WO2018042752A1 - Signal analysis device, signal analysis method, computer program, measurement device, and measurement method - Google Patents

Signal analysis device, signal analysis method, computer program, measurement device, and measurement method Download PDF

Info

Publication number
WO2018042752A1
WO2018042752A1 PCT/JP2017/016050 JP2017016050W WO2018042752A1 WO 2018042752 A1 WO2018042752 A1 WO 2018042752A1 JP 2017016050 W JP2017016050 W JP 2017016050W WO 2018042752 A1 WO2018042752 A1 WO 2018042752A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
distribution
signal
spectrum
dimensional coordinate
Prior art date
Application number
PCT/JP2017/016050
Other languages
French (fr)
Japanese (ja)
Inventor
浩行 越川
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2018536929A priority Critical patent/JP6949034B2/en
Publication of WO2018042752A1 publication Critical patent/WO2018042752A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Definitions

  • the present invention relates to a signal analysis device, a signal analysis method and a computer program for obtaining a distribution of regions having different combinations of signal intensities from a spectral distribution on a coordinate system, and a measuring device for measuring and analyzing the spectral distribution, and It relates to a measurement method.
  • X-ray analysis is a technique for irradiating a sample with radiation such as an electron beam or X-ray, and analyzing components contained in the sample from a spectrum of characteristic X-rays generated from the sample.
  • a spectrum distribution in which a spectrum of characteristic X-rays from each point on a sample is associated with each point on a two-dimensional coordinate system is created, and components in the sample are analyzed using the spectrum distribution.
  • energy dispersive X-ray analysis EDX: Energy Dispersive X-ray Spectroscopy
  • X-ray analysis using X-rays as radiation irradiated to a sample
  • fluorescent X-ray analysis there is an analysis method that can create a spectrum distribution as an analysis method other than the X-ray analysis.
  • Raman spectroscopic analysis a spectrum distribution in which the spectrum of Raman light is recorded for each point on the image corresponding to each point on the sample can be created.
  • the distribution of specific elements can be obtained by examining the signal intensity of specific energy in the spectrum at each point on the sample. Since the sample includes a plurality of elements, a distribution of a plurality of elements can be obtained from the spectral distribution.
  • a sample includes a plurality of components, and each component includes a plurality of elements. For example, when the sample is a rock, the rock is composed of a plurality of mineral components, and each mineral component contains a plurality of elements. Since the same element may be contained even if the components are different, the distribution of the components in the sample and the distribution of the elements generally do not match.
  • Patent Document 1 discloses a method for obtaining a distribution of components in a sample based on a combination of intensities of a plurality of signals included in a spectrum.
  • an n-dimensional coordinate point group in which n-dimensional data defined by a combination of n signal intensities is defined for a plurality of points on two-dimensional coordinates is generated, and the n-dimensional coordinate points are classified into a plurality of clusters.
  • Perform cluster analysis In the cluster analysis, a plurality of clusters are obtained by using an EM (Expectation-maximization) method so that a probability distribution in which n-dimensional coordinate points are included in each cluster is appropriate.
  • EM Expos-maximization
  • a cluster composed of the n-dimensional coordinate points is difficult to set. It is likely to be included in the same cluster as the n-dimensional coordinate point.
  • the initial value of the cluster is determined in this manner and the cluster analysis is performed, it is difficult to obtain a cluster composed of n-dimensional coordinate points in which the intensity of a small number of signals deviates greatly from the average value. For this reason, it is difficult to obtain a distribution of a region where the intensity of a small number of signals deviates from the average value. For example, it is difficult to obtain a distribution of components that exist only in a minute region in a sample.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a signal for performing cluster analysis so as to enable acquisition of a distribution that has been difficult to acquire from a spectrum distribution in the past.
  • An analysis apparatus, a signal analysis method, a computer program, a measurement apparatus, and a measurement method are provided.
  • the signal analysis apparatus is based on a spectrum distribution in which a spectrum is determined for each point on the coordinate system, and n (n is an integer of 2 or more) included in the spectrum for each point in the spectrum distribution.
  • An n-dimensional coordinate point group generation unit that generates an n-dimensional coordinate point on an n-dimensional space defined by a combination of specific signal intensities, and an n-dimensional space on the n-dimensional space for classifying the generated multiple n-dimensional coordinate points
  • the signal analyzer including an initial setting unit that determines initial values of a plurality of clusters, and a cluster analysis unit that performs cluster analysis using the determined initial values, the initial setting unit includes the intensity of the n specific signals.
  • a first initial cluster generation unit that generates an initial value of a cluster including a point in an n-dimensional space that is a combination of representative values, and an n-dimensional coordinate point in which the intensity of one specific signal deviates from a predetermined reference And having a second initial cluster generator for generating an initial value of Murrell cluster.
  • the initial setting unit includes a cluster number setting unit that determines the number of a plurality of clusters, and an n-dimensional coordinate point that has the lowest probability of being included in a cluster for which an initial value has already been set.
  • a third initial cluster generating unit that generates an initial value of the cluster to be generated, and a repeating unit that repeats the processing of the third initial cluster generating unit until initial values of the number of clusters determined by the cluster number setting unit are determined. Furthermore, it is characterized by having.
  • the signal analysis apparatus specifies the distribution in the spectrum distribution of the points corresponding to the n-dimensional coordinate points included in each cluster after the cluster analysis, so that the combination of the strengths of the n specific signals can be obtained.
  • An area distribution generation unit that generates distributions of different types of areas is further provided.
  • the intensity of the n specific signals indicates a concentration of n elements
  • the region distribution generation unit includes a plurality of types of regions having different combinations of n element concentrations. A distribution is generated.
  • the signal analysis method is based on a spectrum distribution in which a spectrum is determined for each point on a coordinate system by a computer including a calculation unit and a storage unit, and n included in the spectrum for each point in the spectrum distribution.
  • the initial setting step includes the steps of: A step of generating an initial value of a cluster including a point on an n-dimensional space composed of a combination of representative values of intensity, and the intensity of one specific signal deviates from a predetermined reference Characterized in that it comprises the steps of generating an initial value of clusters included in that n-dimensional coordinate point.
  • the initial setting step includes a step of determining the number of a plurality of clusters, and a cluster including an n-dimensional coordinate point having the lowest likelihood included in a cluster for which an initial value has already been set.
  • the signal analysis method by specifying the distribution in the spectrum distribution of the points corresponding to the n-dimensional coordinate points included in each cluster after the cluster analysis, the combination of the strengths of the n specific signals is obtained.
  • the step of generating a distribution of different types of regions is further performed.
  • the computer program according to the present invention allows a computer to have n (n is an integer of 2 or more) included in a spectrum for each point in the spectrum distribution based on a spectrum distribution in which the spectrum is determined for each point on the coordinate system. ) Generating an n-dimensional coordinate point on the n-dimensional space defined by the combination of specific signal intensities, and classifying the plurality of generated n-dimensional coordinate points to a plurality of clusters on the n-dimensional space.
  • the initial setting step includes a representative value of the intensity of the n specific signals.
  • a step of generating an initial value of a cluster including a point on the n-dimensional space formed by the combination, and the intensity of one specific signal is a predetermined reference n-dimensional coordinate point is out of, characterized in that it comprises the steps of generating an initial value of the cluster that contains the.
  • the initial setting step includes a step of determining the number of a plurality of clusters and a cluster including an n-dimensional coordinate point having the lowest likelihood included in a cluster in which an initial value has already been set.
  • the method further includes a generation step of generating an initial value, and a step of repeating the generation step until initial values of a predetermined number of clusters are determined.
  • a measuring apparatus includes a measuring unit that measures radiation or electromagnetic waves obtained from each point on a sample, a spectrum distribution generating unit that generates a spectral distribution in which the measured radiation or electromagnetic wave spectrum is associated with each point, and A measurement apparatus comprising: a signal analysis apparatus according to the present invention.
  • the measurement method according to the present invention includes a signal analysis method according to the present invention in a measurement method for measuring a spectrum obtained from each point on a sample and generating a spectrum distribution in which the measured spectrum is associated with each point. It is characterized by.
  • an n-dimensional coordinate point in an n-dimensional space defined by a combination of n specific signal intensities is generated, and cluster analysis of the n-dimensional coordinate point is performed.
  • an initial value of a cluster for cluster analysis an initial value of a cluster including points on an n-dimensional space composed of combinations of representative values of n specific signals is generated.
  • An initial value of a cluster including an n-dimensional coordinate point where the intensity of one specific signal deviates from a predetermined reference is generated.
  • the initial value of the cluster including the n-dimensional coordinate point having the lowest probability of being included in the existing cluster is further set.
  • the initial value is set without leaking the cluster which has been able to set the initial value by the conventional method.
  • the present invention by specifying the distribution in the spectrum distribution of the points corresponding to the n-dimensional coordinate points included in each cluster after the cluster analysis, the combination of the intensities of a plurality of specific signals included in the spectrum is obtained. A distribution of different types of regions is generated. Since the cluster analysis is performed after determining the initial value of the cluster including the n-dimensional coordinate point in which the intensity of one specific signal deviates from a predetermined reference, the region where the intensity of a small number of specific signals deviates from the representative value Distribution is obtained.
  • the intensity of the specific signal indicates the concentration of the element contained in the sample
  • the distribution of a plurality of types of components having different concentrations of the element in the sample is generated by generating a distribution of a plurality of types of regions. Is generated. According to the present invention, a distribution of components in which the concentration of a small number of elements deviates from the representative value can be obtained.
  • n-dimensional coordinate points can be appropriately classified by cluster analysis by appropriately setting the initial value of the cluster. Therefore, the present invention has an excellent effect such that it is possible to generate a distribution in a region where the intensity of a small number of specific signals deviates from the representative value from the spectrum distribution.
  • FIG. 1 is a block diagram showing the configuration of the measuring apparatus.
  • the measurement apparatus is an EDX apparatus that irradiates the sample 3 with an electron beam, measures characteristic X-rays from the sample 3, and generates a spectrum distribution in which the spectrum of the characteristic X-ray is associated with each point on the sample 3.
  • the measurement apparatus includes an electron gun 11 that irradiates the sample 3 with an electron beam, an electron lens system 12, a sample stage 13 on which the sample 3 is placed, and a detection unit 14 that detects characteristic X-rays generated from the sample 3. It has.
  • the electron lens system 12 includes a scanning coil that changes the direction of the electron beam.
  • the electron gun 11 and the electron lens system 12 are connected to the control unit 16.
  • the electron gun 11 emits an electron beam
  • the electron lens system 12 determines the direction of the electron beam
  • the electron beam is irradiated onto the sample 3 on the X sample stage 13.
  • a characteristic X-ray is generated in the portion irradiated with the electron beam on the sample 3.
  • the characteristic X-ray is detected by the detection unit 14.
  • the electron beam is indicated by a solid line arrow
  • the characteristic X-ray is indicated by a broken line arrow.
  • the detection unit 14 outputs a signal proportional to the detected characteristic X-ray energy.
  • the electron gun 11, the electron lens system 12, and the detection unit 14 correspond to a measurement unit.
  • the detection unit 14 is connected to a signal processing unit 15 that processes the output signal.
  • the signal processing unit 15 receives the signal output from the detection unit 14, counts the signal by value, and obtains a characteristic X-ray spectrum in which the characteristic X-ray energy indicated by the signal value is associated with the count number.
  • the count number associated with a certain energy is the intensity of characteristic X-rays having that energy.
  • the signal processing unit 15 is connected to the control unit 16.
  • the electron lens system 12 sequentially changes the direction of the electron beam, the electron beam scans the sample 3.
  • the electron beam is sequentially irradiated to each portion in the scanning region on the sample 3.
  • characteristic X-rays generated from the portion irradiated with the electron beam on the sample 3 are sequentially detected by the detection unit 14.
  • the signal processing unit 15 sequentially generates signal spectra of characteristic X-rays generated at a plurality of portions irradiated with the electron beam on the sample 3 by sequentially performing signal processing.
  • the signal processing unit 15 sequentially outputs the generated characteristic X-ray spectrum data to the control unit 16.
  • the control unit 16 receives the characteristic X-ray spectrum data output from the signal processing unit 15 and stores data in which the position of the portion irradiated with the electron beam on the sample 3 is associated with the characteristic X-ray spectrum. . At the stage when the scanning of the sample 3 by the electron beam is completed, the control unit 16 associates each point on the sample 3 with the spectrum of the characteristic X-ray, so that the characteristic X-ray spectrum becomes each point on the two-dimensional coordinate system. Generate the spectral distribution associated with.
  • the signal processing unit 15 and the control unit 16 correspond to a spectrum distribution generation unit.
  • the control unit 16 is connected to the signal analysis device 2.
  • the controller 16 outputs spectral distribution data to the signal analyzer 2. Note that the signal processing unit 15 and the control unit 16 may be integrally configured.
  • FIG. 2 is a block diagram showing the configuration of the signal analysis device 2.
  • the signal analyzer 2 is configured using a general-purpose computer such as a personal computer (PC).
  • the signal analysis device 2 includes a CPU (arithmetic unit) 21 that performs calculation, a RAM 22 that stores temporary information generated in accordance with the calculation, and a drive such as a CD-ROM drive that reads information from the recording medium 4 such as an optical disk.
  • Unit 23 and a non-volatile storage unit 24.
  • the storage unit 24 is, for example, a hard disk.
  • the CPU 21 causes the drive unit 23 to read the computer program 41 from the recording medium 4 and stores the read computer program 41 in the storage unit 24.
  • the CPU 21 loads the computer program 41 from the storage unit 24 to the RAM 22 as necessary, and executes processing necessary for the signal analyzer 2 according to the loaded computer program 41.
  • the computer program 41 may be downloaded to the signal analyzer 2 from an external server device (not shown) connected to the signal analyzer 2 via a communication network (not shown) and stored in the storage unit 24. Further, the signal analysis device 2 may be configured such that it does not receive the computer program 41 from the outside, but has recording means such as a ROM in which the computer program 41 is recorded.
  • the signal analyzer 2 also includes an input unit 25 such as a keyboard or a pointing device for inputting information such as various processing instructions operated by the user, and a display unit 26 such as a liquid crystal display for displaying various information. And.
  • the signal analyzing apparatus 2 includes an interface unit 27 to which the control unit 16 is connected. The signal analyzer 2 receives the spectrum distribution data output from the control unit 16 by the interface unit 27 and stores the data in the storage unit 24.
  • FIG. 3 is a schematic characteristic diagram showing an example of a spectrum.
  • a spectrum is composed of a combination of a plurality of signals.
  • the horizontal axis in FIG. 3 is energy, and the vertical axis is signal intensity at each energy.
  • the peak of one signal included in the spectrum is indicated by an arrow.
  • the signal contained in the spectrum is identified by energy.
  • Each signal included in the characteristic X-ray spectrum is caused by an element included in the sample 3.
  • the spectrum distribution measured by the measuring device is composed of spectra obtained for each point on the two-dimensional coordinate system corresponding to each point on the sample 3.
  • Each spectrum has a different combination of intensity of signals contained therein, and has a different spectrum shape.
  • some spectra may consist of a single signal and some may have zero signal strength.
  • the horizontal axis of the spectrum is not limited to energy, and may be wavelength or wave number. Further, the horizontal axis of the spectrum is not limited to an absolute value, and may be a relative value such as a wavelength shift from a specific wavelength.
  • Spectral distribution data from the control unit 16 is received by the interface unit 27, and the CPU 21 stores the spectral distribution data in the storage unit 24 (S1).
  • the spectrum distribution data is data in which two-dimensional coordinates of each point on the sample are associated with spectrum data obtained from each point.
  • the spectrum data is data in which energy or the like is associated with signal intensity.
  • the CPU 21 generates signal distribution data indicating the intensity distribution of a plurality of specific signals from the spectrum distribution data (S2). Specifically, in S2, the CPU 21 reads out the signal strength of a specific signal identified with a predetermined energy from the spectrum of each point, and associates the read signal strength with each point on the two-dimensional coordinate system. Generated signal distribution data. That is, the signal distribution data is data in which the two-dimensional coordinates of each point on the sample 3 are associated with the signal intensity at a specific energy.
  • the storage unit 24 stores in advance a plurality of energies as specific signal energy, and the CPU 21 generates signal distribution data for each of the plurality of specific signals. That is, in S2, a plurality of signal distribution data are generated.
  • n be the number of specific signals that have generated signal distribution data.
  • n is an integer of 2 or more.
  • the signal distribution data is stored in the storage unit 24.
  • the energy of the specific signal may be included in the computer program 41.
  • the specific signal may be identified by a wavelength or a wave number. Further, the specific signal may be identified not from the position of the peak in the spectrum but from the signal waveform in the spectrum.
  • the CPU 21 may accept the designation of the specific signal by operating the input unit 25 by the user, and may generate signal distribution data for the designated specific signal.
  • the CPU 21 generates n-dimensional data composed of combinations of n specific signal intensities from the signal distribution data (S3). Specifically, for each point on the two-dimensional coordinate system, the CPU 21 generates n-dimensional data defined by a combination of the strengths of n specific signals, thereby obtaining an n-dimensional coordinate point in the n-dimensional space. Generate. Further, the CPU 21 generates data in which the two-dimensional coordinates of each point on the two-dimensional coordinate system are associated with the n-dimensional data representing the n-dimensional coordinates, and stores the data in the RAM 22 or the storage unit 24.
  • FIG. 6 is an example of a scatter diagram in which n-dimensional coordinate points are plotted on n-dimensional coordinates.
  • the horizontal axis indicates the intensity of the signal a
  • the vertical axis indicates the intensity of the signal b.
  • n-dimensional coordinate points are plotted on the n-dimensional space.
  • the n-dimensional coordinate points may overlap on the n-dimensional space.
  • the process of S3 corresponds to an n-dimensional coordinate point group generation unit.
  • the signal analysis device 2 may be configured to receive n-dimensional data generated externally and execute the processing after S4.
  • the signal analyzing apparatus 2 performs cluster analysis that classifies a plurality of n-dimensional coordinate points into a plurality of clusters by an EM (Expectation-maximization) algorithm in S4 and subsequent steps.
  • a cluster is defined by a probability distribution model indicating the probability that each point on the n-dimensional space is included in the cluster.
  • a probability distribution such as a mixed Gaussian distribution or a mixed Poisson distribution used in the EM algorithm is used.
  • Each cluster is defined by a product of n probability distribution models.
  • the CPU 21 receives the initial value of the number of clusters by the user operating the input unit 25, and sets the initial value of the number of clusters (S4).
  • the CPU 21 may perform a process of setting an appropriate numerical value as an initial value of the number of clusters in S4.
  • the CPU 21 generates an initial value of a probability distribution model of a cluster including points on an n-dimensional space formed by a combination of representative values of n specific signals (S5).
  • the representative value is a value representing the intensity in the spectrum distribution for each of the n specific signals.
  • the representative value is an average value of the intensity of the specific signal at a plurality of points in the spectrum distribution.
  • the CPU 21 calculates a representative value of intensity for each of the n specific signals, and generates initial values of the parameters of the cluster probability distribution model so that points on the n-dimensional space formed by combinations of the representative values are included. .
  • the parameters of the probability distribution model include the center position of the cluster in the n-dimensional space.
  • the CPU 21 sets the parameters of the probability distribution model so that a point on the n-dimensional space formed by a combination of representative values of n specific signal intensities becomes the center position of the cluster.
  • the representative value is not limited to the average value, and may be another value such as a median value, a mode value, or a specific model value.
  • the model value is stored in advance in the storage unit 24, recorded in advance in the computer program 41, or input through the input unit 25.
  • the CPU 21 generates an initial value of a probability distribution model of a cluster including n-dimensional coordinate points in which the intensity of one specific signal deviates from a predetermined reference (S6).
  • the signal analyzing apparatus 2 uses the representative value m of the intensity of one specific signal and the parameter ⁇ , and considers the intensity less than m + ⁇ within the reference and the intensity greater than m + ⁇ as being out of the reference.
  • the parameter ⁇ is a standard deviation value.
  • the parameter ⁇ may be a value other than the standard deviation value, such as a predetermined value.
  • the CPU 21 calculates the representative value m of the intensity of one specific signal and the parameter ⁇ , specifies an n-dimensional coordinate point where the intensity of the one specific signal is equal to or greater than m + ⁇ among the n-dimensional coordinate points generated in S3, An initial value of a parameter of a new cluster probability distribution model is generated so that the identified n-dimensional coordinate point is included.
  • the form in which the intensity of m + ⁇ or more is not a standard is an example, and other standards can be used. For example, the intensity exceeding m + ⁇ may be out of the standard. Further, for example, the intensity of m- ⁇ or higher or higher may be within the standard, and the intensity of less than or less than m- ⁇ may be out of the standard.
  • an intensity that is greater than or equal to a value obtained by adding a predetermined value to the representative value m may be out of the reference.
  • an intensity that is greater than or equal to a predetermined value or less than or less than a predetermined value may be out of the reference.
  • the strength of the upper ⁇ % may be out of the reference and the strength of the lower ⁇ % may be out of the reference among the intensities of one specific signal at a plurality of n-dimensional coordinate points. .
  • the parameters of the probability distribution model are set so that the position of the n-dimensional coordinate point where the intensity of one specific signal deviates from a predetermined reference becomes the center position of the cluster.
  • the CPU 21 may generate initial values of a probability distribution model of a plurality of clusters.
  • the CPU 21 excludes the intensity of m ⁇ or less and the intensity of m + ⁇ or more from the reference, the cluster including the n-dimensional coordinate point where the intensity of one specific signal is m + ⁇ or more, and the intensity of one specific signal
  • An initial value of a probability distribution model is generated for a cluster including an n-dimensional coordinate point that is less than or equal to m ⁇ .
  • the CPU 21 includes an n-dimensional coordinate point in which the intensity of one specific signal is included in m + ⁇ to m + 2 ⁇ and an n-dimensional coordinate point in which the intensity of one specific signal is included in m + 2 ⁇ to m + 3 ⁇ in different clusters.
  • the initial value of the probability distribution model of a plurality of clusters is generated.
  • a plurality of predetermined reference values are set, and the CPU 21 generates initial values of a probability distribution model of a plurality of clusters corresponding to the intensity of one specific signal.
  • the CPU 21 includes a cluster including an n-dimensional coordinate point in which the intensity of one specific signal is included in the lower ⁇ % and an n-dimensional coordinate point in which the intensity of one specific signal is included in the upper ⁇ %.
  • An initial value of the probability distribution model may be generated for each cluster. Further, for example, if ⁇ is a predetermined value and ⁇ ⁇ , the CPU 21 determines that the intensity of one specific signal is included in the upper ⁇ %, and the intensity of one specific signal is higher ⁇ % to ⁇ %.
  • the initial value of the probability distribution model of a plurality of clusters may be generated so that the n-dimensional coordinate point included in is included in another cluster.
  • the CPU 21 determines that the n-dimensional coordinate point where the intensity of one specific signal is included in the lower ⁇ % and the n-dimensional coordinate point where the intensity of one specific signal is included in the lower ⁇ % to ⁇ % are different.
  • An initial value of a probability distribution model of a plurality of clusters may be generated so as to be included in the cluster. Further, when there is no n-dimensional coordinate point whose intensity of one specific signal deviates from a predetermined reference, the CPU 21 does not need to generate an initial value of a cluster probability distribution model for this specific signal.
  • the CPU 21 determines whether or not the process of S6 has been executed for all the specific signals (S7). If there is a specific signal that has not yet been subjected to the process of S6 (S7: NO), the CPU 21 returns the process to S6 and executes the process of S6 for one specific signal that has not been subjected to the process of S6. . When the process of S6 is executed for all the specific signals (S7: YES), the CPU 21 generates an initial value of the probability distribution model of the cluster including the n-dimensional coordinate point having the lowest probability of being included in the existing cluster ( S8).
  • the CPU 21 calculates the likelihood that each n-dimensional coordinate point is included in the cluster that has already generated the initial value of the probability distribution model, and the likelihood included in the nearest cluster in the n-dimensional space is the lowest.
  • An n-dimensional coordinate point is specified, and initial values of parameters of a new cluster probability distribution model are generated so that the specified n-dimensional coordinate point is included.
  • S8 corresponds to a conventional method for generating an initial value of a probability distribution model of a cluster.
  • the CPU 21 determines whether or not the number of clusters that have generated the initial value of the probability distribution model has reached the initial value of the number of clusters set in S4 (S9). If the number of clusters has not yet reached the initial value (S9: NO), the CPU 21 returns the process to S8.
  • the processes of S4 to S9 correspond to the initial setting unit and the initial setting step.
  • the process of S5 corresponds to the first initial cluster generation unit
  • the processes of S6 and S7 correspond to the second initial cluster generation unit
  • the process of S8 corresponds to the third initial cluster generation unit and the generation step
  • S9 This processing corresponds to the repetition unit.
  • the process of S6 is executed for all the specific signals, but the signal analyzer 2 performs the process of S6 only for some of the specific signals among the n specific signals. May be executed.
  • the process of S6 is performed only for a predetermined number of specific signals or specific signals specified in advance, and in S7, whether or not the process of S6 is performed for specific signals that require the process of S6. Determined.
  • the CPU 21 When the number of clusters has reached the initial value (S9: YES), the CPU 21 next includes each n-dimensional coordinate point on the n-dimensional space based on the probability distribution model of each cluster. Probability is calculated (S10).
  • the process of S10 corresponds to the E (Expectation) step in the EM algorithm.
  • the CPU 21 performs a process of updating the probability distribution model parameters of each cluster so as to increase the overall likelihood (S11). Specifically, parameters of probability distribution such as the center position of each cluster in the n-dimensional space are updated.
  • the process of S11 corresponds to the M (maximization) step in the EM algorithm.
  • the CPU 21 determines the convergence of the EM algorithm (S12).
  • the convergence index an index generally used in the EM algorithm, such as a likelihood value, a change amount or a change rate, or a parameter value of the probability distribution model, a change amount or a change rate, is used.
  • the CPU 21 determines that the likelihood has converged when the likelihood change amount is less than or equal to a predetermined value, and determines that the likelihood has not yet converged when the likelihood change amount is greater than the predetermined value.
  • the signal processing unit 2 may be configured such that when the user operates the input unit 25, the input of the convergence condition can be received and the convergence condition can be changed.
  • the processes of S10 to S12 correspond to the cluster analysis unit.
  • the signal analysis device 2 may be configured to perform cluster analysis using a maximum likelihood method or maximum a posteriori probability estimation algorithm other than the EM algorithm in S10, S11, and S12.
  • the signal analyzer 2 may perform processing using an algorithm of the k-means method (K-means method), the Ward method, or the Newton-Raphson method.
  • clusters may be defined by other than probability distribution models.
  • the signal analyzer 2 calculates which cluster each n-dimensional coordinate point belongs to in the processing corresponding to S10, S11, and S12. Further, the signal analysis device 2 may perform cluster analysis using clusters defined by a method other than the method using the probability distribution model.
  • the CPU 21 determines whether or not there are a plurality of clusters in which the distance between each other in the n-dimensional space is a predetermined distance or less. Is determined (S13). For example, in S13, the CPU 21 calculates the Mahalanobis distance between the centers between the two clusters, and determines based on whether the calculated Mahalanobis distance is equal to or less than a predetermined value.
  • the CPU 21 calculates the inner product of the vectors to the center between the two clusters, and determines that the mutual distance is equal to or smaller than the predetermined distance when the calculated inner product is closer to 1 than a predetermined threshold.
  • CPU21 performs the process which determines the distance between two clusters about the combination of all the clusters. In S ⁇ b> 13, the CPU 21 may make a determination by other methods.
  • the CPU 21 combines the plurality of clusters close to each other (S14). Specifically, the CPU 21 performs a process of determining a plurality of cluster ranges as a new one cluster range. In FIG. 6, the cluster range is indicated by a solid line. In the example shown in FIG. 6, five clusters are obtained.
  • step S14 After step S14 is completed, or when there are no clusters close to each other in step S13 (S13: NO), the CPU 21 specifies a point in the spectrum distribution corresponding to the n-dimensional coordinate point included in each cluster. Then, distributions of a plurality of types of regions having different combinations of n specific signal intensities on the two-dimensional coordinate system are individually generated (S15).
  • the distribution of the generated region is a distribution of a region including points where the intensities of n specific signals included in the spectrum are a combination of specific intensities among the points included in the spectral distribution. A distribution of regions in which the intensity of specific signals is a combination of specific intensities is generated for each cluster.
  • the process of S15 corresponds to a region distribution generation unit.
  • the CPU 21 stores the generated distribution data representing the distribution of each region in the storage unit 14 (S16), and ends the process.
  • the signal analysis device 2 may be configured to perform the process of determining the number of repetitions of the processes of S10 and S11 instead of performing the convergence determination in S12.
  • the signal analyzer 2 stores in advance the predetermined number of repetitions of S10 and S11 in the storage unit 24.
  • the CPU 21 determines whether or not the number of repetitions of the process has reached the predetermined number. If the number of repetitions of the process has not yet reached the predetermined number, the process returns to S10, and the number of repetitions of the process is the predetermined number. If reached, the process proceeds to S13.
  • the predetermined number of repetitions of processing the number of times that the likelihood of the entire plurality of clusters is sufficiently large from experience is determined.
  • the predetermined number of times is 100, for example.
  • the signal analyzer 2 can shorten the calculation time by ending the repetition of the process a predetermined number of times regardless of whether or not the convergence condition is satisfied. Further, the signal analyzer 2 may perform both the convergence determination and the number determination, and perform the process of proceeding to S13 when the convergence condition is satisfied before the number of repetitions of the process reaches the predetermined number. Good.
  • FIG. 6 the cluster range is indicated by a solid line. Further, in FIG. 6, each of the average values of the intensities of the signals a and b is indicated by a broken line.
  • FIG. 7 is a chart showing examples of initial values of clusters and n-dimensional coordinate points. In the figure, the intensity of each specific signal at the center position of a certain cluster 1 is shown, and the intensity of each specific signal at an n-dimensional coordinate point 1, 2, 9, and 10 is shown.
  • the specific signals are signals a, b, c, d, e, f, and g.
  • the center position of the cluster 1 is assumed to be a representative value of each specific signal.
  • the intensity of each specific signal is substantially the same as the representative value. For this reason, the n-dimensional coordinate point 1 is included in the cluster 1.
  • the intensity of the signal c is significantly different from the representative value, and the intensity of other specific signals is the same as the representative value.
  • the initial value of the cluster including the point on the n-dimensional coordinate system, which is a representative value such as an average value, is set first, and the probability of being included in the existing cluster is low.
  • An initial value of a new cluster is set so as to include an n-dimensional coordinate point. For this reason, as in the cluster indicated by 51 in FIG. 6, the initial value of a cluster composed of n-dimensional coordinate points in which the intensity of many specific signals is separated from the representative value is easily set.
  • an initial value is set in the conventional method for clusters composed of n-dimensional coordinate points whose intensities of other specific signals are close to the representative value. Hateful. For example, it is unlikely that the initial value of the cluster composed of the n-dimensional coordinate points 10 shown in FIG. In the conventional method, the n-dimensional coordinate point 10 is included in the cluster 1.
  • the initial value of the cluster is set so as to include an n-dimensional coordinate point where the intensity of one specific signal deviates from a predetermined reference, for example, an n-dimensional coordinate point whose intensity of one specific signal is equal to or greater than m + ⁇ . To do. For this reason, it is easy to set an initial value of a cluster composed of n-dimensional coordinate points whose intensities of single or a small number of specific signals deviate from the representative value but whose intensity of other specific signals is close to the representative value. For example, the initial value of the cluster composed of the n-dimensional coordinate points 10 shown in FIG.
  • the initial value of the cluster is set in S8 in the conventional method, the initial value can be set even for the cluster in which the initial value can be set by the conventional method.
  • the initial value of the cluster it is possible to appropriately classify the n-dimensional coordinate points in the cluster analysis and appropriately generate the distribution of a plurality of types of regions having different combinations of specific signal intensities. It becomes possible.
  • FIGS. 8A, 8B, 8C, and 8D are schematic diagrams illustrating examples of distributions of a plurality of types of regions having different combinations of specific signal intensities.
  • the signal analyzing apparatus 2 can display an image showing the distribution of each region as shown in FIGS. 8A to 8D on the display unit 26. It is assumed that the spectrum included in the spectrum distribution is composed of signals a, b and c.
  • FIG. 8A shows a distribution of regions where the intensity of the signal a is average and the intensity of the signals b and c is small.
  • FIG. 8B shows a distribution of regions where the intensity of the signals a and b is average and the intensity of the signal c is small.
  • FIG. 8C shows a distribution of regions where the intensity of the signals a and b is average and the intensity of the signal c is large.
  • FIG. 8D shows a distribution in a region where the intensity of the signal a is average, the intensity of the signal b is small, and the intensity of the signal c is large.
  • signals a, b, and c correspond to elements A, B, and C, respectively
  • FIG. 8A shows the distribution of components that contain element A and almost no elements B and C
  • FIG. The distribution of a component containing almost no element C is shown.
  • FIG. 8C shows the distribution of the component in which the element C is concentrated among the components including the elements A and B, and FIG.
  • 8D is the concentration of the element C in the component that includes the element A and hardly includes the element B.
  • the component part is shown. It is also possible to obtain other types of distributions of regions according to combinations of the strengths of signals a, b, and c, such as distributions of regions where the strengths of signals a and b greatly exceed the average.
  • the distributions shown in FIGS. 8C and 8D are distributions of regions that were difficult to separate from other regions by the conventional method.
  • the distribution of a plurality of types of regions having different combinations of specific signal intensities represents the distribution of a plurality of types of components having different concentrations of elements contained in the sample 3. That is, according to the present embodiment, it is possible to obtain a distribution of components in which the concentration of a small number of elements deviates from the representative value. In particular, as shown in FIGS. 8C and 8D, it is possible to obtain a distribution of components that exist only in a minute region in the sample 3.
  • the signal analysis device 2 is connected to the control unit 16. However, the signal analysis device 2 may be integrated with the control unit 16. In this form, the signal analysis device 2 executes a process to be executed by the control unit 16. Further, the signal analysis device 2 may be separated from the measurement device. In this embodiment, the signal analysis device 2 receives externally generated signal distribution data and executes the processes after S3.
  • the form of analyzing the spectrum distribution obtained by EDX is shown, but the signal analyzer 2 may be the form of analyzing the spectrum distribution obtained by other measurement methods. Good.
  • the measuring device may be a device other than the EDX device as long as it can measure the spectral distribution.
  • the signal analyzer 2 may be configured to analyze a spectrum distribution composed of a fluorescent X-ray spectrum.
  • the signal analyzer 2 can obtain a distribution of a plurality of types of components having different concentrations of elements contained in the sample.
  • the signal analysis device 2 may be configured to analyze a spectrum distribution including a Raman spectrum.
  • the signal analysis device 2 may be configured to analyze a spectrum distribution composed of visible light and / or infrared light spectrum from the measurement target. Visible light and infrared light are light reflected from the surface of the measurement object or light transmitted through the measurement object. For example, the signal analysis device 2 calculates an n-dimensional coordinate point group composed of a combination of R (red), G (green), B (blue), and infrared intensities from a spectral distribution obtained by measuring reflected light from a measurement target. Generate and perform cluster analysis, and generate distributions of a plurality of types of regions on the measurement target according to the combination of RGB and infrared intensity. For example, a plurality of types of tree distributions are generated from a captured image of a forest. Further, the signal analysis device 2 may be configured to analyze other spectral distributions.
  • the signal analysis apparatus 2 is a point where a spectrum is each point on a three-dimensional coordinate system. It is also possible to perform an analysis of the spectral distribution associated with.
  • the signal analyzer 2 can obtain the distribution of components existing on the surface of a three-dimensional sample, for example.
  • the measurement device may be configured to generate a spectrum distribution in which a spectrum is associated with each point on a three-dimensional coordinate system.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided are a signal analysis device, signal analysis method, computer program, measurement device, and measurement method for carrying out cluster analysis so as to make it possible to acquire a distribution that has conventionally been difficult to acquire from a spectral distribution. In the present invention, a signal analysis device generates n-dimensional coordinate points defined through the combination of the intensities of n specific signals included in a spectrum; determines a plurality of initial cluster values on an n-dimensional space for the purpose of classifying the plurality of n-dimensional coordinate points; and carries out analysis using the determined initial cluster values. When determining the initial cluster values, the signal analysis device generates an initial cluster value that includes a point on the n-dimensional space that consists of a combination of the representative values for the intensities of the n specific signals and generates initial cluster values that each include an n-dimensional coordinate point where the intensity of one specific signal has deviated from a prescribed standard.

Description

信号分析装置、信号分析方法、コンピュータプログラム、測定装置及び測定方法Signal analysis apparatus, signal analysis method, computer program, measurement apparatus, and measurement method
 本発明は、座標系上のスペクトル分布から、複数の信号の強度の組み合わせが異なる領域の分布を求める信号分析装置、信号分析方法及びコンピュータプログラム、並びに、スペクトル分布の測定及び分析を行う測定装置及び測定方法に関する。 The present invention relates to a signal analysis device, a signal analysis method and a computer program for obtaining a distribution of regions having different combinations of signal intensities from a spectral distribution on a coordinate system, and a measuring device for measuring and analyzing the spectral distribution, and It relates to a measurement method.
 X線分析は、電子線又はX線等の放射線を試料へ照射し、試料から発生する特性X線のスペクトルから試料に含有される成分を分析する手法である。特に、試料上の各点からの特性X線のスペクトルを二次元座標系上の各点に対応づけたスペクトル分布を作成し、スペクトル分布を用いて試料中の成分を分析することが行われる。試料へ照射する放射線を電子線としたX線分析の一例として、エネルギー分散型X線分析(EDX:Energy Dispersive X-ray Spectroscopy)が知られている。また試料へ照射する放射線をX線としたX線分析の一例として、蛍光X線分析がある。また、X線分析以外の分析手法にも、スペクトル分布を作成できる分析手法がある。例えば、ラマン分光分析では、試料上の各点に対応する画像上の各点についてラマン光のスペクトルが記録されたスペクトル分布を作成することができる。また、例えば、試料から得られた可視光及び赤外光のスペクトル分布を作成することも可能である。 X-ray analysis is a technique for irradiating a sample with radiation such as an electron beam or X-ray, and analyzing components contained in the sample from a spectrum of characteristic X-rays generated from the sample. In particular, a spectrum distribution in which a spectrum of characteristic X-rays from each point on a sample is associated with each point on a two-dimensional coordinate system is created, and components in the sample are analyzed using the spectrum distribution. As an example of X-ray analysis using an electron beam as radiation irradiated to a sample, energy dispersive X-ray analysis (EDX: Energy Dispersive X-ray Spectroscopy) is known. As an example of X-ray analysis using X-rays as radiation irradiated to a sample, there is fluorescent X-ray analysis. Moreover, there is an analysis method that can create a spectrum distribution as an analysis method other than the X-ray analysis. For example, in Raman spectroscopic analysis, a spectrum distribution in which the spectrum of Raman light is recorded for each point on the image corresponding to each point on the sample can be created. In addition, for example, it is possible to create a spectral distribution of visible light and infrared light obtained from a sample.
 特定の元素からは特定のエネルギーの特性X線が取得できるので、試料上の各点でのスペクトル中の特定のエネルギーの信号強度を調べることで、特定の元素の分布を得ることができる。試料には複数の元素が含まれているので、スペクトル分布からは、複数の元素の分布が得られる。通常、試料には複数の成分が含まれており、各成分には複数の元素が含まれている。例えば、試料が岩石である場合は、岩石は複数の鉱物成分で構成され、各鉱物成分は複数の元素を含有する。成分が異なっていても同一の元素が含まれていることがあるので、一般的には試料中の成分の分布と元素の分布とは一致しない。 Since characteristic X-rays of specific energy can be obtained from specific elements, the distribution of specific elements can be obtained by examining the signal intensity of specific energy in the spectrum at each point on the sample. Since the sample includes a plurality of elements, a distribution of a plurality of elements can be obtained from the spectral distribution. In general, a sample includes a plurality of components, and each component includes a plurality of elements. For example, when the sample is a rock, the rock is composed of a plurality of mineral components, and each mineral component contains a plurality of elements. Since the same element may be contained even if the components are different, the distribution of the components in the sample and the distribution of the elements generally do not match.
 特許文献1には、スペクトルに含まれる複数の信号の強度の組み合わせに基づいて、試料中の成分の分布を求める方法が開示されている。この方法では、n個の信号の強度の組み合わせで定義されるn次元データを二次元座標上の複数の点について定めたn次元座標点群を生成し、n次元座標点を複数のクラスタに分類するクラスタ分析を行う。クラスタ分析では、EM(Expectation-maximization)法を利用して、n次元座標点が各クラスタに含まれる確率分布が適切になるように複数のクラスタを求める。クラスタ分析を行った後、各クラスタに対応する領域の分布を生成する。生成した分布は、複数の元素が含まれる成分の分布に対応する。 Patent Document 1 discloses a method for obtaining a distribution of components in a sample based on a combination of intensities of a plurality of signals included in a spectrum. In this method, an n-dimensional coordinate point group in which n-dimensional data defined by a combination of n signal intensities is defined for a plurality of points on two-dimensional coordinates is generated, and the n-dimensional coordinate points are classified into a plurality of clusters. Perform cluster analysis. In the cluster analysis, a plurality of clusters are obtained by using an EM (Expectation-maximization) method so that a probability distribution in which n-dimensional coordinate points are included in each cluster is appropriate. After performing the cluster analysis, a distribution of regions corresponding to each cluster is generated. The generated distribution corresponds to a distribution of components including a plurality of elements.
国際公開第2013/027553号International Publication No. 2013/027553
 特許文献1に開示された方法で適切なクラスタ分析を行うには、クラスタの初期値を適切に定める必要がある。クラスタの初期値を定める従来の方法では、まず複数の信号強度の平均値で構成されたクラスタを設定し、設定済みのクラスタに含まれる確率が最も低いn次元座標点が含まれる新たなクラスタを設定し、必要な数までクラスタの設定を繰り返す。このような方法では、多くの信号について平均から外れたn次元座標点からなるクラスタが設定されやすい。これに対し、少数の信号の強度が平均値から大きく外れ、多くの信号の強度が平均値に近いようなn次元座標点については、このn次元座標点からなるクラスタは設定されにくく、他のn次元座標点と同じクラスタに含まれやすい。このようにしてクラスタの初期値が定められ、クラスタ分析が行われた場合には、少数の信号の強度が平均値から大きく外れたn次元座標点からなるクラスタは得られ難い。このため、少数の信号の強度が平均値から外れた領域の分布を得ることが困難である。例えば、試料中の微小な領域にのみ存在する成分の分布を得ることが困難である。 In order to perform an appropriate cluster analysis by the method disclosed in Patent Document 1, it is necessary to appropriately determine the initial value of the cluster. In the conventional method for determining the initial value of the cluster, first, a cluster composed of an average value of a plurality of signal strengths is set, and a new cluster including an n-dimensional coordinate point having the lowest probability of being included in the set cluster is determined. Set up and repeat the cluster setup to the required number. In such a method, it is easy to set a cluster composed of n-dimensional coordinate points that are out of average for many signals. On the other hand, for an n-dimensional coordinate point where the intensity of a small number of signals deviates greatly from the average value and the intensity of many signals is close to the average value, a cluster composed of the n-dimensional coordinate points is difficult to set. It is likely to be included in the same cluster as the n-dimensional coordinate point. When the initial value of the cluster is determined in this manner and the cluster analysis is performed, it is difficult to obtain a cluster composed of n-dimensional coordinate points in which the intensity of a small number of signals deviates greatly from the average value. For this reason, it is difficult to obtain a distribution of a region where the intensity of a small number of signals deviates from the average value. For example, it is difficult to obtain a distribution of components that exist only in a minute region in a sample.
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、従来ではスペクトル分布からの取得が困難であった分布の取得を可能にするようにクラスタ分析を行う信号分析装置、信号分析方法、コンピュータプログラム、測定装置及び測定方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a signal for performing cluster analysis so as to enable acquisition of a distribution that has been difficult to acquire from a spectrum distribution in the past. An analysis apparatus, a signal analysis method, a computer program, a measurement apparatus, and a measurement method are provided.
 本発明に係る信号分析装置は、スペクトルが座標系上の各点について定められたスペクトル分布に基づき、該スペクトル分布中の各点について、スペクトルに含まれるn個(nは2以上の整数)の特定信号の強度の組み合わせで定義されるn次元空間上のn次元座標点を生成するn次元座標点群生成部と、生成した複数のn次元座標点を分類するために、n次元空間上の複数のクラスタの初期値を定める初期設定部と、定めた初期値を用いてクラスタ分析を行うクラスタ分析部とを備える信号分析装置において、前記初期設定部は、前記n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点が含まれるクラスタの初期値を生成する第1初期クラスタ生成部と、一の特定信号の強度が所定の基準から外れているn次元座標点が含まれるクラスタの初期値を生成する第2初期クラスタ生成部とを有することを特徴とする。 The signal analysis apparatus according to the present invention is based on a spectrum distribution in which a spectrum is determined for each point on the coordinate system, and n (n is an integer of 2 or more) included in the spectrum for each point in the spectrum distribution. An n-dimensional coordinate point group generation unit that generates an n-dimensional coordinate point on an n-dimensional space defined by a combination of specific signal intensities, and an n-dimensional space on the n-dimensional space for classifying the generated multiple n-dimensional coordinate points In the signal analyzer including an initial setting unit that determines initial values of a plurality of clusters, and a cluster analysis unit that performs cluster analysis using the determined initial values, the initial setting unit includes the intensity of the n specific signals. A first initial cluster generation unit that generates an initial value of a cluster including a point in an n-dimensional space that is a combination of representative values, and an n-dimensional coordinate point in which the intensity of one specific signal deviates from a predetermined reference And having a second initial cluster generator for generating an initial value of Murrell cluster.
 本発明に係る信号分析装置は、前記初期設定部は、複数のクラスタの数を定めるクラスタ数設定部と、既に初期値が設定されているクラスタへ含まれる確率が最も低いn次元座標点が含まれるクラスタの初期値を生成する第3初期クラスタ生成部と、前記クラスタ数設定部が定めた数のクラスタの初期値が定められるまで、前記第3初期クラスタ生成部の処理を繰り返す繰り返し部とを更に有することを特徴とする。 In the signal analysis device according to the present invention, the initial setting unit includes a cluster number setting unit that determines the number of a plurality of clusters, and an n-dimensional coordinate point that has the lowest probability of being included in a cluster for which an initial value has already been set. A third initial cluster generating unit that generates an initial value of the cluster to be generated, and a repeating unit that repeats the processing of the third initial cluster generating unit until initial values of the number of clusters determined by the cluster number setting unit are determined. Furthermore, it is characterized by having.
 本発明に係る信号分析装置は、クラスタ分析後の各クラスタに含まれるn次元座標点に対応する点の前記スペクトル分布内での分布を特定することにより、n個の特定信号の強度の組み合わせが異なる複数種類の領域の分布を生成する領域分布生成部を更に備えることを特徴とする。 The signal analysis apparatus according to the present invention specifies the distribution in the spectrum distribution of the points corresponding to the n-dimensional coordinate points included in each cluster after the cluster analysis, so that the combination of the strengths of the n specific signals can be obtained. An area distribution generation unit that generates distributions of different types of areas is further provided.
 本発明に係る信号分析装置は、前記n個の特定信号の強度は、n個の元素の濃度を示し、前記領域分布生成部は、n個の元素の濃度の組み合わせが異なる複数種類の領域の分布を生成することを特徴とする。 In the signal analysis device according to the present invention, the intensity of the n specific signals indicates a concentration of n elements, and the region distribution generation unit includes a plurality of types of regions having different combinations of n element concentrations. A distribution is generated.
 本発明に係る信号分析方法は、演算部及び記憶部を備えるコンピュータにより、スペクトルが座標系上の各点について定められたスペクトル分布に基づき、該スペクトル分布中の各点について、スペクトルに含まれるn個(nは2以上の整数)の特定信号の強度の組み合わせで定義されるn次元空間上のn次元座標点を生成するステップと、生成した複数のn次元座標点を分類するために、n次元空間上の複数のクラスタの初期値を定める初期設定ステップと、定めた初期値を用いてクラスタ分析を行うステップとを行う信号処理方法において、前記初期設定ステップは、前記n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点が含まれるクラスタの初期値を生成するステップと、一の特定信号の強度が所定の基準から外れているn次元座標点が含まれるクラスタの初期値を生成するステップとを含むことを特徴とする。 The signal analysis method according to the present invention is based on a spectrum distribution in which a spectrum is determined for each point on a coordinate system by a computer including a calculation unit and a storage unit, and n included in the spectrum for each point in the spectrum distribution. Generating n-dimensional coordinate points on an n-dimensional space defined by a combination of intensities of specific signals (n is an integer of 2 or more), and classifying a plurality of generated n-dimensional coordinate points, n In the signal processing method of performing an initial setting step for determining initial values of a plurality of clusters in a dimensional space and a step of performing cluster analysis using the determined initial values, the initial setting step includes the steps of: A step of generating an initial value of a cluster including a point on an n-dimensional space composed of a combination of representative values of intensity, and the intensity of one specific signal deviates from a predetermined reference Characterized in that it comprises the steps of generating an initial value of clusters included in that n-dimensional coordinate point.
 本発明に係る信号分析方法は、前記初期設定ステップは、複数のクラスタの数を定めるステップと、既に初期値が設定されているクラスタへ含まれる尤もらしさが最も低いn次元座標点が含まれるクラスタの初期値を生成する生成ステップと、定められた数のクラスタの初期値が定められるまで、前記生成ステップを繰り返すステップとを更に含むことを特徴とする。 In the signal analysis method according to the present invention, the initial setting step includes a step of determining the number of a plurality of clusters, and a cluster including an n-dimensional coordinate point having the lowest likelihood included in a cluster for which an initial value has already been set. A generating step of generating the initial value of the first and second steps, and repeating the generating step until initial values of a predetermined number of clusters are determined.
 本発明に係る信号分析方法は、クラスタ分析後の各クラスタに含まれるn次元座標点に対応する点の前記スペクトル分布内での分布を特定することにより、n個の特定信号の強度の組み合わせが異なる複数種類の領域の分布を生成するステップを更に行うことを特徴とする。 In the signal analysis method according to the present invention, by specifying the distribution in the spectrum distribution of the points corresponding to the n-dimensional coordinate points included in each cluster after the cluster analysis, the combination of the strengths of the n specific signals is obtained. The step of generating a distribution of different types of regions is further performed.
 本発明に係るコンピュータプログラムは、コンピュータに、スペクトルが座標系上の各点について定められたスペクトル分布に基づき、該スペクトル分布中の各点について、スペクトルに含まれるn個(nは2以上の整数)の特定信号の強度の組み合わせで定義されるn次元空間上のn次元座標点を生成するステップと、生成した複数のn次元座標点を分類するために、n次元空間上の複数のクラスタの初期値を定める初期設定ステップと、定めた初期値を用いてクラスタ分析を行うステップとを含む処理を実行させるコンピュータプログラムにおいて、前記初期設定ステップは、前記n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点が含まれるクラスタの初期値を生成するステップと、一の特定信号の強度が所定の基準から外れているn次元座標点が含まれるクラスタの初期値を生成するステップとを含むことを特徴とする。 The computer program according to the present invention allows a computer to have n (n is an integer of 2 or more) included in a spectrum for each point in the spectrum distribution based on a spectrum distribution in which the spectrum is determined for each point on the coordinate system. ) Generating an n-dimensional coordinate point on the n-dimensional space defined by the combination of specific signal intensities, and classifying the plurality of generated n-dimensional coordinate points to a plurality of clusters on the n-dimensional space. In a computer program for executing processing including an initial setting step for determining an initial value and a step of performing cluster analysis using the determined initial value, the initial setting step includes a representative value of the intensity of the n specific signals. A step of generating an initial value of a cluster including a point on the n-dimensional space formed by the combination, and the intensity of one specific signal is a predetermined reference n-dimensional coordinate point is out of, characterized in that it comprises the steps of generating an initial value of the cluster that contains the.
 本発明に係るコンピュータプログラムは、前記初期設定ステップは、複数のクラスタの数を定めるステップと、既に初期値が設定されているクラスタへ含まれる尤もらしさが最も低いn次元座標点が含まれるクラスタの初期値を生成する生成ステップと、定められた数のクラスタの初期値が定められるまで、前記生成ステップを繰り返すステップとを更に含むことを特徴とする。 In the computer program according to the present invention, the initial setting step includes a step of determining the number of a plurality of clusters and a cluster including an n-dimensional coordinate point having the lowest likelihood included in a cluster in which an initial value has already been set. The method further includes a generation step of generating an initial value, and a step of repeating the generation step until initial values of a predetermined number of clusters are determined.
 本発明に係る測定装置は、試料上の各点から得られる放射線又は電磁波を測定する測定部と、測定した放射線又は電磁波のスペクトルを各点に対応付けたスペクトル分布を生成するスペクトル分布生成部とを備える測定装置において、本発明に係る信号分析装置を備えることを特徴とする。 A measuring apparatus according to the present invention includes a measuring unit that measures radiation or electromagnetic waves obtained from each point on a sample, a spectrum distribution generating unit that generates a spectral distribution in which the measured radiation or electromagnetic wave spectrum is associated with each point, and A measurement apparatus comprising: a signal analysis apparatus according to the present invention.
 本発明に係る測定方法は、試料上の各点から得られるスペクトルを測定し、測定したスペクトルを各点に対応付けたスペクトル分布を生成する測定方法において、本発明に係る信号分析方法を含むことを特徴とする。 The measurement method according to the present invention includes a signal analysis method according to the present invention in a measurement method for measuring a spectrum obtained from each point on a sample and generating a spectrum distribution in which the measured spectrum is associated with each point. It is characterized by.
 本発明においては、スペクトル分布に含まれる各点について、n個の特定信号の強度の組み合わせで定義されるn次元空間上のn次元座標点を生成し、n次元座標点のクラスタ分析を行う。クラスタ分析のためにクラスタの初期値を設定する際には、n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点が含まれるクラスタの初期値を生成し、次に、一の特定信号の強度が所定の基準から外れたn次元座標点が含まれるクラスタの初期値を生成する。このようにすることで、単独又は少数の信号の強度が代表値から外れ、他の信号の強度が代表値に近いn次元座標点群からなるクラスタの初期値が設定されやすい。 In the present invention, for each point included in the spectrum distribution, an n-dimensional coordinate point in an n-dimensional space defined by a combination of n specific signal intensities is generated, and cluster analysis of the n-dimensional coordinate point is performed. When setting an initial value of a cluster for cluster analysis, an initial value of a cluster including points on an n-dimensional space composed of combinations of representative values of n specific signals is generated. An initial value of a cluster including an n-dimensional coordinate point where the intensity of one specific signal deviates from a predetermined reference is generated. By doing so, the intensity of single or a small number of signals deviates from the representative value, and the initial value of the cluster composed of the n-dimensional coordinate point group in which the intensity of other signals is close to the representative value is easily set.
 また、本発明においては、クラスタの初期値を設定する際に、更に、既存のクラスタに含まれる確率が最も低いn次元座標点を含むクラスタの初期値を設定する。これにより、従来の方法で初期値を設定することができていたクラスタについても漏らさずに初期値を設定する。 In the present invention, when setting the initial value of the cluster, the initial value of the cluster including the n-dimensional coordinate point having the lowest probability of being included in the existing cluster is further set. As a result, the initial value is set without leaking the cluster which has been able to set the initial value by the conventional method.
 また、本発明においては、クラスタ分析後の各クラスタに含まれるn次元座標点に対応する点のスペクトル分布内での分布を特定することにより、スペクトルに含まれる複数の特定信号の強度の組み合わせが異なる複数種類の領域の分布を生成する。一の特定信号の強度が所定の基準から外れたn次元座標点が含まれるクラスタの初期値を定めてからクラスタ分析を行っているので、少数の特定信号の強度が代表値から外れた領域の分布が得られる。 In the present invention, by specifying the distribution in the spectrum distribution of the points corresponding to the n-dimensional coordinate points included in each cluster after the cluster analysis, the combination of the intensities of a plurality of specific signals included in the spectrum is obtained. A distribution of different types of regions is generated. Since the cluster analysis is performed after determining the initial value of the cluster including the n-dimensional coordinate point in which the intensity of one specific signal deviates from a predetermined reference, the region where the intensity of a small number of specific signals deviates from the representative value Distribution is obtained.
 また、本発明においては、特定信号の強度は試料に含まれる元素の濃度を示しており、複数種類の領域の分布を生成することにより、試料中の元素の濃度が異なる複数種類の成分の分布が生成される。本発明により、少数の元素の濃度が代表値から外れた成分の分布が得られる。 Further, in the present invention, the intensity of the specific signal indicates the concentration of the element contained in the sample, and the distribution of a plurality of types of components having different concentrations of the element in the sample is generated by generating a distribution of a plurality of types of regions. Is generated. According to the present invention, a distribution of components in which the concentration of a small number of elements deviates from the representative value can be obtained.
 本発明にあっては、クラスタの初期値を適切に設定することにより、クラスタ分析でn次元座標点を適切に分類することができる。従って、スペクトル分布から、少数の特定信号の強度が代表値から外れた領域の分布を生成することが可能となる等、本発明は優れた効果を奏する。 In the present invention, n-dimensional coordinate points can be appropriately classified by cluster analysis by appropriately setting the initial value of the cluster. Therefore, the present invention has an excellent effect such that it is possible to generate a distribution in a region where the intensity of a small number of specific signals deviates from the representative value from the spectrum distribution.
測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of a measuring apparatus. 信号分析装置の構成を示すブロック図である。It is a block diagram which shows the structure of a signal analyzer. スペクトルの例を示す模式的特性図である。It is a typical characteristic figure showing an example of a spectrum. 信号分析装置が行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which a signal analyzer performs. 信号分析装置が行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which a signal analyzer performs. n次元座標点をn次元座標上にプロットした散布図の例である。It is an example of the scatter diagram which plotted the n-dimensional coordinate point on the n-dimensional coordinate. クラスタの初期値及びn次元座標点の例を示す図表である。It is a graph which shows the example of the initial value of a cluster, and an n-dimensional coordinate point. 特定信号の強度の組み合わせが異なる複数種類の領域の分布の例を示す模式図である。It is a schematic diagram which shows the example of distribution of several types of area | region from which the combination of the intensity | strength of a specific signal differs. 特定信号の強度の組み合わせが異なる複数種類の領域の分布の例を示す模式図である。It is a schematic diagram which shows the example of distribution of several types of area | region from which the combination of the intensity | strength of a specific signal differs. 特定信号の強度の組み合わせが異なる複数種類の領域の分布の例を示す模式図である。It is a schematic diagram which shows the example of distribution of several types of area | region from which the combination of the intensity | strength of a specific signal differs. 特定信号の強度の組み合わせが異なる複数種類の領域の分布の例を示す模式図である。It is a schematic diagram which shows the example of distribution of several types of area | region from which the combination of the intensity | strength of a specific signal differs.
 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
 図1は、測定装置の構成を示すブロック図である。測定装置は、試料3へ電子線を照射し、試料3からの特性X線を測定し、特性X線のスペクトルを試料3上の各点に対応づけたスペクトル分布を生成するEDX装置である。測定装置は、試料3へ電子線を照射する電子銃11と、電子レンズ系12と、試料3が載置される試料台13と、試料3から発生する特性X線を検出する検出部14とを備えている。電子レンズ系12は、電子線の方向を変更させる走査コイルを含んでいる。電子銃11及び電子レンズ系12は、制御部16に接続されている。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
FIG. 1 is a block diagram showing the configuration of the measuring apparatus. The measurement apparatus is an EDX apparatus that irradiates the sample 3 with an electron beam, measures characteristic X-rays from the sample 3, and generates a spectrum distribution in which the spectrum of the characteristic X-ray is associated with each point on the sample 3. The measurement apparatus includes an electron gun 11 that irradiates the sample 3 with an electron beam, an electron lens system 12, a sample stage 13 on which the sample 3 is placed, and a detection unit 14 that detects characteristic X-rays generated from the sample 3. It has. The electron lens system 12 includes a scanning coil that changes the direction of the electron beam. The electron gun 11 and the electron lens system 12 are connected to the control unit 16.
 制御部16からの制御信号に従って、電子銃11が電子線を放出し、電子レンズ系12が電子線の方向を定め、電子線はX試料台13上の試料3へ照射される。試料3上で、電子線を照射された部分では、特性X線が発生する。特性X線は、検出部14で検出される。図1には、電子線を実線矢印で示し、特性X線を破線矢印で示している。検出部14は、検出した特性X線のエネルギーに比例した信号を出力する。電子銃11、電子レンズ系12及び検出部14は、測定部に対応する。 In accordance with a control signal from the control unit 16, the electron gun 11 emits an electron beam, the electron lens system 12 determines the direction of the electron beam, and the electron beam is irradiated onto the sample 3 on the X sample stage 13. A characteristic X-ray is generated in the portion irradiated with the electron beam on the sample 3. The characteristic X-ray is detected by the detection unit 14. In FIG. 1, the electron beam is indicated by a solid line arrow, and the characteristic X-ray is indicated by a broken line arrow. The detection unit 14 outputs a signal proportional to the detected characteristic X-ray energy. The electron gun 11, the electron lens system 12, and the detection unit 14 correspond to a measurement unit.
 検出部14は、出力した信号を処理する信号処理部15に接続されている。信号処理部15は、検出部14が出力した信号を受け付け、信号を値別にカウントし、信号の値が示す特性X線のエネルギーとカウント数とを対応付けた特性X線のスペクトルを取得する。あるエネルギーに対応付けられたカウント数は、当該エネルギーを有する特性X線の強度である。信号処理部15は、制御部16に接続されている。電子レンズ系12が電子線の方向を順次変更することにより、電子線は試料3を走査する。電子線が試料3を走査することにより、試料3上の走査領域内の夫々の部分に電子線が順次照射される。電子線が試料3を走査することに伴い、試料3上で電子線を照射された部分から発生した特性X線が検出部14で順次検出される。信号処理部15は、順次信号処理を行うことにより、試料3上の電子線を照射された複数の部分で発生した特性X線のスペクトルを順次生成する。信号処理部15は、生成した特性X線のスペクトルのデータを制御部16へ順次出力する。 The detection unit 14 is connected to a signal processing unit 15 that processes the output signal. The signal processing unit 15 receives the signal output from the detection unit 14, counts the signal by value, and obtains a characteristic X-ray spectrum in which the characteristic X-ray energy indicated by the signal value is associated with the count number. The count number associated with a certain energy is the intensity of characteristic X-rays having that energy. The signal processing unit 15 is connected to the control unit 16. As the electron lens system 12 sequentially changes the direction of the electron beam, the electron beam scans the sample 3. As the electron beam scans the sample 3, the electron beam is sequentially irradiated to each portion in the scanning region on the sample 3. As the electron beam scans the sample 3, characteristic X-rays generated from the portion irradiated with the electron beam on the sample 3 are sequentially detected by the detection unit 14. The signal processing unit 15 sequentially generates signal spectra of characteristic X-rays generated at a plurality of portions irradiated with the electron beam on the sample 3 by sequentially performing signal processing. The signal processing unit 15 sequentially outputs the generated characteristic X-ray spectrum data to the control unit 16.
 制御部16は、信号処理部15から出力された特性X線のスペクトルのデータを受け付け、試料3上で電子線を照射された部分の位置と特性X線のスペクトルとを関連付けたデータを記憶する。電子線による試料3の走査が終了した段階で、制御部16は、試料3上の各点と特性X線のスペクトルとを関連付けることにより、特性X線のスペクトルが二次元座標系上の各点に関連付けられたスペクトル分布を生成する。信号処理部15及び制御部16は、スペクトル分布生成部に対応する。制御部16は、信号分析装置2に接続されている。制御部16は、スペクトル分布のデータを信号分析装置2へ出力する。なお、信号処理部15及び制御部16は、一体に構成されていてもよい。 The control unit 16 receives the characteristic X-ray spectrum data output from the signal processing unit 15 and stores data in which the position of the portion irradiated with the electron beam on the sample 3 is associated with the characteristic X-ray spectrum. . At the stage when the scanning of the sample 3 by the electron beam is completed, the control unit 16 associates each point on the sample 3 with the spectrum of the characteristic X-ray, so that the characteristic X-ray spectrum becomes each point on the two-dimensional coordinate system. Generate the spectral distribution associated with. The signal processing unit 15 and the control unit 16 correspond to a spectrum distribution generation unit. The control unit 16 is connected to the signal analysis device 2. The controller 16 outputs spectral distribution data to the signal analyzer 2. Note that the signal processing unit 15 and the control unit 16 may be integrally configured.
 図2は、信号分析装置2の構成を示すブロック図である。信号分析装置2は、パーソナルコンピュータ(PC)等の汎用コンピュータを用いて構成されている。信号分析装置2は、演算を行うCPU(演算部)21と、演算に伴って発生する一時的な情報を記憶するRAM22と、光ディスク等の記録媒体4から情報を読み取るCD-ROMドライブ等のドライブ部23と、不揮発性の記憶部24とを備えている。記憶部24は例えばハードディスクである。CPU21は、記録媒体4からコンピュータプログラム41をドライブ部23に読み取らせ、読み取ったコンピュータプログラム41を記憶部24に記憶させる。CPU21は、必要に応じてコンピュータプログラム41を記憶部24からRAM22へロードし、ロードしたコンピュータプログラム41に従って信号分析装置2に必要な処理を実行する。 FIG. 2 is a block diagram showing the configuration of the signal analysis device 2. The signal analyzer 2 is configured using a general-purpose computer such as a personal computer (PC). The signal analysis device 2 includes a CPU (arithmetic unit) 21 that performs calculation, a RAM 22 that stores temporary information generated in accordance with the calculation, and a drive such as a CD-ROM drive that reads information from the recording medium 4 such as an optical disk. Unit 23 and a non-volatile storage unit 24. The storage unit 24 is, for example, a hard disk. The CPU 21 causes the drive unit 23 to read the computer program 41 from the recording medium 4 and stores the read computer program 41 in the storage unit 24. The CPU 21 loads the computer program 41 from the storage unit 24 to the RAM 22 as necessary, and executes processing necessary for the signal analyzer 2 according to the loaded computer program 41.
 なお、コンピュータプログラム41は、図示しない通信ネットワークを介して信号分析装置2に接続された図示しない外部のサーバ装置から信号分析装置2へダウンロードされて記憶部24に記憶されてもよい。また信号分析装置2は、外部からコンピュータプログラム41を受け付けるのではなく、コンピュータプログラム41を記録したROM等の記録手段を内部に備えた形態であってもよい。 The computer program 41 may be downloaded to the signal analyzer 2 from an external server device (not shown) connected to the signal analyzer 2 via a communication network (not shown) and stored in the storage unit 24. Further, the signal analysis device 2 may be configured such that it does not receive the computer program 41 from the outside, but has recording means such as a ROM in which the computer program 41 is recorded.
 また、信号分析装置2は、使用者が操作することによる各種の処理指示等の情報が入力されるキーボード又はポインティングデバイス等の入力部25と、各種の情報を表示する液晶ディスプレイ等の表示部26とを備えている。また、信号分析装置2は、制御部16が接続されたインタフェース部27を備えている。信号分析装置2は、制御部16が出力したスペクトル分布のデータをインタフェース部27で受け付け、記憶部24に記憶する。 The signal analyzer 2 also includes an input unit 25 such as a keyboard or a pointing device for inputting information such as various processing instructions operated by the user, and a display unit 26 such as a liquid crystal display for displaying various information. And. The signal analyzing apparatus 2 includes an interface unit 27 to which the control unit 16 is connected. The signal analyzer 2 receives the spectrum distribution data output from the control unit 16 by the interface unit 27 and stores the data in the storage unit 24.
 図3は、スペクトルの例を示す模式的特性図である。一般的にスペクトルは複数の信号の組み合わせで構成される。図3中の横軸はエネルギーであり、縦軸は各エネルギーにおける信号の強度である。図3中には、スペクトルに含まれる一つの信号のピークを矢印で示している。スペクトルに含まれる信号は、エネルギーによって同定される。特性X線のスペクトルに含まれる各信号は試料3に含まれる元素に起因している。測定装置が測定するスペクトル分布は、試料3上の各点に対応する二次元座標系上の各点について得られたスペクトルで構成される。各スペクトルは、含まれる信号の強度の組みあわせが互いに異なり、スペクトルの形状が互いに異なっている。例えば、スペクトルによっては、単数の信号からなるものもあり、信号強度がゼロのものもあり得る。なお、スペクトルの横軸はエネルギーに限るものではなく、波長又は波数等であってもよい。またスペクトルの横軸は絶対的な値に限るものではなく、特定の波長からの波長のずれ等の相対的な値であってもよい。 FIG. 3 is a schematic characteristic diagram showing an example of a spectrum. In general, a spectrum is composed of a combination of a plurality of signals. The horizontal axis in FIG. 3 is energy, and the vertical axis is signal intensity at each energy. In FIG. 3, the peak of one signal included in the spectrum is indicated by an arrow. The signal contained in the spectrum is identified by energy. Each signal included in the characteristic X-ray spectrum is caused by an element included in the sample 3. The spectrum distribution measured by the measuring device is composed of spectra obtained for each point on the two-dimensional coordinate system corresponding to each point on the sample 3. Each spectrum has a different combination of intensity of signals contained therein, and has a different spectrum shape. For example, some spectra may consist of a single signal and some may have zero signal strength. The horizontal axis of the spectrum is not limited to energy, and may be wavelength or wave number. Further, the horizontal axis of the spectrum is not limited to an absolute value, and may be a relative value such as a wavelength shift from a specific wavelength.
 信号分析装置2が行う処理を説明する。図4及び図5は、信号分析装置2が行う処理の手順を示すフローチャートである。CPU21は、コンピュータプログラムに従って、以下の処理を実行する。制御部16からのスペクトル分布のデータをインタフェース部27で受け付け、CPU21は、スペクトル分布データを記憶部24に記憶させる(S1)。スペクトル分布データは、試料上の各点の二次元座標と、各点から得られたスペクトルのデータとが関連付けられたデータである。またスペクトルのデータは、エネルギー等と信号強度とが関連付けられたデータである。 Processing performed by the signal analyzer 2 will be described. 4 and 5 are flowcharts showing a procedure of processing performed by the signal analysis device 2. CPU21 performs the following processes according to a computer program. Spectral distribution data from the control unit 16 is received by the interface unit 27, and the CPU 21 stores the spectral distribution data in the storage unit 24 (S1). The spectrum distribution data is data in which two-dimensional coordinates of each point on the sample are associated with spectrum data obtained from each point. The spectrum data is data in which energy or the like is associated with signal intensity.
 CPU21は、次に、スペクトル分布データから、複数の特定信号の強度分布を示す信号分布データを生成する(S2)。具体的には、S2では、CPU21は、予め定められているエネルギーで同定される特定信号の信号強度を各点のスペクトルから読み出し、読み出した信号強度を二次元座標系上の各点に対応づけた信号分布データを生成する。即ち、信号分布データは、試料3上の各点の二次元座標と、特定のエネルギーでの信号強度とが関連付けられたデータである。記憶部24は、特定信号のエネルギーとして複数のエネルギーを予め記憶しており、CPU21は、複数の特定信号の夫々について信号分布データを生成する。即ち、S2では、複数の信号分布データが生成される。信号分布データを生成した特定信号の数をnとする。nは2以上の整数である。信号分布データは記憶部24に記憶される。なお、特定信号のエネルギーはコンピュータプログラム41に含まれていてもよい。また、特定信号は波長又は波数等で同定されてもよい。また、特定信号は、スペクトル中のピークの位置では無く、スペクトル中の信号波形から同定してもよい。また、CPU21は、使用者が入力部25を操作することにより、特定信号の指定を受け付け、指定された特定信号について信号分布データを生成してもよい。 Next, the CPU 21 generates signal distribution data indicating the intensity distribution of a plurality of specific signals from the spectrum distribution data (S2). Specifically, in S2, the CPU 21 reads out the signal strength of a specific signal identified with a predetermined energy from the spectrum of each point, and associates the read signal strength with each point on the two-dimensional coordinate system. Generated signal distribution data. That is, the signal distribution data is data in which the two-dimensional coordinates of each point on the sample 3 are associated with the signal intensity at a specific energy. The storage unit 24 stores in advance a plurality of energies as specific signal energy, and the CPU 21 generates signal distribution data for each of the plurality of specific signals. That is, in S2, a plurality of signal distribution data are generated. Let n be the number of specific signals that have generated signal distribution data. n is an integer of 2 or more. The signal distribution data is stored in the storage unit 24. The energy of the specific signal may be included in the computer program 41. Further, the specific signal may be identified by a wavelength or a wave number. Further, the specific signal may be identified not from the position of the peak in the spectrum but from the signal waveform in the spectrum. Further, the CPU 21 may accept the designation of the specific signal by operating the input unit 25 by the user, and may generate signal distribution data for the designated specific signal.
 CPU21は、次に、信号分布データから、n個の特定信号の強度の組み合わせでなるn次元データを生成する(S3)。具体的には、CPU21は、二次元座標系上の各点について、n個の特定信号の強度の組み合わせで定義されるn次元データを生成することによって、n次元空間上のn次元座標点を生成する。また、CPU21は、二次元座標系上の各点の二次元座標とn次元座標を表すn次元データとを関連付けたデータを生成し、RAM22又は記憶部24に記憶する。 Next, the CPU 21 generates n-dimensional data composed of combinations of n specific signal intensities from the signal distribution data (S3). Specifically, for each point on the two-dimensional coordinate system, the CPU 21 generates n-dimensional data defined by a combination of the strengths of n specific signals, thereby obtaining an n-dimensional coordinate point in the n-dimensional space. Generate. Further, the CPU 21 generates data in which the two-dimensional coordinates of each point on the two-dimensional coordinate system are associated with the n-dimensional data representing the n-dimensional coordinates, and stores the data in the RAM 22 or the storage unit 24.
 図6は、n次元座標点をn次元座標上にプロットした散布図の例である。図6には、特定信号として信号a及びbを選択したn=2の場合を示している。図6中の横軸は、信号aの強度を示し、縦軸は信号bの強度を示している。試料3上の各点に対応する二次元座標系上の各点について、n次元空間上にn次元座標点がプロットされる。n次元座標点はn次元空間上で重なることもある。S3の処理は、n次元座標点群生成部に対応する。なお、信号分析装置2は、外部で生成されたn次元データを入力され、S4以降の処理を実行する形態であってもよい。 FIG. 6 is an example of a scatter diagram in which n-dimensional coordinate points are plotted on n-dimensional coordinates. FIG. 6 shows a case where n = 2 in which signals a and b are selected as specific signals. In FIG. 6, the horizontal axis indicates the intensity of the signal a, and the vertical axis indicates the intensity of the signal b. For each point on the two-dimensional coordinate system corresponding to each point on the sample 3, n-dimensional coordinate points are plotted on the n-dimensional space. The n-dimensional coordinate points may overlap on the n-dimensional space. The process of S3 corresponds to an n-dimensional coordinate point group generation unit. Note that the signal analysis device 2 may be configured to receive n-dimensional data generated externally and execute the processing after S4.
 信号分析装置2は、S4以降で、EM(Expectation-maximization)アルゴリズムにより複数のn次元座標点を複数のクラスタに分類するクラスタ分析を行う。クラスタは、n次元空間上の各点がそのクラスタに含まれる確率を示す確率分布モデルで定義される。確率分布としては、EMアルゴリズムで利用される混合ガウス分布又は混合ポアソン分布等の確率分布を用いる。各クラスタは、n個の確率分布モデルの積で定義される。 The signal analyzing apparatus 2 performs cluster analysis that classifies a plurality of n-dimensional coordinate points into a plurality of clusters by an EM (Expectation-maximization) algorithm in S4 and subsequent steps. A cluster is defined by a probability distribution model indicating the probability that each point on the n-dimensional space is included in the cluster. As the probability distribution, a probability distribution such as a mixed Gaussian distribution or a mixed Poisson distribution used in the EM algorithm is used. Each cluster is defined by a product of n probability distribution models.
 CPU21は、次に、使用者が入力部25を操作することにより、クラスタ数の初期値を受け付け、クラスタ数の初期値を設定する(S4)。CPU21は、S4で、適当な数値をクラスタ数の初期値として設定する処理を行ってもよい。CPU21は、次に、n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点が含まれるクラスタの確率分布モデルの初期値を生成する(S5)。代表値は、n個の特定信号の夫々についてスペクトル分布中の強度を代表する値である。例えば、代表値は、スペクトル分布中の複数の点における特定信号の強度の平均値である。CPU21は、n個の特定信号の夫々について強度の代表値を計算し、代表値の組み合わせでなるn次元空間上の点が含まれるように、クラスタの確率分布モデルのパラメータの初期値を生成する。確率分布モデルのパラメータには、クラスタのn次元空間上の中心位置が含まれる。例えば、CPU21は、n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点がクラスタの中心位置になるように、確率分布モデルのパラメータを設定する。なお、代表値は、平均値に限るものではなく、中央値、最頻値又は特定のモデル値等、その他の値であってもよい。モデル値は、予め記憶部24に記憶されているか、予めコンピュータプログラム41に記録されているか、又は入力部25で入力される。 Next, the CPU 21 receives the initial value of the number of clusters by the user operating the input unit 25, and sets the initial value of the number of clusters (S4). The CPU 21 may perform a process of setting an appropriate numerical value as an initial value of the number of clusters in S4. Next, the CPU 21 generates an initial value of a probability distribution model of a cluster including points on an n-dimensional space formed by a combination of representative values of n specific signals (S5). The representative value is a value representing the intensity in the spectrum distribution for each of the n specific signals. For example, the representative value is an average value of the intensity of the specific signal at a plurality of points in the spectrum distribution. The CPU 21 calculates a representative value of intensity for each of the n specific signals, and generates initial values of the parameters of the cluster probability distribution model so that points on the n-dimensional space formed by combinations of the representative values are included. . The parameters of the probability distribution model include the center position of the cluster in the n-dimensional space. For example, the CPU 21 sets the parameters of the probability distribution model so that a point on the n-dimensional space formed by a combination of representative values of n specific signal intensities becomes the center position of the cluster. The representative value is not limited to the average value, and may be another value such as a median value, a mode value, or a specific model value. The model value is stored in advance in the storage unit 24, recorded in advance in the computer program 41, or input through the input unit 25.
 CPU21は、次に、一の特定信号の強度が所定の基準から外れているn次元座標点が含まれるクラスタの確率分布モデルの初期値を生成する(S6)。例えば、信号分析装置2は、一の特定信号の強度の代表値m及びパラメータαを用いて、m+α未満の強度を基準内とし、m+α以上の強度を基準から外れたものとみなす。例えば、パラメータαは標準偏差値である。パラメータαは、所定値等、標準偏差値以外の値であってもよい。CPU21は、一の特定信号の強度の代表値m及びパラメータαを計算し、S3で生成したn次元座標点の内で一の特定信号の強度がm+α以上となるn次元座標点を特定し、特定したn次元座標点が含まれるように、新たなクラスタの確率分布モデルのパラメータの初期値を生成する。なお、m+α以上の強度を基準外とする形態は、一例であり、他の基準を用いることも可能である。例えば、m+αを超過する強度を基準外としてもよい。また、例えば、m-α以上又は超の強度を基準内とし、m-α未満又は以下の強度を基準外としてもよい。また、例えば、代表値mに所定値を足した値以上又は超の強度を基準外としてもよい。また、例えば、所定値以上若しくは超、又は所定値以下若しくは未満の強度を、基準外としてもよい。また、例えば、βを所定値として、複数のn次元座標点における一の特定信号の強度の中で、上位β%の強度を基準外としてもよく、下位β%の強度を基準外としてもよい。S6では、例えば、一の特定信号の強度が所定の基準から外れているn次元座標点の位置がクラスタの中心位置になるように、確率分布モデルのパラメータを設定する。 Next, the CPU 21 generates an initial value of a probability distribution model of a cluster including n-dimensional coordinate points in which the intensity of one specific signal deviates from a predetermined reference (S6). For example, the signal analyzing apparatus 2 uses the representative value m of the intensity of one specific signal and the parameter α, and considers the intensity less than m + α within the reference and the intensity greater than m + α as being out of the reference. For example, the parameter α is a standard deviation value. The parameter α may be a value other than the standard deviation value, such as a predetermined value. The CPU 21 calculates the representative value m of the intensity of one specific signal and the parameter α, specifies an n-dimensional coordinate point where the intensity of the one specific signal is equal to or greater than m + α among the n-dimensional coordinate points generated in S3, An initial value of a parameter of a new cluster probability distribution model is generated so that the identified n-dimensional coordinate point is included. The form in which the intensity of m + α or more is not a standard is an example, and other standards can be used. For example, the intensity exceeding m + α may be out of the standard. Further, for example, the intensity of m-α or higher or higher may be within the standard, and the intensity of less than or less than m-α may be out of the standard. Further, for example, an intensity that is greater than or equal to a value obtained by adding a predetermined value to the representative value m may be out of the reference. Further, for example, an intensity that is greater than or equal to a predetermined value or less than or less than a predetermined value may be out of the reference. Further, for example, with β as a predetermined value, the strength of the upper β% may be out of the reference and the strength of the lower β% may be out of the reference among the intensities of one specific signal at a plurality of n-dimensional coordinate points. . In S6, for example, the parameters of the probability distribution model are set so that the position of the n-dimensional coordinate point where the intensity of one specific signal deviates from a predetermined reference becomes the center position of the cluster.
 また、S6では、CPU21は、複数のクラスタの確率分布モデルの初期値を生成してもよい。例えば、CPU21は、m-α以下の強度とm+α以上の強度とを基準外とし、一の特定信号の強度がm+α以上となるn次元座標点が含まれるクラスタと、一の特定信号の強度がm-α以下となるn次元座標点が含まれるクラスタとについて、確率分布モデルの初期値を生成する。また例えば、CPU21は、一の特定信号の強度がm+α~m+2αに含まれるn次元座標点と、一の特定信号の強度がm+2α~m+3αに含まれるn次元座標点とが別のクラスタに含まれるように、複数のクラスタの確率分布モデルの初期値を生成する。また例えば、基準となる所定値を複数設定しておき、CPU21は、一の特定信号の強度に応じた複数のクラスタの確率分布モデルの初期値を生成する。また、例えば、CPU21は、一の特定信号の強度が下位β%に含まれるn次元座標点が含まれるクラスタと、一の特定信号の強度が上位β%に含まれるn次元座標点が含まれるクラスタとの夫々について、確率分布モデルの初期値を生成してもよい。また、例えば、γを所定値とし、β<γとして、CPU21は、一の特定信号の強度が上位β%に含まれるn次元座標点と、一の特定信号の強度が上位β%~γ%に含まれるn次元座標点とが別のクラスタに含まれるように、複数のクラスタの確率分布モデルの初期値を生成してもよい。また、例えば、CPU21は、一の特定信号の強度が下位β%に含まれるn次元座標点と、一の特定信号の強度が下位β%~γ%に含まれるn次元座標点とが別のクラスタに含まれるように、複数のクラスタの確率分布モデルの初期値を生成してもよい。また、一の特定信号の強度が所定の基準から外れているn次元座標点が無い場合には、CPU21は、この特定信号についてはクラスタの確率分布モデルの初期値を生成しなくてもよい。 In S6, the CPU 21 may generate initial values of a probability distribution model of a plurality of clusters. For example, the CPU 21 excludes the intensity of m−α or less and the intensity of m + α or more from the reference, the cluster including the n-dimensional coordinate point where the intensity of one specific signal is m + α or more, and the intensity of one specific signal An initial value of a probability distribution model is generated for a cluster including an n-dimensional coordinate point that is less than or equal to m−α. Further, for example, the CPU 21 includes an n-dimensional coordinate point in which the intensity of one specific signal is included in m + α to m + 2α and an n-dimensional coordinate point in which the intensity of one specific signal is included in m + 2α to m + 3α in different clusters. Thus, the initial value of the probability distribution model of a plurality of clusters is generated. In addition, for example, a plurality of predetermined reference values are set, and the CPU 21 generates initial values of a probability distribution model of a plurality of clusters corresponding to the intensity of one specific signal. Further, for example, the CPU 21 includes a cluster including an n-dimensional coordinate point in which the intensity of one specific signal is included in the lower β% and an n-dimensional coordinate point in which the intensity of one specific signal is included in the upper β%. An initial value of the probability distribution model may be generated for each cluster. Further, for example, if γ is a predetermined value and β <γ, the CPU 21 determines that the intensity of one specific signal is included in the upper β%, and the intensity of one specific signal is higher β% to γ%. The initial value of the probability distribution model of a plurality of clusters may be generated so that the n-dimensional coordinate point included in is included in another cluster. Further, for example, the CPU 21 determines that the n-dimensional coordinate point where the intensity of one specific signal is included in the lower β% and the n-dimensional coordinate point where the intensity of one specific signal is included in the lower β% to γ% are different. An initial value of a probability distribution model of a plurality of clusters may be generated so as to be included in the cluster. Further, when there is no n-dimensional coordinate point whose intensity of one specific signal deviates from a predetermined reference, the CPU 21 does not need to generate an initial value of a cluster probability distribution model for this specific signal.
 CPU21は、次に、全ての特定信号についてS6の処理を実行したか否かを判定する(S7)。まだS6の処理を実行していない特定信号がある場合は(S7:NO)、CPU21は、処理をS6へ戻し、S6の処理を実行していない一の特定信号について、S6の処理を実行する。全ての特定信号についてS6の処理を実行した場合は(S7:YES)、CPU21は、既存のクラスタに含まれる確率が最も低いn次元座標点を含むクラスタの確率分布モデルの初期値を生成する(S8)。S8では、CPU21は、既に確率分布モデルの初期値を生成しているクラスタに各n次元座標点が含まれる尤度を計算し、n次元空間上で最も近いクラスタに含まれる尤度が最も低いn次元座標点を特定し、特定したn次元座標点が含まれるように、新たなクラスタの確率分布モデルのパラメータの初期値を生成する。S8は、クラスタの確率分布モデルの初期値を生成する従来の方法に対応する。 Next, the CPU 21 determines whether or not the process of S6 has been executed for all the specific signals (S7). If there is a specific signal that has not yet been subjected to the process of S6 (S7: NO), the CPU 21 returns the process to S6 and executes the process of S6 for one specific signal that has not been subjected to the process of S6. . When the process of S6 is executed for all the specific signals (S7: YES), the CPU 21 generates an initial value of the probability distribution model of the cluster including the n-dimensional coordinate point having the lowest probability of being included in the existing cluster ( S8). In S8, the CPU 21 calculates the likelihood that each n-dimensional coordinate point is included in the cluster that has already generated the initial value of the probability distribution model, and the likelihood included in the nearest cluster in the n-dimensional space is the lowest. An n-dimensional coordinate point is specified, and initial values of parameters of a new cluster probability distribution model are generated so that the specified n-dimensional coordinate point is included. S8 corresponds to a conventional method for generating an initial value of a probability distribution model of a cluster.
 CPU21は、次に、確率分布モデルの初期値を生成したクラスタの数が、S4で設定したクラスタ数の初期値に達したか否かを判定する(S9)。クラスタの数がまだ初期値に達していない場合は(S9:NO)、CPU21は、処理をS8へ戻す。S4~S9の処理は、初期設定部及び初期設定ステップに対応する。また、S5の処理は第1初期クラスタ生成部に対応し、S6及びS7の処理は第2初期クラスタ生成部に対応し、S8の処理は第3初期クラスタ生成部及び生成ステップに対応し、S9の処理は繰り返し部に対応する。なお、前述のS6及びS7の処理では、全ての特定信号についてS6の処理を実行しているが、信号分析装置2は、n個の特定信号の内の一部の特定信号のみについてS6の処理を実行する形態であってもよい。この形態では、例えば、所定数の特定信号、又は予め指定された特定信号のみについてS6の処理が行われ、S7では、S6の処理が必要な特定信号についてS6の処理が行われたか否かが判定される。 Next, the CPU 21 determines whether or not the number of clusters that have generated the initial value of the probability distribution model has reached the initial value of the number of clusters set in S4 (S9). If the number of clusters has not yet reached the initial value (S9: NO), the CPU 21 returns the process to S8. The processes of S4 to S9 correspond to the initial setting unit and the initial setting step. The process of S5 corresponds to the first initial cluster generation unit, the processes of S6 and S7 correspond to the second initial cluster generation unit, the process of S8 corresponds to the third initial cluster generation unit and the generation step, and S9 This processing corresponds to the repetition unit. In the processes of S6 and S7 described above, the process of S6 is executed for all the specific signals, but the signal analyzer 2 performs the process of S6 only for some of the specific signals among the n specific signals. May be executed. In this embodiment, for example, the process of S6 is performed only for a predetermined number of specific signals or specific signals specified in advance, and in S7, whether or not the process of S6 is performed for specific signals that require the process of S6. Determined.
 クラスタの数が初期値に達している場合は(S9:YES)、CPU21は、次に、各クラスタの確率分布モデルに基づいて、n次元空間上の各n次元座標点が各クラスタに含まれる確率を計算する(S10)。S10の処理は、EMアルゴリズムにおけるE(Expectation )ステップに対応する。CPU21は、次に、全体の尤度を上昇させるように各クラスタの確率分布モデルのパラメータを更新する処理を行う(S11)。具体的には、各クラスタのn次元空間上の中心位置等の確率分布のパラメータを更新する。S11の処理は、EMアルゴリズムにおけるM(maximization )ステップに対応する。 When the number of clusters has reached the initial value (S9: YES), the CPU 21 next includes each n-dimensional coordinate point on the n-dimensional space based on the probability distribution model of each cluster. Probability is calculated (S10). The process of S10 corresponds to the E (Expectation) step in the EM algorithm. Next, the CPU 21 performs a process of updating the probability distribution model parameters of each cluster so as to increase the overall likelihood (S11). Specifically, parameters of probability distribution such as the center position of each cluster in the n-dimensional space are updated. The process of S11 corresponds to the M (maximization) step in the EM algorithm.
 CPU21は、次に、EMアルゴリズムの収束判定を行う(S12)。収束の指標には、尤度の値、変化量若しくは変化率、又は確率分布モデルのパラメータの値、変化量若しくは変化率等、EMアルゴリズムで一般的に用いられる指標を用いる。例えば、CPU21は、尤度の変化量が所定値以下の場合に、収束したと判定し、尤度の変化量が所定値より大きい場合に、まだ収束していないと判定する。信号処理部2は、使用者が入力部25を操作することにより、収束条件の入力を受け付け、収束条件を変更することができる形態であってもよい。S10~S12の処理は、クラスタ分析部に対応する。なお、信号分析装置2は、S10、S11及びS12において、EMアルゴリズム以外の最尤法又は最大事後確率推定法のアルゴリズムを用いてクラスタ分析を行う形態であってもよい。例えば、信号分析装置2は、k-means法(K平均法)、ウォード法又はNewton-Raphson法のアルゴリズムを用いた処理を行ってもよい。アルゴリズムに応じて、クラスタは確率分布モデル以外によって定義されてもよい。いずれのアルゴリズムを用いた場合であっても、信号分析装置2は、S10、S11及びS12に対応する処理において、各n次元座標点がどのクラスタに所属するかを計算する。また、信号分析装置2は、確率分布モデルを用いた方法以外の方法で定義したクラスタを用いてクラスタ分析を行ってもよい。 Next, the CPU 21 determines the convergence of the EM algorithm (S12). As the convergence index, an index generally used in the EM algorithm, such as a likelihood value, a change amount or a change rate, or a parameter value of the probability distribution model, a change amount or a change rate, is used. For example, the CPU 21 determines that the likelihood has converged when the likelihood change amount is less than or equal to a predetermined value, and determines that the likelihood has not yet converged when the likelihood change amount is greater than the predetermined value. The signal processing unit 2 may be configured such that when the user operates the input unit 25, the input of the convergence condition can be received and the convergence condition can be changed. The processes of S10 to S12 correspond to the cluster analysis unit. The signal analysis device 2 may be configured to perform cluster analysis using a maximum likelihood method or maximum a posteriori probability estimation algorithm other than the EM algorithm in S10, S11, and S12. For example, the signal analyzer 2 may perform processing using an algorithm of the k-means method (K-means method), the Ward method, or the Newton-Raphson method. Depending on the algorithm, clusters may be defined by other than probability distribution models. Regardless of which algorithm is used, the signal analyzer 2 calculates which cluster each n-dimensional coordinate point belongs to in the processing corresponding to S10, S11, and S12. Further, the signal analysis device 2 may perform cluster analysis using clusters defined by a method other than the method using the probability distribution model.
 S12でまだ収束していない場合は(S12:NO)、CPU21は、処理をS10へ戻す。収束したと判定した場合は(S12:YES)、CPU21は、複数のクラスタの中に、n次元空間上での互いの距離が所定距離以下の近い距離になっている複数のクラスタがあるか否かを判定する(S13)。例えば、S13では、CPU21は、二つのクラスタ間で中心間のマハラノビス距離を計算し、計算したマハラノビス距離が所定値以下であるか否かに基づいて判定する。また例えば、CPU21は、二つのクラスタ間で中心へのベクトルの内積を計算し、計算した内積が所定の閾値より1に近い場合に互いの距離が所定距離以下であると判定する。CPU21は、二つのクラスタ間の距離を判定する処理を、全てのクラスタの組み合わせについて実行する。S13では、CPU21は、その他の方法で判定を行ってもよい。互いに近い複数のクラスタがある場合は(S13:YES)、CPU21は、近い複数のクラスタを結合する(S14)。具体的には、CPU21は、複数のクラスタの範囲を新たな一つのクラスタの範囲であると定める処理を行う。図6には、クラスタの範囲を実線で示している。図6に示した例では、五つのクラスタが得られている。 If not converged yet in S12 (S12: NO), the CPU 21 returns the process to S10. If it is determined that they have converged (S12: YES), the CPU 21 determines whether or not there are a plurality of clusters in which the distance between each other in the n-dimensional space is a predetermined distance or less. Is determined (S13). For example, in S13, the CPU 21 calculates the Mahalanobis distance between the centers between the two clusters, and determines based on whether the calculated Mahalanobis distance is equal to or less than a predetermined value. Further, for example, the CPU 21 calculates the inner product of the vectors to the center between the two clusters, and determines that the mutual distance is equal to or smaller than the predetermined distance when the calculated inner product is closer to 1 than a predetermined threshold. CPU21 performs the process which determines the distance between two clusters about the combination of all the clusters. In S <b> 13, the CPU 21 may make a determination by other methods. When there are a plurality of clusters close to each other (S13: YES), the CPU 21 combines the plurality of clusters close to each other (S14). Specifically, the CPU 21 performs a process of determining a plurality of cluster ranges as a new one cluster range. In FIG. 6, the cluster range is indicated by a solid line. In the example shown in FIG. 6, five clusters are obtained.
 ステップS14が終了した後、又はステップS13で互いに近いクラスタが無い場合は(S13:NO)、CPU21は、各クラスタに含まれるn次元座標点に対応するスペクトル分布内での点を特定することにより、二次元座標系上でn個の特定信号の強度の組み合わせが異なる複数種類の領域の分布を個別に生成する(S15)。生成される領域の分布は、スペクトル分布に含まれる点の内で、スペクトルに含まれるn個の特定信号の強度が特定の強度の組み合わせになっている点からなる領域の分布である。特定信号の強度が特定の強度の組み合わせになっている領域の分布は、クラスタの夫々について生成される。S15の処理は、領域分布生成部に対応する。CPU21は、次に、生成した各領域の分布を表す分布データを記憶部14に記憶させ(S16)、処理を終了する。 After step S14 is completed, or when there are no clusters close to each other in step S13 (S13: NO), the CPU 21 specifies a point in the spectrum distribution corresponding to the n-dimensional coordinate point included in each cluster. Then, distributions of a plurality of types of regions having different combinations of n specific signal intensities on the two-dimensional coordinate system are individually generated (S15). The distribution of the generated region is a distribution of a region including points where the intensities of n specific signals included in the spectrum are a combination of specific intensities among the points included in the spectral distribution. A distribution of regions in which the intensity of specific signals is a combination of specific intensities is generated for each cluster. The process of S15 corresponds to a region distribution generation unit. Next, the CPU 21 stores the generated distribution data representing the distribution of each region in the storage unit 14 (S16), and ends the process.
 なお、信号分析装置2は、S12で、収束判定を行うのではなく、S10及びS11の処理の繰り返し回数を判定する処理を行う形態であってもよい。この形態では、信号分析装置2は、S10及びS11の繰り返しの既定回数を記憶部24に予め記憶している。CPU21は、S12で、処理の繰り返し回数が既定回数に達したか否かを判定し、処理の繰り返し回数がまだ既定回数に達していない場合は処理をS10へ戻し、処理の繰り返し回数が既定回数に達した場合は処理をS13へ進める。処理の繰り返しの既定回数として、複数のクラスタ全体の尤度が経験上十分な大きさになる回数が定められている。既定回数は、例えば100回である。信号分析装置2は、収束条件が満たされたか否かに関わりなく既定回数で処理の繰り返しを終了させることにより、計算時間を短縮させることができる。また、信号分析装置2は、収束判定と回数判定とを両方行い、処理の繰り返し回数が既定回数に達する前に収束条件が満たされた場合に処理をS13へ進める処理を行う形態であってもよい。 Note that the signal analysis device 2 may be configured to perform the process of determining the number of repetitions of the processes of S10 and S11 instead of performing the convergence determination in S12. In this embodiment, the signal analyzer 2 stores in advance the predetermined number of repetitions of S10 and S11 in the storage unit 24. In S12, the CPU 21 determines whether or not the number of repetitions of the process has reached the predetermined number. If the number of repetitions of the process has not yet reached the predetermined number, the process returns to S10, and the number of repetitions of the process is the predetermined number. If reached, the process proceeds to S13. As the predetermined number of repetitions of processing, the number of times that the likelihood of the entire plurality of clusters is sufficiently large from experience is determined. The predetermined number of times is 100, for example. The signal analyzer 2 can shorten the calculation time by ending the repetition of the process a predetermined number of times regardless of whether or not the convergence condition is satisfied. Further, the signal analyzer 2 may perform both the convergence determination and the number determination, and perform the process of proceeding to S13 when the convergence condition is satisfied before the number of repetitions of the process reaches the predetermined number. Good.
 図6には、クラスタの範囲を実線で示している。また、図6には、信号a及びbの強度の平均値の夫々を破線で示している。図7は、クラスタの初期値及びn次元座標点の例を示す図表である。図中には、あるクラスタ1の中心位置における各特定信号の強度を示し、あるn次元座標点1、2、9及び10における各特定信号の強度を示す。特定信号は、信号a、b、c、d、e、f及びgとする。クラスタ1の中心位置は、各特定信号の代表値からなるとする。図7中に示したn次元座標点1は、各特定信号の強度が代表値とほぼ同一である。このため、n次元座標点1はクラスタ1に含まれる。図7中に示したn次元座標点10は、信号cの強度が代表値から大きく外れており、他の特定信号の強度は代表値と同一になっている。 In FIG. 6, the cluster range is indicated by a solid line. Further, in FIG. 6, each of the average values of the intensities of the signals a and b is indicated by a broken line. FIG. 7 is a chart showing examples of initial values of clusters and n-dimensional coordinate points. In the figure, the intensity of each specific signal at the center position of a certain cluster 1 is shown, and the intensity of each specific signal at an n-dimensional coordinate point 1, 2, 9, and 10 is shown. The specific signals are signals a, b, c, d, e, f, and g. The center position of the cluster 1 is assumed to be a representative value of each specific signal. In the n-dimensional coordinate point 1 shown in FIG. 7, the intensity of each specific signal is substantially the same as the representative value. For this reason, the n-dimensional coordinate point 1 is included in the cluster 1. In the n-dimensional coordinate point 10 shown in FIG. 7, the intensity of the signal c is significantly different from the representative value, and the intensity of other specific signals is the same as the representative value.
 適切なクラスタ分析のためには、クラスタの初期値を適切に設定する必要がある。クラスタの初期値を設定するための従来の方法では、平均値等の代表値でなるn次元座標系上の点を含むクラスタの初期値を最初に設定し、既存のクラスタに含まれる確率が低いn次元座標点を含むように新しいクラスタの初期値を設定する。このため、図6中に51で示したクラスタのように、多くの特定信号の強度が代表値から離れたn次元座標点からなるクラスタの初期値が設定されやすい。これに対し、単独又は少数の特定信号の強度が代表値から外れているものの、他の特定信号の強度が代表値に近いn次元座標点からなるクラスタは、従来の方法では初期値が設定されにくい。例えば、図7中に示したn次元座標点10からなるクラスタの初期値がクラスタ1とは別に設定されることは、従来の方法では起こりにくい。従来の方法では、n次元座標点10はクラスタ1に含まれることになる。 ∙ For proper cluster analysis, it is necessary to set the initial value of the cluster appropriately. In the conventional method for setting the initial value of the cluster, the initial value of the cluster including the point on the n-dimensional coordinate system, which is a representative value such as an average value, is set first, and the probability of being included in the existing cluster is low. An initial value of a new cluster is set so as to include an n-dimensional coordinate point. For this reason, as in the cluster indicated by 51 in FIG. 6, the initial value of a cluster composed of n-dimensional coordinate points in which the intensity of many specific signals is separated from the representative value is easily set. On the other hand, although the intensity of a single specific signal or a small number of specific signals deviates from the representative value, an initial value is set in the conventional method for clusters composed of n-dimensional coordinate points whose intensities of other specific signals are close to the representative value. Hateful. For example, it is unlikely that the initial value of the cluster composed of the n-dimensional coordinate points 10 shown in FIG. In the conventional method, the n-dimensional coordinate point 10 is included in the cluster 1.
 本実施形態では、一の特定信号の強度が所定の基準から外れたn次元座標点、例えば一の特定信号の強度がm+α以上であるn次元座標点を含むように、クラスタの初期値を設定する。このため、単独又は少数の特定信号の強度が代表値から外れているものの他の特定信号の強度が代表値に近いn次元座標点からなるクラスタの初期値が設定されやすくなる。例えば、図7中に示したn次元座標点10からなるクラスタの初期値がクラスタ1とは別に設定されやすい。本実施形態では、S8で従来の方法でもクラスタの初期値を設定しているので、従来の方法で初期値を設定することができていたクラスタについても、初期値を設定することができる。このように、クラスタの初期値を適切に設定することにより、クラスタ分析でn次元座標点を適切に分類し、特定信号の強度の組み合わせが異なる複数種類の領域の分布を適切に生成することが可能となる。 In the present embodiment, the initial value of the cluster is set so as to include an n-dimensional coordinate point where the intensity of one specific signal deviates from a predetermined reference, for example, an n-dimensional coordinate point whose intensity of one specific signal is equal to or greater than m + α. To do. For this reason, it is easy to set an initial value of a cluster composed of n-dimensional coordinate points whose intensities of single or a small number of specific signals deviate from the representative value but whose intensity of other specific signals is close to the representative value. For example, the initial value of the cluster composed of the n-dimensional coordinate points 10 shown in FIG. In the present embodiment, since the initial value of the cluster is set in S8 in the conventional method, the initial value can be set even for the cluster in which the initial value can be set by the conventional method. As described above, by appropriately setting the initial value of the cluster, it is possible to appropriately classify the n-dimensional coordinate points in the cluster analysis and appropriately generate the distribution of a plurality of types of regions having different combinations of specific signal intensities. It becomes possible.
 図8A、図8B、図8C及び図8Dは、特定信号の強度の組み合わせが異なる複数種類の領域の分布の例を示す模式図である。信号分析装置2は、図8A~図8Dに示す如き各領域の分布を示す画像を表示部26に表示することができる。スペクトル分布に含まれるスペクトルは、信号a、b及びcからなるとする。図8Aは、信号aの強度が平均的で、信号b及びcの強度が小さい領域の分布を示す。図8Bは、信号a及びbの強度が平均的で、信号cの強度が小さい領域の分布を示す。図8Cは、信号a及びbの強度が平均的で、信号cの強度が大きい領域の分布を示す。図8Dは、信号aの強度が平均的で、信号bの強度が小さく、信号cの強度が大きい領域の分布を示す。信号a、b及びcが夫々元素A、B及びCに対応すると仮定すると、図8Aは、元素Aを含み元素B及びCをほとんど含まない成分の分布を示し、図8Bは、元素A及びBを含み元素Cをほとんど含まない成分の分布を示す。また、図8Cは、元素A及びBを含む成分の中で元素Cが集中した成分の分布を示し、図8Dは、元素Aを含み元素Bをほとんど含まない成分の中で元素Cが集中した成分の部分を示す。なお、信号a及びbの強度が平均を大きく超過する領域の分布等、信号a、b及びcの強度の組み合わせに応じた他の種類の領域の分布を得ることも可能である。 8A, 8B, 8C, and 8D are schematic diagrams illustrating examples of distributions of a plurality of types of regions having different combinations of specific signal intensities. The signal analyzing apparatus 2 can display an image showing the distribution of each region as shown in FIGS. 8A to 8D on the display unit 26. It is assumed that the spectrum included in the spectrum distribution is composed of signals a, b and c. FIG. 8A shows a distribution of regions where the intensity of the signal a is average and the intensity of the signals b and c is small. FIG. 8B shows a distribution of regions where the intensity of the signals a and b is average and the intensity of the signal c is small. FIG. 8C shows a distribution of regions where the intensity of the signals a and b is average and the intensity of the signal c is large. FIG. 8D shows a distribution in a region where the intensity of the signal a is average, the intensity of the signal b is small, and the intensity of the signal c is large. Assuming that signals a, b, and c correspond to elements A, B, and C, respectively, FIG. 8A shows the distribution of components that contain element A and almost no elements B and C, and FIG. The distribution of a component containing almost no element C is shown. Further, FIG. 8C shows the distribution of the component in which the element C is concentrated among the components including the elements A and B, and FIG. 8D is the concentration of the element C in the component that includes the element A and hardly includes the element B. The component part is shown. It is also possible to obtain other types of distributions of regions according to combinations of the strengths of signals a, b, and c, such as distributions of regions where the strengths of signals a and b greatly exceed the average.
 図8C及び図8Dに示す如き分布は、従来の方法では他の領域から分離することが困難であった領域の分布である。このように、本実施形態では、スペクトル分布から、特定信号の強度の組み合わせが異なる複数種類の領域の分布を生成する際に、少数の特定信号の強度が平均値等の代表値から外れた領域の分布を得ることが可能となる。特定信号の強度の組み合わせが異なる複数種類の領域の分布は、試料3中で含有する元素の濃度が異なる複数種類の成分の分布を表す。即ち、本実施形態により、少数の元素の濃度が代表値から外れた成分の分布を得ることが可能となる。特に、図8C及び図8Dに示すように、試料3中の微小な領域にのみ存在する成分の分布を得ることが可能となる。 The distributions shown in FIGS. 8C and 8D are distributions of regions that were difficult to separate from other regions by the conventional method. As described above, in this embodiment, when generating a distribution of a plurality of types of regions having different combinations of specific signal intensities from the spectrum distribution, a region in which the intensity of a small number of specific signals deviates from a representative value such as an average value. It is possible to obtain a distribution of. The distribution of a plurality of types of regions having different combinations of specific signal intensities represents the distribution of a plurality of types of components having different concentrations of elements contained in the sample 3. That is, according to the present embodiment, it is possible to obtain a distribution of components in which the concentration of a small number of elements deviates from the representative value. In particular, as shown in FIGS. 8C and 8D, it is possible to obtain a distribution of components that exist only in a minute region in the sample 3.
 なお、本実施形態においては、信号分析装置2が制御部16と接続されている形態を示したが、信号分析装置2は、制御部16と一体になっている形態であってもよい。この形態では、信号分析装置2は、制御部16が実行すべき処理を実行する。また、信号分析装置2は、測定装置から分離した形態であってもよい。この形態では、信号分析装置2は、外部で生成された信号分布データを入力され、S3以降の処理を実行する。 In this embodiment, the signal analysis device 2 is connected to the control unit 16. However, the signal analysis device 2 may be integrated with the control unit 16. In this form, the signal analysis device 2 executes a process to be executed by the control unit 16. Further, the signal analysis device 2 may be separated from the measurement device. In this embodiment, the signal analysis device 2 receives externally generated signal distribution data and executes the processes after S3.
 また、本実施形態においては、EDXにより得られたスペクトル分布の分析を行う形態を示したが、信号分析装置2は、他の測定方法により得られたスペクトル分布の分析を行う形態であってもよい。測定装置は、スペクトル分布を測定できる装置であれば、EDX装置以外の装置であってもよい。例えば、信号分析装置2は、蛍光X線のスペクトルからなるスペクトル分布の分析を行う形態であってもよい。この形態においても、信号分析装置2は、試料中で含有する元素の濃度が異なる複数種類の成分の分布を得ることができる。また、信号分析装置2は、ラマンスペクトルからなるスペクトル分布の分析を行う形態であってもよい。また、信号分析装置2は、測定対象からの可視光及び/又は赤外光のスペクトルからなるスペクトル分布の分析を行う形態であってもよい。可視光及び赤外光は、測定対象の表面で反射した光、又は測定対象を透過した光である。例えば、信号分析装置2は、測定対象からの反射光を測定したスペクトル分布から、R(赤)、G(緑)、B(青)及び赤外の強度の組み合わせでなるn次元座標点群を生成し、クラスタ分析を行い、RGB及び赤外の強度の組み合わせに応じた測定対象上の複数種類の領域の分布を生成する。例えば、森林の撮影画像から、複数種類の樹木の分布が生成される。また、信号分析装置2は、その他のスペクトル分布を分析する形態であってもよい。 Further, in the present embodiment, the form of analyzing the spectrum distribution obtained by EDX is shown, but the signal analyzer 2 may be the form of analyzing the spectrum distribution obtained by other measurement methods. Good. The measuring device may be a device other than the EDX device as long as it can measure the spectral distribution. For example, the signal analyzer 2 may be configured to analyze a spectrum distribution composed of a fluorescent X-ray spectrum. Also in this form, the signal analyzer 2 can obtain a distribution of a plurality of types of components having different concentrations of elements contained in the sample. Further, the signal analysis device 2 may be configured to analyze a spectrum distribution including a Raman spectrum. Further, the signal analysis device 2 may be configured to analyze a spectrum distribution composed of visible light and / or infrared light spectrum from the measurement target. Visible light and infrared light are light reflected from the surface of the measurement object or light transmitted through the measurement object. For example, the signal analysis device 2 calculates an n-dimensional coordinate point group composed of a combination of R (red), G (green), B (blue), and infrared intensities from a spectral distribution obtained by measuring reflected light from a measurement target. Generate and perform cluster analysis, and generate distributions of a plurality of types of regions on the measurement target according to the combination of RGB and infrared intensity. For example, a plurality of types of tree distributions are generated from a captured image of a forest. Further, the signal analysis device 2 may be configured to analyze other spectral distributions.
 また、本実施形態においては、スペクトルが二次元座標系上の各点に関連付けられたスペクトル分布の分析を行う形態を示したが、信号分析装置2は、スペクトルが三次元座標系上の各点に関連付けられたスペクトル分布の分析を行う形態であってもよい。この形態では、信号分析装置2は、例えば、三次元の試料の表面に存在する成分の分布を得ることができる。同様に、測定装置は、スペクトルが三次元座標系上の各点に関連付けられたスペクトル分布を生成する形態であってもよい。 Moreover, in this embodiment, although the form which analyzes the spectrum distribution in which the spectrum was linked | related with each point on a two-dimensional coordinate system was shown, the signal analysis apparatus 2 is a point where a spectrum is each point on a three-dimensional coordinate system. It is also possible to perform an analysis of the spectral distribution associated with. In this form, the signal analyzer 2 can obtain the distribution of components existing on the surface of a three-dimensional sample, for example. Similarly, the measurement device may be configured to generate a spectrum distribution in which a spectrum is associated with each point on a three-dimensional coordinate system.
 11 電子銃
 12 電子レンズ系
 13 試料台
 14 検出部
 15 信号処理部
 16 制御部
 2 信号分析装置
 21 CPU
 24 記憶部
 3 試料
 4 記録媒体
 41 コンピュータプログラム
 
DESCRIPTION OF SYMBOLS 11 Electron gun 12 Electron lens system 13 Sample stand 14 Detection part 15 Signal processing part 16 Control part 2 Signal analyzer 21 CPU
24 Storage Unit 3 Sample 4 Recording Medium 41 Computer Program

Claims (11)

  1.  スペクトルが座標系上の各点について定められたスペクトル分布に基づき、該スペクトル分布中の各点について、スペクトルに含まれるn個(nは2以上の整数)の特定信号の強度の組み合わせで定義されるn次元空間上のn次元座標点を生成するn次元座標点群生成部と、
     生成した複数のn次元座標点を分類するために、n次元空間上の複数のクラスタの初期値を定める初期設定部と、
     定めた初期値を用いてクラスタ分析を行うクラスタ分析部とを備える信号分析装置において、
     前記初期設定部は、
     前記n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点が含まれるクラスタの初期値を生成する第1初期クラスタ生成部と、
     一の特定信号の強度が所定の基準から外れているn次元座標点が含まれるクラスタの初期値を生成する第2初期クラスタ生成部と
     を有することを特徴とする信号分析装置。
    The spectrum is defined by a combination of the intensity of n specific signals (n is an integer of 2 or more) included in the spectrum for each point in the spectrum distribution based on the spectrum distribution determined for each point on the coordinate system. An n-dimensional coordinate point group generation unit for generating n-dimensional coordinate points in the n-dimensional space;
    In order to classify the plurality of generated n-dimensional coordinate points, an initial setting unit that determines initial values of a plurality of clusters in the n-dimensional space;
    In a signal analyzer comprising a cluster analysis unit that performs cluster analysis using a predetermined initial value,
    The initial setting unit includes:
    A first initial cluster generation unit that generates an initial value of a cluster including a point on an n-dimensional space that is a combination of representative values of the intensity of the n specific signals;
    And a second initial cluster generation unit configured to generate an initial value of a cluster including an n-dimensional coordinate point whose intensity of one specific signal deviates from a predetermined reference.
  2.  前記初期設定部は、
     複数のクラスタの数を定めるクラスタ数設定部と、
     既に初期値が設定されているクラスタへ含まれる確率が最も低いn次元座標点が含まれるクラスタの初期値を生成する第3初期クラスタ生成部と、
     前記クラスタ数設定部が定めた数のクラスタの初期値が定められるまで、前記第3初期クラスタ生成部の処理を繰り返す繰り返し部と
     を更に有することを特徴とする請求項1に記載の信号分析装置。
    The initial setting unit includes:
    A cluster number setting unit for determining the number of a plurality of clusters;
    A third initial cluster generation unit for generating an initial value of a cluster including an n-dimensional coordinate point having the lowest probability of being included in a cluster for which an initial value has already been set;
    The signal analyzer according to claim 1, further comprising: a repeating unit that repeats the processing of the third initial cluster generation unit until an initial value of the number of clusters determined by the cluster number setting unit is determined. .
  3.  クラスタ分析後の各クラスタに含まれるn次元座標点に対応する点の前記スペクトル分布内での分布を特定することにより、n個の特定信号の強度の組み合わせが異なる複数種類の領域の分布を生成する領域分布生成部を更に備えること
     を特徴とする請求項1又は2に記載の信号分析装置。
    By identifying the distribution in the spectral distribution of the points corresponding to the n-dimensional coordinate points included in each cluster after cluster analysis, the distribution of multiple types of regions with different combinations of n specific signal intensities is generated. The signal analysis device according to claim 1, further comprising a region distribution generation unit that performs the processing.
  4.  前記n個の特定信号の強度は、n個の元素の濃度を示し、
     前記領域分布生成部は、n個の元素の濃度の組み合わせが異なる複数種類の領域の分布を生成すること
     を特徴とする請求項3に記載の信号分析装置。
    The intensity of the n specific signals indicates the concentration of n elements,
    The signal analysis apparatus according to claim 3, wherein the region distribution generation unit generates a plurality of types of regions having different combinations of n element concentrations.
  5.  演算部及び記憶部を備えるコンピュータにより、
     スペクトルが座標系上の各点について定められたスペクトル分布に基づき、該スペクトル分布中の各点について、スペクトルに含まれるn個(nは2以上の整数)の特定信号の強度の組み合わせで定義されるn次元空間上のn次元座標点を生成するステップと、
     生成した複数のn次元座標点を分類するために、n次元空間上の複数のクラスタの初期値を定める初期設定ステップと、
     定めた初期値を用いてクラスタ分析を行うステップとを行う信号処理方法において、
     前記初期設定ステップは、
     前記n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点が含まれるクラスタの初期値を生成するステップと、
     一の特定信号の強度が所定の基準から外れているn次元座標点が含まれるクラスタの初期値を生成するステップと
     を含むことを特徴とする信号分析方法。
    By a computer having a calculation unit and a storage unit,
    The spectrum is defined by a combination of the intensity of n specific signals (n is an integer of 2 or more) included in the spectrum for each point in the spectrum distribution based on the spectrum distribution determined for each point on the coordinate system. Generating n-dimensional coordinate points on the n-dimensional space,
    An initial setting step for determining initial values of a plurality of clusters on the n-dimensional space in order to classify the plurality of generated n-dimensional coordinate points;
    In a signal processing method for performing cluster analysis using a predetermined initial value,
    The initial setting step includes:
    Generating an initial value of a cluster including points on an n-dimensional space composed of combinations of representative values of the intensity of the n specific signals;
    Generating an initial value of a cluster including n-dimensional coordinate points in which the intensity of one specific signal deviates from a predetermined reference.
  6.  前記初期設定ステップは、
     複数のクラスタの数を定めるステップと、
     既に初期値が設定されているクラスタへ含まれる尤もらしさが最も低いn次元座標点が含まれるクラスタの初期値を生成する生成ステップと、
     定められた数のクラスタの初期値が定められるまで、前記生成ステップを繰り返すステップと
     を更に含むことを特徴とする請求項5に記載の信号分析方法。
    The initial setting step includes:
    Determining the number of multiple clusters;
    A generating step for generating an initial value of a cluster including an n-dimensional coordinate point having the lowest likelihood included in a cluster in which an initial value is already set;
    The signal analysis method according to claim 5, further comprising: repeating the generating step until initial values of a predetermined number of clusters are determined.
  7.  クラスタ分析後の各クラスタに含まれるn次元座標点に対応する点の前記スペクトル分布内での分布を特定することにより、n個の特定信号の強度の組み合わせが異なる複数種類の領域の分布を生成するステップを更に行うこと
     を特徴とする請求項5又は6に記載の信号分析方法。
    By identifying the distribution in the spectral distribution of the points corresponding to the n-dimensional coordinate points included in each cluster after cluster analysis, the distribution of multiple types of regions with different combinations of n specific signal intensities is generated. The signal analyzing method according to claim 5 or 6, further comprising the step of:
  8.  コンピュータに、
     スペクトルが座標系上の各点について定められたスペクトル分布に基づき、該スペクトル分布中の各点について、スペクトルに含まれるn個(nは2以上の整数)の特定信号の強度の組み合わせで定義されるn次元空間上のn次元座標点を生成するステップと、
     生成した複数のn次元座標点を分類するために、n次元空間上の複数のクラスタの初期値を定める初期設定ステップと、
     定めた初期値を用いてクラスタ分析を行うステップとを含む処理を実行させるコンピュータプログラムにおいて、
     前記初期設定ステップは、
     前記n個の特定信号の強度の代表値の組み合わせでなるn次元空間上の点が含まれるクラスタの初期値を生成するステップと、
     一の特定信号の強度が所定の基準から外れているn次元座標点が含まれるクラスタの初期値を生成するステップと
     を含むことを特徴とするコンピュータプログラム。
    On the computer,
    The spectrum is defined by a combination of the intensity of n specific signals (n is an integer of 2 or more) included in the spectrum for each point in the spectrum distribution based on the spectrum distribution determined for each point on the coordinate system. Generating n-dimensional coordinate points on the n-dimensional space,
    An initial setting step for determining initial values of a plurality of clusters on the n-dimensional space in order to classify the plurality of generated n-dimensional coordinate points;
    In a computer program for executing processing including a step of performing cluster analysis using a predetermined initial value,
    The initial setting step includes:
    Generating an initial value of a cluster including points on an n-dimensional space composed of combinations of representative values of the intensity of the n specific signals;
    Generating an initial value of a cluster including an n-dimensional coordinate point whose intensity of one specific signal deviates from a predetermined reference.
  9.  前記初期設定ステップは、
     複数のクラスタの数を定めるステップと、
     既に初期値が設定されているクラスタへ含まれる尤もらしさが最も低いn次元座標点が含まれるクラスタの初期値を生成する生成ステップと、
     定められた数のクラスタの初期値が定められるまで、前記生成ステップを繰り返すステップと
     を更に含むことを特徴とする請求項8に記載のコンピュータプログラム。
    The initial setting step includes:
    Determining the number of multiple clusters;
    A generating step for generating an initial value of a cluster including an n-dimensional coordinate point having the lowest likelihood included in a cluster in which an initial value is already set;
    The computer program according to claim 8, further comprising: repeating the generating step until initial values of a predetermined number of clusters are determined.
  10.  試料上の各点から得られる放射線又は電磁波を測定する測定部と、
     測定した放射線又は電磁波のスペクトルを各点に対応付けたスペクトル分布を生成するスペクトル分布生成部とを備える測定装置において、
     請求項1乃至4のいずれか一つに記載の信号分析装置を備えることを特徴とする測定装置。
    A measurement unit for measuring radiation or electromagnetic waves obtained from each point on the sample;
    In a measurement apparatus comprising a spectrum distribution generation unit that generates a spectrum distribution in which a spectrum of a measured radiation or electromagnetic wave is associated with each point,
    A measuring apparatus comprising the signal analyzing apparatus according to claim 1.
  11.  試料上の各点から得られるスペクトルを測定し、測定したスペクトルを各点に対応付けたスペクトル分布を生成する測定方法において、
     請求項5乃至7のいずれか一つに記載の信号分析方法を含むことを特徴とする測定方法。
     
    In a measurement method for measuring a spectrum obtained from each point on a sample and generating a spectrum distribution in which the measured spectrum is associated with each point,
    A measurement method comprising the signal analysis method according to claim 5.
PCT/JP2017/016050 2016-08-31 2017-04-21 Signal analysis device, signal analysis method, computer program, measurement device, and measurement method WO2018042752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018536929A JP6949034B2 (en) 2016-08-31 2017-04-21 Signal analyzer, signal analysis method, computer program, measuring device and measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169951 2016-08-31
JP2016169951 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018042752A1 true WO2018042752A1 (en) 2018-03-08

Family

ID=61300414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016050 WO2018042752A1 (en) 2016-08-31 2017-04-21 Signal analysis device, signal analysis method, computer program, measurement device, and measurement method

Country Status (2)

Country Link
JP (1) JP6949034B2 (en)
WO (1) WO2018042752A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107770A (en) * 2019-12-27 2021-07-29 日本製鉄株式会社 Identification method of phosphorus adsorbed on goethite in iron ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191396A (en) * 1996-12-26 1998-07-21 Matsushita Electric Ind Co Ltd Intermediate view point image generating method, parallax estimate method and image transmission method
WO2013027553A1 (en) * 2011-08-19 2013-02-28 国立大学法人京都大学 Signal analyzing apparatus, signal analyzing method, and computer program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060389A (en) * 2008-09-02 2010-03-18 Horiba Ltd Particle analyzer, data analyzer, x-ray analyzer, particle analysis method and computer program
US8664595B2 (en) * 2012-06-28 2014-03-04 Fei Company Cluster analysis of unknowns in SEM-EDS dataset

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10191396A (en) * 1996-12-26 1998-07-21 Matsushita Electric Ind Co Ltd Intermediate view point image generating method, parallax estimate method and image transmission method
WO2013027553A1 (en) * 2011-08-19 2013-02-28 国立大学法人京都大学 Signal analyzing apparatus, signal analyzing method, and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107770A (en) * 2019-12-27 2021-07-29 日本製鉄株式会社 Identification method of phosphorus adsorbed on goethite in iron ore
JP7445118B2 (en) 2019-12-27 2024-03-07 日本製鉄株式会社 Identification method for goethite adsorbed phosphorus in iron ore

Also Published As

Publication number Publication date
JPWO2018042752A1 (en) 2019-06-24
JP6949034B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6355137B2 (en) Signal analysis apparatus, signal analysis method, and computer program
US10371639B2 (en) Detecting fluorescent material in a stained particle by comparison with an unstained particle over a plurality of frequency bands and by estimating a linear combination of base vectors
US8452716B2 (en) Kernel-based method and apparatus for classifying materials or chemicals and for quantifying the properties of materials or chemicals in mixtures using spectroscopic data
JP5348029B2 (en) Mass spectrometry data processing method and apparatus
JP5565810B2 (en) Mass spectrometry data processing method and apparatus
EP2551665A1 (en) Information processing apparatus, information processing method, program, and method of correcting intensity of fluorescence spectrum
EP2525213A1 (en) Spectroscopic apparatus and methods for determining components present in a sample
JP6242291B2 (en) Phase analyzer, phase analysis method, and surface analyzer
JP6896906B2 (en) Spectral image data processing device and two-dimensional spectroscopic device
JP7076463B2 (en) Spectrum analyzer and spectrum analysis method
EP3450956A1 (en) Particle analysis apparatus and particle analysis system
EP2366991A1 (en) Probabilistic scoring for components of a mixture
WO2018042752A1 (en) Signal analysis device, signal analysis method, computer program, measurement device, and measurement method
US11674913B2 (en) Sample analysis apparatus and method
US10910086B2 (en) Methods and systems for detecting minor variants in a sample of genetic material
US20220252516A1 (en) Spectroscopic apparatus and methods for determining components present in a sample
CA3136899A1 (en) Method and system for classification of samples
Zhang et al. A method derived from genetic algorithm, principal component analysis and artificial neural networks to enhance classification capability of laser-induced breakdown spectroscopy
GB2508556A (en) Signal analyzing apparatus, signal analyzing method, and computer program
KR20230150301A (en) Methods and systems for Raman spectrum-based identification of compounds
JP2023092883A (en) Spectrum analysis method, device and system
JP2015025800A (en) Spectral data processing device and spectral data processing method
JP2005293045A (en) Two-dimensional image processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845763

Country of ref document: EP

Kind code of ref document: A1