WO2018030256A1 - Film formation method and film formation apparatus - Google Patents

Film formation method and film formation apparatus Download PDF

Info

Publication number
WO2018030256A1
WO2018030256A1 PCT/JP2017/028188 JP2017028188W WO2018030256A1 WO 2018030256 A1 WO2018030256 A1 WO 2018030256A1 JP 2017028188 W JP2017028188 W JP 2017028188W WO 2018030256 A1 WO2018030256 A1 WO 2018030256A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pattern
minimum dimension
film
inkjet head
Prior art date
Application number
PCT/JP2017/028188
Other languages
French (fr)
Japanese (ja)
Inventor
剛 野本
裕司 岡本
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201780041443.7A priority Critical patent/CN109475895A/en
Priority to KR1020197000852A priority patent/KR20190040960A/en
Publication of WO2018030256A1 publication Critical patent/WO2018030256A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/008Controlling printhead for accurately positioning print image on printing material, e.g. with the intention to control the width of margins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/2018Masking pattern obtained by selective application of an ink or a toner, e.g. ink jet printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a film forming method and a film forming apparatus.
  • Photolithography technology or screen printing technology is used to form a resist pattern for patterning the transparent conductive film of the touch panel.
  • a high-definition pattern can be formed, but the apparatus cost, the waste liquid processing cost, and the like increase.
  • the method using the screen printing technique is more advantageous than the method using the photolithography technique in terms of apparatus cost and waste liquid treatment cost, but it is difficult to form a high-definition pattern.
  • Patent Document 1 A technique for forming a resist pattern using an inkjet printing technique has been proposed (Patent Document 1).
  • An object of the present invention is to provide a film forming method and a film forming apparatus capable of forming an edge giving a minimum dimension of a pattern with high definition using an ink jet printing technique.
  • a film is formed on the substrate by ejecting droplets from the inkjet head toward the substrate based on pattern data that defines the pattern of the film to be formed.
  • a film forming method for A film forming method is provided in which the relative movement direction of the inkjet head and the substrate is orthogonal to the direction of the minimum dimension of the pattern defined by the pattern data.
  • a film is formed by ejecting droplets from the inkjet head toward the substrate based on the pattern data while moving in a direction orthogonal to the direction of the minimum dimension of the pattern defined by the pattern data.
  • a film forming apparatus is provided.
  • FIG. 1 is a schematic view of a film forming apparatus according to an embodiment.
  • FIG. 2 is a plan view showing a resist pattern used as an etching mask when patterning a transparent electrode of a touch panel as an example of a film to be formed.
  • FIG. 3A is a diagram showing a target landing position of a droplet and a variation in the landing position
  • FIG. 3B is a diagram showing an example of a film shape when a band-shaped film is formed while moving the substrate in the y direction. It is.
  • FIG. 4 is a diagram showing the positional relationship between the resist film to be formed and the inkjet head.
  • FIG. 1 is a schematic view of a film forming apparatus according to an embodiment.
  • FIG. 2 is a plan view showing a resist pattern used as an etching mask when patterning a transparent electrode of a touch panel as an example of a film to be formed.
  • FIG. 3A is a diagram showing a target landing position of a droplet and a variation
  • FIG. 5 is a diagram showing the positional relationship between the arrangement of the inkjet head of a film forming apparatus according to another embodiment and the resist film to be formed.
  • FIG. 6 is a view showing the positional relationship between the arrangement of the inkjet head of a film forming apparatus according to still another embodiment and the resist film to be formed.
  • 7A and 7B are views showing the positional relationship between an inkjet head and a resist film to be formed in a film forming apparatus according to still another embodiment.
  • 8A and 8B are diagrams showing another positional relationship between the ink jet head of the film forming apparatus according to the embodiment shown in FIGS. 7A and 7B and the resist film to be formed.
  • FIGS. 9A and 9B are views showing the positional relationship between an inkjet head and a resist film to be formed in a film forming apparatus according to still another embodiment.
  • 10A and 10B are diagrams showing another positional relationship between the inkjet head and the resist film to be formed in the film forming apparatus according to the embodiment shown in FIGS. 9A and 9B.
  • FIG. 11 is a diagram showing a film pattern to be formed by a film forming method according to another embodiment.
  • 12A and 12B are views showing the positional relationship between the ink jet head of the film forming apparatus according to the embodiment shown in FIG. 11 and the resist film to be formed.
  • 13A and 13B are diagrams showing another positional relationship between the inkjet head of the film forming apparatus according to the embodiment shown in FIGS.
  • FIGS. 14A and 14B are views showing the positional relationship between an inkjet head and a resist film to be formed in a film forming apparatus according to still another embodiment.
  • FIG. 15A is a diagram showing another positional relationship between the ink jet head of the film forming apparatus according to the embodiment shown in FIGS. 14A and 14B and the resist film to be formed.
  • FIG. 16A is a schematic view of a film forming apparatus according to still another embodiment
  • FIG. 16B is a diagram showing an example of a film pattern formed on a flexible substrate.
  • FIG. 17 is a flowchart of a procedure executed by the control device of the film forming apparatus according to still another embodiment.
  • FIG. 1 shows a schematic diagram of a film forming apparatus according to an embodiment.
  • a support portion 23 is supported on the base 20 via a moving mechanism 21.
  • the substrate 50 is supported on the upper surface (support surface) of the support portion 23.
  • the moving mechanism 21 can move the substrate 50 in a two-dimensional direction by moving the support portion 23 in a two-dimensional direction parallel to the support surface.
  • the support surface of the support part 23 is kept horizontal.
  • An xyz orthogonal coordinate system in which two directions parallel to the support surface are defined as an x axis and ay axis is defined.
  • the inkjet head 25 is disposed above the substrate 50 supported by the support portion 23.
  • the ink jet head 25 is supported on the base 20 by a portal frame 24.
  • the inkjet head 25 includes a plurality of head blocks 26.
  • the plurality of head blocks 26 are attached to a common support member 28.
  • Each head block 26 is provided with a plurality of nozzle holes. A droplet of the film material is discharged from the nozzle hole toward the substrate 50.
  • a film is formed by curing the liquid film material adhering to the substrate 50.
  • a photocurable resin, a thermosetting resin, or the like can be used as the film material.
  • a light source or a heat source for curing the film material attached to the substrate 50 is disposed on the side of the inkjet head 25.
  • the control device 30 controls the movement of the support portion 23 by the moving mechanism 21 and the discharge of the film material from the nozzle holes of the inkjet head 25.
  • the control device 30 includes a storage device 31, and the storage device 31 stores film pattern data to be formed.
  • the control device 30 controls the moving mechanism 21 and the inkjet head 25 based on the pattern data, so that a film having a desired pattern can be formed on the substrate 50.
  • Various commands and data are input from the input device 35 to the control device 30.
  • the input device 35 for example, a keyboard, a pointing device, a USB port, a communication device, or the like is used.
  • Various information regarding the operation of the film forming apparatus is output to the output device 36.
  • the output device 36 for example, a liquid crystal display, a speaker, a USB port, a communication device, or the like is used.
  • FIG. 2 shows a resist film 53 used as an etching mask when patterning a transparent electrode of a touch panel as an example of a film to be formed.
  • the transparent electrode is formed by etching a transparent conductive film made of ITO or the like using the resist film 53 as an etching mask.
  • a dot pattern is added to the region where the resist is applied.
  • the plurality of pad portions 51 are arranged in a matrix, and the connection portion 52 connects the plurality of pad portions 51 in the column direction.
  • the row direction corresponds to the x direction
  • the column direction corresponds to the y direction.
  • An interval G between the pad portions 51 adjacent in the x direction is the minimum dimension of the pattern.
  • the direction of this minimum dimension is the x direction, and its size is, for example, about 30 ⁇ m.
  • the pad portions 51 adjacent in the x direction are connected. If the two pad portions 51 that should originally be separated from each other are connected, the touch panel does not operate normally. However, even if the landing position of the liquid droplet is shifted in the y direction, the two pad portions 51 that are separated in the x direction are not connected. Therefore, it is preferable that the positional accuracy in the x direction of the droplet forming the pair of edges 54 that give the minimum dimension of the pattern is higher than the positional accuracy in the y direction.
  • FIG. 3A shows the landing target position of the droplet and the variation of the landing position.
  • the landing target position 55 is represented by a solid line, and a plurality of scattered landing positions are represented by broken lines.
  • droplets of the film material are ejected from a predetermined nozzle hole of the inkjet head 25 while moving the substrate 50 (FIG. 1) in the y direction.
  • Possible causes of variation in the landing position of the droplet include variation in the ejection direction from the nozzle hole, variation in the moving speed of the substrate 50, variation in the ejection timing from the nozzle hole, variation in the droplet ejection speed, and the like.
  • variation in the ejection direction from the nozzle hole causes variation in position in both the x and y directions.
  • the other three variation factors cause a variation in position in the y direction, but do not cause a variation in position in the x direction.
  • the maximum variation width Dx in the x direction is smaller than the maximum variation width Dy in the y direction.
  • FIG. 3B shows an example of the shape of the film when the band-like film is formed while moving the substrate 50 (FIG. 1) in the y direction.
  • the inkjet head 25 is provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction. Since the variation in the droplet landing position in the x direction is smaller than the variation in the y direction, the edges on both sides of the strip film 56 long in the y direction are higher in linearity than the edges on both sides of the strip film 57 long in the x direction. The variation in the width of the film 56 (the variation in the position in the x direction) is smaller than the variation in the width of the film 57 (the variation in the position in the y direction).
  • FIG. 4 shows the positional relationship between the resist film 53 to be formed and the inkjet head 25.
  • Pattern data is created so that the direction of the minimum dimension of the resist film 53 coincides with the x direction.
  • a minimum dimension is given by a pair of edges 54 of the resist film 53.
  • the control device 30 controls the moving mechanism 21 to move the substrate 50 (FIG. 1) in the y direction, while dropping the film material from each nozzle hole 27 of the inkjet head 25. To discharge. If the entire resist film 53 cannot be formed over the entire area of the substrate 50 by one movement (hereinafter referred to as scanning) of the substrate 50 in the y direction, the substrate 50 is shifted in the x direction and the second and subsequent scans are performed. As a result, the entire resist film 53 can be formed.
  • the relationship with the direction of movement is the same as the relationship between the direction of the edge of the film 56 in FIG. 3B and the direction of movement of the substrate. Therefore, as described with reference to FIGS. 3A and 3B, the variation in the position in the x direction of the pair of edges 54 (FIG. 4) that gives the minimum dimension of the pattern can be reduced, and the edge 54 The degree of straightness can be increased. Thereby, it can suppress that the two pad parts 51 adjacent to a x direction on both sides of the part of a minimum dimension will mutually continue.
  • the film is formed while the inkjet head 25 is stationary with respect to the base 20 and the support portion 23 is moved in the y direction.
  • the ink jet head 25 is moved with respect to the base 20, a slight change occurs in the posture due to the movement of the ink jet head 25.
  • the change in the posture of the ink jet head 25 causes a variation in the positional accuracy of the landing position because it changes the ejection direction of the droplets.
  • since the ink jet head 25 is stationary with respect to the base 20 at the time of film formation it is possible to reduce the variation in the landing position due to the change in the posture of the ink jet head 25.
  • the resist film is formed using the ink jet printing technique, but other films may be formed.
  • the minimum dimension is given by the gap between the areas where the resist is applied.
  • the minimum dimension may be given by the area where the resist is applied.
  • the inkjet head 25 is stationary and the substrate 50 is moved during film formation.
  • the substrate 50 may be stationary and the inkjet head 25 may be moved.
  • the direction orthogonal to the direction of the minimum dimension (x direction) of the film pattern to be formed The effect of suppressing variation in position due to relative movement of the substrate 50 and the inkjet head 25 in the (y direction) can be obtained.
  • FIG. 5 shows the positional relationship between the arrangement of the inkjet head 25 of the film forming apparatus according to this embodiment and the resist film 53 to be formed.
  • the pattern of the resist film 53 is the same as the pattern of the resist film 53 in the embodiment shown in FIGS.
  • the inkjet head 25 is provided with a plurality of nozzle holes 27y arranged in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction) of the resist film 53.
  • a plurality of nozzle holes 27x arranged at equal intervals in the x direction are provided.
  • the plurality of nozzle holes 27y arranged in the y direction are arranged in two rows, and the plurality of nozzle holes 27y in each row are arranged at the same x coordinate.
  • each of the head blocks 26 is provided with a plurality of nozzle holes 27 arranged in a line.
  • the two head blocks 26 are arranged in such a posture that the arrangement direction of the nozzle holes 27 is parallel to the y direction.
  • the nozzle holes 27y for two rows are realized.
  • the plurality of nozzle holes 27x are realized.
  • the distance between the two rows of nozzle holes 27 y in the x direction corresponds to the minimum dimension of the resist film 53.
  • “corresponding” does not mean that the interval in the x direction of the nozzle holes 27y is equal to the minimum dimension, but the edge of the film formed by the droplets ejected from the nozzle holes 27y in one row, This means that the distance from the edge of the film formed by the droplets ejected from the nozzle holes 27y in the other row is equal to the minimum dimension.
  • the control device 30 controls the inkjet head 25 and the moving mechanism 21 (FIG. 1), and the droplets discharged from some of the nozzle holes 27y of the plurality of nozzle holes 27y are used in the resist film 53.
  • a pair of edges 54 are formed that give the smallest dimension. Portions other than the edge 54 are formed by droplets ejected from the nozzle hole 27x.
  • the edge 54 giving the minimum dimension can be formed using the other nozzle holes 27y in the same row. Thereby, the exchange frequency of the head block 26 for edge formation can be decreased.
  • the plurality of nozzle holes 27y arranged in the y direction are configured in two rows, but may be configured in one row.
  • one edge 54 may be formed by the first scanning and the other edge 54 may be formed by the second scanning.
  • FIG. 6 shows the positional relationship between the arrangement of the inkjet head 25 of the film forming apparatus according to this embodiment and the resist film 53 to be formed.
  • the inkjet head 25 has a plurality of nozzle holes 27 arranged in a direction parallel to the direction of the minimum dimension (x direction).
  • the pitch of the nozzle holes 27 that discharge droplets for forming a pair of edges 54 that give the minimum dimension of the pattern of the resist film 53 is defined as a first pitch P1.
  • the row of the plurality of nozzle holes 27 includes a portion arranged at a second pitch P2 shorter than the first pitch P1, and a portion where the first pitch P1 is secured. No other nozzle hole is arranged between the two nozzle holes 27 arranged at the first pitch P1.
  • the nozzle holes 27 arranged at the second pitch P ⁇ b> 2 are provided in each of the plurality of head blocks 26.
  • the pitch between the nozzle hole 27 at the end (right end in FIG. 6) of one head block 26 and the nozzle hole 27 at the end (left end in FIG. 6) of the other head block 26 is the first pitch P1.
  • Two head blocks 26 are positioned.
  • the control device 30 (FIG. 1) forms a pair of edges 54 that give the minimum dimension in the resist film 53 with droplets ejected from the two nozzle holes 27 in which the first pitch P1 is secured.
  • the inkjet head 25 and the moving mechanism 21 (FIG. 1) are controlled.
  • the nozzle hole 27 is not disposed between the edges 54 that give the minimum dimension. For this reason, it is possible to prevent droplets from landing between the edges 54 due to a malfunction of the nozzle hole 27 or the like. As a result, it is possible to suppress the occurrence of a problem that the portions to be separated of the resist film 53 are continuous.
  • FIGS. 7A to 8B Still another embodiment will be described with reference to FIGS. 7A to 8B.
  • differences from the embodiment shown in FIGS. 1 to 4 will be described, and descriptions of common configurations will be omitted.
  • FIG. 7A shows the positional relationship between the inkjet head 25 of the film forming apparatus according to this embodiment and the resist film 53 to be formed.
  • a region indicated by a broken line in the resist film 53 indicates a region where the resist is not yet applied.
  • Two head blocks 26 are arranged side by side in the y direction. Each head block 26 is provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction.
  • One head block 26 is fixed to the other head block 26 so as to be displaced in the x direction by half the pitch of the nozzle holes 27. For this reason, as a whole, the pitch of the nozzle holes 27 in the x direction is narrowed to half the pitch of the nozzle holes 27 of one head block 26 as the entire inkjet head 25.
  • the resist film 53 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction).
  • the dot pattern is given to the area
  • One edge 54 giving the minimum dimension in the resist film 53 is formed by droplets ejected from one nozzle hole 27 of one head block 26.
  • the substrate 50 (FIG. 1) is shifted in the minimum dimension direction (x direction). As a result, it becomes possible to apply the droplets ejected from the inkjet head 25 to the region where the resist is not applied in the first scanning.
  • the resist film 53 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction).
  • the edge 54 that is not formed in the step of FIG. 7B among the pair of edges 54 that give the minimum dimension in the resist film 53 is formed.
  • the head block 26 that ejects the droplets that form the edge 54 is the same as the head block 26 that ejects the droplets that form the other edge 54 in the step of FIG. 7B.
  • the positional accuracy is affected by the mounting accuracy of the head block 26 to the support member 28 (FIG. 1).
  • the relative positional accuracy of the pair of edges 54 is the mounting position of the head block 26. Not affected by tolerances. Thereby, the fall of the relative positional accuracy of a pair of edge 54 can be suppressed.
  • the pair of edges 54 that give the minimum dimension are formed by two scans.
  • the pitch of the nozzle holes 27 of one head block 26 corresponds to the interval between the pair of edges 54 that gives the minimum dimension
  • the pair of edges 54 may be formed by one scan.
  • FIG. 9A shows the positional relationship between the inkjet head 25 of the film forming apparatus according to this embodiment and the resist film 53 to be formed.
  • a region indicated by a broken line in the resist film 53 indicates a region where the resist is not yet applied.
  • the inkjet head 25 is provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction.
  • the resist film 53 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction).
  • a dot pattern is given to the region where the resist is applied.
  • One edge 54 giving the minimum dimension in the resist film 53 is formed by droplets ejected from one nozzle hole 27 ⁇ / b> A of the inkjet head 25.
  • the substrate 50 (FIG. 1) is shifted in the minimum dimension direction (x direction) by a distance corresponding to the minimum dimension.
  • the edge 54 that has not been formed by the first scan can be formed by the droplets ejected from the nozzle hole 27A.
  • the resist film 53 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction).
  • the edge 54 that is not formed in the step of FIG. 9B among the pair of edges 54 that give the minimum dimension in the resist film 53 is formed.
  • the nozzle hole 27A that discharges the droplet that forms the edge 54 is the same as the nozzle hole 27A that discharges the droplet that forms one edge 54 in the step of FIG. 9B.
  • the position of the edge 54 is not affected by the variation in the discharge direction of the droplets for each nozzle hole 27. For this reason, variation in the relative positional relationship between the pair of edges 54 can be further reduced.
  • the moving mechanism 21 has a function of rotating the substrate 50 in the in-plane direction of the support surface (rotation direction about an axis perpendicular to the support surface).
  • FIG. 11 shows a pattern of the film 60 to be formed.
  • the direction of the minimum dimension of the resist film 53 is only one direction in the x direction.
  • the interval G in the row direction (x direction) and the interval G in the column direction (y direction) of a plurality of isolated patterns arranged in a matrix are equal, and the interval G is the minimum dimension of the pattern. That is, the direction of the minimum dimension is two directions, the x direction and the y direction.
  • FIG. 12A shows the positional relationship between the inkjet head 25 and the film 60 to be formed in the film forming apparatus according to this embodiment.
  • a region indicated by a broken line in the film 60 indicates that the film material has not been applied yet.
  • the inkjet head 25 is provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction.
  • a part of the film 60 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) perpendicular to the direction of one minimum dimension (x direction).
  • a dot pattern is given to the area where the film material is applied.
  • a film material is applied to a region including a pair of edges 61 that give a minimum dimension in the x direction.
  • No film material is applied to the region including the pair of edges 62 that gives the minimum dimension in the y direction.
  • the control device 30 controls the moving mechanism 21 to rotate the substrate 50 by 90 °.
  • the already formed edge 61 gives the minimum dimension in the y direction
  • the unformed edge 62 gives the minimum dimension in the x direction.
  • the film 60 is formed while moving the substrate 50 (FIG. 1) in the direction (y direction) orthogonal to the direction (x direction) of the minimum dimension given by the unformed edge 62.
  • the film material is applied to a region including a pair of edges 62 that give the minimum dimension of the pattern of the film 60.
  • FIG. 14A shows the positional relationship between the inkjet head 25 of the film forming apparatus according to this embodiment and the film 60 to be formed.
  • a region indicated by a broken line in the film 60 indicates that the film material has not been applied yet.
  • the ink jet head 25 includes a head block 26 provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction and another head block 26 provided with a plurality of nozzle holes 27 arranged at equal intervals in the y direction. .
  • a part of the film 60 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) perpendicular to the direction of one minimum dimension (x direction).
  • a dot pattern is attached to the area where the film material is applied.
  • the film material discharged from the head block 26 having the nozzle holes 27 arranged in the x direction is applied to a region including the pair of edges 61 that give the minimum dimension in the x direction.
  • FIG. 15A the region where the film material is not applied in the process of FIG. 14B while moving the substrate 50 (FIG. 1) in the direction (x direction) perpendicular to the direction of the other smallest dimension (y direction).
  • a film material is applied to the film 60 to complete the film 60.
  • a dot pattern is attached to the area where the film material is applied. This scanning forms a pair of edges 62 that give the minimum dimension in the y direction.
  • both of the edges that give the minimum dimension in the direction orthogonal to each other scan the substrate in the direction orthogonal to the direction of the minimum dimension. Formed when. For this reason, the straightness can be increased at any edge, and the relative positional accuracy of the pair of edges can be increased.
  • FIGS. 16A and 16B differ from the embodiment shown in FIGS. 1 to 4 and descriptions of common configurations will be omitted.
  • FIG. 16A shows a schematic diagram of a film forming apparatus according to this example.
  • the flexible substrate 70 is sent from the feeding roll 71 to the winding roll 72.
  • the moving mechanism 73 is controlled by the control device 30, the feeding roll 71 and the winding roll 72 are rotated.
  • the inkjet head 25 is disposed above the flexible substrate 70 while being fed from the feed roll 71 and wound on the take-up roll 72.
  • the configuration of the inkjet head 25 is the same as the configuration of the inkjet head 25 of the embodiment shown in FIGS.
  • the feeding direction of the flexible substrate 70 corresponds to the scanning direction (y direction) of the substrate 50 in the embodiment of FIGS. 1 to 4, and the width direction of the flexible substrate 70 is in the x direction in the embodiments of FIGS. Correspond.
  • a film can be formed on the flexible substrate 70 by discharging droplets of the film material from the inkjet head 25 while feeding the flexible substrate 70 in the y direction.
  • FIG. 16B shows an example of the pattern of the film 75 formed on the flexible substrate 70.
  • the direction of the minimum dimension of the pattern of the film 75 is the width direction (x direction).
  • the control device 30 (FIG. 16A) controls the feeding speed of the flexible substrate 70 and the ejection of the film material from the inkjet head 25.
  • the relative movement direction of the inkjet head 25 and the flexible substrate 70 is relative to the direction of the minimum dimension of the film pattern to be formed. Orthogonal. Therefore, the same effect as that of the embodiment shown in FIGS. 1 to 4 can be obtained.
  • FIG. 17 shows a flowchart of a procedure executed by the control device 30 of the film forming apparatus according to the present embodiment.
  • pattern data input from the input device 35 (FIG. 1) is stored in the storage device 31 (FIG. 1) (step S1).
  • the direction of the minimum dimension of the pattern defined by the input pattern data is detected (step S2).
  • the direction of the minimum dimension is compared with the moving direction of the substrate during film formation (step S3).
  • the moving direction of the substrate during film formation is stored in the control device 30 in advance.
  • step S4 film formation is executed (step S4). If the two are orthogonal, the control device 30 outputs information notifying the output device 36 (FIG. 1) that the direction of the minimum dimension of the pattern data is deviated from the optimum direction (step S5).
  • the operator can know that the direction of the minimum dimension of the pattern data is deviated from the optimum direction by looking at the information output to the output device 36.
  • the operator corrects the pattern data so as to rotate the direction of the minimum dimension.
  • the corrected pattern data is input from the input device 35 again. Thereby, the fall of the relative position accuracy of the edge of the pattern which gives a minimum dimension can be suppressed.
  • the direction of the minimum dimension of the pattern defined by the current pattern data may be output as information output to the output device. If the direction of the minimum dimension and the moving direction of the substrate during film formation are not orthogonal, the pattern data may be automatically corrected so that they are orthogonal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Ink Jet (AREA)

Abstract

While a substrate is moved relative to an inkjet head, a film is formed on the substrate by discharging droplets from the inkjet head toward the substrate on the basis of pattern data defining a pattern for a film to be formed. The direction of the relative motion of the inkjet head and the substrate is orthogonal to the direction of the smallest measurement in the pattern that is defined by the pattern data. The present invention is capable of forming with high resolution the edges that set the smallest measurement of a pattern using inkjet printing technology.

Description

膜形成方法及び膜形成装置Film forming method and film forming apparatus
 本発明は、膜形成方法及び膜形成装置に関する。 The present invention relates to a film forming method and a film forming apparatus.
 タッチパネルの透明導電膜をパターニングするためのレジストパターンの形成に、フォトリソグラフィ技術またはスクリーン印刷技術が用いられている。フォトリソグラフィ技術を用いる方法では、高精細のパターンを形成することができるが、装置コスト、廃液処理コスト等が嵩む。スクリーン印刷技術を用いる方法では、装置コスト、廃液処理コストの点ではフォトリソグラフィ技術を用いる方法より有利であるが、高精細のパターンを形成することが困難である。インクジェット印刷技術を用いてレジストパターンを形成する技術が提案されている(特許文献1)。 Photolithography technology or screen printing technology is used to form a resist pattern for patterning the transparent conductive film of the touch panel. In the method using the photolithography technique, a high-definition pattern can be formed, but the apparatus cost, the waste liquid processing cost, and the like increase. The method using the screen printing technique is more advantageous than the method using the photolithography technique in terms of apparatus cost and waste liquid treatment cost, but it is difficult to form a high-definition pattern. A technique for forming a resist pattern using an inkjet printing technique has been proposed (Patent Document 1).
特許第5797277号公報Japanese Patent No. 5797277
 透明導電膜等をより高精細にパターニングする技術が求められている。本発明の目的は、インクジェット印刷技術を用いて、パターンの最小寸法を与えるエッジを高精細に形成することが可能な膜形成方法及び膜形成装置を提供することである。 There is a need for a technique for patterning transparent conductive films with higher precision. An object of the present invention is to provide a film forming method and a film forming apparatus capable of forming an edge giving a minimum dimension of a pattern with high definition using an ink jet printing technique.
 本発明の一観点によると、
 インクジェットヘッドに対して基板を相対的に移動させながら、形成すべき膜のパターンを定義するパターンデータに基づいて、前記インクジェットヘッドから前記基板に向けて液滴を吐出させて前記基板に膜を形成する膜形成方法であって、
 前記インクジェットヘッドと前記基板との相対的な移動方向は、前記パターンデータで定義されたパターンの最小寸法の方向に対して直交する膜形成方法が提供される。
 本発明の他の観点によると、
 基板を支持する支持部と、
 前記基板に向けて液滴を吐出するインクジェットヘッドと、
 前記支持部に支持された前記基板と、前記インクジェットヘッドとの一方を他方に対して少なくとも1次元方向に移動させる移動機構と、
 前記インクジェットヘッド及び前記移動機構を制御する制御装置と
を有し、
 前記制御装置は、前記基板に形成すべき膜のパターンを定義するパターンデータを記憶しており、前記インクジェットヘッド及び前記移動機構を制御して、前記基板を前記インクジェットヘッドに対して相対的に、かつ前記パターンデータで定義されたパターンの最小寸法の方向に対して直交する方向に移動させながら、前記パターンデータに基づいて、前記インクジェットヘッドから前記基板に向けて液滴を吐出させて膜を形成する膜形成装置が提供される。
According to one aspect of the invention,
While moving the substrate relative to the inkjet head, a film is formed on the substrate by ejecting droplets from the inkjet head toward the substrate based on pattern data that defines the pattern of the film to be formed. A film forming method for
A film forming method is provided in which the relative movement direction of the inkjet head and the substrate is orthogonal to the direction of the minimum dimension of the pattern defined by the pattern data.
According to another aspect of the invention,
A support for supporting the substrate;
An inkjet head that ejects droplets toward the substrate;
A moving mechanism for moving one of the substrate supported by the support portion and the inkjet head in at least a one-dimensional direction with respect to the other;
A control device for controlling the inkjet head and the moving mechanism;
The control device stores pattern data defining a pattern of a film to be formed on the substrate, controls the inkjet head and the moving mechanism, and moves the substrate relative to the inkjet head. A film is formed by ejecting droplets from the inkjet head toward the substrate based on the pattern data while moving in a direction orthogonal to the direction of the minimum dimension of the pattern defined by the pattern data. A film forming apparatus is provided.
 形成すべき膜のパターンの最小寸法を与える一対のエッジの相対位置精度を高めることができる。 It is possible to improve the relative positional accuracy of a pair of edges that gives the minimum dimension of the film pattern to be formed.
図1は、実施例による膜成形装置の概略図である。FIG. 1 is a schematic view of a film forming apparatus according to an embodiment. 図2は、形成すべき膜の一例として、タッチパネルの透明電極をパターニングするときにエッチングマスクとして用いられるレジストパターンを示す平面図である。FIG. 2 is a plan view showing a resist pattern used as an etching mask when patterning a transparent electrode of a touch panel as an example of a film to be formed. 図3Aは、液滴の着弾目標位置、及び着弾位置のばらつきを示す図であり、図3Bは、基板をy方向に移動させながら帯状の膜を形成した場合の膜の形状の一例を示す図である。FIG. 3A is a diagram showing a target landing position of a droplet and a variation in the landing position, and FIG. 3B is a diagram showing an example of a film shape when a band-shaped film is formed while moving the substrate in the y direction. It is. 図4は、形成すべきレジスト膜とインクジェットヘッドとの位置関係を示す図である。FIG. 4 is a diagram showing the positional relationship between the resist film to be formed and the inkjet head. 図5は、他の実施例による膜形成装置のインクジェットヘッドの配置と、形成すべきレジスト膜との位置関係を示す図である。FIG. 5 is a diagram showing the positional relationship between the arrangement of the inkjet head of a film forming apparatus according to another embodiment and the resist film to be formed. 図6は、さらに他の実施例による膜形成装置のインクジェットヘッドの配置と、形成すべきレジスト膜との位置関係を示す図である。FIG. 6 is a view showing the positional relationship between the arrangement of the inkjet head of a film forming apparatus according to still another embodiment and the resist film to be formed. 図7A及び図7Bは、さらに他の実施例による膜形成装置のインクジェットヘッドと形成すべきレジスト膜との位置関係を示す図である。7A and 7B are views showing the positional relationship between an inkjet head and a resist film to be formed in a film forming apparatus according to still another embodiment. 図8A及び図8Bは、図7A及び図7Bに示した実施例による膜形成装置のインクジェットヘッドと形成すべきレジスト膜との他の位置関係を示す図である。8A and 8B are diagrams showing another positional relationship between the ink jet head of the film forming apparatus according to the embodiment shown in FIGS. 7A and 7B and the resist film to be formed. 図9A及び図9Bは、さらに他の実施例による膜形成装置のインクジェットヘッドと形成すべきレジスト膜との位置関係を示す図である。9A and 9B are views showing the positional relationship between an inkjet head and a resist film to be formed in a film forming apparatus according to still another embodiment. 図10A及び図10Bは、図9A及び図9Bに示した実施例による膜形成装置のインクジェットヘッドと形成すべきレジスト膜との他の位置関係を示す図である。10A and 10B are diagrams showing another positional relationship between the inkjet head and the resist film to be formed in the film forming apparatus according to the embodiment shown in FIGS. 9A and 9B. 図11は、さらに他の実施例による膜形成方法で形成すべき膜のパターンを示す図である。FIG. 11 is a diagram showing a film pattern to be formed by a film forming method according to another embodiment. 図12A及び図12Bは、図11に示した実施例による膜形成装置のインクジェットヘッドと形成すべきレジスト膜との位置関係を示す図である。12A and 12B are views showing the positional relationship between the ink jet head of the film forming apparatus according to the embodiment shown in FIG. 11 and the resist film to be formed. 図13A及び図13Bは、図12A及び図12Bに示した実施例による膜形成装置のインクジェットヘッドと形成すべきレジスト膜との他の位置関係を示す図である。13A and 13B are diagrams showing another positional relationship between the inkjet head of the film forming apparatus according to the embodiment shown in FIGS. 12A and 12B and the resist film to be formed. 図14A及び図14Bは、さらに他の実施例による膜形成装置のインクジェットヘッドと形成すべきレジスト膜との位置関係を示す図である。14A and 14B are views showing the positional relationship between an inkjet head and a resist film to be formed in a film forming apparatus according to still another embodiment. 図15Aは、図14A及び図14Bに示した実施例による膜形成装置のインクジェットヘッドと形成すべきレジスト膜との他の位置関係を示す図である。FIG. 15A is a diagram showing another positional relationship between the ink jet head of the film forming apparatus according to the embodiment shown in FIGS. 14A and 14B and the resist film to be formed. 図16Aは、さらに他の実施例による膜形成装置の概略図であり、図16Bは、フレキシブル基板に形成される膜のパターンの一例を示す図である。FIG. 16A is a schematic view of a film forming apparatus according to still another embodiment, and FIG. 16B is a diagram showing an example of a film pattern formed on a flexible substrate. 図17は、さらに他の実施例による膜形成装置の制御装置が実行する手順のフローチャートである。FIG. 17 is a flowchart of a procedure executed by the control device of the film forming apparatus according to still another embodiment.
 図1~図4を参照して、実施例による膜形成方法及び膜形成装置について説明する。 A film forming method and a film forming apparatus according to an embodiment will be described with reference to FIGS.
 図1に、実施例による膜成形装置の概略図を示す。基台20に移動機構21を介して支持部23が支持されている。支持部23の上面(支持面)に基板50が支持される。移動機構21は、支持部23を支持面に平行な2次元方向に移動させることにより、基板50を2次元方向に移動させることができる。通常、支持部23の支持面は水平に保たれる。支持面に平行な2方向をx軸、y軸とするxyz直交座標系を定義する。 FIG. 1 shows a schematic diagram of a film forming apparatus according to an embodiment. A support portion 23 is supported on the base 20 via a moving mechanism 21. The substrate 50 is supported on the upper surface (support surface) of the support portion 23. The moving mechanism 21 can move the substrate 50 in a two-dimensional direction by moving the support portion 23 in a two-dimensional direction parallel to the support surface. Usually, the support surface of the support part 23 is kept horizontal. An xyz orthogonal coordinate system in which two directions parallel to the support surface are defined as an x axis and ay axis is defined.
 支持部23に支持された基板50の上方にインクジェットヘッド25が配置されている。インクジェットヘッド25は、門型フレーム24により基台20に支持されている。インクジェットヘッド25は、複数のヘッドブロック26を含む。複数のヘッドブロック26は、共通の支持部材28に取り付けられている。ヘッドブロック26の各々に複数のノズル孔が設けられている。ノズル孔から基板50に向けて膜材料の液滴が吐出される。 The inkjet head 25 is disposed above the substrate 50 supported by the support portion 23. The ink jet head 25 is supported on the base 20 by a portal frame 24. The inkjet head 25 includes a plurality of head blocks 26. The plurality of head blocks 26 are attached to a common support member 28. Each head block 26 is provided with a plurality of nozzle holes. A droplet of the film material is discharged from the nozzle hole toward the substrate 50.
 基板50に付着した液状の膜材料が硬化されることにより膜が形成される。膜材料として、光硬化性の樹脂、熱硬化性の樹脂等を用いることができる。インクジェットヘッド25の側方に、基板50に付着した膜材料を硬化させる光源または熱源が配置されている。 A film is formed by curing the liquid film material adhering to the substrate 50. As the film material, a photocurable resin, a thermosetting resin, or the like can be used. A light source or a heat source for curing the film material attached to the substrate 50 is disposed on the side of the inkjet head 25.
 制御装置30が移動機構21による支持部23の移動、及びインクジェットヘッド25のノズル孔からの膜材料の吐出を制御する。制御装置30は記憶装置31を含み、記憶装置31に、形成すべき膜のパターンデータが格納されている。制御装置30がパターンデータに基づいて移動機構21及びインクジェットヘッド25を制御することにより、基板50に所望のパターンの膜を形成することができる。 The control device 30 controls the movement of the support portion 23 by the moving mechanism 21 and the discharge of the film material from the nozzle holes of the inkjet head 25. The control device 30 includes a storage device 31, and the storage device 31 stores film pattern data to be formed. The control device 30 controls the moving mechanism 21 and the inkjet head 25 based on the pattern data, so that a film having a desired pattern can be formed on the substrate 50.
 入力装置35から制御装置30に、種々のコマンドやデータが入力される。入力装置35には、例えばキーボード、ポインティングデバイス、USBポート、通信装置等が用いられる。出力装置36に、膜形成装置の動作に関する種々の情報が出力される。出力装置36には、例えば液晶ディスプレイ、スピーカ、USBポート、通信装置等が用いられる。 Various commands and data are input from the input device 35 to the control device 30. As the input device 35, for example, a keyboard, a pointing device, a USB port, a communication device, or the like is used. Various information regarding the operation of the film forming apparatus is output to the output device 36. As the output device 36, for example, a liquid crystal display, a speaker, a USB port, a communication device, or the like is used.
 図2に、形成すべき膜の一例として、タッチパネルの透明電極をパターニングするときにエッチングマスクとして用いられるレジスト膜53を示す。透明電極は、ITO等からなる透明導電膜を、レジスト膜53をエッチングマスクとしてエッチングすることにより形成される。図2において、レジストが塗布されている領域にドットパターンが付されている。 FIG. 2 shows a resist film 53 used as an etching mask when patterning a transparent electrode of a touch panel as an example of a film to be formed. The transparent electrode is formed by etching a transparent conductive film made of ITO or the like using the resist film 53 as an etching mask. In FIG. 2, a dot pattern is added to the region where the resist is applied.
 複数のパッド部51が行列状に配置されており、接続部52が複数のパッド部51を列方向に接続する。図1で定義したxyz直交座標系において、行方向がx方向に対応し、列方向がy方向に対応する。x方向に隣り合うパッド部51の間隔Gが、パターンの最小寸法となる。この最小寸法の方向はx方向であり、その大きさは、例えば30μm程度である。 The plurality of pad portions 51 are arranged in a matrix, and the connection portion 52 connects the plurality of pad portions 51 in the column direction. In the xyz orthogonal coordinate system defined in FIG. 1, the row direction corresponds to the x direction and the column direction corresponds to the y direction. An interval G between the pad portions 51 adjacent in the x direction is the minimum dimension of the pattern. The direction of this minimum dimension is the x direction, and its size is, for example, about 30 μm.
 パターンの最小寸法を与える一対のエッジ54を形成するための液滴の着弾位置がx方向にずれると、x方向に隣り合うパッド部51が繋がってしまう。本来離間しているべき2つのパッド部51が繋がってしまうと、タッチパネルが正常に動作しなくなる。ところが、液滴の着弾位置がy方向にずれても、x方向に離間した2つのパッド部51が繋がってしまうことはない。従って、パターンの最小寸法を与える一対のエッジ54を形成する液滴の、x方向に関する位置精度を、y方向に関する位置精度より高くすることが好ましい。 When the landing positions of the droplets for forming the pair of edges 54 that give the minimum dimension of the pattern are shifted in the x direction, the pad portions 51 adjacent in the x direction are connected. If the two pad portions 51 that should originally be separated from each other are connected, the touch panel does not operate normally. However, even if the landing position of the liquid droplet is shifted in the y direction, the two pad portions 51 that are separated in the x direction are not connected. Therefore, it is preferable that the positional accuracy in the x direction of the droplet forming the pair of edges 54 that give the minimum dimension of the pattern is higher than the positional accuracy in the y direction.
 次に、図3A及び図3Bを参照して、x方向及びy方向に関する液滴の着弾位置精度について説明する。 Next, with reference to FIGS. 3A and 3B, the landing position accuracy of the droplets in the x direction and the y direction will be described.
 図3Aに、液滴の着弾目標位置、及び着弾位置のばらつきを示す。着弾目標位置55を実線で表し、ばらついた複数の着弾位置を破線で表す。膜材料の塗布時は、基板50(図1)をy方向に移動させながら、インクジェットヘッド25の所定のノズル孔から膜材料の液滴を吐出させる。液滴の着弾位置がばらつく要因として、ノズル孔からの吐出方向のばらつき、基板50の移動速度のばらつき、ノズル孔からの吐出タイミングのばらつき、液滴の吐出速度のばらつき等が考えられる。 FIG. 3A shows the landing target position of the droplet and the variation of the landing position. The landing target position 55 is represented by a solid line, and a plurality of scattered landing positions are represented by broken lines. At the time of applying the film material, droplets of the film material are ejected from a predetermined nozzle hole of the inkjet head 25 while moving the substrate 50 (FIG. 1) in the y direction. Possible causes of variation in the landing position of the droplet include variation in the ejection direction from the nozzle hole, variation in the moving speed of the substrate 50, variation in the ejection timing from the nozzle hole, variation in the droplet ejection speed, and the like.
 これらのばらつき要因のうちノズル孔からの吐出方向のばらつきは、x方向及びy方向の両方向に関する位置のばらつきの要因になる。他の3つのばらつき要因は、y方向に関する位置のばらつきの要因になるが、x方向に関する位置のばらつきの要因にはならない。このため、x方向に関するばらつきの最大幅Dxは、y方向に関するばらつきの最大幅Dyより小さい。 Of these variation factors, variation in the ejection direction from the nozzle hole causes variation in position in both the x and y directions. The other three variation factors cause a variation in position in the y direction, but do not cause a variation in position in the x direction. For this reason, the maximum variation width Dx in the x direction is smaller than the maximum variation width Dy in the y direction.
 図3Bに、基板50(図1)をy方向に移動させながら帯状の膜を形成した場合の膜の形状の一例を示す。インクジェットヘッド25に、x方向に等間隔で並ぶ複数のノズル孔27が設けられている。液滴の着弾位置のx方向に関するばらつきがy方向に関するばらつきより小さいため、y方向に長い帯状の膜56の両側の縁は、x方向に長い帯状の膜57の両側の縁よりも高い直線度を有し、膜56の幅のばらつき(x方向の位置のばらつき)は、膜57の幅のばらつき(y方向の位置のばらつき)より小さい。 FIG. 3B shows an example of the shape of the film when the band-like film is formed while moving the substrate 50 (FIG. 1) in the y direction. The inkjet head 25 is provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction. Since the variation in the droplet landing position in the x direction is smaller than the variation in the y direction, the edges on both sides of the strip film 56 long in the y direction are higher in linearity than the edges on both sides of the strip film 57 long in the x direction. The variation in the width of the film 56 (the variation in the position in the x direction) is smaller than the variation in the width of the film 57 (the variation in the position in the y direction).
 次に、図4を参照して、タッチパネル用の透明電極を形成するためのレジスト膜の形成方法について説明する。 Next, a resist film forming method for forming a transparent electrode for a touch panel will be described with reference to FIG.
 図4に、形成すべきレジスト膜53とインクジェットヘッド25との位置関係を示す。レジスト膜53の最小寸法の方向がx方向に一致するように、パターンデータが作成されている。レジスト膜53の一対のエッジ54によって最小寸法が与えられる。このパターンデータに基づいて、制御装置30(図1)が移動機構21を制御して基板50(図1)をy方向に移動させながら、インクジェットヘッド25の各ノズル孔27から膜材料の液滴を吐出させる。基板50のy方向への1回の移動(以下、走査という)で基板50の全域にレジスト膜53の全体を形成できない場合には、基板50をx方向にずらして2回目以降の走査を行うことにより、レジスト膜53の全体を形成することができる。 FIG. 4 shows the positional relationship between the resist film 53 to be formed and the inkjet head 25. Pattern data is created so that the direction of the minimum dimension of the resist film 53 coincides with the x direction. A minimum dimension is given by a pair of edges 54 of the resist film 53. Based on the pattern data, the control device 30 (FIG. 1) controls the moving mechanism 21 to move the substrate 50 (FIG. 1) in the y direction, while dropping the film material from each nozzle hole 27 of the inkjet head 25. To discharge. If the entire resist film 53 cannot be formed over the entire area of the substrate 50 by one movement (hereinafter referred to as scanning) of the substrate 50 in the y direction, the substrate 50 is shifted in the x direction and the second and subsequent scans are performed. As a result, the entire resist film 53 can be formed.
 次に、図1~図4に示した実施例の優れた効果について説明する。 Next, the excellent effect of the embodiment shown in FIGS. 1 to 4 will be described.
 基板50を、形成すべき膜のパターンの最小寸法の方向(x方向)に対して直交する方向(y方向)に移動させながら膜を形成するときのエッジ54(図4)の方向と基板50の移動の方向との関係は、図3Bの膜56のエッジの方向と基板の移動方向との関係と同一である。このため、図3A及び図3Bを参照して説明したように、パターンの最小寸法を与える一対のエッジ54(図4)の、x方向の位置のばらつきを小さくすることができるとともに、エッジ54の直線度を高めことができる。これにより、最小寸法の部分を挟んでx方向に隣り合う2つのパッド部51が相互に連続してしまうことを抑制することができる。 The direction of the edge 54 (FIG. 4) and the substrate 50 when the film is formed while moving the substrate 50 in the direction (y direction) orthogonal to the direction of the minimum dimension (x direction) of the pattern of the film to be formed. The relationship with the direction of movement is the same as the relationship between the direction of the edge of the film 56 in FIG. 3B and the direction of movement of the substrate. Therefore, as described with reference to FIGS. 3A and 3B, the variation in the position in the x direction of the pair of edges 54 (FIG. 4) that gives the minimum dimension of the pattern can be reduced, and the edge 54 The degree of straightness can be increased. Thereby, it can suppress that the two pad parts 51 adjacent to a x direction on both sides of the part of a minimum dimension will mutually continue.
 さらに、上記実施例では、図1に示したように、インクジェットヘッド25を基台20に対して静止させ、支持部23をy方向に移動させながら膜を形成している。インクジェットヘッド25を基台20に対して移動させると、インクジェットヘッド25の移動に起因して、その姿勢にわずかの変動が生じる。インクジェットヘッド25の姿勢の変動は、液滴の吐出方向を変動させるため、着弾位置の位置精度のばらつきの要因になる。上記実施例では、膜形成時にインクジェットヘッド25を基台20に対して静止させているため、インクジェットヘッド25の姿勢の変動に起因する着弾位置のばらつきを低減することができる。 Furthermore, in the above embodiment, as shown in FIG. 1, the film is formed while the inkjet head 25 is stationary with respect to the base 20 and the support portion 23 is moved in the y direction. When the ink jet head 25 is moved with respect to the base 20, a slight change occurs in the posture due to the movement of the ink jet head 25. The change in the posture of the ink jet head 25 causes a variation in the positional accuracy of the landing position because it changes the ejection direction of the droplets. In the above embodiment, since the ink jet head 25 is stationary with respect to the base 20 at the time of film formation, it is possible to reduce the variation in the landing position due to the change in the posture of the ink jet head 25.
 上記実施例では、インクジェット印刷技術を用いてレジスト膜を形成したが、その他の膜を形成することも可能である。また、上記実施例では、レジストが塗布された領域の間隙によって最小寸法が与えられたが、レジストが塗布された領域によって最小寸法が与えられてもよい。例えば、レジストからなる細線の幅が最小寸法となるような膜を形成することも可能である。この場合には、実施例による方法を適用することにより、細線における断線の発生を抑制することができる。 In the above embodiment, the resist film is formed using the ink jet printing technique, but other films may be formed. In the above embodiment, the minimum dimension is given by the gap between the areas where the resist is applied. However, the minimum dimension may be given by the area where the resist is applied. For example, it is possible to form a film in which the width of the thin line made of resist is the minimum dimension. In this case, by applying the method according to the embodiment, occurrence of disconnection in the thin line can be suppressed.
 上記実施例では、インクジェットヘッド25を静止させ、膜形成時に基板50を移動させたが、その逆に、基板50を静止させ、インクジェットヘッド25を移動させてもよい。なお、この場合には、インクジェットヘッド25の姿勢の変動に起因する着弾位置のばらつきが発生する場合があるが、形成すべき膜のパターンの最小寸法の方向(x方向)に対して直交する方向(y方向)に、基板50とインクジェットヘッド25とを相対的に移動させることによる位置のばらつきを抑制する効果は得られる。 In the above embodiment, the inkjet head 25 is stationary and the substrate 50 is moved during film formation. Conversely, the substrate 50 may be stationary and the inkjet head 25 may be moved. In this case, although there may be variations in the landing position due to variations in the posture of the inkjet head 25, the direction orthogonal to the direction of the minimum dimension (x direction) of the film pattern to be formed The effect of suppressing variation in position due to relative movement of the substrate 50 and the inkjet head 25 in the (y direction) can be obtained.
 次に、図5を参照して他の実施例について説明する。以下、図1~図4に示した実施例との相違点について説明し、共通の構成については説明を省略する。 Next, another embodiment will be described with reference to FIG. Hereinafter, differences from the embodiment shown in FIGS. 1 to 4 will be described, and descriptions of common configurations will be omitted.
 図5に、本実施例による膜形成装置のインクジェットヘッド25の配置と、形成すべきレジスト膜53との位置関係を示す。レジスト膜53のパターンは、図2、図4に示した実施例におけるレジスト膜53のパターンと同一である。本実施例においては、インクジェットヘッド25に、レジスト膜53の最小寸法の方向(x方向)に対して直交する方向(y方向)に並ぶ複数のノズル孔27yが設けられている。その他に、図4に示した実施例と同様に、x方向に等間隔で並ぶ複数のノズル孔27xが設けられている。y方向に並ぶ複数のノズル孔27yは2列に並んでおり、各列の複数のノズル孔27yはx座標が同一の位置に配置されている。 FIG. 5 shows the positional relationship between the arrangement of the inkjet head 25 of the film forming apparatus according to this embodiment and the resist film 53 to be formed. The pattern of the resist film 53 is the same as the pattern of the resist film 53 in the embodiment shown in FIGS. In this embodiment, the inkjet head 25 is provided with a plurality of nozzle holes 27y arranged in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction) of the resist film 53. In addition, similarly to the embodiment shown in FIG. 4, a plurality of nozzle holes 27x arranged at equal intervals in the x direction are provided. The plurality of nozzle holes 27y arranged in the y direction are arranged in two rows, and the plurality of nozzle holes 27y in each row are arranged at the same x coordinate.
 例えば、ヘッドブロック26の各々に1列に並ぶ複数のノズル孔27が設けられている。2つのヘッドブロック26が、ノズル孔27の配列方向がy方向と平行になる姿勢で配置されている。これにより、2列分のノズル孔27yが実現される。複数のヘッドブロック26を、ノズル孔27の配列方向がx方向と平行になる姿勢で配置することにより、複数のノズル孔27xが実現される。 For example, each of the head blocks 26 is provided with a plurality of nozzle holes 27 arranged in a line. The two head blocks 26 are arranged in such a posture that the arrangement direction of the nozzle holes 27 is parallel to the y direction. Thereby, the nozzle holes 27y for two rows are realized. By arranging the plurality of head blocks 26 in such a posture that the arrangement direction of the nozzle holes 27 is parallel to the x direction, the plurality of nozzle holes 27x are realized.
 2列のノズル孔27yのx方向の間隔は、レジスト膜53の最小寸法に対応する。ここで、「対応する」とは、ノズル孔27yのx方向の間隔が最小寸法に等しいという意味ではなく、一方の列のノズル孔27yから吐出された液滴により形成される膜のエッジと、他方の列のノズル孔27yから吐出された液滴により形成される膜のエッジとの間隔が最小寸法に等しくなることを意味する。 The distance between the two rows of nozzle holes 27 y in the x direction corresponds to the minimum dimension of the resist film 53. Here, “corresponding” does not mean that the interval in the x direction of the nozzle holes 27y is equal to the minimum dimension, but the edge of the film formed by the droplets ejected from the nozzle holes 27y in one row, This means that the distance from the edge of the film formed by the droplets ejected from the nozzle holes 27y in the other row is equal to the minimum dimension.
 制御装置30(図1)は、インクジェットヘッド25及び移動機構21(図1)を制御して、複数のノズル孔27yの一部のノズル孔27yから吐出された液滴によって、レジスト膜53中の最小寸法を与える一対のエッジ54を形成する。エッジ54以外の部分は、ノズル孔27xから吐出された液滴により形成される。 The control device 30 (FIG. 1) controls the inkjet head 25 and the moving mechanism 21 (FIG. 1), and the droplets discharged from some of the nozzle holes 27y of the plurality of nozzle holes 27y are used in the resist film 53. A pair of edges 54 are formed that give the smallest dimension. Portions other than the edge 54 are formed by droplets ejected from the nozzle hole 27x.
 図5に示した実施例では、複数のノズル孔27yの1つが故障しても、同一の列内の他のノズル孔27yを用いて最小寸法を与えるエッジ54を形成することができる。これにより、エッジ形成用のヘッドブロック26の交換頻度を少なくすることができる。 In the embodiment shown in FIG. 5, even if one of the plurality of nozzle holes 27y fails, the edge 54 giving the minimum dimension can be formed using the other nozzle holes 27y in the same row. Thereby, the exchange frequency of the head block 26 for edge formation can be decreased.
 図5に示した実施例では、y方向に並ぶ複数のノズル孔27yを2列構成にしたが、1列構成にしてもよい。この場合には、1回目の走査で一方のエッジ54を形成し、2回目の走査で他方のエッジ54を形成すればよい。 In the embodiment shown in FIG. 5, the plurality of nozzle holes 27y arranged in the y direction are configured in two rows, but may be configured in one row. In this case, one edge 54 may be formed by the first scanning and the other edge 54 may be formed by the second scanning.
 次に、図6を参照してさらに他の実施例について説明する。以下、図1~図4に示した実施例との相違点について説明し、共通の構成については説明を省略する。 Next, still another embodiment will be described with reference to FIG. Hereinafter, differences from the embodiment shown in FIGS. 1 to 4 will be described, and descriptions of common configurations will be omitted.
 図6に、本実施例による膜形成装置のインクジェットヘッド25の配置と、形成すべきレジスト膜53との位置関係を示す。インクジェットヘッド25は、最小寸法の方向(x方向)と平行な方向に並ぶ複数のノズル孔27を有する。レジスト膜53のパターンの最小寸法を与える一対のエッジ54を形成するための液滴を吐出するノズル孔27のピッチを第1のピッチP1とする。複数のノズル孔27の列は、第1のピッチP1より短い第2のピッチP2で並ぶ部分と、第1のピッチP1が確保された部分とを含む。第1のピッチP1で並ぶ2つのノズル孔27の間には、他のノズル孔が配置されていない。 FIG. 6 shows the positional relationship between the arrangement of the inkjet head 25 of the film forming apparatus according to this embodiment and the resist film 53 to be formed. The inkjet head 25 has a plurality of nozzle holes 27 arranged in a direction parallel to the direction of the minimum dimension (x direction). The pitch of the nozzle holes 27 that discharge droplets for forming a pair of edges 54 that give the minimum dimension of the pattern of the resist film 53 is defined as a first pitch P1. The row of the plurality of nozzle holes 27 includes a portion arranged at a second pitch P2 shorter than the first pitch P1, and a portion where the first pitch P1 is secured. No other nozzle hole is arranged between the two nozzle holes 27 arranged at the first pitch P1.
 例えば、第2のピッチP2で並ぶノズル孔27は、複数のヘッドブロック26の各々に設けられている。1つのヘッドブロック26の端(図6において右端)のノズル孔27と、他のヘッドブロック26の端(図6において左端)のノズル孔27とのピッチが第1のピッチP1になるように、2つのヘッドブロック26が位置決めされている。 For example, the nozzle holes 27 arranged at the second pitch P <b> 2 are provided in each of the plurality of head blocks 26. The pitch between the nozzle hole 27 at the end (right end in FIG. 6) of one head block 26 and the nozzle hole 27 at the end (left end in FIG. 6) of the other head block 26 is the first pitch P1. Two head blocks 26 are positioned.
 制御装置30(図1)は、第1のピッチP1が確保された2つのノズル孔27から吐出させた液滴でレジスト膜53内の最小寸法を与える一対のエッジ54が形成されるように、インクジェットヘッド25及び移動機構21(図1)を制御する。 The control device 30 (FIG. 1) forms a pair of edges 54 that give the minimum dimension in the resist film 53 with droplets ejected from the two nozzle holes 27 in which the first pitch P1 is secured. The inkjet head 25 and the moving mechanism 21 (FIG. 1) are controlled.
 図6に示した実施例においては、最小寸法を与えるエッジ54の間にノズル孔27が配置されていない。このため、ノズル孔27の誤作動等によってエッジ54の間に液滴が着弾してしまうことを防止することができる。これにより、レジスト膜53の離隔すべき箇所が連続してしまう不具合の発生を抑制することができる。 In the embodiment shown in FIG. 6, the nozzle hole 27 is not disposed between the edges 54 that give the minimum dimension. For this reason, it is possible to prevent droplets from landing between the edges 54 due to a malfunction of the nozzle hole 27 or the like. As a result, it is possible to suppress the occurrence of a problem that the portions to be separated of the resist film 53 are continuous.
 次に、図7A~図8Bを参照してさらに他の実施例について説明する。以下、図1~図4に示した実施例との相違点について説明し、共通の構成については説明を省略する。 Next, still another embodiment will be described with reference to FIGS. 7A to 8B. Hereinafter, differences from the embodiment shown in FIGS. 1 to 4 will be described, and descriptions of common configurations will be omitted.
 図7Aに、本実施例による膜形成装置のインクジェットヘッド25と形成すべきレジスト膜53との位置関係を示す。レジスト膜53の破線で示した領域は、レジストがまだ塗布されていない領域であることを示している。2つのヘッドブロック26がy方向に並んで配置されている。ヘッドブロック26の各々には、x方向に等間隔で並ぶ複数のノズル孔27が設けられている。一方のヘッドブロック26は、他方のヘッドブロック26に対して、ノズル孔27のピッチの半分だけx方向にずれて固定されている。このため、インクジェットヘッド25全体として、ノズル孔27のx方向のピッチが、1つのヘッドブロック26のノズル孔27のピッチの半分に狭められている。 FIG. 7A shows the positional relationship between the inkjet head 25 of the film forming apparatus according to this embodiment and the resist film 53 to be formed. A region indicated by a broken line in the resist film 53 indicates a region where the resist is not yet applied. Two head blocks 26 are arranged side by side in the y direction. Each head block 26 is provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction. One head block 26 is fixed to the other head block 26 so as to be displaced in the x direction by half the pitch of the nozzle holes 27. For this reason, as a whole, the pitch of the nozzle holes 27 in the x direction is narrowed to half the pitch of the nozzle holes 27 of one head block 26 as the entire inkjet head 25.
 図7Bに示すように、基板50(図1)を最小寸法の方向(x方向)と直交する方向(y方向)に移動させながら、レジスト膜53を形成する。図7Bにおいて、レジストが塗布された領域にドットパターンが付されている。レジスト膜53中の最小寸法を与える一方のエッジ54は、一方のヘッドブロック26の1つのノズル孔27から吐出された液滴により形成される。 As shown in FIG. 7B, the resist film 53 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction). In FIG. 7B, the dot pattern is given to the area | region where the resist was apply | coated. One edge 54 giving the minimum dimension in the resist film 53 is formed by droplets ejected from one nozzle hole 27 of one head block 26.
 図8Aに示すように、基板50(図1)を最小寸法の方向(x方向)にずらす。これにより、1回目の走査でレジストを塗布していない領域に、インクジェットヘッド25から吐出された液滴を塗布することが可能な状態になる。 As shown in FIG. 8A, the substrate 50 (FIG. 1) is shifted in the minimum dimension direction (x direction). As a result, it becomes possible to apply the droplets ejected from the inkjet head 25 to the region where the resist is not applied in the first scanning.
 図8Bに示すように、基板50(図1)を最小寸法の方向(x方向)と直交する方向(y方向)に移動させながら、レジスト膜53を形成する。この走査により、レジスト膜53中の最小寸法を与える一対のエッジ54のうち、図7Bの工程で形成されていない方のエッジ54が形成される。このとき、エッジ54を形成する液滴を吐出するヘッドブロック26は、図7Bの工程でもう一方のエッジ54を形成する液滴を吐出したヘッドブロック26と同一のものである。 As shown in FIG. 8B, the resist film 53 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction). By this scanning, the edge 54 that is not formed in the step of FIG. 7B among the pair of edges 54 that give the minimum dimension in the resist film 53 is formed. At this time, the head block 26 that ejects the droplets that form the edge 54 is the same as the head block 26 that ejects the droplets that form the other edge 54 in the step of FIG. 7B.
 一対のエッジ54を、異なるヘッドブロック26から吐出された液滴で形成すると、その位置精度がヘッドブロック26の支持部材28(図1)への取り付け精度の影響を受けてしまう。図7A~図8Bに示した実施例では、一対のエッジ54が同一のヘッドブロック26から吐出された液滴で形成されるため、一対のエッジ54の相対的位置精度がヘッドブロック26の取り付け位置公差の影響を受けない。これにより、一対のエッジ54の相対的な位置精度の低下を抑制することができる。 When the pair of edges 54 are formed by droplets ejected from different head blocks 26, the positional accuracy is affected by the mounting accuracy of the head block 26 to the support member 28 (FIG. 1). In the embodiment shown in FIGS. 7A to 8B, since the pair of edges 54 are formed by droplets ejected from the same head block 26, the relative positional accuracy of the pair of edges 54 is the mounting position of the head block 26. Not affected by tolerances. Thereby, the fall of the relative positional accuracy of a pair of edge 54 can be suppressed.
 図7A~図8Bに示した例では、最小寸法を与える一対のエッジ54を、2回の走査で形成した。1つのヘッドブロック26のノズル孔27のピッチが、最小寸法を与える一対のエッジ54の間隔に対応している場合、1回の走査で、一対のエッジ54を形成してもよい。 In the example shown in FIGS. 7A to 8B, the pair of edges 54 that give the minimum dimension are formed by two scans. When the pitch of the nozzle holes 27 of one head block 26 corresponds to the interval between the pair of edges 54 that gives the minimum dimension, the pair of edges 54 may be formed by one scan.
 次に、図9A~図10Bを参照してさらに他の実施例について説明する。以下、図7A~図8Bに示した実施例との相違点について説明し、共通の構成については説明を省略する。 Next, still another embodiment will be described with reference to FIGS. 9A to 10B. Hereinafter, differences from the embodiment shown in FIGS. 7A to 8B will be described, and description of common configurations will be omitted.
 図9Aに、本実施例による膜形成装置のインクジェットヘッド25と形成すべきレジスト膜53との位置関係を示す。レジスト膜53の破線で示した領域は、レジストがまだ塗布されていない領域であることを示している。インクジェットヘッド25に、x方向に等間隔で並ぶ複数のノズル孔27が設けられている。 FIG. 9A shows the positional relationship between the inkjet head 25 of the film forming apparatus according to this embodiment and the resist film 53 to be formed. A region indicated by a broken line in the resist film 53 indicates a region where the resist is not yet applied. The inkjet head 25 is provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction.
 図9Bに示すように、基板50(図1)を最小寸法の方向(x方向)と直交する方向(y方向)に移動させながら、レジスト膜53を形成する。図9Bにおいて、レジストが塗布された領域にドットパターンが付されている。レジスト膜53中の最小寸法を与える一方のエッジ54は、インクジェットヘッド25の1つのノズル孔27Aから吐出された液滴により形成される。 As shown in FIG. 9B, the resist film 53 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction). In FIG. 9B, a dot pattern is given to the region where the resist is applied. One edge 54 giving the minimum dimension in the resist film 53 is formed by droplets ejected from one nozzle hole 27 </ b> A of the inkjet head 25.
 図10Aに示すように、基板50(図1)を最小寸法の方向(x方向)に、最小寸法に対応する距離だけずらす。これにより、1回目の走査で形成されなかった方のエッジ54を、ノズル孔27Aから吐出された液滴により形成することが可能な状態になる。 As shown in FIG. 10A, the substrate 50 (FIG. 1) is shifted in the minimum dimension direction (x direction) by a distance corresponding to the minimum dimension. As a result, the edge 54 that has not been formed by the first scan can be formed by the droplets ejected from the nozzle hole 27A.
 図10Bに示すように、基板50(図1)を最小寸法の方向(x方向)と直交する方向(y方向)に移動させながら、レジスト膜53を形成する。この走査により、レジスト膜53中の最小寸法を与える一対のエッジ54のうち、図9Bの工程で形成されていない方のエッジ54が形成される。エッジ54を形成する液滴を吐出するノズル孔27Aは、図9Bの工程で一方のエッジ54を形成する液滴を吐出したノズル孔27Aと同一のものである。 As shown in FIG. 10B, the resist film 53 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) orthogonal to the direction of the minimum dimension (x direction). By this scanning, the edge 54 that is not formed in the step of FIG. 9B among the pair of edges 54 that give the minimum dimension in the resist film 53 is formed. The nozzle hole 27A that discharges the droplet that forms the edge 54 is the same as the nozzle hole 27A that discharges the droplet that forms one edge 54 in the step of FIG. 9B.
 図9A~図10Bに示した実施例では、エッジ54の位置が、ノズル孔27ごとの液滴の吐出方向のばらつきの影響を受けない。このため、一対のエッジ54の相対的位置関係のばらつきをより少なくすることができる。 In the embodiment shown in FIGS. 9A to 10B, the position of the edge 54 is not affected by the variation in the discharge direction of the droplets for each nozzle hole 27. For this reason, variation in the relative positional relationship between the pair of edges 54 can be further reduced.
 次に、図11~図13Bを参照してさらに他の実施例について説明する。以下、図1~図4に示した実施例との相違点について説明し、共通の構成については説明を省略する。本実施例では、移動機構21(図1)が、基板50を支持面の面内方向(支持面に対して垂直な軸を中心とした回転方向)に回転させる機能を有する。 Next, still another embodiment will be described with reference to FIGS. 11 to 13B. Hereinafter, differences from the embodiment shown in FIGS. 1 to 4 will be described, and descriptions of common configurations will be omitted. In the present embodiment, the moving mechanism 21 (FIG. 1) has a function of rotating the substrate 50 in the in-plane direction of the support surface (rotation direction about an axis perpendicular to the support surface).
 図11に、形成すべき膜60のパターンを示す。図1~図4に示した実施例では、レジスト膜53の最小寸法の方向がx方向の1方向のみであった。本実施例においては、行列状に配置された複数の孤立パターンの行方向(x方向)の間隔G及び列方向(y方向)の間隔Gが等しく、間隔Gがパターンの最小寸法である。すなわち、最小寸法の方向が、x方向及びy方向の2方向になる。 FIG. 11 shows a pattern of the film 60 to be formed. In the embodiment shown in FIGS. 1 to 4, the direction of the minimum dimension of the resist film 53 is only one direction in the x direction. In the present embodiment, the interval G in the row direction (x direction) and the interval G in the column direction (y direction) of a plurality of isolated patterns arranged in a matrix are equal, and the interval G is the minimum dimension of the pattern. That is, the direction of the minimum dimension is two directions, the x direction and the y direction.
 図12Aに、本実施例による膜形成装置のインクジェットヘッド25と形成すべき膜60との位置関係を示す。膜60の破線で示した領域は、膜材料がまだ塗布されていない領域であることを示している。インクジェットヘッド25に、x方向に等間隔で並ぶ複数のノズル孔27が設けられている。 FIG. 12A shows the positional relationship between the inkjet head 25 and the film 60 to be formed in the film forming apparatus according to this embodiment. A region indicated by a broken line in the film 60 indicates that the film material has not been applied yet. The inkjet head 25 is provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction.
 図12Bに示すように、基板50(図1)を一方の最小寸法の方向(x方向)と直交する方向(y方向)に移動させながら、膜60の一部を形成する。図12Bにおいて、膜材料が塗布された領域にドットパターンが付されている。x方向の最小寸法を与える一対のエッジ61を含む領域に膜材料が塗布される。y方向の最小寸法を与える一対のエッジ62を含む領域には、膜材料が塗布されない。 As shown in FIG. 12B, a part of the film 60 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) perpendicular to the direction of one minimum dimension (x direction). In FIG. 12B, a dot pattern is given to the area where the film material is applied. A film material is applied to a region including a pair of edges 61 that give a minimum dimension in the x direction. No film material is applied to the region including the pair of edges 62 that gives the minimum dimension in the y direction.
 図13Aに示すように、制御装置30(図1)が移動機構21を制御して、基板50を90°回転させる。これにより、既に形成されているエッジ61がy方向の最小寸法を与えることになり、未形成のエッジ62がx方向の最小寸法を与えることになる。 As shown in FIG. 13A, the control device 30 (FIG. 1) controls the moving mechanism 21 to rotate the substrate 50 by 90 °. As a result, the already formed edge 61 gives the minimum dimension in the y direction, and the unformed edge 62 gives the minimum dimension in the x direction.
 図13Bに示すように、基板50(図1)を未形成のエッジ62で与えられる最小寸法の方向(x方向)と直交する方向(y方向)に移動させながら、膜60を形成する。この走査により、膜60のパターンの最小寸法を与える一対のエッジ62を含む領域に膜材料が塗布される。 As shown in FIG. 13B, the film 60 is formed while moving the substrate 50 (FIG. 1) in the direction (y direction) orthogonal to the direction (x direction) of the minimum dimension given by the unformed edge 62. By this scanning, the film material is applied to a region including a pair of edges 62 that give the minimum dimension of the pattern of the film 60.
 図11~図13Bに示した実施例においては、相互に直交する方向の最小寸法を与えるエッジのいずれも、共に最小寸法の方向に対して直交する方向に基板を走査するときに形成される。このため、いずれのエッジにおいても、直線度を高め、かつ一対のエッジの相対位置精度を高めることができる。 In the embodiment shown in FIGS. 11 to 13B, all of the edges that give the minimum dimension in the direction orthogonal to each other are formed when the substrate is scanned in the direction orthogonal to the direction of the minimum dimension. For this reason, the straightness can be increased at any edge, and the relative positional accuracy of the pair of edges can be increased.
 次に、図14A~図15Aを参照してさらに他の実施例について説明する。以下、図11~図13Bに示した実施例との相違点について説明し、共通の構成については説明を省略する。 Next, still another embodiment will be described with reference to FIGS. 14A to 15A. Hereinafter, differences from the embodiment shown in FIGS. 11 to 13B will be described, and descriptions of common configurations will be omitted.
 図14Aに、本実施例による膜形成装置のインクジェットヘッド25と形成すべき膜60との位置関係を示す。膜60の破線で示した領域は、膜材料がまだ塗布されていない領域であることを示している。インクジェットヘッド25は、x方向に等間隔で並ぶ複数のノズル孔27が設けられたヘッドブロック26と、y方向に等間隔で並ぶ複数のノズル孔27が設けられた他のヘッドブロック26とを含む。 FIG. 14A shows the positional relationship between the inkjet head 25 of the film forming apparatus according to this embodiment and the film 60 to be formed. A region indicated by a broken line in the film 60 indicates that the film material has not been applied yet. The ink jet head 25 includes a head block 26 provided with a plurality of nozzle holes 27 arranged at equal intervals in the x direction and another head block 26 provided with a plurality of nozzle holes 27 arranged at equal intervals in the y direction. .
 図14Bに示すように、基板50(図1)を一方の最小寸法の方向(x方向)と直交する方向(y方向)に移動させながら、膜60の一部を形成する。図14Bにおいて、膜材料が塗布された領域にドットパターンが付されている。x方向の最小寸法を与える一対のエッジ61を含む領域に、x方向に並ぶノズル孔27を有するヘッドブロック26から吐出された膜材料が塗布される。 As shown in FIG. 14B, a part of the film 60 is formed while moving the substrate 50 (FIG. 1) in a direction (y direction) perpendicular to the direction of one minimum dimension (x direction). In FIG. 14B, a dot pattern is attached to the area where the film material is applied. The film material discharged from the head block 26 having the nozzle holes 27 arranged in the x direction is applied to a region including the pair of edges 61 that give the minimum dimension in the x direction.
 図15Aに示すように、基板50(図1)を他方の最小寸法の方向(y方向)と直交する方向(x方向)に移動させながら、図14Bの工程で膜材料が塗布されなかった領域に膜材料を塗布し、膜60を完成させる。図15Aおいて、膜材料が塗布された領域にドットパターンが付されている。この走査により、y方向の最小寸法を与える一対のエッジ62が形成される。 As shown in FIG. 15A, the region where the film material is not applied in the process of FIG. 14B while moving the substrate 50 (FIG. 1) in the direction (x direction) perpendicular to the direction of the other smallest dimension (y direction). A film material is applied to the film 60 to complete the film 60. In FIG. 15A, a dot pattern is attached to the area where the film material is applied. This scanning forms a pair of edges 62 that give the minimum dimension in the y direction.
 本実施例においても、図11~図13Bに示した実施例と同様に、相互に直交する方向の最小寸法を与えるエッジのいずれも、共に最小寸法の方向に対して直交する方向に基板を走査するときに形成される。このため、いずれのエッジにおいても、直線度を高め、かつ一対のエッジの相対位置精度を高めることができる。 In this embodiment, as in the embodiment shown in FIGS. 11 to 13B, both of the edges that give the minimum dimension in the direction orthogonal to each other scan the substrate in the direction orthogonal to the direction of the minimum dimension. Formed when. For this reason, the straightness can be increased at any edge, and the relative positional accuracy of the pair of edges can be increased.
 次に、図16A及び図16Bを参照してさらに他の実施例について説明する。以下、図1~図4に示した実施例との相違点について説明し、共通の構成については説明を省略する。 Next, still another embodiment will be described with reference to FIGS. 16A and 16B. Hereinafter, differences from the embodiment shown in FIGS. 1 to 4 will be described, and descriptions of common configurations will be omitted.
 図16Aに、本実施例による膜形成装置の概略図を示す。フレキシブル基板70が、繰り出しロール71から巻取りロール72に送られる。移動機構73が制御装置30によって制御されることにより、繰り出しロール71及び巻取りロール72を回転させる。繰り出しロール71から繰り出されて巻取りロール72に巻き取られる間のフレキシブル基板70の上方にインクジェットヘッド25が配置されている。インクジェットヘッド25の構成は、図1~図4に示した実施例のインクジェットヘッド25の構成と同一である。 FIG. 16A shows a schematic diagram of a film forming apparatus according to this example. The flexible substrate 70 is sent from the feeding roll 71 to the winding roll 72. When the moving mechanism 73 is controlled by the control device 30, the feeding roll 71 and the winding roll 72 are rotated. The inkjet head 25 is disposed above the flexible substrate 70 while being fed from the feed roll 71 and wound on the take-up roll 72. The configuration of the inkjet head 25 is the same as the configuration of the inkjet head 25 of the embodiment shown in FIGS.
 フレキシブル基板70の送り方向が、図1~図4の実施例における基板50の走査方向(y方向)に対応し、フレキシブル基板70の幅方向が、図1~図4の実施例におけるx方向に対応する。フレキシブル基板70をy方向に送りながら、インクジェットヘッド25から膜材料の液滴を吐出させることにより、フレキシブル基板70に膜を形成することができる。 The feeding direction of the flexible substrate 70 corresponds to the scanning direction (y direction) of the substrate 50 in the embodiment of FIGS. 1 to 4, and the width direction of the flexible substrate 70 is in the x direction in the embodiments of FIGS. Correspond. A film can be formed on the flexible substrate 70 by discharging droplets of the film material from the inkjet head 25 while feeding the flexible substrate 70 in the y direction.
 図16Bに、フレキシブル基板70に形成される膜75のパターンの一例を示す。膜75のパターンの最小寸法の方向が幅方向(x方向)とされている。制御装置30(図16A)が、フレキシブル基板70の送り速度及びインクジェットヘッド25からの膜材料の吐出を制御する。 FIG. 16B shows an example of the pattern of the film 75 formed on the flexible substrate 70. The direction of the minimum dimension of the pattern of the film 75 is the width direction (x direction). The control device 30 (FIG. 16A) controls the feeding speed of the flexible substrate 70 and the ejection of the film material from the inkjet head 25.
 本実施例においても、図1~図4に示した実施例と同様に、インクジェットヘッド25とフレキシブル基板70との相対的な移動方向は、形成すべき膜のパターンの最小寸法の方向に対して直交する。このため、図1~図4に示した実施例と同様の効果が得られる。 Also in this embodiment, as in the embodiment shown in FIGS. 1 to 4, the relative movement direction of the inkjet head 25 and the flexible substrate 70 is relative to the direction of the minimum dimension of the film pattern to be formed. Orthogonal. Therefore, the same effect as that of the embodiment shown in FIGS. 1 to 4 can be obtained.
 次に、図17を参照してさらに他の実施例について説明する。以下、図1~図4に示した実施例との相違点について説明し、共通の構成については説明を省略する。 Next, still another embodiment will be described with reference to FIG. Hereinafter, differences from the embodiment shown in FIGS. 1 to 4 will be described, and descriptions of common configurations will be omitted.
 図17に、本実施例による膜形成装置の制御装置30が実行する手順のフローチャートを示す。まず、入力装置35(図1)から入力されるパターンデータを記憶装置31(図1)に格納する(ステップS1)。入力されたパターンデータで定義されるパターンの最小寸法の方向を検出する(ステップS2)。最小寸法の方向と、膜形成時の基板の移動方向とを比較する(ステップS3)。膜形成時の基板の移動方向は、予め制御装置30に記憶されている。 FIG. 17 shows a flowchart of a procedure executed by the control device 30 of the film forming apparatus according to the present embodiment. First, pattern data input from the input device 35 (FIG. 1) is stored in the storage device 31 (FIG. 1) (step S1). The direction of the minimum dimension of the pattern defined by the input pattern data is detected (step S2). The direction of the minimum dimension is compared with the moving direction of the substrate during film formation (step S3). The moving direction of the substrate during film formation is stored in the control device 30 in advance.
 両者が直交の関係である場合には、膜形成を実行する(ステップS4)。両者が直交の関係でない場合、制御装置30は出力装置36(図1)に、パターンデータの最小寸法の方向が最適な方向からずれていることを通知する情報を出力する(ステップS5)。 If the two are orthogonal, film formation is executed (step S4). If the two are not orthogonal, the control device 30 outputs information notifying the output device 36 (FIG. 1) that the direction of the minimum dimension of the pattern data is deviated from the optimum direction (step S5).
 オペレータは、出力装置36に出力された情報を見て、パターンデータの最小寸法の方向が最適な方向からずれていることを知ることができる。オペレータは、最小寸法の方向を回転させるようにパターンデータを修正する。修正されたパターンデータを、再度、入力装置35から入力する。これにより、最小寸法を与えるパターンのエッジの相対位置精度の低下を抑制することができる。 The operator can know that the direction of the minimum dimension of the pattern data is deviated from the optimum direction by looking at the information output to the output device 36. The operator corrects the pattern data so as to rotate the direction of the minimum dimension. The corrected pattern data is input from the input device 35 again. Thereby, the fall of the relative position accuracy of the edge of the pattern which gives a minimum dimension can be suppressed.
 出力装置に出力する情報に、現在のパターンデータで定義されているパターンの最小寸法の方向を出力するようにしてもよい。また、最小寸法の方向と、膜形成時の基板の移動方向とが直交の関係にない場合、両者が直交の関係になるように、パターンデータを自動修正するようにしてもよい。 The direction of the minimum dimension of the pattern defined by the current pattern data may be output as information output to the output device. If the direction of the minimum dimension and the moving direction of the substrate during film formation are not orthogonal, the pattern data may be automatically corrected so that they are orthogonal.
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 Each of the above-described embodiments is an exemplification, and needless to say, partial replacement or combination of the configurations shown in the different embodiments is possible. About the same effect by the same composition of a plurality of examples, it does not refer to every example one by one. Furthermore, the present invention is not limited to the embodiments described above. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
20 基台
21 移動機構
23 支持部
24 門型フレーム
25 インクジェットヘッド
26 ヘッドブロック
27 ノズル孔
27A ノズル孔
27x x方向に並ぶノズル孔
27y y方向に並ぶノズル孔
28 支持部材
30 制御装置
31 記憶装置
35 入力装置
36 出力装置
50 基板
51 パッド部
52 接続部
53 レジスト膜
54 最小寸法を与えるエッジ
55 着弾目標位置
56、57 帯状の膜
60 膜
61、62 エッジ
70 フレキシブル基板
71 繰り出しロール
72 巻取りロール
73 移動機構
75 膜
20 base 21 moving mechanism 23 support section 24 portal frame 25 inkjet head 26 head block 27 nozzle hole 27A nozzle hole 27x nozzle hole 27y aligned in the x direction nozzle hole 28 aligned in the y direction support member 30 control device 31 storage device 35 input Device 36 Output device 50 Substrate 51 Pad portion 52 Connection portion 53 Resist film 54 Edge 55 giving minimum dimension Landing target position 56, 57 Band-shaped film 60 Film 61, 62 Edge 70 Flexible substrate 71 Feeding roll 72 Winding roll 73 Moving mechanism 75 membranes

Claims (13)

  1.  インクジェットヘッドに対して基板を相対的に移動させながら、形成すべき膜のパターンを定義するパターンデータに基づいて、前記インクジェットヘッドから前記基板に向けて液滴を吐出させて前記基板に膜を形成する膜形成方法であって、
     前記インクジェットヘッドと前記基板との相対的な移動方向は、前記パターンの最小寸法の方向に対して直交する膜形成方法。
    While moving the substrate relative to the inkjet head, a film is formed on the substrate by ejecting droplets from the inkjet head toward the substrate based on pattern data that defines the pattern of the film to be formed. A film forming method for
    A film forming method in which a relative movement direction of the inkjet head and the substrate is orthogonal to a direction of a minimum dimension of the pattern.
  2.  前記インクジェットヘッドは基台に支持されており、前記膜の形成時に、前記基板を前記基台に対して移動させる請求項1に記載の膜形成方法。 The film forming method according to claim 1, wherein the inkjet head is supported on a base, and the substrate is moved relative to the base when the film is formed.
  3.  前記インクジェットヘッドは、液滴を吐出する複数のノズル孔を含み、
     前記基板を、前記最小寸法の方向と直交する方向に移動させながら、前記パターンの前記最小寸法を与える一方のエッジを形成し、
     その後、前記基板を前記最小寸法の方向にずらし、
     その後、前記基板を前記最小寸法と直交する方向に移動させながら、前記パターンの前記最小寸法を与える他方のエッジを形成し、
     前記一方のエッジと他方のエッジを形成する液滴は、複数の前記ノズル孔のうち同一の前記ノズル孔から吐出させる請求項1または2に記載の膜形成方法。
    The inkjet head includes a plurality of nozzle holes for discharging droplets,
    While moving the substrate in a direction perpendicular to the direction of the minimum dimension, forming one edge that gives the minimum dimension of the pattern;
    Then, the substrate is shifted in the direction of the minimum dimension,
    Then, while moving the substrate in a direction perpendicular to the minimum dimension, forming the other edge that gives the minimum dimension of the pattern,
    The film forming method according to claim 1, wherein the liquid droplets forming the one edge and the other edge are ejected from the same nozzle hole among the plurality of nozzle holes.
  4.  基板を支持する支持部と、
     前記基板に向けて液滴を吐出するインクジェットヘッドと、
     前記支持部に支持された前記基板と、前記インクジェットヘッドとの一方を他方に対して少なくとも1次元方向に移動させる移動機構と、
     前記インクジェットヘッド及び前記移動機構を制御する制御装置と
    を有し、
     前記制御装置は、前記基板に形成すべき膜のパターンを定義するパターンデータを記憶しており、前記インクジェットヘッド及び前記移動機構を制御して、前記基板を前記インクジェットヘッドに対して相対的に、かつ前記パターンの最小寸法の方向に対して直交する方向に移動させながら、前記パターンデータに基づいて、前記インクジェットヘッドから前記基板に向けて液滴を吐出させて膜を形成する膜形成装置。
    A support for supporting the substrate;
    An inkjet head that ejects droplets toward the substrate;
    A moving mechanism for moving one of the substrate supported by the support portion and the inkjet head in at least a one-dimensional direction with respect to the other;
    A control device for controlling the inkjet head and the moving mechanism;
    The control device stores pattern data defining a pattern of a film to be formed on the substrate, controls the inkjet head and the moving mechanism, and moves the substrate relative to the inkjet head. A film forming apparatus for forming a film by discharging droplets from the inkjet head toward the substrate based on the pattern data while moving in a direction orthogonal to the direction of the minimum dimension of the pattern.
  5.  前記移動機構は前記支持部に支持された前記基板を移動させる請求項4に記載の膜形成装置。 The film forming apparatus according to claim 4, wherein the moving mechanism moves the substrate supported by the support portion.
  6.  さらに、前記インクジェットヘッドを支持する基台を有し、
     前記移動機構は、前記基台に対して前記基板を移動させる請求項4に記載の膜形成装置。
    Furthermore, it has a base for supporting the inkjet head,
    The film forming apparatus according to claim 4, wherein the moving mechanism moves the substrate relative to the base.
  7.  前記インクジェットヘッドは、前記パターンの最小寸法の方向に対して直交する方向に並ぶ複数の第1のノズル孔を含み、
     前記制御装置は、前記インクジェットヘッド及び前記移動機構を制御して、複数の前記第1のノズル孔の一部の前記第1のノズル孔から吐出された液滴によって、前記パターンの最小寸法を与える一対のエッジを形成する請求項4乃至6のいずれか1項に記載の膜形成装置。
    The inkjet head includes a plurality of first nozzle holes arranged in a direction orthogonal to the direction of the minimum dimension of the pattern,
    The control device controls the inkjet head and the moving mechanism to give a minimum dimension of the pattern by droplets ejected from the first nozzle holes of a part of the plurality of first nozzle holes. The film forming apparatus according to claim 4, wherein a pair of edges are formed.
  8.  前記インクジェットヘッドは、前記パターンの最小寸法の方向と平行な方向に並ぶ複数の第2のノズル孔を有し、前記パターンの最小寸法を与える一対のエッジを形成するための液滴を吐出する前記第2のノズル孔のピッチを第1のピッチとしたとき、複数の前記第2のノズル孔の列は、前記第1のピッチより短い第2のピッチで並ぶ部分と、前記第1のピッチが確保された部分とを含み、
     前記制御装置は、前記第1のピッチが確保された2つの前記第2のノズル孔から吐出させた液滴で、前記パターンの最小寸法を与える一対のエッジを形成する請求項4乃至7のいずれか1項に記載の膜形成装置。
    The inkjet head has a plurality of second nozzle holes arranged in a direction parallel to the direction of the minimum dimension of the pattern, and discharges droplets for forming a pair of edges that give the minimum dimension of the pattern When the pitch of the second nozzle holes is the first pitch, the plurality of rows of the second nozzle holes includes a portion arranged at a second pitch shorter than the first pitch, and the first pitch is Including secured parts,
    8. The control device according to claim 4, wherein the control device forms a pair of edges that give a minimum dimension of the pattern by droplets ejected from the two second nozzle holes in which the first pitch is secured. The film forming apparatus according to claim 1.
  9.  前記インクジェットヘッドは共通の支持部材に取り付けられた複数のヘッドブロックを含み、複数の前記ヘッドブロックは液滴を吐出する複数のノズル孔を有し、
     前記制御装置は、複数の前記ヘッドブロックのうち同一の前記ヘッドブロックの複数の前記ノズル孔のいずれかの前記ノズル孔から吐出された液滴によって、前記パターンの最小寸法を与える一対のエッジを形成する請求項4乃至6のいずれか1項に記載の膜形成装置。
    The inkjet head includes a plurality of head blocks attached to a common support member, and the plurality of head blocks have a plurality of nozzle holes for discharging droplets,
    The control device forms a pair of edges that give a minimum dimension of the pattern by droplets ejected from any one of the plurality of nozzle holes of the same head block among the plurality of head blocks. The film forming apparatus according to any one of claims 4 to 6.
  10.  前記移動機構は、前記基板を2次元方向に移動させる機能を持ち、
     前記インクジェットヘッドは、液滴を吐出する複数のノズル孔を含み、
     前記制御装置は、
     前記基板を前記パターンの最小寸法の方向と直交する方向に移動させながら、前記パターンの最小寸法を与える一方のエッジを形成し、
     その後、前記基板を前記パターンの最小寸法の方向にずらし、
     その後、前記基板を前記パターンの最小寸法の方向と直交する方向に移動させながら、前記パターンの最小寸法を与える他方のエッジを形成し、
     前記パターンの最小寸法を与える一方のエッジと他方のエッジを形成する液滴は、複数の前記ノズル孔のうち同一の前記ノズル孔から吐出させる請求項4乃至6のいずれか1項に記載の膜形成装置。
    The moving mechanism has a function of moving the substrate in a two-dimensional direction,
    The inkjet head includes a plurality of nozzle holes for discharging droplets,
    The control device includes:
    While moving the substrate in a direction perpendicular to the direction of the minimum dimension of the pattern, forming one edge that gives the minimum dimension of the pattern;
    Then, the substrate is shifted in the direction of the minimum dimension of the pattern,
    Then, while moving the substrate in a direction perpendicular to the direction of the minimum dimension of the pattern, forming the other edge that gives the minimum dimension of the pattern,
    The film according to any one of claims 4 to 6, wherein droplets forming one edge and the other edge that give the minimum dimension of the pattern are discharged from the same nozzle hole among the plurality of nozzle holes. Forming equipment.
  11.  前記移動機構は、さらに前記支持部に支持されている前記基板を面内方向に回転させる機能を有し、
     前記パターンの最小寸法は、相互に直交する第1の方向及び第2の方向において現れ、
     前記制御装置は、前記膜を形成する際に、前記インクジェットヘッド及び前記移動機構を制御して、前記基板を、前記第1の方向に移動させながら、前記パターンの前記第2の方向の最小寸法を与えるエッジを形成し、その後、前記基板を90°回転させ、その後、前記基板を、前記第2の方向に移動させながら、前記パターンの前記第1の方向の最小寸法を与えるエッジを形成する請求項4乃至10のいずれか1項に記載の膜形成装置。
    The moving mechanism further has a function of rotating the substrate supported by the support portion in an in-plane direction,
    The minimum dimension of the pattern appears in a first direction and a second direction orthogonal to each other,
    When forming the film, the control device controls the inkjet head and the moving mechanism to move the substrate in the first direction, while moving the minimum dimension of the pattern in the second direction. Then, the substrate is rotated by 90 °, and then the substrate is moved in the second direction to form an edge that gives the minimum dimension of the pattern in the first direction. The film forming apparatus according to claim 4.
  12.  前記移動機構は、前記基板を2次元方向に移動させる機能を持ち、
     前記パターンの最小寸法は、相互に直交する第1の方向及び第2の方向において現れ、
     前記インクジェットヘッドは、前記第1の方向に並ぶ複数の第1のノズル孔を有する第1のヘッドブロックと、前記第2の方向に並ぶ複数の第2のノズル孔を有する第2のヘッドブロックを含み、
     前記制御装置は、前記膜を形成する際に、前記インクジェットヘッド及び前記移動機構を制御して、前記基板を、前記第1の方向に移動させながら、前記パターンの前記第2の方向の最小寸法を与えるエッジを、前記第2のヘッドブロックの複数の前記第2のノズル孔から吐出される液滴で形成し、その後、前記基板を、前記第2の方向に移動させながら、前記パターンの前記第1の方向の最小寸法を与えるエッジを、前記第1のヘッドブロックの複数の前記第1のノズル孔から吐出される液滴で形成する請求項4乃至6のいずれか1項に記載の膜形成装置。
    The moving mechanism has a function of moving the substrate in a two-dimensional direction,
    The minimum dimension of the pattern appears in a first direction and a second direction orthogonal to each other,
    The inkjet head includes a first head block having a plurality of first nozzle holes arranged in the first direction and a second head block having a plurality of second nozzle holes arranged in the second direction. Including
    When forming the film, the control device controls the inkjet head and the moving mechanism to move the substrate in the first direction, while moving the minimum dimension of the pattern in the second direction. Forming an edge to be provided by droplets ejected from the plurality of second nozzle holes of the second head block, and then moving the substrate in the second direction while moving the substrate in the pattern. 7. The film according to claim 4, wherein an edge that gives a minimum dimension in the first direction is formed by droplets ejected from the plurality of first nozzle holes of the first head block. 8. Forming equipment.
  13.  さらに、入力装置と出力装置とを有し、
     前記制御装置は、
     膜を形成するときの前記インクジェットヘッドに対する前記基板の移動方向を記憶しており、
     前記入力装置から入力された前記パターンの最小寸法の方向を検出し、
     検出された最小寸法の方向と前記基板の移動方向とを比較し、両者が直交の関係にないとき、前記パターンの最小寸法の方向が最適な方向からずれていることを通知する情報を前記出力装置から出力させる請求項4乃至12のいずれか1項に記載の膜形成装置。
    Furthermore, it has an input device and an output device,
    The control device includes:
    Storing the moving direction of the substrate relative to the inkjet head when forming the film;
    Detecting the direction of the minimum dimension of the pattern input from the input device;
    The direction of the detected minimum dimension and the moving direction of the substrate are compared, and when the two are not orthogonal, the information for notifying that the direction of the minimum dimension of the pattern is deviated from the optimum direction is output. The film forming apparatus according to claim 4, wherein the film forming apparatus outputs an output from the apparatus.
PCT/JP2017/028188 2016-08-10 2017-08-03 Film formation method and film formation apparatus WO2018030256A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780041443.7A CN109475895A (en) 2016-08-10 2017-08-03 Film forming method and membrane formation device
KR1020197000852A KR20190040960A (en) 2016-08-10 2017-08-03 Film forming method and film forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016157066A JP6862041B2 (en) 2016-08-10 2016-08-10 Membrane forming method and film forming apparatus
JP2016-157066 2016-08-10

Publications (1)

Publication Number Publication Date
WO2018030256A1 true WO2018030256A1 (en) 2018-02-15

Family

ID=61162803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028188 WO2018030256A1 (en) 2016-08-10 2017-08-03 Film formation method and film formation apparatus

Country Status (5)

Country Link
JP (1) JP6862041B2 (en)
KR (1) KR20190040960A (en)
CN (1) CN109475895A (en)
TW (1) TWI688431B (en)
WO (1) WO2018030256A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566730A (en) * 2018-08-22 2021-03-26 东京毅力科创株式会社 Drawing device and drawing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565519B (en) * 2020-06-02 2021-08-17 锡凡半导体无锡有限公司 Printing non-photosensitive etching process
CN115989090B (en) * 2020-09-03 2023-12-15 柯尼卡美能达株式会社 Pattern forming method and ink jet printing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329828A (en) * 2002-03-06 2003-11-19 Seiko Epson Corp Liquid material ejecting method, liquid material ejecting apparatus, color filter manufacturing method, color filter, liquid crystal display, electroluminescence device, plasma display panel manufacturing method, and plasma display
JP2011051225A (en) * 2009-09-01 2011-03-17 Olympus Corp Inspection method for defective recording in image recorder
JP2012236152A (en) * 2011-05-12 2012-12-06 Shibaura Mechatronics Corp Droplet applicator and droplet applying method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797277A (en) 1980-12-09 1982-06-16 Nec Corp Television video audio simultaneous transmitter
JP2007190770A (en) * 2006-01-18 2007-08-02 Fujifilm Corp Inkjet drawing apparatus and method
JP2009255007A (en) * 2008-04-21 2009-11-05 Hitachi Ltd Pattern formation method, method of manufacturing substrates by the same, substrate, and pattern formation apparatus
JP5663342B2 (en) * 2011-02-21 2015-02-04 東レエンジニアリング株式会社 Coating method and coating apparatus
JP2013071085A (en) * 2011-09-28 2013-04-22 Minebea Co Ltd Pattern forming method
JP6053459B2 (en) * 2012-11-01 2016-12-27 住友重機械工業株式会社 Substrate manufacturing method and substrate manufacturing apparatus
JP2015026655A (en) * 2013-07-25 2015-02-05 住友重機械工業株式会社 Method and apparatus for forming thin film
JP6085578B2 (en) * 2014-03-11 2017-02-22 住友重機械工業株式会社 Film forming method and film forming apparatus
JP6540698B2 (en) * 2014-06-25 2019-07-10 コニカミノルタ株式会社 Pattern forming method, substrate with transparent conductive film, device and electronic device
CN105499069B (en) * 2014-10-10 2019-03-08 住友重机械工业株式会社 Membrane formation device and film forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329828A (en) * 2002-03-06 2003-11-19 Seiko Epson Corp Liquid material ejecting method, liquid material ejecting apparatus, color filter manufacturing method, color filter, liquid crystal display, electroluminescence device, plasma display panel manufacturing method, and plasma display
JP2011051225A (en) * 2009-09-01 2011-03-17 Olympus Corp Inspection method for defective recording in image recorder
JP2012236152A (en) * 2011-05-12 2012-12-06 Shibaura Mechatronics Corp Droplet applicator and droplet applying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566730A (en) * 2018-08-22 2021-03-26 东京毅力科创株式会社 Drawing device and drawing method

Also Published As

Publication number Publication date
JP2018026443A (en) 2018-02-15
CN109475895A (en) 2019-03-15
JP6862041B2 (en) 2021-04-21
TWI688431B (en) 2020-03-21
TW201805069A (en) 2018-02-16
KR20190040960A (en) 2019-04-19

Similar Documents

Publication Publication Date Title
US8226193B2 (en) Liquid droplet jetting apparatus
JP2008544333A (en) Inkjet printing system and method for flat panel display
JP2001088277A (en) Method of printing substrate and printing device suitable for use of the method
WO2018030256A1 (en) Film formation method and film formation apparatus
KR101174878B1 (en) Printing method and printer
JP2009023292A (en) Line head type ink-jet device
JPWO2013089049A1 (en) Touch panel manufacturing method and substrate manufacturing apparatus
KR100786995B1 (en) Ink jet printing apparatus
JP2004141758A (en) Method of correcting dot position of droplet discharge device, alignment mask, droplet discharge method, electro-optical device and its production method, and an electronic equipment
JP2007256312A (en) Manufacturing method for color filter, manufacturing method for organic electroluminescence element, and ink jet coating device used therefor
TWI673180B (en) Film forming device and film forming method
TWI574849B (en) Inkjet apparatus, and arrangement method of head at inkjet apparatus
CN109562407B (en) Film forming apparatus and film forming method
KR20130120775A (en) Printing apparatus and method for manufacturing organic light emitting diode display
KR20150130836A (en) Ink-jet marking method and ink-jet marking system
JP2016135559A (en) Inkjet printer
JP2014069366A (en) Printer
KR20120079733A (en) Tft printing apparatus and method of manufacturing the tft using the same
JP2021079359A (en) Ink coating controller and ink coating method
JP2019000780A (en) Inkjet application device
JP2012196851A (en) Inkjet printer and dot-spacing adjusting method
KR20190030203A (en) Printing apparatus
JP2008036575A (en) Pattern-forming method and droplet-discharging system
JP2009166366A (en) Liquid discharge apparatus and dot forming method
JP2017213530A (en) Membrane pattern plotting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000852

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839327

Country of ref document: EP

Kind code of ref document: A1