 30 is used, the dimming mirror control unit 28 generates a reflection / non-reflection switching signal for the dimming mirror 30, and the dimming mirror voltage supply unit 29 applies a predetermined voltage to the dimming mirror 30. Is applied to switch between the mirror surface state (ON state) and the transparent state (OFF state).
 以下では、ミラー調整部18とミラー駆動部4によるアイボックス調整動作を中心に説明するが、HUD位置調整部24とHUD駆動部25、投射角調整部26と投射角駆動部27、調光ミラー制御部28と調光ミラー電圧供給部29を用いたアイボックス調整でも同様に適用できる。 In the following, the eye box adjustment operation by the mirror adjustment unit 18 and the mirror drive unit 4 will be mainly described. However, the HUD position adjustment unit 24 and the HUD drive unit 25, the projection angle adjustment unit 26 and the projection angle drive unit 27, and the dimming mirror The same applies to eyebox adjustment using the control unit 28 and the dimming mirror voltage supply unit 29.
 図12は、アイボックス調整スイッチの設置例を示す図である。運転者が操作する手動調整スイッチ51と自動調整スイッチ52は、運転するときの姿勢(HUDにより表示される虚像9を見るときの姿勢)を維持したまま押せる位置に設置する。ここでは、スイッチ51,52をハンドルに組み込んだ場合、ダッシュボードに設置した場合、及びシート横に設置した場合の3通りを示している。その他の方法として、自動調整スイッチ52の代わりに音声やジェスチャ等で開始を指示しても良い(いずれも姿勢は正しておく必要あり)。車内カメラ115は運転者の姿勢や顔を撮影し、目の高さを検出する。なお、カメラ映像その他から運転の準備が整ったと判断して、アイボックス調整を自動的に開始しても良い。 FIG. 12 is a diagram showing an installation example of the eyebox adjustment switch. The manual adjustment switch 51 and the automatic adjustment switch 52 that are operated by the driver are installed at positions that can be pushed while maintaining the posture during driving (the posture when viewing the virtual image 9 displayed by the HUD). Here, three types are shown: when the switches 51 and 52 are incorporated in the handle, when installed on the dashboard, and when installed next to the seat. As another method, the start may be instructed by voice, gesture, or the like instead of the automatic adjustment switch 52 (both postures must be corrected). The in-vehicle camera 115 captures the posture and face of the driver and detects the eye height. Note that the eyebox adjustment may be automatically started by determining that the preparation for driving is completed from the camera video and the like.
 図13は、手動調整スイッチによる調整動作を示す図である。手動調整スイッチ51は上昇用と下降用のボタンからなり、運転者が上昇用または下降用のボタンを押下するごとに、ウィンドシールドの前方に見える表示映像(虚像9)の位置が上下に移動する。この図では、ボタンを1回押すごとに虚像9が一定の距離だけ移動する場合を示しているが、ボタンを押している時間に応じて虚像9の移動する距離が変化するような調整動作としてもよい。 FIG. 13 is a diagram showing an adjustment operation by the manual adjustment switch. The manual adjustment switch 51 includes buttons for ascending and descending, and the position of the display image (virtual image 9) seen in front of the windshield moves up and down each time the driver presses the button for ascending or descending. . This figure shows a case where the virtual image 9 moves by a certain distance each time the button is pressed. However, the adjustment operation may be such that the moving distance of the virtual image 9 changes according to the time the button is pressed. Good.
 図14は、アイボックスの自動調整処理の基本動作を示すフローチャートである。運転者の過去の調整データ(設定情報)が存在せず、初めて自動調整する場合にはこの基本動作を行う。以下、ステップ順に説明する。 FIG. 14 is a flowchart showing the basic operation of the eyebox automatic adjustment processing. This basic operation is performed when there is no driver's past adjustment data (setting information) and automatic adjustment is performed for the first time. Hereinafter, it demonstrates in order of a step.
 S300:運転者が自動調整を選択すると、電子制御ユニット(ECU)11は、アイボックスの自動調整処理を開始させる。
  S301:HUDによる映像の表示モードを、「アイボックス自動調整モード」に設定する。具体的には実施例2で説明するが、通常の映像(例えば運転案内標識)とは異なり調整中であることを示す映像を表示する。
S300: When the driver selects automatic adjustment, the electronic control unit (ECU) 11 starts an automatic adjustment process for the eyebox.
S301: The video display mode by HUD is set to “eyebox automatic adjustment mode”. Specifically, as described in the second embodiment, unlike a normal image (for example, a driving guide sign), an image indicating that adjustment is being performed is displayed.
 S302:車内カメラ115により運転者を撮影し顔の映像情報を取得する。
  S303:撮影した運転者の顔の映像を解析し、運転者の特徴を取得する。具体的には、目の高さを直接求めるのが望ましいが、顔全体の位置から目の高さを推定しても良い。
S302: The driver is photographed by the in-vehicle camera 115 to acquire facial image information.
S303: The photographed image of the driver's face is analyzed to acquire the driver's characteristics. Specifically, it is desirable to directly obtain the eye height, but the eye height may be estimated from the position of the entire face.
 S304:目の高さを求めたら、運転者を複数のタイプに分類する。そのため、予め目の高さを複数の範囲(複数のタイプ)に区分しておき、当該運転者はどの範囲(タイプ)に属するかを判定する。
  S305:運転者のタイプに応じた目標調整量を取得する。そのため、予めタイプごとの目標調整量(ミラー回転角、ミラー移動量)を定めておき、これを読み出す。なお、タイプに分類するための目の高さの範囲やタイプごとの目標調整量は、不揮発性メモリ13に記憶しておく。
S304: When the eye height is obtained, the driver is classified into a plurality of types. Therefore, eye height is divided into a plurality of ranges (plural types) in advance, and it is determined to which range (type) the driver belongs.
S305: A target adjustment amount corresponding to the type of driver is acquired. Therefore, a target adjustment amount (mirror rotation angle, mirror movement amount) for each type is determined in advance and is read out. Note that the eye height range for classification into types and the target adjustment amount for each type are stored in the nonvolatile memory 13.
 S306:読み出した目標調整量に従い、ミラー調整部18はミラー駆動部4を介してミラー3の角度や位置を調整する。
  S307:ミラー駆動部4に含まれるセンサによりミラーの角度や位置を検出し、目標調整量に到達したか否かを判定する。到達したらS308へ進み、到達していないならばS306の調整を繰り返す。
S306: According to the read target adjustment amount, the mirror adjustment unit 18 adjusts the angle and position of the mirror 3 via the mirror drive unit 4.
S307: The angle and position of the mirror are detected by a sensor included in the mirror driving unit 4, and it is determined whether or not the target adjustment amount has been reached. If reached, the process proceeds to S308, and if not reached, the adjustment in S306 is repeated.
 S308:車内カメラ115により再度運転者の映像情報を取得する。
  S309:再度運転者の目の高さを求め、S303で求めた値と比べ変化したかどうかを判定する。この判定は、調整中に運転者が姿勢を変えたり、車内が暗くて顔検出が安定しない場合は再調整(リトライ)を行うためである。変化した場合はS310へ進み、変化しなかった場合はS313へ進む。
S308: The video information of the driver is acquired again by the in-vehicle camera 115.
S309: The height of the driver's eyes is obtained again, and it is determined whether or not the value has changed compared with the value obtained in S303. This determination is for performing readjustment (retry) when the driver changes his / her posture during adjustment or when the vehicle interior is dark and face detection is not stable. If changed, the process proceeds to S310, and if not changed, the process proceeds to S313.
 S310:再調整の回数(リトライ回数)または調整時間が閾値以上かどうかを判定する。閾値以上の場合はS311に進み、閾値未満の場合はS312へ進む。
  S311:再調整を止めてリトライ回数をリセットし、S313へ進む。
S310: It is determined whether the number of readjustments (the number of retries) or the adjustment time is equal to or greater than a threshold. If it is equal to or greater than the threshold, the process proceeds to S311. If it is less than the threshold, the process proceeds to S312.
S311: Stop readjustment, reset the number of retries, and proceed to S313.
 S312:目の高さの変化量に応じて、ミラー調整量を算出する。そしてS306へ進み、再度ミラー調整を行う。ミラー調整量の算出とは、現在のミラー角度や位置(S306でミラー調整した結果)からS309で再検出した運転者の目の高さに合うミラー角度や位置までどれだけミラーを回転または移動するかを求める処理である。S312のミラー調整量算出処理を行わず、S306で調整したミラー角度や位置をリセット(原点に戻す)した上で、改めてS304の運転者のタイプ分け以降の処理を実施してもよい。
  S313:表示モードを通常の映像(例えば運転案内標識)を表示する「通常モード」に設定する。
  S314:アイボックス自動調整処理を終了する。
S312: A mirror adjustment amount is calculated according to the amount of change in eye height. In step S306, mirror adjustment is performed again. The calculation of the mirror adjustment amount refers to how much the mirror is rotated or moved from the current mirror angle or position (the result of mirror adjustment in S306) to the mirror angle or position that matches the eye level of the driver redetected in S309. This is a process for obtaining the above. Instead of performing the mirror adjustment amount calculation process of S312 and resetting (returning to the origin) the mirror angle and position adjusted in S306, the process after the classification of the driver in S304 may be performed again.
S313: The display mode is set to “normal mode” for displaying a normal video (for example, a driving guide sign).
S314: The eyebox automatic adjustment process is terminated.
 上記工程はもっと単純化して、自動調整開始ボタン押されてから所定時間(例えば5秒間)調整したら終了し、その後は運転者が手動で微調整することにしても良い。 The above process may be further simplified, and may be finished after adjustment for a predetermined time (for example, 5 seconds) after the automatic adjustment start button is pressed, and then the driver may make fine adjustment manually.
 図14の自動調整の後、運転者は必要に応じて、図13に示すように手動調整スイッチ51を操作して映像9が最も見やすい位置になるように微調整を行っても良い。 14, after the automatic adjustment shown in FIG. 14, if necessary, the driver may perform fine adjustment so that the image 9 is positioned most easily by operating the manual adjustment switch 51 as shown in FIG. 13.
 図15は、設定情報の記憶処理を示すフローチャートである。図14のアイボックス自動調整および図14の手動調整した後には、ミラー調整量のデータ(設定情報)を運転者ごとに記憶する処理を行う。記憶部としては、不揮発性メモリ13を用いる。 FIG. 15 is a flowchart showing the setting information storing process. After the eyebox automatic adjustment in FIG. 14 and the manual adjustment in FIG. 14, processing for storing mirror adjustment amount data (setting information) for each driver is performed. A nonvolatile memory 13 is used as the storage unit.
 S320:設定情報記憶処理を開始する。この処理は、HUD表示On/Offセンサ121によりOff信号を受けた時点で開始すればよい。あるいは、HUDがOnの状態で、現在の運転者が降車したことを車内カメラ115で検出した時点で開始してもよい。
  S321:記憶部(不揮発性メモリ13)を参照し、当該運転者の設定情報が存在するか否かを判定する。存在すればS323へ進み、存在しなければS322へ進む。
S320: The setting information storage process is started. This process may be started when the HUD display On / Off sensor 121 receives an Off signal. Alternatively, it may be started when the in-vehicle camera 115 detects that the current driver has got off while the HUD is On.
S321: Referring to the storage unit (nonvolatile memory 13), it is determined whether or not the driver setting information exists. If it exists, the process proceeds to S323, and if it does not exist, the process proceeds to S322.
 S322:当該運転者の調整結果である設定情報を記憶部に新規に記憶する。その際、運転者の識別情報(運転者ID)に紐付けて記憶する。その後S326へ進む。
  S323:記憶部には当該運転者の設定履歴に空き領域があるか否かを判定する。すなわち記憶部では、運転者ごとに複数の設定情報を記憶可能であり設定履歴として保存している。空き領域があればS325へ進み、空き領域がなければS324へ進む。
S322: Setting information that is the adjustment result of the driver is newly stored in the storage unit. At that time, it is stored in association with the identification information (driver ID) of the driver. Thereafter, the process proceeds to S326.
S323: It is determined whether or not there is an empty area in the setting history of the driver in the storage unit. That is, in the storage unit, a plurality of setting information can be stored for each driver and stored as a setting history. If there is a free area, the process proceeds to S325, and if there is no free area, the process proceeds to S324.
 S324:設定履歴の中で日時が最も古い設定情報を削除し、空き領域を設ける。
  S325:空き領域に当該運転者の設定情報を日時情報とともに記憶する。
  S326:設定情報記憶処理を終了する。
S324: Delete the setting information with the oldest date and time in the setting history to provide a free space.
S325: The setting information of the driver is stored in the empty area together with the date / time information.
S326: The setting information storage process is terminated.
 上記の処理では、アイボックスの調整(自動調整および手動調整)を行うごとに毎回設定情報を記憶(更新)するものとした。一方、記憶処理を簡略化するために、毎回更新するのではなく、新たな設定情報が記憶済みの設定情報と同じであればS325の記憶処理を省略し、設定情報が異なる場合にのみ記憶(更新)するようにしても良い。 In the above processing, the setting information is stored (updated) every time the eye box is adjusted (automatic adjustment and manual adjustment). On the other hand, in order to simplify the storage process, instead of updating each time, if the new setting information is the same as the stored setting information, the storage process of S325 is omitted, and only when the setting information is different (stored ( Update).
 さらに、アイボックス調整を行った最終の運転者(最終運転者)とその調整結果(最終運転者設定情報)を別途記憶しておけば、次に同じ運転者が乗車したとき、速やかに最適な位置(前回と同じ位置)に調整できる。 In addition, if the last driver who performed eyebox adjustment (final driver) and the adjustment result (final driver setting information) are stored separately, the next driver will get the optimum driver immediately. It can be adjusted to the position (same position as last time).
 また、HUD電源をOffにしたとき、現在の調整状態(ミラー角度や移動量)をそのまま保持するか、あるいはリセットして基準状態に戻すかを運転者が選択することもできる。ミラーの調整状態をそのまま保持すれば、次に同じ運転者が乗車したとき、調整処理を省略することが可能になる。 Also, when the HUD power supply is turned off, the driver can select whether to keep the current adjustment state (mirror angle and movement amount) as it is or reset to return to the reference state. If the adjustment state of the mirror is maintained as it is, the adjustment process can be omitted when the same driver gets on the next time.
 図16は、記憶済みの設定情報を利用した自動調整処理(A)を示すフローチャートである。ここでは、「最終運転者設定情報」を記憶していない場合を示す。図15で説明した運転者ごとに記憶しているミラー調整の設定情報を利用することで、新たな調整処理を省略(スキップ)することができる。 FIG. 16 is a flowchart showing an automatic adjustment process (A) using stored setting information. Here, a case where “final driver setting information” is not stored is shown. A new adjustment process can be omitted (skipped) by using the mirror adjustment setting information stored for each driver described in FIG.
 S330:運転者がアイボックス自動調整スイッチ52を押下することで、調整処理を開始する。
  S331:車内カメラ115の映像から運転者の判別処理を行う。そのため、運転者は予め顔映像を登録しておく。あるいは、運転者の指紋、虹彩、個人用キー等で判別してもよい。
S330: The adjustment process is started when the driver presses the eye box automatic adjustment switch 52.
S331: A driver discrimination process is performed from the video of the in-vehicle camera 115. Therefore, the driver registers face images in advance. Or you may discriminate | determine with a driver | operator's fingerprint, an iris, a personal key, etc.
 S332:記憶部(不揮発性メモリ13)を参照し、運転者ごとに記憶している設定情報を検索する。
  S333:記憶部には当該運転者の設定情報が存在するか否かを判定する。存在すればS334へ進み、存在しなければS335へ進む。
S332: The setting information stored for each driver is searched with reference to the storage unit (nonvolatile memory 13).
S333: It is determined whether the setting information of the driver exists in the storage unit. If it exists, the process proceeds to S334, and if it does not exist, the process proceeds to S335.
 S334:当該運転者の設定情報を読み出して、これに基づいてミラー調整を行う。
  S335:運転者の目の高さを検出し、これに応じたアイボックス自動調整処理(S300、図14)を行う。
  S336:アイボックス自動調整スイッチ52押下時の処理を終了する。
S334: The setting information of the driver is read out, and mirror adjustment is performed based on the setting information.
S335: The eye level of the driver is detected, and an eye box automatic adjustment process (S300, FIG. 14) corresponding to this is performed.
S336: The processing when the eyebox automatic adjustment switch 52 is pressed is terminated.
 以上のように、運転者の過去の設定情報を記憶しているときは、記憶している設定情報を利用することで簡単に調整でき、S335のアイボックス自動調整(S300)を省略(スキップ)することができる。これにより、運転者の目の高さの検出を含む自動調整の煩わしさがなく、また、ミラー駆動部などの動作回数が減ることにより部品の故障発生率が抑えられる効果がある。なお、過去の設定情報を利用して調整を行った場合には、図15の設定情報の記憶処理は不要である。 As described above, when the driver's past setting information is stored, it can be easily adjusted by using the stored setting information, and the eyebox automatic adjustment (S300) of S335 is omitted (skip). can do. Thereby, there is no trouble of automatic adjustment including detection of the eye height of the driver, and there is an effect that the failure occurrence rate of parts can be suppressed by reducing the number of operations of the mirror driving unit and the like. When adjustment is performed using past setting information, the setting information storage processing of FIG. 15 is not necessary.
 図17は、記憶済みの設定情報を利用した自動調整処理(B)を示すフローチャートである。ここでは、前回の運転者の設定情報である「最終運転者設定情報」を記憶している場合を示す。 FIG. 17 is a flowchart showing an automatic adjustment process (B) using stored setting information. Here, a case where “last driver setting information” which is the setting information of the previous driver is stored is shown.
 S340:運転者がアイボックス自動調整スイッチ52を押下することで、調整処理を開始する。
  S341:車内カメラ115の映像から運転者の判別処理を行う。
S340: When the driver presses the eyebox automatic adjustment switch 52, the adjustment process is started.
S341: A driver discrimination process is performed from the video of the in-vehicle camera 115.
 S342:記憶部(不揮発性メモリ13)を参照し、当該運転者は前回の運転者と一致するか否かを判定する。一致するときはS343へ進み、一致しないときはS344へ進む。
  S343:最終運転者設定情報を参照して前回の設定情報を読み出し、これに基づいてミラー調整を行う。その後S348へ進む。
S342: Referring to the storage unit (nonvolatile memory 13), the driver determines whether or not the driver matches the previous driver. If they match, the process proceeds to S343, and if they do not match, the process proceeds to S344.
S343: The last setting information is read with reference to the final driver setting information, and the mirror adjustment is performed based on this. Thereafter, the process proceeds to S348.
 S344:記憶部(不揮発性メモリ13)を参照し、運転者ごとに記憶している設定情報を検索する。
  S345:記憶部には当該運転者の設定情報が存在するか否かを判定する。存在すればS346へ進み、存在しなければS347へ進む。
S344: The setting information stored for each driver is searched with reference to the storage unit (nonvolatile memory 13).
S345: It is determined whether the setting information of the driver exists in the storage unit. If it exists, the process proceeds to S346, and if it does not exist, the process proceeds to S347.
 S346:当該運転者の設定情報を読み出して、これに基づいてミラー調整を行う。
  S347:運転者の目の高さを検出し、これに応じたアイボックス自動調整処理(S300、図14)を行う。
  S348:アイボックス自動調整スイッチ押下時の処理を終了する。
S346: The setting information of the driver is read out, and mirror adjustment is performed based on the setting information.
S347: The eye level of the driver is detected, and an eye box automatic adjustment process (S300, FIG. 14) corresponding to this is performed.
S348: The processing when the eyebox automatic adjustment switch is pressed is terminated.
 以上のように、前回の運転者の設定情報(最終運転者設定情報)を別途記憶しているときは、この設定情報を利用することでS344の運転者ごとの設定情報を検索することなく、またS347のアイボックス自動調整(S300)を省略できるので、調整時間をより短縮できる。 As described above, when the previous driver setting information (final driver setting information) is separately stored, the setting information for each driver in S344 can be retrieved by using this setting information. Further, since the eye box automatic adjustment (S300) in S347 can be omitted, the adjustment time can be further shortened.
 実施例2では、アイボックス調整時に表示する画面について説明する。アイボックス調整時には、通常の表示画面と異なる映像を表示することで、運転者に調整中であることを知らせる効果がある。 Example 2 describes a screen displayed during eyebox adjustment. At the time of eyebox adjustment, displaying an image different from the normal display screen has an effect of notifying the driver that adjustment is in progress.
 図18は、ヘッドアップディスプレイの表示画面例を示す図である。(a)は通常モードを示し、通常の映像91(例えば運転案内標識)を表示する。(b)はアイボックス調整モードを示し、映像の表示領域を示す調整画面92を表示する。調整画面92は、例えば十字マークや表示領域を示す境界線などで構成するが、これ以外に、車両メーカや車両名のロゴなどを含めて表示しても良い。あるいは始めにロゴを表示した後に、(b)のようなシンプルな表示に変更しても良い。 FIG. 18 is a diagram showing a display screen example of the head-up display. (A) shows a normal mode, and a normal video 91 (for example, a driving guide sign) is displayed. (B) shows the eye box adjustment mode, and displays an adjustment screen 92 showing the display area of the video. The adjustment screen 92 is configured by, for example, a cross mark or a boundary line indicating a display area, but may be displayed including a vehicle manufacturer or a vehicle name logo. Or after displaying a logo first, you may change to a simple display like (b).
 この調整画面92は、アイボックス自動調整処理(図14、S300)ではS301でアイボックス調整モードの表示に切り替えたときに表示され、S313で通常の映像表示に戻す。あるいは手動調整スイッチが操作されたときに調整画面92が表示され、たとえば一定時間手動調整スイッチが操作されなかったときに通常の映像表示91に戻す。ただし、走行中にアイボックス調整を行うときは、調整画面92を表示すると運転の妨げとなるおそれがあるため、調整画面92を表示せず通常の映像表示91のままとする。 This adjustment screen 92 is displayed when the eyebox automatic adjustment processing (FIG. 14, S300) is switched to the display of the eyebox adjustment mode in S301, and is returned to the normal video display in S313. Alternatively, when the manual adjustment switch is operated, the adjustment screen 92 is displayed. For example, when the manual adjustment switch is not operated for a certain period of time, the normal image display 91 is restored. However, when performing eyebox adjustment during traveling, displaying the adjustment screen 92 may hinder driving, so the adjustment screen 92 is not displayed and the normal video display 91 is maintained.
 図19は、手動調整スイッチによる調整画面92の調整方法を示す図である。中央の(a)には基準の表示位置を示している。これに対して手動調整スイッチ51を操作して表示位置を移動させることができる。ここでは上下方向だけでなく、左右方向の調整も可能にした場合を示す。なお、左右方向の調整は、例えばHUD位置調整部24とHUD駆動部25により可能である。これにより、(b)~(i)に示すように上下左右方向に自在に移動が可能となる。 FIG. 19 is a diagram illustrating an adjustment method of the adjustment screen 92 using the manual adjustment switch. In the center (a), the reference display position is shown. In contrast, the manual adjustment switch 51 can be operated to move the display position. Here, a case is shown in which not only the vertical direction but also the horizontal direction can be adjusted. The adjustment in the left-right direction can be performed by, for example, the HUD position adjusting unit 24 and the HUD driving unit 25. As a result, as shown in (b) to (i), it is possible to move freely in the vertical and horizontal directions.
 実施例3では、アイボックスの自動調整を行うタイミングについて説明する。すなわち、アイボックス自動調整は安全性を考慮し、基本的には運転開始前(停車中)に行うものとする。なお、運転者の便宜のため走行中にも実施可能とし、その場合には安全性に配慮した動作とする。 In Example 3, the timing for automatically adjusting the eyebox will be described. That is, the eyebox automatic adjustment is basically performed before the start of driving (while the vehicle is stopped) in consideration of safety. For the convenience of the driver, the operation can be performed while traveling, and in that case, the operation is performed in consideration of safety.
 図20は、走行中の自動調整の選択画面の例を示す図である。選択画面93では、アイボックス自動調整を行うタイミングを、運転者が選択できるようにする。これにより、走行中に運転者の姿勢が変化したような場合にも、自動調整が可能となる。 FIG. 20 is a diagram showing an example of a selection screen for automatic adjustment during traveling. On the selection screen 93, the driver can select the timing for performing eyebox automatic adjustment. Thus, even when the driver's posture changes during traveling, automatic adjustment is possible.
 HUDの設定メニューの中に「走行中の自動位置調整」の項目を設け、その選択肢は以下である。
  (1)「行わない」:走行中の自動調整を行わない。
  (2)「常に行う」:走行中に所定時間経過ごとに自動調整を行う。自動調整スイッチ52の押下とは関係ない。
  (3)「自動調整SW押下時のみ」:走行中に自動調整スイッチ52を押したときに自動調整を行う。
In the setting menu of the HUD, an item of “automatic position adjustment during travel” is provided, and the options are as follows.
(1) “Do not perform”: Do not perform automatic adjustment while driving.
(2) “Always perform”: Automatic adjustment is performed every time a predetermined time elapses during traveling. This is not related to pressing of the automatic adjustment switch 52.
(3) “Only when the automatic adjustment SW is pressed”: Automatic adjustment is performed when the automatic adjustment switch 52 is pressed during traveling.
 運転者は(2)または(3)を選択することで、走行中にもアイボックスの自動調整を実施させることができる。ただし、走行中の調整動作は停車中の調整動作と異なり、以下、それらの動作を詳細に説明する。 The driver can select (2) or (3) to automatically adjust the eyebox while driving. However, the adjustment operation during traveling is different from the adjustment operation while the vehicle is stopped, and these operations will be described in detail below.
 図21は、アイボックス自動調整を行うタイミングを決定するフローチャートである。ここでは、図20に示した走行中の自動位置調整の選択に基づき、自動調整スイッチの押下や経過時間をトリガとして自動調整を行う。 FIG. 21 is a flowchart for determining the timing for performing eyebox automatic adjustment. Here, based on the selection of the automatic position adjustment during traveling shown in FIG. 20, the automatic adjustment is performed using the depression of the automatic adjustment switch or the elapsed time as a trigger.
 S400:自動調整に関するイベント(ユーザ操作など)の監視処理を開始する。
  S401:イベントを取得する。ここで取得するイベントは、自動調整スイッチの押下、またはタイマで計測した経過時間を対象とする。
S400: Start monitoring processing of events relating to automatic adjustment (such as user operations).
S401: An event is acquired. The event acquired here is for the elapsed time measured by pressing the automatic adjustment switch or the timer.
 S402:イベントは、アイボックス自動調整スイッチ52の押下かどうかを判定する。Yesの場合はS403へ進み、Noの場合はS407へ進む。
  S403:車両は停車中か否かを判定する。Yesの場合はS404へ進み、Noの場合はS405へ進む。
S402: The event determines whether the eyebox automatic adjustment switch 52 is pressed. If Yes, the process proceeds to S403, and if No, the process proceeds to S407.
S403: It is determined whether or not the vehicle is stopped. If Yes, the process proceeds to S404, and if No, the process proceeds to S405.
 S404:アイボックス自動調整処理(S300)を行い、S410へ進む。
  S405:走行中の自動調整を自動調整スイッチ押下時のみ行う設定(図20の選択(3))か否かを判定する。Yesの場合はS406へ進み、Noの場合はS410へ進む。
  S406:走行中のスイッチ押下によるアイボックス自動調整処理(C)を行う。その詳細は図22で後述する。
S404: An eye box automatic adjustment process (S300) is performed, and the process proceeds to S410.
S405: It is determined whether or not the setting is such that automatic adjustment during traveling is performed only when the automatic adjustment switch is pressed (selection (3) in FIG. 20). In the case of Yes, it progresses to S406, and in No, it progresses to S410.
S406: An eyebox automatic adjustment process (C) is performed by pressing the switch while traveling. Details thereof will be described later with reference to FIG.
 S407:イベントがタイマイベントであり、所定の時間が経過したか否かを判定する。Yesの場合はS408へ進み、Noの場合はS410へ進む。
  S408:走行中の自動調整を常に行う設定(図20の選択(2))か否かを判定する。Yesの場合はS409へ進み、Noの場合はS410へ進む。
S407: It is determined whether the event is a timer event and a predetermined time has elapsed. In the case of Yes, it progresses to S408, and in No, it progresses to S410.
S408: It is determined whether or not the setting is to always perform automatic adjustment during traveling (selection (2) in FIG. 20). If Yes, the process proceeds to S409, and if No, the process proceeds to S410.
 S409:走行中のアイボックス自動調整処理(D)を行う。その詳細は図24で後述する。
  S410:イベント監視処理を終了する。
S409: The eye box automatic adjustment process (D) during traveling is performed. Details thereof will be described later with reference to FIG.
S410: The event monitoring process is terminated.
 以上のように、アイボックス自動調整のタイミングは、安全性を考慮して基本的には停車中に行うようにする。なお、運転者が走行中の自動調整を選択している場合には、走行中の自動調整を可能にして使い勝手を向上させることができる。 As described above, the timing of automatic eyebox adjustment is basically performed while the vehicle is stopped in consideration of safety. In addition, when the driver has selected automatic adjustment during traveling, automatic adjustment during traveling can be performed to improve usability.
 以下、S406とS409における走行中のアイボックス自動調整処理(C)、(D)について説明する。 Hereinafter, the eye box automatic adjustment processing (C) and (D) during traveling in S406 and S409 will be described.
 図22は、走行中のスイッチ押下による自動調整処理(C)を示すフローチャートである。これは、図21のS406の処理であり、図20で(3)を選択した場合に実行する。 FIG. 22 is a flowchart showing an automatic adjustment process (C) by pressing a switch while traveling. This is the process of S406 in FIG. 21, and is executed when (3) is selected in FIG.
 S420:自動調整スイッチ52の押下を契機に、走行中の自動調整処理(C)を開始する。
  S421:車内カメラ115の映像により現在の運転者の姿勢情報(目の高さ)を取得する。
S420: When the automatic adjustment switch 52 is pressed, the automatic adjustment process (C) during running is started.
S421: The current driver posture information (eye height) is acquired from the video of the in-vehicle camera 115.
 S422:初期設定時の姿勢から変化があるか否かを判定する。変化があればS423へ進み、変化がなければS426へ進む。
  S423:姿勢の変化量に応じてミラーの目標調整量を修正する。
S422: It is determined whether or not there is a change from the initial setting posture. If there is a change, the process proceeds to S423, and if there is no change, the process proceeds to S426.
S423: The target adjustment amount of the mirror is corrected according to the change amount of the posture.
 S424:目標調整量に従い、低速ミラー調整処理を行う。低速ミラー調整処理では、停車中のミラー調整処理よりも調整を低速(緩やか)に行う。例えば、ウェイト時間を入れて断続的に調整しても良い。また、走行中の表示画面は図18(b)の調整モードに変えず、(a)の通常モードのままとする。
  S425:目標調整量に到達したか否かを判定する。到達したらS427へ進み、到達していないならばS424の調整を繰り返す。
S424: Perform low-speed mirror adjustment processing according to the target adjustment amount. In the low-speed mirror adjustment process, the adjustment is performed at a lower speed (slower) than the mirror adjustment process while the vehicle is stopped. For example, the adjustment may be performed intermittently with a wait time. Further, the display screen during traveling is not changed to the adjustment mode shown in FIG. 18B, but remains in the normal mode shown in FIG.
S425: It is determined whether or not the target adjustment amount has been reached. If reached, the process proceeds to S427, and if not reached, the adjustment of S424 is repeated.
 S426:手動調整スイッチ51により調整するよう通知する。これは、S420で運転者が走行中に自動調整スイッチ52を押した訳であるから、現在の調整に満足しておらず、かつ運転者の姿勢に変化がないことから、手動による調整を促すものである。その通知方法は図23で説明する。
  S427:走行中の自動調整処理(C)を終了する。
S426: Notify that the manual adjustment switch 51 is used for adjustment. This is because the driver pushed the automatic adjustment switch 52 during traveling in S420, and is not satisfied with the current adjustment, and the driver's posture has not changed. Is. The notification method will be described with reference to FIG.
S427: The automatic adjustment process (C) during traveling is terminated.
 上記の処理において、S424の低速ミラー調整処理では調整を低速(緩やか)に行うことで、調整を極力自然に、運転者に気付かせないように行う。これにより、走行中の運転動作への妨げになることを極力回避することができる。 In the above process, the low speed mirror adjustment process of S424 performs the adjustment at a low speed (gradually), so that the adjustment is performed as naturally as possible without making the driver aware of it. As a result, it is possible to avoid as much as possible an obstacle to the driving operation during traveling.
 図23は、S426における手動調整の通知方法の例を示す図である。(a)は車内のスピーカ6から音声61で案内する場合である。(b)はHUD表示画面9に案内94を表示する場合である。これにより運転者は、手動調整スイッチ51を操作して表示位置を調整する。 FIG. 23 is a diagram illustrating an example of a manual adjustment notification method in S426. (A) is a case where guidance is given by voice 61 from the speaker 6 in the vehicle. (B) is a case where the guide 94 is displayed on the HUD display screen 9. Thus, the driver operates the manual adjustment switch 51 to adjust the display position.
 図24は、走行中の自動調整処理(D)を示すフローチャートである。これは、図21のS409の処理であり、自動調整スイッチ52が押下されなくても、図20で(2)を選択した場合に自動的に実行する。 FIG. 24 is a flowchart showing the automatic adjustment process (D) during traveling. This is the process of S409 in FIG. 21 and is automatically executed when (2) is selected in FIG. 20 even if the automatic adjustment switch 52 is not pressed.
 S430:タイマイベントを契機に走行中の自動調整処理(D)を開始する。
  S431:車内カメラ115の映像により現在の運転者の姿勢情報(目の高さ)を取得する。
S430: The automatic adjustment process (D) during traveling is started in response to the timer event.
S431: The current driver posture information (eye height) is acquired from the video of the in-vehicle camera 115.
 S432:前回ミラー調整を行ったときの姿勢(目の高さ)から変化があるか否かを判定する。変化があればS433へ進み、変化がなければS439へ進む。なお、前回ミラー調整を行ったときの姿勢情報とは、走行開始前に自動調整または手動調整したときの姿勢情報、あるいは走行中に自動調整したときの姿勢情報である。
  S433:一定時間以上現在の姿勢が継続されているどうか判定する。これは、瞬間的に姿勢が変化した場合を除くためである。Yesの場合はS434へ進み、Noの場合はS438へ進む。
S432: It is determined whether there is a change from the posture (eye height) when the mirror adjustment was performed last time. If there is a change, the process proceeds to S433, and if there is no change, the process proceeds to S439. Note that the posture information when the mirror adjustment was performed last time is posture information when automatic adjustment or manual adjustment is performed before the start of traveling, or posture information when automatic adjustment is performed during traveling.
S433: It is determined whether or not the current posture is continued for a predetermined time or more. This is to exclude the case where the posture changes instantaneously. If Yes, the process proceeds to S434. If No, the process proceeds to S438.
 S434:姿勢の変化量に応じてミラーの目標調整量を算出する。
  S435:目標調整量に従い、低速ミラー調整処理を行う。この低速ミラー調整処理は前記図22のS424と同様であり、調整を低速(緩やか)に行うとともに、表示画面は通常モードのままとする。
S434: A target adjustment amount of the mirror is calculated according to the change amount of the posture.
S435: Perform low-speed mirror adjustment processing according to the target adjustment amount. This low-speed mirror adjustment process is the same as S424 in FIG. 22, and the adjustment is performed at a low speed (gradually) and the display screen remains in the normal mode.
 S436:目標調整量に到達したか否かを判定する。到達したらS437へ進み、到達していないならばS435の調整を繰り返す。
  S437:ミラー調整を行ったときの姿勢情報を記憶(更新)し、S349へ進む。ここで記憶したミラー調整時の姿勢情報は、次回、走行中の自動調整処理を行うとき、S432でミラー調整時の姿勢が変化したかどうかの判定で利用する。
S436: It is determined whether or not the target adjustment amount has been reached. If reached, the process proceeds to S437, and if not reached, the adjustment of S435 is repeated.
S437: Store (update) the posture information when the mirror adjustment is performed, and proceed to S349. The attitude information at the time of mirror adjustment stored here is used for determining whether or not the attitude at the time of mirror adjustment has changed in S432 the next time automatic adjustment processing during traveling is performed.
 S438:現在の姿勢は安定していないので、ミラー調整は行わず現在の姿勢情報を記憶する。ここで記憶した現在の姿勢情報は、次回、走行中の自動調整処理を行うとき、S433で一定時間以上現在の姿勢が継続されているかどうかの判定で利用する。
  S439:走行中の自動調整処理(D)を終了する。
S438: Since the current posture is not stable, the current posture information is stored without performing mirror adjustment. The current posture information stored here is used for determining whether or not the current posture has been continued for a predetermined time or more in S433 when the next automatic adjustment process during traveling is performed.
S439: The automatic adjustment process (D) during traveling is terminated.
 図24の処理において、S433では姿勢が変化したことを繰り返し確認した後に調整するようにした。これにより、一時的な変化に即座に追従して表示位置が変動し、運転者に煩わしさを与えないようにする。その他にも、姿勢の変化のうち限られた動きだけに限定して、顔の高さは変わらず横だけ向いたとき、左右は変わらず高さだけ変わったとき、などに調整することも実用的である。 In the processing of FIG. 24, in S433, after repeatedly confirming that the posture has changed, the adjustment is made. As a result, the display position fluctuates immediately following the temporary change so as not to bother the driver. In addition, it is also practical to adjust to only limited movements of posture changes, such as when the face height does not change and only faces sideways, when left and right does not change and only the height changes Is.
 実施例4では、アイボックスの自動調整に当たり、運転者を複数のタイプに分類して各タイプの基準値をもとにミラー調整を行うことについて説明する。運転者を目の高さで分類し、この目の高さの人にはこの調整が良いはずだという基準を予め定めておき、その基準を目標に調整を行う。このタイプ分け処理により、調整処理を簡略化し短時間で行うことが可能となる。前記図14と図15の処理を参照しながら説明する。 In the fourth embodiment, it will be described that the driver is classified into a plurality of types and the mirror adjustment is performed based on the reference value of each type in the automatic eyebox adjustment. The driver is classified according to eye height, and a standard that this adjustment should be good for a person with this eye height is determined in advance, and the adjustment is performed with that standard as a target. By this type classification process, the adjustment process can be simplified and performed in a short time. This will be described with reference to the processing of FIGS.
 図25は、運転者のタイプ分けと目標調整量の例を示す図である。ここでは、タイプA~Cの3通りに分類している。運転者のタイプ分けは、カメラで取得した映像から目の高さを測定し、測定した目の高さが予め定めたどの範囲に属するかで分類する。なお、顔全体の位置から目の位置を推定して分類しても良い(図14、S303~S304)。 FIG. 25 is a diagram showing an example of driver type classification and target adjustment amount. Here, there are three types of types A to C. The type of the driver is determined by measuring the eye height from an image acquired by the camera and classifying the measured eye height to which range. Note that the eye position may be estimated and classified from the position of the entire face (FIG. 14, S303 to S304).
 運転者の各タイプに対し、基準となるミラーの調整量(目標調整量)を定めておく。具体的には、各タイプの目の高さの平均値に対するミラーの回転方向と回転量(角度)、ミラー位置の移動方向と移動量を目標調整量とする。ここではタイプ数を3通りとしたが、調整時間と調整精度の兼ね合いからタイプ数は適宜設定すればよい。このように運転者をタイプ分けしそのタイプに応じたミラー調整を行うことで、大まかな自動調整を行う。そして、さらなる微調整が必要な場合は運転者の手動調整に委ねることとする。これにより、調整処理の効率向上と迅速化が図られる。 基準 Set the reference mirror adjustment amount (target adjustment amount) for each type of driver. Specifically, the rotation direction and rotation amount (angle) of the mirror with respect to the average value of the eye height of each type and the movement direction and movement amount of the mirror position are set as target adjustment amounts. Although the number of types is three here, the number of types may be set as appropriate from the balance of adjustment time and adjustment accuracy. By roughly classifying the driver and performing mirror adjustment according to the type, rough automatic adjustment is performed. If further fine adjustment is required, it is left to manual adjustment by the driver. As a result, the efficiency and speed of the adjustment process can be improved.
 図26は、運転者ごとの設定情報の設定履歴の例を示す図である。記憶部(不揮発性メモリ13)には、各運転者の過去のミラー調整量のデータ(設定情報)を記憶している。この設定情報は、自動調整後に運転者が手動調整した場合には、手動調整後のデータが記憶される(図15、S322,S325)。 FIG. 26 is a diagram illustrating an example of a setting history of setting information for each driver. The storage unit (nonvolatile memory 13) stores data (setting information) of the past mirror adjustment amount of each driver. As for this setting information, when the driver manually adjusts after automatic adjustment, data after manual adjustment is stored (FIG. 15, S322, S325).
 記憶項目として、運転者の識別番号(ID)と設定日時、運転者タイプ、ミラーの回転量とミラー移動量などが記憶される。各運転者については設定日時が異なる複数の履歴を記憶している。これは、同一運転者でも季節に応じて服装が異なるなどの結果、最適調整量が変化することがあるからである。また、設定情報は調整後に毎回更新する必要はなく、記憶済みの設定情報と同じであれば、更新を省略してもよい。図26では毎回の更新を省略した結果、数か月おきに更新されたデータが記憶されている。 As storage items, a driver identification number (ID), setting date and time, driver type, mirror rotation amount, mirror movement amount, and the like are stored. For each driver, a plurality of histories having different set dates are stored. This is because the optimum adjustment amount may change as a result of different clothes depending on the season even for the same driver. Further, the setting information need not be updated every time after adjustment, and may be omitted if it is the same as the stored setting information. In FIG. 26, data updated every several months is stored as a result of omitting each update.
 アイボックスの自動調整では、図26の設定履歴から当該運転者の設定情報を読み出して利用する。その際、複数の設定履歴があるときは、最新の設定情報を読み出して自動調整に用いる。もし運転者が自動調整の結果に満足しないときは、続けて自動調整スイッチを押すことで、履歴をもう1つ遡った設定情報に基づいて自動調整を行うようにすれば、調整状態の改善が期待できる。 In the automatic adjustment of the eyebox, the driver's setting information is read from the setting history of FIG. 26 and used. At this time, when there are a plurality of setting histories, the latest setting information is read and used for automatic adjustment. If the driver is not satisfied with the result of the automatic adjustment, the automatic adjustment switch can be pressed continuously to perform automatic adjustment based on the setting information that goes back one more time. I can expect.
 また、履歴の更新頻度を監視しておき、高頻度で更新されるときは故障の疑いがある。そのときはユーザに点検を促したり、メンテナンス拠点に通報するようにする。 Also, the update frequency of the history is monitored, and when it is updated frequently, there is a suspicion of failure. At that time, the user is encouraged to check or report to the maintenance site.
 以上、アイボックス自動調整について各実施例に分けて説明したが、これに限らず以下のような変形や追加が可能である。 The eyebox automatic adjustment has been described above in each embodiment, but the present invention is not limited to this, and the following modifications and additions are possible.
 図27は、シート位置調整と連動したアイボックス自動調整を説明する図である。アイボックス自動調整は、運転者の目の高さに合わせて行うが、当然ながらシートの位置やシートの高さにも依存する。つまり、運転者が最初に運転しやすいようにシートの位置と高さを調整し、その後でアイボックス調整をするのがよく、これを逆の順序で行うと、アイボックス調整を最初からやり直すことになる。 FIG. 27 is a diagram for explaining eyebox automatic adjustment in conjunction with sheet position adjustment. The eyebox automatic adjustment is performed according to the eye level of the driver, but it naturally depends on the position of the seat and the height of the seat. In other words, it is better to adjust the position and height of the seat to make it easier for the driver to drive first, and then adjust the eyebox, and if this is done in the reverse order, the eyebox adjustment will start again from the beginning. become.
 そこで音声62によるガイダンスで、「始めにシートの調整を行うこと」、「次に姿勢を正して正面を見ること」、を促すのがよい。これに従えば、アイボックス調整のやり直しを回避することができる。 Therefore, it is better to prompt “adjust the seat first” and “next correct the posture and look at the front” with the guidance by the voice 62. If this is followed, re-adjustment of the eye box can be avoided.
 図28は、複数の車内カメラの設置例を示す図である。運転者の顔撮影用のカメラは1台ではなく、複数台備える構成でもよい。ここでは、ダッシュボード用カメラ115aと車内ルーフ用カメラ115bの2台を備えている。複数のカメラで撮影することで、より高い精度で運転者の顔の高さ(目の高さ)の情報を取得し、また運転者までの距離を求めることができる。その結果として、アイボックスの調整をより細やかに、より精度良く行うことができる。特にステレオカメラを使用すれば、運転者までの距離を正確に求めることができ、上下左右方向だけでなく、前後方向の調整も可能となる。 FIG. 28 is a diagram showing an installation example of a plurality of in-vehicle cameras. The camera for photographing the driver's face is not limited to one, but may be configured to include a plurality of cameras. Here, two cameras, a dashboard camera 115a and a vehicle roof camera 115b, are provided. By photographing with a plurality of cameras, information on the height (eye height) of the driver's face can be acquired with higher accuracy, and the distance to the driver can be obtained. As a result, the eye box can be adjusted more finely and with higher accuracy. In particular, if a stereo camera is used, the distance to the driver can be accurately obtained, and not only the vertical and horizontal directions but also the longitudinal direction can be adjusted.
 運転者の目の高さを検出する方法は、カメラ以外の方法でも可能である。例えば、ヘッドレストやシートに設置した荷重センサ119の情報から、顔の高さ(目の高さ)を推定してタイプ分けを行うこともできる。例えば、ヘッドレストの上部に頭が触れている人はタイプA(背が高い)、中央部に頭が触れている人はタイプB(背が中程度)、下部に頭が触れている人はタイプC(背が低い)に分類する。さらに、カメラ115と荷重センサ119を組み合わせれば、より精度が向上する。 The method of detecting the eye level of the driver can be other than the camera. For example, it is possible to perform type classification by estimating the height of the face (height of the eyes) from the information of the load sensor 119 installed on the headrest or seat. For example, a person whose head is touching the top of the headrest is type A (height), a person whose head is touching the center is type B (medium), and a person whose head is touching the bottom is type Classify into C (short). Furthermore, if the camera 115 and the load sensor 119 are combined, the accuracy is further improved.
 図29は、運転者の音声やジェスチャにより自動調整を開始する方法を示す図である。前記図12では、運転者が自動調整スイッチ52を押下することでアイボックス自動調整を開始したが、他の方法でも可能である。 FIG. 29 is a diagram illustrating a method of starting automatic adjustment by a driver's voice and gesture. In FIG. 12, the eyebox automatic adjustment is started by pressing the automatic adjustment switch 52 by the driver, but other methods are also possible.
 (a)は運転者80の発する音声81を認識して、特定の音声をトリガに自動調整を開始する場合である。(b)は運転者80の顔の表情82(瞬きやウインク)をカメラで検出して、特定の表情をトリガとする場合である。(c)は、運転者80のジェスチャをカメラで検出して、特定のジェスチャをトリガとする場合である。 (A) is a case where the voice 81 uttered by the driver 80 is recognized and automatic adjustment is started with a specific voice as a trigger. (B) is a case where a facial expression 82 (blink or wink) of the driver 80 is detected by a camera and a specific facial expression is used as a trigger. (C) is a case where a gesture of the driver 80 is detected by a camera and a specific gesture is used as a trigger.
 特に、(a)(b)のように音声81や表情82を用いる方法は、走行中であっても運転操作に支障を与えることが少ないので、安全性の点で有利である。 Particularly, the method using the voice 81 and the facial expression 82 as shown in (a) and (b) is advantageous in terms of safety because it hardly affects the driving operation even while driving.
 本発明は上記した実施例や変形例に限定されるものではなく、様々な形態が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments and modifications, and includes various forms. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
 1:車両、
 2:映像表示装置、
 3:ミラー、
 4:ミラー駆動部、
 5:車両情報取得部、
 6:スピーカ、
 7:ウィンドシールド、
 8:運転者の目(アイポイント)、
 9:虚像、
 10:制御部、
 11:電子制御ユニット(ECU)、
 18:ミラー調整部、
 21:光源、
 23:表示素子、
 24:HUD位置調整部、
 25:HUD駆動部、
 51:手動調整スイッチ、
 52:自動調整スイッチ、
 53:スイッチ検出部、
 70:ウィンドシールド反射位置、
 91:通常の映像、
 92:調整画面、
 93:選択画面、
 100,100a:ヘッドアップディスプレイ(HUD)、
 115:車内カメラ。
1: vehicle,
2: Video display device,
3: Mirror
4: Mirror drive unit,
5: Vehicle information acquisition unit,
6: Speaker,
7: Windshield,
8: Driver's eyes (eyepoint),
9: Virtual image,
10: control unit,
11: Electronic control unit (ECU),
18: Mirror adjustment unit,
21: light source,
23: display element,
24: HUD position adjustment unit,
25: HUD drive unit,
51: Manual adjustment switch,
52: Automatic adjustment switch,
53: Switch detection unit,
70: Windshield reflection position,
91: Normal video,
92: Adjustment screen,
93: Selection screen,
100, 100a: Head-up display (HUD),
115: In-car camera.

Claims (12)

  1.  車両用映像表示装置において、
     映像光を出射する映像表示部と、
     前記映像表示部から出射された前記映像光をウィンドシールドまたはコンバイナに向けて反射させるミラーと、
     前記ミラーの角度または位置を変化させるミラー駆動部と、
     前記ミラー駆動部を制御して前記ミラーの角度または位置を調整する制御部と、
     運転者の目の高さを検出する検出部と、
     前記ミラーの調整量を記憶する記憶部と、を備え、
     前記制御部は、前記検出部で検出した前記運転者の目の高さに応じて前記ミラー駆動部を制御して前記ミラーを自動調整するとともに、調整した結果を前記運転者の設定情報として前記記憶部に記憶しておき、
     前記制御部は、前記運転者と同一の運転者に対して再度前記ミラーの自動調整を行うとき、前記記憶部に記憶している前記運転者の設定情報を用いて前記ミラーの自動調整を行うことを特徴とする車両用映像表示装置。
    In a vehicle image display device,
    An image display unit for emitting image light;
    A mirror that reflects the image light emitted from the image display unit toward a windshield or a combiner;
    A mirror driving section for changing the angle or position of the mirror;
    A control unit that controls the mirror driving unit to adjust the angle or position of the mirror;
    A detection unit for detecting the eye height of the driver;
    A storage unit for storing the adjustment amount of the mirror,
    The control unit automatically adjusts the mirror by controlling the mirror driving unit according to the eye height of the driver detected by the detection unit, and the adjusted result is set as the driver setting information. Store it in the storage unit,
    When the controller automatically adjusts the mirror again for the same driver as the driver, the controller automatically adjusts the mirror using the driver setting information stored in the storage unit. A video display device for vehicles.
  2.  請求項1に記載の車両用映像表示装置において、
     前記記憶部には、前記運転者の目の高さを複数のタイプに分類するための情報と、各タイプにおける前記ミラーの調整量の基準である目標調整量を記憶しており、
     前記制御部は、前記検出部で検出した前記運転者の目の高さを前記複数のタイプで分類し、該当するタイプにおける前記目標調整量を用いて前記ミラーの自動調整を行うことを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 1,
    The storage unit stores information for classifying the driver's eye height into a plurality of types, and a target adjustment amount that is a reference for the adjustment amount of the mirror in each type,
    The control unit classifies the eye height of the driver detected by the detection unit by the plurality of types, and performs automatic adjustment of the mirror using the target adjustment amount in the corresponding type. A vehicle video display device.
  3.  請求項1に記載の車両用映像表示装置において、
     前記検出部は、車両内部に設置されたカメラによって、前記運転者の目の高さを検出することを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 1,
    The vehicle image display device, wherein the detection unit detects the eye height of the driver by a camera installed in the vehicle.
  4.  請求項1に記載の車両用映像表示装置において、
     前記検出部は、前記運転者の座るシートのヘッドレストの高さ、または/およびシートに設置された荷重センサにより、前記運転者の目の高さを検出することを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 1,
    The video image display device for a vehicle, wherein the detection unit detects the height of a headrest of a seat on which the driver is seated and / or a load sensor installed on the seat. .
  5.  請求項1に記載の車両用映像表示装置において、
     前記記憶部に記憶する前記運転者の設定情報は、複数の運転者について運転者の識別情報と調整した日時情報を付して設定履歴として記憶していることを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 1,
    The vehicle setting information stored in the storage unit is stored as a setting history with driver identification information and adjusted date and time information for a plurality of drivers, and stored as a setting history. .
  6.  請求項1に記載の車両用映像表示装置において、
     前記制御部による前記ミラーの自動調整の後、さらに前記運転者が前記ミラーを手動で調整したときは、前記記憶部には、前記運転者による手動調整の結果を前記設定情報として記憶することを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 1,
    After the automatic adjustment of the mirror by the control unit, when the driver manually adjusts the mirror, the storage unit stores the result of the manual adjustment by the driver as the setting information. A video display device for vehicles.
  7.  請求項1に記載の車両用映像表示装置において、
     前記制御部による前記ミラーの自動調整は、車両が停車中にのみ行うことを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 1,
    The vehicular video display apparatus, wherein the mirror is automatically adjusted by the control unit only when the vehicle is stopped.
  8.  請求項1に記載の車両用映像表示装置において、
     前記制御部による前記ミラーの自動調整を車両が走行中に行うときは、前記自動調整を前記車両が停車中に行うときよりも、前記ミラー駆動部による前記ミラーの角度または位置の変化をより低速に制御することを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 1,
    When the automatic adjustment of the mirror by the control unit is performed while the vehicle is running, the change in the angle or position of the mirror by the mirror driving unit is slower than when the automatic adjustment is performed while the vehicle is stopped. An image display device for a vehicle, characterized by being controlled to
  9.  請求項7に記載の車両用映像表示装置において、
     前記ミラーの自動調整を前記車両が停車中に行う場合は、前記映像表示部は、前記映像光により調整中を示す画面を表示することを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 7,
    When the automatic adjustment of the mirror is performed while the vehicle is stopped, the video display unit displays a screen indicating that adjustment is being performed by the video light.
  10.  請求項8に記載の車両用映像表示装置において、
     前記ミラーの自動調整を前記車両が走行中に行う場合は、前記映像表示部は、前記映像光により通常の画面を表示することを特徴とする車両用映像表示装置。
    The video display device for a vehicle according to claim 8,
    When the automatic adjustment of the mirror is performed while the vehicle is traveling, the video display unit displays a normal screen by the video light.
  11.  請求項3に記載の車両用映像表示装置において、
     前記検出部は、車両のダッシュボード部に設置されていることを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 3,
    The vehicle image display apparatus, wherein the detection unit is installed in a dashboard unit of a vehicle.
  12.  請求項3に記載の車両用映像表示装置において、
     前記検出部は、車両の車内ルーフ部に設置されていることを特徴とする車両用映像表示装置。
    The vehicle image display device according to claim 3,
    The image display device for a vehicle, wherein the detection unit is installed in an in-car roof portion of the vehicle.
PCT/JP2017/031027 2016-09-05 2017-08-29 Image display device for vehicle WO2018043513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016172573 2016-09-05
JP2016-172573 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018043513A1 true WO2018043513A1 (en) 2018-03-08

Family

ID=61300730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031027 WO2018043513A1 (en) 2016-09-05 2017-08-29 Image display device for vehicle

Country Status (1)

Country Link
WO (1) WO2018043513A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142625A (en) * 2019-03-06 2020-09-10 矢崎総業株式会社 Vehicle display device
CN112114427A (en) * 2020-09-08 2020-12-22 中国第一汽车股份有限公司 HUD projection height adjusting method, device and equipment and vehicle
JP2021030888A (en) * 2019-08-23 2021-03-01 株式会社デンソー View point position determination device, view point position determination method, and view point position determination program
US11226490B2 (en) 2018-07-23 2022-01-18 Jvckenwood Corporation Virtual image display device
WO2023218773A1 (en) * 2022-05-09 2023-11-16 マクセル株式会社 Head-up display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247224A (en) * 2004-03-05 2005-09-15 Sumitomo Electric Ind Ltd Vehicular display device
JP2011073496A (en) * 2009-09-29 2011-04-14 Nippon Seiki Co Ltd Onboard three-dimensional display device and onboard three-dimensional display method
JP2012163613A (en) * 2011-02-03 2012-08-30 Denso Corp Virtual image display device
JP2015225119A (en) * 2014-05-26 2015-12-14 株式会社デンソー Head-up display device
WO2016067574A1 (en) * 2014-10-29 2016-05-06 パナソニックIpマネジメント株式会社 Display control device and display control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247224A (en) * 2004-03-05 2005-09-15 Sumitomo Electric Ind Ltd Vehicular display device
JP2011073496A (en) * 2009-09-29 2011-04-14 Nippon Seiki Co Ltd Onboard three-dimensional display device and onboard three-dimensional display method
JP2012163613A (en) * 2011-02-03 2012-08-30 Denso Corp Virtual image display device
JP2015225119A (en) * 2014-05-26 2015-12-14 株式会社デンソー Head-up display device
WO2016067574A1 (en) * 2014-10-29 2016-05-06 パナソニックIpマネジメント株式会社 Display control device and display control program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226490B2 (en) 2018-07-23 2022-01-18 Jvckenwood Corporation Virtual image display device
JP2020142625A (en) * 2019-03-06 2020-09-10 矢崎総業株式会社 Vehicle display device
US11249316B2 (en) 2019-03-06 2022-02-15 Yazaki Corporation Vehicle display device
JP2021030888A (en) * 2019-08-23 2021-03-01 株式会社デンソー View point position determination device, view point position determination method, and view point position determination program
WO2021039317A1 (en) * 2019-08-23 2021-03-04 株式会社デンソー Viewpoint position determination device, viewpoint position determination method, and viewpoint position determination program
JP7115443B2 (en) 2019-08-23 2022-08-09 株式会社デンソー Viewpoint Position Determination Device, Viewpoint Position Determination Method, and Viewpoint Position Determination Program
CN112114427A (en) * 2020-09-08 2020-12-22 中国第一汽车股份有限公司 HUD projection height adjusting method, device and equipment and vehicle
WO2023218773A1 (en) * 2022-05-09 2023-11-16 マクセル株式会社 Head-up display apparatus

Similar Documents

Publication Publication Date Title
WO2018043513A1 (en) Image display device for vehicle
JP6527605B2 (en) Vehicle display device
US10769831B2 (en) Head up display
JP6717856B2 (en) Head up display device
EP3040809B1 (en) Method and system for controlling a human-machine interface having at least two displays
JP6221942B2 (en) Head-up display device
JPWO2017134866A1 (en) Head-up display device
US10186234B2 (en) Mirror device with display function and method of changing direction of mirror device with display function
JP6865006B2 (en) Vehicle display device
CN109791300A (en) Head-up display system
JP2005247224A (en) Vehicular display device
WO2017145546A1 (en) Projection-type display device, projection display method, and projection display program
JP2009248918A (en) Image display device, image display method and computer program
JP7082745B2 (en) Display device for vehicles
JP4033081B2 (en) Vehicle display device
KR20130076215A (en) Device for alarming image change of vehicle
JP5664336B2 (en) Display control system, display control apparatus, and program
WO2017145565A1 (en) Projection-type display device, projection display method, and projection display program
US10914948B2 (en) Display device, display control method, and storage medium
JP2018084767A (en) Display control device, control method, program, and storage medium
WO2020152970A1 (en) Head-up display device
JP2016158160A (en) Imaging device, control method, program and storage medium
JP6816475B2 (en) Vehicle display device and display method
JP7488013B2 (en) Vehicle display device
JPWO2019130860A1 (en) Head-up display device and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17846518

Country of ref document: EP

Kind code of ref document: A1