WO2018025530A1 - Tire mount sensor and chain regulation management system - Google Patents

Tire mount sensor and chain regulation management system Download PDF

Info

Publication number
WO2018025530A1
WO2018025530A1 PCT/JP2017/023196 JP2017023196W WO2018025530A1 WO 2018025530 A1 WO2018025530 A1 WO 2018025530A1 JP 2017023196 W JP2017023196 W JP 2017023196W WO 2018025530 A1 WO2018025530 A1 WO 2018025530A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
vehicle
chain
mount sensor
chain regulation
Prior art date
Application number
PCT/JP2017/023196
Other languages
French (fr)
Japanese (ja)
Inventor
良佑 神林
高俊 関澤
雅士 森
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017115277A external-priority patent/JP2018026111A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/322,166 priority Critical patent/US20190187029A1/en
Publication of WO2018025530A1 publication Critical patent/WO2018025530A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C27/00Non-skid devices temporarily attachable to resilient tyres or resiliently-tyred wheels
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present disclosure relates to a tire mount sensor and a chain regulation management that can confirm that a chain is attached to a tire and a tire regulation for winter in which a studless tire is fitted, that is, a so-called chain regulation. It is about the system.
  • chain regulation may be applied to ensure the safety of vehicle travel.
  • the chain regulation is performed by the observer visually observing whether the tire is chain-attached to the tire or a vehicle using a studless tire that is a winter tire.
  • the supervisor stops the traveling vehicle and visually inspects the tire it is difficult to determine whether the tire is chain-attached or whether the vehicle uses a studless tire.
  • Patent Document 1 discloses a device that can determine that a chain is attached to a tire. With this device, when the chain is mounted on the drive wheel side of the front and rear wheels, the output of the strain gauges arranged on the back of the tire tread will be different for the front and rear wheels. If the difference between the two is equal to or greater than the threshold value, it is determined that the chain is being worn.
  • Patent Document 1 can only detect that the chain is attached to the tire, and cannot reduce the confirmation of whether the vehicle is a vehicle that complies with the chain regulation.
  • the apparatus described in Patent Document 1 can only detect that the chain is attached to the tire, and cannot reduce the confirmation of whether the vehicle is a vehicle that complies with the chain regulation.
  • the chain regulation management system is based on a vibration detection unit that is attached to the back surface of a tire and outputs an output voltage corresponding to the magnitude of vibration of the tire as a detection signal, and an output voltage of the vibration detection unit.
  • a tire mount sensor comprising: a signal processing unit that determines whether the tire is attached to the chain or not attached to the chain, and generates tire state data indicating the determination result; and a transmission unit that transmits the tire state data
  • a receiving unit that receives tire condition data transmitted from the tire mount sensor, and based on the tire condition data received by the receiving unit, it is determined whether the vehicle conforms to chain regulations, And a vehicle body side system for transmitting the discrimination result.
  • It is a block diagram of a tire mount sensor. It is a cross-sectional schematic diagram of a tire to which a tire mount sensor is attached. It is a wave form diagram of a detection signal of an acceleration sensor. It is the figure which showed the change of the output voltage of an acceleration sensor in the case of drive
  • a chain regulation management system 100 including a road surface state estimation device will be described with reference to FIGS.
  • the chain regulation management system 100 estimates a road surface state during traveling based on vibration applied to a ground contact surface of a tire provided on each wheel of the vehicle, determines whether a chain is attached to the tire, and the like. It detects and facilitates management of chain regulations.
  • the chain regulation management system 100 has a tire mount sensor 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side.
  • a receiver 21 As the vehicle body side system 2, a receiver 21, an electronic control device (hereinafter referred to as navigation ECU) 22 of a navigation device, a vehicle communication device 23, a notification device 24, and the like are provided.
  • navigation ECU electronice control device
  • the tire mount sensor 1 transmits data representing the road surface condition during traveling, such as data indicating the road surface ⁇ between the tire 3 and the road surface during traveling.
  • data representing the road surface condition during traveling such as data indicating the road surface ⁇ between the tire 3 and the road surface during traveling.
  • the data of the road surface ⁇ is referred to as ⁇ data
  • the data representing the road surface state such as ⁇ data is referred to as road surface data.
  • the chain regulation management system 100 receives road surface data transmitted from the tire mount sensor 1 by the receiver 21, and notifies the road surface state indicated by the road surface data 24. I tell you more. As a result, it is possible to inform the driver of the road surface condition such as low road surface ⁇ , dry road, wet road or frozen road, and it is possible to warn the driver when the road surface is slippery. Become.
  • the tire mount sensor 1 determines whether the tire 3 is in a state corresponding to the chain regulation, that is, whether the chain is attached to the tire 3. Then, the determination result is transmitted from the tire mount sensor 1 to the vehicle body side system 2 as tire state data. Since the vehicle body side system 2 can acquire the chain restriction information through the navigation ECU 22 or the like, it determines whether or not the chain restriction is supported from the tire condition data sent from the tire mount sensor 1 when the chain restriction is issued. To do. Here, it is determined by the vehicle body side system 2 whether the chain regulation is supported or violated from the tire condition data.
  • the tire mount sensor 1 is a tire side device provided on the tire side. As shown in FIG. 2, the tire mount sensor 1 includes a power supply 11, an acceleration sensor 12, a control unit 13, a storage circuit unit 14, an LF reception circuit 15, and an RF transmission circuit 16, and is shown in FIG. Thus, it is provided on the back surface side of the tread 31 of the tire 3.
  • the power source 11 is constituted by, for example, a battery and supplies power for driving each part of the tire mount sensor 1.
  • the acceleration sensor 12 constitutes a vibration detection unit for detecting vibration applied to the tire.
  • the acceleration sensor 12 detects acceleration as a detection signal corresponding to vibration in a tire tangential direction indicated by an arrow X in FIG. 3 in a direction in contact with a circular orbit drawn by the tire mount sensor 1 when the tire 3 rotates.
  • the detection signal is output.
  • the acceleration sensor 12 generates an output voltage as a detection signal in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative.
  • the control unit 13 is a part corresponding to a signal processing unit, and uses the detection signal of the acceleration sensor 12 as a detection signal representing vibration data in the tire tangential direction, obtains road surface data by processing the detection signal, It plays a role of transmitting it to the RF transmission circuit 16. Specifically, the control unit 13 extracts the ground contact section of the acceleration sensor 12 when the tire 3 rotates based on the detection signal of the acceleration sensor 12, that is, the time change of the output voltage of the acceleration sensor 12. Note that the contact section here means a section in which a portion of the tread 31 of the tire 3 corresponding to the location where the acceleration sensor 12 is disposed is grounded on the road surface.
  • the location where the acceleration sensor 12 is disposed is the location where the tire mount sensor 1 is disposed
  • the portion corresponding to the location where the tire mount sensor 1 is disposed in the tread 31 of the tire 3 is the road surface. It is an agreement with the grounded section.
  • the arrangement location of the tire mount sensor 1 in the tread 31 of the tire 3 in other words, the arrangement location of the acceleration sensor 12 is referred to as an apparatus arrangement location.
  • the control unit 13 extracts the high-frequency component from the detection signal and extracts the high-frequency component as described later. Based on the components, the road surface condition such as the road surface ⁇ is estimated.
  • the control unit 13 when the road surface state is estimated, the control unit 13 generates road surface data indicating the road surface state, and performs a process of transmitting the road surface data to the RF transmission circuit 16. Thereby, road surface data is transmitted to the receiver 21 through the RF transmission circuit 16. At this time, road surface data is transmitted from the RF transmission circuit 16 every time the tire 3 makes one rotation. In this case, power consumption increases. For this reason, the transmission interval may be lengthened to reduce the number of transmissions. However, if the transmission interval is simply increased, the change cannot be quickly transmitted to the vehicle body side system 2 when the road surface state changes. For this reason, you may make it set a transmission interval according to the change of a road surface state.
  • the control unit 13 detects whether or not the chain is attached to the tire 3 based on the detection signal of the acceleration sensor 12.
  • the detection signal of the acceleration sensor 12 indicates vibration data in the tire tangential direction.
  • the detection signal of the acceleration sensor 12 becomes a waveform according to the state of the grounding surface of the tire 3. For example, when the chain is attached to the tire 3, a change occurs such that the vibration of the output voltage waveform of the detection signal of the acceleration sensor 12 becomes larger than when the chain is not attached. Based on this, the control unit 13 determines whether or not the chain is attached to the tire 3 and transmits the determination result to the receiver 21.
  • control unit 13 is configured by a known microcomputer including a CPU, ROM, RAM, I / O, and the like, and performs the above-described processing according to a program stored in the ROM. And the control part 13 is provided with the area extraction part 13a, the level calculation part 13b, the state detection part 13c, and the data generation part 13d as a function part which performs those processes.
  • the section extracting unit 13a extracts the ground section by detecting the peak value of the detection signal represented by the output voltage of the acceleration sensor 12.
  • the output voltage waveform of the acceleration sensor 12 during tire rotation is, for example, the waveform shown in FIG.
  • the output voltage of the acceleration sensor 12 takes a maximum value at the start of grounding when the device placement site starts to ground as the tire 3 rotates.
  • the section extraction unit 13a detects the start of grounding at which the output voltage of the acceleration sensor 12 takes a maximum value as the timing of the first peak value.
  • the output voltage of the acceleration sensor 12 takes a minimum value at the end of the grounding when the device arrangement portion is grounded with the rotation of the tire 3 when the grounding is stopped.
  • the section extraction unit 13a detects the end of grounding at which the output voltage of the acceleration sensor 12 takes a minimum value as the timing of the second peak value.
  • the reason why the output voltage of the acceleration sensor 12 takes a peak value at the above timing is as follows. That is, when the device arrangement place comes into contact with the rotation of the tire 3, the portion of the tire 3 that has been a substantially cylindrical surface in the vicinity of the acceleration sensor 12 is pressed and deformed into a flat shape. By receiving an impact at this time, the output voltage of the acceleration sensor 12 takes the first peak value. In addition, when the device arrangement part moves away from the ground contact surface with the rotation of the tire 3, the tire 3 is released from pressing in the vicinity of the acceleration sensor 12 and returns from a planar shape to a substantially cylindrical shape. By receiving an impact when the tire 3 returns to its original shape, the output voltage of the acceleration sensor 12 takes the second peak value.
  • the output voltage of the acceleration sensor 12 takes the first and second peak values when the grounding starts and when the grounding ends, respectively. Moreover, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the press are opposite directions, the sign of the output voltage is also opposite.
  • the section extracting unit 13a extracts the ground contact section of the acceleration sensor 12 by extracting the detection signal data including the timings of the first and second peak values, and the level calculating unit 13b indicates that it is in the grounded section. To tell.
  • the section extraction unit 13a sends a detection signal to the RF transmission circuit 16 at this timing. As a result, the RF transmission circuit 16 is informed that the tire 3 has made one revolution.
  • the level calculation unit 13b when notified from the section extraction unit 13a that it is in the grounding section, calculates the level of the high-frequency component caused by the vibration of the tire 3 included in the output voltage of the acceleration sensor 12 during that period. Then, the level calculation unit 13b transmits the calculation result to the data generation unit 13d as road surface data such as ⁇ data.
  • the level of the high-frequency component is calculated as an index representing the road surface state such as the road surface ⁇ .
  • FIG. 5A shows a change in the output voltage of the acceleration sensor 12 when traveling on a high ⁇ road surface having a relatively large road surface ⁇ such as an asphalt road.
  • FIG. 5B shows a change in the output voltage of the acceleration sensor 12 when the vehicle is traveling on a low ⁇ road surface where the road surface ⁇ is relatively small to the extent corresponding to the frozen road.
  • the first and second peak values appear at the beginning and end of the contact section, that is, at the start and end of the contact of the acceleration sensor 12, regardless of the road surface ⁇ .
  • the output voltage of the acceleration sensor 12 changes due to the influence of the road surface ⁇ .
  • the road surface ⁇ is low, such as when traveling on a low ⁇ road surface
  • fine high-frequency vibration due to slip of the tire 3 is superimposed on the output voltage.
  • Such a fine high-frequency signal due to the slip of the tire 3 is not superposed when the road surface ⁇ is high, such as when traveling on a high ⁇ road surface.
  • the frequency analysis of the output voltage during the grounding section is performed for each of the cases where the road surface ⁇ is high and low, the result shown in FIG. 6 is obtained.
  • the level is high when the road surface ⁇ is high or low, but in the high frequency range of 1 kHz or higher, the level is higher when the road surface ⁇ is low than when it is high. .
  • the level of the high frequency component of the output voltage of the acceleration sensor 12 serves as an index representing the road surface state.
  • the level calculation unit 13b calculates the level of the high frequency component of the output voltage of the acceleration sensor 12 during the grounding section by the level calculation unit 13b. Therefore, by calculating the level of the high frequency component of the output voltage of the acceleration sensor 12 during the grounding section by the level calculation unit 13b, this can be converted to ⁇ data. Further, from the ⁇ data, for example, when the road surface ⁇ is low, the road surface type corresponding to the road surface ⁇ can be detected as a road surface state, such as determining that the road is frozen.
  • the level of the high frequency component can be calculated by extracting the high frequency component from the output voltage of the acceleration sensor 12 and integrating the extracted high frequency component during the grounding section.
  • the high frequency components of the frequency bands fa to fb that are assumed to change according to the road surface condition and the road surface ⁇ are extracted by filtering or the like, and the voltages of the high frequency components of the frequency bands fa to fb extracted by the frequency analysis are obtained. Integrate.
  • a voltage integral value of a high frequency component is obtained by charging a capacitor (not shown).
  • the amount of charge increases when the road surface ⁇ is low, such as when traveling on a low ⁇ road surface, rather than when the road surface ⁇ is high, such as when traveling on a high ⁇ road surface. .
  • this charge amount as the ⁇ data, it is possible to estimate the road surface ⁇ such that the larger the charge amount indicated by the ⁇ data, the lower the road surface ⁇ .
  • the state detection unit 13c detects whether or not the tire 3 is in a state corresponding to chain regulation. In the present embodiment, the state detection unit 13c detects from the tire state data whether the state corresponds to the chain regulation or is in violation. Specifically, the state detection unit 13 c detects that the chain is attached to the tire 3 based on the detection signal of the acceleration sensor 12.
  • the output voltage waveform of the acceleration sensor 12 changes depending on whether or not the chain is attached to the tire 3. For example, as shown in FIG. 7, the vibration of the output voltage waveform of the detection signal of the acceleration sensor 12 becomes larger when the chain is attached than when the chain is not attached. In particular, the oscillation of the output voltage waveform becomes large in a region other than the ground interval. For this reason, it is possible to determine that the chain is attached to the tire 3 if the region other than the grounding interval is subjected to frequency analysis in the output voltage waveform of the acceleration sensor 12 and, for example, the vibration level of the high frequency component exceeds the threshold value.
  • the timing of the first peak value and the second peak value is shifted, and the ground contact section becomes longer when the chain is attached than when the chain is not attached. For this reason, the speed of the tire 3 is obtained from the time interval between the first peak values or between the second peak values, and the time interval between the first peak value and the second peak value with respect to the speed of the tire 3 is examined, whereby the tire 3 It can also be determined whether or not the chain is attached. That is, the time interval between the first peak value and the second peak value measured with the time interval between the first peak value and the second peak value assumed corresponding to the speed of the tire 3 when the chain is not mounted as a threshold value. If it exceeds the threshold value, it can be determined that the chain is attached to the tire 3.
  • the state detection unit 13c determines whether or not the chain is attached to the tire 3 as described above, it transmits the determination result to the data generation unit 13d.
  • the data generation unit 13d basically generates road surface data based on the calculation result of the level calculation unit 13b.
  • the data generation unit 13d directly adopts ⁇ data as road surface data, obtains a road surface state such as a frozen road or an asphalt road from the ⁇ data, and generates data indicating the road surface data.
  • the data generation unit 13d generates, as tire state data, data indicating whether or not the chain is attached to the tire 3 based on the detection result of the state detection unit 13c.
  • the road surface data and tire condition data generated by the data generation unit 13d are transmitted to the RF transmission circuit 16 simultaneously or separately.
  • the tire condition data is also transmitted to the memory circuit unit 14.
  • the storage circuit unit 14 is a part corresponding to the storage unit, and performs erasure in addition to storing and reading data according to instructions from the control unit 13. For example, when tire state data is transmitted from the control unit 13, the storage circuit unit 14 stores the information. Further, when an instruction to read out the tire condition data is issued from the control unit 13, the storage circuit unit 14 reads out the stored tire condition data and transmits it to the control unit 13.
  • the LF reception circuit 15 corresponds to a reception unit, and is a circuit for inputting a command through the tool 300 or the like. For example, when an LF wave including an instruction command is transmitted to the tire mount sensor 1 through the tool 300 by the chain regulation monitor, the instruction command is transmitted to the control unit 13 through the LF reception circuit 15. Based on this, the control unit 13 issues an instruction to read out the tire condition data stored in the storage circuit unit 14 and causes the tire circuit data to be read out from the storage circuit unit 14.
  • the tire condition data at this time is stored when the vehicle is running, but is stored even when the vehicle is stopped. Therefore, reading from the storage circuit unit 14 is performed even when the vehicle is stopped. It is possible.
  • the RF transmission circuit 16 constitutes a transmission unit that transmits road surface data such as ⁇ data and tire condition data transmitted from the data generation unit 13d to the receiver 21 and the tool 300. Communication between the RF transmission circuit 16 and the receiver 21 or the tool 300 can be performed by a known short-range wireless communication technique such as Bluetooth (registered trademark).
  • the timing for transmitting the road surface data is arbitrary, but as described above, in this embodiment, the transmission trigger is sent from the section extraction unit 13a when the ground contact of the acceleration sensor 12 is completed, so that the road surface data and Tire condition data is sent.
  • the data transmission by the RF transmission circuit 16 is not always performed, but is performed only at the end of the grounding of the acceleration sensor 12, so that the power consumption can be reduced.
  • the RF transmission circuit 16 transmits tire condition data so as to respond to the instruction command. As a result, the tire condition data can be transmitted to the tool 300.
  • road surface data and tire condition data are sent together with wheel specific identification information (hereinafter referred to as ID information) provided in advance for each tire 3 provided in the vehicle.
  • ID information wheel specific identification information
  • About the position of each wheel since it can be specified by a known wheel position detection device that detects where the wheel is attached to the vehicle, by transmitting road surface data and tire condition data together with ID information to the receiver 21, It is possible to determine which wheel data.
  • the receiver 21 receives the road surface data transmitted from the tire mount sensor 1, estimates the road surface state by the built-in control unit based on the received road surface data, and informs the informing device 24 of the estimated road surface state.
  • the notification device 24 informs the driver of the road surface condition.
  • the driver tries to drive corresponding to the road surface condition, and the danger of the vehicle can be avoided.
  • the estimated road surface state may be always displayed through the notification device 24, or the estimated road surface state needs to be operated more carefully such as a wet road, a frozen road, a low ⁇ road, or the like. Only when the road surface condition is displayed, the driver may be warned.
  • the receiver 21 receives the tire condition data transmitted from the tire mount sensor 1 and recognizes whether the tire 3 is in the chain wearing state or not in the chain wearing state. And the receiver 21 acquires chain regulation information through navigation ECU22 or the vehicle communication apparatus 23, and if the chain regulation is underway, it will confirm the state of the tire 3 which tire condition data shows. Then, the communication center 200 is informed through the vehicle communication device 23 of whether or not the chain is being worn, that is, whether or not the chain regulation is supported. In this case, nothing is done because the chain is compliant with the chain regulation, and nothing is done when the chain is not attached. Sending data indicating that. For example, data indicating that the chain is not attached is transmitted to the communication center 200 together with the ID information of the host vehicle. In this way, it is possible to inform the communication center 200 of vehicles that violate chain regulations.
  • the navigation ECU 22 is provided in the navigation system and obtains information from a non-transitional physical storage medium such as a memory storing road information and measures the current position of the vehicle based on GPS (Global Positioning System) satellite position information. Process such as.
  • the navigation ECU 22 performs various processes related to road guidance and the like based on the road information and the measured current position.
  • the navigation ECU 22 obtains traffic information by road-to-vehicle communication or the like, and provides guidance that takes traffic information into account when performing road guidance or the like. Since the traffic information acquired by the navigation ECU 22 includes the chain regulation information, the chain regulation information is transmitted to the receiver 21.
  • navigation ECU22 was mentioned as an example as what acquires chain regulation information here, things other than navigation ECU22 may be used.
  • information on a mobile device such as a mobile phone may be exchanged with each part of the vehicle body side system 2 and the chain regulation information may be acquired through the mobile device.
  • the chain restriction information may be acquired from the communication center 200 or the like through the vehicle communication device 23.
  • the vehicle communication device 23 can perform road-to-vehicle communication, and exchanges information with the communication center 200 via a communication system (not shown) installed on a road, for example.
  • the vehicle communication device 23 is information on whether or not it corresponds to the chain regulation transmitted from the receiver 21, and in the case of the present embodiment, information on whether or not it corresponds to the chain regulation. Is transmitted to the communication center 200.
  • the notification device 24 is composed of, for example, a meter display and is used when notifying the driver of the road surface state.
  • the notification device 24 is configured by a meter display
  • the notification device 24 is disposed at a place where the driver can visually recognize the vehicle while driving, for example, in an instrument panel in the vehicle 1.
  • the meter display displays in such a manner that the presence or absence of correspondence to the road condition or chain regulation can be grasped. Thus, the driver is visually notified.
  • the notification device 24 can be configured by a buzzer or a voice guidance device. In that case, the notification device 24 can audibly notify the driver by a buzzer sound or voice guidance.
  • the meter display device is exemplified as the notification device 24 that performs visual notification, the notification device 24 may be configured by a display device that displays information such as a head-up display.
  • each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local * AreaNetwork) by CAN (abbreviation for Controller
  • in-vehicle LAN abbreviation of Local * AreaNetwork
  • CAN abbreviation for Controller
  • the communication center 200 that exchanges information with the chain regulation management system 100 collects road information and provides road information and traffic information, for example, chain regulation information to vehicles, etc., and manages and operates chain regulations. Doing business.
  • the communication center 200 and the vehicle communication device 23 may be configured to directly communicate with each other, but the communication center 200 can communicate with the vehicle communication device 23 through a communication system installed in various places such as roads. ing.
  • the communication center 200 manages a database of information on whether or not the vehicle conforms to the chain regulation transmitted from the vehicle communication device 23 of each vehicle, and determines whether or not the vehicle is a compatible vehicle based on the received information. is doing.
  • the communication center 200 manages a database of violation vehicle information indicating that the chain regulation transmitted from the vehicle communication device 23 of each vehicle is violated, and based on the received violation vehicle information. To determine which vehicles are in violation. For example, when the monitor uses a device capable of communicating with the vehicle communication device 23 or a device capable of inputting the number of a license plate attached to the vehicle as the tool 300, the monitor can access the database of the communication center 200. It can be determined whether or not there is.
  • the violation vehicle information is managed in the database of the communication center 200 as in the present embodiment, it is possible to determine whether the vehicle is a violation vehicle by accessing the database. Thereby, even if the supervisor does not visually recognize the tire 3, it is possible to identify the offending vehicle even from a place away from the distance.
  • some road systems can communicate with the vehicle communication device 23 and read the number on the license plate. Therefore, this road system is used to determine whether the vehicle is a compatible vehicle, for example, a violation vehicle. It is also possible.
  • this road system is used to determine whether the vehicle is a compatible vehicle, for example, a violation vehicle. It is also possible.
  • the vehicle will fit before entering the entrance of the toll road. It is possible to determine whether the vehicle is a vehicle, for example, whether the vehicle is a violation vehicle. For this reason, even if the supervisor does not visually recognize the tire 3, it is possible to identify a violating vehicle and take measures such as suppressing the progress into the toll road.
  • tire state data from the tire mount sensor 1 using the tool 300 and determine whether or not the vehicle is a conforming vehicle, for example, a violation vehicle.
  • whether or not the chain regulation is compliant or violated is stored in the storage circuit unit 14 as tire condition data, so that an LF wave including an instruction command is output from the tool 300.
  • the tire condition data is read from the tire mount sensor 1.
  • the tire condition data is transmitted from the RF transmission circuit 16 and received by the tool 300.
  • the tool 300 can determine whether or not the tire 3 indicated by the tire condition data is a violation vehicle based on information on whether or not the tire 3 corresponds to the chain regulation.
  • the vehicle mount sensor 1 since it is only necessary to receive information from the tire mount sensor 1, it is possible to determine whether the vehicle 1 is a compatible vehicle, for example, whether it is a violation vehicle, even when the vehicle 1 is stopped, for example, when the ignition switch is turned off. .
  • the chain regulation management system 100 manages chain regulation as follows. This chain regulation management method will be described with reference to FIGS. As for chain regulation management, the communication center 200 and the tool 300 identify whether or not the vehicle conforms to the chain regulation, and in the case of this embodiment, identifies the violating vehicle that does not comply with the chain regulation. There is. Therefore, each of these will be described.
  • control unit 13 performs each process shown in steps S100 to S115.
  • the vibration waveform of the output voltage of the acceleration sensor 12 for one rotation of the tire 3 is acquired, and the vibration waveform is divided into each region. For example, a region before the first peak value, a region where the first peak value is extracted, a region between the first peak value and the second peak value, a region where the second peak value is extracted, Divided into areas after 2 peak values.
  • a region other than the contact section for example, a region before the first peak value or a region after the second peak value is selected from the regions divided in step S100, and the acceleration in that region is selected.
  • the frequency of the vibration of the output voltage waveform of the sensor 12 is analyzed.
  • step S110 it is determined whether the chain is attached or not attached based on the result of the frequency analysis in step S105. That is, as shown in FIG. 7, in the region other than the grounding section, the vibration of the output voltage waveform of the acceleration sensor 12 changes between when the chain is attached and when the chain is not attached. For this reason, if the output voltage waveform of the acceleration sensor 12 is subjected to frequency analysis in a region other than the ground contact section, it can be determined whether the chain is attached or not attached based on the analysis result.
  • step S115 when it is determined whether the chain is attached or not attached, in step S115, a process of transmitting the determination result to the vehicle body side system 2 is performed.
  • steps S 120 to S 145 are performed by the control unit built in the receiver 21.
  • step S120 the vehicle body side system 2 determines whether chain regulation information has been acquired.
  • the navigation ECU 22 or the vehicle communication device 23 has acquired the chain restriction information, an affirmative determination is made, and if not, a negative determination is made.
  • step S120 the process proceeds to step S125, and in the vehicle body side system 2, the chain regulation is performed based on the information indicating whether the chain is installed or not attached, received from the tire mount sensor 1. It is determined whether or not it is compatible. If a negative determination is made in step S120, the process proceeds to step S130, where the data transmitted from the tire mount sensor 1 indicating whether the chain is attached or not attached is discarded, and the process ends.
  • step S135 it is determined whether the chain regulation is violated based on the determination result of step S125.
  • step S140 the process proceeds to step S140, and the vehicle communication device 23 transmits to the communication center 200 that the vehicle does not comply with the chain regulation and is in violation. To do.
  • step S145 the same processing as in step S130 is performed.
  • the chain regulation supervisor can obtain information on the violating vehicle from the communication center 200, as shown in step S150, and identify the violating vehicle based on the information. It becomes possible. For example, at the entrance of a toll road, a violation system is identified using a road system, etc., and the entrance manager acts as a chain regulation monitor to prevent the violation of a chain regulation vehicle from entering the toll road. Is possible.
  • the control unit 13 performs the same processes as steps S100 to S110 shown in FIG. 8 as the processes shown in steps S200 to S210. Then, the process of step S215 is performed. Specifically, based on the determination result in step S210, the storage circuit unit 14 stores tire condition data indicating whether the chain regulation is supported while the chain is installed, or whether the chain is not installed and does not support the chain regulation. To remember.
  • the storage of the tire state data in the storage circuit unit 14 may be performed every rotation of the tire 3, but the chain is not mounted and the chain is not mounted for each rotation of the tire 3. . For this reason, every time the tire 3 rotates a plurality of times, for example, every 10 rotations, or when the tire 3 starts rotating again after being stopped, the tire state data is stored in the storage circuit unit 14 and the past stored contents are updated. You should do it.
  • step S220 it is determined whether a command command for reading tire condition data from the tool 300 has been received.
  • the chain regulation monitor issues an instruction command through the tool 300, an affirmative determination is made in this step, and if not, a negative determination is made in this step.
  • step S220 if an affirmative determination is made in step S220, an instruction command is issued from the tool 300, so the process proceeds to step S225, and data regarding whether the chain is attached or not attached is directed to the tool 300. Send. If a negative determination is made in step S220, the instruction command from the tool 300 has not been issued, so the process proceeds to step S230 without transmitting tire condition data regarding whether the chain is attached or not attached. The process ends.
  • step S235 the chain regulation monitor is based on the information shown in the tool 300, and the vehicle that has input the instruction command from the tool 300 is a vehicle that conforms to the chain regulation or is a violation vehicle. Can be determined instantly.
  • the chain regulation management system 100 determines whether the chain is attached or not attached by the tire mount sensor 1, and based on this, the chain regulation is managed by the observer. Like to do. Specifically, the communication center 200 is informed that the vehicle is a non-compliant vehicle that does not comply with the chain regulations, and the supervisor can easily determine the violation vehicle based on the violation information transmitted to the communication center 200. In addition, the storage circuit unit 14 of the tire mount sensor 1 stores the tire condition data as to whether it complies with or violates the chain regulation. For this reason, the supervisor uses the tool 300 to transmit a command command so that the tire condition data is transmitted from the tire mount sensor 1 to the tool 300. You can check whether or not.
  • each tire mount sensor 1 is a vehicle that supports chain regulation. Accordingly, it is possible to determine whether or not each wheel is a vehicle that supports chain regulation.
  • Vehicles that comply with chain regulations include not only chain-equipped vehicles but also studless tire-equipped vehicles. Whether or not the tire 3 is a studless tire is known in advance. For this reason, when the tire mount sensor 1 is attached to the tire 3, if the type of the tire 3 is stored in advance as the tire condition data in the storage circuit unit 14, the tire 3 is radial with the studless tire based on the tire condition data. It is possible to determine which is a tire. For example, by registering unique ID information of the tire 3 as tire information data in the memory circuit unit 14, the tire type indicating whether the tire 3 is a studless tire or a radial tire can be grasped based on the ID information. . Of course, the storage circuit unit 14 may store data that directly indicates the tire type such as whether the tire 3 is a studless tire or a radial tire.
  • the tire 3 when transmitting the determination result indicating whether the chain is attached or not attached to the vehicle body side system 2 shown in Step S115 of FIG. 8, the tire 3 is a studless tire or a radial tire. It may be transmitted as tire information data.
  • the chain regulation is violated in step S135, it is determined that the chain regulation is not violated not only when the chain is mounted but also when the tire 3 is a studless tire. .
  • a vehicle that violates the chain regulation can be a vehicle that is not attached to the chain and the tire 3 is not a studless tire, and the chain regulation can be managed more accurately. Become. In addition, the same can be done when the monitor uses the tool 300 to monitor the offending vehicle.
  • tire state data is transmitted from the tire mount sensor 1 every rotation of the tire 3 as shown in the flowcharts of FIGS.
  • the type of the tire 3 is also transmitted every rotation of the tire 3.
  • the chain it is effective to transmit the tire condition data for each rotation of the tire 3 because there is a possibility that the chain is attached and the chain is not attached even if the type of the tire 3 is not changed by changing the tire. .
  • the tire type does not change unless the tire is changed.
  • the type of the tire 3 may be transmitted to the vehicle body side system 2 when the tire mount sensor 1 is attached to the tire 3, and there is no need to transmit every rotation of the tire 3.
  • the presence / absence of chain attachment is also detected and transmitted as tire information data.
  • the tire type in addition to the tire type of whether the tire 3 is a studless tire or a radial tire, the presence / absence of chain attachment is also detected and transmitted as tire information data.
  • only the tire type may be transmitted as tire information data.
  • the ground section is specified from the detection signal of the acceleration sensor 12 that constitutes the vibration detection unit, and the calculation result of the level of the high-frequency component in the detection signal in the ground section is road surface data indicating the road surface state. It is used as.
  • this is only an example of a method for estimating the road surface state using the detection signal in the vibration detection unit, and even if the road surface state is estimated by another method using the detection signal in the vibration detection unit. good.
  • the vibration detection part can also be comprised by the element which can perform another vibration detection, for example, a piezoelectric element.
  • the power source 11 is not limited to a battery, and may be configured by a power generation element or the like. For example, if a vibration detection element is used, the power source 11 can be configured while the vibration detection unit is configured by the vibration detection element.
  • the receiver 21 serves as a control unit that performs determination of a change in road surface state based on road surface data, determination of whether or not the vehicle is compatible with chain regulation, and the like. Yes.
  • a control unit may be provided separately from the receiver 21, or another ECU such as the navigation ECU 22 may function as the control unit.
  • the violation information is transmitted to the communication center 200 when the vehicle is a violating vehicle.
  • the vehicle is compatible with the chain regulation
  • the vehicle is a conforming vehicle.
  • the matching information shown may be transmitted to the communication center 200.
  • the conforming vehicle information about the conforming vehicle to the chain regulation is managed in the database of the communication center 200. Therefore, when using the tool 300 to determine whether the chain regulation is compliant or violated, the vehicle is determined to be a compatible vehicle if it is managed in the database, and is determined to be a violating vehicle if not managed in the database. It will be.
  • information regarding both the conforming vehicle and the violating vehicle can be transmitted to the communication center 200 so that both the conforming vehicle and the violating vehicle can be grasped.
  • the vehicle when it is determined that the vehicle is a violation vehicle at the entrance of the toll road as one of the methods for suppressing the violation vehicle that does not comply with the chain restriction from passing on the road where the chain is restricted.
  • the entry to the toll road is suppressed.
  • a warning function of the road system can be used to audibly alert the driver that the vehicle is in violation of the chain regulations, such as “cannot drive because of chain regulation”.
  • the navigation ECU 22 can grasp the chain regulation section, for example, before entering the area or in the area, notifying that the chain regulation is not supported by a warning alarm by the notification device 24 or the like. You can also.
  • the communication center 200 informs the vehicle body side system 2 that the vehicle is approaching the chain regulation section, and the notification device 24 may notify that the chain regulation is not supported. it can.
  • the form of the tool 300 used by the supervisor is not limited. That is, not only a device that can be carried and used by a supervisor, but also a device embedded in a road or the like.
  • the type of the tire 3 can be grasped by registering the unique ID information of the tire 3 in advance.
  • the tire 3 is a studless tire or a radial tire based on the output voltage waveform of the vibration detection unit, and storing the determination result in the storage circuit unit 14, You may enable it to grasp
  • the vibration attenuation rate is large, and the acceleration sensor The oscillation of the output voltage waveform of 12 is reduced. Therefore, it can be determined whether the tire 3 is a studless tire or a radial tire based on the magnitude of vibration of the output voltage waveform of the acceleration sensor 12.
  • determines the kind of tire 3 according to a vehicle speed.
  • the vehicle speed since the interval between the first peak values or the interval between the second peak values of the output voltage waveform of the acceleration sensor 12 is the time taken for one rotation of the tire 3, it can be calculated based on these intervals. . Therefore, it is preferable to calculate the change in the vehicle speed from the output voltage waveform of the acceleration sensor 12 and set the threshold according to the calculated vehicle speed to determine the type of the tire 3.
  • the chain regulation management system that can confirm that the chain regulation is supported has been described as being capable of determining whether the vehicle is a conforming vehicle or a violation vehicle. However, it is only necessary to determine whether or not the vehicle is a conforming vehicle without determining whether the vehicle is a violation vehicle.
  • the tire mount sensor 1 may be any sensor that stores or transmits information indicating whether or not it conforms to chain regulation.
  • the receiver 21 may be any device that determines whether the vehicle is compatible with the chain regulation based on the information indicating whether the chain regulation is supported.
  • the vehicle communication device 23 may be any device that transmits information that can be used to determine whether the vehicle is compatible with chain regulation.
  • the communication center 200 only needs to be able to manage and provide information on whether or not it complies with chain regulations.
  • a mode has been described in which a determination result regarding whether or not the chain regulation is supported is transmitted to the receiver 21 or the tool 300.
  • the transmitted determination result is transmitted to a chain regulation monitor through the tool 300 or to the communication center 200 through the vehicle communication device 23.
  • this is also one of the usage forms of the transmitted determination result, and the determination result as to whether or not the chain regulation is supported may be used for vehicle motion control. That is, the stability of the vehicle when traveling on a snowy road changes depending on whether or not the chain regulation is supported. For this reason, for example, when setting a threshold value for vehicle motion control such as a threshold value for control intervention in antilock brake control or side slip prevention control, a determination result as to whether or not the chain regulation is supported may be used.
  • all-season tires In addition to radial tires and studless tires, there are also all-season tires as types of tires 3.
  • the all-season tire is characteristically located between the radial tire and the studless tire, and can run even with all-season tires in light snowfall or the like. For this reason, whether or not all-season tires are made to conform to chain regulations is handled differently depending on countries and regions. For this reason, all-season tires may be treated as studless tires when handled as tires conforming to chain regulations, and as radial tires when not treated as tires conforming to chain regulations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tires In General (AREA)

Abstract

With the present invention, an assessment is made by a tire mount sensor (1) of whether a chain is mounted or not, and on the basis thereof, a chain regulation management is carried out which is performed by a monitor. Specifically, a communication center (200) is notified of a vehicle in violation which is not in compliance with chain regulations, and on the basis of violation information which has been communicated to the communication center (200), the monitor easily finds the vehicle which is in violation. Whether the chain regulations have been complied with or violated is stored as tire state data in a storage circuit unit (14) of the tire mount sensor (1). Thus, when the monitor communicates a command using a tool (300), the tire state data is transmitted from the tire mount sensor (1) to the tool (300), and it is possible for the monitor to verify whether the vehicle is in violation or not simply by checking the tool (300).

Description

タイヤマウントセンサおよびチェーン規制管理システムTire mount sensor and chain regulation management system 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年8月5日に出願された日本特許出願番号2016-154755号と、2017年6月12日に出願された日本特許出願番号2017-115277号とに基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-154755 filed on August 5, 2016 and Japanese Patent Application No. 2017-115277 filed on June 12, 2017. The description is incorporated by reference.
 本開示は、タイヤにチェーンが装着されたことやスタッドレスタイヤが装着された冬用のタイヤ規制、いわゆるチェーン規制に対応している状態であることを確認できるようにするタイヤマウントセンサおよびチェーン規制管理システムに関するものである。 The present disclosure relates to a tire mount sensor and a chain regulation management that can confirm that a chain is attached to a tire and a tire regulation for winter in which a studless tire is fitted, that is, a so-called chain regulation. It is about the system.
 積雪路面などでは、車両の走行の安全性を担保するために、チェーン規制が為されることがある。チェーン規制は、タイヤにチェーン装着しているか、または冬用タイヤであるスタッドレスタイヤの使用車であるかを監視者がタイヤを目視することによって実施される。しかしながら、監視者が走行中の車両を停止させ、タイヤを目視しなければ、タイヤにチェーン装着しているか否か、もしくはスタッドレスタイヤ使用車であるか否かを判断することは難しい。特に、積雪路においてタイヤが雪に覆われているような状況では、タイヤにチェーン装着されているか否か、もしくはスタッドレスタイヤ使用車であるか否かを瞬時に判断できないこともある。このため、チェーン規制に対応している車両であるかを確認することが煩雑な作業になっている。 On snowy road surfaces, chain regulation may be applied to ensure the safety of vehicle travel. The chain regulation is performed by the observer visually observing whether the tire is chain-attached to the tire or a vehicle using a studless tire that is a winter tire. However, unless the supervisor stops the traveling vehicle and visually inspects the tire, it is difficult to determine whether the tire is chain-attached or whether the vehicle uses a studless tire. In particular, in a situation where the tire is covered with snow on a snowy road, it may not be possible to instantaneously determine whether the tire is chain-attached or whether it is a vehicle using a studless tire. For this reason, it is a complicated task to check whether the vehicle complies with the chain regulation.
 例えば、特許文献1において、タイヤにチェーン装着していることを判定することができる装置が開示されている。この装置では、前輪と後輪のうち駆動輪側にチェーン装着したときに、タイヤのトレッドの裏面に配置した歪みゲージの出力が前輪と後輪とで異なった値となることから、これらの出力の差が閾値以上になるとチェーン装着中と判定している。 For example, Patent Document 1 discloses a device that can determine that a chain is attached to a tire. With this device, when the chain is mounted on the drive wheel side of the front and rear wheels, the output of the strain gauges arranged on the back of the tire tread will be different for the front and rear wheels. If the difference between the two is equal to or greater than the threshold value, it is determined that the chain is being worn.
特開2007-118685号公報Japanese Patent Laid-Open No. 2007-11885
 しかしながら、特許文献1に記載の装置では、タイヤにチェーン装着されたことを検出できるだけであり、監視者がチェーン規制に対応している車両であるかの確認の軽減を図ることはできない。また、前輪と後輪それぞれのタイヤに備えられた歪みゲージの出力の差を取得しないとチェーン装着していることを検出できないため、スタッドレスタイヤを装着している場合や前後両輪にチェーン装着している場合のように歪みゲージの出力に差が出ないときには、チェーン規制に対応しているか否かを判定することはできない。 However, the apparatus described in Patent Document 1 can only detect that the chain is attached to the tire, and cannot reduce the confirmation of whether the vehicle is a vehicle that complies with the chain regulation. In addition, since it is not possible to detect that the chain is attached unless the difference in the output of the strain gauges provided on the front and rear tires is acquired, it is necessary to attach the chain to the front and rear wheels. When there is no difference in the output of the strain gauge, as in the case where it is, it cannot be determined whether or not the chain regulation is supported.
 本開示は、監視者がタイヤを目視しなくても、チェーン規制に対応している車両であるか否かの判定を行うことができるタイヤマウントセンサおよびチェーン規制管理システムを提供することを目的とする。また、各車輪それぞれにおいてチェーン規制に対応しているか否かを判定することができるタイヤマウントセンサおよびチェーン規制管理システムを提供することを他の目的とする。 It is an object of the present disclosure to provide a tire mount sensor and a chain regulation management system that can determine whether or not the vehicle is compatible with chain regulation without the observer watching the tire. To do. It is another object of the present invention to provide a tire mount sensor and a chain regulation management system that can determine whether or not each wheel is compatible with chain regulation.
 本開示の1つの観点におけるチェーン規制管理システムは、タイヤの裏面に取り付けられ、タイヤの振動の大きさに応じた出力電圧を検出信号として出力する振動検出部と、振動検出部の出力電圧に基づいてタイヤがチェーン装着中であるかチェーン未装着であるかを判定し、該判定結果を示すタイヤ状態データを生成する信号処理部と、タイヤ状態データを送信する送信部と、を有するタイヤマウントセンサと、タイヤマウントセンサから送信されたタイヤ状態データを受信する受信部を有し、該受信部で受信されたタイヤ状態データに基づいて、チェーン規制に対する適合車両であるか否かを判別し、該判別結果を送信する車体側システムと、を含んでいる。 The chain regulation management system according to one aspect of the present disclosure is based on a vibration detection unit that is attached to the back surface of a tire and outputs an output voltage corresponding to the magnitude of vibration of the tire as a detection signal, and an output voltage of the vibration detection unit. A tire mount sensor comprising: a signal processing unit that determines whether the tire is attached to the chain or not attached to the chain, and generates tire state data indicating the determination result; and a transmission unit that transmits the tire state data And a receiving unit that receives tire condition data transmitted from the tire mount sensor, and based on the tire condition data received by the receiving unit, it is determined whether the vehicle conforms to chain regulations, And a vehicle body side system for transmitting the discrimination result.
 このように、タイヤマウントセンサによってチェーン装着中であるかチェーン未装着であるかを判別し、その判別結果に基づいて監視者によるチェーン規制の管理を行っている。このため、監視者がタイヤを目視しなくても、チェーン規制に対応している車両であるか否かの判定を行うことが可能となる。 Thus, it is determined whether the chain is attached or not attached by the tire mount sensor, and the chain regulation is managed by the supervisor based on the determination result. For this reason, it is possible to determine whether or not the vehicle is compatible with the chain regulation without the observer watching the tire.
第1実施形態にかかるチェーン規制管理システムの車両搭載状態でのブロック構成を示した図である。It is the figure which showed the block structure in the vehicle mounting state of the chain regulation management system concerning 1st Embodiment. タイヤマウントセンサのブロック図である。It is a block diagram of a tire mount sensor. タイヤマウントセンサが取り付けられたタイヤの断面模式図である。It is a cross-sectional schematic diagram of a tire to which a tire mount sensor is attached. 加速度センサの検出信号の波形図である。It is a wave form diagram of a detection signal of an acceleration sensor. アスファルト路のように路面μが比較的大きな高μ路面を走行している場合における加速度センサの出力電圧の変化を示した図である。It is the figure which showed the change of the output voltage of an acceleration sensor in the case of drive | working the high micro road surface where road surface (mu) is comparatively large like an asphalt road. 凍結路のように路面μが比較的小さな低μ路面を走行している場合における加速度センサの出力電圧の変化を示した図である。It is the figure which showed the change of the output voltage of an acceleration sensor in the case of drive | working on the low micro road surface where road surface (micro | micron | mu) is comparatively small like a frozen road. 高μ路面を走行している場合と低μ路面を走行している場合それぞれについて、接地区間中における出力電圧の周波数解析を行った結果を示した図である。It is the figure which showed the result of having performed the frequency analysis of the output voltage in the earthing | grounding area about the case where it is drive | working on the high micro road surface, and the case where it is driving on the low micro road surface, respectively. チェーン装着時とチェーン未装着時における加速度センサの出力電圧の変化の違いを示した図である。It is the figure which showed the difference of the change of the output voltage of an acceleration sensor at the time of chain mounting | wearing and the chain non-mounting. 通信センターとの情報交換によって違反車両の割り出しを行う際に、チェーン規制管理システムの各部で実行される処理全体を示したフローチャートである。It is the flowchart which showed the whole process performed by each part of a chain regulation management system, when calculating | requiring a violation vehicle by information exchange with a communication center. ツールによって違反車両の割り出しを行う際に、チェーン規制管理システムの各部で実行される処理全体を示したフローチャートである。It is the flowchart which showed the whole process performed in each part of a chain regulation management system, when calculating a violation vehicle with a tool.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other will be described with the same reference numerals.
 (第1実施形態)
 図1~図9を参照して、本実施形態にかかる路面状態推定装置を含むチェーン規制管理システム100について説明する。本実施形態にかかるチェーン規制管理システム100は、車両の各車輪に備えられるタイヤの接地面に加わる振動に基づいて走行中の路面状態を推定したり、タイヤにチェーン装着しているか否か等を検出し、チェーン規制に対する管理の容易化を図るものである。
(First embodiment)
A chain regulation management system 100 including a road surface state estimation device according to the present embodiment will be described with reference to FIGS. The chain regulation management system 100 according to the present embodiment estimates a road surface state during traveling based on vibration applied to a ground contact surface of a tire provided on each wheel of the vehicle, determines whether a chain is attached to the tire, and the like. It detects and facilitates management of chain regulations.
 図1および図2に示すようにチェーン規制管理システム100は、車輪側に設けられたタイヤマウントセンサ1と、車体側に備えられた各部を含む車体側システム2とを有する構成とされている。車体側システム2としては、受信機21、ナビゲーション装置の電子制御装置(以下、ナビゲーションECUという)22、車両通信装置23、報知装置24などが備えられている。 As shown in FIGS. 1 and 2, the chain regulation management system 100 has a tire mount sensor 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side. As the vehicle body side system 2, a receiver 21, an electronic control device (hereinafter referred to as navigation ECU) 22 of a navigation device, a vehicle communication device 23, a notification device 24, and the like are provided.
 チェーン規制管理システム100では、タイヤマウントセンサ1よりタイヤ3と走行中の路面との間の路面μを示すデータなどの走行中の路面状態を表すデータを送信する。以下、路面μのデータのことをμデータといい、μデータなどの路面状態を表すデータのことを路面データという。 In the chain regulation management system 100, the tire mount sensor 1 transmits data representing the road surface condition during traveling, such as data indicating the road surface μ between the tire 3 and the road surface during traveling. Hereinafter, the data of the road surface μ is referred to as μ data, and the data representing the road surface state such as μ data is referred to as road surface data.
 本実施形態の場合、チェーン規制管理システム100は、図2に示すように、受信機21にてタイヤマウントセンサ1から送信された路面データを受信し、路面データに示される路面状態を報知装置24より伝えている。これにより、例えば路面μが低いことや乾燥路やウェット路もしくは凍結路であることなど、路面状態をドライバに伝えることが可能となり、滑り易い路面である場合にはドライバに警告することも可能となる。 In the case of this embodiment, as shown in FIG. 2, the chain regulation management system 100 receives road surface data transmitted from the tire mount sensor 1 by the receiver 21, and notifies the road surface state indicated by the road surface data 24. I tell you more. As a result, it is possible to inform the driver of the road surface condition such as low road surface μ, dry road, wet road or frozen road, and it is possible to warn the driver when the road surface is slippery. Become.
 また、チェーン規制管理システム100では、タイヤマウントセンサ1にて、タイヤ3がチェーン規制に対応した状態になっているか、つまりタイヤ3にチェーン装着しているかを判定する。そして、その判定結果をタイヤ状態データとしてタイヤマウントセンサ1から車体側システム2に送信している。車体側システム2は、ナビゲーションECU22などを通じてチェーン規制情報を取得できるため、チェーン規制が出ているときにタイヤマウントセンサ1から送られてきたタイヤ状態データからチェーン規制に対応しているか否かを判定する。ここでは、車体側システム2により、タイヤ状態データからチェーン規制に対応しているか、違反しているかを判定している。そして、チェーン規制に対応いるか否かの情報、例えばチェーン規制に違反している場合であれば違反情報を、車両通信装置23を通じて後述する通信センター200に伝える。これにより、道路管理者などの監視者が通信センター200に伝えられた違反情報を元に違反車両を容易に割り出せるようにしている。また、ツール300にてタイヤマウントセンサ1からタイヤ状態データを読み出すことで違反車両であることを特定できるようにしている。以下、このようなチェーン規制管理システム100の構成の詳細について説明する。 Further, in the chain regulation management system 100, the tire mount sensor 1 determines whether the tire 3 is in a state corresponding to the chain regulation, that is, whether the chain is attached to the tire 3. Then, the determination result is transmitted from the tire mount sensor 1 to the vehicle body side system 2 as tire state data. Since the vehicle body side system 2 can acquire the chain restriction information through the navigation ECU 22 or the like, it determines whether or not the chain restriction is supported from the tire condition data sent from the tire mount sensor 1 when the chain restriction is issued. To do. Here, it is determined by the vehicle body side system 2 whether the chain regulation is supported or violated from the tire condition data. Then, information on whether or not the chain regulation is supported, for example, if the chain regulation is violated, is transmitted to the communication center 200 described later through the vehicle communication device 23. Thereby, a supervisor such as a road administrator can easily identify the violating vehicle based on the violation information transmitted to the communication center 200. Further, by reading the tire condition data from the tire mount sensor 1 with the tool 300, it is possible to identify the vehicle as a violation vehicle. Details of the configuration of the chain regulation management system 100 will be described below.
 タイヤマウントセンサ1は、タイヤ側に備えられるタイヤ側装置である。タイヤマウントセンサ1は、図2に示すように、電源11、加速度センサ12、制御部13、記憶回路部14、LF受信回路15およびRF送信回路16を備えた構成とされ、図3に示されるように、タイヤ3のトレッド31の裏面側に設けられる。 The tire mount sensor 1 is a tire side device provided on the tire side. As shown in FIG. 2, the tire mount sensor 1 includes a power supply 11, an acceleration sensor 12, a control unit 13, a storage circuit unit 14, an LF reception circuit 15, and an RF transmission circuit 16, and is shown in FIG. Thus, it is provided on the back surface side of the tread 31 of the tire 3.
 電源11は、例えば電池などによって構成され、タイヤマウントセンサ1の各部を駆動するための電源供給を行っている。 The power source 11 is constituted by, for example, a battery and supplies power for driving each part of the tire mount sensor 1.
 加速度センサ12は、タイヤに加わる振動を検出するための振動検出部を構成するものである。例えば、加速度センサ12は、タイヤ3が回転する際にタイヤマウントセンサ1が描く円軌道に対して接する方向、つまり図3中の矢印Xで示すタイヤ接線方向の振動に応じた検出信号として、加速度の検出信号を出力する。より詳しくは、加速度センサ12は、矢印Xで示す二方向のうちの一方向を正、反対方向を負とする出力電圧を検出信号として発生させる。 The acceleration sensor 12 constitutes a vibration detection unit for detecting vibration applied to the tire. For example, the acceleration sensor 12 detects acceleration as a detection signal corresponding to vibration in a tire tangential direction indicated by an arrow X in FIG. 3 in a direction in contact with a circular orbit drawn by the tire mount sensor 1 when the tire 3 rotates. The detection signal is output. More specifically, the acceleration sensor 12 generates an output voltage as a detection signal in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative.
 制御部13は、信号処理部に相当する部分であり、加速度センサ12の検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この検出信号を処理することで路面データを得て、それをRF送信回路16に伝える役割を果たす。具体的には、制御部13は、加速度センサ12の検出信号、つまり加速度センサ12の出力電圧の時間変化に基づいて、タイヤ3の回転時における加速度センサ12の接地区間を抽出している。なお、ここでいう接地区間とは、タイヤ3のトレッド31のうち加速度センサ12の配置箇所と対応する部分が路面接地している区間のことを意味している。本実施形態の場合、加速度センサ12の配置箇所がタイヤマウントセンサ1の配置箇所とされているため、接地区間とはタイヤ3のトレッド31のうちタイヤマウントセンサ1の配置箇所と対応する部分が路面接地している区間と同意である。以下、タイヤ3のトレッド31のうちタイヤマウントセンサ1の配置箇所、換言すれば加速度センサ12の配置箇所のことを装置配置箇所という。 The control unit 13 is a part corresponding to a signal processing unit, and uses the detection signal of the acceleration sensor 12 as a detection signal representing vibration data in the tire tangential direction, obtains road surface data by processing the detection signal, It plays a role of transmitting it to the RF transmission circuit 16. Specifically, the control unit 13 extracts the ground contact section of the acceleration sensor 12 when the tire 3 rotates based on the detection signal of the acceleration sensor 12, that is, the time change of the output voltage of the acceleration sensor 12. Note that the contact section here means a section in which a portion of the tread 31 of the tire 3 corresponding to the location where the acceleration sensor 12 is disposed is grounded on the road surface. In the case of this embodiment, since the location where the acceleration sensor 12 is disposed is the location where the tire mount sensor 1 is disposed, the portion corresponding to the location where the tire mount sensor 1 is disposed in the tread 31 of the tire 3 is the road surface. It is an agreement with the grounded section. Hereinafter, the arrangement location of the tire mount sensor 1 in the tread 31 of the tire 3, in other words, the arrangement location of the acceleration sensor 12 is referred to as an apparatus arrangement location.
 そして、例えば接地区間中における加速度センサ12の検出信号に含まれる高周波成分が路面状態を表していることから、後述するように、制御部13は、検出信号から高周波成分を抽出すると共に抽出した高周波成分に基づいて路面μなどの路面状態を推定している。 For example, since the high-frequency component included in the detection signal of the acceleration sensor 12 in the contact section represents the road surface state, the control unit 13 extracts the high-frequency component from the detection signal and extracts the high-frequency component as described later. Based on the components, the road surface condition such as the road surface μ is estimated.
 このようにして、制御部13は、路面状態の推定を行うと、その路面状態を示した路面データを生成し、それをRF送信回路16に伝える処理を行う。これにより、RF送信回路16を通じて受信機21に路面データが伝えられるようになっている。このとき、タイヤ3が1回転する毎にRF送信回路16から路面データを送信するようにしているが、その場合、消費電力が大きくなる。このため、送信間隔を長くして送信回数を減らすようにしても良い。ただし、単に送信間隔を長くしたのでは、路面状態が変化したときに迅速に車体側システム2にその変化を伝えられない。このため、路面状態の変化に応じて送信間隔を設定するようにしても良い。 Thus, when the road surface state is estimated, the control unit 13 generates road surface data indicating the road surface state, and performs a process of transmitting the road surface data to the RF transmission circuit 16. Thereby, road surface data is transmitted to the receiver 21 through the RF transmission circuit 16. At this time, road surface data is transmitted from the RF transmission circuit 16 every time the tire 3 makes one rotation. In this case, power consumption increases. For this reason, the transmission interval may be lengthened to reduce the number of transmissions. However, if the transmission interval is simply increased, the change cannot be quickly transmitted to the vehicle body side system 2 when the road surface state changes. For this reason, you may make it set a transmission interval according to the change of a road surface state.
 また、制御部13は、加速度センサ12の検出信号に基づいてタイヤ3にチェーン装着されているか否かを検出する。上記したように、加速度センサ12の検出信号はタイヤ接線方向の振動データを示している。そして、タイヤ3の接地面の状態に応じてタイヤ3に加わる振動が変化するため、加速度センサ12の検出信号がタイヤ3の接地面の状態に応じた波形となる。例えば、タイヤ3にチェーン装着されている場合には、チェーン未装着の場合と比較して、加速度センサ12の検出信号の出力電圧波形の振動が大きくなるなどの変化が生じる。これに基づいて、制御部13は、タイヤ3にチェーン装着されているか否かの判定を行っており、その判定結果を受信機21に向けて送信する。 Further, the control unit 13 detects whether or not the chain is attached to the tire 3 based on the detection signal of the acceleration sensor 12. As described above, the detection signal of the acceleration sensor 12 indicates vibration data in the tire tangential direction. And since the vibration added to the tire 3 changes according to the state of the grounding surface of the tire 3, the detection signal of the acceleration sensor 12 becomes a waveform according to the state of the grounding surface of the tire 3. For example, when the chain is attached to the tire 3, a change occurs such that the vibration of the output voltage waveform of the detection signal of the acceleration sensor 12 becomes larger than when the chain is not attached. Based on this, the control unit 13 determines whether or not the chain is attached to the tire 3 and transmits the determination result to the receiver 21.
 具体的には、制御部13は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って上記した処理を行っている。そして、制御部13は、それらの処理を行う機能部として区間抽出部13a、レベル算出部13b、状態検出部13cおよびデータ生成部13dを備えている。 Specifically, the control unit 13 is configured by a known microcomputer including a CPU, ROM, RAM, I / O, and the like, and performs the above-described processing according to a program stored in the ROM. And the control part 13 is provided with the area extraction part 13a, the level calculation part 13b, the state detection part 13c, and the data generation part 13d as a function part which performs those processes.
 区間抽出部13aは、加速度センサ12の出力電圧で表される検出信号のピーク値を検出することで接地区間を抽出する。タイヤ回転時における加速度センサ12の出力電圧波形は例えば図4に示す波形となる。この図に示されるように、タイヤ3の回転に伴って装置配置箇所が接地し始めた接地開始時に、加速度センサ12の出力電圧が極大値をとる。区間抽出部13aでは、この加速度センサ12の出力電圧が極大値をとる接地開始時を第1ピーク値のタイミングとして検出している。さらに、図4に示されるように、タイヤ3の回転に伴って装置配置箇所が接地していた状態から接地しなくなる接地終了時に、加速度センサ12の出力電圧が極小値をとる。区間抽出部13aでは、この加速度センサ12の出力電圧が極小値をとる接地終了時を第2ピーク値のタイミングとして検出している。 The section extracting unit 13a extracts the ground section by detecting the peak value of the detection signal represented by the output voltage of the acceleration sensor 12. The output voltage waveform of the acceleration sensor 12 during tire rotation is, for example, the waveform shown in FIG. As shown in this figure, the output voltage of the acceleration sensor 12 takes a maximum value at the start of grounding when the device placement site starts to ground as the tire 3 rotates. The section extraction unit 13a detects the start of grounding at which the output voltage of the acceleration sensor 12 takes a maximum value as the timing of the first peak value. Furthermore, as shown in FIG. 4, the output voltage of the acceleration sensor 12 takes a minimum value at the end of the grounding when the device arrangement portion is grounded with the rotation of the tire 3 when the grounding is stopped. The section extraction unit 13a detects the end of grounding at which the output voltage of the acceleration sensor 12 takes a minimum value as the timing of the second peak value.
 加速度センサ12の出力電圧が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴って装置配置箇所が接地する際、加速度センサ12の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、加速度センサ12の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴って装置配置箇所が接地面から離れる際には、加速度センサ12の近傍においてタイヤ3は押圧が解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃を受けることで、加速度センサ12の出力電圧が第2ピーク値をとる。このようにして、加速度センサ12の出力電圧が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。 The reason why the output voltage of the acceleration sensor 12 takes a peak value at the above timing is as follows. That is, when the device arrangement place comes into contact with the rotation of the tire 3, the portion of the tire 3 that has been a substantially cylindrical surface in the vicinity of the acceleration sensor 12 is pressed and deformed into a flat shape. By receiving an impact at this time, the output voltage of the acceleration sensor 12 takes the first peak value. In addition, when the device arrangement part moves away from the ground contact surface with the rotation of the tire 3, the tire 3 is released from pressing in the vicinity of the acceleration sensor 12 and returns from a planar shape to a substantially cylindrical shape. By receiving an impact when the tire 3 returns to its original shape, the output voltage of the acceleration sensor 12 takes the second peak value. In this way, the output voltage of the acceleration sensor 12 takes the first and second peak values when the grounding starts and when the grounding ends, respectively. Moreover, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the press are opposite directions, the sign of the output voltage is also opposite.
 そして、区間抽出部13aは、第1、第2ピーク値のタイミングを含めた検出信号のデータを抽出することで加速度センサ12の接地区間を抽出し、接地区間中であることをレベル算出部13bに伝える。 Then, the section extracting unit 13a extracts the ground contact section of the acceleration sensor 12 by extracting the detection signal data including the timings of the first and second peak values, and the level calculating unit 13b indicates that it is in the grounded section. To tell.
 また、加速度センサ12の出力電圧が第2ピーク値をとるタイミングが加速度センサ12の接地終了時となるため、区間抽出部13aは、このタイミングでRF送信回路16に検出信号を送っている。これにより、RF送信回路16に対して、タイヤ3が1回転したことが伝えられる。 Further, since the timing at which the output voltage of the acceleration sensor 12 takes the second peak value is when the grounding of the acceleration sensor 12 is completed, the section extraction unit 13a sends a detection signal to the RF transmission circuit 16 at this timing. As a result, the RF transmission circuit 16 is informed that the tire 3 has made one revolution.
 レベル算出部13bは、区間抽出部13aから接地区間中であることが伝えられると、その期間中に加速度センサ12の出力電圧に含まれるタイヤ3の振動に起因する高周波成分のレベルを算出する。そして、レベル算出部13bは、その算出結果をμデータなどの路面データとしてデータ生成部13dに伝える。ここで、路面μなどの路面状態を表わす指標として高周波成分のレベルを算出するようにしているが、その理由について図5A、図5Bおよび図6を参照して説明する。 The level calculation unit 13b, when notified from the section extraction unit 13a that it is in the grounding section, calculates the level of the high-frequency component caused by the vibration of the tire 3 included in the output voltage of the acceleration sensor 12 during that period. Then, the level calculation unit 13b transmits the calculation result to the data generation unit 13d as road surface data such as μ data. Here, the level of the high-frequency component is calculated as an index representing the road surface state such as the road surface μ. The reason will be described with reference to FIGS. 5A, 5B, and 6. FIG.
 図5Aは、アスファルト路のように路面μが比較的大きな高μ路面を走行している場合における加速度センサ12の出力電圧の変化を示している。また、図5Bは、凍結路の相当する程度に路面μが比較的小さな低μ路面を走行している場合における加速度センサ12の出力電圧の変化を示している。 FIG. 5A shows a change in the output voltage of the acceleration sensor 12 when traveling on a high μ road surface having a relatively large road surface μ such as an asphalt road. FIG. 5B shows a change in the output voltage of the acceleration sensor 12 when the vehicle is traveling on a low μ road surface where the road surface μ is relatively small to the extent corresponding to the frozen road.
 これらの図から分かるように、路面μにかかわらず、接地区間の最初と最後、つまり加速度センサ12の接地開始時と接地終了時において第1、第2ピーク値が現れる。しかしながら、路面μの影響で、加速度センサ12の出力電圧が変化する。例えば、低μ路面の走行時のように路面μが低いときには、タイヤ3のスリップによる細かな高周波振動が出力電圧に重畳される。このようなタイヤ3のスリップによる細かな高周波信号は、高μ路面の走行時のように路面μが高い場合にはあまり重畳されない。 As can be seen from these figures, the first and second peak values appear at the beginning and end of the contact section, that is, at the start and end of the contact of the acceleration sensor 12, regardless of the road surface μ. However, the output voltage of the acceleration sensor 12 changes due to the influence of the road surface μ. For example, when the road surface μ is low, such as when traveling on a low μ road surface, fine high-frequency vibration due to slip of the tire 3 is superimposed on the output voltage. Such a fine high-frequency signal due to the slip of the tire 3 is not superposed when the road surface μ is high, such as when traveling on a high μ road surface.
 このため、路面μが高い場合と低い場合それぞれについて、接地区間中における出力電圧の周波数解析を行うと、図6に示す結果となる。すなわち、低周波域では路面μが高い場合と低い場合のいずれを走行する場合にも高いレベルになるが、1kHz以上の高周波域では路面μが低い場合の方が高い場合よりも高いレベルになる。このため、加速度センサ12の出力電圧の高周波成分のレベルが路面状態を表す指標となる。 Therefore, when the frequency analysis of the output voltage during the grounding section is performed for each of the cases where the road surface μ is high and low, the result shown in FIG. 6 is obtained. In other words, in the low frequency range, the level is high when the road surface μ is high or low, but in the high frequency range of 1 kHz or higher, the level is higher when the road surface μ is low than when it is high. . For this reason, the level of the high frequency component of the output voltage of the acceleration sensor 12 serves as an index representing the road surface state.
 したがって、レベル算出部13bによって接地区間中における加速度センサ12の出力電圧の高周波成分のレベルを算出することで、これをμデータとすることが可能となる。また、μデータから、例えば路面μが低い場合に凍結路と判定するなど、路面μと対応する路面の種類を路面状態として検出することもできる。 Therefore, by calculating the level of the high frequency component of the output voltage of the acceleration sensor 12 during the grounding section by the level calculation unit 13b, this can be converted to μ data. Further, from the μ data, for example, when the road surface μ is low, the road surface type corresponding to the road surface μ can be detected as a road surface state, such as determining that the road is frozen.
 例えば、高周波成分のレベルは、加速度センサ12の出力電圧から高周波成分を抽出し、接地区間中に抽出した高周波成分を積分することで算出することができる。具体的には、路面状態や路面μに応じて変化すると想定される周波数帯域fa~fbの高周波成分をフィルタリングなどによって抽出し、周波数解析によって取り出した周波数帯域fa~fbの高周波数成分の電圧を積分する。例えば、図示しないコンデンサにチャージさせることで、高周波数成分の電圧積分値を得る。このようにすれば、高μ路面を走行している場合のように路面μが高い場合よりも低μ路面を走行している場合のように路面μが低い場合の方がチャージ量が多くなる。このチャージ量をμデータとして用いて、μデータが示すチャージ量が多いほど路面μが低いというように路面μを推定できる。 For example, the level of the high frequency component can be calculated by extracting the high frequency component from the output voltage of the acceleration sensor 12 and integrating the extracted high frequency component during the grounding section. Specifically, the high frequency components of the frequency bands fa to fb that are assumed to change according to the road surface condition and the road surface μ are extracted by filtering or the like, and the voltages of the high frequency components of the frequency bands fa to fb extracted by the frequency analysis are obtained. Integrate. For example, a voltage integral value of a high frequency component is obtained by charging a capacitor (not shown). In this way, the amount of charge increases when the road surface μ is low, such as when traveling on a low μ road surface, rather than when the road surface μ is high, such as when traveling on a high μ road surface. . Using this charge amount as the μ data, it is possible to estimate the road surface μ such that the larger the charge amount indicated by the μ data, the lower the road surface μ.
 状態検出部13cは、タイヤ3の状態、つまりタイヤ3がチェーン規制に対応している状態であるか否かを検出する。本実施形態では、状態検出部13cにより、タイヤ状態データからチェーン規制に対応している状態であるか違反している状態であるかを検出している。具体的には、状態検出部13cは、加速度センサ12の検出信号に基づいてタイヤ3にチェーン装着されていることを検出する。 The state detection unit 13c detects whether or not the tire 3 is in a state corresponding to chain regulation. In the present embodiment, the state detection unit 13c detects from the tire state data whether the state corresponds to the chain regulation or is in violation. Specifically, the state detection unit 13 c detects that the chain is attached to the tire 3 based on the detection signal of the acceleration sensor 12.
 タイヤ3にチェーン装着されているか否かにより、加速度センサ12の出力電圧波形が変化する。例えば、図7に示すように、チェーン装着中には、チェーン未装着時と比較して、加速度センサ12の検出信号の出力電圧波形の振動が大きくなる。特に、接地区間以外の領域において、出力電圧波形の振動が大きくなる。このため、加速度センサ12の出力電圧波形のうち接地区間以外の領域を周波数解析し、例えば高周波成分の振動レベルが閾値を超えていればタイヤ3にチェーン装着されていると判定することができる。また、第1ピーク値および第2ピーク値となるタイミングがずれ、チェーン装着中には、チェーン未装着時と比較して、接地区間が長くなる。このため、第1ピーク値同士もしくは第2ピーク値同士の時間間隔からタイヤ3の速度を求め、タイヤ3の速度に対する第1ピーク値と第2ピーク値との時間間隔を調べることで、タイヤ3にチェーン装着されているか否かを判定することもできる。すなわち、チェーン未装着時にタイヤ3の速度に対応して想定される第1ピーク値と第2ピーク値との時間間隔を閾値として、計測した第1ピーク値と第2ピーク値との時間間隔が閾値を超えていればタイヤ3にチェーン装着されていると判定することができる。 The output voltage waveform of the acceleration sensor 12 changes depending on whether or not the chain is attached to the tire 3. For example, as shown in FIG. 7, the vibration of the output voltage waveform of the detection signal of the acceleration sensor 12 becomes larger when the chain is attached than when the chain is not attached. In particular, the oscillation of the output voltage waveform becomes large in a region other than the ground interval. For this reason, it is possible to determine that the chain is attached to the tire 3 if the region other than the grounding interval is subjected to frequency analysis in the output voltage waveform of the acceleration sensor 12 and, for example, the vibration level of the high frequency component exceeds the threshold value. In addition, the timing of the first peak value and the second peak value is shifted, and the ground contact section becomes longer when the chain is attached than when the chain is not attached. For this reason, the speed of the tire 3 is obtained from the time interval between the first peak values or between the second peak values, and the time interval between the first peak value and the second peak value with respect to the speed of the tire 3 is examined, whereby the tire 3 It can also be determined whether or not the chain is attached. That is, the time interval between the first peak value and the second peak value measured with the time interval between the first peak value and the second peak value assumed corresponding to the speed of the tire 3 when the chain is not mounted as a threshold value. If it exceeds the threshold value, it can be determined that the chain is attached to the tire 3.
 また、状態検出部13cは、上記のようにしてタイヤ3にチェーン装着されているか否かを判定すると、その判定結果をデータ生成部13dに伝えている。 Further, when the state detection unit 13c determines whether or not the chain is attached to the tire 3 as described above, it transmits the determination result to the data generation unit 13d.
 データ生成部13dは、基本的には、レベル算出部13bでの算出結果に基づいて路面データを生成している。例えば、データ生成部13dは、μデータをそのまま路面データとして採用したり、μデータから凍結路やアスファルト路のような路面状態を求めて、それを示すデータを路面データとして生成している。また、データ生成部13dは、状態検出部13cでの検出結果に基づいてタイヤ3にチェーン装着されているか否かのデータをタイヤ状態データとして生成している。データ生成部13dが生成した路面データやタイヤ状態データは、同時にもしくは別々に、RF送信回路16に伝えられている。また、タイヤ状態データについては、記憶回路部14にも伝えられている。 The data generation unit 13d basically generates road surface data based on the calculation result of the level calculation unit 13b. For example, the data generation unit 13d directly adopts μ data as road surface data, obtains a road surface state such as a frozen road or an asphalt road from the μ data, and generates data indicating the road surface data. Further, the data generation unit 13d generates, as tire state data, data indicating whether or not the chain is attached to the tire 3 based on the detection result of the state detection unit 13c. The road surface data and tire condition data generated by the data generation unit 13d are transmitted to the RF transmission circuit 16 simultaneously or separately. The tire condition data is also transmitted to the memory circuit unit 14.
 記憶回路部14は、記憶部に相当する部分であり、制御部13からの指示に従ってデータの記憶や読み出しに加えて消去を行う。例えば、記憶回路部14は、制御部13からタイヤ状態データが伝えられると、その情報を記憶しておく。また、記憶回路部14は、制御部13からタイヤ状態データの読み出しの指示が出されると、記憶しているタイヤ状態データを読み出し、制御部13に伝える。 The storage circuit unit 14 is a part corresponding to the storage unit, and performs erasure in addition to storing and reading data according to instructions from the control unit 13. For example, when tire state data is transmitted from the control unit 13, the storage circuit unit 14 stores the information. Further, when an instruction to read out the tire condition data is issued from the control unit 13, the storage circuit unit 14 reads out the stored tire condition data and transmits it to the control unit 13.
 LF受信回路15は、受信部に相当し、ツール300などを通じてのコマンド入力などを行う回路である。例えば、チェーン規制の監視者がツール300を通じて指示コマンドを含むLF波がタイヤマウントセンサ1に伝えられると、LF受信回路15を通じて指示コマンドが制御部13に伝えられる。これに基づいて、制御部13は、記憶回路部14に記憶しておいたタイヤ状態データの読み出し指示を出し、記憶回路部14からタイヤ状態データの読み出しを行わせるようになっている。このときのタイヤ状態データについては、車両走行時に記憶されたものであるが、車両停止中にも記憶されたままとなっていることから、車両停止中にも記憶回路部14からの読み出しを行うことが可能となっている。 The LF reception circuit 15 corresponds to a reception unit, and is a circuit for inputting a command through the tool 300 or the like. For example, when an LF wave including an instruction command is transmitted to the tire mount sensor 1 through the tool 300 by the chain regulation monitor, the instruction command is transmitted to the control unit 13 through the LF reception circuit 15. Based on this, the control unit 13 issues an instruction to read out the tire condition data stored in the storage circuit unit 14 and causes the tire circuit data to be read out from the storage circuit unit 14. The tire condition data at this time is stored when the vehicle is running, but is stored even when the vehicle is stopped. Therefore, reading from the storage circuit unit 14 is performed even when the vehicle is stopped. It is possible.
 RF送信回路16は、データ生成部13dから伝えられたμデータなどの路面データやタイヤ状態データを受信機21やツール300に送信する送信部を構成するものである。RF送信回路16と受信機21もしくはツール300との間の通信は、例えば、Bluetooth(登録商標)などの公知の近距離無線通信技術によって実施可能である。 The RF transmission circuit 16 constitutes a transmission unit that transmits road surface data such as μ data and tire condition data transmitted from the data generation unit 13d to the receiver 21 and the tool 300. Communication between the RF transmission circuit 16 and the receiver 21 or the tool 300 can be performed by a known short-range wireless communication technique such as Bluetooth (registered trademark).
 路面データを送信するタイミングについては任意であるが、上記したように、本実施形態では、加速度センサ12の接地終了時に区間抽出部13aから送信トリガが送られることでRF送信回路16から路面データやタイヤ状態データが送られるようになっている。このように、RF送信回路16によるデータ送信を常に行うのではなく、加速度センサ12の接地終了時に限定して行うようにしているため、消費電力を低減することが可能となる。また、RF送信回路16は、ツール300から指示コマンドを受けたときにも、それに応答するようにタイヤ状態データの送信を行う。これにより、ツール300にタイヤ状態データを伝えることが可能となっている。 The timing for transmitting the road surface data is arbitrary, but as described above, in this embodiment, the transmission trigger is sent from the section extraction unit 13a when the ground contact of the acceleration sensor 12 is completed, so that the road surface data and Tire condition data is sent. As described above, the data transmission by the RF transmission circuit 16 is not always performed, but is performed only at the end of the grounding of the acceleration sensor 12, so that the power consumption can be reduced. Also, when receiving an instruction command from the tool 300, the RF transmission circuit 16 transmits tire condition data so as to respond to the instruction command. As a result, the tire condition data can be transmitted to the tool 300.
 また、路面データやタイヤ状態データについては、車両に備えられたタイヤ3毎に予め備えられている車輪の固有識別情報(以下、ID情報という)と共に送られる。各車輪の位置については、車輪が車両のどの位置に取り付けられているかを検出する周知の車輪位置検出装置によって特定できることから、受信機21にID情報と共に路面データやタイヤ状態データを伝えることで、どの車輪のデータであるかが判別可能になる。 Further, road surface data and tire condition data are sent together with wheel specific identification information (hereinafter referred to as ID information) provided in advance for each tire 3 provided in the vehicle. About the position of each wheel, since it can be specified by a known wheel position detection device that detects where the wheel is attached to the vehicle, by transmitting road surface data and tire condition data together with ID information to the receiver 21, It is possible to determine which wheel data.
 なお、ここでは路面データと共にタイヤ状態データをRF送信回路16から送信することについて説明したが、これらを別々のフレームに格納して、個別のタイミングで送信するようにしても良い。 Note that, here, transmission of tire condition data together with road surface data from the RF transmission circuit 16 has been described, but these may be stored in separate frames and transmitted at individual timings.
 一方、受信機21は、タイヤマウントセンサ1より送信された路面データを受信し、これに基づいて内蔵する制御部にて路面状態を推定すると共に推定した路面状態を報知装置24に伝え、必要に応じて報知装置24より路面状態をドライバに伝える。これにより、ドライバは路面状態に対応した運転を心掛けるようになり、車両の危険性を回避することが可能となる。例えば、報知装置24を通じて推定された路面状態を常に表示するようにしても良いし、推定された路面状態がウェット路や凍結路や低μ路等のように運転をより慎重に行う必要があるときにのみ路面状態を表示してドライバに警告するようにしても良い。 On the other hand, the receiver 21 receives the road surface data transmitted from the tire mount sensor 1, estimates the road surface state by the built-in control unit based on the received road surface data, and informs the informing device 24 of the estimated road surface state. In response, the notification device 24 informs the driver of the road surface condition. As a result, the driver tries to drive corresponding to the road surface condition, and the danger of the vehicle can be avoided. For example, the estimated road surface state may be always displayed through the notification device 24, or the estimated road surface state needs to be operated more carefully such as a wet road, a frozen road, a low μ road, or the like. Only when the road surface condition is displayed, the driver may be warned.
 また、受信機21は、タイヤマウントセンサ1より送信されたタイヤ状態データを受信し、タイヤ3がチェーン装着中であるかチェーン未装着であるかを認識する。そして、受信機21は、ナビゲーションECU22もしくは車両通信装置23を通じてチェーン規制情報を取得し、チェーン規制中であれば、タイヤ状態データが示すタイヤ3の状態を確認する。そして、チェーン装着中であるか否か、つまりチェーン規制に対応しているか否かの情報を、車両通信装置23を通じて通信センター200に伝える。ここでは、チェーン装着中の場合にはチェーン規制に対応しているため何もせず、チェーン未装着の場合であればチェーン規制に対応していないため、違反情報として、チェーン規制に対応していないことを示すデータを送信している。例えば、自車両のID情報と共にチェーン未装着であることを示すデータを通信センター200に伝える。このようにして、通信センター200にチェーン規制に違反している車両を伝えることが可能となる。 Further, the receiver 21 receives the tire condition data transmitted from the tire mount sensor 1 and recognizes whether the tire 3 is in the chain wearing state or not in the chain wearing state. And the receiver 21 acquires chain regulation information through navigation ECU22 or the vehicle communication apparatus 23, and if the chain regulation is underway, it will confirm the state of the tire 3 which tire condition data shows. Then, the communication center 200 is informed through the vehicle communication device 23 of whether or not the chain is being worn, that is, whether or not the chain regulation is supported. In this case, nothing is done because the chain is compliant with the chain regulation, and nothing is done when the chain is not attached. Sending data indicating that. For example, data indicating that the chain is not attached is transmitted to the communication center 200 together with the ID information of the host vehicle. In this way, it is possible to inform the communication center 200 of vehicles that violate chain regulations.
 ナビゲーションECU22は、ナビゲーションシステムに備えられ、道路情報などを記憶したメモリなどの非遷移的実体的記憶媒体からの情報取得やGPS(Global PositioningSystemの略)衛星の位置情報に基づく車両の現在位置の計測などの処理を行う。そして、ナビゲーションECU22は、道路情報および計測した現在位置に基づいて、道路案内等に関する各種処理を行っている。また、ナビゲーションECU22は、路車間通信などによって交通情報を入手しており、道路案内等を行う際に、交通情報を加味した案内を行うようになっている。そして、ナビゲーションECU22が取得した交通情報には、チェーン規制情報が含まれているため、このチェーン規制情報を受信機21に伝えるようにしている。 The navigation ECU 22 is provided in the navigation system and obtains information from a non-transitional physical storage medium such as a memory storing road information and measures the current position of the vehicle based on GPS (Global Positioning System) satellite position information. Process such as. The navigation ECU 22 performs various processes related to road guidance and the like based on the road information and the measured current position. In addition, the navigation ECU 22 obtains traffic information by road-to-vehicle communication or the like, and provides guidance that takes traffic information into account when performing road guidance or the like. Since the traffic information acquired by the navigation ECU 22 includes the chain regulation information, the chain regulation information is transmitted to the receiver 21.
 なお、ここではチェーン規制情報を取得するものとしてナビゲーションECU22を例に挙げて説明したが、ナビゲーションECU22以外のものを用いても良い。例えば、携帯電話などの携帯機器を車体側システム2の各部と情報交換できるようにし、携帯機器を通じてチェーン規制情報を取得するようにしても良い。また、車両通信装置23を通じて、通信センター200などからチェーン規制情報を取得するようにしても良い。 In addition, although navigation ECU22 was mentioned as an example as what acquires chain regulation information here, things other than navigation ECU22 may be used. For example, information on a mobile device such as a mobile phone may be exchanged with each part of the vehicle body side system 2 and the chain regulation information may be acquired through the mobile device. Further, the chain restriction information may be acquired from the communication center 200 or the like through the vehicle communication device 23.
 車両通信装置23は、路車間通信を行うことができるものであり、例えば道路などに設置されている図示しない通信システムを介して、通信センター200との情報交換を行う。本実施形態の場合、車両通信装置23は、受信機21から伝えられたチェーン規制に対応しているか否かの情報、本実施形態の場合はチェーン規制に対応しているか違反しているかの情報を通信センター200に送信している。 The vehicle communication device 23 can perform road-to-vehicle communication, and exchanges information with the communication center 200 via a communication system (not shown) installed on a road, for example. In the case of the present embodiment, the vehicle communication device 23 is information on whether or not it corresponds to the chain regulation transmitted from the receiver 21, and in the case of the present embodiment, information on whether or not it corresponds to the chain regulation. Is transmitted to the communication center 200.
 報知装置24は、例えばメータ表示器などで構成され、ドライバに対して路面状態を報知する際に用いられる。報知装置24をメータ表示器で構成する場合、ドライバが車両の運転中に視認可能な場所に配置され、例えば車両1におけるインストルメントパネル内に設置される。メータ表示器は、受信機21から路面状態やチェーン規制に対応しているか違反しているかなどの情報が伝えられると、その路面状態やチェーン規制への対応の有無が把握できる態様で表示を行うことで、視覚的にドライバに対する報知を行う。 The notification device 24 is composed of, for example, a meter display and is used when notifying the driver of the road surface state. When the notification device 24 is configured by a meter display, the notification device 24 is disposed at a place where the driver can visually recognize the vehicle while driving, for example, in an instrument panel in the vehicle 1. When the meter indicator is informed of whether the road surface condition or chain regulation is compliant or violated from the receiver 21, the meter display displays in such a manner that the presence or absence of correspondence to the road condition or chain regulation can be grasped. Thus, the driver is visually notified.
 なお、報知装置24をブザーや音声案内装置などで構成することもできる。その場合、報知装置24は、ブザー音や音声案内によって、聴覚的にドライバに対する報知を行うことができる。また、視覚的な報知を行う報知装置24としてメータ表示器を例に挙げたが、ヘッドアップディスプレイなどの情報表示を行う表示器によって報知装置24を構成しても良い。 Note that the notification device 24 can be configured by a buzzer or a voice guidance device. In that case, the notification device 24 can audibly notify the driver by a buzzer sound or voice guidance. In addition, although the meter display device is exemplified as the notification device 24 that performs visual notification, the notification device 24 may be configured by a display device that displays information such as a head-up display.
 以上のようにして、本実施形態にかかるチェーン規制管理システム100が構成されている。なお、車体側システム2を構成する各部が例えばCAN(Controller AreaNetworkの略)通信などによる車内LAN(Local AreaNetworkの略)を通じて接続されている。このため、車内LANを通じて各部が互いに情報伝達できるようになっている。 As described above, the chain regulation management system 100 according to the present embodiment is configured. In addition, each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local * AreaNetwork) by CAN (abbreviation for Controller | AreaNetwork) etc., for example. For this reason, each part can communicate with each other through the in-vehicle LAN.
 一方、チェーン規制管理システム100と情報交換を行う通信センター200は、道路情報の収集を行うと共に道路情報や交通情報、例えばチェーン規制情報を車両などに提供したり、チェーン規制の管理、運営などの事業を行っている。通信センター200と車両通信装置23とが直接通信を行える形態とされていても良いが、通信センター200は、道路などの各所に設置された通信システムを通じて車両通信装置23との通信が可能となっている。 On the other hand, the communication center 200 that exchanges information with the chain regulation management system 100 collects road information and provides road information and traffic information, for example, chain regulation information to vehicles, etc., and manages and operates chain regulations. Doing business. The communication center 200 and the vehicle communication device 23 may be configured to directly communicate with each other, but the communication center 200 can communicate with the vehicle communication device 23 through a communication system installed in various places such as roads. ing.
 通信センター200は、各車両の車両通信装置23から伝えられたチェーン規制に対応しているか否かの情報のデータベースを管理しており、受信した情報に基づいて適合車両であるか否かを判別している。本実施形態の場合、通信センター200は、各車両の車両通信装置23から伝えられたチェーン規制に違反していることを示す違反車両情報のデータベースを管理しており、受信した違反車両情報に基づいて違反車両を判別している。例えば、監視者は、ツール300として、車両通信装置23との通信を行える機器や車両に取り付けられたナンバープレートのナンバーを入力できる機器を用いて、通信センター200のデータベースにアクセスすると、適合車両であるか否かを判別することができる。本実施形態のように、通信センター200のデータベースで違反車両情報を管理している場合、データベースへのアクセスによって違反車両か否かを判別することができる。これにより、監視者がタイヤ3を視認しなくても、距離が離れた場所からでも、違反車両を特定することができる。 The communication center 200 manages a database of information on whether or not the vehicle conforms to the chain regulation transmitted from the vehicle communication device 23 of each vehicle, and determines whether or not the vehicle is a compatible vehicle based on the received information. is doing. In the case of the present embodiment, the communication center 200 manages a database of violation vehicle information indicating that the chain regulation transmitted from the vehicle communication device 23 of each vehicle is violated, and based on the received violation vehicle information. To determine which vehicles are in violation. For example, when the monitor uses a device capable of communicating with the vehicle communication device 23 or a device capable of inputting the number of a license plate attached to the vehicle as the tool 300, the monitor can access the database of the communication center 200. It can be determined whether or not there is. When the violation vehicle information is managed in the database of the communication center 200 as in the present embodiment, it is possible to determine whether the vehicle is a violation vehicle by accessing the database. Thereby, even if the supervisor does not visually recognize the tire 3, it is possible to identify the offending vehicle even from a place away from the distance.
 また、路上システムとして車両通信装置23との通信やナンバープレートのナンバーを読み取ることができるものもあるため、この路上システムを使用して、適合車両であるか否か、例えば違反車両の特定を行うことも可能である。同様に、有料道路の入口などのように、車両通信装置23との通信やナンバープレートのナンバーを読み取ることが可能なシステムがある場所においては、車両が有料道路の入口に進入する前に、適合車両であるか否か、例えば違反車両であるか否かの判別が行える。このため、監視者がタイヤ3を視認しなくても違反車両を特定して有料道路内への進行を抑制するなどの対処を行うことも可能となる。 In addition, some road systems can communicate with the vehicle communication device 23 and read the number on the license plate. Therefore, this road system is used to determine whether the vehicle is a compatible vehicle, for example, a violation vehicle. It is also possible. Similarly, in places where there is a system that can communicate with the vehicle communication device 23 and read the number on the license plate, such as the entrance of a toll road, the vehicle will fit before entering the entrance of the toll road. It is possible to determine whether the vehicle is a vehicle, for example, whether the vehicle is a violation vehicle. For this reason, even if the supervisor does not visually recognize the tire 3, it is possible to identify a violating vehicle and take measures such as suppressing the progress into the toll road.
 さらに、ツール300を用いてタイヤマウントセンサ1からタイヤ状態データを読み出し、適合車両であるか否か、例えば違反車両であることの判別を行うこともできる。本実施形態の場合、上記したように、チェーン規制に対応しているか違反しているかがタイヤ状態データとして記憶回路部14に記憶してあるため、ツール300から指示コマンドを含むLF波を出力し、タイヤマウントセンサ1からタイヤ状態データを読み出させる。このタイヤ状態データをRF送信回路16から送信させ、ツール300にて受信する。これにより、ツール300にて、タイヤ状態データが示すタイヤ3がチェーン規制に対応しているか違反しているかの情報に基づいて、違反車両であるか否かの判別を行うことが可能となる。この場合、タイヤマウントセンサ1から情報を受け取れれば良いため、車両1が停止中、例えばイグニッションスイッチのオフ中にも、適合車両であるか否か、例えば違反車両であるか否かを判別できる。 Furthermore, it is possible to read out tire state data from the tire mount sensor 1 using the tool 300 and determine whether or not the vehicle is a conforming vehicle, for example, a violation vehicle. In the case of the present embodiment, as described above, whether or not the chain regulation is compliant or violated is stored in the storage circuit unit 14 as tire condition data, so that an LF wave including an instruction command is output from the tool 300. The tire condition data is read from the tire mount sensor 1. The tire condition data is transmitted from the RF transmission circuit 16 and received by the tool 300. As a result, the tool 300 can determine whether or not the tire 3 indicated by the tire condition data is a violation vehicle based on information on whether or not the tire 3 corresponds to the chain regulation. In this case, since it is only necessary to receive information from the tire mount sensor 1, it is possible to determine whether the vehicle 1 is a compatible vehicle, for example, whether it is a violation vehicle, even when the vehicle 1 is stopped, for example, when the ignition switch is turned off. .
 続いて、本実施形態にかかるチェーン規制管理システム100の作動について説明する。チェーン規制管理システム100のうち、路面状態検出装置として機能する部分については、タイヤマウントセンサ1から送信された路面データを受信機21で受信し、必要に応じて報知装置24を通じて路面状態をドライバに伝えるという作動を行う。また、チェーン規制管理システム100は、以下のようにしてチェーン規制の管理を行う。このチェーン規制管理方法について図8および図9を参照して説明する。なお、チェーン規制管理については、チェーン規制に対応しているか否かの特定、本実施形態の場合はチェーン規制に対応していない違反車両の特定を通信センター200で行う場合とツール300で行う場合がある。したがって、これらそれぞれについて説明する。 Subsequently, the operation of the chain regulation management system 100 according to the present embodiment will be described. For the part that functions as the road surface state detection device in the chain regulation management system 100, the road surface data transmitted from the tire mount sensor 1 is received by the receiver 21, and the road surface state is transmitted to the driver through the notification device 24 as necessary. Acts to communicate. The chain regulation management system 100 manages chain regulation as follows. This chain regulation management method will be described with reference to FIGS. As for chain regulation management, the communication center 200 and the tool 300 identify whether or not the vehicle conforms to the chain regulation, and in the case of this embodiment, identifies the violating vehicle that does not comply with the chain regulation. There is. Therefore, each of these will be described.
 まず、図8を用いて、通信センター200でチェーン規制に対応していない違反車両を特定する場合について説明する。 First, the case where a violation vehicle that does not comply with the chain regulation is specified in the communication center 200 will be described with reference to FIG.
 タイヤマウントセンサ1では、制御部13にて、ステップS100~ステップS115に示す各処理を行う。 In the tire mount sensor 1, the control unit 13 performs each process shown in steps S100 to S115.
 具体的には、ステップS100に記載したように、タイヤ3の1回転分における加速度センサ12の出力電圧の振動波形を取得し、その振動波形を各領域に分割する。例えば、第1ピーク値よりも前の領域と、第1ピーク値を抽出した領域と、第1ピーク値から第2ピーク値に至る間の領域と、第2ピーク値を抽出した領域と、第2ピーク値以降の領域とに分ける。続いて、ステップS105において、ステップS100で分割した領域の中から、接地区間以外の領域、例えば第1ピーク値よりも前の領域や第2ピーク値以降の領域を選択し、その領域での加速度センサ12の出力電圧波形の振動を周波数解析する。 Specifically, as described in step S100, the vibration waveform of the output voltage of the acceleration sensor 12 for one rotation of the tire 3 is acquired, and the vibration waveform is divided into each region. For example, a region before the first peak value, a region where the first peak value is extracted, a region between the first peak value and the second peak value, a region where the second peak value is extracted, Divided into areas after 2 peak values. Subsequently, in step S105, a region other than the contact section, for example, a region before the first peak value or a region after the second peak value is selected from the regions divided in step S100, and the acceleration in that region is selected. The frequency of the vibration of the output voltage waveform of the sensor 12 is analyzed.
 そして、ステップS110において、ステップS105での周波数解析の結果に基づいて、チェーン装着中であるかチェーン未装着であるかを判別する。すなわち、図7に示したように接地区間以外の領域において、チェーン装着中とチェーン未装着とで加速度センサ12の出力電圧波形の振動が変化する。このため、接地区間以外の領域において加速度センサ12の出力電圧波形を周波数解析すれば、その解析結果に基づいて、チェーン装着中とチェーン未装着のいずれであるかを判別することができる。 In step S110, it is determined whether the chain is attached or not attached based on the result of the frequency analysis in step S105. That is, as shown in FIG. 7, in the region other than the grounding section, the vibration of the output voltage waveform of the acceleration sensor 12 changes between when the chain is attached and when the chain is not attached. For this reason, if the output voltage waveform of the acceleration sensor 12 is subjected to frequency analysis in a region other than the ground contact section, it can be determined whether the chain is attached or not attached based on the analysis result.
 このようにして、チェーン装着中とチェーン未装着のいずれであるかを判別できたら、ステップS115において、その判別結果を車体側システム2に向けて送信する処理を行う。 In this way, when it is determined whether the chain is attached or not attached, in step S115, a process of transmitting the determination result to the vehicle body side system 2 is performed.
 この後、車体側システム2では、受信機21に内蔵された制御部にて、ステップS120~ステップS145の処理を行う。 Thereafter, in the vehicle body side system 2, the processes in steps S 120 to S 145 are performed by the control unit built in the receiver 21.
 具体的には、ステップS120では、車体側システム2において、チェーン規制情報を取得しているか否かを判定する。ここでは、ナビゲーションECU22もしくは車両通信装置23がチェーン規制情報を取得していれば肯定判定され、取得していなければ否定判定される。そして、ステップS120で肯定判定されればステップS125に進み、車体側システム2において、タイヤマウントセンサ1から受信したチェーン装着中とチェーン未装着とのいずれであるかの情報に基づいて、チェーン規制に対応しているか否かを判別する。また、ステップS120で否定判定されればステップS130に進み、タイヤマウントセンサ1から送信されてきたチェーン装着中とチェーン未装着のいずれであるかのデータを破棄して処理を終了する。 Specifically, in step S120, the vehicle body side system 2 determines whether chain regulation information has been acquired. Here, if the navigation ECU 22 or the vehicle communication device 23 has acquired the chain restriction information, an affirmative determination is made, and if not, a negative determination is made. Then, if an affirmative determination is made in step S120, the process proceeds to step S125, and in the vehicle body side system 2, the chain regulation is performed based on the information indicating whether the chain is installed or not attached, received from the tire mount sensor 1. It is determined whether or not it is compatible. If a negative determination is made in step S120, the process proceeds to step S130, where the data transmitted from the tire mount sensor 1 indicating whether the chain is attached or not attached is discarded, and the process ends.
 ステップ125の処理を終えたらステップS135に進み、ステップS125の判別結果に基づいて、チェーン規制に違反しているか否かを判定する。ここで、チェーン未装着であれば肯定判定されて、ステップS140に進み、車両通信装置23を通じて、通信センター200に向けて、当該車両がチェーン規制に対応しておらず違反していることを送信する。一方、チェーン装着中であれば否定判定されてステップS145に進み、ステップS130と同様の処理を行う。 When the processing of step 125 is completed, the process proceeds to step S135, and it is determined whether the chain regulation is violated based on the determination result of step S125. Here, if the chain is not attached, an affirmative determination is made, the process proceeds to step S140, and the vehicle communication device 23 transmits to the communication center 200 that the vehicle does not comply with the chain regulation and is in violation. To do. On the other hand, if the chain is being worn, a negative determination is made, the process proceeds to step S145, and the same processing as in step S130 is performed.
 そして、ステップ140の処理を受けて、チェーン規制の監視者は、ステップS150に示すように、通信センター200から違反車両に関する情報を入手することで、その情報に基づいて違反車両を特定することが可能となる。例えば、有料道路の入口において、路上システムなどを使用して違反車両を特定し、入口の管理者がチェーン規制の監視者となってチェーン規制の違反車両が有料道路に進入することを抑制することが可能となる。 Then, in response to the processing of step 140, the chain regulation supervisor can obtain information on the violating vehicle from the communication center 200, as shown in step S150, and identify the violating vehicle based on the information. It becomes possible. For example, at the entrance of a toll road, a violation system is identified using a road system, etc., and the entrance manager acts as a chain regulation monitor to prevent the violation of a chain regulation vehicle from entering the toll road. Is possible.
 次に、図9を用いて、ツール300を用いてチェーン規制に対応していない違反車両を特定する場合について説明する。 Next, with reference to FIG. 9, a case will be described in which a violation vehicle that does not comply with the chain regulation is identified using the tool 300.
 タイヤマウントセンサ1では、制御部13がステップS200~ステップS210に示す各処理として、図8に示したステップS100~ステップS110と同様の処理を行う。そして、ステップS215の処理を行う。具体的には、ステップS210での判別結果に基づいて、チェーン装着中でチェーン規制に対応しているか、それともチェーン未装着でチェーン規制に対応していないかを示すタイヤ状態データを記憶回路部14に記憶する。なお、タイヤ状態データを記憶回路部14に記憶することについては、タイヤ3の1回転毎に行っても良いが、タイヤ3の1回転毎にチェーン装着中とチェーン未装着とが変わる訳ではない。このため、タイヤ3が複数回転する毎、例えば10回転する毎、もしくはタイヤ3が停止してから再び回転し始めたときにタイヤ状態データを記憶回路部14に記憶し、過去の記憶内容を更新するようにすれば良い。 In the tire mount sensor 1, the control unit 13 performs the same processes as steps S100 to S110 shown in FIG. 8 as the processes shown in steps S200 to S210. Then, the process of step S215 is performed. Specifically, based on the determination result in step S210, the storage circuit unit 14 stores tire condition data indicating whether the chain regulation is supported while the chain is installed, or whether the chain is not installed and does not support the chain regulation. To remember. The storage of the tire state data in the storage circuit unit 14 may be performed every rotation of the tire 3, but the chain is not mounted and the chain is not mounted for each rotation of the tire 3. . For this reason, every time the tire 3 rotates a plurality of times, for example, every 10 rotations, or when the tire 3 starts rotating again after being stopped, the tire state data is stored in the storage circuit unit 14 and the past stored contents are updated. You should do it.
 この後、タイヤマウントセンサ1では、制御部13においてステップS220~ステップS230の処理を行う。ステップS220では、ツール300からタイヤ状態データの読み出しを行わせる指令コマンドを受信したか否かを判定する。チェーン規制の監視者がツール300を通じて指示コマンドを出したときには、本ステップにおいて肯定判定され、出されていなければ本ステップにおいて否定判定される。 Thereafter, in the tire mount sensor 1, the control unit 13 performs the processing from step S220 to step S230. In step S220, it is determined whether a command command for reading tire condition data from the tool 300 has been received. When the chain regulation monitor issues an instruction command through the tool 300, an affirmative determination is made in this step, and if not, a negative determination is made in this step.
 ここで、ステップS220で肯定判定されれば、ツール300からの指示コマンドが出されているため、ステップS225に進み、チェーン装着中とチェーン未装着のいずれであるかに関するデータをツール300に向けて送信する。そして、ステップS220で否定判定されれば、ツール300からの指示コマンドが出されていないため、ステップS230に進み、チェーン装着中とチェーン未装着のいずれであるかに関するタイヤ状態データを送信することなく処理を終了する。 Here, if an affirmative determination is made in step S220, an instruction command is issued from the tool 300, so the process proceeds to step S225, and data regarding whether the chain is attached or not attached is directed to the tool 300. Send. If a negative determination is made in step S220, the instruction command from the tool 300 has not been issued, so the process proceeds to step S230 without transmitting tire condition data regarding whether the chain is attached or not attached. The process ends.
 そして、ステップ225の処理を受けて、ツール300にチェーン装着中とチェーン未装着のいずれであるかに関するデータが伝えられる。このため、ステップS235に示すように、チェーン規制の監視者は、ツール300に示される情報に基づいて、ツール300から指示コマンドを入力した車両がチェーン規制に対応した車両であるか違反車両であるかを瞬時に判別できる。 Then, in response to the processing in step 225, the tool 300 is informed of data regarding whether the chain is attached or not attached. For this reason, as shown in step S235, the chain regulation monitor is based on the information shown in the tool 300, and the vehicle that has input the instruction command from the tool 300 is a vehicle that conforms to the chain regulation or is a violation vehicle. Can be determined instantly.
 以上説明したように、本実施形態にかかるチェーン規制管理システム100は、タイヤマウントセンサ1によってチェーン装着中であるかチェーン未装着であるかを判別し、それに基づいて監視者によるチェーン規制の管理を行うようにしている。具体的には、通信センター200にチェーン規制に対応していない違反車両であることを伝えて、通信センター200に伝わった違反情報に基づいて監視者が容易に違反車両を割り出せるようにしている。また、チェーン規制に対応しているか違反しているかをタイヤ状態データとしてタイヤマウントセンサ1の記憶回路部14に記憶している。このため、監視者がツール300を用いて指令コマンドを伝えることで、タイヤマウントセンサ1からツール300にタイヤ状態データが送信されるようにし、監視者がツール300を確認するだけで違反車両であるか否かを確認できる。 As described above, the chain regulation management system 100 according to the present embodiment determines whether the chain is attached or not attached by the tire mount sensor 1, and based on this, the chain regulation is managed by the observer. Like to do. Specifically, the communication center 200 is informed that the vehicle is a non-compliant vehicle that does not comply with the chain regulations, and the supervisor can easily determine the violation vehicle based on the violation information transmitted to the communication center 200. In addition, the storage circuit unit 14 of the tire mount sensor 1 stores the tire condition data as to whether it complies with or violates the chain regulation. For this reason, the supervisor uses the tool 300 to transmit a command command so that the tire condition data is transmitted from the tire mount sensor 1 to the tool 300. You can check whether or not.
 したがって、監視者がタイヤ3を目視しなくても、チェーン規制に対応している車両であるか否かの判定を行うことが可能となる。また、各タイヤマウントセンサ1にてチェーン規制に対応している車両であるか否かを判定できる。したがって、各車輪それぞれでチェーン規制に対応している車両であるか否かを判定することも可能となる。 Therefore, it is possible to determine whether or not the vehicle is compatible with the chain regulation without the observer watching the tire 3. In addition, it is possible to determine whether each tire mount sensor 1 is a vehicle that supports chain regulation. Accordingly, it is possible to determine whether or not each wheel is a vehicle that supports chain regulation.
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対してスタッドレスタイヤについての判別もできるようにしたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment will be described. In the present embodiment, the studless tire can be discriminated from the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described. .
 上記実施形態では、タイヤマウントセンサ1の加速度センサ12の検出信号を用いてチェーン装着中とチェーン未装着のいずれであるかを判定した。これに対して、本実施形態では、タイヤ3がスタッドレスタイヤであるか否かの判定も行う。 In the above embodiment, it is determined whether the chain is attached or not attached using the detection signal of the acceleration sensor 12 of the tire mount sensor 1. On the other hand, in this embodiment, it is also determined whether the tire 3 is a studless tire.
 チェーン規制に対応している車両は、チェーン装着車両だけでなくスタッドレスタイヤ装着車両も含まれる。タイヤ3がスタッドレスタイヤであるか否かについては予め判っていることである。このため、タイヤ3にタイヤマウントセンサ1を取り付ける際に、記憶回路部14に予めタイヤ3の種類をタイヤ状態データとして記憶しておけば、そのタイヤ状態データに基づいてタイヤ3がスタッドレスタイヤとラジアルタイヤとのいずれであるかを判別できる。例えば、記憶回路部14にタイヤ3の固有のID情報をタイヤ情報データとして登録しておくことで、ID情報に基づいてタイヤ3がスタッドレスタイヤであるかラジアルタイヤであるかというタイヤ種類を把握できる。勿論、記憶回路部14に対して、タイヤ3がスタッドレスタイヤとラジアルタイヤとのいずれであるかというタイヤ種類を直接的に示すデータを記憶しておいても良い。 Vehicles that comply with chain regulations include not only chain-equipped vehicles but also studless tire-equipped vehicles. Whether or not the tire 3 is a studless tire is known in advance. For this reason, when the tire mount sensor 1 is attached to the tire 3, if the type of the tire 3 is stored in advance as the tire condition data in the storage circuit unit 14, the tire 3 is radial with the studless tire based on the tire condition data. It is possible to determine which is a tire. For example, by registering unique ID information of the tire 3 as tire information data in the memory circuit unit 14, the tire type indicating whether the tire 3 is a studless tire or a radial tire can be grasped based on the ID information. . Of course, the storage circuit unit 14 may store data that directly indicates the tire type such as whether the tire 3 is a studless tire or a radial tire.
 そして、例えば図8のステップS115に示したチェーン装着中とチェーン未装着のいずれであるかの判別結果を車体側システム2に向けて送信する際に、タイヤ3がスタッドレスタイヤであるかラジアルタイヤであるかもタイヤ情報データとして送信する。そして、ステップS135でチェーン規制に違反しているか否かを判定する際に、チェーン装着中だけでなく、タイヤ3がスタッドレスタイヤである場合もチェーン規制に違反していないと判定されるようにする。 For example, when transmitting the determination result indicating whether the chain is attached or not attached to the vehicle body side system 2 shown in Step S115 of FIG. 8, the tire 3 is a studless tire or a radial tire. It may be transmitted as tire information data. When determining whether or not the chain regulation is violated in step S135, it is determined that the chain regulation is not violated not only when the chain is mounted but also when the tire 3 is a studless tire. .
 同様に、例えば図9のステップS230においてタイヤ状態データを送信する際に、チェーン装着中とチェーン未装着のいずれであるかだけでなく、タイヤ3がスタッドレスタイヤとラジアルタイヤのいずれであるかについても伝える。 Similarly, for example, when transmitting the tire condition data in step S230 in FIG. 9, not only whether the chain is attached or not attached, but whether the tire 3 is a studless tire or a radial tire. Tell.
 このようにすれば、通信センター200では、チェーン規制に対する違反車両をチェーン未装着、かつ、タイヤ3がスタッドレスタイヤでない車両とすることが可能となり、より的確にチェーン規制の管理を行うことが可能となる。また、ツール300を用いて監視者が違反車両を監視する際にも、同様のことが可能となる。 In this way, in the communication center 200, a vehicle that violates the chain regulation can be a vehicle that is not attached to the chain and the tire 3 is not a studless tire, and the chain regulation can be managed more accurately. Become. In addition, the same can be done when the monitor uses the tool 300 to monitor the offending vehicle.
 なお、ここでは図8や図9で示したフローチャートのように、タイヤ3の1回転毎にタイヤマウントセンサ1からタイヤ状態データを送信するようにしている。つまり、タイヤ3の種類に関してもタイヤ3の1回転毎に送信するようにしている。チェーンについてはタイヤ交換などによってタイヤ3の種類を変えなくてもチェーン装着中とチェーン未装着とが変化する可能性があるため、タイヤ3の1回転毎にタイヤ状態データを伝えることは有効である。しかしながら、タイヤ種類に関しては、タイヤ交換などが為されない限り変わらない。このため、タイヤ3の種類に関しては、タイヤ3にタイヤマウントセンサ1を取り付けたときに車体側システム2に伝えるようにすれば良く、タイヤ3の1回転毎に送信する必要は無い。 In this case, tire state data is transmitted from the tire mount sensor 1 every rotation of the tire 3 as shown in the flowcharts of FIGS. In other words, the type of the tire 3 is also transmitted every rotation of the tire 3. As for the chain, it is effective to transmit the tire condition data for each rotation of the tire 3 because there is a possibility that the chain is attached and the chain is not attached even if the type of the tire 3 is not changed by changing the tire. . However, the tire type does not change unless the tire is changed. For this reason, the type of the tire 3 may be transmitted to the vehicle body side system 2 when the tire mount sensor 1 is attached to the tire 3, and there is no need to transmit every rotation of the tire 3.
 また、ここでは、タイヤ3がスタッドレスタイヤであるかラジアルタイヤであるかというタイヤ種類に加えて、チェーン装着の有無についても検出して、タイヤ情報データとして送信するようにしている。しかしながら、タイヤ種類のみをタイヤ情報データとして送信するようにしても良い。 In addition, here, in addition to the tire type of whether the tire 3 is a studless tire or a radial tire, the presence / absence of chain attachment is also detected and transmitted as tire information data. However, only the tire type may be transmitted as tire information data.
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
Although the present disclosure has been described based on the above-described embodiment, the present disclosure is not limited to the embodiment, and includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 例えば、上記実施形態においては、振動検出部を構成する加速度センサ12の検出信号から接地区間を特定し、接地区間中の検出信号における高周波成分のレベルの算出結果を路面状態が示された路面データとして用いている。しかしながら、これは振動検出部での検出信号を用いて路面状態を推定する手法の一例を示したに過ぎず、振動検出部での検出信号を用いた他の手法によって路面状態を推定しても良い。また、振動検出部を加速度センサ12によって構成する場合を例示したが、他の振動検出を行うことができる素子、例えば圧電素子などによって振動検出部を構成することもできる。また、電源11についても、電池に限らず、発電素子などによって構成することもできる。例えば、振動検出素子を用いれば、振動検出素子によって振動検出部を構成しつつ電源11を構成することもできる。 For example, in the above-described embodiment, the ground section is specified from the detection signal of the acceleration sensor 12 that constitutes the vibration detection unit, and the calculation result of the level of the high-frequency component in the detection signal in the ground section is road surface data indicating the road surface state. It is used as. However, this is only an example of a method for estimating the road surface state using the detection signal in the vibration detection unit, and even if the road surface state is estimated by another method using the detection signal in the vibration detection unit. good. Moreover, although the case where the vibration detection part is comprised by the acceleration sensor 12 was illustrated, the vibration detection part can also be comprised by the element which can perform another vibration detection, for example, a piezoelectric element. Further, the power source 11 is not limited to a battery, and may be configured by a power generation element or the like. For example, if a vibration detection element is used, the power source 11 can be configured while the vibration detection unit is configured by the vibration detection element.
 また、上記実施形態の場合、受信機21にて、路面データに基づく路面状態の変化の判定やチェーン規制に対応している車両であるか否かの判定などを行う制御部としての役割を果たしている。しかしながら、これは一例を示したに過ぎず、受信機21とは別に制御部を備えても良いし、ナビゲーションECU22などの他のECUを制御部として機能させるようにしても良い。 In the case of the above-described embodiment, the receiver 21 serves as a control unit that performs determination of a change in road surface state based on road surface data, determination of whether or not the vehicle is compatible with chain regulation, and the like. Yes. However, this is merely an example, and a control unit may be provided separately from the receiver 21, or another ECU such as the navigation ECU 22 may function as the control unit.
 また、上記実施形態では、違反車両である場合に通信センター200に対して違反情報を伝えるようにしたが、逆に、チェーン規制に対応している車両である場合に、適合車両であることを示す適合情報を通信センター200に対して伝えるようにしても良い。その場合、通信センター200のデータベースにチェーン規制に対する適合車両についての適合車両情報が管理されることになる。したがって、ツール300を用いてチェーン規制に対応しているか違反しているかを判定する場合には、データベースに管理されていれば適合車両と判別し、データベースに管理されていなければ違反車両と判別することになる。勿論、適合車両と違反車両の両方に関する情報が通信センター200に伝えられるようにし、適合車両と違反車両の両方共に把握できるようにすることも可能である。 In the above embodiment, the violation information is transmitted to the communication center 200 when the vehicle is a violating vehicle. Conversely, when the vehicle is compatible with the chain regulation, the vehicle is a conforming vehicle. The matching information shown may be transmitted to the communication center 200. In that case, the conforming vehicle information about the conforming vehicle to the chain regulation is managed in the database of the communication center 200. Therefore, when using the tool 300 to determine whether the chain regulation is compliant or violated, the vehicle is determined to be a compatible vehicle if it is managed in the database, and is determined to be a violating vehicle if not managed in the database. It will be. Of course, information regarding both the conforming vehicle and the violating vehicle can be transmitted to the communication center 200 so that both the conforming vehicle and the violating vehicle can be grasped.
 また、上記実施形態では、チェーン規制に対応していない違反車両がチェーン規制されている道路を通行することを抑制する手法の1つとして、有料道路の入口で違反車両であることを判別したときに、有料道路への進入を抑制することを例に挙げた。その他、路上システムの警報機能などによって、「チェーン規制中のため走行できません」などのように音声によって聴覚的にドライバに対してチェーン規制の違反車両であることを警告することもできる。また、ナビゲーションECU22にてチェーン規制区間が把握できている場合には、例えばその区域に入る前もしくはその区域内において、報知装置24による警告アラームなどによってチェーン規制に対応していないことを報知することもできる。同様に、車両通信装置23を通じて、チェーン規制区間に近づいていることを通信センター200より車体側システム2に伝え、報知装置24にてチェーン規制に対応していないことを報知させるようにすることもできる。 In the above embodiment, when it is determined that the vehicle is a violation vehicle at the entrance of the toll road as one of the methods for suppressing the violation vehicle that does not comply with the chain restriction from passing on the road where the chain is restricted. In the above example, the entry to the toll road is suppressed. In addition, a warning function of the road system can be used to audibly alert the driver that the vehicle is in violation of the chain regulations, such as “cannot drive because of chain regulation”. When the navigation ECU 22 can grasp the chain regulation section, for example, before entering the area or in the area, notifying that the chain regulation is not supported by a warning alarm by the notification device 24 or the like. You can also. Similarly, via the vehicle communication device 23, the communication center 200 informs the vehicle body side system 2 that the vehicle is approaching the chain regulation section, and the notification device 24 may notify that the chain regulation is not supported. it can.
 また、上記実施形態において、監視者が使用するツール300については形態は問わない。すなわち、監視者が携帯して使用できる機器だけでなく、道路などに埋め込まれた機器であっても良い。 In the above embodiment, the form of the tool 300 used by the supervisor is not limited. That is, not only a device that can be carried and used by a supervisor, but also a device embedded in a road or the like.
 さらに、上記第2実施形態では、タイヤ3の種類をタイヤ3の固有のID情報を予め登録しておくことで把握できるようにした。これに対して、振動検出部の出力電圧波形に基づいて、タイヤ3がスタッドレスタイヤであるかラジアルタイヤであるかの判定を行い、その判定結果を記憶回路部14に記憶しておくことで、タイヤ3の種類を把握できるようにしても良い。 Furthermore, in the second embodiment, the type of the tire 3 can be grasped by registering the unique ID information of the tire 3 in advance. On the other hand, by determining whether the tire 3 is a studless tire or a radial tire based on the output voltage waveform of the vibration detection unit, and storing the determination result in the storage circuit unit 14, You may enable it to grasp | ascertain the kind of tire 3. FIG.
 例えば、スタッドレスタイヤの場合、ラジアルタイヤと比較して、トレッド31に形成される凹凸高さが高く、タイヤ3のゴムも柔らかい素材のものが用いられることから、振動の減衰率が大きく、加速度センサ12の出力電圧波形の振動が小さくなる。したがって、加速度センサ12の出力電圧波形の振動の大きさに基づいて、タイヤ3がスタッドレスタイヤとラジアルタイヤとのいずれであるかを判別することができる。 For example, in the case of a studless tire, since the unevenness formed in the tread 31 is higher than that of a radial tire and the rubber of the tire 3 is made of a soft material, the vibration attenuation rate is large, and the acceleration sensor The oscillation of the output voltage waveform of 12 is reduced. Therefore, it can be determined whether the tire 3 is a studless tire or a radial tire based on the magnitude of vibration of the output voltage waveform of the acceleration sensor 12.
 なお、加速度センサ12の出力電圧波形の振動については、所定の路面であれば、車速に応じて変化することから、車速に応じてタイヤ3の種類を判別する閾値を設定するのが好ましい。車速については、加速度センサ12の出力電圧波形の第1ピーク値同士の間隔もしくは第2ピーク値同士の間隔がタイヤ3の1回転に掛かった時間であることから、それらの間隔に基づいて演算できる。したがって、車速の変化を加速度センサ12の出力電圧波形から演算し、演算した車速に応じて閾値を設定して、タイヤ3の種類を判別するようにすると好ましい。 In addition, about the vibration of the output voltage waveform of the acceleration sensor 12, if it is a predetermined | prescribed road surface, since it changes according to a vehicle speed, it is preferable to set the threshold value which discriminate | determines the kind of tire 3 according to a vehicle speed. Regarding the vehicle speed, since the interval between the first peak values or the interval between the second peak values of the output voltage waveform of the acceleration sensor 12 is the time taken for one rotation of the tire 3, it can be calculated based on these intervals. . Therefore, it is preferable to calculate the change in the vehicle speed from the output voltage waveform of the acceleration sensor 12 and set the threshold according to the calculated vehicle speed to determine the type of the tire 3.
 また、上記各実施形態では、チェーン規制に対応していることを確認できるようにしたチェーン規制管理システムとして、適合車両であるか違反車両であるかの判別まで行えるものを説明した。しかしながら、違反車両であるかの判別まで行わなくても、少なくても適合車両であるか否かの判定を行うことができればよい。例えば、タイヤマウントセンサ1については、チェーン規制に対応しているか否かの情報を記憶したり、送信したりするものであれば良い。また、受信機21については、チェーン規制に対応しているか否かの情報に基づいて、チェーン規制に対応している車両であるか否かを判別するものであればよい。また、車両通信装置23についても、チェーン規制に対応している車両であるか否かを判別できる情報を送信するものであればよい。同様に、通信センター200については、チェーン規制に対応しているか否かの情報を管理して提供できるものであればよい。 Further, in each of the above embodiments, the chain regulation management system that can confirm that the chain regulation is supported has been described as being capable of determining whether the vehicle is a conforming vehicle or a violation vehicle. However, it is only necessary to determine whether or not the vehicle is a conforming vehicle without determining whether the vehicle is a violation vehicle. For example, the tire mount sensor 1 may be any sensor that stores or transmits information indicating whether or not it conforms to chain regulation. Further, the receiver 21 may be any device that determines whether the vehicle is compatible with the chain regulation based on the information indicating whether the chain regulation is supported. The vehicle communication device 23 may be any device that transmits information that can be used to determine whether the vehicle is compatible with chain regulation. Similarly, the communication center 200 only needs to be able to manage and provide information on whether or not it complies with chain regulations.
 また、チェーン規制に対応しているか否かに関する判別結果を受信機21やツール300に送信する形態について説明した。この送信された判別結果は、ツール300を通じてチェーン規制の監視者に伝えられたり、車両通信装置23を通じて通信センター200に伝えられるようになっている。しかしながら、これも送信された判別結果の使用形態の一つであり、チェーン規制に対応しているか否かの判別結果を車両運動制御に用いても良い。すなわち、チェーン規制に対応しているか否かに応じて雪道走行時等の車両の安定性が変わる。このため、例えばアンチロックブレーキ制御や横滑り防止制御における制御介入の閾値などの車両運動制御の閾値を設定する際に、チェーン規制に対応しているか否かの判別結果を用いるようにしても良い。 In addition, a mode has been described in which a determination result regarding whether or not the chain regulation is supported is transmitted to the receiver 21 or the tool 300. The transmitted determination result is transmitted to a chain regulation monitor through the tool 300 or to the communication center 200 through the vehicle communication device 23. However, this is also one of the usage forms of the transmitted determination result, and the determination result as to whether or not the chain regulation is supported may be used for vehicle motion control. That is, the stability of the vehicle when traveling on a snowy road changes depending on whether or not the chain regulation is supported. For this reason, for example, when setting a threshold value for vehicle motion control such as a threshold value for control intervention in antilock brake control or side slip prevention control, a determination result as to whether or not the chain regulation is supported may be used.
 また、タイヤ3の種類としては、ラジアルタイヤやスタッドレスタイヤ以外に、オールシーズンタイヤもある。オールシーズンタイヤは、特性的に、ラジアルタイヤとスタッドレスタイヤとの中間に位置するものであり、軽度の積雪等では、オールシーズンタイヤでも走行可能である。このため、オールシーズンタイヤをチェーン規制に対応したタイヤとするか否かは、国や地域などによって異なった扱いとなる。このため、オールシーズンタイヤについては、チェーン規制に対応したタイヤとして取り扱われる場合にはスタッドレスタイヤとして扱い、チェーン規制に対応したタイヤとして取り扱われない場合にはラジアルタイヤとして扱えば良い。 In addition to radial tires and studless tires, there are also all-season tires as types of tires 3. The all-season tire is characteristically located between the radial tire and the studless tire, and can run even with all-season tires in light snowfall or the like. For this reason, whether or not all-season tires are made to conform to chain regulations is handled differently depending on countries and regions. For this reason, all-season tires may be treated as studless tires when handled as tires conforming to chain regulations, and as radial tires when not treated as tires conforming to chain regulations.

Claims (12)

  1.  タイヤ(3)の裏面に取り付けられ、前記タイヤの振動の大きさに応じた出力電圧を検出信号として出力する振動検出部(12)と、前記振動検出部の出力電圧に基づいて前記タイヤがチェーン装着中であるかチェーン未装着であるかを判定し、該判定結果を示すタイヤ状態データを生成する信号処理部(13)と、前記タイヤ状態データを送信する送信部(16)と、を有するタイヤマウントセンサ(1)と、
     前記タイヤマウントセンサから送信された前記タイヤ状態データを受信する受信部(21)を有し、該受信部で受信された前記タイヤ状態データに基づいて、チェーン規制に対する適合車両であるか否かを判別し、該判別結果を送信する車体側システム(2)と、を含むチェーン規制管理システム。
    A vibration detector (12) attached to the back surface of the tire (3) and outputting an output voltage corresponding to the magnitude of vibration of the tire as a detection signal, and the tire is chained based on the output voltage of the vibration detector It has a signal processing unit (13) that determines whether the chain is mounted or the chain is not mounted, and generates tire state data indicating the determination result, and a transmission unit (16) that transmits the tire state data. A tire mount sensor (1);
    It has a receiving part (21) which receives the tire condition data transmitted from the tire mount sensor, and it is based on the tire condition data received by the receiving part whether or not it is a vehicle conforming to chain regulation. A chain regulation management system comprising: a vehicle body side system (2) for determining and transmitting the determination result.
  2.  前記車体側システムが送信した前記判別結果に基づいて、前記チェーン規制に対する適合車両であるか否かを示す適合情報を示す情報が通信センター(200)のデータベースに管理され、
     前記データベースに管理された前記適合情報に基づいて、適合車両であるか否かの判別を行う請求項1に記載のチェーン規制管理システム。
    Based on the determination result transmitted by the vehicle body side system, information indicating compliance information indicating whether or not the vehicle is compatible with the chain regulation is managed in the database of the communication center (200),
    The chain regulation management system according to claim 1, wherein it is determined whether or not the vehicle is a conforming vehicle based on the conformity information managed in the database.
  3.  前記車体側システムは、前記タイヤ状態データに基づいて、チェーン規制に対する適合車両であるか違反車両であるかを判別し、該判別結果を送信する請求項1または2に記載のチェーン規制管理システム。 3. The chain regulation management system according to claim 1, wherein the vehicle body side system discriminates whether the vehicle is a vehicle conforming to the chain regulation or a violation vehicle based on the tire condition data, and transmits the discrimination result.
  4.  前記車体側システムが送信した前記判別結果に基づいて、前記チェーン規制に対する適合車両であることを示す適合情報と違反車両であることを示す違反情報の少なくとも一方の情報が前記通信センターのデータベースに管理され、
     前記データベースに管理された前記適合情報と前記違反情報の少なくとも一方に基づいて、適合車両と違反車両の判別を行う請求項3に記載のチェーン規制管理システム。
    Based on the determination result transmitted by the vehicle body side system, at least one information of compliance information indicating that the vehicle conforms to the chain regulation and violation information indicating that the vehicle is a violation vehicle is managed in the database of the communication center. And
    The chain regulation management system according to claim 3, wherein the conforming vehicle and the infringing vehicle are discriminated based on at least one of the conforming information and the infringing information managed in the database.
  5.  前記タイヤマウントセンサは、
     前記タイヤ状態データを記憶する記憶部(14)を有し、
     前記信号処理部は、指令コマンドに基づいて、前記記憶部に記憶した前記タイヤ状態データを読み出し、前記送信部より送信する請求項1ないし4のいずれか1つに記載のチェーン規制管理システム。
    The tire mount sensor
    A storage unit (14) for storing the tire condition data;
    The chain regulation management system according to any one of claims 1 to 4, wherein the signal processing unit reads the tire condition data stored in the storage unit based on a command command and transmits the tire state data from the transmission unit.
  6.  ツール(300)より前記指令コマンドが前記タイヤマウントセンサに伝えられると、前記信号処理部は、前記記憶部に記憶された前記タイヤ状態データを読み出し、該タイヤ状態データを前記送信部より前記ツールに送信する請求項5に記載のチェーン規制管理システム。 When the command command is transmitted from the tool (300) to the tire mount sensor, the signal processing unit reads the tire state data stored in the storage unit, and transmits the tire state data to the tool from the transmission unit. The chain regulation management system according to claim 5, which transmits the chain regulation management system.
  7.  前記タイヤがスタッドレスタイヤであるかラジアルタイヤであるかを意味する該タイヤの種類を表す情報も前記タイヤ状態データとして記憶する記憶部(14)を有し、
     前記タイヤマウントセンサは、前記タイヤ状態データとして、前記タイヤの種類を表す情報も前記車体側システムに送信する請求項1ないし6のいずれか1つに記載のチェーン規制管理システム。
    A storage unit (14) for storing information indicating the type of the tire, which indicates whether the tire is a studless tire or a radial tire, as the tire state data;
    The chain regulation management system according to any one of claims 1 to 6, wherein the tire mount sensor transmits information representing the type of the tire to the vehicle body side system as the tire condition data.
  8.  タイヤ(3)の裏面に取り付けられ、前記タイヤの振動の大きさに応じた出力電圧を検出信号として出力する振動検出部(11)と、前記振動検出部の出力電圧に基づいて前記タイヤがチェーン装着中であるかチェーン未装着であるかを判定し、該判定結果を示すタイヤ状態データを生成する信号処理部(13)と、前記タイヤ状態データを送信する送信部(16)と、を有するタイヤマウントセンサ。 A vibration detector (11) attached to the back surface of the tire (3) and outputting an output voltage corresponding to the magnitude of vibration of the tire as a detection signal, and the tire is chained based on the output voltage of the vibration detector It has a signal processing unit (13) that determines whether the chain is mounted or the chain is not mounted, and generates tire state data indicating the determination result, and a transmission unit (16) that transmits the tire state data. Tire mount sensor.
  9.  前記タイヤ状態データを記憶する記憶部(14)を備え、
     前記信号処理部は、ツール(300)より指令コマンドが前記タイヤマウントセンサに伝えられると、前記記憶部に記憶された前記タイヤ状態データを読み出し、該タイヤ状態データを前記送信部より前記ツールに送信する請求項8に記載のタイヤマウントセンサ。
    A storage unit (14) for storing the tire condition data;
    When a command command is transmitted from the tool (300) to the tire mount sensor, the signal processing unit reads the tire condition data stored in the storage unit, and transmits the tire condition data to the tool from the transmission unit. The tire mount sensor according to claim 8.
  10.  前記記憶部は、前記タイヤがスタッドレスタイヤであるかラジアルタイヤであるかを意味する該タイヤの種類を表す情報も前記タイヤ状態データとして記憶している請求項9に記載のタイヤマウントセンサ。 The tire mount sensor according to claim 9, wherein the storage unit also stores, as the tire state data, information indicating a type of the tire, which indicates whether the tire is a studless tire or a radial tire.
  11.  タイヤ(3)の裏面に取り付けられ、前記タイヤがスタッドレスタイヤであるかラジアルタイヤであるかを意味する該タイヤの種類を表す情報をタイヤ状態データとして記憶する記憶部(14)と、前記記憶部より前記タイヤ状態データを読み出す信号処理部(13)と、前記タイヤ状態データを送信する送信部(16)と、を有するタイヤマウントセンサ。 A storage unit (14) attached to the back surface of the tire (3) and storing information indicating the type of the tire, which means whether the tire is a studless tire or a radial tire, as tire state data; and the storage unit A tire mount sensor comprising: a signal processing unit (13) that reads out the tire condition data; and a transmission unit (16) that transmits the tire condition data.
  12.  前記信号処理部は、ツール(300)より指令コマンドが前記タイヤマウントセンサに伝えられると、前記記憶部に記憶された前記タイヤ状態データを読み出し、該タイヤ状態データを前記送信部より前記ツールに送信する請求項11に記載のタイヤマウントセンサ。 When a command command is transmitted from the tool (300) to the tire mount sensor, the signal processing unit reads the tire condition data stored in the storage unit, and transmits the tire condition data to the tool from the transmission unit. The tire mount sensor according to claim 11.
PCT/JP2017/023196 2016-08-05 2017-06-23 Tire mount sensor and chain regulation management system WO2018025530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/322,166 US20190187029A1 (en) 2016-08-05 2017-06-23 Tire-mounted sensor and chain regulation management system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016154755 2016-08-05
JP2016-154755 2016-08-05
JP2017115277A JP2018026111A (en) 2016-08-05 2017-06-12 Tire-mounted sensor and chain regulation management system
JP2017-115277 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018025530A1 true WO2018025530A1 (en) 2018-02-08

Family

ID=61073306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023196 WO2018025530A1 (en) 2016-08-05 2017-06-23 Tire mount sensor and chain regulation management system

Country Status (1)

Country Link
WO (1) WO2018025530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004471A1 (en) * 2018-06-27 2020-01-02 株式会社デンソー Road surface state determination device and tire system provided therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344734A (en) * 1993-06-03 1994-12-20 Nippondenso Co Ltd Tire inflation pressure detector
JP2005170065A (en) * 2003-12-05 2005-06-30 Hitachi Ltd Radio tag having vehicle information memory area, device for reading/writing on radio tag having vehicle information memory area, method for reading/writing on radio tag having vehicle information memory area and vehicle provided with device for reading/writing on radio tag having vehicle information memory area
JP2007102424A (en) * 2005-10-03 2007-04-19 Denso Corp Chain information notification device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344734A (en) * 1993-06-03 1994-12-20 Nippondenso Co Ltd Tire inflation pressure detector
JP2005170065A (en) * 2003-12-05 2005-06-30 Hitachi Ltd Radio tag having vehicle information memory area, device for reading/writing on radio tag having vehicle information memory area, method for reading/writing on radio tag having vehicle information memory area and vehicle provided with device for reading/writing on radio tag having vehicle information memory area
JP2007102424A (en) * 2005-10-03 2007-04-19 Denso Corp Chain information notification device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004471A1 (en) * 2018-06-27 2020-01-02 株式会社デンソー Road surface state determination device and tire system provided therewith
JP2020003309A (en) * 2018-06-27 2020-01-09 株式会社デンソー Road surface state determination device and tire system having the same
JP7070155B2 (en) 2018-06-27 2022-05-18 株式会社デンソー Road surface condition determination device and tire system equipped with it

Similar Documents

Publication Publication Date Title
CN108698593B (en) Danger avoiding device for vehicle
JP5657917B2 (en) Road surface condition estimation method
US10352827B2 (en) Tire contact state estimation method
JP6547793B2 (en) Tire mount sensor, diagnosis history storage device and diagnosis notification device
JP6614073B2 (en) Road surface condition estimation device
JP6551274B2 (en) Hydroplaning judgment device
US11034356B2 (en) Tire-mounted sensor and road surface condition estimation apparatus including the same
JP2018026111A (en) Tire-mounted sensor and chain regulation management system
JP5878612B2 (en) Road surface condition estimation method
US20190225227A1 (en) Tire-mounted sensor and road surface condition estimation device including same
US10726714B2 (en) Wheel position detecting device
WO2017061397A1 (en) Tire-mounted sensor and sensor device used for same
JP7180354B2 (en) Tire wear detector
WO2019103095A1 (en) Road surface conditions determination device
EP3802158B1 (en) Tire damage detection system and method
EP3856538B1 (en) Tire damage detection system and method
WO2018025530A1 (en) Tire mount sensor and chain regulation management system
WO2018003693A1 (en) Tire mounted sensor and road surface condition estimating device including same
JP5908953B2 (en) Vehicle control method and road surface warning method
WO2018030000A1 (en) Tire mounted sensor, diagnosis history storage device, and diagnosis notification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836637

Country of ref document: EP

Kind code of ref document: A1