WO2018033949A1 - Drive assist method and drive assist apparatus - Google Patents

Drive assist method and drive assist apparatus Download PDF

Info

Publication number
WO2018033949A1
WO2018033949A1 PCT/JP2016/073824 JP2016073824W WO2018033949A1 WO 2018033949 A1 WO2018033949 A1 WO 2018033949A1 JP 2016073824 W JP2016073824 W JP 2016073824W WO 2018033949 A1 WO2018033949 A1 WO 2018033949A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
host vehicle
change
route
event
Prior art date
Application number
PCT/JP2016/073824
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 晋
陽平 三品
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2016/073824 priority Critical patent/WO2018033949A1/en
Publication of WO2018033949A1 publication Critical patent/WO2018033949A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a driving support method and a driving support device that support driving of a vehicle.
  • Patent Document 1 the risk level of other vehicles in the surrounding area is estimated, the road information and the risk level of the other vehicle are used to determine the risk level distribution on the road, and the risk level distribution is used to determine the A technique for generating a travel plan is known (Patent Document 1).
  • the problem to be solved by the present invention is to execute a smooth operation while reducing the calculation load of the operation plan.
  • the present invention makes a first driving plan for traveling on the first route, determines whether or not to change the lane of the host vehicle, and determines that the lane is changed, the first specified in the first route.
  • the above problem is solved by formulating a second driving plan for traveling on a second route for changing the lane of the host vehicle from the lane to another second lane.
  • smooth operation is executed while reducing the calculation load of the operation plan.
  • FIG. 1 is a diagram showing a block configuration of the driving support system 1.
  • the driving support system 1 of this embodiment includes a driving support device 100 and an in-vehicle device 200.
  • the embodiment of the driving support device 100 of the present invention is not limited, and may be mounted on a vehicle or may be applied to a portable terminal device that can exchange information with the in-vehicle device 200.
  • the terminal device includes devices such as a smartphone and a PDA.
  • the driving support system 1, the driving support device 100, the in-vehicle device 200, and each of the devices included therein are computers that include arithmetic processing devices such as a CPU and execute arithmetic processing.
  • the in-vehicle device 200 of this embodiment includes a vehicle controller 210, a navigation device 220, an object detection device 230, a lane keeping device 240, and an output device 250.
  • the devices constituting the in-vehicle device 200 are connected by a CAN (Controller Area Network) or other in-vehicle LAN in order to exchange information with each other.
  • the in-vehicle device 200 can exchange information with the driving support device 100 via the in-vehicle LAN.
  • the vehicle controller 210 operates the detection device 260, the drive device 270, and the steering device 280.
  • the vehicle controller 210 of this embodiment includes a detection device 260.
  • the detection device 260 includes a steering angle sensor 261, a vehicle speed sensor 262, and an attitude sensor 263.
  • the steering angle sensor 261 detects information such as a steering amount, a steering speed, and a steering acceleration, and outputs the information to the vehicle controller 210.
  • the vehicle speed sensor 262 detects the speed and / or acceleration of the vehicle and outputs it to the vehicle controller 210.
  • the attitude sensor 263 detects the position of the vehicle, the pitch angle of the vehicle, the yaw angle of the vehicle, and the roll angle of the vehicle, and outputs it to the vehicle controller 210.
  • the attitude sensor 263 includes a gyro sensor.
  • the vehicle controller 210 of this embodiment is an in-vehicle computer such as an engine control unit (Engine ECU), and electronically controls the operation of the vehicle.
  • Examples of the vehicle include an electric vehicle including an electric motor as a travel drive source, an engine vehicle including an internal combustion engine as a travel drive source, and a hybrid vehicle including both the electric motor and the internal combustion engine as a travel drive source.
  • electric vehicles and hybrid vehicles using an electric motor as a driving source include a type using a secondary battery as a power source for the electric motor and a type using a fuel cell as a power source for the electric motor.
  • the drive device 270 of this embodiment includes a drive mechanism for the host vehicle V1.
  • the drive mechanism includes an electric motor and / or an internal combustion engine that are the above-described travel drive sources, a power transmission device including a drive shaft and an automatic transmission that transmits output from these travel drive sources to the drive wheels, and brakes the wheels.
  • a braking device 271 and the like are included.
  • the drive device 270 generates control signals for these drive mechanisms based on input signals from the accelerator operation and the brake operation, and control signals acquired from the vehicle controller 70 or the driving support device 100, and performs travel control including acceleration / deceleration of the vehicle. Execute. By sending control information to the driving device 270, traveling control including acceleration / deceleration of the vehicle can be automatically performed.
  • torque distribution output to each of the electric motor and the internal combustion engine corresponding to the traveling state of the vehicle is also sent to the drive device 270.
  • the steering device 280 of this embodiment includes a steering actuator.
  • the steering actuator includes a motor and the like attached to the column shaft of the steering.
  • the steering device 280 executes control for changing the traveling direction of the vehicle based on a control signal acquired from the vehicle controller 210 or an input signal by a steering operation.
  • the vehicle controller 210 performs control for changing the traveling direction by sending control information including the steering amount to the steering device 280.
  • the driving assistance device 100 may execute change control of the traveling direction of the vehicle by controlling the braking amount of each wheel of the vehicle.
  • the vehicle controller 210 executes control for changing the traveling direction of the vehicle by sending control information including the braking amount of each wheel to the braking device 271.
  • control of the driving device 270 and the control of the steering device 280 may be performed completely automatically, or may be performed in a manner that supports the driving operation (progression operation) of the driver.
  • the control of the driving device 270 and the control of the steering device 280 can be interrupted / stopped by the driver's intervention operation.
  • the vehicle controller 210 controls the operation of the host vehicle according to the operation plan of the operation planning device 10.
  • the in-vehicle device 200 of this embodiment includes a navigation device 220.
  • the navigation device 120 calculates a route from the current position of the host vehicle to the destination.
  • a route calculation method a method known at the time of filing based on a graph search theory such as the Dijkstra method or A * can be used.
  • the calculated route is sent to the vehicle controller 210 for use in driving support of the host vehicle.
  • the calculated route is output as route guidance information via an output device 250 described later.
  • the navigation device 220 includes a position detection device 221.
  • the position detection device 221 includes a global positioning system (GPS), and detects a traveling position (latitude / longitude) of a traveling vehicle.
  • GPS global positioning system
  • the navigation device 120 includes accessible map information 222, road information 223, and traffic rule information 224.
  • the map information 222, the road information 223, and the traffic rule information 224 need only be readable by the navigation device 120, and may be configured physically separate from the navigation device 120, or may be configured as the communication device 30 (or the in-vehicle device 200).
  • the data may be stored in a server that can be read via a communication device provided in the network.
  • the map information 222 is a so-called electronic map, and is information in which latitude and longitude are associated with map information.
  • the map information 222 has road information 223 associated with each point.
  • the road information 223 is defined by nodes and links connecting the nodes.
  • the road information 223 includes information for specifying a road by the position / area of the road, road type for each road, road width for each road, and road shape information.
  • the road information 223 stores information regarding the position of the intersection, the approach direction of the intersection, the type of the intersection, and other intersection information for each road link identification information.
  • the road information 223 includes road type, road width, road shape, whether to go straight, whether to go straight ahead, whether to overtake, whether to pass (whether to enter an adjacent lane), and other roads. Information is stored in association with each other.
  • the navigation device 220 identifies the first route along which the host vehicle travels based on the current position of the host vehicle detected by the position detection device 221.
  • the first route may be a route to the destination designated by the user, or may be a route to the destination estimated based on the own vehicle V1 / user's travel history.
  • the first route along which the host vehicle travels may be specified for each road, may be specified for each road for which the up / down direction is specified, or a single lane in which the host vehicle actually travels You may specify every.
  • the navigation device 220 refers to road information 223, which will be described later, and identifies a road link for each first lane of the first route on which the host vehicle travels.
  • the first route includes specific information (coordinate information) of one or more points where the vehicle V1 will pass in the future.
  • the first route includes at least one point that suggests the next travel position on which the host vehicle travels.
  • the first path may be constituted by a continuous line or may be constituted by discrete points.
  • the first route is specified by a road identifier, a lane identifier, a lane identifier, and a link identifier. These lane identifier, lane identifier, and link identifier are defined in the map information 222 and the road information 223.
  • the traffic rule information 224 is a traffic rule that the vehicle should comply with when traveling, such as temporary stop on the route, parking / stop prohibition, slow driving, speed limit, and the like. Each rule is defined for each point (latitude, longitude) and for each link.
  • the traffic rule information 224 may include traffic signal information acquired from a device provided on the road side.
  • the in-vehicle device 200 includes an object detection device 230.
  • the object detection device 230 detects the situation around the host vehicle.
  • the target object detection device 50 of the host vehicle detects the presence and position of the target object including obstacles around the host vehicle.
  • the object detection device 230 includes a camera 231.
  • the camera 231 is an imaging device including an imaging element such as a CCD.
  • the camera 231 may be an infrared camera or a stereo camera.
  • the camera 231 is installed at a predetermined position of the host vehicle and images an object around the host vehicle.
  • the periphery of the host vehicle includes the front, rear, front side, and rear side of the host vehicle.
  • the object includes a two-dimensional sign such as a stop line marked on the road surface.
  • the object includes a three-dimensional object.
  • the object includes a stationary object such as a sign.
  • the objects include moving objects such as pedestrians, two-wheeled vehicles, and four-wheeled vehicles (other vehicles).
  • the objects include road structures such as guardrails, median strips, curbs.
  • the object detection device 230 may analyze the image data and identify the type of the object based on the analysis result.
  • the object detection device 230 uses a pattern matching technique or the like to identify whether the object included in the image data is a vehicle, a pedestrian, or a sign.
  • the object detection device 230 processes the acquired image data, and acquires the distance from the own vehicle to the object based on the position of the object existing around the own vehicle. In particular, the target object detection device 230 acquires the positional relationship between the target object and the host vehicle.
  • the object detection device 230 may use the radar device 232.
  • the radar device 232 a system known at the time of filing such as millimeter wave radar, laser radar, ultrasonic radar, laser range finder, etc. can be used.
  • the object detection device 230 detects the presence / absence of the object, the position of the object, and the distance to the object based on the received signal of the radar device 232.
  • the object detection device 230 detects the presence / absence of the object, the position of the object, and the distance to the object based on the clustering result of the point cloud information acquired by the laser radar.
  • the object detection device 230 targets the vehicle speed and acceleration of the other vehicle detected by the vehicle speed sensor of the other vehicle to the effect that the other vehicle exists. You may acquire as physical information.
  • the target object detection device 230 can also acquire target object information including the position, speed, and acceleration of other vehicles from an external device of an intelligent road transport system (Intelligent Transport Systems: ITS).
  • the in-vehicle device 200 of this embodiment includes a lane keeping device 240.
  • the lane keeping device 240 includes a camera 241 and road information 242.
  • the camera 241 may share the camera 231 of the object detection device.
  • the road information 242 may share the road information 223 of the navigation device.
  • the lane keeping device 240 detects the lane of the first route on which the host vehicle travels from the captured image of the camera 241.
  • the lane keeping device 240 recognizes the lane in which the host vehicle is traveling, and controls the movement of the host vehicle so that the position of the lane marker on the lane and the position of the host vehicle maintain a predetermined relationship. (Lane keep support function).
  • the lane keeping device 240 controls the movement of the host vehicle so that the host vehicle travels in the center of the lane.
  • the lane keeping device 240 may control the movement of the host vehicle so that the distance along the road width direction from the lane marker of the lane to the host vehicle is within a predetermined value range.
  • the lane keeping device 240 is a route (first route) defined in the operation plan in order to execute an operation plan (including a first operation plan and a second operation plan; the same applies hereinafter) planned by the operation support device 100 described later.
  • the movement of the host vehicle is controlled such that the position of the lane marker on the lane (including the first lane and the second lane) of the lane (including the second route) and the position of the host vehicle maintain a predetermined relationship.
  • the lane keeping device 240 executes the planned first operation plan, and executes the second operation plan including the lane change when changing the lane.
  • the lane marker is not limited as long as it has a function of defining the lane, and may be a diagram drawn on the road surface, planting existing between the lanes, It may be a road structure such as a guardrail, a curb, a sidewalk, or a motorcycle-only road existing on the shoulder side.
  • the lane marker may be an immovable object such as a signboard, a sign, a store, or a roadside tree that exists on the shoulder side of the lane.
  • the processor 11 described later stores the object detected by the object detection device 230 in association with the route. That is, the processor 11 has information on which route the object is present.
  • the in-vehicle device 200 includes an output device 250.
  • the output device 250 includes a display 251 and a speaker 252.
  • the output device 250 outputs various types of information related to driving assistance to a user or an occupant of a surrounding vehicle.
  • the output device 250 outputs information on the planned driving action plan and travel control based on the driving action plan.
  • the vehicle occupant of the host vehicle is notified in advance via the display 251 and the speaker 252 that the steering operation and acceleration / deceleration are executed.
  • the output device 250 may output various types of information related to driving assistance to an external device such as an intelligent road traffic system via a communication device.
  • the driving support device 100 includes an operation planning device 10, an output device 20, and a communication device 30.
  • the output device 20 has the same function as the output device 250 of the in-vehicle device 200 described above.
  • a display 251 and a speaker 252 are used as the configuration of the output device 20.
  • the operation planning device 10 and the output device 20 can exchange information with each other via a wired or wireless communication line.
  • the communication device 30 exchanges information with the in-vehicle device 200, exchanges information inside the driving support device 100, and exchanges information with the outside of the driving support system 1.
  • the operation planning device 10 includes a processor 11 that functions as a control device for the operation planning device 10.
  • the processor 11 is an arithmetic device that performs a driving support process including a driving plan for the host vehicle.
  • the processor 11 executes an operation planning apparatus 10 by executing a ROM (Read Only Memory) in which a program for executing an operation support process including an operation plan is stored, and a program stored in the ROM.
  • a RAM Random Access Memory
  • the processor 11 performs the following processing.
  • the first route on which the host vehicle travels is calculated, a plurality of events encountered when traveling on the first route are acquired (detected / extracted), and the relationship between each extracted event and the host vehicle is used.
  • a process of planning a first driving plan of the host vehicle traveling on the first route (first driving plan planning process)
  • (2) Processing for determining whether or not to change the lane for moving the vehicle from the first lane specified in the first route to another second lane (lane change determination processing); (3) If it is determined that the lane is to be changed, a second driving plan for driving a second route that changes the host vehicle to the second lane is drafted (second driving plan planning process).
  • the processor 11 has a first block that realizes a planning function for a first driving plan, a second block that realizes a function for determining a lane change, and a third block that realizes a planning function for a second driving plan.
  • the processor 11 executes each function in cooperation with software for realizing each function described above or executing each process and the hardware described above.
  • the first operation plan planning process is a basic process executed by the driving support system 1.
  • the planning process for the first driving plan includes a calculation process for the first route, an acquisition process for events encountered when traveling on the first route, and a planning process for driving plans based on the relationship between each acquired event and the host vehicle.
  • the driving plan planning process includes determination of driving behavior in each event and determination of specific contents of driving behavior.
  • the specific content of the driving action includes a point / timing for executing the driving action and an execution command for the driving action.
  • the specific content of the driving action when the driving action is “stop” includes “stop position”.
  • the driving action execution command includes a deceleration amount, an acceleration amount, and a steering amount.
  • the planning process of the second operation plan described later is common to the planning process of the first operation plan.
  • the processor 11 calculates the first route while the host vehicle is traveling or scheduled to travel.
  • the processor 11 acquires host vehicle information in order to calculate the first route.
  • the processor 11 acquires the current position of the host vehicle from the position detection device 221.
  • the processor 11 refers to the map information 222 and calculates the first route using the acquired current position and traveling direction.
  • the processor 11 may acquire the planned travel route of the host vehicle obtained by the navigation device 220 as the first route.
  • the processor 11 may acquire the guide route from the current position to the destination obtained by the navigation device 220 as the first route.
  • the technique known at the time of filing this application can be appropriately used.
  • the processor 11 acquires (detects / extracts) an event encountered when traveling on the first route.
  • An event in the present embodiment is an event (thing / existence of an object) that triggers execution of travel control.
  • the travel control to be executed includes acceleration / deceleration of the vehicle and steering of the vehicle.
  • an event is a cause of causing the host vehicle to execute acceleration / deceleration and steering.
  • the event is an intersection on the first route, a stop line on the first route, a pedestrian crossing on the first route, or an object around the host vehicle traveling on the first route.
  • the objects include plane / three-dimensional traffic signs, moving objects such as pedestrians, two-wheeled vehicles, and four-wheeled vehicles, road structures such as guardrails, median strips, and curbs.
  • the processor 11 refers to the map information 222 and extracts another route having an intersection with the first route during which the host vehicle is traveling or scheduled to travel.
  • the route having an intersection with the first route includes a route that intersects the first route, a route that flows into the first route, a route that flows from the first route, and a route that intersects the first route.
  • an intersection with the other route is an intersection of the first route and is acquired as an event.
  • the processor 11 refers to the traffic rule information 224 and acquires the presence and position of the traffic sign on the first route.
  • the traffic rule information 224 is information in which information such as a temporary stop position, entry prohibition, and one-way traffic is associated with a link (route) and position information.
  • the processor 11 recognizes the stop traffic rule as an event.
  • the processor 11 extracts the position where the stop is defined as the position where the host vehicle encounters the event.
  • the position of the extracted event is associated with a route (including a link).
  • the processor 11 recognizes an entry-prohibited traffic rule as an event.
  • the processor 11 extracts a position upstream of the position where entry prohibition is defined (upstream in the traveling direction) as a position where the host vehicle encounters the event.
  • the position of the extracted event is associated with a route (including a link).
  • the traffic rule information 224 includes a traffic signal indicated by a traffic light. At this time, the map information 222 and the road information 223 may be referred to.
  • the processor 11 extracts an event that the host vehicle V1 traveling on the first route encounters based on the output result of the object detection device 230.
  • the events encountered include the presence and location of objects including obstacles on the first path.
  • the processor 11 recognizes that an object (an object including a pedestrian, another vehicle, a road structure, and the like) detected by the object detection device 230 exists as an event that the host vehicle V1 encounters.
  • the processor 11 may extract the presence of the object as an event.
  • the processor 11 may extract the presence of the target object as an event when the predicted time interval until the subject vehicle contacts the detected target object is less than a predetermined value.
  • the processor 11 uses the position information of the target object to extract an event that the host vehicle V1 traveling on the first route encounters.
  • the objects include objects related to temporary traffic restrictions such as construction sites, broken vehicles, and avoidance areas.
  • Information on the position where the object exists may be included in the road information 223.
  • Information on the position where the object exists can be received from a roadside information providing apparatus such as ITS.
  • the processor 11 acquires the presence and position of an object including an obstacle on the first path based on the output result of the object detection device 230.
  • the processor 11 refers to the road information 223 and acquires the presence and position of the road structure on the first route. At this time, the map information 222 and the road information 223 may be referred to.
  • the processor 11 makes a first operation plan for traveling on the first route based on the relationship between the acquired event information (presence and position) and the host vehicle.
  • the planning of the first operation plan may be performed at a predetermined cycle, or may be performed at a timing when the distance between the host vehicle and the intersection is less than the predetermined distance.
  • the processor 11 associates the encounter position with the extracted plurality of events with the route of the own vehicle.
  • the processor 11 rearranges the plurality of extracted events in the order in which the host vehicle V1 encounters.
  • the processor 11 obtains the order of events to be encountered from the transition of the position of the host vehicle V1 traveling on the first route and the position of the event, and rearranges the events in the order in which the host vehicle V1 encounters. Information arranged in chronological order to encounter this event may be presented to the user via the output device 20 described later.
  • the processor 11 plans the driving behavior of the own vehicle traveling along the route in the driving plan.
  • the processor 11 uses the relationship (evaluation result) between the host vehicle and a plurality of events encountered over time when the host vehicle travels on the first route, and driving when the host vehicle V1 travels on the first route.
  • the processor 11 makes an operation plan in consideration of the presence of the object detected by the object detection device 230.
  • the processor 11 extracts the type of each event (intersection, traffic rule, object), the position of the event and the change in position (distance, time to contact, approach speed, distance after a predetermined time), and the contents of the event. (Contents of traffic rules, attributes of objects), etc. are evaluated.
  • the processor 11 obtains the distance from the event and the change in the distance using the vehicle speed of the host vehicle acquired from the vehicle speed sensor 262.
  • the processor 11 When the event is a traffic rule, the processor 11 refers to one or more of the traffic rule information 224, the map information 222, the road information 223, and the detection result of the object detection device 230, and determines the type and position of the traffic rule. / Read position changes and contents. If the event is a traffic light, the processor 11 recognizes whether the traffic rule indicated by the traffic light is advancing / attention / stopping based on the recognition result of the signal recognition function of the object detection device 230. The processor 11 may recognize the traffic rules indicated by the traffic lights based on the signal information transmitted by the external ITS acquired via the communication device 30.
  • the processor 11 refers to the traffic rule information 224, the road information 223, and the map information 222 to detect an object.
  • the position and content of the traffic sign detected by the device 230 are recognized.
  • the processor 11 determines whether the subject vehicle and the object are based on the position and moving speed of the object detected by the object detection device 230. Find type, position / position change and content.
  • the processor 11 determines one driving action for each of the extracted plurality of events.
  • the determined action includes a driving action and a stopping action.
  • the processor 11 determines either a progressing action or a stopping action for each event. If the event is a traffic rule and the traffic rule requires a stop, the processor 11 determines that the driving action for the event is “stop”. On the other hand, if the traffic rule permits passage, the processor 11 determines that the driving action for the event is “progress”. If the event is an object, and the distance to the object is less than a predetermined value, the change in distance is greater than or equal to a predetermined value, and the time until contact is less than the predetermined value, the processor 11 The driving action is determined as “stop”.
  • the processor 11 “progresses” the driving action for the event. And decide.
  • the processor 11 makes a series of operation plans based on the contents of each action determined for the plurality of events.
  • the processor 11 determines a driving action to be taken for an event encountered when the host vehicle V1 travels on the first route R1.
  • the processor 11 calculates a route along which the host vehicle travels in consideration of the destination of the host vehicle V1.
  • the calculated route is the first route R1 in the present embodiment. Taking the first route R1 shown in FIG. 2 as an example, the planning of an operation plan when traveling on the first route R1 will be described.
  • the host vehicle V1 travels in the direction indicated by the arrow F, passes through the stop line ST1, the signal SG1, and the pedestrian crossing CR1, and makes a right turn at the intersection P.
  • Events that the host vehicle V1 encounters when traveling on the first route R1 are the stop line ST1, the signal SG1, the pedestrian crossing CR1, the other vehicle V2 approaching when entering the right turn lane, and the pedestrian crossing CR4.
  • the processor 11 extracts an event at one timing. Since the event that the host vehicle V1 encounters changes every moment, if the timing is different, the position of the object also changes.
  • the processor 11 calculates an operation plan every moment according to an event that changes every moment in a predetermined cycle.
  • the processor 11 may calculate the driving plan when the host vehicle V1 approaches an intersection on the first route (an intersection with another route) within a predetermined distance.
  • the processor 11 determines the type of each extracted event (intersection, traffic rule, object), the position of the event and the change in position (distance, time to contact, approach speed, distance after a predetermined time), event Determine the contents (contents of traffic rules, attributes of the object).
  • the processor 11 recognizes the event (stop line ST1) closest to the host vehicle V1.
  • the processor 11 determines that the stop line ST1 is a traffic rule, the distance from the host vehicle V1 is D1 / arrival time S1, and is an event for requesting a temporary stop.
  • the processor 11 recognizes an event (signal SG1) closest to the host vehicle V1 corresponding to the stop line ST1.
  • the processor 11 determines that the number SG1 is a traffic rule, the distance from the host vehicle V1 is D2 / arrival time S2, and the event prohibits the progress (red / yellow signal).
  • the stop line ST1 is an event indicating a position where the vehicle is stopped on the upstream side of the signal SG1 when the signal SG1 instructs to stop when the host vehicle V1 enters the intersection.
  • the signal SG1 recognized as a separate event and the stop line ST1 are associated in the traffic rule information 224.
  • the content of the stop line ST1 is “stop” when the signal SG1 is a signal indicating red (red / yellow), but “progress” when the signal SG1 is a signal indicating blue (green / green). Become.
  • the processor 11 sets the driving action for the event (stop line ST1) associated with the event (signal SG1) to “stop”.
  • the processor 11 recognizes the third closest event (crosswalk CR1) from the host vehicle V1.
  • the processor 11 determines that the pedestrian crossing CR1 is a traffic rule, the distance from the host vehicle V1 is D2 / arrival time S2, and the travel is permitted (blue / green signal).
  • the traffic rule of the pedestrian crossing is “stop” when the signal indicates entry prohibition, and “progress” when the signal indicates entry permission. Further, the traffic rule of the pedestrian crossing is “stop” when there are pedestrians in the pedestrian crossing, and “progress” when there are no pedestrians in the pedestrian crossing. Since the processor 11 is instructed to prohibit the progress in the event (signal SG1), the event (crosswalk CR1) is “stopped”.
  • the object detection device 230 detects the pedestrian H1. Based on the detection result of the object detection device 230 (presence of the pedestrian H1), the processor 11 sets the driving action for the event (crosswalk CR1) to “stop”.
  • the processor 11 When the processor 11 turns right in the intersection P, the processor 11 extracts a point (intersection) where the first route intersects with another road as an event.
  • the processor recognizes the third closest event (intersection MX12) from the host vehicle V1.
  • the processor determines that the intersection MX12 is an intersection and the distance from the host vehicle V1 is D3 / arrival time S3.
  • the object detection device 230 detects the other vehicle V2 approaching the intersection MX12.
  • the object detection device 230 recognizes an object whose TTC (time to collision) with respect to the host vehicle V1 is within a predetermined time as an object. Based on the detection result of the object detection device 230 (existence of the other vehicle V2), the processor 11 “stops” the driving action for the event (intersection MX12).
  • the processor 11 extracts the pedestrian crossing CR4 that enters after the right turn in the intersection P as an event.
  • the processor 11 recognizes an event (crosswalk CR4) that is the fourth closest to the host vehicle V1.
  • the processor 11 determines that the pedestrian crossing CR4 is a traffic rule and the distance from the host vehicle V1 is D4 / arrival time S4. When leaving the intersection area, no stop is required before entering the pedestrian crossing. However, it is always necessary to consider the presence of surrounding objects.
  • the processor 11 always acquires the detection result of the object detection device 230 (at a predetermined cycle), and confirms that no object exists around. When the object detection device 230 does not detect an object at the timing before entering the event (crosswalk CR4), the processor 11 determines that the driving action for the event (crosswalk CR4) is “progress”.
  • the processor 11 determines whether the host vehicle V1 is in a progressing action or a stopping action. A series of first operation plans are drawn up using the content of the action determined in the above. A second operation plan, which will be described later, is also prepared by the same method. The processor 11 makes a series of driving plans for each event using the relationship between the host vehicle V1 and a plurality of events encountered over time when the host vehicle V1 travels the first route. As a result, the process up to the final operation plan can be simplified. The calculation load can be reduced while making a highly accurate operation plan in consideration of necessary events.
  • the processor 11 devises a driving plan for stopping the host vehicle V1 when a stop action is determined or an indeterminate determination is made for at least one of the acquired events.
  • the processor 11 stops the host vehicle V1 at the event closest to the current position of the host vehicle V1 when the stop action is determined or the judgment is impossible for at least one of the extracted events.
  • the case where the processor 11 determines that the determination is impossible is that when the ratio of the blind spot area included in the image of the camera 231 is equal to or greater than a predetermined value, the detection accuracy of the target by the target detection device 230 is less than the predetermined value.
  • the processing by the lane keeping device 240 is stopped, or an intervention operation from the driver is performed. If the determination is impossible, the execution of the driving plan based on inaccurate information can be suppressed by promptly stopping the host vehicle V1.
  • the processor 11 always makes a first driving plan for the host vehicle V1 traveling on the first route using the relationship between each event and the host vehicle V1 (at a predetermined cycle).
  • the driving support apparatus 100 presents the planned driving plan to the user.
  • the output device 20 includes an output control processor 21.
  • the output control processor 21 uses the display 251 as the output device 20 to display information related to the operation plan.
  • the output control processor 21 displays the events extracted by the processor 11 and arranged in the order they are encountered.
  • the output control processor 21 may output a plurality of rearranged events as audio using the speaker 252.
  • FIG. 3 is a display example of information VW indicating events over time.
  • An arrow T indicates the traveling direction of the host vehicle V1 on the first route.
  • the output control processor 21 displays the extracted events, that is, the stop line ST1 and the signal SG1, the pedestrian crossing CR1, the intersection MX12, and the pedestrian crossing CR4 along the arrow T in the order in which the host vehicle V1 encounters.
  • the information indicating the event may be a symbol, text information, or an abstract mark. The coloring, size, etc. can be determined arbitrarily.
  • the output control processor 21 displays the driving behavior of each event determined by the processor 11 in association with each event.
  • the driving behavior of the event is displayed under each event so that the position along the arrow T is common to each event.
  • the information indicating the driving action may be a symbol, text information, or an abstract mark. The coloring, size, etc. can be determined arbitrarily.
  • the output control processor 21 may display information such as a symbol or a mark indicating the extracted event at a position corresponding to the ratio of the actual distance from the host vehicle V1 to each event.
  • the output control processor 21 sets the length of the arrow T indicating the first route as a predetermined distance, and the total length of the arrow T so that the ratio of the actual distance between the host vehicle V1 and each event is represented in the display information VW. Determine the mark position of each event for.
  • the output control processor 21 considers the speed of the host vehicle V1, sets the length of the arrow T indicating the first route as a predetermined distance, and expresses the ratio of the time at which the host vehicle V1 reaches each event in the display information VW. Thus, the position of the arrow of each event mark relative to the total length of the arrow T may be determined.
  • the output control processor 21 can output a plurality of extracted points even when the event includes a crossing point of a route, a stop position on a traffic rule, a stationary object such as a road structure, a moving object such as a pedestrian or another vehicle.
  • the stationary object and the moving body included in the event are rearranged along a common time axis that is the order in which the host vehicle V1 encounters.
  • Other vehicles include other vehicles approaching from behind.
  • the processor 11 determines whether or not to change the lane for moving the host vehicle V1 from the first lane specified in the first route to another second lane (lane change determination process). Although not particularly limited, the processor 11 determines whether or not to change the lane based on the evaluation result of the advantage (advantage) of changing the lane.
  • the advantage of changing lanes is the significance (merit) of changing lanes.
  • the processor 11 evaluates “advantage of lane change” based on the possibility of lane change and / or necessity of lane change, and determines whether or not lane change is necessary.
  • the “advantage of lane change” is a concept including “lane change possibility (allowability / risk)” and “need to change lane”.
  • the processor 11 determines the lane change advantage based on whether or not the lane change is necessary and the lane change necessity, and determines whether or not to change the lane based on the lane change advantage. Whether the lane can be changed is determined from the viewpoint of whether the lane can be changed from the viewpoint of the state of the vehicle, the relationship with surrounding obstacles, the environment such as the road, etc. It is judged from the viewpoints such as the necessity for traveling on the route to the ground and the necessity for traveling on the route avoiding surrounding obstacles.
  • the processor 11 is one of the map information 222, the road information 223, the traffic rule information 224, the detection result of the object detection device 230, the detection result of the detection device 260, the output information of the navigation device 220, and the output information of the lane keeping device 24. Use one or more to determine whether to change lanes.
  • the processor 11 evaluates the lane change advantage to determine whether to change the lane.
  • the processor 11 determines whether or not to change the lane based on the situation around the host vehicle V1.
  • the processor 11 evaluates the lane change advantage to determine whether to change the lane.
  • the processor 11 determines the advantage (possibility) of the lane change as to whether or not there is a lane adjacent to the first lane identified in the first route, the relationship with the route crossing the first route, and the route crossing the first route. Considering one or more of the relationship with the event, the traffic rules of the first route, the degree of proximity between the vehicle V1 and the object when the lane is changed, and the existence of the traveling space of the vehicle V1 when the lane is changed To evaluate. In this way, by evaluating the advantage of changing the lane based on the situation around the host vehicle V1, it is possible to appropriately determine whether or not to change the host vehicle V1.
  • the processor 11 determines that the lane change is impossible when the situation around the host vehicle V1 (particularly, the section where the lane change is performed) is not a situation where the lane change is possible (when the lane change is not allowed). In this case, it is determined that the “advantage” of the lane change of the host vehicle V1 is low.
  • the processor 11 determines whether or not to change the lane based on the presence or absence of a lane adjacent to the first lane specified in the first route. In this case, it is evaluated that the “advantage” of the lane change of the host vehicle V1 is low.
  • the processor 11 determines whether or not to change the lane in consideration of the relationship with the route that intersects (including merge and separation) with the first route. If there is an intersection lane in the lane change destination of the host vehicle V1, it is determined that the lane change is not performed in consideration of the risk. In this case, the “advantage” of the lane change of the host vehicle V1 is evaluated to be low.
  • the processor 11 determines whether or not to change the lane in consideration of the relationship with the event on the route intersecting the first route. When there is an event such as a pedestrian crossing, an intersection, an entry prohibition area, or a construction area in the lane change destination of the own vehicle V1, the processor 11 determines that the lane change is not performed in consideration of safety. In this case, the “advantage” of the lane change of the host vehicle V1 is evaluated to be low. The processor 11 determines whether or not to change the lane in consideration of the traffic rules of the first route. If the lane change is prohibited on the first route, it is impossible to change the lane in the first place, so it is determined that the lane change is not performed.
  • the “advantage” of changing the lane of the host vehicle V1 is evaluated to be low.
  • the processor 11 determines whether or not to change the lane in consideration of the degree of approach between the host vehicle V1 and the object when the lane is changed.
  • the distance between the host vehicle V1 and the target is less than a predetermined value
  • the approach speed between the host vehicle V1 and the target is less than a predetermined value
  • the TTC between the host vehicle V1 and the target is less than a predetermined value
  • the approach speed of another vehicle is greater than or equal to a predetermined value. If this is the case, it is determined not to change the lane in consideration of the risk.
  • the “advantage” of the lane change of the host vehicle V1 is evaluated to be low.
  • the processor 11 determines whether or not to change the lane in consideration of the existence of the traveling space of the host vehicle V1 when the lane is changed. If there is no space in which the host vehicle V1 travels after the lane change, it is impossible to change the lane in the first place, so it is determined that the lane change is not performed. In this case, it is evaluated that the “advantage” of the lane change of the host vehicle V1 is low. For example, there is a case where there is another vehicle in a space located after the lane change of the host vehicle V1.
  • the processor 11 uses the detection result of the object detection device 230, the map information 222, the road information 223, and the traffic rule information 224 to determine whether or not there is an area for changing the lane around the host vehicle V1.
  • the lane change is possible. In this case, it is evaluated that the “advantage” of changing the lane of the host vehicle V1 is high. For example, this is a case where a sufficient space is secured after the lane change of the host vehicle V1.
  • the processor 11 determines whether or not to change the lane based on the current position of the host vehicle V1 and the host vehicle information of the host vehicle V1.
  • the host vehicle information of the host vehicle V1 is the vehicle speed, posture, and steering angle of the host vehicle V1.
  • the current position of the host vehicle V1 is detected by the position detection device 221, and the host vehicle information of the host vehicle V1 is detected by the detection device 260 (the steering angle sensor 261, the vehicle speed sensor 262, and the attitude sensor 263).
  • the processor 11 considers the own vehicle information of the own vehicle V1 itself, and determines that the lane change is impossible when the own vehicle V1 is in a state where the lane change is not possible. In this case, the “advantage” of the host vehicle V1 is evaluated to be low.
  • the vehicle information of the host vehicle V1 is outside the threshold range suitable for lane change, it is determined that the lane change is not performed. In this case, it is determined that the “advantage” of the lane change of the host vehicle V1 is low. For example, when the speed of the host vehicle V1 is equal to or greater than a predetermined value, when the steering direction of the host vehicle V1 is equal to or greater than a predetermined value with respect to the direction of lane change, the attitude of the host vehicle V1 is outside a threshold range suitable for lane change. In some cases, since it is evaluated that the “advantage” of the lane change is low, it is determined that the host vehicle V1 cannot change the lane.
  • the attitude of the host vehicle V1 is within a threshold range suitable for lane change. In some cases, since it is evaluated that the “advantage” of the lane change is high, it is determined that the host vehicle V1 is to change the lane.
  • the lane change may not be possible in consideration of the own vehicle information and the current position of the own vehicle V1. In such a case, it becomes necessary to cancel / correct the decision to change the lane after making the decision to change the lane, and the immediacy of judgment is lost.
  • By determining whether to change the lane based on the current position of the host vehicle V1 and the host vehicle information of the host vehicle V1 it is possible to determine in real time whether the lane can be changed. Further, since it is determined whether or not to change lanes based on the advantage of changing lanes, it is possible to accurately determine whether or not to change lanes.
  • the lane change must be executed. In this case, the “advantage” of lane change is evaluated as high. Even if a lane change is required to reach the designated destination, if the lane change can be made at another point, the necessity for the lane change is relatively low, and the “advantage” is low. Be evaluated. If no lane change is required to reach the specified destination, the “advantage” is evaluated as low. The processor 11 determines that the lane change is made when the “advantage” is equal to or greater than the first threshold value, and determines that the lane change is not made when the “advantage” is less than the second threshold value.
  • the lane change must be executed. .
  • the “advantage” of lane change is evaluated as high. If the obstacle can be avoided without changing the lane without changing the lane, such as when the road is wide or the obstacle is small, the “advantage” of changing the lane is evaluated as low.
  • the processor 11 determines that the lane change is made when the “advantage” is equal to or greater than the first threshold value, and determines that the lane change is not made when the “advantage” is less than the second threshold value.
  • the processor 11 predicts the section in which the host vehicle V1 executes the lane change and evaluates the advantage of changing the lane in the section regarding the evaluation of the lane change advantage.
  • the processor 11 determines whether or not to change the lane of the host vehicle V1 based on the advantage in this section. This makes it possible to accurately determine “the advantage of changing the lane” and “whether or not to change the lane” at the place where the lane change is actually performed.
  • the situation of the event and the situation of the host vehicle V1 change every moment. Since the section (location) where the lane change is actually performed is extracted and the lane change is evaluated for the section, and whether or not the lane change is executed is determined. Rather than judging the above, it is possible to obtain an accurate judgment result adapted to the actual situation.
  • the processor 11 evaluates that the advantage of the lane change is low and determines not to change the lane when the section predicted to change the lane and the acquired event existing area overlap. That is, no lane change is performed.
  • the event existence area may be preset for each event and stored in the ROM / RAM.
  • the event existence area is set according to the mode of each event. For example, the existence area of the other vehicle is set larger than the existence area of the pedestrian. This is because the moving speed of the other vehicle is higher than the moving speed of the pedestrian, and it is not preferable to change the lane in a place where an event with a high moving speed exists.
  • the moving speed of the other vehicle can be set larger as the moving speed obtained from the object detection device 230 is higher.
  • the larger the existence area the higher the possibility that a lane change will occur.
  • the section in which the lane change is performed interferes with the existence area of the event, it is determined that the lane change is not performed when there is an event that affects the lane change.
  • the processor 11 calculates an evaluation value of the lane change advantage as an evaluation result.
  • the advantages of the lane change described above are output as countable numbers.
  • the evaluation value of the lane change advantage is equal to or greater than the first threshold, it is determined that the lane change is to be made.
  • the evaluation value of the lane change advantage is less than the second threshold, it is determined that the lane change is not performed.
  • each valuation value may be obtained by weighting the advantage of lane change, and a comprehensive evaluation value may be calculated based on these values. .
  • the method for quantifying the advantage is not particularly limited, and the minimum value, the maximum value, and the weighting coefficient are appropriately defined.
  • the first threshold value and the second threshold value may be the same value or different values.
  • the processor 11 executes a second operation planning process based on the evaluation result of the lane change advantage.
  • the processor 11 determines to change the lane, the processor 11 makes a second operation plan for traveling the second route for changing the host vehicle V1 to the second lane (second operation plan planning process).
  • the processor 11 determines that there is a benefit of changing the lane when the evaluation value of the advantage of changing the lane is equal to or greater than the first threshold value.
  • the processor 11 devises a second operation plan for traveling on the second route for changing the host vehicle V1 to the second lane.
  • the processor 11 makes a second operation plan including the lane change only when it can be evaluated that the advantage of the lane change is large.
  • the processing load of processing information obtained by a detection device such as an in-vehicle camera and sequentially searching for new routes is large.
  • the magnitude of the computation load causes a delay in computation processing.
  • the delay of arithmetic processing impairs the reliability of driving support including automatic driving / semi-automatic driving that requires real-time performance.
  • the first driving plan and the first driving plan are finally determined based on an alternative decision of “whether to continue the route (lane) that is currently traveling” or “change lane”.
  • Judge which of the two operation plans to follow Instead of generating an action suitable for the driving scene from infinite action candidates that take lane changes into consideration, lane keeping driving (based on the current first) is determined based on whether or not to change lanes.
  • Operation plan) and lane change travel (another second operation plan including lane change) need only be selected from the two appropriate operation plans, thus reducing the computation load and enabling quick processing. .
  • this method contributes to the realization of reliable and smooth driving.
  • the processor 11 determines that the lane change is to be performed when the evaluation value of the advantage of the lane change is equal to or greater than the first threshold, and the second route for changing the lane of the host vehicle V1 to the second lane is determined. Make a second driving plan to run. When the second operation plan is drawn up, the processor 11 supports the operation of the host vehicle V1 so as to follow the second operation plan. On the other hand, when the evaluation value of the advantage of lane change is evaluated to be less than the second threshold value, the processor 11 supports the driving of the host vehicle V1 so as to follow the currently executed first driving plan. (Continue driving support according to the first operation plan).
  • the processor 11 when the processor 11 has a low lane change advantage and determines that the lane change is not performed, the processor 11 continuously executes the first operation plan previously planned without changing the lane. There is no waste in arithmetic processing. The processing capability of the processor 11 can be used effectively.
  • the first threshold value and the second threshold value may be the same value or different values.
  • FIG. 4 shows the second route R2 calculated when the processor 11 determines to change lanes.
  • the processor 11 determines whether or not to change the lane of the host vehicle V1 at a predetermined timing.
  • the processor 11 evaluates the advantage of the lane change in order to determine whether or not the lane change is necessary.
  • the evaluation timing of the advantage of changing lanes is not particularly limited, it is assumed that the distance from the intersection is less than a predetermined value.
  • the advantage of the lane change may be evaluated for each scene where the lane can be changed.
  • the host vehicle V1 is traveling on the first route R1.
  • the processor 11 evaluates the advantage of changing the lane for the host vehicle V1 traveling on the first route R1. If the lane change advantage is equal to or greater than the first threshold, the processor 11 determines to change the lane.
  • the processor 11 calculates the second route R2 including changing the lane for moving the host vehicle V1 from the first lane L1 specified on the first route R1 to another second lane L2.
  • the processor 11 extracts an event that the host vehicle V1 encounters when traveling on the second route R2, and determines a driving action for each event.
  • Figure 2 shows the method of driving planning, which includes route calculation, event detection / extraction, and driving action determination, performed after deciding whether or not to change lanes (evaluating the lane change advantage). This is the same as the method for creating the first operation plan described above.
  • the processor 11 determines a driving action to be taken for an event encountered when the host vehicle V1 travels on the second route R2.
  • the host vehicle V1 steers from the direction of the arrow F0 to the direction of the arrow F1, and changes the lane from the lane L1 to the lane L2.
  • In the second route R2, pass through the stop line ST1, the signal SG1, and the pedestrian crossing CR1, and turn right at the intersection P.
  • the traveling direction of the second route R2 is basically the same as the traveling direction of the first route R1.
  • Events that the host vehicle V1 encounters when traveling on the second route R2 are a stop line ST1, a signal SG1, a pedestrian crossing CR1, an intersection MX12, and a pedestrian crossing CR4.
  • the processor 11 determines that the event closest to the host vehicle V1 (stop line ST1) is the distance D1 / arrival time S1 from the host vehicle V1 and this is an event for requesting a temporary stop.
  • the processor 11 determines that the second closest event (signal SG1) from the host vehicle V1 is a distance D2 / arrival time S2 from the host vehicle V1 and is an event permitting progress (blue / green signal).
  • the processor 11 determines that the driving action for the event (stop line ST1) associated with the event (signal SG1) is “progress” based on the fact that the progress permission is instructed in the event (signal SG1).
  • the processor 11 determines that the third closest event (crosswalk CR1) from the host vehicle V1 is a distance D2 / arrival time S2 from the host vehicle V1 and is an event permitting progress (blue / green signal). . Since the processor 11 is instructed to proceed in the event (signal SG1), the event (pedestrian crossing CR1) is “progress”. Further, the pedestrian H1 who is walking on the pedestrian crossing CR1 has a distance from the second route R2 equal to or greater than a predetermined value. Based on the detection result of the object detection device 230 (presence of the pedestrian H1), the processor 11 sets the driving action for the event (crosswalk CR1) to “progress”.
  • the processor 11 When the processor 11 makes a right turn at the intersection P, the processor 11 extracts a point (intersection) where the second route intersects with another road as an event.
  • the processor acquires the distance D3 / arrival time S3 from the host vehicle V1 for the event (intersection MX12) that is the third closest to the host vehicle V1.
  • the object detection device 230 outputs a detection result that there is no other vehicle approaching the intersection MX12. Based on the detection result of the object detection device 230 (the absence of the object), the processor 11 determines that the driving action for the event (intersection MX12) is “progress”.
  • the processor 11 determines that the event closest to the host vehicle V1 (crosswalk CR4) is the distance D4 / arrival time S4 from the host vehicle V1. When the object detection device 230 does not detect an object at the timing before entering the event (crosswalk CR4), the processor 11 determines that the driving action for the event (crosswalk CR4) is “progress”.
  • the processor 11 determines whether the host vehicle V1 is in a progressing action or a stopping action. A series of second operation plans are made using the content of the action determined in the above.
  • the processor 11 determines the stop position for the “stop” event when generating the operation plan.
  • the “stop position” constitutes a part of the first operation plan or the second operation plan.
  • the situation of “stop position” changes every moment.
  • the processor 11 verifies the first operation plan or the second operation plan at a predetermined period, and updates the determination of “stop” and “stop position”.
  • a method for setting the stop position in determining the stop position in the operation plan will be described.
  • the processor 11 stops the host vehicle V1 at a position that can be stopped upstream of the event when the stop action is determined in the driving plan or when it is impossible to determine the action.
  • the processor 11 sets the stop position at a position upstream by a predetermined distance from the event that the stop of the host vehicle V1 is required.
  • the processor 11 has a relationship in which the host vehicle V1 should stop with respect to the event among a plurality of events encountered when the host vehicle V1 travels the first route, and the host vehicle V1 first encounters the event. An event is extracted, and an operation plan is created in which the point where the extracted event occurs is the stop point of the host vehicle V1. Since the host vehicle V1 is stopped at an event closest to the current position of the host vehicle V1, the influence on the traffic flow can be suppressed. Further, since the host vehicle V1 is stopped at a position closer to the current position of the host vehicle V1 than the stop position defined in the actual traffic rule information 224, the influence on the traffic flow can be suppressed.
  • the processor 11 determines that an event for which a stop action or an indeterminate decision has been made among the extracted events approaches or overlaps with other events, and both events are within a predetermined distance, the upstream of the event.
  • the host vehicle V1 is stopped at a position where the vehicle can be stopped. As a result, the host vehicle V1 can travel smoothly without repeating stop-and-go.
  • the processor 11 determines that the progress behavior is determined for one event out of the extracted events, and the stop behavior or indeterminableness is determined for another event encountered next to the event, When the degree of separation from the event is equal to or greater than a predetermined value, an operation plan is made to advance the host vehicle V1 for one event. When progress is permitted for a certain event but a stop action or determination is impossible in another event that is encountered thereafter, if the host vehicle V1 is stopped at one upstream event, It is necessary to determine whether or not other events can proceed, and there is a possibility that the traffic flow of other vehicles on the other second route may be hindered. As described above, when different determinations are made such as “progress” on the upstream side and “stop” on the downstream side in the separated event, the host vehicle V1 is advanced in the upstream event, so that complicated processing does not occur. Can be.
  • the processor 11 determines a stop position closest to the host vehicle V1 among a plurality of stop positions encountered by the host vehicle V1 as a stop position at which the host vehicle V1 is stopped. Thus, since the own vehicle V1 is stopped at the position closest to the current position of the own vehicle V1 among the stop positions, the influence on the traffic flow can be suppressed.
  • the processor 11 sets a stop position at a position a predetermined distance upstream from the extension of the area where parking and stopping of the host vehicle V1 is prohibited, and outside the parking and stopping area. Since the host vehicle V1 is stopped at a position closer to the current position of the host vehicle V1 than the stop position defined in the actual traffic rule information 224, the influence on the traffic flow can be suppressed.
  • the processor 11 can prevent the stop position from being set in an area where the event that the host vehicle V1 encounters does not occur in accordance with the traffic signal of the first route or the traffic rule of the first route. Stop when the traffic of the vehicle V1 on the first route is secured by the green light, or when the first route is defined as a priority road by traffic rules and the traffic of the vehicle V1 is secured preferentially It is possible not to set the position. Smooth running can be performed by avoiding stopping in scenes where stopping is not required.
  • the processor 11 determines the event in which the progress action is determined when a stop action or an indeterminate determination is made for an event that is encountered next to the event in which the progress action is determined for a plurality of events that the host vehicle V1 encounters.
  • the own vehicle V1 is stopped at the encounter point. Even when the traveling action is determined, if the next event that the host vehicle V1 encounters is a stop action or cannot be determined, the host vehicle V1 may be stopped at the position where the traveling action is determined. it can. Since the place where the traveling action is determined is a place where the existence of the host vehicle V1 is permitted, the host vehicle V1 can be safely stopped.
  • the processor 11 is located upstream of the event when a stop action or an event that is determined to be undecidable is within a predetermined distance from other events among a plurality of events that the host vehicle V1 encounters.
  • the host vehicle V1 is stopped at a position where it can be stopped. Even if a stop action or determination is impossible for an event, if the stop position according to the event approaches or overlaps the stop position according to another event, Since it is necessary to consider alignment, it is not suitable as a stop position. Accordingly, it is possible to reduce the impossibility of determination and to make the host vehicle V1 travel smoothly without repeating stop and go.
  • FIG. 5 is a display example of information VW indicating events over time.
  • An arrow T indicates the traveling direction of the host vehicle V1 on the second route.
  • the output control processor 21 displays the extracted events, that is, the stop line ST1 and the signal SG1, the pedestrian crossing CR1, the intersection MX12, and the pedestrian crossing CR4 along the arrow T in the order in which the host vehicle V1 encounters.
  • the driving behavior of the event is displayed under each event.
  • the event that the host vehicle V1 traveling on the second route including the lane change encounters the event that the host vehicle V1 encounters.
  • the driver of the host vehicle V1 visually recognizes what kind of event is encountered in what order and what kind of driving action is taken in the second route after the lane change. it can.
  • the output control processor 21 displays driving action information in which actions determined for each event are arranged in the order in which the host vehicle V1 encounters, and the position of the predicted section and Based on the position of each event, the section is superimposed and displayed on the driving action information.
  • the driver can recognize the timing of the lane change based on the timing of encountering the event. Since the driver can recognize the timing of the steering (lane change), the driver can avoid feeling uncomfortable with the behavior of the host vehicle V1.
  • the driving support apparatus 100 causes the host vehicle V1 to travel along the set route (first route / second route).
  • the route may be set based on the lane (lane) of the road, or may be set without being limited to the lane.
  • the driving assistance device 100 may be driving assistance that always maintains the lane (lane), or when the steering amount is less than a predetermined value (for example, when going straight), the driving assistance device 100 performs traveling to maintain the lane (lane).
  • a predetermined value for example, when turning left or right in an intersection
  • the vehicle may travel while maintaining the virtual lane assumed as the lane.
  • Steps S101 to S109 are processes related to the planning and execution of the first operation plan
  • steps S111 to S113 are processes related to the planning and execution of the second operation plan.
  • the first operation plan is executed using the lane keeping device 240.
  • the lane keeping device 240 detects a running lane using the camera 241, controls the steering device 280 so that the host vehicle V1 travels in the lane, and causes the host vehicle V1 to travel (lane keep traveling).
  • the lane keeping device 240 creates a virtual lane along the travel route at an intersection where the lane cannot be detected, and controls the steering device 280 so that the vehicle travels in the virtual lane and travels the host vehicle V1.
  • Let The second operation plan may also be executed by the lane keeping device 240.
  • step S101 the processor 11 acquires the own vehicle information of the own vehicle V1 via the detection device 260 and the lane keeping device 240.
  • the own vehicle information includes the position of the own vehicle V1, the speed / acceleration of the own vehicle V1, the traveling direction of the own vehicle V1, and the positional relationship between the own vehicle V1 and the lane.
  • the processor 11 calculates the first route along which the host vehicle V1 travels via the navigation device 220.
  • the first route is a travel route in which the first lane on which the host vehicle V1 travels is specified.
  • a specific calculation method is not particularly limited, and a method based on a graph search theory such as a Dijkstra method or A * can be used.
  • a link and a node that is a connection point between the links are set for each lane, and the link is given depending on whether or not the link is a recommended link corresponding to the lane to be traveled toward the destination. Change the weight. Then, a lane in which the sum of weights from the current position to the destination is small is adopted as the planned travel route.
  • the processor 11 refers to the map information 222, the road information 223, the traffic rule information 224, and the detection results of the object detection device 230, and detects an event encountered when traveling on the first route. Events include intersections, objects, traffic signs, road structures, and the like. The processor 11 detects traffic signs such as all traffic lights, stop lines, parking / parking prohibition areas, etc. that the host vehicle V1 encounters when it is assumed that the lane keeping travel is performed on the first route.
  • traffic signs such as all traffic lights, stop lines, parking / parking prohibition areas, etc. that the host vehicle V1 encounters when it is assumed that the lane keeping travel is performed on the first route.
  • the object detection device 230 detects surrounding objects to be monitored by the host vehicle V1 when it is assumed that the host vehicle V1 travels in the first lane of the first route.
  • the detection range of the object by the radar can detect an object 100 to 200 meters ahead, but the detection angle tends to be narrow (several tens of degrees).
  • a laser range finder radar device 232
  • an object relatively close to 100 meters or less in front is detected, but the detection angle is wide and the distance measurement performance is excellent.
  • the camera 231 there is a tendency to depend on the characteristics of the image processing program and the image processing processor. From the viewpoint of improving the accuracy of object detection, it is preferable to use a plurality of detection results while considering the characteristics of each sensor. Further, from the viewpoint of reducing the calculation processing load, when the identity of the target object can be confirmed from the position and behavior, duplicate detection results may be deleted.
  • the processor 11 acquires information about the detected event.
  • the processor 11 refers to the map information 222, the road information 223, and the traffic rule information 224, and acquires information such as a traffic rule (stop / pass permission) for the event.
  • the processor 11 may identify the signal color (signal content) using the camera 231, or may acquire the signal content transmitted from the ITS via the communication device 30. Good.
  • the processor 11 acquires object information from the detection result of the object detection device 230.
  • the object information includes the presence / absence of an object around the host vehicle V1, the attribute of the object (stationary object or moving object), the position of the object, the speed / acceleration of the object, and the traveling direction of the object.
  • the object information is acquired from the object detection device 230 and the navigation device 220.
  • step S105 the processor 11 determines stop or progress driving behavior for each event using the information regarding each event acquired in step S104 and the own vehicle information acquired in step S101. For example, when the event is a signal, the processor 11 stops the host vehicle V1 on the stop line if the content indicated by the signal is “stop / caution”. When the host vehicle V1 encounters an intersection, the processor 11 recognizes an object detected on the intersecting route as an event, and stops the host vehicle V1 upstream of the intersection. In the state shown in FIG. 2, when the traffic light SG ⁇ b> 1 is red and the pedestrian H ⁇ b> 1 crosses the pedestrian crossing CR ⁇ b> 1, the processor 11 drives the driving action “ “Stop” is determined.
  • step S106 the processor 11 determines a stop position for the event for which the driving action is determined to be stopped.
  • the stop position is determined.
  • the stop position may be stored in the map information 222, the road information 223, or the traffic rule information 224 in association with the event. For example, when the event is a red signal, a stop line existing at a position upstream of the signal is a stop position.
  • the traffic rule information 224 an area where parking / stopping is prohibited cannot be a stop position. The area where other vehicles are present cannot be set as the stop position.
  • the processor 11 sets a stop position at a place other than the area where the host vehicle V1 cannot be stopped.
  • the processor 11 sets the stop position upstream of the event.
  • Each method described above can be applied to the stop position setting method. For example, as shown in FIG. 2, when the traffic light SG1 is a red light, the traffic rule information 224 is referred to and the stop line is set as the stop position.
  • step S107 the processor 11 makes an operation plan.
  • the driving plan is a series of commands in which a route and events encountered during the route travel are arranged in time series, and driving behavior is determined for each event.
  • step S108 the processor 11 displays the operation plan on the display 251 (see FIGS. 3 and 5).
  • FIG. 7 shows a display control procedure for an operation plan including an event. The procedure shown in FIG. 7 is a subroutine of step S108 in FIG.
  • step S201 in FIG. 7 the processor 11 calculates a relative distance to the acquired event.
  • the processor 11 can acquire the position of the event with reference to the map information 222, the road information 223, and the traffic rule information 224.
  • the processor 11 calculates the distance / arrival time to each event based on the own vehicle information (steering angle, vehicle speed, posture) of the own vehicle V1.
  • step S202 the processor 11 arranges them on the time axis in the order close to the own vehicle V1, based on the distance from the own vehicle V1 to each event. That is, the events are arranged in the order in which the host vehicle V1 encounters.
  • step S203 the processor 11 displays the driving behavior for each event on the display 251. Examples of display modes are shown in FIGS. 3 and 5 described above.
  • Step S204 is display control in the case of changing the lane, which will be described later, and will be described here. If the processor 11 determines in step S111 described later that the lane change is possible, the processor 11 calculates a section in which the host vehicle V1 executes the lane change. The lane change execution section is calculated based on the map information 222, road information, traffic rule information 224, and own vehicle information detected by the detection device 260. The output control processor 21 superimposes and displays the predicted section on the driving action information based on the relationship between the position of the section and the position of each event. The driving action information is information in which actions determined for each event are arranged in the order in which the host vehicle V1 encounters.
  • a series of processing from step S101 to step S109 is execution processing of the first operation plan for traveling on the first route.
  • the processor 11 determines whether or not to execute a lane change in response to a predetermined cycle or a predetermined trigger.
  • step S111 the processor 11 determines whether or not to change lanes. Judgment as to whether or not to change lanes is made from the viewpoint of whether or not lane changes are possible and evaluation of the lane change advantage.
  • the advantage of the lane change is an evaluation including the possibility of the lane change determined in step S111 and the necessity of the lane change.
  • step S111 the processor 11 determines whether or not the lane change can be executed. If there is no adjacent lane and traffic rules prohibit lane change, lane change is impossible in the first place. In this embodiment, from the viewpoint of performing the processing quickly, step S111 is provided except for the case where the lane change cannot be clearly performed. After step S111, the process may proceed to step S113 without passing through step S112. Further, without providing step S111 (proceeding from step S107, S108 to step S112), in step S112, the possibility of lane change and the necessity of lane change are comprehensively evaluated as “advantage of lane change”. May be.
  • step S112 the processor 11 calculates an evaluation value of the lane change advantage.
  • the benefits of lane change are assessed based on the possibility of lane change and / or the need for lane change.
  • the processor 11 calculates an evaluation value of the lane change advantage based on the current position of the host vehicle V1 and the host vehicle information.
  • step S112 the processor 11 determines whether or not the evaluation value of the lane change advantage is equal to or greater than the first threshold value. If the evaluation value of the lane change advantage is greater than or equal to the first threshold, the process proceeds to step S113.
  • step S113 the processor 11 drafts a second driving plan for changing the lane of the host vehicle V1 from the first lane to the second lane and traveling along the second route.
  • FIG. 8 shows a subroutine of steps S111 and S112 related to a determination process for determining whether or not to change lanes.
  • the processor 11 determines whether or not there is a second lane (adjacent lane) adjacent to the first lane in which the host vehicle V1 travels. When there is no adjacent second lane, the lane cannot be changed, and therefore, lane keeping travel is performed in which the first lane is continuously traveled.
  • the adjacent lane is a lane laid substantially parallel to the first lane in which the host vehicle V1 travels.
  • step S212 when there is an adjacent lane (second lane), the processor 11 determines whether or not the area (lane change section) in which the lane is to be changed is a lane change prohibition area. This determination is made with reference to the traffic rule information 224. Since the lane change cannot be performed within the lane change prohibition region, it is determined that the lane change is not performed, and the lane keeping travel for continuously traveling in the first lane is executed.
  • step S213 when there is an adjacent lane (second lane) and the lane change is permitted, the processor 11 confirms that there is no object in the lane change section of the host vehicle V.
  • the evaluation value of the lane change advantage is calculated to be low.
  • the evaluation value of the advantage is less than the second threshold value, it is determined that the lane change is not performed.
  • step S214 if there is an adjacent lane (second lane), lane change is permitted, and there is no object in the lane change section, the processor 11 determines that the own vehicle V performs the lane change. Confirm that there is no interference with the event area. When the lane change section and the event existence area overlap / intersect / approach, the event is likely to become an obstacle to the lane change, so the evaluation value of the advantage of the lane change is calculated low. If the evaluation value of the advantage is less than the predetermined threshold value, the lane change is not executed.
  • Steps S211 to S214 if there is an adjacent lane, the lane can be changed, there is no object in the lane change section, and the lane change section does not interfere with the event existence area, the step of FIG. The process proceeds to S113. On the other hand, in steps S211-S214, there is no adjacent lane, lane change is prohibited, an object is present in the lane change section, and the lane change section and the event existence area interfere with each other. If this is the case, the process proceeds to step S109 in FIG.
  • the processor 11 continues execution of a 1st driving plan, without changing a lane.
  • the processor 11 causes the vehicle controller 210 to continue executing the first operation plan. If it is determined to change the lane, in step S113 of FIG. 6, the processor 11 makes a second operation plan for changing the lane.
  • the processor 11 sends the second operation plan to the vehicle controller 210.
  • the processor 11 causes the vehicle controller 210 to continue execution of the second operation plan instead of the first operation plan.
  • the vehicle controller 210 executes operation control based on the planned second operation plan.
  • the vehicle controller 210 controls the driving device 270 / braking device 271 and the steering device 280 so that the host vehicle V1 performs driving according to the first / second driving plan.
  • the vehicle controller 210 stops the host vehicle V1 at the position of the event for which stop is determined, and advances the host vehicle V1 at the position of the event for which progress has been determined.
  • the processor 11 is more appropriate to change the lane than to keep the lane while continuing the driving on the first route. It is judged that. Rather than deciding the behavior appropriate for the current driving from the infinite driving behavior according to the state of the event, “running based on the first driving plan” that continuously travels the first route (first lane) By selecting an appropriate action of one of the two driving plans, “(lane keeping driving)” and “second driving plan including lane change”, the calculation load can be reduced and the processing speed can be increased. . In addition, since the lane change is performed only when it is determined that the advantage is high, it is possible to realize driving without a sense of incongruity for the human driver.
  • the driving support apparatus 100 Since the driving support apparatus 100 according to the embodiment of the present invention is configured and operates as described above, the following effects can be obtained.
  • the driving support method of the present embodiment determines whether or not to change the lane for moving the host vehicle V1 from the first lane specified on the first route to another second lane, and changes the lane. In this case, a second driving plan is created in which the host vehicle V1 is changed to the second lane and travels along the second route.
  • the processing load of processing information obtained by a detection device such as an in-vehicle camera and sequentially searching for new routes is very high.
  • the high calculation load causes a delay in calculation processing.
  • the delay of arithmetic processing impairs the reliability of driving support including automatic driving / semi-automatic driving that requires real-time performance.
  • either the first driving plan or the second driving plan is obeyed based on the alternative determination of “whether to continue the lane in which the vehicle is currently traveling” or “change lane”. Determine whether. Since the driving behavior at an appropriate position is not determined from among infinitely existing behavior candidates, the driving behavior can be determined by an alternative decision, so that the calculation load related to the judgment process can be reduced. The processing can be quickly performed by reducing the calculation load. As a result, smooth operation with high real-time performance can be executed.
  • the driving support method of the present embodiment supports driving of the host vehicle V1 so as to follow the first driving plan when it is determined to change the lane. Further, when the second driving plan is drawn up, the driving of the host vehicle V1 is supported so as to follow the second driving plan.
  • the processor 11 supports the driving of the host vehicle V1 so as to follow the first driving plan. In other words, when the processor 11 determines not to change the lane, the processor 11 continues to execute the first operation plan that has been previously planned. Thus, when it is determined not to change the lane, the already planned first operation plan is continuously executed, so that there is no waste in the arithmetic processing.
  • the processing capability of the processor 11 can be used effectively.
  • the driving support method of the present embodiment evaluates the lane change advantage, and determines that the lane change is made when the evaluation value in the evaluation is equal to or greater than the first threshold value. Whether or not to change lanes can be accurately determined based on the advantage of changing lanes.
  • the driving support method of the present embodiment evaluates the lane change advantage, and determines that the lane change is not performed when the evaluation value in the evaluation is less than the second threshold value. Whether or not to change lanes can be accurately determined based on the advantage of changing lanes.
  • the advantage of the lane change is low, the current first operation plan is continuously executed, so that an inappropriate lane change is not performed. Thereby, a smooth driving
  • a plurality of events are rearranged in the order in which the host vehicle V1 encounters, and either a progress action or a stop action is determined for each event.
  • the lane change advantage is evaluated based on the current position of the host vehicle V1 and host vehicle information. Even if it is determined that the lane change is possible by paying attention only to the surrounding environment, the lane change may not be possible in consideration of the own vehicle information and the current position of the own vehicle V1. In such a case, it becomes necessary to cancel / correct the determination of the lane change, and the immediacy of the determination is impaired.
  • By evaluating the lane change advantage based on the current position of the host vehicle V1 and the host vehicle information of the host vehicle V1 it is possible to accurately and immediately determine whether or not the lane change is possible (advantage).
  • whether or not to change lanes is evaluated based on the possibility of changing lanes and / or the necessity of changing lanes.
  • the state (speed, posture) of the host vehicle V1 and the surrounding situation the presence of the object, the moving speed of the object
  • the necessity of changing the lane securing the route to the destination
  • Whether or not to change lanes can be determined from multiple perspectives.
  • whether or not to change lanes is determined based on the presence or absence of a lane adjacent to the first lane, the relationship with other routes crossing the first route, and events on other routes.
  • the evaluation is performed in consideration of any one or more of the relationship between the vehicle, the traffic rules of the first route, the degree of proximity between the vehicle V1 and the object when the lane is changed, and the existence of the traveling space of the vehicle when the lane is changed. .
  • a section in which the host vehicle V1 executes lane change is predicted, and it is determined whether or not to change the lane in this section. This makes it possible to accurately determine “whether or not to change lanes” at the place where lanes are changed. As described above, the situation of the event and the situation of the host vehicle V1 change every moment. Since it is determined whether or not to change lanes after extracting the section (location) to change lanes, rather than determining whether or not to change lanes over a vast range, accurate determination results that match the actual situation Can be obtained.
  • the driving support method of the present embodiment if the predicted section and the acquired event existence region overlap, it is determined that the lane change is not performed. By considering whether or not the section in which the lane change is performed interferes with the event existence area, it is possible to prevent the lane change when there is an event that affects the lane change.
  • the driving behavior information in which the behaviors determined for each event are arranged in the order in which the host vehicle V1 encounters is displayed, and the predicted position of the section and Based on the position of each event, the section is superimposed and displayed on the driving action information.
  • the driver can recognize the timing of the lane change based on the timing of encountering the event. Since the driver can recognize the timing of the steering (lane change), the driver can avoid feeling uncomfortable with the behavior of the host vehicle V1.
  • the driving support apparatus 100 of the present embodiment has the same operations and effects as the driving support method described above.
  • the driving support device 100 having the driving planning device 10, the output device 20, and the communication device 30 will be described as an example of the driving support device according to the present invention. It is not limited to.
  • the driving plan apparatus 10 having the processor 11 is described as an example of the driving support apparatus according to the present invention, but the present invention is not limited to this.
  • the output device 20 having the output control processor 21 will be described as an example of the output device according to the present invention.
  • the present invention is not limited to this.
  • the processor 11 and the output control processor 21 may be configured as a single processor or may be divided into a plurality of units.
  • a vehicle controller 210 As an example of the vehicle-mounted device, a vehicle controller 210, a navigation device 220, an object detection device 230, a lane keeping device 240, an output device 250, a detection device 260, a drive device 270, and a steering wheel
  • the in-vehicle device 200 including the device 280 will be described as an example, but the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present invention acquires a plurality of events that an own vehicle V1 encounters while traveling on a first route, and on the basis of the relations between the acquired events and the own vehicle, formulates a first drive plan for the own vehicle to travel on the first route, and determines whether or not there is a need to move the own vehicle V1 from a first lane specified in the first route to another lane, i.e., a second lane, and in the case when it is determined that a lane change is required, formulates a second drive plan in which the own vehicle V1 is caused to make a lane change to the second lane so as to travel on a second route.

Description

運転支援方法及び運転支援装置Driving support method and driving support device
 本発明は、車両の運転を支援する運転支援方法、運転支援装置に関する。 The present invention relates to a driving support method and a driving support device that support driving of a vehicle.
 この種の装置に関し、周囲の他車両の危険度をそれぞれ推定し、道路情報と他車両の危険度を用いて、走行路上の危険度の分布を求め、危険度の分布を用いて自車両の走行計画を生成する技術が知られている(特許文献1)。 Regarding this type of device, the risk level of other vehicles in the surrounding area is estimated, the road information and the risk level of the other vehicle are used to determine the risk level distribution on the road, and the risk level distribution is used to determine the A technique for generating a travel plan is known (Patent Document 1).
特開2009-37561号公報JP 2009-37561 A
 しかしながら、従来の技術では、周囲の他車両ごとに危険度を算出して走行計画を立案するために、計算が複雑で演算負荷が高いという問題がある。 However, in the conventional technology, there is a problem that the calculation is complicated and the calculation load is high because the degree of danger is calculated for each other surrounding vehicle and the travel plan is drawn up.
 本発明が解決しようとする課題は、運転計画の演算負荷を低減しつつ、円滑な運転を実行させることである。 The problem to be solved by the present invention is to execute a smooth operation while reducing the calculation load of the operation plan.
 本発明は、第1経路を走行する第1運転計画を立案し、自車両を車線変更させるか否かを判断し、車線変更させると判断した場合には、第1経路において特定された第1車線から別の第2車線へ自車両を車線変更させる第2経路を走行する第2運転計画を立案することにより、上記課題を解決する。 The present invention makes a first driving plan for traveling on the first route, determines whether or not to change the lane of the host vehicle, and determines that the lane is changed, the first specified in the first route. The above problem is solved by formulating a second driving plan for traveling on a second route for changing the lane of the host vehicle from the lane to another second lane.
 本発明によれば、運転計画の演算負荷を低減しつつ、円滑な運転を実行させることである。 According to the present invention, smooth operation is executed while reducing the calculation load of the operation plan.
本実施形態に係る運転支援システムのブロック構成図である。It is a block block diagram of the driving assistance system which concerns on this embodiment. 第1運転計画を説明するための図である。It is a figure for demonstrating a 1st driving | operation plan. 第1運転計画の表示例である。It is an example of a display of a 1st driving plan. 第2運転計画を説明するための図である。It is a figure for demonstrating a 2nd driving | operation plan. 第2運転計画の表示例である。It is an example of a display of a 2nd driving plan. 本実施形態の運転支援システムの制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the driving assistance system of this embodiment. 第1のサブルーチンの制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a 1st subroutine. 第2のサブルーチンの制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a 2nd subroutine.
 以下、本発明の実施形態を図面に基づいて説明する。本実施形態では、本発明に係る運転支援装置を、車両に搭載された車載装置200と協動する運転支援システムに適用した場合を例にして説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a case where the driving support device according to the present invention is applied to a driving support system that cooperates with an in-vehicle device 200 mounted on a vehicle will be described as an example.
 図1は、運転支援システム1のブロック構成を示す図である。本実施形態の運転支援システム1は、運転支援装置100と車載装置200を備える。本発明の運転支援装置100の実施の形態は限定されず、車両に搭載してもよいし、車載装置200と情報の授受が可能な可搬の端末装置に適用してもよい。端末装置は、スマートフォン、PDAなどの機器を含む。運転支援システム1、運転支援装置100、車載装置200、及びこれらが備える各装置は、CPUなどの演算処理装置を備え、演算処理を実行するコンピュータである。 FIG. 1 is a diagram showing a block configuration of the driving support system 1. The driving support system 1 of this embodiment includes a driving support device 100 and an in-vehicle device 200. The embodiment of the driving support device 100 of the present invention is not limited, and may be mounted on a vehicle or may be applied to a portable terminal device that can exchange information with the in-vehicle device 200. The terminal device includes devices such as a smartphone and a PDA. The driving support system 1, the driving support device 100, the in-vehicle device 200, and each of the devices included therein are computers that include arithmetic processing devices such as a CPU and execute arithmetic processing.
 まず、車載装置200について説明する。
 本実施形態の車載装置200は、車両コントローラ210、ナビゲーション装置220、対象物検出装置230、レーンキープ装置240、及び出力装置250を備える。車載装置200を構成する各装置は、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LANによって接続されている。車載装置200は、車載LANを介して運転支援装置100と情報の授受を行うことができる。車両コントローラ210は、検出装置260、駆動装置270、及び操舵装置280を動作させる。
First, the in-vehicle device 200 will be described.
The in-vehicle device 200 of this embodiment includes a vehicle controller 210, a navigation device 220, an object detection device 230, a lane keeping device 240, and an output device 250. The devices constituting the in-vehicle device 200 are connected by a CAN (Controller Area Network) or other in-vehicle LAN in order to exchange information with each other. The in-vehicle device 200 can exchange information with the driving support device 100 via the in-vehicle LAN. The vehicle controller 210 operates the detection device 260, the drive device 270, and the steering device 280.
 本実施形態の車両コントローラ210は、検出装置260を備える。検出装置260は、舵角センサ261、車速センサ262、姿勢センサ263を有する。舵角センサ261は、操舵量、操舵速度、操舵加速度などの情報を検出し、車両コントローラ210へ出力する。車速センサ262は、車両の速度及び/又は加速度を検出し、車両コントローラ210へ出力する。姿勢センサ263は、車両の位置、車両のピッチ角、車両のヨー角車両のロール角を検出し、車両コントローラ210へ出力する。姿勢センサ263は、ジャイロセンサを含む。 The vehicle controller 210 of this embodiment includes a detection device 260. The detection device 260 includes a steering angle sensor 261, a vehicle speed sensor 262, and an attitude sensor 263. The steering angle sensor 261 detects information such as a steering amount, a steering speed, and a steering acceleration, and outputs the information to the vehicle controller 210. The vehicle speed sensor 262 detects the speed and / or acceleration of the vehicle and outputs it to the vehicle controller 210. The attitude sensor 263 detects the position of the vehicle, the pitch angle of the vehicle, the yaw angle of the vehicle, and the roll angle of the vehicle, and outputs it to the vehicle controller 210. The attitude sensor 263 includes a gyro sensor.
 本実施形態の車両コントローラ210は、エンジンコントロールユニット(Engine Control Unit, ECU)などの車載コンピュータであり、車両の運転を電子的に制御する。車両としては、電動モータを走行駆動源として備える電気自動車、内燃機関を走行駆動源として備えるエンジン自動車、電動モータ及び内燃機関の両方を走行駆動源として備えるハイブリッド自動車を例示できる。なお、電動モータを走行駆動源とする電気自動車やハイブリッド自動車には、二次電池を電動モータの電源とするタイプや燃料電池を電動モータの電源とするタイプのものも含まれる。 The vehicle controller 210 of this embodiment is an in-vehicle computer such as an engine control unit (Engine ECU), and electronically controls the operation of the vehicle. Examples of the vehicle include an electric vehicle including an electric motor as a travel drive source, an engine vehicle including an internal combustion engine as a travel drive source, and a hybrid vehicle including both the electric motor and the internal combustion engine as a travel drive source. Note that electric vehicles and hybrid vehicles using an electric motor as a driving source include a type using a secondary battery as a power source for the electric motor and a type using a fuel cell as a power source for the electric motor.
 本実施形態の駆動装置270は、自車両V1の駆動機構を備える。駆動機構には、上述した走行駆動源である電動モータ及び/又は内燃機関、これら走行駆動源からの出力を駆動輪に伝達するドライブシャフトや自動変速機を含む動力伝達装置、及び車輪を制動する制動装置271などが含まれる。駆動装置270は、アクセル操作及びブレーキ操作による入力信号、車両コントローラ70又は運転支援装置100から取得した制御信号に基づいてこれら駆動機構の各制御信号を生成し、車両の加減速を含む走行制御を実行する。駆動装置270に制御情報を送出することにより、車両の加減速を含む走行制御を自動的に行うことができる。なお、ハイブリッド自動車の場合には、車両の走行状態に応じた電動モータと内燃機関とのそれぞれに出力するトルク配分も駆動装置270に送出される。 The drive device 270 of this embodiment includes a drive mechanism for the host vehicle V1. The drive mechanism includes an electric motor and / or an internal combustion engine that are the above-described travel drive sources, a power transmission device including a drive shaft and an automatic transmission that transmits output from these travel drive sources to the drive wheels, and brakes the wheels. A braking device 271 and the like are included. The drive device 270 generates control signals for these drive mechanisms based on input signals from the accelerator operation and the brake operation, and control signals acquired from the vehicle controller 70 or the driving support device 100, and performs travel control including acceleration / deceleration of the vehicle. Execute. By sending control information to the driving device 270, traveling control including acceleration / deceleration of the vehicle can be automatically performed. In the case of a hybrid vehicle, torque distribution output to each of the electric motor and the internal combustion engine corresponding to the traveling state of the vehicle is also sent to the drive device 270.
 本実施形態の操舵装置280は、ステアリングアクチュエータを備える。ステアリングアクチュエータは、ステアリングのコラムシャフトに取り付けられるモータ等を含む。操舵装置280は、車両コントローラ210から取得した制御信号、又はステアリング操作により入力信号に基づいて車両の進行方向の変更制御を実行する。車両コントローラ210は、操舵量を含む制御情報を操舵装置280に送出することにより、進行方向の変更制御を実行する。また、運転支援装置100は、車両の各輪の制動量をコントロールすることにより車両の進行方向の変更制御を実行してもよい。この場合、車両コントローラ210は、各輪の制動量を含む制御情報を制動装置271へ送出することにより、車両の進行方向の変更制御を実行する。なお、駆動装置270の制御、操舵装置280の制御は、完全に自動で行われてもよいし、ドライバの駆動操作(進行操作)を支援する態様で行われてもよい。駆動装置270の制御及び操舵装置280の制御は、ドライバの介入操作により中断/中止させることができる。車両コントローラ210は、運転計画装置10の運転計画に従って自車両の運転を制御する。 The steering device 280 of this embodiment includes a steering actuator. The steering actuator includes a motor and the like attached to the column shaft of the steering. The steering device 280 executes control for changing the traveling direction of the vehicle based on a control signal acquired from the vehicle controller 210 or an input signal by a steering operation. The vehicle controller 210 performs control for changing the traveling direction by sending control information including the steering amount to the steering device 280. In addition, the driving assistance device 100 may execute change control of the traveling direction of the vehicle by controlling the braking amount of each wheel of the vehicle. In this case, the vehicle controller 210 executes control for changing the traveling direction of the vehicle by sending control information including the braking amount of each wheel to the braking device 271. Note that the control of the driving device 270 and the control of the steering device 280 may be performed completely automatically, or may be performed in a manner that supports the driving operation (progression operation) of the driver. The control of the driving device 270 and the control of the steering device 280 can be interrupted / stopped by the driver's intervention operation. The vehicle controller 210 controls the operation of the host vehicle according to the operation plan of the operation planning device 10.
 本実施形態の車載装置200は、ナビゲーション装置220を備える。ナビゲーション装置120は、自車両の現在位置から目的地までの経路を算出する。経路の算出手法は、ダイキストラ法やA*などのグラフ探索理論に基づく出願時に知られた手法を用いることができる。算出した経路は、自車両の運転支援に用いるために、車両コントローラ210へ送出される。算出した経路は、経路案内情報として後述する出力装置250を介して出力される。
 ナビゲーション装置220は、位置検出装置221を備える。位置検出装置221は、グローバル・ポジショニング・システム(Global Positioning System, GPS)を備え、走行中の車両の走行位置(緯度・経度)を検出する。
The in-vehicle device 200 of this embodiment includes a navigation device 220. The navigation device 120 calculates a route from the current position of the host vehicle to the destination. As a route calculation method, a method known at the time of filing based on a graph search theory such as the Dijkstra method or A * can be used. The calculated route is sent to the vehicle controller 210 for use in driving support of the host vehicle. The calculated route is output as route guidance information via an output device 250 described later.
The navigation device 220 includes a position detection device 221. The position detection device 221 includes a global positioning system (GPS), and detects a traveling position (latitude / longitude) of a traveling vehicle.
 ナビゲーション装置120は、アクセス可能な地図情報222と、道路情報223と、交通規則情報224を備える。地図情報222、道路情報223、交通規則情報224は、ナビゲーション装置120が読み込むことができればよく、ナビゲーション装置120とは物理的に別体として構成してもよいし、通信装置30(又は車載装置200に設けられた通信装置)を介して読み込みが可能なサーバに格納してもよい。
 地図情報222は、いわゆる電子地図であり、緯度経度と地図情報が対応づけられた情報である。地図情報222は、各地点に対応づけられた道路情報223を有する。
The navigation device 120 includes accessible map information 222, road information 223, and traffic rule information 224. The map information 222, the road information 223, and the traffic rule information 224 need only be readable by the navigation device 120, and may be configured physically separate from the navigation device 120, or may be configured as the communication device 30 (or the in-vehicle device 200). The data may be stored in a server that can be read via a communication device provided in the network.
The map information 222 is a so-called electronic map, and is information in which latitude and longitude are associated with map information. The map information 222 has road information 223 associated with each point.
 道路情報223は、ノードと、ノード間を接続するリンクにより定義される。道路情報223は、道路の位置/領域により道路を特定する情報と、道路ごとの道路種別、道路ごとの道路幅、道路の形状情報とを含む。道路情報223は、各道路リンクの識別情報ごとに、交差点の位置、交差点の進入方向、交差点の種別その他の交差点に関する情報を対応づけて記憶する。また、道路情報223は、各道路リンクの識別情報ごとに、道路種別、道路幅、道路形状、直進の可否、進行の優先関係、追い越しの可否(隣接レーンへの進入の可否)その他の道路に関する情報を対応づけて記憶する。 The road information 223 is defined by nodes and links connecting the nodes. The road information 223 includes information for specifying a road by the position / area of the road, road type for each road, road width for each road, and road shape information. The road information 223 stores information regarding the position of the intersection, the approach direction of the intersection, the type of the intersection, and other intersection information for each road link identification information. In addition, the road information 223 includes road type, road width, road shape, whether to go straight, whether to go straight ahead, whether to overtake, whether to pass (whether to enter an adjacent lane), and other roads. Information is stored in association with each other.
 ナビゲーション装置220は、位置検出装置221により検出された自車両の現在位置に基づいて、自車両が走行する第1経路を特定する。第1経路はユーザが指定した目的地に至る経路であってもよいし、自車両V1/ユーザの走行履歴に基づいて推測された目的地に至る経路であってもよい。自車両が走行する第1経路は、道路ごとに特定してもよいし、上り/下りの方向が特定された道路ごとに特定してもよいし、自車両が実際に走行する単一の車線ごとに特定してもよい。ナビゲーション装置220は、後述する道路情報223を参照して、自車両が走行する第1経路の第1車線ごとに道路リンクを特定する。
 第1経路は、車両V1が将来通過する一つ又は複数の地点の特定情報(座標情報)を含む。第1経路は、自車両が走行する、次の走行位置を示唆する一つの点を少なくとも含む。第1経路は、連続した線により構成されてもよいし、離散的な点により構成されてもよい。特に限定されないが、第1経路は、道路識別子、車線識別子、レーン識別子、リンク識別子により特定される。これらの車線識別子、レーン識別子、リンク識別子は、地図情報222、道路情報223において定義される。
The navigation device 220 identifies the first route along which the host vehicle travels based on the current position of the host vehicle detected by the position detection device 221. The first route may be a route to the destination designated by the user, or may be a route to the destination estimated based on the own vehicle V1 / user's travel history. The first route along which the host vehicle travels may be specified for each road, may be specified for each road for which the up / down direction is specified, or a single lane in which the host vehicle actually travels You may specify every. The navigation device 220 refers to road information 223, which will be described later, and identifies a road link for each first lane of the first route on which the host vehicle travels.
The first route includes specific information (coordinate information) of one or more points where the vehicle V1 will pass in the future. The first route includes at least one point that suggests the next travel position on which the host vehicle travels. The first path may be constituted by a continuous line or may be constituted by discrete points. Although not particularly limited, the first route is specified by a road identifier, a lane identifier, a lane identifier, and a link identifier. These lane identifier, lane identifier, and link identifier are defined in the map information 222 and the road information 223.
 交通規則情報224は、経路上における一時停止、駐車/停車禁止、徐行、制限速度などの車両が走行時に遵守すべき交通上の規則である。各規則は、地点(緯度、経度)ごと、リンクごとに定義される。交通規則情報224には、道路側に設けられた装置から取得する交通信号の情報を含めてもよい。 The traffic rule information 224 is a traffic rule that the vehicle should comply with when traveling, such as temporary stop on the route, parking / stop prohibition, slow driving, speed limit, and the like. Each rule is defined for each point (latitude, longitude) and for each link. The traffic rule information 224 may include traffic signal information acquired from a device provided on the road side.
 車載装置200は、対象物検出装置230を備える。対象物検出装置230は、自車両の周囲の状況を検出する。自車両の対象物検出装置50は、自車両の周囲に存在する障害物を含む対象物の存在及びその存在位置を検出する。特に限定されないが、対象物検出装置230はカメラ231を含む。カメラ231は、例えばCCD等の撮像素子を備える撮像装置である。カメラ231は、赤外線カメラ、ステレオカメラでもよい。カメラ231は自車両の所定の位置に設置され、自車両の周囲の対象物を撮像する。自車両の周囲は、自車両の前方、後方、前方側方、後方側方を含む。対象物は、路面に表記された停止線などの二次元の標識を含む。対象物は三次元の物体を含む。対象物は、標識などの静止物を含む。対象物は、歩行者、二輪車、四輪車(他車両)などの移動物体を含む。対象物は、ガードレール、中央分離帯、縁石などの道路構造物を含む。 The in-vehicle device 200 includes an object detection device 230. The object detection device 230 detects the situation around the host vehicle. The target object detection device 50 of the host vehicle detects the presence and position of the target object including obstacles around the host vehicle. Although not particularly limited, the object detection device 230 includes a camera 231. The camera 231 is an imaging device including an imaging element such as a CCD. The camera 231 may be an infrared camera or a stereo camera. The camera 231 is installed at a predetermined position of the host vehicle and images an object around the host vehicle. The periphery of the host vehicle includes the front, rear, front side, and rear side of the host vehicle. The object includes a two-dimensional sign such as a stop line marked on the road surface. The object includes a three-dimensional object. The object includes a stationary object such as a sign. The objects include moving objects such as pedestrians, two-wheeled vehicles, and four-wheeled vehicles (other vehicles). The objects include road structures such as guardrails, median strips, curbs.
 対象物検出装置230は、画像データを解析し、その解析結果に基づいて対象物の種別を識別してもよい。対象物検出装置230は、パターンマッチング技術などを用いて、画像データに含まれる対象物が、車両であるか、歩行者であるか、標識であるか否かを識別する。対象物検出装置230は、取得した画像データを処理し、自車両の周囲に存在する対象物の位置に基づいて、自車両から対象物までの距離を取得する。特に、対象物検出装置230は、対象物と自車両との位置関係を取得する。 The object detection device 230 may analyze the image data and identify the type of the object based on the analysis result. The object detection device 230 uses a pattern matching technique or the like to identify whether the object included in the image data is a vehicle, a pedestrian, or a sign. The object detection device 230 processes the acquired image data, and acquires the distance from the own vehicle to the object based on the position of the object existing around the own vehicle. In particular, the target object detection device 230 acquires the positional relationship between the target object and the host vehicle.
 なお、対象物検出装置230は、レーダー装置232を用いてもよい。レーダー装置232としては、ミリ波レーダー、レーザーレーダー、超音波レーダー、レーザーレンジファインダーなどの出願時に知られた方式のものを用いることができる。対象物検出装置230は、レーダー装置232の受信信号に基づいて対象物の存否、対象物の位置、対象物までの距離を検出する。対象物検出装置230は、レーザーレーダーで取得した点群情報のクラスタリング結果に基づいて、対象物の存否、対象物の位置、対象物までの距離を検出する。 The object detection device 230 may use the radar device 232. As the radar device 232, a system known at the time of filing such as millimeter wave radar, laser radar, ultrasonic radar, laser range finder, etc. can be used. The object detection device 230 detects the presence / absence of the object, the position of the object, and the distance to the object based on the received signal of the radar device 232. The object detection device 230 detects the presence / absence of the object, the position of the object, and the distance to the object based on the clustering result of the point cloud information acquired by the laser radar.
 他車両と自車両とが車車間通信をすることが可能であれば、対象物検出装置230は、他車両の車速センサが検出した他車両の車速、加速度を、他車両が存在する旨を対象物情報として取得してもよい。もちろん、対象物検出装置230は、高度道路交通システム(Intelligent Transport Systems:ITS)の外部装置から他車両の位置、速度、加速度を含む対象物情報を取得することもできる。 If it is possible for the other vehicle and the host vehicle to perform inter-vehicle communication, the object detection device 230 targets the vehicle speed and acceleration of the other vehicle detected by the vehicle speed sensor of the other vehicle to the effect that the other vehicle exists. You may acquire as physical information. Of course, the target object detection device 230 can also acquire target object information including the position, speed, and acceleration of other vehicles from an external device of an intelligent road transport system (Intelligent Transport Systems: ITS).
 本実施形態の車載装置200は、レーンキープ装置240を備える。レーンキープ装置240は、カメラ241、道路情報242を備える。カメラ241は、対象物検出装置のカメラ231を共用してもよい。道路情報242は、ナビゲーション装置の道路情報223を共用してもよい。レーンキープ装置240は、カメラ241の撮像画像から自車両が走行する第1経路のレーンを検出する。レーンキープ装置240は、自車両が走行している車線を認識し、車線のレーンマーカの位置と自車両の位置とが所定の関係を維持するように、自車両の動きを制御する車線逸脱防止機能(レーンキープサポート機能)を備える。レーンキープ装置240は、車線の中央を自車両が走行するように、自車両の動きを制御する。レーンキープ装置240は、車線のレーンマーカから自車両までの路幅方向に沿う距離が所定値域となるように、自車両の動きを制御してもよい。レーンキープ装置240は、後述する運転支援装置100が立案する運転計画(第1運転計画、第2運転計画を含む。以下同じ)を実行するために、運転計画において規定された経路(第1経路、第2経路を含む)の車線(第1車線、第2車線を含む)のレーンマーカの位置と自車両の位置とが所定の関係を維持するように、自車両の動きを制御する。レーンキープ装置240は、立案された第1運転計画を実行し、車線変更をする場合には車線変更を含む第2運転計画を実行する。なお、レーンマーカは、レーンを規定する機能を有するものであれば限定されず、路面に描かれた線図であってもよいし、レーンの間に存在する植栽であってもよいし、レーンの路肩側に存在するガードレール、縁石、歩道、二輪車専用道路などの道路構造物であってもよい。また、レーンマーカは、レーンの路肩側に存在する看板、標識、店舗、街路樹などの不動の物体であってもよい。
 後述するプロセッサ11は、対象物検出装置230により検出された対象物を、経路に対応づけて記憶する。つまり、プロセッサ11は、どの経路上に対象物が存在するかという情報を有する。
The in-vehicle device 200 of this embodiment includes a lane keeping device 240. The lane keeping device 240 includes a camera 241 and road information 242. The camera 241 may share the camera 231 of the object detection device. The road information 242 may share the road information 223 of the navigation device. The lane keeping device 240 detects the lane of the first route on which the host vehicle travels from the captured image of the camera 241. The lane keeping device 240 recognizes the lane in which the host vehicle is traveling, and controls the movement of the host vehicle so that the position of the lane marker on the lane and the position of the host vehicle maintain a predetermined relationship. (Lane keep support function). The lane keeping device 240 controls the movement of the host vehicle so that the host vehicle travels in the center of the lane. The lane keeping device 240 may control the movement of the host vehicle so that the distance along the road width direction from the lane marker of the lane to the host vehicle is within a predetermined value range. The lane keeping device 240 is a route (first route) defined in the operation plan in order to execute an operation plan (including a first operation plan and a second operation plan; the same applies hereinafter) planned by the operation support device 100 described later. The movement of the host vehicle is controlled such that the position of the lane marker on the lane (including the first lane and the second lane) of the lane (including the second route) and the position of the host vehicle maintain a predetermined relationship. The lane keeping device 240 executes the planned first operation plan, and executes the second operation plan including the lane change when changing the lane. The lane marker is not limited as long as it has a function of defining the lane, and may be a diagram drawn on the road surface, planting existing between the lanes, It may be a road structure such as a guardrail, a curb, a sidewalk, or a motorcycle-only road existing on the shoulder side. The lane marker may be an immovable object such as a signboard, a sign, a store, or a roadside tree that exists on the shoulder side of the lane.
The processor 11 described later stores the object detected by the object detection device 230 in association with the route. That is, the processor 11 has information on which route the object is present.
 車載装置200は、出力装置250を備える。出力装置250は、ディスプレイ251、スピーカ252を備える。出力装置250は、運転支援に関する各種の情報をユーザ又は周囲の車両の乗員に向けて出力する。出力装置250は、立案された運転行動計画、その運転行動計画に基づく走行制御に関する情報を出力する。第1経路(目標経路)上を自車両に走行させる制御情報に応じた情報として、操舵操作や加減速が実行されることをディスプレイ251、スピーカ252を介して、自車両の乗員に予め知らせる。また、これらの運転支援に関する情報を車室外ランプ、車室内ランプを介して、自車両の乗員又は他車両の乗員に予め知らせてもよい。また、出力装置250は、通信装置を介して、高度道路交通システムなどの外部装置に運転支援に関する各種の情報を出力してもよい。 The in-vehicle device 200 includes an output device 250. The output device 250 includes a display 251 and a speaker 252. The output device 250 outputs various types of information related to driving assistance to a user or an occupant of a surrounding vehicle. The output device 250 outputs information on the planned driving action plan and travel control based on the driving action plan. As information according to the control information for causing the host vehicle to travel on the first route (target route), the vehicle occupant of the host vehicle is notified in advance via the display 251 and the speaker 252 that the steering operation and acceleration / deceleration are executed. Moreover, you may notify the passenger | crew of the own vehicle or the passenger | crew of another vehicle beforehand the information regarding these driving assistances via a vehicle exterior lamp and a vehicle interior lamp. The output device 250 may output various types of information related to driving assistance to an external device such as an intelligent road traffic system via a communication device.
 次に、運転支援装置100について説明する。
 運転支援装置100は、運転計画装置10と、出力装置20と、通信装置30を備える。出力装置20は、先述した車載装置200の出力装置250と同様の機能を有する。ディスプレイ251、スピーカ252を、出力装置20の構成として用いる。運転計画装置10と、出力装置20とは、有線又は無線の通信回線を介して互いに情報の授受が可能である。通信装置30は、車載装置200との情報授受、運転支援装置100内部の情報授受、運転支援システム1の外部との情報授受を行う。
Next, the driving assistance device 100 will be described.
The driving support device 100 includes an operation planning device 10, an output device 20, and a communication device 30. The output device 20 has the same function as the output device 250 of the in-vehicle device 200 described above. A display 251 and a speaker 252 are used as the configuration of the output device 20. The operation planning device 10 and the output device 20 can exchange information with each other via a wired or wireless communication line. The communication device 30 exchanges information with the in-vehicle device 200, exchanges information inside the driving support device 100, and exchanges information with the outside of the driving support system 1.
 まず、運転計画装置10について説明する。
 運転計画装置10は、運転計画装置10の制御装置として機能するプロセッサ11を備える。プロセッサ11は、自車両の運転計画の立案を含む運転支援処理を行う演算装置である。具体的に、プロセッサ11は、運転計画の立案を含む運転支援処理を実行させるプログラムが格納されたROM(Read Only Memory)と、このROMに格納されたプログラムを実行することで、運転計画装置10として機能する動作回路としてのCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)と、を備えるコンピュータである。
First, the operation planning device 10 will be described.
The operation planning device 10 includes a processor 11 that functions as a control device for the operation planning device 10. The processor 11 is an arithmetic device that performs a driving support process including a driving plan for the host vehicle. Specifically, the processor 11 executes an operation planning apparatus 10 by executing a ROM (Read Only Memory) in which a program for executing an operation support process including an operation plan is stored, and a program stored in the ROM. And a RAM (Random Access Memory) functioning as an accessible storage device.
 本実施形態に係るプロセッサ11は、以下の処理を実行する。
(1)自車両が走行する第1経路を算出し、第1経路を走行する際に遭遇する複数の事象を取得(検出・抽出)し、抽出された各事象と自車両との関係を用いて、第1経路を走行する自車両の第1運転計画を立案する処理(第1運転計画立案処理)、
(2)第1経路において特定された第1車線から別の第2車線に自車両を移動させる車線変更をするか否かを判断する処理(車線変更判断処理)、
(3)車線変更をすると判断された場合には、自車両を第2車線に車線変更させる第2経路を走行させる第2運転計画を立案する(第2運転計画立案処理)
The processor 11 according to the present embodiment performs the following processing.
(1) The first route on which the host vehicle travels is calculated, a plurality of events encountered when traveling on the first route are acquired (detected / extracted), and the relationship between each extracted event and the host vehicle is used. A process of planning a first driving plan of the host vehicle traveling on the first route (first driving plan planning process),
(2) Processing for determining whether or not to change the lane for moving the vehicle from the first lane specified in the first route to another second lane (lane change determination processing);
(3) If it is determined that the lane is to be changed, a second driving plan for driving a second route that changes the host vehicle to the second lane is drafted (second driving plan planning process).
 プロセッサ11は、第1運転計画の立案機能を実現する第1ブロックと、車線変更の判断機能を実現する第2ブロックと、第2運転計画の立案機能を実現する第3ブロックとを有する。プロセッサ11は、上記各機能を実現するため、又は各処理を実行するためのソフトウェアと、上述したハードウェアとの協働により各機能を実行する。 The processor 11 has a first block that realizes a planning function for a first driving plan, a second block that realizes a function for determining a lane change, and a third block that realizes a planning function for a second driving plan. The processor 11 executes each function in cooperation with software for realizing each function described above or executing each process and the hardware described above.
 まず、図2に基づいて、本実施形態に係るプロセッサ11が実行する第1運転計画の立案処理について説明する。第1運転計画の立案処理は、運転支援システム1が実行する基本的な処理である。第1運転計画の立案処理は、第1経路の算出処理、第1経路を走行する際に遭遇する事象の取得処理、取得した各事象と自車両との関係に基づく運転計画の立案処理とを含む。運転計画の立案処理は、各事象における運転行動の決定、運転行動の具体的内容の決定を含む。運転行動の具体的内容は、運転行動を実行する地点/タイミング、運転行動の実行指令を含む。運転行動が「停止」である場合における、運転行動の具体的内容には「停止位置」が含まれる。運転行動の実行指令は、減速量、加速量、操舵量を含む。後述する第2運転計画の立案処理は、第1運転計画の立案処理と共通する。 First, based on FIG. 2, the first operation plan planning process executed by the processor 11 according to the present embodiment will be described. The first operation plan planning process is a basic process executed by the driving support system 1. The planning process for the first driving plan includes a calculation process for the first route, an acquisition process for events encountered when traveling on the first route, and a planning process for driving plans based on the relationship between each acquired event and the host vehicle. Including. The driving plan planning process includes determination of driving behavior in each event and determination of specific contents of driving behavior. The specific content of the driving action includes a point / timing for executing the driving action and an execution command for the driving action. The specific content of the driving action when the driving action is “stop” includes “stop position”. The driving action execution command includes a deceleration amount, an acceleration amount, and a steering amount. The planning process of the second operation plan described later is common to the planning process of the first operation plan.
 まず、第1経路の算出処理について説明する。
 プロセッサ11は、自車両の走行中又は走行が予定されている第1経路を算出する。プロセッサ11は、第1経路を算出するために、自車情報を取得する。プロセッサ11は、位置検出装置221から自車両の現在位置を取得する。プロセッサ11は、地図情報222を参照し、取得した現在位置、進行方向を用いて第1経路を算出する。プロセッサ11は、ナビゲーション装置220が求めた自車両の走行予定経路を第1経路として取得してもよい。プロセッサ11は、ナビゲーション装置220が求めた、現在位置から目的地に至るまでの案内経路を第1経路として取得してもよい。自車両の経路の算出処理は、本願出願時において知られた手法を適宜に用いることができる。
First, the calculation process of the first route will be described.
The processor 11 calculates the first route while the host vehicle is traveling or scheduled to travel. The processor 11 acquires host vehicle information in order to calculate the first route. The processor 11 acquires the current position of the host vehicle from the position detection device 221. The processor 11 refers to the map information 222 and calculates the first route using the acquired current position and traveling direction. The processor 11 may acquire the planned travel route of the host vehicle obtained by the navigation device 220 as the first route. The processor 11 may acquire the guide route from the current position to the destination obtained by the navigation device 220 as the first route. For the calculation process of the route of the host vehicle, the technique known at the time of filing this application can be appropriately used.
 事象の取得処理について説明する。
 プロセッサ11は、第1経路を走行する際に遭遇する事象を取得(検出/抽出)する。本実施形態における事象(イベント)とは、走行制御が実行されることのトリガとなる事物(事柄/物体の存在)である。実行される走行制御とは、車両の加減速、車両の操舵を含む。つまり、事象(イベント)とは、加減速や操舵を自車両に実行せしめる原因となるものである。事象は、第1経路上の交差点、第1経路上の停止線、第1経路上の横断歩道、第1経路を走行する自車両の周囲の対象物である。対象物は、平面/立体の交通標識、歩行者、二輪車、四輪車などの移動物体、ガードレール、中央分離帯、縁石などの道路構造物を含む。
The event acquisition process will be described.
The processor 11 acquires (detects / extracts) an event encountered when traveling on the first route. An event in the present embodiment is an event (thing / existence of an object) that triggers execution of travel control. The travel control to be executed includes acceleration / deceleration of the vehicle and steering of the vehicle. In other words, an event is a cause of causing the host vehicle to execute acceleration / deceleration and steering. The event is an intersection on the first route, a stop line on the first route, a pedestrian crossing on the first route, or an object around the host vehicle traveling on the first route. The objects include plane / three-dimensional traffic signs, moving objects such as pedestrians, two-wheeled vehicles, and four-wheeled vehicles, road structures such as guardrails, median strips, and curbs.
 プロセッサ11は、地図情報222を参照し、自車両の走行中又は走行が予定されている第1経路と交点を有する他の経路を抽出する。第1経路と交点を有する経路とは、第1経路と交わる経路、第1経路に流入する経路、第1経路から流入する経路、第1経路と交差する経路を含む。他の経路が検出された場合には、その他の経路との交点が、第1経路の交差点であり、事象として取得される。プロセッサ11は、交通規則情報224を参照して、第1経路上の交通標識の存在及びその位置を取得する。交通規則情報224は、一時停止位置、進入禁止、一方通行などの情報がリンク(経路)や位置情報に対応づけられた情報である。プロセッサ11は、停止の交通規則を事象として認識する。プロセッサ11は、停止が定義されている位置を、自車両が事象と遭遇する位置として抽出する。抽出された事象の位置は、経路(リンクを含む)に対応づけられる。同様に、プロセッサ11は、進入禁止の交通規則を事象として認識する。プロセッサ11は、進入禁止が定義されている位置よりも上流側の位置(走行方向の上流側)を、自車両が事象と遭遇する位置として抽出する。抽出された事象の位置は、経路(リンクを含む)に対応づけられる。交通規則情報224は、信号機が示す交通信号を含む。このとき、地図情報222、道路情報223を参照してもよい。 The processor 11 refers to the map information 222 and extracts another route having an intersection with the first route during which the host vehicle is traveling or scheduled to travel. The route having an intersection with the first route includes a route that intersects the first route, a route that flows into the first route, a route that flows from the first route, and a route that intersects the first route. When another route is detected, an intersection with the other route is an intersection of the first route and is acquired as an event. The processor 11 refers to the traffic rule information 224 and acquires the presence and position of the traffic sign on the first route. The traffic rule information 224 is information in which information such as a temporary stop position, entry prohibition, and one-way traffic is associated with a link (route) and position information. The processor 11 recognizes the stop traffic rule as an event. The processor 11 extracts the position where the stop is defined as the position where the host vehicle encounters the event. The position of the extracted event is associated with a route (including a link). Similarly, the processor 11 recognizes an entry-prohibited traffic rule as an event. The processor 11 extracts a position upstream of the position where entry prohibition is defined (upstream in the traveling direction) as a position where the host vehicle encounters the event. The position of the extracted event is associated with a route (including a link). The traffic rule information 224 includes a traffic signal indicated by a traffic light. At this time, the map information 222 and the road information 223 may be referred to.
 プロセッサ11は、対象物検出装置230の出力結果に基づいて、第1経路を走行する自車両V1が遭遇する事象を抽出する。遭遇する事象とは、第1経路上の障害物を含む対象物の存在及び位置を含む。プロセッサ11は、対象物検出装置230により検出された対象物(歩行者、他車両、道路構造物などを含む物体)が存在することを、自車両V1が遭遇する事象として認識する。プロセッサ11は、自車両と検出された対象物との距離が所定値未満であるときに、その対象物の存在を事象として抽出するようにしてもよい。プロセッサ11は、自車両と検出された対象物とが接触するまでの予測時間離が所定値未満であるときに、その対象物の存在を事象として抽出するようにしてもよい。 The processor 11 extracts an event that the host vehicle V1 traveling on the first route encounters based on the output result of the object detection device 230. The events encountered include the presence and location of objects including obstacles on the first path. The processor 11 recognizes that an object (an object including a pedestrian, another vehicle, a road structure, and the like) detected by the object detection device 230 exists as an event that the host vehicle V1 encounters. When the distance between the host vehicle and the detected object is less than a predetermined value, the processor 11 may extract the presence of the object as an event. The processor 11 may extract the presence of the target object as an event when the predicted time interval until the subject vehicle contacts the detected target object is less than a predetermined value.
 プロセッサ11は、対象物の位置情報を用いて、第1経路を走行する自車両V1が遭遇する事象を抽出する。対象物とは、工事現場、故障車、回避領域などの一時的な交通規制に関する対象を含む。物体が存在する位置の情報は、道路情報223に含めてもよい。物体が存在する位置の情報は、ITSなどの路側の情報提供装置から受信できる。 The processor 11 uses the position information of the target object to extract an event that the host vehicle V1 traveling on the first route encounters. The objects include objects related to temporary traffic restrictions such as construction sites, broken vehicles, and avoidance areas. Information on the position where the object exists may be included in the road information 223. Information on the position where the object exists can be received from a roadside information providing apparatus such as ITS.
 プロセッサ11は、対象物検出装置230の出力結果に基づいて、第1経路上の障害物を含む対象物の存在及び位置を取得する。プロセッサ11は、道路情報223を参照して、第1経路上の道路構造物の存在及び位置を取得する。このとき、地図情報222、道路情報223を参照してもよい。 The processor 11 acquires the presence and position of an object including an obstacle on the first path based on the output result of the object detection device 230. The processor 11 refers to the road information 223 and acquires the presence and position of the road structure on the first route. At this time, the map information 222 and the road information 223 may be referred to.
 プロセッサ11は、取得した事象の情報(存在及び位置)と自車両との関係に基づいて第1経路を走行するための第1運転計画を立案する。第1運転計画の立案は、所定周期で行ってもよいし、自車両と交差点との距離が所定距離未満となったタイミングで行ってもよい。 The processor 11 makes a first operation plan for traveling on the first route based on the relationship between the acquired event information (presence and position) and the host vehicle. The planning of the first operation plan may be performed at a predetermined cycle, or may be performed at a timing when the distance between the host vehicle and the intersection is less than the predetermined distance.
 プロセッサ11は、抽出された複数の事象との遭遇位置を、自車両の経路に対応づける。プロセッサ11は、抽出された複数の事象を自車両V1が遭遇する順序に沿って並べ替える。プロセッサ11は、第1経路を走行する自車両V1の位置の遷移と事象の位置とから、遭遇する事象の順序を求め、事象を自車両V1が遭遇する順序に沿って並べ替える。この事象を遭遇する時系列に並べた情報は、後述する出力装置20を介してユーザに提示してもよい。 The processor 11 associates the encounter position with the extracted plurality of events with the route of the own vehicle. The processor 11 rearranges the plurality of extracted events in the order in which the host vehicle V1 encounters. The processor 11 obtains the order of events to be encountered from the transition of the position of the host vehicle V1 traveling on the first route and the position of the event, and rearranges the events in the order in which the host vehicle V1 encounters. Information arranged in chronological order to encounter this event may be presented to the user via the output device 20 described later.
 続いて、プロセッサ11は、運転計画における、経路を走行する自車両の運転行動を計画する。プロセッサ11は、自車両が第1経路を走行する際に経時的に遭遇する複数の事象と自車両との関係(評価結果)を用いて、自車両V1が第1経路を走行する際の運転計画を立案する。プロセッサ11は、対象物検出装置230により検出された対象物の存在を考慮して運転計画を立案する。 Subsequently, the processor 11 plans the driving behavior of the own vehicle traveling along the route in the driving plan. The processor 11 uses the relationship (evaluation result) between the host vehicle and a plurality of events encountered over time when the host vehicle travels on the first route, and driving when the host vehicle V1 travels on the first route. Develop a plan. The processor 11 makes an operation plan in consideration of the presence of the object detected by the object detection device 230.
 プロセッサ11は、抽出した各事象の種類(交差点、交通規則、対象物)と、事象との位置及び位置の変化(距離、接触に至る時間、接近速度、所定時間後の距離)、事象の内容(交通規則の内容、対象物の属性)、等を評価する。プロセッサ11は、車速センサ262から取得した自車両の車速を用いて、事象との距離及び距離の変化を求める。 The processor 11 extracts the type of each event (intersection, traffic rule, object), the position of the event and the change in position (distance, time to contact, approach speed, distance after a predetermined time), and the contents of the event. (Contents of traffic rules, attributes of objects), etc. are evaluated. The processor 11 obtains the distance from the event and the change in the distance using the vehicle speed of the host vehicle acquired from the vehicle speed sensor 262.
 事象が交通規則である場合には、プロセッサ11は、交通規則情報224、地図情報222、道路情報223、対象物検出装置230の検出結果の一つ以上を参照し、その交通規則の種類、位置/位置の変化、内容を読み込む。事象が信号機である場合には、プロセッサ11は、対象物検出装置230の信号認識機能の認識結果に基づいて、信号機が示す交通規則が進行/注意/停止のいずれであるかを認識する。プロセッサ11は、通信装置30を介して取得した外部のITSが送信する信号情報に基づいて、信号機が示す交通規則を認識してもよい。事象が停止線、一時停止線、停止禁止エリア、車線変更禁止などの交通標識である場合には、プロセッサ11は、交通規則情報224、道路情報223、地図情報222を参照して、対象物検出装置230が検出した交通標識の位置、内容を認識する。
 事象が歩行者、他車両、道路構造物などの対象物である場合には、プロセッサ11は、対象物検出装置230が検出した対象物の位置、移動速度に基づいて、自車両と対象物の種類、位置/位置の変化、内容を求める。
When the event is a traffic rule, the processor 11 refers to one or more of the traffic rule information 224, the map information 222, the road information 223, and the detection result of the object detection device 230, and determines the type and position of the traffic rule. / Read position changes and contents. If the event is a traffic light, the processor 11 recognizes whether the traffic rule indicated by the traffic light is advancing / attention / stopping based on the recognition result of the signal recognition function of the object detection device 230. The processor 11 may recognize the traffic rules indicated by the traffic lights based on the signal information transmitted by the external ITS acquired via the communication device 30. When the event is a traffic sign such as a stop line, a temporary stop line, a stop prohibited area, or a lane change prohibition, the processor 11 refers to the traffic rule information 224, the road information 223, and the map information 222 to detect an object. The position and content of the traffic sign detected by the device 230 are recognized.
When the event is an object such as a pedestrian, another vehicle, or a road structure, the processor 11 determines whether the subject vehicle and the object are based on the position and moving speed of the object detected by the object detection device 230. Find type, position / position change and content.
 プロセッサ11は、抽出された複数の事象に対してそれぞれ一つの運転行動を決定する。決定される行動は、運転に関する進行行動と停止行動とを含む。プロセッサ11は、各事象に対して、進行行動又は停止行動の何れか一方を決定する。事象が交通規則であり、その交通規則が停止を求めるものである場合には、プロセッサ11は、その事象に対する運転行動を「停止」と決定する。他方、その交通規則が通過を許可するものである場合には、プロセッサ11は、その事象に対する運転行動を「進行」と決定する。事象が対象物であり、その対象物との距離が所定値未満、距離の変化が所定値以上、接触までの時間が所定値未満の何れかである場合には、プロセッサ11は、その事象に対する運転行動を「停止」と決定する。他方、対象物との距離が所定値以上、距離の変化が所定値未満、接触までの時間が所定値以上の何れかである場合には、プロセッサ11は、その事象に対する運転行動を「進行」と決定する。プロセッサ11は、これら複数の事象に対して決定された各行動の内容に基づいて、一連の運転計画を立案する。 The processor 11 determines one driving action for each of the extracted plurality of events. The determined action includes a driving action and a stopping action. The processor 11 determines either a progressing action or a stopping action for each event. If the event is a traffic rule and the traffic rule requires a stop, the processor 11 determines that the driving action for the event is “stop”. On the other hand, if the traffic rule permits passage, the processor 11 determines that the driving action for the event is “progress”. If the event is an object, and the distance to the object is less than a predetermined value, the change in distance is greater than or equal to a predetermined value, and the time until contact is less than the predetermined value, the processor 11 The driving action is determined as “stop”. On the other hand, if the distance to the object is greater than or equal to a predetermined value, the change in distance is less than the predetermined value, and the time to contact is greater than or equal to the predetermined value, the processor 11 “progresses” the driving action for the event. And decide. The processor 11 makes a series of operation plans based on the contents of each action determined for the plurality of events.
 図2に基づいて、プロセッサ11の運転行動の決定手法の一例を説明する。プロセッサ11は、自車両V1が第1経路R1を走行する際に遭遇する事象に対してとるべき運転行動を判断する。プロセッサ11は、自車両V1の目的地を考慮して、自車両が走行する経路を算出する。算出された経路は、本実施形態における第1経路R1である。図2に示す第1経路R1を例に、第1経路R1を走行する際の運転計画の立案について説明する。第1経路R1において、自車両V1は矢印Fで示す方向に走行し、停止線ST1、信号SG1、横断歩道CR1を通過し、交差点P内で右折する。この第1経路R1を走行する際に自車両V1が遭遇する事象は、停止線ST1、信号SG1、横断歩道CR1、右折車線に進入する際に接近する他車両V2、横断歩道CR4である。プロセッサ11は、一のタイミングにおける事象を抽出する。自車両V1が遭遇する事象は、刻々に変化するため、タイミングが異なると、対象物の位置も変化する。プロセッサ11は、所定周期で刻々に変化する事象に応じて、刻々の運転計画を算出する。プロセッサ11は、自車両V1が第1経路上の交差点(他の経路との交点)に所定距離以内に接近したときに運転計画を算出してもよい。 An example of a method for determining the driving behavior of the processor 11 will be described with reference to FIG. The processor 11 determines a driving action to be taken for an event encountered when the host vehicle V1 travels on the first route R1. The processor 11 calculates a route along which the host vehicle travels in consideration of the destination of the host vehicle V1. The calculated route is the first route R1 in the present embodiment. Taking the first route R1 shown in FIG. 2 as an example, the planning of an operation plan when traveling on the first route R1 will be described. On the first route R1, the host vehicle V1 travels in the direction indicated by the arrow F, passes through the stop line ST1, the signal SG1, and the pedestrian crossing CR1, and makes a right turn at the intersection P. Events that the host vehicle V1 encounters when traveling on the first route R1 are the stop line ST1, the signal SG1, the pedestrian crossing CR1, the other vehicle V2 approaching when entering the right turn lane, and the pedestrian crossing CR4. The processor 11 extracts an event at one timing. Since the event that the host vehicle V1 encounters changes every moment, if the timing is different, the position of the object also changes. The processor 11 calculates an operation plan every moment according to an event that changes every moment in a predetermined cycle. The processor 11 may calculate the driving plan when the host vehicle V1 approaches an intersection on the first route (an intersection with another route) within a predetermined distance.
 プロセッサ11は、抽出された各事象の種類(交差点、交通規則、対象物)と、事象との位置及び位置の変化(距離、接触に至る時間、接近速度、所定時間後の距離)、事象の内容(交通規則の内容、対象物の属性)を判断する。
 プロセッサ11は、自車両V1から最も近い事象(停止線ST1)を認識する。プロセッサ11は、停止線ST1が交通規則であり、自車両V1からの距離がD1/到達時間がS1であり、一時停止を求める事象であると判断する。
 プロセッサ11は、停止線ST1に対応し、自車両V1から二番目に近い事象(信号SG1)を認識する。プロセッサ11は、号SG1が交通規則であり、自車両V1からの距離がD2/到達時間がS2であり、進行を禁止する(赤色/黄色信号)事象であると判断する。停止線ST1は、自車両V1が交差点に進入するときに、信号SG1が停止を指示したときに、車両を信号SG1の上流側で停止させる位置を示す事象である。別々の事象として認識される信号SG1と停止線ST1は交通規則情報224において対応づけられている。停止線ST1の内容は、信号SG1が停止を示す信号(赤/黄)であるときに「停止」となるが、信号SG1が進行を示す信号(青/緑)であるときに「進行」となる。プロセッサ11は、事象(信号SG1)において進行禁止が指示されていることに基づいて、事象(信号SG1)に対応づけられた事象(停止線ST1)についての運転行動は「停止」となる。
The processor 11 determines the type of each extracted event (intersection, traffic rule, object), the position of the event and the change in position (distance, time to contact, approach speed, distance after a predetermined time), event Determine the contents (contents of traffic rules, attributes of the object).
The processor 11 recognizes the event (stop line ST1) closest to the host vehicle V1. The processor 11 determines that the stop line ST1 is a traffic rule, the distance from the host vehicle V1 is D1 / arrival time S1, and is an event for requesting a temporary stop.
The processor 11 recognizes an event (signal SG1) closest to the host vehicle V1 corresponding to the stop line ST1. The processor 11 determines that the number SG1 is a traffic rule, the distance from the host vehicle V1 is D2 / arrival time S2, and the event prohibits the progress (red / yellow signal). The stop line ST1 is an event indicating a position where the vehicle is stopped on the upstream side of the signal SG1 when the signal SG1 instructs to stop when the host vehicle V1 enters the intersection. The signal SG1 recognized as a separate event and the stop line ST1 are associated in the traffic rule information 224. The content of the stop line ST1 is “stop” when the signal SG1 is a signal indicating red (red / yellow), but “progress” when the signal SG1 is a signal indicating blue (green / green). Become. Based on the fact that the progress prohibition is instructed in the event (signal SG1), the processor 11 sets the driving action for the event (stop line ST1) associated with the event (signal SG1) to “stop”.
 プロセッサ11は、自車両V1から三番目に近い事象(横断歩道CR1)を認識する。プロセッサ11は、横断歩道CR1が交通規則であり、自車両V1からの距離がD2/到達時間がS2であり、進行が許可された(青/緑信号)事象であると判断する。横断歩道の交通規則は、信号が進入禁止を示す場合には「停止」であり、信号が進入許可を示す場合には「進行」である。また横断歩道の交通規則は、横断歩道に歩行者が存在する場合には「停止」であり、横断歩道に歩行者が不在である場合には「進行」である。プロセッサ11は、事象(信号SG1)において進行禁止が指示されているので、事象(横断歩道CR1)は「停止」となる。また、横断歩道CR1を歩行中の歩行者H1が存在する。対象物検出装置230は歩行者H1を検出する。プロセッサ11は、対象物検出装置230の検出結果(歩行者H1の存在)に基づいて、事象(横断歩道CR1)についての運転行動は「停止」となる。 The processor 11 recognizes the third closest event (crosswalk CR1) from the host vehicle V1. The processor 11 determines that the pedestrian crossing CR1 is a traffic rule, the distance from the host vehicle V1 is D2 / arrival time S2, and the travel is permitted (blue / green signal). The traffic rule of the pedestrian crossing is “stop” when the signal indicates entry prohibition, and “progress” when the signal indicates entry permission. Further, the traffic rule of the pedestrian crossing is “stop” when there are pedestrians in the pedestrian crossing, and “progress” when there are no pedestrians in the pedestrian crossing. Since the processor 11 is instructed to prohibit the progress in the event (signal SG1), the event (crosswalk CR1) is “stopped”. There is also a pedestrian H1 who is walking on the pedestrian crossing CR1. The object detection device 230 detects the pedestrian H1. Based on the detection result of the object detection device 230 (presence of the pedestrian H1), the processor 11 sets the driving action for the event (crosswalk CR1) to “stop”.
 プロセッサ11は、交差点P内で右折する際に、第1経路が別の道路と交差する地点(交差点)を事象として抽出する。プロセッサは、自車両V1から三番目に近い事象(交差点MX12)を認識する。プロセッサは、交差点MX12が交差点であり、自車両V1からの距離がD3/到達時間がS3であると判断する。また、交差点MX12に接近する他車両V2が存在する。対象物検出装置230は交差点MX12に接近する他車両V2を検出する。対象物検出装置230は自車両V1を基準とするTTC(time to collision)が所定時間以内である物体を対象物として認識する。プロセッサ11は、対象物検出装置230の検出結果(他車両V2の存在)に基づいて、事象(交差点MX12)についての運転行動は「停止」となる。 When the processor 11 turns right in the intersection P, the processor 11 extracts a point (intersection) where the first route intersects with another road as an event. The processor recognizes the third closest event (intersection MX12) from the host vehicle V1. The processor determines that the intersection MX12 is an intersection and the distance from the host vehicle V1 is D3 / arrival time S3. In addition, there is another vehicle V2 that approaches the intersection MX12. The object detection device 230 detects the other vehicle V2 approaching the intersection MX12. The object detection device 230 recognizes an object whose TTC (time to collision) with respect to the host vehicle V1 is within a predetermined time as an object. Based on the detection result of the object detection device 230 (existence of the other vehicle V2), the processor 11 “stops” the driving action for the event (intersection MX12).
 プロセッサ11は、交差点P内で右折後に進入する横断歩道CR4を事象として抽出する。プロセッサ11は、自車両V1から四番目に近い事象(横断歩道CR4)を認識する。プロセッサ11は、横断歩道CR4が交通規則であり、自車両V1からの距離がD4/到達時間がS4であると判断する。交差点領域から退出する場合には、横断歩道への進入前に停止は求められない。ただし、周囲の対象物の存在については常に配慮する必要がある。プロセッサ11は、対象物検出装置230の検出結果を常時(所定周期で)取得し、周囲に対象物が存在しないことを確認する。事象(横断歩道CR4)進入前のタイミングで対象物検出装置230が対象物を検出しない場合には、プロセッサ11は、事象(横断歩道CR4)についての運転行動は「進行」となる。 The processor 11 extracts the pedestrian crossing CR4 that enters after the right turn in the intersection P as an event. The processor 11 recognizes an event (crosswalk CR4) that is the fourth closest to the host vehicle V1. The processor 11 determines that the pedestrian crossing CR4 is a traffic rule and the distance from the host vehicle V1 is D4 / arrival time S4. When leaving the intersection area, no stop is required before entering the pedestrian crossing. However, it is always necessary to consider the presence of surrounding objects. The processor 11 always acquires the detection result of the object detection device 230 (at a predetermined cycle), and confirms that no object exists around. When the object detection device 230 does not detect an object at the timing before entering the event (crosswalk CR4), the processor 11 determines that the driving action for the event (crosswalk CR4) is “progress”.
 プロセッサ11は、自車両V1が経時的に遭遇する複数の事象と自車両V1との関係に基づいて、各事象に対して進行行動又は停止行動いずれかの行動をそれぞれ決定し、各事象に対して決定された行動の内容を用いて、一連の第1運転計画を立案する。後述する第2運転計画についても同様の手法により立案する。プロセッサ11は、自車両V1が第1経路を走行する際に経時的に遭遇する複数の事象と自車両V1との関係を用いて、各事象に関する一連の運転計画を立案する。これにより、最終的な運転計画を立案するまでのプロセスを簡素化できる。必要な事象を考慮した精度の高い運転計画を立案しつつ、演算負荷の低減を図ることができる。 Based on the relationship between the host vehicle V1 and a plurality of events that the host vehicle V1 encounters over time, the processor 11 determines whether the host vehicle V1 is in a progressing action or a stopping action. A series of first operation plans are drawn up using the content of the action determined in the above. A second operation plan, which will be described later, is also prepared by the same method. The processor 11 makes a series of driving plans for each event using the relationship between the host vehicle V1 and a plurality of events encountered over time when the host vehicle V1 travels the first route. As a result, the process up to the final operation plan can be simplified. The calculation load can be reduced while making a highly accurate operation plan in consideration of necessary events.
 プロセッサ11は、取得された事象の少なくとも一つ以上の事象に対して停止行動の決定又は判断不能の決定がされた場合には、自車両V1を停止させる運転計画を立案する。プロセッサ11は、抽出された事象の少なくとも一つ以上の事象に対して停止行動の決定又は判断不能の決定がされた場合には、自車両V1の現在位置に最も近い事象において自車両V1を停止させる運転計画を立案する。直ちに、自車両V1を停止させるので、リスクを回避できる。ちなみに、プロセッサ11が判断不能の決定をする場合とは、カメラ231の画像に含まれる死角領域の割合が所定値以上である場合、対象物検出装置230による対象物の検出確度が所定値未満である場合、レーンキープ装置240による処理が中止された場合、ドライバからの介入操作があった場合などである。判定不能である場合には、速やかに自車両V1を停止させることにより、不正確な情報に基づく運転計画の実行を抑制できる。 The processor 11 devises a driving plan for stopping the host vehicle V1 when a stop action is determined or an indeterminate determination is made for at least one of the acquired events. The processor 11 stops the host vehicle V1 at the event closest to the current position of the host vehicle V1 when the stop action is determined or the judgment is impossible for at least one of the extracted events. Develop an operation plan Since the host vehicle V1 is immediately stopped, risk can be avoided. Incidentally, the case where the processor 11 determines that the determination is impossible is that when the ratio of the blind spot area included in the image of the camera 231 is equal to or greater than a predetermined value, the detection accuracy of the target by the target detection device 230 is less than the predetermined value. In some cases, the processing by the lane keeping device 240 is stopped, or an intervention operation from the driver is performed. If the determination is impossible, the execution of the driving plan based on inaccurate information can be suppressed by promptly stopping the host vehicle V1.
 上述したとおり、事象の状態の変化に伴い、事象と自車両V1との関係は刻々に変化する。事象の状態が変化すれば、運転行動も変化する。プロセッサ11は、常時(所定周期で)各事象と自車両V1との関係を用いて、第1経路を走行する自車両V1の第1運転計画を立案する。 As described above, as the state of the event changes, the relationship between the event and the host vehicle V1 changes every moment. If the state of the event changes, so does the driving behavior. The processor 11 always makes a first driving plan for the host vehicle V1 traveling on the first route using the relationship between each event and the host vehicle V1 (at a predetermined cycle).
 運転支援装置100は、立案した運転計画をユーザに提示する。
 ここで、出力装置20を用いた運転計画の提示方法について説明する。
 出力装置20は、出力制御プロセッサ21を備える。出力制御プロセッサ21は、出力装置20としてのディスプレイ251を用いて、運転計画に関する情報を表示する。出力制御プロセッサ21は、プロセッサ11により抽出され、遭遇する順序に沿って並べられた事象を表示する。出力制御プロセッサ21は、並び替えられた複数の事象を、スピーカ252を用いて音声出力してもよい。
The driving support apparatus 100 presents the planned driving plan to the user.
Here, a method for presenting an operation plan using the output device 20 will be described.
The output device 20 includes an output control processor 21. The output control processor 21 uses the display 251 as the output device 20 to display information related to the operation plan. The output control processor 21 displays the events extracted by the processor 11 and arranged in the order they are encountered. The output control processor 21 may output a plurality of rearranged events as audio using the speaker 252.
 図3は、事象を経時的に示す情報VWの表示例である。矢印Tは、第1経路における自車両V1の進行方向を示す。出力制御プロセッサ21は、抽出された事象、つまり、停止線ST1及び信号SG1、横断歩道CR1、交差点MX12、及び横断歩道CR4を、自車両V1が遭遇する順に、矢印Tに沿って表示する。事象を示す情報は、記号であってもよいし、テキスト情報であってもよいし、抽象的なマークであってもよい。彩色、大きさ等は任意に決定できる。 FIG. 3 is a display example of information VW indicating events over time. An arrow T indicates the traveling direction of the host vehicle V1 on the first route. The output control processor 21 displays the extracted events, that is, the stop line ST1 and the signal SG1, the pedestrian crossing CR1, the intersection MX12, and the pedestrian crossing CR4 along the arrow T in the order in which the host vehicle V1 encounters. The information indicating the event may be a symbol, text information, or an abstract mark. The coloring, size, etc. can be determined arbitrarily.
 出力制御プロセッサ21は、プロセッサ11により決定された各事象の運転行動を、各事象に対応づけて表示する。図3に示す情報VWにおいては、矢印Tに沿う位置が各事象と共通するように、各事象の下にその事象の運転行動を表示する。運転行動を示す情報は、記号であってもよいし、テキスト情報であってもよいし、抽象的なマークであってもよい。彩色、大きさ等は任意に決定できる。 The output control processor 21 displays the driving behavior of each event determined by the processor 11 in association with each event. In the information VW shown in FIG. 3, the driving behavior of the event is displayed under each event so that the position along the arrow T is common to each event. The information indicating the driving action may be a symbol, text information, or an abstract mark. The coloring, size, etc. can be determined arbitrarily.
 出力制御プロセッサ21は、自車両V1から各事象までの実際の距離の比に応じた位置に、抽出された事象を示す記号、マーク等の情報で表示してもよい。出力制御プロセッサ21は、第1経路を示す矢印Tの長さを所定距離とし、自車両V1と各事象との実際の距離との比が表示情報VWにおいて表現されるように、矢印Tの全長に対する各事象のマーク位置を決定する。出力制御プロセッサ21は、自車両V1の速度を考慮し、第1経路を示す矢印Tの長さを所定距離とし、自車両V1が各事象に到達する時間の比が表示情報VWにおいて表現されるように、矢印Tの全長に対する各事象のマークの矢印の位置を決定してもよい。 The output control processor 21 may display information such as a symbol or a mark indicating the extracted event at a position corresponding to the ratio of the actual distance from the host vehicle V1 to each event. The output control processor 21 sets the length of the arrow T indicating the first route as a predetermined distance, and the total length of the arrow T so that the ratio of the actual distance between the host vehicle V1 and each event is represented in the display information VW. Determine the mark position of each event for. The output control processor 21 considers the speed of the host vehicle V1, sets the length of the arrow T indicating the first route as a predetermined distance, and expresses the ratio of the time at which the host vehicle V1 reaches each event in the display information VW. Thus, the position of the arrow of each event mark relative to the total length of the arrow T may be determined.
 出力制御プロセッサ21は、事象が、経路の交点、交通規則上の停止位置、道路構造物などの静止物、歩行者、他車両などの移動体を含む場合であっても、抽出された複数の事象に含まれる静止物と移動体を、自車両V1が遭遇する順序という共通の時間軸に沿って並べ替える。他車両には、後方から接近する他車両も含まれる。 The output control processor 21 can output a plurality of extracted points even when the event includes a crossing point of a route, a stop position on a traffic rule, a stationary object such as a road structure, a moving object such as a pedestrian or another vehicle. The stationary object and the moving body included in the event are rearranged along a common time axis that is the order in which the host vehicle V1 encounters. Other vehicles include other vehicles approaching from behind.
 このように、第1経路を走行する自車両V1が遭遇する事象を、自車両V1が遭遇する順序に沿って並べて表示することにより、自車両V1のドライバは、どのような事象に、どのような順序で遭遇し、どのような運転行動をとるのかを、視覚的に認識できる。 In this way, by displaying the events that the host vehicle V1 traveling on the first route encounters in the order in which the host vehicle V1 encounters, the driver of the host vehicle V1 can determine what event and how It is possible to visually recognize what kind of driving action is encountered in a proper order.
 次に、車線変更判断処理について説明する。
 プロセッサ11は、第1経路において特定された第1車線から別の第2車線に自車両V1を移動させる車線変更をするか否かを判断する(車線変更判断処理)を実行する。特に限定されないが、プロセッサ11は、車線変更をすることの有利性(アドバンテージ)の評価結果に基づいて車線変更をするか否かを判断する。車線変更をすることの有利性とは、車線変更をすることの意義(メリット)である。プロセッサ11は、車線変更の可能性及び/又は車線変更の必要性に基づいて「車線変更の有利性」を評価し、車線変更の要否を判断する。「車線変更の有利性」は、「車線変更の可否(許容性・リスク)」と、「車線変更の必要性」とを含む概念である。これにより、自車両V1の状態(速度、姿勢)及びその周囲の状況(対象物の存在、対象物の移動速度)、車線変更の必要性(目的地への経路の確保)を考慮して「車線変更の有利性」を多面的に判断することができる。具体的に、プロセッサ11は、車線変更の可否、車線変更の必要性に基づいて車線変更の有利性を判断し、車線変更の有利性に基づいて車線変更をするか否かを判断する。車線変更の可否は、自車両の状態、周囲の障害物との関係、道路などの環境の観点から車線変更ができるか否かという観点から判断され、車線変更の必要性は、自車両の目的地に至る経路を走行するための必要性、周囲の障害物を回避する経路を走行するための必要性などの観点から判断される。
Next, the lane change determination process will be described.
The processor 11 determines whether or not to change the lane for moving the host vehicle V1 from the first lane specified in the first route to another second lane (lane change determination process). Although not particularly limited, the processor 11 determines whether or not to change the lane based on the evaluation result of the advantage (advantage) of changing the lane. The advantage of changing lanes is the significance (merit) of changing lanes. The processor 11 evaluates “advantage of lane change” based on the possibility of lane change and / or necessity of lane change, and determines whether or not lane change is necessary. The “advantage of lane change” is a concept including “lane change possibility (allowability / risk)” and “need to change lane”. Thus, in consideration of the state (speed, posture) of the host vehicle V1 and the surrounding situation (the presence of the object, the moving speed of the object), the necessity of changing the lane (securing the route to the destination) The “advantage of changing lanes” can be judged from multiple aspects. Specifically, the processor 11 determines the lane change advantage based on whether or not the lane change is necessary and the lane change necessity, and determines whether or not to change the lane based on the lane change advantage. Whether the lane can be changed is determined from the viewpoint of whether the lane can be changed from the viewpoint of the state of the vehicle, the relationship with surrounding obstacles, the environment such as the road, etc. It is judged from the viewpoints such as the necessity for traveling on the route to the ground and the necessity for traveling on the route avoiding surrounding obstacles.
 プロセッサ11は、地図情報222、道路情報223、交通規則情報224、対象物検出装置230の検出結果、検出装置260の検出結果、ナビゲーション装置220の出力情報、レーンキープ装置24の出力情報の何れか一つ以上を用いて車線変更をするか否かを判断する。プロセッサ11は、車線変更をするか否かを判断するために車線変更の有利性を評価する。 The processor 11 is one of the map information 222, the road information 223, the traffic rule information 224, the detection result of the object detection device 230, the detection result of the detection device 260, the output information of the navigation device 220, and the output information of the lane keeping device 24. Use one or more to determine whether to change lanes. The processor 11 evaluates the lane change advantage to determine whether to change the lane.
 プロセッサ11は、自車両V1の周囲の状況に基づいて車線変更をするか否かを判断する。プロセッサ11は、車線変更をするか否かを判断するために車線変更の有利性を評価する。プロセッサ11は、車線変更の有利性(可能性)を第1経路において特定された第1車線に隣接する車線の有無、第1経路と交差する経路との関係、第1経路と交差する経路上の事象との関係、第1経路の交通規則、車線変更時における自車両V1と対象物との接近度、及び車線変更時における自車両V1の走行スペースの存在の何れか一つ以上を考慮して評価する。このように、自車両V1の周囲の状況に基づいて車線変更の有利性を評価することにより、自車両V1を車線変更させるか否かを適切に判断できる。 The processor 11 determines whether or not to change the lane based on the situation around the host vehicle V1. The processor 11 evaluates the lane change advantage to determine whether to change the lane. The processor 11 determines the advantage (possibility) of the lane change as to whether or not there is a lane adjacent to the first lane identified in the first route, the relationship with the route crossing the first route, and the route crossing the first route. Considering one or more of the relationship with the event, the traffic rules of the first route, the degree of proximity between the vehicle V1 and the object when the lane is changed, and the existence of the traveling space of the vehicle V1 when the lane is changed To evaluate. In this way, by evaluating the advantage of changing the lane based on the situation around the host vehicle V1, it is possible to appropriately determine whether or not to change the host vehicle V1.
 プロセッサ11は、自車両V1の周囲(特に車線変更をする区間)の状況が車線変更をできる状況ではない場合(車線変更が許容されない場合)には、車線変更は不可能であると判断する。この場合における自車両V1の車線変更の「有利性」は低いと判断される。
 プロセッサ11は、第1経路において特定された第1車線に隣接する車線の有無に基づいて車線変更をするか否かを判断する。この場合における自車両V1の車線変更の「有利性」は低いと評価される。自車両V1の走行車線(第1車線)に隣接車線が存在しない場合には、そもそも車線変更が不可能であるため、車線変更はしないと判断する。このとき自車両B1の車線変更の「有利性」は低いと評価される。
 プロセッサ11は、第1経路と交差(合流、分離を含む)する経路との関係を考慮して車線変更をするか否かを判断する。自車両V1の車線変更先に交差車線が存在するような場合には、リスクを考慮して車線変更をしないと判断する。この場合における自車両V1の車線変更の「有利性」は、低いと評価される。
 プロセッサ11は、第1経路と交差する経路上の事象との関係を考慮して車線変更をするか否かを判断する。自車両V1の車線変更先に横断歩道、交差点、進入禁止エリア、工事領域などの事象が存在するような場合に、プロセッサ11は、安全を考慮して車線変更をしないと判断する。この場合における自車両V1の車線変更の「有利性」は、低いと評価される。
 プロセッサ11は、第1経路の交通規則を考慮して車線変更をするか否かを判断する。第1経路が車線変更禁止である場合には、そもそも車線変更が不可能であるため、車線変更をしないと判断する。この場合の自車両V1の車線変更の「有利性」は低いと評価される。
 プロセッサ11は、車線変更時における自車両V1と対象物との接近度を考慮して車線変更をするか否かを判断する。自車両V1と対象物の距離が所定値未満、自車両V1と対象物の接近速度が所定値未満、自車両V1と対象物のTTCが所定値未満、又は他車両の接近速度が所定値以上である場合には、リスクを考慮して車線変更をしないと判断する。この場合における自車両V1の車線変更の「有利性」は、低いと評価される。
 プロセッサ11は、車線変更時における自車両V1の走行スペースの存在を考慮して車線変更をするか否かを判断する。車線変更後に自車両V1が走行するスペースが存在しない場合には、そもそも車線変更が不可能であるため、車線変更をしないと判断する。この場合における自車両V1の車線変更の「有利性」は低いと評価される。例えば、自車両V1の車線変更後に位置するスペースに他車両が存在する場合である。
 プロセッサ11は、対象物検出装置230の検出結果、地図情報222、道路情報223、交通規則情報224を用いて、自車両V1の周囲に車線変更をするエリアが存在するか否かを判断する。自車両V1の周囲(特に車線変更をするエリア)が車線変更をできる状況である場合には、車線変更が可能であると判断する。この場合における自車両V1の車線変更の「有利性」は高いと評価する。例えば、自車両V1の車線変更後に位置する十分なスペースが確保されている場合である。
The processor 11 determines that the lane change is impossible when the situation around the host vehicle V1 (particularly, the section where the lane change is performed) is not a situation where the lane change is possible (when the lane change is not allowed). In this case, it is determined that the “advantage” of the lane change of the host vehicle V1 is low.
The processor 11 determines whether or not to change the lane based on the presence or absence of a lane adjacent to the first lane specified in the first route. In this case, it is evaluated that the “advantage” of the lane change of the host vehicle V1 is low. If there is no adjacent lane in the travel lane (first lane) of the host vehicle V1, it is impossible to change the lane in the first place, so it is determined that the lane is not changed. At this time, it is evaluated that the “advantage” of the lane change of the host vehicle B1 is low.
The processor 11 determines whether or not to change the lane in consideration of the relationship with the route that intersects (including merge and separation) with the first route. If there is an intersection lane in the lane change destination of the host vehicle V1, it is determined that the lane change is not performed in consideration of the risk. In this case, the “advantage” of the lane change of the host vehicle V1 is evaluated to be low.
The processor 11 determines whether or not to change the lane in consideration of the relationship with the event on the route intersecting the first route. When there is an event such as a pedestrian crossing, an intersection, an entry prohibition area, or a construction area in the lane change destination of the own vehicle V1, the processor 11 determines that the lane change is not performed in consideration of safety. In this case, the “advantage” of the lane change of the host vehicle V1 is evaluated to be low.
The processor 11 determines whether or not to change the lane in consideration of the traffic rules of the first route. If the lane change is prohibited on the first route, it is impossible to change the lane in the first place, so it is determined that the lane change is not performed. In this case, the “advantage” of changing the lane of the host vehicle V1 is evaluated to be low.
The processor 11 determines whether or not to change the lane in consideration of the degree of approach between the host vehicle V1 and the object when the lane is changed. The distance between the host vehicle V1 and the target is less than a predetermined value, the approach speed between the host vehicle V1 and the target is less than a predetermined value, the TTC between the host vehicle V1 and the target is less than a predetermined value, or the approach speed of another vehicle is greater than or equal to a predetermined value. If this is the case, it is determined not to change the lane in consideration of the risk. In this case, the “advantage” of the lane change of the host vehicle V1 is evaluated to be low.
The processor 11 determines whether or not to change the lane in consideration of the existence of the traveling space of the host vehicle V1 when the lane is changed. If there is no space in which the host vehicle V1 travels after the lane change, it is impossible to change the lane in the first place, so it is determined that the lane change is not performed. In this case, it is evaluated that the “advantage” of the lane change of the host vehicle V1 is low. For example, there is a case where there is another vehicle in a space located after the lane change of the host vehicle V1.
The processor 11 uses the detection result of the object detection device 230, the map information 222, the road information 223, and the traffic rule information 224 to determine whether or not there is an area for changing the lane around the host vehicle V1. When the surroundings of the host vehicle V1 (particularly the area where the lane is changed) are in a situation where the lane can be changed, it is determined that the lane change is possible. In this case, it is evaluated that the “advantage” of changing the lane of the host vehicle V1 is high. For example, this is a case where a sufficient space is secured after the lane change of the host vehicle V1.
 プロセッサ11は、自車両V1の現在位置及び自車両V1の自車情報に基づいて、車線変更をするか否かを判断する。自車両V1の自車情報は、自車両V1の車速、姿勢、操舵角である。自車両V1の現在位置は、位置検出装置221により検出され、自車両V1の自車情報は検出装置260(舵角センサ261、車速センサ262、姿勢センサ263)により検出される。
 プロセッサ11は、自車両V1自体の自車情報を考慮し、自車両V1が車線変更をできない態勢である場合には、車線変更は不可能であると判断する。この場合における自車両V1の「有利性」は低いと評価する。自車両V1の自車情報が車線変更に適した閾値域外である場合は、車線変更をしないと判断する。この場合における自車両V1の車線変更の「有利性」は低いと判断する。例えば、自車両V1の速度が所定値以上である場合、自車両V1の操舵方向が車線変更の方向に対して所定値以上である場合、自車両V1の姿勢が車線変更に適した閾値域外である場合には、車線変更の「有利性」が低いと評価されるため、自車両V1に車線変更をさせることができないと判断する。他方、自車両V1の速度が所定値未満である場合、自車両V1の操舵方向が車線変更の方向に対して所定値未満である場合、自車両V1の姿勢が車線変更に適した閾値域内である場合には、車線変更の「有利性」が高いと評価されるため、自車両V1に車線変更をさせると判断する。
The processor 11 determines whether or not to change the lane based on the current position of the host vehicle V1 and the host vehicle information of the host vehicle V1. The host vehicle information of the host vehicle V1 is the vehicle speed, posture, and steering angle of the host vehicle V1. The current position of the host vehicle V1 is detected by the position detection device 221, and the host vehicle information of the host vehicle V1 is detected by the detection device 260 (the steering angle sensor 261, the vehicle speed sensor 262, and the attitude sensor 263).
The processor 11 considers the own vehicle information of the own vehicle V1 itself, and determines that the lane change is impossible when the own vehicle V1 is in a state where the lane change is not possible. In this case, the “advantage” of the host vehicle V1 is evaluated to be low. If the vehicle information of the host vehicle V1 is outside the threshold range suitable for lane change, it is determined that the lane change is not performed. In this case, it is determined that the “advantage” of the lane change of the host vehicle V1 is low. For example, when the speed of the host vehicle V1 is equal to or greater than a predetermined value, when the steering direction of the host vehicle V1 is equal to or greater than a predetermined value with respect to the direction of lane change, the attitude of the host vehicle V1 is outside a threshold range suitable for lane change. In some cases, since it is evaluated that the “advantage” of the lane change is low, it is determined that the host vehicle V1 cannot change the lane. On the other hand, when the speed of the host vehicle V1 is less than a predetermined value, when the steering direction of the host vehicle V1 is less than a predetermined value with respect to the direction of lane change, the attitude of the host vehicle V1 is within a threshold range suitable for lane change. In some cases, since it is evaluated that the “advantage” of the lane change is high, it is determined that the host vehicle V1 is to change the lane.
 周囲の環境のみに着目して車線変更が可能であると判断しても、自車両V1の自車情報や現在位置を考慮すると車線変更ができない場合もある。このような場合は、車線変更の決定をした後に、車線変更の決定を取消/訂正する必要が生じてしまい、判断の即時性が損なわれる。自車両V1の現在位置及び自車両V1の自車情報に基づいて車線変更をするか否かを判断することにより、車線変更の可否をリアルタイムで判断できる。また、車線変更の有利性に基づいて、車線変更をするか否かを判断するので、車線変更をするか否かの可否を正確に判断できる。 Even if it is determined that the lane change is possible by focusing only on the surrounding environment, the lane change may not be possible in consideration of the own vehicle information and the current position of the own vehicle V1. In such a case, it becomes necessary to cancel / correct the decision to change the lane after making the decision to change the lane, and the immediacy of judgment is lost. By determining whether to change the lane based on the current position of the host vehicle V1 and the host vehicle information of the host vehicle V1, it is possible to determine in real time whether the lane can be changed. Further, since it is determined whether or not to change lanes based on the advantage of changing lanes, it is possible to accurately determine whether or not to change lanes.
 自車両V1の目的地が指定され、その目的地に至るためには、車線変更が必要である場合には、車線変更を実行しなければならない。この場合において、車線変更の「有利性」は高いと評価される。指定された目的地に至るために、車線変更が必要であっても、別の地点で車線変更ができる場合には、車線変更の必要性は相対的に低く、その「有利性」は低いと評価される。特定された目的地に至るために車線変更が不要である場合には、その「有利性」は低いと評価される。プロセッサ11は、「有利性」が第1閾値以上である場合には、車線変更をすると判断し、第2閾値未満である場合には、車線変更をしないと判断する。 If the destination of the host vehicle V1 is specified and it is necessary to change the lane to reach the destination, the lane change must be executed. In this case, the “advantage” of lane change is evaluated as high. Even if a lane change is required to reach the designated destination, if the lane change can be made at another point, the necessity for the lane change is relatively low, and the “advantage” is low. Be evaluated. If no lane change is required to reach the specified destination, the “advantage” is evaluated as low. The processor 11 determines that the lane change is made when the “advantage” is equal to or greater than the first threshold value, and determines that the lane change is not made when the “advantage” is less than the second threshold value.
 自車両V1の走行経路上に障害物(故障車両、工事現場、駐車車両など)が存在する場合に、運転計画に従うために車線変更が必要である場合には、車線変更を実行しなければならない。この場合において、車線変更の「有利性」は高いと評価される。車線変更をしなくても、道路幅が広い場合や障害物が小さい場合など車線変更をすることなく障害物を回避できる場合は、車線変更の「有利性」は低いと評価される。プロセッサ11は、「有利性」が第1閾値以上である場合には、車線変更をすると判断し、第2閾値未満である場合には、車線変更をしないと判断する。 If there is an obstacle (failed vehicle, construction site, parked vehicle, etc.) on the travel route of the host vehicle V1, if the lane change is necessary to follow the driving plan, the lane change must be executed. . In this case, the “advantage” of lane change is evaluated as high. If the obstacle can be avoided without changing the lane without changing the lane, such as when the road is wide or the obstacle is small, the “advantage” of changing the lane is evaluated as low. The processor 11 determines that the lane change is made when the “advantage” is equal to or greater than the first threshold value, and determines that the lane change is not made when the “advantage” is less than the second threshold value.
 プロセッサ11は、車線変更の有利性の評価に関し、自車両V1が車線変更を実行する区間を予測し、その区間における車線変更をすることの有利性を評価する。プロセッサ11は、この区間における有利性に基づいて、自車両V1の車線変更をするか否かを判断する。これにより、車線変更が実際に行われる場所における「車線変更の有利性」「車線変更をするか否か」を正確に判断できる。先述したように、事象の状況及び自車両V1の状況は刻々変化する。車線変更が実際に行われる区間(場所)を抽出し、その区間について、車線変更の有利性の評価、車線変更を実行するか否を判断するので、漠然と広い範囲について車線変更をするか否かを判断するよりも、現実の状況に適合した正確な判断結果を得ることができる。 The processor 11 predicts the section in which the host vehicle V1 executes the lane change and evaluates the advantage of changing the lane in the section regarding the evaluation of the lane change advantage. The processor 11 determines whether or not to change the lane of the host vehicle V1 based on the advantage in this section. This makes it possible to accurately determine “the advantage of changing the lane” and “whether or not to change the lane” at the place where the lane change is actually performed. As described above, the situation of the event and the situation of the host vehicle V1 change every moment. Since the section (location) where the lane change is actually performed is extracted and the lane change is evaluated for the section, and whether or not the lane change is executed is determined. Rather than judging the above, it is possible to obtain an accurate judgment result adapted to the actual situation.
 プロセッサ11は、車線変更をすると予測された区間と取得した事象の存在領域とが重複する場合には、車線変更の有利性を低いと評価し、車線変更をしないと判断する。つまり、車線変更は行われない。事象の存在領域は、事象ごとに予め設定し、ROM/RAMに記憶しておいてもよい。事象の存在領域は、各事象の態様に応じて設定する。例えば、他車両の存在領域は歩行者の存在領域よりも大きく設定する。他車両の移動速度は歩行者の移動速度よりも高く、移動速度が高い事象が存在する場所で車線変更をすることは好ましくないからである。他車両の移動速度は、対象物検出装置230から得た移動速度が高いほど、大きく設定できる。道路標識、道路構造物については、車線変更に障害が生じる可能性が高いほど存在領域を大きく設定する。車線変更が行われる区間と、事象の存在領域とが干渉するか否かを考慮することにより、車線変更に影響を与える事象が存在するときには、車線変更をしないと判断する。 The processor 11 evaluates that the advantage of the lane change is low and determines not to change the lane when the section predicted to change the lane and the acquired event existing area overlap. That is, no lane change is performed. The event existence area may be preset for each event and stored in the ROM / RAM. The event existence area is set according to the mode of each event. For example, the existence area of the other vehicle is set larger than the existence area of the pedestrian. This is because the moving speed of the other vehicle is higher than the moving speed of the pedestrian, and it is not preferable to change the lane in a place where an event with a high moving speed exists. The moving speed of the other vehicle can be set larger as the moving speed obtained from the object detection device 230 is higher. For road signs and road structures, the larger the existence area, the higher the possibility that a lane change will occur. By considering whether or not the section in which the lane change is performed interferes with the existence area of the event, it is determined that the lane change is not performed when there is an event that affects the lane change.
 プロセッサ11は、車線変更の有利性の評価値を評価結果として算出する。上述した車線変更の有利性は、可算な数値として出力される。車線変更の有利性の評価値が第1閾値以上である場合には、車線変更をすると判断する。車線変更の有利性の評価値が第2閾値未満である場合には、車線変更をしないと判断する。判断の要因(隣接車線の存在、対象物の存在など)ごとに、車線変更の有利性に重みづけをして各評価値を求め、これらに基づいて総合的な評価値を算出してもよい。有利性の数値化に関する手法は特に限定されず、最低値、最高値、重みづけの係数は適宜に定義する。第1閾値と第2閾値とは同値であってもよいし、異なる値であってもよい。 The processor 11 calculates an evaluation value of the lane change advantage as an evaluation result. The advantages of the lane change described above are output as countable numbers. When the evaluation value of the lane change advantage is equal to or greater than the first threshold, it is determined that the lane change is to be made. When the evaluation value of the lane change advantage is less than the second threshold, it is determined that the lane change is not performed. For each judgment factor (the presence of an adjacent lane, the presence of an object, etc.), each valuation value may be obtained by weighting the advantage of lane change, and a comprehensive evaluation value may be calculated based on these values. . The method for quantifying the advantage is not particularly limited, and the minimum value, the maximum value, and the weighting coefficient are appropriately defined. The first threshold value and the second threshold value may be the same value or different values.
 最後に、第2運転計画立案処理について説明する。
 次に、プロセッサ11は、車線変更の有利性の評価結果に基づいて、第2運転計画立案処理を実行する。
 プロセッサ11は、車線変更をすると判断した場合には、自車両V1を第2車線に車線変更させる第2経路を走行させる第2運転計画を立案する(第2運転計画立案処理)。
Finally, the second operation planning process will be described.
Next, the processor 11 executes a second operation planning process based on the evaluation result of the lane change advantage.
When the processor 11 determines to change the lane, the processor 11 makes a second operation plan for traveling the second route for changing the host vehicle V1 to the second lane (second operation plan planning process).
 プロセッサ11は、車線変更の有利性の評価値が第1閾値以上となった場合には、車線変更をする利益があると判断する。プロセッサ11は、自車両V1を第2車線に車線変更させる第2経路を走行させる第2運転計画を立案する。プロセッサ11は、車線変更の有利性が大きいと評価できる場合に限って車線変更を含む第2運転計画を立案する。
 一般に、車載カメラ等の検知装置によって得られた情報を処理し、新たな経路を逐次探索するという処理の演算負荷は大きい。演算負荷の大きさは、演算処理の遅延を引き起こす。演算処理の遅延は、リアルタイム性が求められる自動運転/半自動運転を含む運転支援の信頼性を損ねる。
The processor 11 determines that there is a benefit of changing the lane when the evaluation value of the advantage of changing the lane is equal to or greater than the first threshold value. The processor 11 devises a second operation plan for traveling on the second route for changing the host vehicle V1 to the second lane. The processor 11 makes a second operation plan including the lane change only when it can be evaluated that the advantage of the lane change is large.
In general, the processing load of processing information obtained by a detection device such as an in-vehicle camera and sequentially searching for new routes is large. The magnitude of the computation load causes a delay in computation processing. The delay of arithmetic processing impairs the reliability of driving support including automatic driving / semi-automatic driving that requires real-time performance.
 本実施形態では、「現在走行中の経路(車線)を継続して走行するか」又は「車線変更をするか」という二者択一の判断に基づいて、最終的に第1運転計画と第2運転計画のいずれに従うかを判断する。車線変更を考慮に入れた、無限に存在する行動候補の中から、走行シーンにふさわしい行動を生成するのではなく、車線変更をするか否かの判断に基づいてレーンキープ走行(現行の第1運転計画)と車線変更走行(車線変更を含めた別の第2運転計画)の2つの運転計画のうち適切なものを選択するだけで済むので、演算負荷を低減し、迅速な処理を実行できる。これにより、ヒューマンドライバーにとって違和感のない運転行動を実現できる。特に、自動的な運転を支援する場合においては、本手法は、信頼性の高い円滑な運転の実現に貢献する。 In the present embodiment, the first driving plan and the first driving plan are finally determined based on an alternative decision of “whether to continue the route (lane) that is currently traveling” or “change lane”. Judge which of the two operation plans to follow. Instead of generating an action suitable for the driving scene from infinite action candidates that take lane changes into consideration, lane keeping driving (based on the current first) is determined based on whether or not to change lanes. Operation plan) and lane change travel (another second operation plan including lane change) need only be selected from the two appropriate operation plans, thus reducing the computation load and enabling quick processing. . As a result, it is possible to realize driving behavior that is comfortable for human drivers. In particular, when supporting automatic driving, this method contributes to the realization of reliable and smooth driving.
 先述したように、プロセッサ11は、車線変更の有利性の評価値が第1閾値以上となった場合には車線変更をすると判断し、自車両V1を第2車線に車線変更させる第2経路を走行させる第2運転計画を立案する。第2運転計画が立案された場合には、プロセッサ11は、第2運転計画に従うように自車両V1の運転を支援する。
 一方において、プロセッサ11は、車線変更の有利性の評価値が第2閾値未満であると評価された場合には、現在、実行されている第1運転計画に従うように自車両V1の運転を支援する(第1運転計画に従う運転支援を継続する)。言い換えると、プロセッサ11は、車線変更の有利性が低く、車線変更を行わないと判断した場合には、車線変更することなく、先に立案された第1運転計画を継続的に実行するので、演算処理に無駄が生じない。プロセッサ11の処理能力を有効に活用できる。なお、第1閾値と第2閾値とは同値であってもよいし、異なる値であってもよい。
As described above, the processor 11 determines that the lane change is to be performed when the evaluation value of the advantage of the lane change is equal to or greater than the first threshold, and the second route for changing the lane of the host vehicle V1 to the second lane is determined. Make a second driving plan to run. When the second operation plan is drawn up, the processor 11 supports the operation of the host vehicle V1 so as to follow the second operation plan.
On the other hand, when the evaluation value of the advantage of lane change is evaluated to be less than the second threshold value, the processor 11 supports the driving of the host vehicle V1 so as to follow the currently executed first driving plan. (Continue driving support according to the first operation plan). In other words, when the processor 11 has a low lane change advantage and determines that the lane change is not performed, the processor 11 continuously executes the first operation plan previously planned without changing the lane. There is no waste in arithmetic processing. The processing capability of the processor 11 can be used effectively. The first threshold value and the second threshold value may be the same value or different values.
 図4には、プロセッサ11が、車線変更をすると判断した場合に算出される第2経路R2を示す。プロセッサ11は、所定のタイミングで、自車両V1の車線変更をするか否かを判断する。プロセッサ11は、車線変更の要否を判断するために車線変更の有利性を評価する。車線変更の有利性の評価タイミングは特に限定されないが、交差点からの距離が所定値未満となったタイミングとする。特定された目的地に至るために車線変更が必要である場合には、車線変更可能な場面ごとに車線変更の有利性を評価してもよい。 FIG. 4 shows the second route R2 calculated when the processor 11 determines to change lanes. The processor 11 determines whether or not to change the lane of the host vehicle V1 at a predetermined timing. The processor 11 evaluates the advantage of the lane change in order to determine whether or not the lane change is necessary. Although the evaluation timing of the advantage of changing lanes is not particularly limited, it is assumed that the distance from the intersection is less than a predetermined value. When the lane change is necessary to reach the specified destination, the advantage of the lane change may be evaluated for each scene where the lane can be changed.
 プロセッサ11が、車線変更の有利性を評価するタイミングにおいては、自車両V1は第1経路R1を走行している。プロセッサ11は、第1経路R1の走行中の自車両V1について車線変更の有利性を評価する。車線変更の有利性が第1閾値以上である場合には、プロセッサ11は車線変更をすると判断する。プロセッサ11は、第1経路R1において特定された第1車線L1から別の第2車線L2に自車両V1を移動させる車線変更をすることを含めた第2経路R2を算出する。プロセッサ11は、第2経路R2を走行する際に自車両V1が遭遇する事象を抽出し、各事象に対する運転行動を決定する。車線変更をするか否かを判断した(車線変更の有利性を評価した)後に行われる、経路の算出、事象の検出・抽出、運転行動の決定を含む運転計画立案の手法は、図2を用いて説明した第1運転計画の立案手法と共通する。 At the timing when the processor 11 evaluates the advantage of changing lanes, the host vehicle V1 is traveling on the first route R1. The processor 11 evaluates the advantage of changing the lane for the host vehicle V1 traveling on the first route R1. If the lane change advantage is equal to or greater than the first threshold, the processor 11 determines to change the lane. The processor 11 calculates the second route R2 including changing the lane for moving the host vehicle V1 from the first lane L1 specified on the first route R1 to another second lane L2. The processor 11 extracts an event that the host vehicle V1 encounters when traveling on the second route R2, and determines a driving action for each event. Figure 2 shows the method of driving planning, which includes route calculation, event detection / extraction, and driving action determination, performed after deciding whether or not to change lanes (evaluating the lane change advantage). This is the same as the method for creating the first operation plan described above.
 図4に示す例において、プロセッサ11は、自車両V1が第2経路R2を走行する際に遭遇する事象に対してとるべき運転行動を判断する。自車両V1は矢印F0の方向から矢印F1の方向へ操舵し、車線L1から車線L2に車線変更する。第2経路R2において、停止線ST1、信号SG1、横断歩道CR1を通過し、交差点P内で右折する。第2経路R2の進行方向は、第1経路R1の進行方向と基本的に共通する。この第2経路R2を走行する際に自車両V1が遭遇する事象は、停止線ST1、信号SG1、横断歩道CR1、交差点MX12、横断歩道CR4である。 In the example shown in FIG. 4, the processor 11 determines a driving action to be taken for an event encountered when the host vehicle V1 travels on the second route R2. The host vehicle V1 steers from the direction of the arrow F0 to the direction of the arrow F1, and changes the lane from the lane L1 to the lane L2. In the second route R2, pass through the stop line ST1, the signal SG1, and the pedestrian crossing CR1, and turn right at the intersection P. The traveling direction of the second route R2 is basically the same as the traveling direction of the first route R1. Events that the host vehicle V1 encounters when traveling on the second route R2 are a stop line ST1, a signal SG1, a pedestrian crossing CR1, an intersection MX12, and a pedestrian crossing CR4.
 プロセッサ11は、自車両V1から最も近い事象(停止線ST1)について、自車両V1からの距離D1/到達時間S1と、これが一時停止を求める事象であると判断する。プロセッサ11は、自車両V1から二番目に近い事象(信号SG1)について、自車両V1からの距離D2/到達時間S2であり、進行を許可する(青/緑信号)事象であると判断する。プロセッサ11は、事象(信号SG1)において進行許可が指示されていることに基づいて、事象(信号SG1)に対応づけられた事象(停止線ST1)についての運転行動は「進行」と判断する。 The processor 11 determines that the event closest to the host vehicle V1 (stop line ST1) is the distance D1 / arrival time S1 from the host vehicle V1 and this is an event for requesting a temporary stop. The processor 11 determines that the second closest event (signal SG1) from the host vehicle V1 is a distance D2 / arrival time S2 from the host vehicle V1 and is an event permitting progress (blue / green signal). The processor 11 determines that the driving action for the event (stop line ST1) associated with the event (signal SG1) is “progress” based on the fact that the progress permission is instructed in the event (signal SG1).
 プロセッサ11は、自車両V1から三番目に近い事象(横断歩道CR1)について、自車両V1からの距離D2/到達時間S2であり、進行を許可する(青/緑信号)事象であると判断する。プロセッサ11は、事象(信号SG1)において進行許可が指示されているので、事象(横断歩道CR1)は「進行」となる。また、横断歩道CR1を歩行中の歩行者H1は第2経路R2からの距離が所定値以上である。プロセッサ11は、対象物検出装置230の検出結果(歩行者H1の存在)に基づいて、事象(横断歩道CR1)についての運転行動は「進行」となる。 The processor 11 determines that the third closest event (crosswalk CR1) from the host vehicle V1 is a distance D2 / arrival time S2 from the host vehicle V1 and is an event permitting progress (blue / green signal). . Since the processor 11 is instructed to proceed in the event (signal SG1), the event (pedestrian crossing CR1) is “progress”. Further, the pedestrian H1 who is walking on the pedestrian crossing CR1 has a distance from the second route R2 equal to or greater than a predetermined value. Based on the detection result of the object detection device 230 (presence of the pedestrian H1), the processor 11 sets the driving action for the event (crosswalk CR1) to “progress”.
 プロセッサ11は、交差点P内で右折する際に、第2経路が別の道路と交差する地点(交差点)を事象として抽出する。プロセッサは、自車両V1から三番目に近い事象(交差点MX12)について、自車両V1からの距離D3/到達時間S3を取得する。また、対象物検出装置230は、交差点MX12に接近する他車両は存在しないという検出結果を出力する。プロセッサ11は、対象物検出装置230の検出結果(対象物の存在無し)に基づいて、事象(交差点MX12)についての運転行動は「進行」となる。 When the processor 11 makes a right turn at the intersection P, the processor 11 extracts a point (intersection) where the second route intersects with another road as an event. The processor acquires the distance D3 / arrival time S3 from the host vehicle V1 for the event (intersection MX12) that is the third closest to the host vehicle V1. In addition, the object detection device 230 outputs a detection result that there is no other vehicle approaching the intersection MX12. Based on the detection result of the object detection device 230 (the absence of the object), the processor 11 determines that the driving action for the event (intersection MX12) is “progress”.
 プロセッサ11は、自車両V1から四番目に近い事象(横断歩道CR4)について、自車両V1からの距離D4/到達時間S4であると判断する。事象(横断歩道CR4)進入前のタイミングで対象物検出装置230が対象物を検出しない場合には、プロセッサ11は、事象(横断歩道CR4)についての運転行動は「進行」となる。 The processor 11 determines that the event closest to the host vehicle V1 (crosswalk CR4) is the distance D4 / arrival time S4 from the host vehicle V1. When the object detection device 230 does not detect an object at the timing before entering the event (crosswalk CR4), the processor 11 determines that the driving action for the event (crosswalk CR4) is “progress”.
 プロセッサ11は、自車両V1が経時的に遭遇する複数の事象と自車両V1との関係に基づいて、各事象に対して進行行動又は停止行動いずれかの行動をそれぞれ決定し、各事象に対して決定された行動の内容を用いて、一連の第2運転計画を立案する。 Based on the relationship between the host vehicle V1 and a plurality of events that the host vehicle V1 encounters over time, the processor 11 determines whether the host vehicle V1 is in a progressing action or a stopping action. A series of second operation plans are made using the content of the action determined in the above.
 運転計画の立案処理に相前後して、プロセッサ11は、運転計画を生成する際に、「停止」の事象についての停止位置を決定する。「停止位置」は、第1運転計画又は第2運転計画の一部を構成する。「停止位置」の状況は刻々に変化する。プロセッサ11は、第1運転計画又は第2運転計画を所定周期で検証し、「停止」及び「停止位置」の判断を更新する。
 以下、運転計画における停止位置を決めるにあたり、停止位置を設定する手法を説明する。プロセッサ11は、運転計画において、停止行動が決定された場合又は行動の決定判断が不能であった場合には、その事象よりも上流側であって停止可能な位置において自車両V1を停止させる。プロセッサ11は、自車両V1の停止が要求される事象よりも所定距離だけ上流側の位置に、停止位置を設定する。
Before or after the operation plan planning process, the processor 11 determines the stop position for the “stop” event when generating the operation plan. The “stop position” constitutes a part of the first operation plan or the second operation plan. The situation of “stop position” changes every moment. The processor 11 verifies the first operation plan or the second operation plan at a predetermined period, and updates the determination of “stop” and “stop position”.
Hereinafter, a method for setting the stop position in determining the stop position in the operation plan will be described. The processor 11 stops the host vehicle V1 at a position that can be stopped upstream of the event when the stop action is determined in the driving plan or when it is impossible to determine the action. The processor 11 sets the stop position at a position upstream by a predetermined distance from the event that the stop of the host vehicle V1 is required.
 プロセッサ11は、自車両V1が第1経路を走行する際に遭遇する複数の事象のうち、事象に対して自車両V1が停止すべき関係であり、かつ自車両V1が最初に遭遇する一つの事象を抽出し、抽出された一の事象が生じるポイントを自車両V1の停止地点とする運転計画を立案する。自車両V1の現在位置に最も近い事象で自車両V1を停止させるので、交通流に対して与える影響を抑制できる。また、実際の交通規則情報224において定義された停止位置よりも自車両V1の現在位置に近い位置で自車両V1を停止させるので、交通流に対して与える影響を抑制できる。 The processor 11 has a relationship in which the host vehicle V1 should stop with respect to the event among a plurality of events encountered when the host vehicle V1 travels the first route, and the host vehicle V1 first encounters the event. An event is extracted, and an operation plan is created in which the point where the extracted event occurs is the stop point of the host vehicle V1. Since the host vehicle V1 is stopped at an event closest to the current position of the host vehicle V1, the influence on the traffic flow can be suppressed. Further, since the host vehicle V1 is stopped at a position closer to the current position of the host vehicle V1 than the stop position defined in the actual traffic rule information 224, the influence on the traffic flow can be suppressed.
 プロセッサ11は、抽出された事象のうち、停止行動又は判断不能の決定がされた事象が、他の事象と接近乃至重複し、両事象が所定距離以内となる場合には、その事象よりも上流側であって停止可能な位置にて自車両V1を停止させる。これにより、ストップ アンド ゴーを繰り返すことなく、自車両V1をスムーズに走行できる。 The processor 11 determines that an event for which a stop action or an indeterminate decision has been made among the extracted events approaches or overlaps with other events, and both events are within a predetermined distance, the upstream of the event. The host vehicle V1 is stopped at a position where the vehicle can be stopped. As a result, the host vehicle V1 can travel smoothly without repeating stop-and-go.
 プロセッサ11は、抽出された事象のうち、一の事象について進行行動が決定され、その事象の次に遭遇する他の事象について停止行動又は判断不能が決定された場合において、一の事象と他の事象との離隔度合が所定値以上である場合には、一の事象について自車両V1を進行させる運転計画を立案する。ある一の事象について進行が許可されたが、その後に遭遇する他の事象において停止行動又は判断不能の決定がされた場合において、上流側の一の事象にて自車両V1を停車させると、再度他の事象の進行可否を判断しなければならず、また、他の第2経路上の他車両の交通の流れの妨げになる可能性もある。このように、離隔した事象において上流側では「進行」下流側では「停止」という異なる判断が示された場合には、上流側の事象では自車両V1を進行させることにより、複雑な処理にならないようにすることができる。 The processor 11 determines that the progress behavior is determined for one event out of the extracted events, and the stop behavior or indeterminableness is determined for another event encountered next to the event, When the degree of separation from the event is equal to or greater than a predetermined value, an operation plan is made to advance the host vehicle V1 for one event. When progress is permitted for a certain event but a stop action or determination is impossible in another event that is encountered thereafter, if the host vehicle V1 is stopped at one upstream event, It is necessary to determine whether or not other events can proceed, and there is a possibility that the traffic flow of other vehicles on the other second route may be hindered. As described above, when different determinations are made such as “progress” on the upstream side and “stop” on the downstream side in the separated event, the host vehicle V1 is advanced in the upstream event, so that complicated processing does not occur. Can be.
 プロセッサ11は、自車両V1が遭遇する複数の停止位置のうち最も自車両V1に近い停止位置を、自車両V1を停止させる停止位置として決定する。このように、停止位置のうち、自車両V1の現在位置に最も近い位置で自車両V1を停止させるので、交通流に対して与える影響を抑制できる。 The processor 11 determines a stop position closest to the host vehicle V1 among a plurality of stop positions encountered by the host vehicle V1 as a stop position at which the host vehicle V1 is stopped. Thus, since the own vehicle V1 is stopped at the position closest to the current position of the own vehicle V1 among the stop positions, the influence on the traffic flow can be suppressed.
 プロセッサ11は、自車両V1の駐停車が禁止された領域の外延よりも所定距離だけ上流側の位置、駐停車禁止領域の外側に、停止位置を設定する。実際の交通規則情報224において定義された停止位置よりも自車両V1の現在位置に近い位置で自車両V1を停止させるので、交通流に対して与える影響を抑制できる。 The processor 11 sets a stop position at a position a predetermined distance upstream from the extension of the area where parking and stopping of the host vehicle V1 is prohibited, and outside the parking and stopping area. Since the host vehicle V1 is stopped at a position closer to the current position of the host vehicle V1 than the stop position defined in the actual traffic rule information 224, the influence on the traffic flow can be suppressed.
 プロセッサ11は、第1経路の交通信号又は第1経路の交通規則に応じて、自車両V1が遭遇する事象が生じない領域に停止位置を設定しないようにできる。青信号により第1経路における自車両V1の通行が確保されている場合や、交通規則により第1経路が優先道路として定義され、自車両V1の優先的な通行が確保されている場合には、停止位置を設定しないようにできる。停止が必要とされない場面で停止することを避けて、スムーズな走行を実行できる。 The processor 11 can prevent the stop position from being set in an area where the event that the host vehicle V1 encounters does not occur in accordance with the traffic signal of the first route or the traffic rule of the first route. Stop when the traffic of the vehicle V1 on the first route is secured by the green light, or when the first route is defined as a priority road by traffic rules and the traffic of the vehicle V1 is secured preferentially It is possible not to set the position. Smooth running can be performed by avoiding stopping in scenes where stopping is not required.
 プロセッサ11は、自車両V1が遭遇する複数の事象について、進行行動が決定された事象の次に遭遇する事象について停止行動又は判断不能の決定がされた場合には、進行行動が決定された事象との遭遇ポイントにおいて自車両V1を停止させる。いったん進行行動が決定された場合であっても、自車両V1が次に遭遇する事象が停止行動又は判断不能である場合には、進行行動が決定された位置に自車両V1を停止させることができる。進行行動が決定された場所は、自車両V1の存在が許可された場所であるので、安全に自車両V1を停止させることができる。 The processor 11 determines the event in which the progress action is determined when a stop action or an indeterminate determination is made for an event that is encountered next to the event in which the progress action is determined for a plurality of events that the host vehicle V1 encounters. The own vehicle V1 is stopped at the encounter point. Even when the traveling action is determined, if the next event that the host vehicle V1 encounters is a stop action or cannot be determined, the host vehicle V1 may be stopped at the position where the traveling action is determined. it can. Since the place where the traveling action is determined is a place where the existence of the host vehicle V1 is permitted, the host vehicle V1 can be safely stopped.
 プロセッサ11は、自車両V1が遭遇する複数の事象のうち、停止行動又は判断不能の決定がされた事象が、他の事象と所定距離以内となる場合には、事象よりも上流側であって停止可能な位置にて自車両V1を停止させる。ある事象について停止行動又は判断不能の決定がされた場合であっても、その事象に応じた停止位置が他の事象に応じた停止位置と接近乃至重なる場合には、他の事象に関する判断との整合を考慮する必要があるので、停止位置として適切ではない。これにより、判断不可を低減させるとともに、ストップアンドゴーを繰り返すことなく、スムーズに自車両V1を走行させることができる。 The processor 11 is located upstream of the event when a stop action or an event that is determined to be undecidable is within a predetermined distance from other events among a plurality of events that the host vehicle V1 encounters. The host vehicle V1 is stopped at a position where it can be stopped. Even if a stop action or determination is impossible for an event, if the stop position according to the event approaches or overlaps the stop position according to another event, Since it is necessary to consider alignment, it is not suitable as a stop position. Accordingly, it is possible to reduce the impossibility of determination and to make the host vehicle V1 travel smoothly without repeating stop and go.
 運転支援装置100は、立案した第2転計画をユーザに提示する。
 図5は、事象を経時的に示す情報VWの表示例である。矢印Tは、第2経路における自車両V1の進行方向を示す。出力制御プロセッサ21は、抽出された事象、つまり、停止線ST1及び信号SG1、横断歩道CR1、交差点MX12、及び横断歩道CR4を、自車両V1が遭遇する順に、矢印Tに沿って表示する。図5に示す情報VWにおいては、矢各事象の下にその事象の運転行動を表示する。
The driving assistance apparatus 100 presents the planned second turn plan to the user.
FIG. 5 is a display example of information VW indicating events over time. An arrow T indicates the traveling direction of the host vehicle V1 on the second route. The output control processor 21 displays the extracted events, that is, the stop line ST1 and the signal SG1, the pedestrian crossing CR1, the intersection MX12, and the pedestrian crossing CR4 along the arrow T in the order in which the host vehicle V1 encounters. In the information VW shown in FIG. 5, the driving behavior of the event is displayed under each event.
 このように、第1経路から第2経路に変更された場合であっても、車線変更を含む第2経路を走行する自車両V1が遭遇する事象を、自車両V1が遭遇する順序に沿って並べて表示することにより、自車両V1のドライバは、車線変更後の第2経路において、どのような事象に、どのような順序で遭遇し、どのような運転行動をとるのかを、視覚的に認識できる。 As described above, even when the vehicle is changed from the first route to the second route, the event that the host vehicle V1 traveling on the second route including the lane change encounters the event that the host vehicle V1 encounters. By displaying them side by side, the driver of the host vehicle V1 visually recognizes what kind of event is encountered in what order and what kind of driving action is taken in the second route after the lane change. it can.
 また、本例において、出力制御プロセッサ21は、各事象に対して決定された行動を、自車両V1が遭遇する順序に沿って並べた運転行動情報を表示するとともに、予測された区間の位置と各事象の位置とに基づいて、区間を運転行動情報に重畳表示する。これにより、ドライバは、事象と遭遇するタイミングを基準として、車線変更のタイミングを認識することができる。ドライバは、操舵(車線変更)のタイミングを認識できるので、自車両V1の挙動に対して違和感を覚えないようにできる。 In this example, the output control processor 21 displays driving action information in which actions determined for each event are arranged in the order in which the host vehicle V1 encounters, and the position of the predicted section and Based on the position of each event, the section is superimposed and displayed on the driving action information. Thereby, the driver can recognize the timing of the lane change based on the timing of encountering the event. Since the driver can recognize the timing of the steering (lane change), the driver can avoid feeling uncomfortable with the behavior of the host vehicle V1.
 続いて、運転支援システム1の処理手順を、図6のフローチャートに基づいて説明する。運転支援装置100は、設定された経路(第1経路/第2経路)に沿って自車両V1を走行させる。経路は、道路の車線(レーン)に基づいて設定してもよいし、車線に限定されずに設定してもよい。運転支援装置100は、常時、車線(レーン)を維持する運転支援であってもよいし、操舵量が所定値未満の場合(例えば直進時)には車線(レーン)を維持する走行とし、操舵量が所定値以上の場合(例えば交差点内の右左折時)には車線として想定された仮想車線を維持する走行としてもよい。 Subsequently, the processing procedure of the driving support system 1 will be described based on the flowchart of FIG. The driving support apparatus 100 causes the host vehicle V1 to travel along the set route (first route / second route). The route may be set based on the lane (lane) of the road, or may be set without being limited to the lane. The driving assistance device 100 may be driving assistance that always maintains the lane (lane), or when the steering amount is less than a predetermined value (for example, when going straight), the driving assistance device 100 performs traveling to maintain the lane (lane). When the amount is greater than or equal to a predetermined value (for example, when turning left or right in an intersection), the vehicle may travel while maintaining the virtual lane assumed as the lane.
 ステップS101-S109は第1運転計画の立案・実行に関する処理であり、ステップS111-S113は第2運転計画の立案・実行に関する処理である。第1運転計画は、レーンキープ装置240を用いて実行される。レーンキープ装置240は、カメラ241を用いて走行中の車線を検出し、自車両V1が車線内を走行するように操舵装置280を制御し、自車両V1を走行させる(レーンキープ走行)。レーンキープ装置240は、レーンを検出することができない交差点などにおいては、走行経路に沿った仮想レーンを作成し、仮想レーン内を走行するように、操舵装置280を制御し、自車両V1を走行させる。第2運転計画についても、レーンキープ装置240により実行させてもよい。ただし、車線変更時の操作は、レーンを逸脱することが前提であるので、車線変更においては、車線変更経路に沿った仮想レーンを作成し、その仮想レーン内を走行するように、操舵装置280を制御し、自車両V1を走行させる。 Steps S101 to S109 are processes related to the planning and execution of the first operation plan, and steps S111 to S113 are processes related to the planning and execution of the second operation plan. The first operation plan is executed using the lane keeping device 240. The lane keeping device 240 detects a running lane using the camera 241, controls the steering device 280 so that the host vehicle V1 travels in the lane, and causes the host vehicle V1 to travel (lane keep traveling). The lane keeping device 240 creates a virtual lane along the travel route at an intersection where the lane cannot be detected, and controls the steering device 280 so that the vehicle travels in the virtual lane and travels the host vehicle V1. Let The second operation plan may also be executed by the lane keeping device 240. However, since the operation at the time of lane change is premised on deviating from the lane, in the lane change, a virtual lane along the lane change route is created and the steering device 280 is driven so as to travel in the virtual lane. To control the vehicle V1.
 まず、ステップS101において、プロセッサ11は、検出装置260、レーンキープ装置240を介して自車両V1の自車情報を取得する。自車情報は、自車両V1の位置、自車両V1の速度・加速度、自車両V1の進行方向、自車両V1と車線との位置関係を含む。 First, in step S101, the processor 11 acquires the own vehicle information of the own vehicle V1 via the detection device 260 and the lane keeping device 240. The own vehicle information includes the position of the own vehicle V1, the speed / acceleration of the own vehicle V1, the traveling direction of the own vehicle V1, and the positional relationship between the own vehicle V1 and the lane.
 ステップS102において、プロセッサ11は、ナビゲーション装置220を介して、自車両V1が走行する第1経路を算出する。第1経路は、自車両V1が走行する第1車線が特定された走行経路である。具体的な計算方法は特に限定されず、ダイキストラ法やA*などのグラフ探索理論に基づく手法を用いることができる。たとえば、地図情報222において、各車線に、リンクとリンク同士の接続点であるノードとを設定し、目的地に向かう際に走行すべき車線に対応する推奨リンクか否かによって、リンクに付与する重みを変更する。そして、現在位置から目的地までの重みの総和が小さくなる車線を走行予定経路として採用する。 In step S102, the processor 11 calculates the first route along which the host vehicle V1 travels via the navigation device 220. The first route is a travel route in which the first lane on which the host vehicle V1 travels is specified. A specific calculation method is not particularly limited, and a method based on a graph search theory such as a Dijkstra method or A * can be used. For example, in the map information 222, a link and a node that is a connection point between the links are set for each lane, and the link is given depending on whether or not the link is a recommended link corresponding to the lane to be traveled toward the destination. Change the weight. Then, a lane in which the sum of weights from the current position to the destination is small is adopted as the planned travel route.
 ステップS103において、プロセッサ11は、地図情報222、道路情報223、交通規則情報224、対象物検出装置230の検出結果を参照し、第1経路を走行する際に遭遇する事象を検出する。事象は、交差点、対象物、交通標識、道路構造物などを含む。プロセッサ11は、第1経路をレーンキープ走行することを想定した場合に、自車両V1が遭遇する全ての信号機、停止線、駐停車禁止領域などの交通標識を検出する。 In step S103, the processor 11 refers to the map information 222, the road information 223, the traffic rule information 224, and the detection results of the object detection device 230, and detects an event encountered when traveling on the first route. Events include intersections, objects, traffic signs, road structures, and the like. The processor 11 detects traffic signs such as all traffic lights, stop lines, parking / parking prohibition areas, etc. that the host vehicle V1 encounters when it is assumed that the lane keeping travel is performed on the first route.
 対象物検出装置230は、自車両V1が第1経路の第1車線をレーンキープ走行することを想定した場合に、自車両V1が監視すべき周囲の対象物を検出する。レーダー(レーダー装置232)による対象物の検出範囲は、前方100~200メートル先の対象物を検出できるものの、検出角度は狭角(数十度)となる傾向がある。レーザーレンジファインダー(レーダー装置232)の場合には、前方100メートル以下と比較的近傍の対象物を検出するが、検出角度が広角であり、測距性能が優れている。また、カメラ231の場合には、画像処理プログラム、画像処理プロセッサの特性に依存する傾向がある。対象物検出の精度を向上させる観点から、各センサの特徴を考慮しつつ複数の検出結果を用いることが好ましい。また、演算処理負荷の低減の観点から、対象物の同一性が位置や挙動から確認できた場合には重複する検出結果を削除してもよい。 The object detection device 230 detects surrounding objects to be monitored by the host vehicle V1 when it is assumed that the host vehicle V1 travels in the first lane of the first route. The detection range of the object by the radar (radar device 232) can detect an object 100 to 200 meters ahead, but the detection angle tends to be narrow (several tens of degrees). In the case of a laser range finder (radar device 232), an object relatively close to 100 meters or less in front is detected, but the detection angle is wide and the distance measurement performance is excellent. In the case of the camera 231, there is a tendency to depend on the characteristics of the image processing program and the image processing processor. From the viewpoint of improving the accuracy of object detection, it is preferable to use a plurality of detection results while considering the characteristics of each sensor. Further, from the viewpoint of reducing the calculation processing load, when the identity of the target object can be confirmed from the position and behavior, duplicate detection results may be deleted.
 ステップS104において、プロセッサ11は、検出された事象についての情報を取得する。プロセッサ11は、地図情報222、道路情報223、交通規則情報224を参照し、事象についての交通規則(停止・通過許可)などの情報を取得する。事象が信号である場合に、プロセッサ11は、カメラ231を用いて信号色(信号内容)、を識別してもよいし、通信装置30を介してITSから送出される信号内容を取得してもよい。
 プロセッサ11は、対象物検出装置230の検出結果から対象物情報を取得する。対象物情報は、自車両V1の周囲の物体の存在の有無、物体の属性(静止物又は移動物)、物体の位置、物体の速度・加速度、物体の進行方向を含む。対象物情報は、対象物検出装置230、ナビゲーション装置220から取得する。
In step S104, the processor 11 acquires information about the detected event. The processor 11 refers to the map information 222, the road information 223, and the traffic rule information 224, and acquires information such as a traffic rule (stop / pass permission) for the event. When the event is a signal, the processor 11 may identify the signal color (signal content) using the camera 231, or may acquire the signal content transmitted from the ITS via the communication device 30. Good.
The processor 11 acquires object information from the detection result of the object detection device 230. The object information includes the presence / absence of an object around the host vehicle V1, the attribute of the object (stationary object or moving object), the position of the object, the speed / acceleration of the object, and the traveling direction of the object. The object information is acquired from the object detection device 230 and the navigation device 220.
 ステップS105において、プロセッサ11は、ステップS104で取得した各事象に関する情報とステップS101で取得した自車情報とを用いて、各事象について停止又は進行の運転行動を決定する。例えば、プロセッサ11は、事象が信号である場合には、信号の示す内容が「停止/注意」であれば、停止線で自車両V1を停止させる。自車両V1が交差点に遭遇する際には、プロセッサ11は、交錯する経路上において検出された対象物を事象として認識することにより、交差点の上流側で自車両V1を停止させる。図2に示す状態において、プロセッサ11は、信号機SG1が赤信号で、かつ、横断歩道上CR1を歩行者H1が横断している場合には、事象:停止線と事象:横断歩道について運転行動「停止」を決定する。 In step S105, the processor 11 determines stop or progress driving behavior for each event using the information regarding each event acquired in step S104 and the own vehicle information acquired in step S101. For example, when the event is a signal, the processor 11 stops the host vehicle V1 on the stop line if the content indicated by the signal is “stop / caution”. When the host vehicle V1 encounters an intersection, the processor 11 recognizes an object detected on the intersecting route as an event, and stops the host vehicle V1 upstream of the intersection. In the state shown in FIG. 2, when the traffic light SG <b> 1 is red and the pedestrian H <b> 1 crosses the pedestrian crossing CR <b> 1, the processor 11 drives the driving action “ “Stop” is determined.
 ステップS106において、プロセッサ11は、運転行動が停止と判断された事象について、停止位置を決定する。事象に対して運転行動「停止」が決定された場合には、停止位置を決定する。停止位置は、事象に対応づけて地図情報222、道路情報223、又は交通規則情報224に記憶しておいてもよい。たとえば、事象が赤信号である場合には、信号よりも上流側の位置に存在する停止線が停止位置となる。交通規則情報224において、駐停車が禁止されている領域は停止位置とすることはできない。他車両が存在する領域は停止位置とすることはできない。プロセッサ11は、自車両V1を停止できない領域以外の場所に停止位置を設定する。プロセッサ11は、位置の事象について停止行動が決定された場合は、その事象の上流側に停止位置を設定する。停止位置の設定手法は上述した各手法を適用できる。例えば、図2に示すように、信号機SG1が赤信号である場合には、交通規則情報224を参照し、停止線を停止位置とする。 In step S106, the processor 11 determines a stop position for the event for which the driving action is determined to be stopped. When the driving action “stop” is determined for the event, the stop position is determined. The stop position may be stored in the map information 222, the road information 223, or the traffic rule information 224 in association with the event. For example, when the event is a red signal, a stop line existing at a position upstream of the signal is a stop position. In the traffic rule information 224, an area where parking / stopping is prohibited cannot be a stop position. The area where other vehicles are present cannot be set as the stop position. The processor 11 sets a stop position at a place other than the area where the host vehicle V1 cannot be stopped. When the stop action is determined for the event at the position, the processor 11 sets the stop position upstream of the event. Each method described above can be applied to the stop position setting method. For example, as shown in FIG. 2, when the traffic light SG1 is a red light, the traffic rule information 224 is referred to and the stop line is set as the stop position.
 ステップS107において、プロセッサ11は、運転計画を立案する。運転計画は、経路と、経路走行中に遭遇する事象を時系列に並べ、事象ごとに運転行動が決定された一連の指令である。 In step S107, the processor 11 makes an operation plan. The driving plan is a series of commands in which a route and events encountered during the route travel are arranged in time series, and driving behavior is determined for each event.
 ステップS108において、プロセッサ11は、運転計画をディスプレイ251に表示する(図3、5参照)。事象を含む運転計画の表示制御の手順を図7に示す。図7に示す手順は、図6のステップS108のサブルーチンである。 In step S108, the processor 11 displays the operation plan on the display 251 (see FIGS. 3 and 5). FIG. 7 shows a display control procedure for an operation plan including an event. The procedure shown in FIG. 7 is a subroutine of step S108 in FIG.
 図7のステップS201において、プロセッサ11は、取得した事象までの相対距離を算出する。プロセッサ11は、地図情報222、道路情報223、交通規則情報224を参照して、事象の位置を取得できる。プロセッサ11は、自車両V1の自車情報(舵角、車速、姿勢)に基づいて、各事象までの距離/到達時間を計算する。 In step S201 in FIG. 7, the processor 11 calculates a relative distance to the acquired event. The processor 11 can acquire the position of the event with reference to the map information 222, the road information 223, and the traffic rule information 224. The processor 11 calculates the distance / arrival time to each event based on the own vehicle information (steering angle, vehicle speed, posture) of the own vehicle V1.
 ステップS202において、プロセッサ11は、自車両V1から各事象までの距離に基づいて、自車両V1に近い順序で時間軸上に並べる。つまり、事象は、自車両V1が遭遇する順に並べられる。 In step S202, the processor 11 arranges them on the time axis in the order close to the own vehicle V1, based on the distance from the own vehicle V1 to each event. That is, the events are arranged in the order in which the host vehicle V1 encounters.
 ステップS203において、プロセッサ11は、各事象についての運転行動をディスプレイ251に表示する。先述した図3、図5に表示の態様例を示す。 In step S203, the processor 11 displays the driving behavior for each event on the display 251. Examples of display modes are shown in FIGS. 3 and 5 described above.
 ステップS204は、後述する車線変更をする場合の表示制御であるが、ここで説明する。プロセッサ11は、後述するステップS111において、車線変更可能であると判断した場合に、自車両V1が車線変更を実行する区間を算出する。車線変更実行区間は、地図情報222、道路情報、交通規則情報224、検出装置260の検出した自車情報に基づいて算出される。出力制御プロセッサ21は、予測された区間を、区間の位置と各事象の位置との関係に基づいて、区間を運転行動情報に重畳表示する。運転行動情報は、各事象に対して決定された行動を、自車両V1が遭遇する順序に沿って並べた情報である。 Step S204 is display control in the case of changing the lane, which will be described later, and will be described here. If the processor 11 determines in step S111 described later that the lane change is possible, the processor 11 calculates a section in which the host vehicle V1 executes the lane change. The lane change execution section is calculated based on the map information 222, road information, traffic rule information 224, and own vehicle information detected by the detection device 260. The output control processor 21 superimposes and displays the predicted section on the driving action information based on the relationship between the position of the section and the position of each event. The driving action information is information in which actions determined for each event are arranged in the order in which the host vehicle V1 encounters.
 図6のステップS111に戻る。ステップS101乃至ステップS109の一連の処理は、第1経路を走行するための第1運転計画の実行処理である。プロセッサ11は、所定周期、または所定のトリガに呼応して、車線変更を実行するか否かを判断する。 Return to step S111 in FIG. A series of processing from step S101 to step S109 is execution processing of the first operation plan for traveling on the first route. The processor 11 determines whether or not to execute a lane change in response to a predetermined cycle or a predetermined trigger.
 ステップS111-S112において、プロセッサ11は、車線変更をするか否かを判断する。車線変更をするか否かの判断は、車線変更が可能であるか否かの判断と、車線変更の有利性の評価との観点から行う。車線変更の有利性は、ステップS111において判断された車線変更の可能性と、車線変更の必要性とを含む評価である。ステップS111において、プロセッサ11は、車線変更の実行が可能であるか否かを判断する。隣接車線が無い、交通規則が車線変更禁止である場合には、車線変更がそもそも不可能である。
 本実施形態では、処理を迅速に行う観点から、明らかに車線変更ができない場合を除くステップS111を設けた。ステップS111の後、ステップS112を経ることなく、ステップS113に進んでもよい。また、ステップS111を設けることなく、(ステップS107,S108からステップS112に進み)、ステップS112において、車線変更の可否と車線変更の必要性とを総合的に「車線変更の有利性」として評価してもよい。
In steps S111 to S112, the processor 11 determines whether or not to change lanes. Judgment as to whether or not to change lanes is made from the viewpoint of whether or not lane changes are possible and evaluation of the lane change advantage. The advantage of the lane change is an evaluation including the possibility of the lane change determined in step S111 and the necessity of the lane change. In step S111, the processor 11 determines whether or not the lane change can be executed. If there is no adjacent lane and traffic rules prohibit lane change, lane change is impossible in the first place.
In this embodiment, from the viewpoint of performing the processing quickly, step S111 is provided except for the case where the lane change cannot be clearly performed. After step S111, the process may proceed to step S113 without passing through step S112. Further, without providing step S111 (proceeding from step S107, S108 to step S112), in step S112, the possibility of lane change and the necessity of lane change are comprehensively evaluated as “advantage of lane change”. May be.
 車線変更が可能である場合には、ステップS112に進む。ステップS112において、プロセッサ11は、車線変更の有利性の評価値を算出する。車線変更の有利性は、車線変更の可能性及び/又は車線変更の必要性に基づいて評価される。プロセッサ11は、自車両V1の現在位置及び自車情報に基づいて、車線変更の有利性の評価値を算出する。同ステップS112において、プロセッサ11は、車線変更の有利性の評価値が第1閾値以上であるか否かを判断する。車線変更の有利性の評価値が第1閾値以上である場合には、ステップS113に進む。 If the lane change is possible, the process proceeds to step S112. In step S112, the processor 11 calculates an evaluation value of the lane change advantage. The benefits of lane change are assessed based on the possibility of lane change and / or the need for lane change. The processor 11 calculates an evaluation value of the lane change advantage based on the current position of the host vehicle V1 and the host vehicle information. In step S112, the processor 11 determines whether or not the evaluation value of the lane change advantage is equal to or greater than the first threshold value. If the evaluation value of the lane change advantage is greater than or equal to the first threshold, the process proceeds to step S113.
 ステップS113において、プロセッサ11は、自車両V1を第1車線から第2車線に車線変更させて第2経路を走行させる第2運転計画を立案する。 In step S113, the processor 11 drafts a second driving plan for changing the lane of the host vehicle V1 from the first lane to the second lane and traveling along the second route.
 車線変更をするか否かの判断処理に係るステップS111及びS112のサブルーチンを図8に示す。図8に示すように、ステップS211において、プロセッサ11は、自車両V1が走行する第1車線に隣接する第2車線(隣接車線)が存在するか否かを判断する。隣接する第2車線が存在しない場合には、車線変更はできないので、第1車線を継続走行するレーンキープ走行を実行する。隣接車線とは、自車両V1が走行する第1車線と略平行に敷設された車線である。 FIG. 8 shows a subroutine of steps S111 and S112 related to a determination process for determining whether or not to change lanes. As shown in FIG. 8, in step S211, the processor 11 determines whether or not there is a second lane (adjacent lane) adjacent to the first lane in which the host vehicle V1 travels. When there is no adjacent second lane, the lane cannot be changed, and therefore, lane keeping travel is performed in which the first lane is continuously traveled. The adjacent lane is a lane laid substantially parallel to the first lane in which the host vehicle V1 travels.
 ステップS212において、隣接車線(第2車線)が存在する場合には、プロセッサ11は、車線変更をしようとしている領域(車線変更区間)が車線変更禁止領域であるか否かを判断する。この判断は交通規則情報224を参照して行う。車線変更禁止領域内では車線変更はできないので、車線変更はしないと判断し、第1車線を継続走行するレーンキープ走行を実行する。 In step S212, when there is an adjacent lane (second lane), the processor 11 determines whether or not the area (lane change section) in which the lane is to be changed is a lane change prohibition area. This determination is made with reference to the traffic rule information 224. Since the lane change cannot be performed within the lane change prohibition region, it is determined that the lane change is not performed, and the lane keeping travel for continuously traveling in the first lane is executed.
 ステップS213において、隣接車線(第2車線)が存在し、車線変更が許可された場合には、プロセッサ11は、自車両Vの車線変更区間内に対象物が存在しないことを確認する。車線変更区間に対象物が存在する場合には、対象物が車線変更の障害となる可能性が高いので、車線変更の有利性の評価値は低く算出される。有利性の評価値が第2閾値未満である場合には、車線変更はしないと判断する。 In step S213, when there is an adjacent lane (second lane) and the lane change is permitted, the processor 11 confirms that there is no object in the lane change section of the host vehicle V. When there is an object in the lane change section, the object is highly likely to become an obstacle to the lane change, and therefore, the evaluation value of the lane change advantage is calculated to be low. When the evaluation value of the advantage is less than the second threshold value, it is determined that the lane change is not performed.
 ステップS214において、隣接車線(第2車線)が存在し、車線変更が許可され、車線変更区間内に対象物が存在しない場合には、プロセッサ11は、自車両Vが車線変更を実行する区間と事象の存在領域とが干渉しないことを確認する。車線変更区間と事象の存在領域が重複/交差/接近する場合には、事象が車線変更の障害となる可能性が高いので、車線変更の有利性の評価値は低く算出される。有利性の評価値が所定閾値未満である場合には、車線変更は実行されない。ステップS211-S214において、隣接車線が存在し、車線変更が可能であり、車線変更区間に対象物が存在せず、車線変更区間と事象の存在領域とが干渉しない場合には、図6のステップS113に進む。他方、ステップS211-S214において、隣接車線が存在せず、車線変更が禁止され、車線変更区間に対象物が存在し、車線変更区間と事象の存在領域とが干渉する場合のいずれか一つに当てはまる場合には、図6のステップS109に進む。 In step S214, if there is an adjacent lane (second lane), lane change is permitted, and there is no object in the lane change section, the processor 11 determines that the own vehicle V performs the lane change. Confirm that there is no interference with the event area. When the lane change section and the event existence area overlap / intersect / approach, the event is likely to become an obstacle to the lane change, so the evaluation value of the advantage of the lane change is calculated low. If the evaluation value of the advantage is less than the predetermined threshold value, the lane change is not executed. In Steps S211 to S214, if there is an adjacent lane, the lane can be changed, there is no object in the lane change section, and the lane change section does not interfere with the event existence area, the step of FIG. The process proceeds to S113. On the other hand, in steps S211-S214, there is no adjacent lane, lane change is prohibited, an object is present in the lane change section, and the lane change section and the event existence area interfere with each other. If this is the case, the process proceeds to step S109 in FIG.
 図6のステップS109において、プロセッサ11は、車線変更をすることなく第1運転計画の実行を継続する。プロセッサ11は、車両コントローラ210に第1運転計画の実行を継続させる。車線変更をすると判断された場合には、図6のステップS113において、プロセッサ11は、車線変更をする第2運転計画を立案する。プロセッサ11は、第2運転計画を車両コントローラ210に送出する。プロセッサ11は、車両コントローラ210に第1運転計画に代えて第2運転計画の実行を継続させる。車両コントローラ210は、立案された第2運転計画に基づいて運転制御を実行する。車両コントローラ210は、自車両V1が第1/第2運転計画に従う運転を行うように、駆動装置270/制動装置271、操舵装置280を制御する。車両コントローラ210は、停止が判断された事象の位置において自車両V1を停止させ、進行が判断された事象の位置において自車両V1を進行させる。 In FIG.6 S109, the processor 11 continues execution of a 1st driving plan, without changing a lane. The processor 11 causes the vehicle controller 210 to continue executing the first operation plan. If it is determined to change the lane, in step S113 of FIG. 6, the processor 11 makes a second operation plan for changing the lane. The processor 11 sends the second operation plan to the vehicle controller 210. The processor 11 causes the vehicle controller 210 to continue execution of the second operation plan instead of the first operation plan. The vehicle controller 210 executes operation control based on the planned second operation plan. The vehicle controller 210 controls the driving device 270 / braking device 271 and the steering device 280 so that the host vehicle V1 performs driving according to the first / second driving plan. The vehicle controller 210 stops the host vehicle V1 at the position of the event for which stop is determined, and advances the host vehicle V1 at the position of the event for which progress has been determined.
 このように、プロセッサ11は、車線変更の有利性の閾値が第1閾値以上である場合には、第1経路の走行を継続するレーンキープ走行よりも、車線変更をする方が適切な運転行動であると判断する。事象の状態に応じて無限に存在する運転行動の中から現在の走行にふさわしい行動を決定するのではなく、第1経路(第1車線)を継続的に走行させる「第1運転計画に基づく走行(レーンキープ走行)」と「車線変更を含む第2運転計画」の2つの運転計画のうち何れか一方の適切な行動を選択することにより、演算負荷が小さくし、処理速度を高めることができる。また、有利性が高いと判断した場合に限って車線変更をするので、ヒューマンドライバーにとって違和感のない運転を実現ができる。 Thus, when the threshold value of the lane change advantage is equal to or higher than the first threshold value, the processor 11 is more appropriate to change the lane than to keep the lane while continuing the driving on the first route. It is judged that. Rather than deciding the behavior appropriate for the current driving from the infinite driving behavior according to the state of the event, “running based on the first driving plan” that continuously travels the first route (first lane) By selecting an appropriate action of one of the two driving plans, “(lane keeping driving)” and “second driving plan including lane change”, the calculation load can be reduced and the processing speed can be increased. . In addition, since the lane change is performed only when it is determined that the advantage is high, it is possible to realize driving without a sense of incongruity for the human driver.
 本発明の実施形態の運転支援装置100は、以上のように構成され動作するので、以下の効果を奏する。 Since the driving support apparatus 100 according to the embodiment of the present invention is configured and operates as described above, the following effects can be obtained.
[1]本実施形態の運転支援方法は、第1経路において特定された第1車線から別の第2車線に自車両V1を移動させる車線変更をするか否かを判断し、車線変更をする場合には、自車両V1を第2車線に車線変更させて第2経路を走行させる第2運転計画を立案する。
 一般に、車載カメラ等の検知装置によって得られた情報を処理し、新たな経路を逐次探索するという処理の演算負荷は非常に高い。演算負荷の高さは、演算処理の遅延の原因となる。演算処理の遅延は、リアルタイム性が求められる自動運転/半自動運転を含む運転支援の信頼性を損ねる。
 本実施形態では、「現在走行中の車線を継続して走行するか」又は「車線変更をするか」という二者択一の判断に基づいて、第1運転計画と第2運転計画のいずれに従うかを判断する。無限に存在する行動候補の中から適切な位置の運転行動を決定するのではなく、二者択一の判断により運転行動を決定できるので、判断処理に係る演算負荷を低減できる。演算負荷の低減により処理を迅速に行うことができる。この結果、リアルタイム性が高い円滑な運転を実行させることができる。
[1] The driving support method of the present embodiment determines whether or not to change the lane for moving the host vehicle V1 from the first lane specified on the first route to another second lane, and changes the lane. In this case, a second driving plan is created in which the host vehicle V1 is changed to the second lane and travels along the second route.
In general, the processing load of processing information obtained by a detection device such as an in-vehicle camera and sequentially searching for new routes is very high. The high calculation load causes a delay in calculation processing. The delay of arithmetic processing impairs the reliability of driving support including automatic driving / semi-automatic driving that requires real-time performance.
In the present embodiment, either the first driving plan or the second driving plan is obeyed based on the alternative determination of “whether to continue the lane in which the vehicle is currently traveling” or “change lane”. Determine whether. Since the driving behavior at an appropriate position is not determined from among infinitely existing behavior candidates, the driving behavior can be determined by an alternative decision, so that the calculation load related to the judgment process can be reduced. The processing can be quickly performed by reducing the calculation load. As a result, smooth operation with high real-time performance can be executed.
[2]本実施形態の運転支援方法は、車線変更をすると判断された場合には、第1運転計画に従うように自車両V1の運転を支援する。また、第2運転計画が立案された場合には、第2運転計画に従うように自車両V1の運転を支援する。プロセッサ11は、車線変更をしないと判断された場合には、第1運転計画に従うように自車両V1の運転を支援する。言い換えると、プロセッサ11は、車線変更をしないと判断した場合には、先に立案された第1運転計画の実行を継続する。
 このように、車線変更をしないと判断した場合には、すでに立案されている第1運転計画が継続的に実行されるので、演算処理に無駄が生じない。プロセッサ11の処理能力を有効に活用できる。負荷の高い車線変更を実行することにより、ドライバに違和感を与えることがない。また、車線変更の利益が低い場合には、現在の第1運転計画が継続して実行されるので、不適切な車線変更が行われることがない。これにより、ドライバに違和感を与えることがなく、円滑な運転を実行させることができる。
[2] The driving support method of the present embodiment supports driving of the host vehicle V1 so as to follow the first driving plan when it is determined to change the lane. Further, when the second driving plan is drawn up, the driving of the host vehicle V1 is supported so as to follow the second driving plan. When it is determined that the lane change is not performed, the processor 11 supports the driving of the host vehicle V1 so as to follow the first driving plan. In other words, when the processor 11 determines not to change the lane, the processor 11 continues to execute the first operation plan that has been previously planned.
Thus, when it is determined not to change the lane, the already planned first operation plan is continuously executed, so that there is no waste in the arithmetic processing. The processing capability of the processor 11 can be used effectively. By executing a lane change with a high load, the driver does not feel uncomfortable. Further, when the profit of the lane change is low, the current first operation plan is continuously executed, so that an inappropriate lane change is not performed. Thereby, a smooth driving | running can be performed, without giving discomfort to a driver.
[3]本実施形態の運転支援方法は、車線変更の有利性を評価し、評価における評価値が第1閾値以上である場合には、車線変更をすると判断する。車線変更の有利性に基づいて、車線変更をするか否かを正確に判断できる。 [3] The driving support method of the present embodiment evaluates the lane change advantage, and determines that the lane change is made when the evaluation value in the evaluation is equal to or greater than the first threshold value. Whether or not to change lanes can be accurately determined based on the advantage of changing lanes.
[4]本実施形態の運転支援方法は、車線変更の有利性を評価し、評価における評価値が第2閾値未満である場合には、車線変更をしないと判断する。車線変更の有利性に基づいて、車線変更をするか否かを正確に判断できる。車線変更の有利性が低い場合には、現在の第1運転計画が継続して実行されるので、不適切な車線変更が行われることがない。これにより、ドライバに違和感を与えることがなく、円滑な運転を実行させることができる。 [4] The driving support method of the present embodiment evaluates the lane change advantage, and determines that the lane change is not performed when the evaluation value in the evaluation is less than the second threshold value. Whether or not to change lanes can be accurately determined based on the advantage of changing lanes. When the advantage of the lane change is low, the current first operation plan is continuously executed, so that an inappropriate lane change is not performed. Thereby, a smooth driving | running can be performed, without giving discomfort to a driver.
[5]本実施形態の運転支援方法は、複数の事象を自車両V1が遭遇する順序に沿って並べ替え、各事象に対して進行行動又は停止行動いずれかの行動をそれぞれ決定し、一連の第1運転計画又は第2運転計画を立案する。事象が自車両V1の遭遇順序に沿って並び替えられるので、自車両V1のドライバは、どのような事象に、どのような順序で遭遇するかということを時系列で認識できる。 [5] In the driving support method of the present embodiment, a plurality of events are rearranged in the order in which the host vehicle V1 encounters, and either a progress action or a stop action is determined for each event. Develop a first operation plan or a second operation plan. Since the events are rearranged according to the encounter order of the host vehicle V1, the driver of the host vehicle V1 can recognize in what time sequence what event is encountered in what order.
[6]本実施形態の運転支援方法は、事象に対して停止行動が決定された場合又は行動の決定判断が不能であった場合には、その事象よりも上流側であって停止可能な位置に自車両V1を停止させる。交通規則情報224において定義された停止位置よりも自車両V1の現在位置に近い位置で自車両V1を停止させるので、交通流に対して与える影響を抑制できる。 [6] In the driving support method of the present embodiment, when stop action is determined for an event or when determination of action cannot be determined, a position that is upstream from the event and can be stopped The own vehicle V1 is stopped. Since the host vehicle V1 is stopped at a position closer to the current position of the host vehicle V1 than the stop position defined in the traffic rule information 224, the influence on the traffic flow can be suppressed.
[7]本実施形態の運転支援方法では、車線変更の有利性を、自車両V1の現在位置及び自車情報に基づいて評価する。周囲の環境のみに着目して車線変更が可能であると判断しても、自車両V1の自車情報や現在位置を考慮すると車線変更ができない場合もある。このような場合は車線変更の判断を取消/訂正する必要が生じてしまい、判断の即時性が損なわれる。自車両V1の現在位置及び自車両V1の自車情報に基づいて車線変更の有利性を評価することにより、車線変更の可否(有利性)を正確かつ即時に判断できる。 [7] In the driving support method of the present embodiment, the lane change advantage is evaluated based on the current position of the host vehicle V1 and host vehicle information. Even if it is determined that the lane change is possible by paying attention only to the surrounding environment, the lane change may not be possible in consideration of the own vehicle information and the current position of the own vehicle V1. In such a case, it becomes necessary to cancel / correct the determination of the lane change, and the immediacy of the determination is impaired. By evaluating the lane change advantage based on the current position of the host vehicle V1 and the host vehicle information of the host vehicle V1, it is possible to accurately and immediately determine whether or not the lane change is possible (advantage).
[8]本実施形態の運転支援方法では、車線変更をするか否かを、車線変更の可能性及び/又は車線変更の必要性に基づいて評価する。これにより、自車両V1の状態(速度、姿勢)及びその周囲の状況(対象物の存在、対象物の移動速度)、車線変更の必要性(目的地への経路の確保)を考慮して「車線変更をするか否か」を多面的に判断することができる。 [8] In the driving support method of the present embodiment, whether or not to change lanes is evaluated based on the possibility of changing lanes and / or the necessity of changing lanes. Thus, in consideration of the state (speed, posture) of the host vehicle V1 and the surrounding situation (the presence of the object, the moving speed of the object), the necessity of changing the lane (securing the route to the destination) Whether or not to change lanes can be determined from multiple perspectives.
[9]本実施形態の運転支援方法では、車線変更をするか否かを、第1車線に隣接する車線の有無、第1経路と交差する他の経路との関係、他の経路上の事象との関係、第1経路の交通規則、車線変更時における自車両V1と対象物との接近度、及び車線変更時における自車両の走行スペースの存在の何れか一つ以上を考慮して評価する。自車両V1の周囲の状況に基づいて車線変更をするか否かを評価することにより、自車両V1を車線変更させるか否かについて的確に判断できる。 [9] In the driving support method of the present embodiment, whether or not to change lanes is determined based on the presence or absence of a lane adjacent to the first lane, the relationship with other routes crossing the first route, and events on other routes. The evaluation is performed in consideration of any one or more of the relationship between the vehicle, the traffic rules of the first route, the degree of proximity between the vehicle V1 and the object when the lane is changed, and the existence of the traveling space of the vehicle when the lane is changed. . By evaluating whether or not to change lanes based on the situation around the host vehicle V1, it is possible to accurately determine whether or not to change the lane of the host vehicle V1.
[10]本実施形態の運転支援方法では、自車両V1が車線変更を実行する区間を予測し、この区間における車線変更をするか否かを判断する。これにより、車線変更をする場所における「車線変更をするか否か」を正確に判断できる。先述したように、事象の状況及び自車両V1の状況は刻々変化する。車線変更をする区間(場所)を抽出してから、車線変更をするか否かを判断するので、漠然と広い範囲について車線変更の可否を判断するよりも、現実の状況に適合した正確な判断結果を得ることができる。 [10] In the driving support method of the present embodiment, a section in which the host vehicle V1 executes lane change is predicted, and it is determined whether or not to change the lane in this section. This makes it possible to accurately determine “whether or not to change lanes” at the place where lanes are changed. As described above, the situation of the event and the situation of the host vehicle V1 change every moment. Since it is determined whether or not to change lanes after extracting the section (location) to change lanes, rather than determining whether or not to change lanes over a vast range, accurate determination results that match the actual situation Can be obtained.
[11]本実施形態の運転支援方法では、予測された区間と取得した事象の存在領域とが重複する場合には、車線変更をしないと判断する。車線変更が行われる区間と、事象の存在領域とが干渉するか否かを考慮することにより、車線変更に影響を与える事象が存在するときには、車線変更をしないようにできる。 [11] In the driving support method of the present embodiment, if the predicted section and the acquired event existence region overlap, it is determined that the lane change is not performed. By considering whether or not the section in which the lane change is performed interferes with the event existence area, it is possible to prevent the lane change when there is an event that affects the lane change.
[12]本実施形態の運転支援方法では、各事象に対して決定された行動を、自車両V1が遭遇する順序に沿って並べた運転行動情報を表示するとともに、予測された区間の位置と各事象の位置とに基づいて、区間を運転行動情報に重畳表示する。これにより、ドライバは、事象と遭遇するタイミングを基準として、車線変更のタイミングを認識することができる。ドライバは、操舵(車線変更)のタイミングを認識できるので、自車両V1の挙動に対して違和感を覚えないようにできる。 [12] In the driving support method of the present embodiment, the driving behavior information in which the behaviors determined for each event are arranged in the order in which the host vehicle V1 encounters is displayed, and the predicted position of the section and Based on the position of each event, the section is superimposed and displayed on the driving action information. Thereby, the driver can recognize the timing of the lane change based on the timing of encountering the event. Since the driver can recognize the timing of the steering (lane change), the driver can avoid feeling uncomfortable with the behavior of the host vehicle V1.
[13]本実施形態の運転支援装置100は、上述した運転支援方法と同様の作用及び効果を奏する。 [13] The driving support apparatus 100 of the present embodiment has the same operations and effects as the driving support method described above.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for easy understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 すなわち、本明細書では、本発明に係る運転支援装置の一態様として、運転計画装置10と出力装置20と通信装置30とを有する運転支援装置100を例にして説明するが、本発明はこれに限定されるものではない。 That is, in this specification, the driving support device 100 having the driving planning device 10, the output device 20, and the communication device 30 will be described as an example of the driving support device according to the present invention. It is not limited to.
 本明細書では、本発明に係る運転支援装置の一態様として、プロセッサ11を有する運転計画装置10を例にして説明するが、本発明はこれに限定されるものではない。本明細書では、本発明に係る出力装置の一態様として、出力制御プロセッサ21を有する出力装置20を例にして説明するが、本発明はこれに限定されるものではない。なお、プロセッサ11、出力制御プロセッサ21は、一つのプロセッサとして構成してもよいし、複数に分割して構成してもよい。 In this specification, the driving plan apparatus 10 having the processor 11 is described as an example of the driving support apparatus according to the present invention, but the present invention is not limited to this. In this specification, the output device 20 having the output control processor 21 will be described as an example of the output device according to the present invention. However, the present invention is not limited to this. Note that the processor 11 and the output control processor 21 may be configured as a single processor or may be divided into a plurality of units.
 本明細書では、車載装置の例として、車両コントローラ210と、ナビゲーション装置220と、対象物検出装置230と、レーンキープ装置240と、出力装置250と、検出装置260と、駆動装置270と、操舵装置280とを備える車載装置200を例にして説明するが、本発明はこれに限定されるものではない。 In this specification, as an example of the vehicle-mounted device, a vehicle controller 210, a navigation device 220, an object detection device 230, a lane keeping device 240, an output device 250, a detection device 260, a drive device 270, and a steering wheel The in-vehicle device 200 including the device 280 will be described as an example, but the present invention is not limited to this.
1…運転支援システム
100…運転支援装置
10…運転計画装置
11…プロセッサ
20…出力装置
21…出力制御プロセッサ
30…通信装置
200…車載装置
210…車両コントローラ
220…ナビゲーション装置
 221…位置検出装置
 222…地図情報
 223…道路情報
 224…交通規則情報
230…対象物検出装置
 231…カメラ
 232…レーダー装置
240…レーンキープ装置
 241…カメラ
 242…道路情報
250…出力装置
 251…ディスプレイ
 252…スピーカ
260…検出装置
 261…舵角センサ
 262…車速センサ
 263…姿勢センサ
270…駆動装置
 271…制動装置
280…操舵装置
DESCRIPTION OF SYMBOLS 1 ... Driving assistance system 100 ... Driving assistance device 10 ... Driving planning device 11 ... Processor 20 ... Output device 21 ... Output control processor 30 ... Communication device 200 ... In-vehicle device 210 ... Vehicle controller 220 ... Navigation device 221 ... Position detection device 222 ... Map information 223 ... Road information 224 ... Traffic rule information 230 ... Object detection device 231 ... Camera 232 ... Radar device 240 ... Lane keeping device 241 ... Camera 242 ... Road information 250 ... Output device 251 ... Display 252 ... Speaker 260 ... Detection device 261 ... Steering angle sensor 262 ... Vehicle speed sensor 263 ... Attitude sensor 270 ... Drive device 271 ... Braking device 280 ... Steering device

Claims (13)

  1.  自車両の運転計画の立案を含む運転支援処理を実行するプロセッサを用いて、
     前記自車両が第1経路を走行する際に遭遇する複数の事象を取得し、
     前記事象と前記自車両との関係を用いて、前記第1経路を走行する前記自車両の第1運転計画を立案し、
     前記第1経路において特定された第1車線から別の第2車線に前記自車両を移動させる車線変更をするか否かを判断し、
     前記車線変更をすると判断した場合には、前記自車両を前記第2車線に前記車線変更させて第2経路を走行させる第2運転計画を立案する運転支援方法。
    Using a processor that executes driving support processing including planning of the driving plan of the host vehicle,
    Obtaining a plurality of events that the host vehicle encounters when traveling along the first route;
    Using the relationship between the event and the host vehicle, formulate a first driving plan for the host vehicle traveling on the first route,
    Determining whether or not to change the lane to move the host vehicle from the first lane specified in the first route to another second lane;
    When it is determined that the lane change is to be performed, a driving support method for making a second driving plan for changing the lane of the host vehicle to the second lane and traveling along the second route.
  2.  前記車線変更をしないと判断した場合には、前記第1運転計画に従うように前記自車両の運転を支援し、
     前記車線変更をすると判断した場合には、前記第2運転計画に従うように前記自車両の運転を支援する、請求項1に記載の運転支援方法。
    When it is determined not to change the lane, the driving of the host vehicle is supported so as to follow the first driving plan,
    The driving support method according to claim 1, wherein when it is determined that the lane change is to be performed, driving of the host vehicle is supported so as to follow the second driving plan.
  3.  前記車線変更をするか否かの判断は、
     前記車線変更の有利性を評価し、
     前記評価における評価値が第1閾値以上である場合には、前記車線変更をすると判断する請求項1又は2に記載の運転支援方法。
    The determination of whether to change the lane is as follows:
    Evaluate the advantages of the lane change,
    The driving support method according to claim 1 or 2, wherein when the evaluation value in the evaluation is equal to or greater than a first threshold value, the lane change is determined.
  4.   前記車線変更をするか否かの判断は、
     前記車線変更の有利性を評価し、
     前記評価における評価値が第2閾値未満である場合には、前記車線変更をしないと判断する請求項1~3の何れか一項に記載の運転支援方法。
    The determination of whether to change the lane is as follows:
    Evaluate the advantages of the lane change,
    The driving support method according to any one of claims 1 to 3, wherein when the evaluation value in the evaluation is less than a second threshold value, it is determined that the lane change is not performed.
  5.  前記自車両が走行する際に遭遇する複数の前記事象を取得し、
     取得された複数の前記事象を前記自車両が遭遇する順序に沿って並べ替え、
     前記自車両が経時的に遭遇する複数の前記事象と前記自車両との関係に基づいて、各前記事象に対して進行行動又は停止行動いずれかの行動をそれぞれ決定し、
     それぞれの前記事象に対して決定された行動の内容を用いて、一連の前記第1運転計画又は前記第2運転計画を立案する請求項1~4の何れか一項に記載の運転支援方法。
    Obtaining a plurality of the events encountered when the vehicle travels;
    Reordering the plurality of acquired events in the order in which the vehicle encounters,
    Based on the relationship between the host vehicle and the plurality of events that the host vehicle encounters over time, each of the events is determined to be either an advance action or a stop action,
    The driving support method according to any one of claims 1 to 4, wherein a series of the first driving plan or the second driving plan is made using the content of the action determined for each of the events. .
  6.  前記事象に対して前記停止行動が決定された場合、又は前記進行行動又は前記停止行動の決定判断が不能であった場合には、当該事象よりも上流側であって停止可能な位置において前記自車両を停止させる請求項5に記載の運転支援方法。 When the stop action is determined for the event, or when it is impossible to determine the progress action or the stop action, the stop action is upstream of the event and can be stopped. The driving support method according to claim 5, wherein the host vehicle is stopped.
  7.  前記車線変更をするか否かは、前記自車両の現在位置及び前記自車両の自車情報に基づいて判断する請求項1~6の何れか一項に記載の運転支援方法。 The driving support method according to any one of claims 1 to 6, wherein whether or not to change the lane is determined based on a current position of the host vehicle and host vehicle information of the host vehicle.
  8.  前記車線変更をするか否かは、前記車線変更の可能性及び/又は前記車線変更の必要性に基づいて判断する請求項1~7の何れか一項に記載の運転支援方法。 The driving support method according to any one of claims 1 to 7, wherein whether or not to change the lane is determined based on the possibility of the lane change and / or the necessity of the lane change.
  9.  前記車線変更をするか否かは、前記第1車線に隣接する車線の有無、前記第1経路と交差する他の経路との関係、前記他の経路上の前記事象との関係、前記第1経路の交通規則、前記車線変更のタイミングにおける前記自車両と対象物との接近度、及び前記車線変更のタイミングにおける前記自車両の走行スペースの存在の何れか一つ以上を考慮して判断する請求項1~8の何れか一項に記載の運転支援方法。 Whether or not to change the lane depends on the presence or absence of a lane adjacent to the first lane, the relationship with another route intersecting the first route, the relationship with the event on the other route, Judgment is made in consideration of one or more of traffic rules of one route, the degree of proximity between the host vehicle and the object at the timing of the lane change, and the existence of the traveling space of the host vehicle at the timing of the lane change. The driving support method according to any one of claims 1 to 8.
  10.  前記自車両が前記車線変更を実行する区間を予測し、
     前記区間において前記車線変更をするか否かを判断する請求項1~9の何れか一項に記載の運転支援方法。
    Predicting a section in which the host vehicle performs the lane change;
    The driving support method according to any one of claims 1 to 9, wherein it is determined whether or not to change the lane in the section.
  11.  予測された前記区間と取得した前記事象の存在領域とが重複する場合には、前記車線変更をしないと判断する請求項10に記載の運転支援方法。 The driving support method according to claim 10, wherein when the predicted section and the acquired existence area of the event overlap, it is determined not to change the lane.
  12.  前記運転計画に関する情報を出力装置に表示させる出力制御プロセッサをさらに備え、
     前記出力制御プロセッサは、
     それぞれの前記事象に対して決定された行動を、前記自車両が遭遇する順序に沿って並べた運転行動情報を表示するとともに、
     予測された前記区間の位置と各前記事象の位置とに基づいて、前記区間を前記運転行動情報に重畳表示する請求項10又は11に記載の運転支援方法。
    An output control processor for causing the output device to display information on the operation plan;
    The output control processor is:
    While displaying the action determined for each of the events along the order in which the host vehicle encounters, driving action information,
    The driving support method according to claim 10 or 11, wherein the section is superimposed and displayed on the driving action information based on the predicted position of the section and the position of each event.
  13.  運転支援処理を実行するプロセッサと、
     自車両の自車情報、前記自車両が走行する際に遭遇する複数の事象の情報、及び前記自車両の周囲の対象物の情報を取得する通信装置と、を備え、
     前記プロセッサは、
     前記自車両が第1経路を走行する際に遭遇する複数の前記事象を取得する処理、
     取得された前記事象と前記自車両との関係を用いて、前記第1経路を走行する前記自車両の第1運転計画を立案する処理、
     前記第1運転計画の前記第1経路として特定された第1車線から別の第2車線に前記自車両を移動させる車線変更をするか否かを判断する処理、
     前記車線変更をすると判断した場合には、前記自車両に前記第2車線に前記車線変更させて第2経路を走行させる第2運転計画を立案する処理を、実行する運転支援装置。
    A processor that executes driving support processing; and
    A communication device for acquiring own vehicle information of the own vehicle, information on a plurality of events encountered when the own vehicle travels, and information on objects around the own vehicle;
    The processor is
    A process of acquiring a plurality of the events encountered when the host vehicle travels on a first route;
    Using the relationship between the acquired event and the host vehicle, a process of planning a first driving plan of the host vehicle traveling on the first route;
    A process for determining whether to change a lane for moving the host vehicle from the first lane specified as the first route of the first driving plan to another second lane;
    When it is determined that the lane change is to be performed, the driving support device executes a process of creating a second driving plan for causing the host vehicle to change the lane to the second lane and travel along the second route.
PCT/JP2016/073824 2016-08-15 2016-08-15 Drive assist method and drive assist apparatus WO2018033949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073824 WO2018033949A1 (en) 2016-08-15 2016-08-15 Drive assist method and drive assist apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073824 WO2018033949A1 (en) 2016-08-15 2016-08-15 Drive assist method and drive assist apparatus

Publications (1)

Publication Number Publication Date
WO2018033949A1 true WO2018033949A1 (en) 2018-02-22

Family

ID=61196505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073824 WO2018033949A1 (en) 2016-08-15 2016-08-15 Drive assist method and drive assist apparatus

Country Status (1)

Country Link
WO (1) WO2018033949A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275521A (en) * 2018-03-14 2019-09-24 本田技研工业株式会社 Controller of vehicle
CN110341703A (en) * 2018-04-02 2019-10-18 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185893A (en) * 2012-03-07 2013-09-19 Geo Technical Laboratory Co Ltd Route guidance system
JP2015141476A (en) * 2014-01-27 2015-08-03 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method, and computer program
JP2015141611A (en) * 2014-01-29 2015-08-03 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method and program
JP2015184722A (en) * 2014-03-20 2015-10-22 アイシン・エィ・ダブリュ株式会社 automatic operation support device, automatic operation support method and program
JP2015199439A (en) * 2014-04-09 2015-11-12 日立オートモティブシステムズ株式会社 Travel control device, on-vehicle display device and travel control system
WO2015190212A1 (en) * 2014-06-10 2015-12-17 クラリオン株式会社 Lane selecting device, vehicle control system and lane selecting method
JP2016090543A (en) * 2014-11-11 2016-05-23 アイシン・エィ・ダブリュ株式会社 Travel assist system, travel assist method, and computer program
JP2016126360A (en) * 2014-12-26 2016-07-11 日立オートモティブシステムズ株式会社 Vehicle control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185893A (en) * 2012-03-07 2013-09-19 Geo Technical Laboratory Co Ltd Route guidance system
JP2015141476A (en) * 2014-01-27 2015-08-03 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method, and computer program
JP2015141611A (en) * 2014-01-29 2015-08-03 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method and program
JP2015184722A (en) * 2014-03-20 2015-10-22 アイシン・エィ・ダブリュ株式会社 automatic operation support device, automatic operation support method and program
JP2015199439A (en) * 2014-04-09 2015-11-12 日立オートモティブシステムズ株式会社 Travel control device, on-vehicle display device and travel control system
WO2015190212A1 (en) * 2014-06-10 2015-12-17 クラリオン株式会社 Lane selecting device, vehicle control system and lane selecting method
JP2016090543A (en) * 2014-11-11 2016-05-23 アイシン・エィ・ダブリュ株式会社 Travel assist system, travel assist method, and computer program
JP2016126360A (en) * 2014-12-26 2016-07-11 日立オートモティブシステムズ株式会社 Vehicle control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275521A (en) * 2018-03-14 2019-09-24 本田技研工业株式会社 Controller of vehicle
CN110341703A (en) * 2018-04-02 2019-10-18 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110341703B (en) * 2018-04-02 2022-03-29 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium

Similar Documents

Publication Publication Date Title
JP6819177B2 (en) Driving support method and driving support device
JP6443550B2 (en) Scene evaluation device, driving support device, and scene evaluation method
JP6451847B2 (en) Operation planning device, travel support device, and operation planning method
JP6451848B2 (en) Operation planning device, travel support device, and operation planning method
JP6443552B2 (en) Scene evaluation device, driving support device, and scene evaluation method
RU2744018C1 (en) Driving control method and driving control equipment
EP3696789B1 (en) Driving control method and driving control apparatus
RU2760046C1 (en) Driving assistance and driving assistance device
JP6443551B2 (en) Scene evaluation device, driving support device, and scene evaluation method
WO2018033949A1 (en) Drive assist method and drive assist apparatus
JP2020052673A (en) Driving control method and driving control device
JP2020050104A (en) Driving control method and driving control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP